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Chapter 1

Introduction

In this thesis there are two applications from the Sieve of Eratosthenes The two sieves
that are mentioned in this thesis are the combinatorial sieve and the General Number
field Sieve. We will then compare both of the methods which each other and look how
these methods coincide or differ. The first part of this introduction is about the sieve of
Eratosthenes. The Sieve of Eratosthenes is first discussed in a historical manner. Secondly
there will be a notion of the Sieve of Eratosthenes in a more Number Theoretical sense.
Then there is an estimation of the number of primes of which the foundation have been
laid by Legendre. The last part of the introduction is about the RSA, one of the main
reasons the General Number Field Sieve is usefull in cryptography.

1.1 Sieve of Eratosthenes Historically

One of the first notions of a sieve, is the Sieve of Eratosthenes in the third century B.C.E.
He made a list of odd numbers and decided to delete 32 and all the third numbers after
that. After that he did the same with 52 and the fifth number after that. Then with 7
and so on following the primes. This process is made visual in Table (1.1)

1 3 5 7 ���
3

9 11 13 ��>
3

15 17 19

��>
3

21 23 ��>
5

25 ��>
3

27 29 31 ��>
3

33 ��>
5

35 37 ��>
3

39

41 43 ��>
3,5

45 47 ��>
7

49 ��>
3

51 53 ��>
5

55 ��>
3

57 59

61 ��>
3,7

63 ��>
5

65 67 ��>
3

69 71 73 ��>
3,5

75 ��>
7

77 79

Table 1.1: Example Sieve of Eratosthenes

[4] In the thirteenth century, mathematicians came to the conclusion that to get the primes
till a given number X we have to do this process for all numbers until

√
X. The reason for

this is that every number X with a prime factorization bigger than 2 has a prime factor
smaller than

√
X

1.2 The way many people know the Sieve of Eratosthenes

An example of the Sieve of Eratosthenes that is often learned to high school students or
beginning students can be found in Table 1.2. This is a process to find all the primes
until one hundred. This is done by eliminating all the numbers with prime divisors till√

100 = 10. Those are: 2, 3, 5 and 7. First we eliminate every multiple of 2 (green) then
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all the multiples of 3 not yet deleted (red), 5(blue) and 7(Yellow). Ultimately we can
conclude that the white numbers till 100 are the primes.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Table 1.2: Example Sieve of Eratosthenes

1.3 Estimating primes via Eratosthenes’ Sieve

After making a Sieve of Eratosthenes, we may ask ourselves how many primes there are
till a number X. Additionally we want to know if this stays doable if X gets really big.
For this we need a counting function π(X) = |{primes p : p ≤ X}| so, for example:
π(100) = 25, as seen in Table 1.2.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Table 1.3: Example Sieve of Eratosthenes

To get a functional formula for the number of primes below X, it is logical to ask how
many multiples of each prime there are. Let for example look at X = 100, see also Table
1.3. Maybe it is possible to do something with multiple of primes. First we start with
100, and try to subtract every number till 100, which have a multiple of at least one of
the primes. To find the number of numbers which have a prime divisor, first look at the
multiples of the primes below

√
100. These are {2, 3, 5, 7}. The number of multiples of 2

from 1 to 100 are b1002 c = 50, the number of multiples of 3 from 1 to 100 are b1003 c = 33.
And so, with 5, this results in 20 and with 7 we find 14 multiples. These are all coloured
numbers in table 1.3. The problem here is, that there are numbers in this set, which have
multiple prime factors of the set {2, 3, 5, 7}. For example the multiples of 6 = 2 · 3, will
give back something twice, because those numbers have divisors 2 and 3. So secondly it
is needed to add all the numbers which have 2 prime divisors of the set {2, 3, 5, 7}. So
the set: {6, 10, 14, 15, 21, 35}. These are yellow and red in table 1.3. But then there is a
problem with all numbers until 100, which have at least three prime divisors, which are
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counted one to many time in this set. So the third step is to subtract the multiples of
all the numbers which have at least three prime divisors of {2, 3, 5, 7} until 100 hence all
multiples of {30, 42, 70} For a bigger X, see the red numbers in 1.3. This process, would
have gone on with more multiples, though 2 · 3 · 5 · 7 > 100, so there is no need to go
further for X = 100. But it is possible to deduct a formula for the number of primes with
multiples of numbers: The Inclusion-Exclusion formula:

Lemma 1.3.1 (Inclusion-Exclusion Formula). let z =
√
X and pi distinct primes lower

than z. The number of primes below X is:

π(X) = X − 1 + π(z)−
∑
p1≤z

⌊
X

p1

⌋
+

∑
p1<p2≤z

⌊
X

p1p2

⌋
−

∑
p1<p2<p3≤z

⌊
X

p1p2p3

⌋
+ · · · (1.1)

From this we want to define sieves in a more analytic manner. But before we do this, we
need some definitions.

Let z be an arbitrary number in R and p a prime. The number P (z) is defined as the
product of the primes in (−∞, z):

P (z) :=
∏
p<z

p

A is the set in which we search for primes, most often this set will be used:

A = {n ∈ N : 1 ≤ n ≤ X} (1.2)

Now it is useful to look at sieves in terms of sets A and primes up to z. So let (a, b) the
greatest common divisor of a and b. Then:

S(A, z) = |n ∈ A : (n, P (z)) = 1|

This leads to an inclusion exclusion-formula for only the sieve S(A, z)

S(A, z) = X −
∑
p1<z

⌊
X

p1

⌋
+

∑
p1<p2<z

⌊
X

p1p2

⌋
−

∑
p1<p2<p3<z

⌊
X

p1p2p3

⌋
+ · · · (1.3)

Just the Inclusion-exclusion formula without 1 and π(z) for A as in 1.2 Hence:

π(X) = S(A,
√
X)− 1 + π(

√
X) (1.4)

To make equation 1.3 a bit shorter, we make use of the Möbius function

Definition 1.3.1 (Möbius function). The Möbius function µ(d) is defined as:

µ(d) =


1 if d = 1

(−1)r if d = p1p2 . . . pr for distinct primes pi

0 if p2|d for some prime p

(1.5)

We can see that the Möbius function is a multiplicative function, which means that µ(1) =
1 and for two coprime numbers p and q we have µ(pq) = µ(p)µ(q). The Möbius function
is in the multiplicative way defined by the prime-powers pa with

µ(p) = −1 and µ(pa) = 0 if a ≥ 2 (1.6)

The Möbius function gives rise to a simpler equation for S(A, z) That combines equations
1.3 and of course 1.5 to this summation. The Möbius function will give the signs, we can
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see at 1.5, so if there are an odd number of primes, it will be −1 and an even number of
primes gives +1. With A as in 1.2, this gives us:

S(A, z) =
∑
d|P (z)

µ(d)

⌊
X

d

⌋
(1.7)

Now we want to find an equation or formula to get a better understanding of S(A, z) in
this case.
For any number X ∈ R+ We can see that:

bXc = X + {X} = X +O(1) (1.8)

Because {X} ∈ [0, 1).
We can now estimate an upper bound with this formula, with 1.8:

S(A, z) = X
∑
d|P (z)

µ(d)

d
+
∑
d|P (z)

O(1) (1.9)

We can change this equation. since µ(d) = 0 for numbers that have a square prime divisor:
p2|d. We can see that:∑

d|P (z)

µ(d)

d
= 1−

∑
p1≤z

1

p1
+

∑
p1<p2≤z

1

p1p2
− · · · =

∏
p≤z

(1− 1

p
) (1.10)

For the right side of the +-sign in 1.9 we need the number of d that divide P (z). We
know that P (z) is a multiplication of all prime numbers till z. Every d has a prime divisor
either in it, or not, which gives 2π(z)possibilities. So∑

d|P (z)

O(1) = O(2π(z))

Hence because the number of numbers that divide P (z)

S(A, z) = X
∏
p≤z

(1− 1

p
) +O(2π(z)) (1.11)

With Mertens’ theorem, if we only stick to the main term of S(A, z) we can see this gives
us

X
∏
p≤z

(1− 1

p
) =

X · e−γ

log z
(1 +O(

1

log z
))

While the Prime Number Theorem states:

π(X) ∼ X

log(X)

Assume now we are looking for primes, than using 1.4 there is a factor difference of(if we
stick to the main term again):

X · e−γ

log(
√
X)

/
X

log(X)

to finally get:

X · e−γ

log(
√
X)

/
X

log(X)
=

log(X)

log(
√
X)
· e−γ = 2 · e−γ ≈ 1, 12
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But also the second term has problems. The term 2π(z) gets very large if z gets bigger.
For example, for z = 1000: π(z) = 168 and 2168 ≈ 1050 >> 1000000 This gives notion to
try to make a better estimation of the quantity of prime numbers.

About this, more will be told in Chapter 2, where we are going to talk about brun’s sieve.
A number theoretical way of sifting primes.

1.4 RSA

In this section the RSA(Rivest, Shamir, Adlemann) algorithm is explained. This algorithm
gives rise to the importance of the General Number Field Sieve(GNFS) and is an important
alogrithm for the security of data. In this part the RSA algorithm will be explained with
example and some notes. Used for this section is mainly a website of David Ireland about
the RSA algorithm [6].
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Steps
Easy example with small
primes

Notes of importance

1. Choose two large primes p
and q and calculate n = pq

In this example we take
p = 11 and q = 13. Now
n = 11 · 13 = 143

In the real cryptology case
we would take large primes,
often of 256, 512 or 1024 bits.
Or in the range of 2256, 2512,
21024. In these cases
calculating p and q from n
will take a lot of time in most
cases since, we cant go
trough all primes of the form
2256 since that is a number
bigger than the number of
atoms in the universe.

2. calculate φ = (p− 1)(q− 1)
φ = (p− 1)(q − 1) = 10 · 12 =
120

3. Find a number e such that
1 < e < φ abd gcd(e, φ) = 1

Here we choose e = 17, since
e = 3 and e = 5 are factors of
120 gcd(120, 17) = 1

e is on real algorithms often,
a fermat prime. A prime of
the form: 22

n
+ 1 Hence the

most commonly used and
also first 5 fermat primes are:
3, 5, 17, 257, 65537 These
numbers will work if p, q 6≡ 1
mod e

4. find d such that ed ≡ 1
mod φ

17 · 113 = 1921 ≡ 1
mod 120, thus d = 113

Here we can use the extended
Euclid Algorithm to find d

5. The public key is (n, e),
the private key is (n, d)

(n, e) = (143, 17) and
(n, d) = (143, 113)

just like p and q, d should be
private.

6. When the message that
you want to encrypt is m:
calculate the cyphertext by
c = me mod n

Let m = 7
c = 717 mod 143 = 716 · 71
mod 143 = 48 · 7
mod 143 = 50 mod 143

To calculate ’big’ powers, we
can use that kl mod n = k
mod n · l mod n. Hence we
can do a process where the
exponent is put into binary
and we can calculate the for
example 716 with (((72)2)2)2

7. Find the message back by:
m′ = cd mod n

m′ = 50113 mod 143 = 501

mod 143 · 5016 mod 143 · 5032

mod 143 · 5064

mod 143 = (42 · 113 · 16 · 50)
mod 143 = 7

The same process of 6, can
be used here also to calculate
’big’ powers.

We can see that this algorithm shows that the factorization of a prime number is very
important. For small primes(like 143) This is relatively easy. But for products of two
primes with 1024 bits, this gets difficult. We can’t go over all the primes of 1024 bits,
cause the number of primes are going to 21024

log 21024
by the Prime Number Theorem. But

we have better algorithms to solve this. The best known algorithm is named the General
Number Field Sieve (or GNFS) and we will discuss this in chapter 3.
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Chapter 2

Combinatorial Sieve

In this chapter is shown the beginning of a notion of the Brun’s sieve. First there will be
some new notations and the definition of the Buchstab Identity. After that we will give
a notion of Brun’s sieve. In this part the book of Opera de Cribro, chapter 6 [3] will be
followed thoroughly. Also parts of the first and third chapter of [4] are used.

2.1 Notation

To understand the first part of the combinatorial sieve, we need some new notations and
definitions. The first notation will be the set of all numbers divisible by a number d in a
set A.

Definition 2.1.1. let d be an integer:

Ad = {a ∈ A : a ≡ 0 mod d} (2.1)

We can also write if A = n ∈ N : n ≤ x

Ad(x) = |Ad| (2.2)

Since Ad has a clear structure, it is expected that it has an approximation of the form:

Ad(x) = g(d)A(x) + rd(x) (2.3)

Here A(x) = A1(x) and rd(x) is some small number relative to g(d)A(x).

From this base, it is possible to look back upon the sieve of Chapter 1. When we look at
1.7, we can change this formula with 2.1 to:

S(A, z) =
∑
d|P (z)

µ(d)

⌊
X

d

⌋
=
∑
d|P (z)

µ(d)|Ad|

To get an estimation for the sieve explained in the introduction that fits the equation 2.3,
it is logical to take g(d) = 1

d , Ad(X) = X and rd = O(1). And we find 1.9.

2.2 Sieve weights

As we have seen with the Sieve of Eratosthenes, there is a problem when we are estimating
S(A, z). When the set of prime number grows really large the error grows even larger.
We can write the error of the estimation in multiple ways now, in the case of the Sieve of
Eratosthenes:
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∑
d|P (z)

rd(x) =
∑
d|P (z)

µ(d)rd(x) =
∑
d|P (z)

µ(d)O(1) =
∑
d|P (z)

O(1) = O(2π(z)) (2.4)

Since the error term gets enormous in this sieve. The question is, if it is possible to change
the µ(d) into some λ(d) for which λ(d) = 0, for d > D for some D.

A logical solution would be:

λD(d) =

{
µ(d) if d < D

0 if d ≥ D
(2.5)

The problem with this solution is that it is not easy to see for which D, this would become
a lower or an upper bound, since in this case, we just start with following the primes and
than some composite numbers, but you never know if you are lower or higher than the
expected sieve value if you cut it of like this at a D.

From here on a beginning of Brun’s sieve will be explained. The goal is to find some lower
and upperbounds for S(A, z) namely:

S−(A, z) ≤ S(A, z) ≤ S+(A, z) (2.6)

Now S±(A, z), needs some further formulation.

First the sift weights µ(d) will be changed to new weights λ±. We also want to try to get
a lower bound that has value as high as possible as well as an upper bound with a value
as low as possible. We may write:

S±(A, z) = XV ± +R± (2.7)

The big question here is what weights λ±, we will use for different elements of A Hence
we will look at:

V − =
∑
d|P (z)

λ−d g(d) and V + =
∑
d|P (z)

λ+d g(d) (2.8)

and also for the rest term:

R− =
∑
d|P (z)

λ−d rd and R+ =
∑
d|P (z)

λ+d rd (2.9)

Definition 2.2.1 (Combinatorial Sieve). A combinatorial sieve is a sieve λd where the
λ’s have the same value as the Möbius function or 0

In the next chapters such a combinatorial sieve with some clear upper and lower bounds
is found. But first there is a notion of Buchstab’s Identity.

2.3 Buchstab’s Identity

In this section the Buchstab’s identity is explained. So first the definition of the Buchstab’s
identity.

Lemma 2.3.1 (Buchstab’s identity). It holds that:

S(A, z) = |A| −
∑
p|P (z)

S(Ap, p) (2.10)
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For clarity of this identity we will again consider the special case of A = {x ∈ N : 1 ≤ x ≤
N} and start to put in the first three primes, beginning with p = 2

S(A2, 2) = b1
2
Nc (2.11)

The number of even numbers. Now secondly p=3:

S(A3, 3) (2.12)

We will look at every number which is in A3 Hence x ≡ 0 mod 3, but if they have a same
prime factor as P (z) = 2 we will not do anything. And this holds for all numbers which
are even. Hence we only eliminate the numbers that are 0 mod 3 but not 0 mod 2 Hence
all the numbers that are 3 mod 6 Now thirdly p=5:

S(A5, 5) (2.13)

We can see P (5) = 3 · 2 = 6. Hence we only eliminate all numbers that are 0 mod 5 but
not 0 mod 2 or 0 mod 3 Hence they must also be 1 mod 6 or 5 mod 6.
We will go on with this process until z hence we are left with exactly the number of elements
in A minus once the number of elements which have at least 1 prime factor smaller than
z. Which is exactly S(A, z) And this looks like the way we eliminated numbers in our first
example at table 1.2, but there we didn’t eliminate the primes p and we did eliminate 1.

2.4 Brun’s sieve

In this part we will talk about the main example of combinatorial sieves. We will use the
inclusion-exclusion principle to get to a lower and upper bound for S(A, z) This construc-
tion is called Brun’s construction, named after Viggo Brun a Norwegian Mathematician.
We will first make a construction for the upper bound of S(A, z). Starting with Buchstab’s
Identity:

S(A, z) = |A| −
∑
p1|p(z)

S(Ap1 , p1) (2.14)

Where p1 runs over the divisors of P (z) To make an upper bound we may cut of all the
big primes higher than some number y1. We don’t know what happens with the solution
nor the error yet, but we will find an upper bound, hence:

S(A, z) ≤ |A| −
∑
p1<y1

S(Ap1 , p1) (2.15)

We can than use Buchstab’s identity again to solve for S(Ap1 , p1). We will use:

S(Ap1 , p1) = |Ap1 | −
∑
p2<p1

S(Ap1p2 , p2) (2.16)

To get to the new inequality:

S(A, z) ≤ |A| −
∑
p1<y1

|Ap1 |+
∑∑
p2<p1<y1

S(Ap1p2 , p2) (2.17)

There is now no possibility do erase some numbers for p2 since doing that would decrease
or limit, but after 3 iterations, this is again a possibility. We can write:

S(A, z) ≤ |A| −
∑
p1<y1

|Ap1 |+
∑∑
p2<p1<y1

|Ap1p2 | −
∑∑∑
p3<p2<p1<y1

S(Ap1p2p3 , p3) (2.18)

12
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Here we can give a new constrain by letting p3 < y3

S(A, z) ≤ |A| −
∑
p1<y1

|Ap1 |+
∑∑
p2<p1<y1

|Ap1p2 | −
∑∑∑
p3<p2<p1<y1

p3<y3

S(Ap1p2p3 , p3) (2.19)

When we do this more times, this gives rise to a generalized upper bound.
We can also to a similar thing for the lower bound. We start again with Buchstab’s
Identity and than iterate it. Hence,

S(A, z) = |A| −
∑
p1

S(Ap1 , p1) = |A| −
∑
p1

|Ap1 |+
∑
p1

∑
p2<p1

S(Ap1p2 , p2) (2.20)

To get a lower bound for S(A, z) here, we can give a constraint to p2 such that there is
less added on and get a lower bound.

S−(A, z) = |A| −
∑
p1

|Ap1 |+
∑∑
p2<p1
p2<y2

S(Ap1p2 , p2) (2.21)

Now we can continue this, just in a similar way as for S+, so iterate the buchstab identity
twice and than give an upper bound for even n in pn
We will define a combinatorial sieve λ+ and λ− on sets D+ and D− as

Definition 2.4.1. Let:

D+ = {d = p1 · · · pl : pm < ym for m odd} (2.22)

D− = {d = p1 · · · pl : pm < ym for m even} (2.23)

where d is a product of decreasing distinct primes pi and 1 ∈ D±.
We can now see that continuing the process of 2.22 gives us an upper bound:

S+(A, z) =
∑
d|P (z)

λ+d S(A, z) :=
∑
d|P (z)
d∈D+

µ(d)|Ad| ≥ S(A, z) (2.24)

and of course the continued process around 2.24 gives us a similar lower bound:

S−(A, z) =
∑
d|P (z)

λ−d S(A, z) :=
∑
d|P (z)
d∈D−

µ(d)|Ad| ≤ S(A, z) (2.25)

The choices we make for ym can decide how good this process works. Brun used:

ym = Dαγm (2.26)

for constants 0 < α, γ < 1. But we mostly nowadays choose:

ym = (D1/p1 · · · pm)
1
β (2.27)

with β ≥ 1.
In both cases max{d : d ∈ D±} ≤ D, hence there is a combinatorial sieve that have a
lower and upper bound.
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Chapter 3

The General Number Field Sieve

This chapter will be about the General Number Field Sieve (Short GNFS). This algorithm
is one of the fastest algorithms to solve the factorization of a general composite number.
So the goal is to factorize a big composite number n to two unknown primes p1 and p2.
Used and sometimes cited is A Beginner’s Guide To The General Number Field sieve by
Michael Case[2].

3.1 Difference of Squares Factorization method

The GNFS makes use of the Difference of squares Factorization method. Let n be a
composite number with n = pq and s, r ∈ Z, s2 ≡ r2 mod n. Then pq|(s2 − r2), thus
pq|(s− r)(s+ r) Hence, p|(s− r)(s+ r) and q|(s− r)(s+ r). Thus p and q have to devide
at least one of s− r and s+ r. This gives rise to 9 divisiblity Scenarios of which 6 give
back at least one of p and q. If one of p, q is found, the other one will be n

q or n
p

p|(s+ r) p|(s− r) q|(s+ r) q|(s− r) gcd(pq, s+ r) gcd(pq, s− r) Succes?

Yes Yes Yes Yes pq pq No
Yes Yes Yes No pq p Yes
Yes Yes No Yes p pq Yes
Yes No Yes Yes pq q Yes
Yes No Yes No pq 1 No
Yes No No Yes p q Yes
No Yes Yes Yes q pq Yes
No Yes Yes No q p Yes
No Yes No Yes 1 pq No

So if all divisibility scenario’s have equal chance we have a 2
3 chance that if we know a

difference of squares scenario, it is a successful factorization method.
This step will be the last one of the GNFS. First the GNFS will try to find s and r, after
which this method is used to get the p or q. With a failure of this method, the algorithm
can be done again.

3.2 Free parameters in GNFS

There are two free parameters that must be chosen. The first parameter is a polynomial
f : R→ R with integer coefficients. The second parameter is a number m ∈ N such that
f(m) ≡ 0 mod n.
This is equivalent to finding the base-m expansion of n:

n = adm
d + ad−1m

d−1 + ad−2m
d−2 + . . .+ a1m

1 + a0

14
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So finding f and m is writing down a number n in base-m, with arbitrarily chosen m.
Thus for instance let n = 713, we first choose m the base we want to write our number
in. This time 7 is chosen. Then we write this as a polynomial:

f(7) = 2 · 73 + 0 · 72 + 3 · 7 + 6 = 713

Hence f(m) is in this case:

f(m) = 2 ·m3 + 0 ·m2 + 3 ·m+ 6 (3.1)

We can see that f(m) = n and so f(m) ≡ 0 mod n.

3.3 Z[θ]

In this section the ring Z[θ] is explained. This ring will be used thoroughly throughout
the GNFS. Let θ ∈ C a root of polynomial f and let d be the degree of f . The space Z[θ]
is defined as follows.

Z[θ] = {x : x = ad−1θ
d−1 + ad−2θ

d−2 + . . .+ a1θ
1 + a0 for {aj} ⊂ Z}

The addition on this space to make this space a ring, is just the addition of polynomials.
Now is shown hat the product of two elements of this ring is again in the ring Z[θ].

Let A = a(θ), B = b(θ) ∈ Z[θ] With the algorithm for polynomial division, we can divide
a(θ) · b(θ) by f(θ) = 0 to get:

AB = a(θ)b(θ) = g(θ)f(θ) + c(θ) = g(θ) · 0 + c(θ) = c(θ) = C

, where C is again a polynomial, with a degree less than d. Hence C ∈ Z[θ].

Below is an example that goes further on the above polynomial 3.1. Let A = 4θ2 + 2 and
B = θ2 + 1. Then AB = 4θ4 + 6θ2 + 2. We can see:

AB = 4θ4 + 6θ2 + 2 = 2θ · (2θ3 + 3θ2 + 6) + (−12(θ) + 2) = (−12(θ) + 2) ∈ Z[θ]

So products are also well-defined. In conclusion the space Z[θ] is a ring.

3.4 Finding two squares

The reason we can find two squares such that x2 ≡ y2 mod n is the use of the following
result:

Lemma 3.4.1. Given a polynomial f(x) with integer coefficients a root θ ∈ C, and an
m ∈ Z/nZ such that f(m) ≡ 0 mod n, there exist a unique mapping φ : Z → Z/nZ
satisfying:

1. φ(ab) = φ(a)φ(b) ∀a, b ∈ Z[θ]

2. φ(a+ b) = φ(a) + φ(b) ∀a, b ∈ Z[θ]

3. φ(1) = 1 mod n

4. φ(θ) = m mod n.
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The GNFS will try to find a difference of squares congruences in the following way: Let
U be a finite set of integers (a, b), β ∈ Z[θ] and y ∈ Z such that∏

(a,b)∈U

(a+ bθ) = β2 and
∏

(a,b)∈U

(a+ bm) = y2

Let x = φ(β) then working congruent modulo n we can find:

x2 = φ(β)φ(β) with rule 1,

= φ(β2)

= φ(
∏

(a,b)∈U

(a+ bθ)) with rule 1 again,

=
∏

(a,b)∈U

φ(a+ bφ) with rule 4,

=
∏

(a,b)∈U

(a+ bm)

= y2

So now we have found a relation x2 ≡ y2 mod n and by 3.1 we have a 2
3 chance for a

solution.

3.5 Smoothness over a factor base

In this section smoothness over a factor base will be described. Secondly a process to
find such smooth elements in both sets Z and Z[θ] is described. It is used to find square
numbers in Z and Z[θ]. For Z finding a square is relatively easy, though we can define a
square number as some number pa11 · p

a2
2 · p

a3
3 · . . . · pann with ∀i ai = 0 mod 2.

Definition 3.5.1. A Rational factor base R is a finite collection of primes.

We can see here that A is a rational factor base, though we want to call it in this section
R Because of the R in Rational. The next definition is about smoothness on a rational
factor base R

Definition 3.5.2. A number N is smooth on a rational factor base if the number only
has prime factors of that factor base.

We will look at an example now. Let the factor base R be {2, 3, 5, 7, 11, 13, 17} We can
see that 14365 = 17 · 132 · 5 is smooth on the factor base R, but 3542 = 23 · 7 · 2 · 11 isn’t,
because 23 /∈ R. In the ring Z[θ], this can be done in a similar way.

Definition 3.5.3. An algebraic factor base is a finite subsetA ⊂ Z[θ], where every element
of A is of the form {pθ+ q} such that there are not two elements a, b in Z[θ] with a · b = x
These elements generate a subset of the prime ideals of Z[θ].

The Rational Factor Base also has a smoothness definition, which logically follows from
definition 3.5.3.

Definition 3.5.4. An element l ∈ Z[θ] is smooth over an algebraic factor base A if it is
writable as a product of factors from A

To write such elements down in program language we need this theorem:
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Theorem 3.5.1. Let f(x) be a polynomial with integer coefficients and let θ ∈ C be a
root of f(x). Then the set of pairs (r, p) where p is a prime integer and r ∈ Z/pZ with
f(r) ≡ 0 mod p is in bijective correspondence with the set of a + bθ ∈ Z[θ] that satisfy
the criteria for being in an algebraic factor base

To find smooth elements in Z and Z[θ] means to find (a, b) such that a+ bθ is smooth in
some Algebraic factor base A and a + bm is smooth in some Rational factor base R To
find these smooth numbers sieve arrays will be used. This section is very well described
in and almost verbatim taken from [2, p. 9]

1. Fix b ∈ Z and let N be an arbitrary positive integer.

2. Let a vary from −N to N and create two arrays for the algebraic and rational factor
base. One for the values a+ bθ and the other one a+ bm.

3. For qi in R, qi divides a+ bm if and only if a ≡ −bm mod qi. Find values of a for
which a = −bm+ kqi for some k ∈ Z and for each value a make note of this factor
of a + bm in the sieve array. Repeat this for every qi ∈ R Now make a note of all
a+ bm in de sieve array that are completely factored by this method. These a+ bm
are smooth in R.

4. Now proceed in the same way for the algebraic factor base. So an (ri, pi) ∈ A divides
a+ bθ if and only if a ≡ −bri mod pi. Find values of a satisfying a = bri + kpi for
some k ∈ Z. For each a found, make note of this (ri, pi) factor of a+ bθ in the sieve
erray. When finished there will be a list of (ri, pi) factors. If

∏
pi = (−b)df(−a/b)

then this list of factors is a complete factorization and hence a+ bθ is smooth over
the given algebraic factor base A.

5. Compare the two arrays by entry. If at any position a+ bm and a+ bθ are smooth,
then this (a, b) is what is sought after, so save them.

−N + bθ −N + bm
−(N − 1) + bθ −(N − 1) + bm

...
...

(N − 1) + bθ (N − 1) + bm
N + bθ N + bm

Table 3.1: example of a Sieve Array

We can repeat this process for different b to find enough (a, b) that we need.

3.6 Verifying squares in Z and Z[θ]

It’s relatively easy to find out if numbers in Z are squares. Let s ∈ Z and its prime
factorization s = pq11 p

q2
2 · · · p

qn
n , than we can say that s is a square if ∀i, qi ≡ 0 mod 2.

For Z[θ] the equivalent of this test, is just one have of the solution. An element t ∈ Z[θ]
is square if its factorization is: t = (a1 + b1θ)

q1(a2 + b2θ)
q2 · · · (an + bnθ)

qn and ∀i, qi ≡ 0
mod 2.

So, this is the first condition that must hold to find that t ∈ [θ] is a perfect square. For
the second test the Legendre symbol is needed:
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Definition 3.6.1. The Legendre symbol
(
a
p

)
for a ∈ Z and p a prime integer is defined

as: (
a

p

)
=


1 if x2 ≡ a mod p has a solution

−1 if x2 ≡ a mod p has no solution

0 if p|a

The following theorem will be used to increase the chances that t will really be a square
element of Z[θ]

Theorem 3.6.1. Let U be a set of (a, b) pairs such that
∏

(a,b)∈U (a + bθ) is a perfect
square in Z[θ]. Then for any (s, q) with q prime and s given as in theorem 3.5.1 with
(s, q) - a+ bθ for any (a, b) ∈ U

∏
(a,b)∈U

(
a+ bs

q

)
= 1

To find such elements we only have to use some q that are higher than p.

So we can test if l ∈ Z[θ] is a square element in the following way:

1. Verify that for a factorization t = (a1+b1θ)
q1(a2+b2θ)

q2 · · · (an+bnθ)
qn has ∀i, qi ≡ 0

mod 2.

2. Let Q be a set of pairs of numbers (s, q) with q prime and s as in theorem 3.5.1. Let
(s, q) - a+ b[θ] for every a+ bθ occurring in the factorization of t. Verify

∏
(a,b)∈U

(
a+ bs

q

)
= 1

For U as in Theorem 3.6.1. Q is called the quadratic character base.

3. If the two above are satisfied, than t is probably a perfect square in Z[θ]. If Q is
enlarged, the probability of t being a square will increase.

3.7 Combine everything

In this section the goal is to combine everything to find V ⊂ U . Such that:

1.
∏

(a,b)∈V a+ bm is square in Z.

2.
∏

(a,b)∈V a+ bθ is square in Z[θ].

In section 3.5 the arrays that were constructed in the end of the paragraph gave us a set
{(ai, bi)} ∈ U that had the following properties:

1. a+ bm is smooth over the rational factor base R.

2. a+ bθ is smooth over an algebraic factor base A.

Hence all the possible products of elements of V ⊂ U defined by
∏

(a,b)∈V a + bm and∏
(a,b)∈V a + bθ are smooth over R respectively A. Since these products are now smooth

it is needed to check these four things:

1.
∏

(a,b)∈V (a+ bm) > 0, Since a square has to be a positive number in Z.
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2.
∏

(a,b)∈V (a + bm) is writable as pe11 p
e2
2 · · · penn , where R = {p1, p2, ..., pn} form the

rational factor base R. And ∀i, ei ≡ 0 mod 2.

3.
∏

(a,b)∈V (a + bθ) is writable as rf11 r
f2
2 · · · r

fm
m , where A = {r1, r2, ..., rm} form the

algebraic factor base A. And ∀i, fi ≡ 0 mod 2.

4.
∏

(a,b)∈V

(
a+bsi
qi

)
= 1 for all (s1, q1), . . . , (sk, qk) = Q defined in section 3.6.

We can now give every element (a, b) ∈ U a vector of length 1+n+m+k to help us chech
the 4 things mentioned above.

1. where the first element will be 0 if a+ bm > 0 and 1, else. A sum of these elements
will now give 0 mod 2 if

∏
(a,b)∈V (a+ bm) > 0 and 1 mod 2 else.

2. The next n elements in this vector for (a, b) will be the ei named at the list above.
A product

∏
(a,b)∈V (a + bm) will be square if all ei are even, so if the sum for each

ei in the product are 0 mod 2.

3. The next m elements in this vector for (a, b) will be the fi named at the list above.
A product

∏
(a,b)∈V (a+ bθ) will be square if all fi are even, so if the sum for each fi

in the product are 0 mod 2.

4. The last k elements in this vector will be used to check if for any (si, qi) ∈ Q,∏
(a,b)∈V

(
a+bsi
qi

)
= 1. We can define for every element (a, b) ∈ U the number 0 if(

a+bsi
qi

)
= 1 and 1 if

(
a+bsi
qi

)
= −1 In this case the sum of multiple elements will

give 0 mod 2 if
∏

(a,b)∈V

(
a+bsi
qi

)
= 1 and 1 mod 2 if

∏
(a,b)∈V

(
a+bsi
qi

)
6= 1.

So a vector for (a, b) ∈ U looks like this:

( a1︸︷︷︸
1.

a2 · · · a1+n︸ ︷︷ ︸
2.

a1+n+1 · · · a1+n+m︸ ︷︷ ︸
3.

a1+n+m+1 · · · a1+n+m+k︸ ︷︷ ︸
4.

)

We have now defined for every (a, b) ∈ U a vector with 1+n+m+k elements. So if we have
found enough U such that: |U | > 1 +n+m+ k we can make a |U | × 1 +n+m+ k-matrix
C.
Now a solution will be a product, for which every element of the matrix will be 0. Hence
there must be a vector a = (a1, a2, ..., a|U |)

T such that Ca = 0 mod 2. The (a, b) ∈ U for
which a1=1 are the (a, b) ∈ V which make all 4 given properties above 0 mod 2. And
thus both Z and Z[θ] square.
Then, with paragraph 3.4 it is possible to find a relation x2 ≡ y2 mod n
And after that there is a 2

3 chance to have found a prime factorization following the
Difference of Squares Factorization method in paragraph 3.1
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Chapter 4

Discussion and Conclusion

In this thesis we considered the combinatorial sieve and the general number field sieve.
Both can be seen as successors of the Sieve of Eratotsthenes. In this final chapter we
look at further developments as well as compare these two modern sieve. Some further
developments after the combinatorial sieve are Chen’s theorem and the result of Zhang-
Maynard. Both of these results say something about twin primes and make a beginning
of proving the twin prime conjecture. Beside the combinatorial Sieve also Selberg’s sieve
is used for these progressions. Selberg’s sieve[3, ch 7] is changing the sift weights on a
different way than the combinatorial sieve does. There the weight of the sieve is slowly
decreasing depending on the bigness of the number with a logarithmic scale. In the second
part the consequences of the GNFS on RSA are discussed. There is a discussion on how
the GNFS makes it possible to crack the RSA-algorithm. Then we may question ourselves
is RSA really safe, or are there further developments for which we have to watch out.

4.1 How to go further with sieves

This section will be about Combinatorial sieves of Chapter 2 and looks at the twin prime
conjecture and how we are getting closer to solve it using a combinatorial sieve and sift
weights.

Let pn be the n-th prime. The twin conjecture is:

lim inf
n→∞

(pn+1 − pn) = 2 (4.1)

The first proven result that will be discussed in this paragraph is the one of Chen’s
Theorem. Chen’s theorem is described below.

Let p and p+2 be both primes or one a prime and the other one writable as a multiplication
with two prime factors. Then there are infinitely many p that hold.

The mathematician Chen used the combinatorial sieve to solve this problem in his paper.
The other important sieve with sieve weights is Selberg’s sieve. This result is also proven
by Ross[1] in his paper with Selberg’s sieve.

Another newer result that is proven has just yet been solved.

Let pn be the n-th prime. then:

lim inf
n→∞

(pn+1 − pn) < N for N = 7 · 106 (4.2)

This result has been proven by the mathematician named Zheng in this decade, using
Selberg’s sieve. After this result, Maynard tried to lower this limit and succeeded by
getting it to 645.
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4.2 Number of calculations using GNFS

In this part the beginning of [5], will be used to find a way to calculate how fast we can
crack the code of RSA. To find the number of calculations needed for a given x to get a
given x2 ≡ y2 mod n

exp

((
3

√
64

9
+ o(1)

)
(log n)

1
3 (log log n)

2
3

)
(4.3)

Now let in equation 4.3, n = 2k and o(1) = 0. LogPlot in Wolphram Alpha for k = 1 to
2048 gives this this graph.

Figure 4.1: (k, number of calculations)

’

Right now the biggest supercomputer that will be build in 2021 will have 1.5 exaflops.[7]
Or can do about 1.5 · 1018 calculations per second. So let us take this number and look
at k = 512, 1024, 2048. The number of calculations we have to do for each k that are
mentioned are about: 1.76 · 1019 for k = 512, 1.32 · 1026 for k = 1024 and 1.53 · 1035 for
k = 2048. To calculate the number of seconds, we just have to divide this by the number
of calculations we can do in a second, which give these results: for k = 512, t ≈ 11s. for
k = 1024 t ≈ 4y. for k = 2048 t ≈ 4, 9 billion years. It is easy to see that there are big
differences for different n that are often used. But n = 22048 seems safe for now, via the
GNFS.

Quantum computers may fasten the process in the future a lot, due to Shor’s algorithm,
though, that is not yet a problem for RSA.

4.3 Is RSA really safe?

For immediate security RSA-1024 and RSA-2048 are definitely safe. The methods to crack
these algorithms are not yet good enough and take some years to find the message. The
problem is that we can save the encrypted messages and maybe uncover these messages
in a later time, when RSA-2048 can be cracked(By most probably Quantum Computers.)
When this will happen is a big question.

4.4 Conclusion

In this paragraph there is a discussion about the differences and similarities between the
two sieves discussed in this thesis.
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The first similarity is that both sieves are about primes. In Chapter 2, there was a
discussion over an upper- or lower bound for the number of primes in a set. While in
Chapter 3.7, the goal is finding the prime factorization of a big composite number.
The second similarity, is that both have some kind of sifting process. In the Combinatorial
sieve we start with a set A and try to find any element in this set that is a prime or at
least are following the rules that are set. In the GNFS we have sieve arrays, where we
start with all a+ bm and a+ bθ for a and b in between some numbers. After the process,
we have a set U over which we than find some smooth products.
The third similarity is that there are in both sieves a sifting process that uses a relatively
small set of primes. In both the sieve of Eratosthenes and the combinatorial sieve, we
always sift over the primes pi ≤ z, while in the GNFS there is a similar thing with the
Rational Factor Base and Algebraic Factor Base.
The main difference is that we are looking for different things. The GNFS is looking
for a prime factorization, while the combinatorial Sieve is counting the primes in a set.
The consequence is that for the combinatorial Sieve we are using more analytical number
theory, while for the GNFS more algebraic number theory is used. This makes that
however both are modern applications of the Sieve of Eratosthenes, the two solutions
really differ a lot. To conclude the Sieve of Eratosthenes has a lot of modern applications
in mathematics and those are in multiple fields of number theory. That doesn’t mean
that if they are called sieves, the same procedures are used in both the sieves. In the
examples of this thesis, we have found that the sieves are applications in algebraic number
theory and in Analytic number theory and have a completely different way of going to the
solution.
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