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Abstract

The quark-gluon plasma (QGP) is a fluid of free quarks and gluons that exists under the extreme conditions of
high temperature and/or high pressure. This plasma can be investigated by performing high energy heavy-ion
collisions. These collisions can also be simulated by computer models, which will be done at a centre of mass
energy of

√
sNN = 5.02 TeV in this research. These models contain parameters that one would like to know, e.g.

parameters for the shear viscosity η/s of the QGP. After the collision, there are different stages that have to be
described. One of these stages is the QGP, which can be described by hydrodynamics. We will see how the
physics of the different stages works and how it can be implemented in a computer program, from the initial
collision to the final particles that hit the detectors. We will then describe how relevant physical information can
be extracted from these detections. It will turn out that the momentum distribution transverse to the collision
axis will not be isotropic, which can be characterised by the flow coefficients vn, of which the elliptic flow v2 will
be the most important one. We will also introduce the Symmetric Cumulants, an observable that is not yet
implemented in the currently used program. They measure the correlation between the different flow coefficients.
We will look at different system sizes to get a complete view of this observable.

The information about different observables can be compared to experimental data. By using Bayesian
analysis, one can obtain a good guess for the values of the different parameters. In this way, we can investigate
the quark-gluon plasma and the other important physics of a heavy-ion collision. The hope is that the simulated
Symmetric Cumulants are sensitive for the chosen set of parameters, so that this additional observable will
constrain the parameters further.
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Introduction

The quark-gluon plasmsa (QGP) is a state of matter in quantum chromodynamics (QCD), as illustrated in
the phase diagram of figure 1. The horizontal axis reads the baryon chemical potential, but this can be read as
baryon density, as the two are related to each other. It exists under the conditions of high temperature and/or
high density or, equivalently, pressure. In this state, hadrons do not exist in the way we are used to: the quarks
that make up these hadrons are deconfined and can therefore exist on their own. Normally, they are confined
due to the strong nuclear force and form hadrons. We could have mesons (qq̄) or baryons (qqq), which are all
colour-neutral. Colour can be exchanged by the force carriers, the gluons. Deconfinement takes place, because
the strong coupling between quarks becomes small in the case of a QGP. We can indeed see in figure 2 that the
coupling constant of the strong interaction αs decreases with increasing momentum transfer in an interaction.
On the other hand, confinement occurs for small momentum transfer.

Figure 1: A schematic of the phase diagram of
QCD. It contains the different possible phases.

Figure 2: Measurement of the coupling constant
of the strong interaction αs as a function of the
momentum transfer Q [1].

It is thought by scientists that a QGP existed in the very early universe, just after the big bang. Only a
few microseconds later, the system began to cool down and it became possible for individual particles such as
protons and neutrons to form. Nowadays, some scientists think that neutron stars contain a phase similar to a
QGP. This is due to the very high density in these stars. As they are often very far away from the earth, it is
hard to investigate these stars. Luckily, similar conditions needed to form such a plasma can also be obtained in
the lab. For this we need high-energy nuclear collisions and these can be performed in particle accelerators such
as the Large Hadron Collider (LHC) at CERN and the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven
National Laboratory. A heavy-ion collision is an example of such collisions. A heavy-ion is an electrically
charged particle that is usually heavier than a He-4 nucleus. After the collision, there is a period where the
system is in a quark-gluon plasma phase.

It is believed that a quark-gluon plasma can be described macroscopically using relativistic hydrodynamics.
This idea has already existed for more than fifty years and became more prominent in the late 1970’s by
performed fixed-target heavy-ion collisions [2]. It led to evidence of the formation of dense matter that has a
collective expansion. This is what makes a QGP special: it is neither a bunch of hadrons, nor a free gas, as the
quarks are strongly coupled to each other in the liquid.

Besides from experiments, heavy-ion collisions can also be studied by using computer programs. This
possibility will be explored and investigated in the next chapters. The simulations can then be compared to
experimental data, which we will also do.
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Chapter 1

Preliminaries

Before we can really start, it is good to get familiarised with some important concepts. In this thesis, we use
natural units, i.e. c = ~ = kB = 1, and the mostly negative metric tensor gµν = ηµν := diag(1,−1,−1,−1) for
flat Minkowski space. Throughout the thesis, we will consider two colliding heavy ions. They will eventually form

an ensemble of particles. We can assign a momentum ~p =
(
px, py, pz

)T
, mass m, and energy E =

√
p2 +m2 to

each particle. We will use the convention that the beam of the two colliding particles is in the z-direction, such
that the transverse plane will be the xy-plane. There are also some important variables or observables that will
be mentioned here and used throughout the thesis.

The system can undergo a Lorentz transformation, i.e. a boost with velocity v. For a four-vector aµ, we
have that

a′µ = Λµν a
ν , with Λµν =


γ 0 0 −vγ
0 1 0 0
0 0 1 0
−vγ 0 0 γ

 , (1.1)

when we deal with a boost in the z-direction: ~v = vêz.
There is a notion of transverse momentum, which is defined by

pt :=
√
p2
x + p2

y, (1.2)

Figure 1.1: Schematic view of the reaction plane as two
particles or nuclei collide. The red part is supposed to
be the quark-gluon plasma formed after the collision.

such that px = pt cosϕ and py = pt sinϕ, with ϕ the
azimuthal angle with respect to a so-called reaction
plane. This plane is schematically shown in figure
1.1. The angle between this reaction plane and the
laboratory frame is called the reaction plane angle and
is denoted by ΨR.

We will also come across the rapidity, defined by

y :=
1

2
ln

(
E + pz
E − pz

)
. (1.3)

This quantity indicates more or less the direction of
the particle. If the particle’s direction is primarily in
the xy-plane, then pz will be small and y will tend
to zero. If, in the other extreme case, the direction is
essentially in the ±z-direction (i.e. E ≈ ±pz), then y
will tend to ±∞. The rapidity is a useful quantity, as
the difference of the rapidity of two different particles
is invariant under a Lorentz transformation, i.e. [3]

y′ = y +
1

2
ln

(
1− v
1 + v

)
= y − arctanh(v);

y′1 − y′2 = y1 − y2,

(1.4)

with v the velocity of the associated boost in the z-direction. Despite this advantage, the rapidity is not an easy
quantity to compute, as one needs to know both the angle w.r.t. the beam and the mass of the particle. It is
difficult to measure the latter precisely and that measurement is avoided by introducing the pseudorapidity
η. For highly energetic particles, the two quantities are almost the same, but the pseudorapidity is easier to
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compute. If we thus assume that the particles are highly energetic (i.e. p� m), we come to the definition of the
pseudorapidity1 [3]:

η := − ln

(
tan

θ

2

)
(1.5)

= −1

2
ln

( 1
2 −

1
2 cos θ

1
2 + 1

2 cos θ

)
=

1

2
ln

(
p(1 + cos θ)

p(1− cos θ)

)
=

1

2
ln

(
p+ pz
p− pz

)
, (1.6)

with θ the angle between the trajectory of the particle and the beam pipe, i.e. pz = p cos θ. It is indeed easier
to compute η as it only depends on the polar angle θ and not on the mass anymore. Note that for massless
particles we have that y = η.

Another important concept is centrality. It is of importance because many observables are plotted with
the centrality on the horizontal axis. It is determined by the impact parameter b, as shown in figure 1.2, and
is normally given in terms of percentages. This parameter b represents the distance between the two centres
of the colliding nuclei, so it is related to the overlap between the particles. The centrality is proportional to
b2 [4] and related to the multiplicity of participating particles (the participants): a higher centrality results
in a smaller multiplicity. We call a collision central (i.e. 0% centrality) if b ≈ 0 and peripheral (i.e. 100%
centrality) if b ≈ R1 + R2, with Ri the radius of nucleus i. Observables can also be plotted with Noff

trk on the
horizontal axis. It represents the amount of trajectories of charged particles, which is based on the multiplicity of
charged particles. It takes into account all charged particles that are in some pt-range and η-range.2 In this way,
we see that centrality and Noff

trk are equivalent. However, it is sometimes easier and more convenient to use Noff
trk

in an experimental setup. Simulations have to be done under the exact same conditions, so we adopt it here.

Figure 1.2: Illustration of the impact parameter b and a schematic view of the collision.

The spectators illustrated in figure 1.2 are the particles that do not participate in the collision. They move
more or less in the same direction as before the collision, unaltered. They will not be of relevance in this
thesis.3 We also see in the figure that the colliding nuclei are represented by flat disks. This is due to Lorentz
contraction:

L′ = L
√

1− v2 =:
L

γ
,

as the nuclei move with a relativistic velocity v. The rest length is denoted by L and it is shortened via γ to a
length L′.

By manipulation of equation (1.3), we see that y = arctanh(pz/E). But then we also have that

p2
t +m2 = E2 − p2

z = E2
(

1− tanh(y)
2
)

= E2 1

cosh(y)
2 .

We can now express E and pz in terms of transverse momentum and rapidity by

E =
√
p2
t +m2 cosh(y), (1.7)

pz =
√
p2
t +m2 sinh(y), (1.8)

and for the momentum four-vector we can write, for pt � m,4 that

pµ =

(
E
~p

)
= pt


cosh(y)
cos(ϕ)
sin(ϕ)
sinh(y)

 . (1.9)

1 This is done by a Taylor expansion around m/p� 1.
2 The appropriate ranges will be mentioned in Chapter 4 when we discuss the results.
3 This does not mean that they are useless. Spectators induce electromagnetic effects which can be studied [5].
4 This is a valid assumption, as we will restrict ourselves in the simulation to particles within a range −ηmax < η < ηmax, with
ηmax in the order of magnitude of 1. As argued for y, this means that pz is small, so that p ≈ pt.
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Chapter 2

Simulation of heavy-ion collisions

We argued in the introduction that a quark-gluon can be described hydrodynamically. This is different from
how one would normally describe what would happen after a collision of (subatomic) particles. In this chapter,
we will develop the theory of relativistic hydrodynamics to describe the plasma. However, the plasma is not
the only stage that exists after a heavy-ion collision. The different stages are shown in figure 2.1 and we will
shortly describe them here. Later in this chapter, we will explain these stages in more detail and also argue how
these stages are implemented in the simulation program. For a full explanation with all the mathematical and
physical details, I refer to [6] and most of the explanation of the simulation is done with this reference in mind.
However, the following sections contain enough information to understand the process.

The two nuclei collide at τ = 0. There is a short period of free streaming. At τ ∼ 1 fm, we can treat
the quark-gluon plasma in a hydrodynamic way. The system will cool down over time and at τ ∼ 10 fm, we
have a conversion to hadrons: a hadron resonance gas. This gas is the low temperature phase of quantum
chromodynamics, as seen in figure 1. At a certain moment, chemical freeze-out will occur. This means that the
particles are in their final stage and will not decay into other particles anymore before they reach the detectors.
After that, there is the kinetic freeze-out after which the particles will not interact with each other anymore.
The result is an ensemble of particles that can move around without bumping into other particles. These final
particles will be detected, from which one can deduce physical information. This analysis is treated in Chapter 3.

Figure 2.1: Schematic spacetime diagram for a heavy-ion collision with indicated stages.

2.1 Relativistic hydrodynamics

In order to describe a quark-gluon plasma hydrodynamically, we need a relativistic theory of hydrodynamics.
It is based on the conservation of the so-called energy-momentum tensor Tµν , which is the conserved current
that corresponds to a symmetry in the spacetime translation. To build this tensor, we go step by step. It is
built by an expansion of gradients, assuming that the fluid is close to thermal equilibrium. This means that
we allow small gradients in the velocity and temperature.5 First we consider an ideal fluid, which corresponds
to Tµν0 . We do not take into account any gradients, because there are no dissipative effects by definition of
an ideal fluid. We can only make use of the hydrodynamic degrees of freedom, which give rise to two Lorentz
scalars E and P [7], which will turn out to be related to each other. We also use the metric tensor gµν and the

5 Small can be a somewhat arbitrary notion. It means that it is much smaller than the typical scale of QCD, which is about the
mass of a proton: 1 GeV.
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four-velocity uµ, defined by

uµ :=
dxµ

dτ
= γv

(
1
~v

)
, (2.1)

with τ the proper time and γv := (1− v2)−1/2. Note that uµu
µ = 1. As Tµν is symmetric,6 the most general

expression we can come up with is a symmetric superposition of the quantities just mentioned. The tensor will
then look like

Tµν0 = E (c0g
µν + c1u

µuν) + P (c2g
µν + c3u

µuν) , (2.2)

for ci ∈ R, with i = 0, 1, 2, 3 and E and P some variables that we will address in a moment. These prefactors ci
can be determined by looking at Tµν0 in the local rest frame. In this frame, we know that the energy-momentum

tensor for an isotropic fluid looks like diag(ε, p, p, p) and uµ =
(
1,~0
)T

. Here ε plays the role of a local energy
density and p the local pressure. This requires a small computation, and the result yields that

Tµν0 = εuµuν − p∆µν , (2.3)

with ∆µν := gµν − uµuν . Note that ∆µνuν = 0. We can also see now that our unknown variables E and P are
just the local energy density and the local pressure, respectively.

In principle, Tµν0 has 10 independent components and we only have four equations, namely

∂µT
µν
0 = 0, (2.4)

as Tµν0 is a conserved quantity. By equation (2.3), it follows that there are only five independent variables,
namely ε, p and three components of uµ.7 However, we still only have four equations, so the system is not
closed. The fifth equation that will close this system of equations is the equation of state (E.o.S.), which is
the pressure as a function of the energy density:

p = p(ε). (2.5)

This E.o.S. can be a small and elegant expression. For example, in cosmology it takes the form p = wε [8], with
w ∈ R. If we have a gas of highly relativistic particles, we have that w = 1

3 , and for nonrelativistic matter, we
have w = 0. In some cases however, it will be a bit more complex. For heavy-ion collisions, one has to do a
lattice calculation, which is an advanced topic in quantum field theory. It is out of the scope of this thesis and
we will just assume that an expression for the equation of state can be found.

So far, we have not taken into account that there could be dissipative (i.e. viscous) effects, which are caused
by gradients in the energy-momentum tensor. If we do this, there is a notion of local temperature and local fluid
velocity that are not uniquely defined out of equilibrium, due to these viscous effects. This means that there are
different choices of local rest frames of the fluid. For example, we can define many local temperature fields

{T (xµ) |T a local temperature field} ,

which will differ from each other by gradients of hydrodynamic variables, with the constraint that all these fields
have to approach the same value once in equilibrium. We could redefine our Lorentz scalars as

E = ε(T ) + fE(∂T, ∂u), (2.6)

P = p(T ) + fP(∂T, ∂u). (2.7)

Redefinitions of fields like T (xµ) and uµ are often called a frame choice and look like

T (xν) 7→ T ′(xν) = T (xν) + δT (xν) (2.8)

uµ(xν) 7→ u′µ(xν) = uµ(xν) + δuµ(xν), (2.9)

where δT (xν) and δuµ(xν) are first order in derivatives. We can redefine them as we want, as long as it does
not change the energy-momentum tensor. This introduces constraints, and one can deduce that E = ε and
P = p− ζ∇µuµ, with ζ a coefficient that turns out to represent the bulk viscosity. This procedure also introduces
a term πµν that will be related to the shear viscosity η. A more elaborate explanation and computation is done
in [9], but the main result yields (to first order) that the energy-momentum tensor can be written as8 [10]

Tµν = Tµν0 + πµν −Π∆µν = εuµuν − (p+ Π)∆µν + πµν , (2.10)

6 Tµν can be derived from varying the action with respect to the metric gµν . Because the metric is symmetric, Tµν will be
symmetric as well: Tµν ∝ δS

δgµν
.

7 uµ has four components, but it is constrained by the normalisation condition uµuµ = 1.
8 This equation is the relativistic analogue to the Navier-Stokes equation.
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with πµν := 2ησµν and Π := −ζ∇µuµ. We used that ∇µ := ∆µν∂ν , while σµν is symmetric and traceless and
given by

σµν :=
1

2
(∇µuν +∇νuµ)− 1

3
∆µν∇λuλ =: ∇〈µuν〉, (2.11)

where ∇〈µuν〉 is the short notation for the symmetric and traceless version of ∇µuν . The shear tensor πµν is
symmetric and traceless by construction and transverse to uν , i.e. πµνuν = 0 [11]. This means that πµν has five
independent components. The two quantities for the viscosity are usually given as a dimensionless fraction like
η/s and ζ/s, with s the entropy density. A QGP is often called a perfect fluid, due to its low shear viscosity.
Indeed, experiments show that η/s is very small. It even tends to be at the lower bound for strongly coupled
plasma, as conjectured by string theory [12, 13]:

η

s
=

1

4π
. (2.12)

The dissipative effects in the first order energy-momentum tensor is not the general result. In fact, the
general dissipative part is an expansion in powers of gradients of hydrodynamic variables like uµ. So equation
(2.10) only contains this effect up to first order. This first order theory, however, poses a problem of causality
and stability of the solutions [14]. Acausality means that the propagation speed is greater than the speed of
light: two events are not in causal contact. Müller, Israel and Stewart proposed a solution [15, 16]:

Dπµν =
1

τπ

(
− πµν − ησµν + · · ·

)
,

DΠ =
1

τΠ

(
−Π− ζ∇µuµ + · · ·

)
,

(2.13)

where D := uµ∇µ and τΠ and τπ can be thought of as the relaxation time and have corresponding dimensions.
These formulas imply that the viscous terms are calculated in the form of a differential equation that is to be
solved for πµν and Π. Equation (2.13) can be made more precise by adding higher order terms in gradients of
the velocity [17]. For second order, the energy-momentum tensor will look like equation (2.10), but with the
difference that the viscous part contains more terms. These additional terms are partly determined by coupling
constants between the shear and bulk viscosity. To get the equations of motion, we will need to solve, together
with an equation of state:

∂µT
µν = 0. (2.14)

2.2 From collision to quark-gluon plasma

We will now explain how the whole process from a heavy-ion collision to the final detected particles works. First,
we choose the kind of particles we want to collide, e.g. two lead nuclei. The simulation program then begins by
generating the events given the initial conditions. These initial conditions, as shown in Appendix D, are chosen
in such a way that the centre of mass energy of two nucleons is

√
sNN = 5.02 TeV. It is defined as

√
sNN :=

√
pµpµ =

√
(E1 + E2)2 − (~p1 + ~p2)2. (2.15)

This energy mainly depends on the nucleon-nucleon cross section σNN and a normalisation constant mentioned
in Appendix D.

We can not immediately describe the system hydrodynamically. This is because it does not describe the
formation of the plasma: it only describes the time evolution. Also, hydrodynamics requires thermal equilibrium
and that is certainly not the case right after the collision. That is why there is this short timegap ∆τ ∼ 1 fm
between the collision and the hydrodynamic description. In order to describe the system with hydrodynamics,
we need to solve equation (2.14). The solution to a differential equation needs initial conditions in order to
be defined uniquely. This means that we first need to go from the collision of particles to a scalar field for
the energy density or entropy density.9 There are different models that predict the initial conditions, e.g. the
Glauber model and the TRENTo model [18]. In this research, TRENTo (Reduced Thickness Event-by-event
Nuclear Topology) is the used model, so we discuss it now. This model finds a function f that is proportional to
the entropy density and this function turns out to be related to the thickness of participating particles. The
factor that converts this proportional sign to an equal sign is a parameter for the simulation. We first consider
a collision between two protons A and B with impact parameter b along the x-direction. We then determine
whether they collide and that probability is given by

Pcoll = 1− exp

[
−σgg

∫ (∫
ρAdz

∫
ρBdz

)
dxdy

]
, (2.16)

9 The entropy density is directly related to the energy density by the equation of state and the laws of thermodynamics.
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where ρA := ρproton(x− b/2, y, z) and ρB := ρproton(x+ b/2, y, z). The effective parton-parton cross section is
denoted by σgg.

10 The particles that collide are the participants. We then define the fluctuated thickness for
each proton by

TA(x, y) := wA

∫
ρA(x, y, z)dz, (2.17)

where we took proton A without loss of generality and wA is a weight coming from the Gamma distribution
Γ(k, k):

Pk(wA) =
kk

Γ(k)
wk−1
A e−kwA . (2.18)

This implies that it has a mean of k/k = 1. These weights produce multiplicity fluctuations as is observed in
experiments. To this end, one can tweak k such that theory and experiment coincide. In practice, it often occurs
that the system is actually a collision between nuclei, which contain more than one nucleon. We can produce
a set of positions of the different nucleons, usually done by sampling from a distribution. One often uses the
Woods-Saxon distribution [19]:

ρ(r) =
ρ0

1 + exp
(
r−R
a

) , (2.19)

with ρ0 the density at the centre of the nucleus, R the nuclear radius and a the skin depth. These values can be
obtained experimentally from electron scattering experiments. Equation (2.17) can be modified to be valid for
bigger systems, namely

TA(x, y) =

Npart∑
i=1

(wA)i

∫
ρA(x− xi, y − yi, z − zi)dz =:

Npart∑
i=1

(wA)iTp(x− xi, y − yi), (2.20)

with Npart the amount of participants and Tp the nucleon thickness function. We again chose A without loss of
generality and these labels A and B now distinguish between the two colliding objects. The transverse profile of
the nucleon shape is often chosen to be Gaussian shaped:

Tp(x, y) =
1

2πw2
exp

(
−x

2 + y2

2w2

)
, (2.21)

with w the nucleon width. Finally, we can define the reduced thickness TR, which is the function we are
actually looking for:

f = TR(p, TA, TB) :=

(
T pA + T pB

2

)1/p

, (2.22)

which depends on TA and TB, i.e. on the fluctuated thickness of both colliding nuclei. In conclusion, we have
found a function that can bring us from the initial participants to an entropy density, which was our goal.

TRENTo is active right after the collision, say at τ0 = 0+. However, it is still too early to let hydrodynamics
do its thing. The system is not yet in local thermal equilibrium right after the collision. The stage between
τ = τ0 and the start of hydrodynamics is called the pre-equilibrium stage. It is not necessarily needed, as one
could start with hydrodynamics right away [20]. However, one should probably change the initial conditions to
compensate for any pre-equilibrium evolution. As there has to be enough time for the collective flow to build up,
we want to start early with the hydrodynamic description of the system (namely at τ ∼ 1 fm). We therefore
need this pre-equilibrium stage to get the system into equilibrium quickly. The simplest way to model this quick
expansion is by introducing free streaming, of which the duration is indicated by τfs. This model assumes
that the particles are noninteracting and massless. After the time τfs, the system will instantaneously go to a
hydrodynamic description with strong coupling. This is of course not the most physical description and it can
be improved by a more gradual build-up of the strength of the coupling or by having a weakly-coupled system
in the beginning. However, for our intents and purposes, the free streaming works rather well. The TRENTo
model returns an entropy density, but we want to consider particles, i.e. a particle density n(x, y), to implement
free streaming. Luckily, these densities have the same units and we can therefore think of these particles as
carriers of some amount of entropy units. So this does not contradict what we just did.

10 The cross section σgg is chosen in such a way that the total proton-proton cross section is the same as the inelastic nucleon-nucleon
cross section σNN .
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As the particles are assumed to be massless during free streaming, they move with the speed of light. They also
move along straight trajectories as the particles are noninteracting. We can write down the energy-momentum
tensor for a time τ > τ0 [21]:

Tµν(x, y) =
1

τ

∫ 2π

0

p̂µp̂νn(x−∆τ cosϕ, y −∆τ sinϕ)dϕ, (2.23)

with ∆τ = τ − τ0 and p̂µ = pµ/pt. We assume boost invariance [22], so we can say that η = 0. As y = η for
massless particles, we see that p̂µp̂ν can be written as (recall Chapter 1)

p̂µp̂ν =


1 cosϕ sinϕ 0

cosϕ cos2 ϕ cosϕ sinϕ 0
sinϕ cosϕ sinϕ sin2 ϕ 0

0 0 0 0

 . (2.24)

At time τ = τfs, we have to match equation (2.23) to equation (2.10). We do a small computation where we
use the results from section 2.1 that uµu

µ = 1 and that ∆µν and πµν are transverse to the four-velocity, i.e.
Aµνuν = 0 for such a transverse tensor Aµν :

Tµνuν = (εuµuν − (p+ Π) ∆µν + πµν)uν

= εuµ.
(2.25)

This is just a matter of solving for the eigenvalue and the eigenvector. Naturally, only physical solutions, i.e.
timelike eigenvectors, are allowed to be solutions to this equation and we obtain ε and uµ. After this, the
pressure p can be calculated using the equation of state. Next, we can calculate the bulk viscosity Π:

∆µνT
µν = ε∆µνu

µuν − (p+ Π)∆µν∆µν + ∆µνπ
µν

= −3(p+ Π),
(2.26)

as πµν is traceless and transverse and gµ
µ = 4. In other words, Π can be calculated by

Π = −1

3
∆µνT

µν − p. (2.27)

Finally, we can calculate the shear viscosity tensor πµν by

πµν = Tµν − εuµuν + (p+ Π)∆µν . (2.28)

Now that we have all information about the initial conditions for the energy-momentum tensor, we can use
the hydrodynamic description of the system. For this, there are still some things left to be modelled. For the
shear and bulk viscosity as function of the temperature T , the following ansatzes are made:

(η
s

)
(T ) = (η/s)min + (η/s)slope (T − Tc)

(
T

Tc

)(η/s)crv

, (2.29)(
ζ

s

)
(T ) =

(ζ/s)max

1 +
(
T−(ζ/s)T0

(ζ/s)width

)2 , (2.30)

where the different coefficients are parameters of the simulation and Tc is the transition temperature from the
plasma to the hadron resonance gas. For this gas, there is a different parameter, namely (η/s)hrg. This is a
constant that describes the shear viscosity in the hadronic phase while describing the system hydrodynamically.

Due to numerical inaccuracy that can occur and grow over time, it can be difficult to require that πµµ = 0 =
πµνuν . We therefore choose a numerical ‘zero’ ξ0 � 1, such that

πµµ ≤ ξ0
√
πµνπµν ,

πµνuν ≤ ξ0
√
πµνπµν ,

(2.31)

where
√
πµνπµν = Tr

(
π2
)

is used as a measure for the magnitude of the components of πµν . There is another
requirement for this shear viscosity tensor, namely that it is smaller than the ideal part of the energy-momentum
tensor Tµν0 . The reason for this is driven by consistency in the theoretical framework [23]. Numerically, the
following is required:

πµνπµν � Tµν0 T0µν = ε2 + 3p2. (2.32)
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To make this happen, we define the parameter ρmax � 1 such that√
πµνπµν ≤ ρmax

√
ε2 + 3p2. (2.33)

The condition of equation (2.33) can sometimes be violated. There is a systematic treatment against these large
viscous terms that stabilises the code, but does not affect the important physics [23]. It can be seen as making
local sharp jumps in the flow profile smoother and is done by

πµν 7→ π̂µν := πµν
tanh ρ

ρ
, (2.34)

with

ρ := max

{ √
πµνπµν

ρmax

√
ε2 + 3p2

,
πµµ

ξ0ρmax
√
πµνπµν

,
πµνuν

ξ0ρmax
√
πµνπµν

}
.

Normally, ρ will be quite small and then tanh ρ/ρ will be very close to 1 and we have our normal system.
However, if it happens that ρ becomes large (because conditions (2.31) and (2.33) are not fulfilled), ρ can become
larger than 1 and the viscous tensor will be suppressed due to tanh ρ/ρ < 1.

2.3 Particlisation and afterburner

Over time, the temperature and density of the system decrease due to the expansion. There will be a point in
time after which hydrodynamics is not the best way anymore to describe the system. At low temperatures, it
is best described via Boltzmann transport models. For this to happen, the continuous hydrodynamic system
has to be converted to a discrete system of individual particles. This process is called particlisation and is
performed at a temperature Tswitch. This temperature has to be chosen such that both descriptions are equally
valid and give the same result in that regime. It defines a hypersurface σ in four dimensional spacetime. The
process of particlisation of species s is governed by the Cooper-Frye formula [24]:

E
d3Ns
d3p

=
gs

(2π)3

∫
σ

fs(~x, p)p
µd3σµ, (2.35)

where the amount of particles of species s is indicated by Ns and gs is the degeneracy of that species, d3p is an
abbreviation for d3p = dpxdpydpz, fs(~x, p) is the grand-canonical boosted particle distribution and dσµ is the
normal to σ. This formula gives the particle distribution of species s in momentum space. If the system is in
equilibrium, one would have for the particle distribution function that

feq(~x, p) =
1

exp [pµuµ(~x)/T (~x)]± 1
, (2.36)

where the +1 belongs to the Fermi-Dirac distribution (i.e. for fermions) and the −1 belongs to the Bose-Einstein
distribution (i.e. for bosons). The chemical potential µ is set to zero in the simulations. A system that is
described by viscous hydrodynamics is a bit out of equilibrium and the particle distribution is therefore modified
by adding some δf to the equilibrium distribution. This has to be done to make sure that Tµν is continuous
across the transition of system description. What this looks like is not well known, although there exist some
ansatzes [25]. If pµdσµ < 0, it means that the particle travels backwards in the fluid. This effect is difficult to
model, and as it only applies for a small percentage of the total amount of particles, this effect is neglected and
corresponding particles are discarded.

The particle distribution function is not only modified due to non-equilibrium effects. Another important
aspect is the resonance width of particles. Instead of having a mass m0, the pole mass, the particle can have
a different mass, while still being the same particle. These resonance particles are in an excited state and have
short half lives. Normally for a density of particles with mass m0, one would have

n =
g

(2π)3

∫
f(m0, p)d

3p, (2.37)

with f(m0, p) =
(

exp
[√

m2
0 + p2/T

]
± 1
)−1

. If, however, this energy can vary via the mass by a probability

distribution P(m), we obtain a different particle distribution, namely

f(p) =

∫
P(m)f(m, p)dm =

∫
P(m)

exp
(√

m2 + p2/T
)
± 1

dm. (2.38)
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The distribution P(m) can be assumed to take the form

P(m) ∝ Γ(m)

(m−m0)2 + Γ(m)2/4
, with Γ(m) := Γ0

√
m−mmin

m0 −mmin
, (2.39)

where mmin is a threshold mass: the total mass of the lightest decay products. Naturally, P(m) is normalised to
1 for mmin < m < mmax := m0 + 4Γ0.

Equation (2.35) gives a probability distribution of the momentum. To produce an ensemble of discrete
particles, one can sample those particles from the distribution. When this whole process is done, the hadronic
system is described by a Boltzmann transport model. This simulates all the dynamics, such as decay or scattering.
It solves the Boltzmann equation

dfi(x, p)

dt
= Ci(x, p), (2.40)

where fi is the distribution function of species i and Ci is the source term, which takes into account the collisions
involving species i. The model that is used as afterburner for our purposes is UrQMD (Ultra-relativistic
Quantum Molecular Dynamics) [26, 27]. It solves equation (2.40) by propagating the particles along straight-line
trajectories and samples the collisions by using stochastics. The full relativistic treatment is a bit too involved
to show here, as all particles have a different internal clock. This causes the relative distances between particles
to be different. One would have to construct a relative distance that is Lorentz invariant, which can be done by
some Minkowski inner product. Here, a somewhat intuitive reasoning will be given. The particles are represented
by a Gaussian shaped density distribution. All these particles induce a potential and interact with each other.
Due to electric charge, there is a Coulomb potential. There is also a Skyrme potential that models the binding
and saturation and a Yukawa potential that takes the strong nuclear force into account. A collision takes place if

dtrans ≤
√
σtot

π
, (2.41)

with σtot the total cross section, interpreted geometrically as an area. The decay channels for the different
particles are known and can be used to this extent. When the chemical interactions, such as decays, are done,
chemical freeze-out is reached: the particles are stable.11 Some time after that, the particles will not interact
with each other anymore, which means that kinetic freeze-out has been reached. Again some time later, the
particles will hit a detector, and we can start to analyse the detections, which will be done in the next chapter.

11 Stable in the sense that the lifetime of the hadrons is long enough to reach the detectors.
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Chapter 3

Analysis of heavy-ion collisions

In the previous chapter, we have developed a theory to describe the whole process of a heavy-ion collision and
the development of the system until the final particles are detected. In this chapter, we will discuss how one can
deduce important physical information of the system from particle detections. It will be important to quantify
the collective behaviour that was shortly mentioned in the introduction and the observed anisotropy in the
transverse momentum distribution. This will be the first topic. Then we will discuss the Symmetric Cumulants,
which is an observable that will be explored in great detail in this thesis. The last section is dedicated to the
question how one can obtain information about the initial conditions of the system, such as the shear viscosity
η/s for the quark-gluon plasma, by using particle detectors.

3.1 Anisotropy

If two (elementary) particles collide, the momentum distribution in the transverse plane will be isotropic, i.e.
uniformly distributed in this plane. We could also look at heavy-ion collisions. The colliding particles are
composed of a number of nucleons. If all collisions are independent, we will just have a superposition of the
individual collisions and the momentum distribution will still be isotropic in the transverse plane. There is
another case, which we saw in the previous chapter: the system can be in thermal equilibrium. Then the collisions
are not independent [28]. Instead, particles can have an influence on each other, causing an anisotropy in the
transverse momentum distribution induced by the initial geometry. The (an)isotropy of the initial geometry is
characterised by

εx(b) :=

〈
y2 − x2

〉
〈y2 + x2〉

, (3.1)

where 〈·〉 denotes an average over the participants. Sometimes, the initial geometry is characterised by the
different eccentricity coefficients

εne
inΦn := −

〈
rneinϕ

〉
rn

, (3.2)

with Φn the initial symmetry plane angle.
The anisotropy of the initial geometry can be translated to the transverse momentum distribution via the

pressure gradient. This initial geometry and the gradient is illustrated in figure 1.1 and figure 3.1. The latter
also shows how the plasma transforms over time. The gradient in the x-direction is greater than the gradient in
the y-direction, because the distance between the centre of the plasma and the surrounding vacuum is smaller.
This causes the plasma to propagate quicker in the x-direction than in the y-direction.

Figure 3.1: Illustration of the overlap region with impact parameter b in the transverse plane and the expansion
of the QGP over time [6].
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The consequence of this kind of expansion is an anisotropic azimuthal transverse momentum distribution,
which essentially is given by the transformation of coordinates of equation (1.9) [29]:

E
d3N

d3p
=

d2N

2πptdptdy

(
1 + 2

∞∑
n=1

vn cos(n(ϕ−ΨR))

)
, (3.3)

where N is the amount of particles. The other symbols have already been explained in Chapter 1. A full
derivation of this Fourier series with coefficients vn is done in Appendix A. The right hand side of equation (3.3)
can be viewed as the amount of particles N binned by pt per unit rapidity y. The Fourier coefficients, also called
the harmonics or the flow coefficients, of this Fourier series expansion (3.3) can be calculated in the following
way:

vn(pt, y) = 〈cos(n(ϕ−ΨR))〉p, (3.4)

where 〈·〉p denotes an average over all detected particles in an event. The first harmonic is also called the directed
flow. It is basically an overall shift of the distribution. The second harmonic is the most important one and it is
called the elliptic flow.

3.2 Cumulants

In principle, the reaction plane angle ΨR is not known, so we cannot compute vn by equation (3.4). There is
a way to estimate this reaction plane in a somewhat intuitive way, namely by the usual way to compute an
angle of a position (x, y) with respect to the x-axis: θ = arctan(y/x). We can estimate ΨR depending on the
nth harmonic by [30]

ΨR(n) ≈ Ψn :=
1

n
arctan


M∑
i=1

sin(nϕi)

M∑
i=1

cos(nϕi)

, (3.5)

with M the number of detected particles in an event, and ϕj the azimuthal angle of particle j.
A way to avoid this approximation is using azimuthal correlations. In this way, we do not need the

approximation in equation (3.5). To develop this theory, we first define a flow vector12 Qn ∈ C as

Qn :=

M∑
j=1

einϕj . (3.6)

This definition of Qn also has an immediate generalisation by using weights, i.e.

Qn :=

M∑
j=1

wkj e
inϕj , (3.7)

with wj the weight of particle j and k ≥ 0. In light of this complex way of expressing the flow vector, we can say
that

vn(pt, y) =
〈
ein(ϕ−ΨR)

〉
p
. (3.8)

We can indeed argue, by symmetry of particle production w.r.t. the reaction plane, that the imaginary part of
equation (3.8) has to be zero, as sin(·) is an odd function. So this way of writing vn is equivalent with equation
(3.4).

From now on, we will omit the subscript in 〈·〉p. If not indicated otherwise, we mean by single brackets an
average over the particles in an event and double brackets indicate an additional average over all events, with
the appropriate weights as defined in the next section.

3.2.a Cumulant method

In practice, we want to quantify the (anisotropic) flow of a QGP by calculating the flow coefficients. However, we
also have so-called nonflow in the system.13 Anisotropic flow is the result of correlations between all particles
in the fluid, because it is in (approximate) equilibrium. On the other hand, nonflow is a result of the correlation
between only a few particles. The decay of a particle could be an example, as this involves only a few particles.

12 It is a vector in the sense that it has two components (real and imaginary part). It is just standard terminology and is adopted
here.

13 The program does not simulate nonflow coming from jets, which is the main part of nonflow. However, we use the described
method anyway, because the simulation has to do the exact same thing as is done in experiments.
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Another example would be the formation of jets with a back-to-back topology. This nonflow causes a bias in the
flow we want to measure. To this end, multi-particle correlation methods have been developed. The more
particles we take into account at once, the less bias we have from nonflow in the flow estimate. We will denote
this multi-particle correlation by vn{k}, with k ∈ N. So vn{k} is based on the correlation between k particles.
The strength of this method lies in the fact that a higher order correlation removes all lower order correlations.
After some important definitions, we will argue this result. Due to this fact, the effects of nonflow can be greatly
reduced. Because a big part of nonflow is due to processes that involve only a few particles, we already largely
reduce the bias of nonflow if we use 4-particle correlations. For explanatory purposes, we only look at 2- and
4-particle correlations. The result for higher order correlations is a straightforward generalisation. First, we
define a single-event average 2- and 4-particle correlation as [31]

〈2〉 :=
〈
ein(ϕ1−ϕ2)

〉
=

1

PM,2

M∑
i,j=1
i 6=j

ein(ϕi−ϕj), (3.9)

〈4〉 :=
〈
ein(ϕ1+ϕ2−ϕ3−ϕ4)

〉
=

1

PM,4

M∑
i,j,k,l=1
i 6=j 6=k 6=l

ein(ϕi+ϕj−ϕk−ϕl), (3.10)

where PM,k = M !
(M−k)! . We can continue to average this single-event average over all events:

〈〈2〉〉 =
〈〈
ein(ϕ1−ϕ2)

〉〉
=

N∑
i=1

(W〈2〉)i 〈2〉i
N∑
i=1

(W〈2〉)i

, (3.11)

〈〈4〉〉 =
〈〈
ein(ϕ1+ϕ2−ϕ3−ϕ4)

〉〉
=

N∑
i=1

(W〈4〉)i 〈4〉i
N∑
i=1

(W〈4〉)i

, (3.12)

with N the amount of events. In these formulas, W〈k〉 denotes the event weight. They are used to minimise
the statistical spread. This is achieved by [29]

W〈2〉 := M(M − 1), (3.13)

W〈4〉 := M(M − 1)(M − 2)(M − 3). (3.14)

When one uses non-unit weights, these weights generalise to

Mabcd... :=

M∑
i,j,k,l=1
i6=j 6=k 6=l

wai w
b
jw

c
kw

d
l · · · . (3.15)

For unit weights, we indeed get back equations (3.13) and (3.14).
In the end, we want to have a reliable formula for vn. The formulas above for the k-particle correlation

will help us. First, we need the concept of a genuine k-particle correlation, which we will call the k-particle
cumulant. These are defined by cn{2k}. There is a short derivation of these cumulants in Appendix B. As
shown in [32], we can express cn{2k} in terms of the averages defined above:

cn{2} = 〈〈2〉〉 , (3.16)

cn{4} = 〈〈4〉〉 − 2 〈〈2〉〉2 . (3.17)

Moreover, we have that the flow coefficients are related to these cumulants, as shown in Appendix B:

vn{2} =
√
cn{2}, (3.18)

vn{4} = 4
√
−cn{4}. (3.19)

If there would be no nonflow and no statistical fluctuations, we would get back what one would expect:

vn{2} =
√〈〈

ein(ϕ1−ϕ2)
〉〉

=
√〈〈

ein[(ϕ1−ΨR)−(ϕ2−ΨR)]
〉〉

=
√〈〈

ein(ϕ1−ΨR)
〉 〈
e−in(ϕ2−ΨR)

〉〉
= vn, (3.20)

and similarly for the higher order correlations.
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We can now argue that higher order correlations remove the lower order ones. The form of equation (3.17)
already suggests that there is a subtraction going on. We will give a demonstration for the second harmonic.
Assume that we have in each event M/2 pairs of particles and the particles of each pair have collinear momenta.
These pairs are emitted with a random orientation, such that there is no flow. In total, there are M(M − 1)/2
pairs, of which M/2 are correlated. This results in 〈2〉 = 1/(M − 1). As each event has the same amount
of particles by assumption, we also have that c2{2} = 〈〈2〉〉 = 1/(M − 1). By equation (3.18), we have that
v2{2} ∼ 1/

√
M . This was under the assumption that there is no flow, but only azimuthal correlations. This also

shows that nonflow cannot be neglected, because v2 6= 0 even though we assumed that there is no flow. Similarly,
we have that c2{4} only has a nonflow contribution of 1/M3, while 〈〈4〉〉 and 〈〈2〉〉 have a contribution of
1/M2 and 1/M respectively [33]. This indeed shows that c2{4} removes lower order correlations and suppresses
nonflow.

Figure 3.2 shows how the most important flow harmonic, i.e. the elliptic flow, depends on the centrality. For
small centrality, there is much overlap between the colliding nuclei, so there is not a good initial elliptic geometry.
This results in a rather small anisotropy. This anisotropy increases as the centrality increases, because the initial
geometry becomes more suited to develop a nice anisotropy. However, for even larger centrality, the elliptic
flow decreases again, because the QGP medium does not survive long enough for these peripheral collisions and
thermal equilibrium cannot be established. Besides, such a peripheral collision is nothing more than a collision
between two nucleons and will therefore have an isotropic transverse momentum distribution. The figure also
shows that there is a notable difference between the different order correlations. Larger order correlations tend
to decrease the total elliptic flow. This is indeed expected, because nonflow is being suppressed in this method.

Figure 3.2: Elliptic flow measured for lead-lead collisions at
√
sNN = 2.76 TeV as a function of centrality [34].

So far, we have not used our knowledge about the flow vector. This can be done as follows:

|Qn|2 = QnQ
∗
n =

M∑
i,j=1

ein(ϕi−ϕj) = M +

M∑
i,j=1
i 6=j

ein(ϕi−ϕj) = M + PM,2 〈2〉 . (3.21)

Rearranging, this yields

〈2〉 =
|Qn|2 −M
M(M − 1)

. (3.22)

So by only using the flow vector, we can completely determine vn{2} using relations (3.11) and (3.18). Similarly,
we can calculate 〈4〉 using the flow vector [29]:

〈4〉 =
|Qn|4 + |Q2n|2 − 2 Re[Q2nQ

∗
nQ
∗
n]− 4(M − 2)|Qn|2 + 2M(M − 3)

M(M − 1)(M − 2)(M − 3)
. (3.23)

3.2.b Symmetric Cumulants

An observable that will be of great use for this research is the Symmetric Cumulant, which is defined, for
m 6= n, as [6, 35]

SC(m,n) := 〈〈cos(m(ϕ1 − ϕ3) + n(ϕ2 − ϕ4))〉〉 − 〈〈cos(m(ϕ1 − ϕ2))〉〉〈〈cos(n(ϕ1 − ϕ2))〉〉 (3.24)

≈
〈
v2
mv

2
n

〉
−
〈
v2
m

〉 〈
v2
n

〉
, (3.25)
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where the approximate sign is replaced by an equal sign if there are no nonflow effects. The terms in the
definition of SC(m,n) can be computed via the flow vector:

〈cos(n(ϕ1 − ϕ2))〉 =
1

PM,2

(
|Qn|2 −M

)
, (3.26)

〈cos(m(ϕ1 − ϕ3) + n(ϕ2 − ϕ4))〉 =
1

PM,4

[
|Qm|2|Qm|2 − 2 Re(Qm+nQ

∗
mQ
∗
n)− 2 Re(QmQ

∗
m−nQ

∗
n)

+ |Qm+n|2 + |Qm−n|2 − (M − 4)
(
|Qm|2 + |Qn|2

)
+M(M − 6)

]
.

(3.27)

The approximate formula for SC(m,n) in equation (3.25) helps to get a feeling for these Symmetric Cumulants.
Namely, if we look at the definition of the covariance of two stochastic variables X and Y , then this is defined
as [36]

Cov(X,Y ) := 〈XY 〉 − 〈X〉 〈Y 〉 . (3.28)

So the Symmetric Cumulant is nothing more than a measure of how v2
n and v2

m are correlated. Analogously with
the correlation coefficient ρ in statistics, we can define the normalised Symmetric Cumulant sc(m,n) by

sc(m,n) :=
SC(m,n)

〈〈cos(m(ϕ1 − ϕ2))〉〉〈〈cos(n(ϕ1 − ϕ2))〉〉
(3.29)

≈
〈
v2
mv

2
n

〉
−
〈
v2
m

〉 〈
v2
n

〉
〈v2
m〉 〈v2

n〉
. (3.30)

Naturally, we want to have the most precise results. That is why only equation (3.24) and (3.29) are used. They
take into account the nonflow contributions, which are of relevance and cannot be neglected as argued before.
This observable is implemented in the simulation program and will be investigated in great detail in Chapter 4.

3.3 Bayesian analysis

In the end, the research about the quark-gluon plasma is done to better understand what is going on and how it
behaves. We can understand this phase better by knowing the parameters of the system, which give information
about e.g. the shear viscosity. Bayesian statistics can help determine these. It uses experimental data to improve
the probability distribution of the different parameters. We therefore do not think about parameters as fixed
values, but rather as a probability distribution. The set of parameters is varied, which makes the analysis a
time-consuming one, because one would have to run the whole simulation for each set of parameters. Machine
learning is used to optimise this process, but it still requires a lot of computation time. Such an analysis is done
using a supercomputer.

Let us denote the set of parameters we want to know by x = (x1, x2, . . . , xn) and the experimental data
by y. We can then define a prior distribution of x, namely P(x). This is based on prior knowledge about the
parameters, e.g. some parameters cannot be negative. We also define the conditional probability P(y | x), which
tells something about the quality of the fit to experimental data, given the initial parameters x. Of interest is
then P(x | y), i.e. the posterior distribution of the parameters given the experimental data. These quantities are
linked via Bayes’ theorem:

P(x | y) ∝ P(y | x)P(x). (3.31)

We can go back to the distribution of one specific variable by

P(xi | y) =

∫
P(x | y)dx1 · · · d̂xi · · · dxn, (3.32)

where d̂xi means that we omit integration with respect to xi. Normally, the posterior distribution will be a
better guess of the distribution of the parameters than the prior distribution. From there, one can deduce a best
guess that can act as the value of the parameter. Besides the experimental data, we also want to use model data,
i.e. data from simulations. Let D denote the collection of experimental and model data. We can then replace y
by D in equation (3.31). Now P(D | x) quantifies the compatibility of the model calculations, performed with
a particular set of parameters, with the experimental data. Let ye be the vector of experimental data, which
comes from measuring the hypothetical true values with measurement errors. These errors are of statistical and
systematic nature. Similarly, one can define a vector of modelled data, with uncertainties that come from e.g.
discretising a continuous system. It is a deviation from modelled data with unlimited precision. These vectors
can be written as

ye = ytrue
e + εe, with εe ∼ N (0,Σe) (3.33)

ym(x) = yideal
m (x) + εm, with εm ∼ N (0,Σm), (3.34)
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where Σe and Σm are covariance matrices. We now assume that there exists a x?, such that the model data
match the experimental data, i.e. ytrue

e = yideal
m (x?), then

ye = ym(x?) + ε, with ε ∼ N (0,Σ), (3.35)

where Σ = Σe + Σm, as the difference of two normal distributions is again a normal distribution with modified
mean and variance. Relation (3.35) implies that we can write P(D | x) as [6]

P(D | x) =
1√

(2π)n det Σ
exp

[
−1

2
(ym(x)− ye)T Σ−1 (ym(x)− ye)

]
. (3.36)

This procedure works well if we compare simulations to experimental data. However, we will see in the
next chapter that there is not always experimental data available. A way to work around this is by guessing
these data points. For example, the Symmetric Cumulants can be calculated for different sets of parameters.
These parameters have to be compatible with the outcome of a Bayesian analysis that is done with experimental
data that is available. This produces a band of possible outcomes when we plot the Symmetric Cumulants.
An educated guess can then be made for the experimental data. If the band is narrow, it means that the
observable is hardly sensitive for a change of parameters.14 The observable will probably not constrain the
parameters very well then. If there is a large band on the other hand, it indicates that the observable is sensitive
to varying the parameters. Experimentalists could then consider to actually perform these collisions to acquire
real experimental data for a better analysis that can actually constrain the parameters.

This finishes the discussion about the Bayesian analysis. Although we have a posterior distribution that is
only proportional to a product of distributions, it suffices. With just the relative distributions, one can extract
enough information about the (range of the) most likely value, which is eventually what is desired.

14 Narrow is quite an arbitrary notion. One could say that a band is narrow if the size is comparable to the error bars.
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Chapter 4

Results

Now that we have established the theory of simulating heavy-ion collisions and what one can do with the
information that comes from particle detections, we can do some actual simulations. The main goal will be to
determine the Symmetric Cumulants, as discussed in section 3.2.b. For starters, it is important that we can
match results of a simulation with actual experimental results that already exist. It will be a good indicator
whether the code is correctly written. The code is shown in Appendix E. If that seems to be the case, we
continue with actual research. We will investigate the behaviour of adding a substructure to the nucleons.
This means that the nucleons are not seen as one energy blob. It is instead taken into account that the nucleons
consist of smaller constituents, with all an energy distribution of their own. Because of the large nucleon-nucleon
centre of mass energy, the amount of constituents is modelled to be larger than the regular three (e.g. a proton
consists of two up quarks and a down quark), as there is a cloud of virtual particles in the nucleon that interacts
with the constituents. It is expected that the results from proton-lead collisions are sensitive to this additional
structure, whereas results from lead-lead collisions are hardly influenced due to the large size of the colliding
nuclei. Unless explicitly stated otherwise, we always take substructure into account. All the simulations are
done at a centre of mass energy

√
sNN = 5.02 TeV.

Later, other kinds of heavy-ion collisions are investigated, such as xenon-xenon and oxygen-oxygen collisions.
With these results at hand, we have calculated the Symmetric Cumulants for different system sizes. As the
Symmetric Cumulants are not yet investigated experimentally for XeXe and OO collisions, there will be no
comparisons with experiments, but rather an estimation of what it would look like. We look at different system
sizes, as some phenomena could be less pronounced in some systems that do appear in other kinds of systems.

It is good to note that there is not much experimental data available for the Symmetric Cumulants.
Comparisons are sometimes done not under exactly the same conditions, so a translation between experimental
and modelled data should be made. It is the hope that the Symmetric Cumulants are useful to constrain the
initial conditions of the model. Constraining can be done by doing a Bayesian analysis, as discussed in section
3.3. If, from the theoretical point of view, there is enough evidence that the Symmetric Cumulants constrain
further the initial conditions as we examine different sizes of systems, experiments can be done to investigate this
in further detail. It is therefore important that the simulations are done accurately, in order to judge whether or
not to do experiments with for example OO-collisions. As oxygen is a light nucleus, one would acquire a lot of
new data of a different regime than lead. The used initial conditions can be found in Appendix D.

4.1 Lead-lead collisions

We first want to check whether experimental data can be reproduced. This is done by a simulation of 10,000
PbPb collisions. The results of SC(4, 2) and SC(3, 2) will be compared to data from the ALICE experiment at
the LHC, with

√
sNN = 2.76 TeV [35]. The result is demonstrated in figure 4.1. For this, we used that |η| < 2.4

and 200 < pt < 5000 GeV, similar to the experimental data.15 First of all, the order of magnitudes are the
same. Next, the trend of experimental and modelled data are comparable; SC(3, 2) is negative and SC(4, 2) is
positive. The harmonics v2 and v3 are driven by the initial geometry, respectively ε2 and ε3. As ε2 and ε3 are
anti-correlated, this results in a negative SC(3, 2). Meanwhile, v4 is driven by v2, so SC(4, 2) is positive [37].
The curves have similar behaviour if we take into account that the centre of mass energy is different. As the
simulation is done with a larger centre of mass energy than in the experiment, it makes sense that the deviation
from zero is different. The standard deviation of the simulation is quite a bit larger than from experiments, as
much more data is acquired in experiments. It takes too long for practical reasons to gather the same statistics

15 The experiment used a smaller eta range (|η| < 0.8), but as we assume the system to be approximately boost invariant, the eta
range is made a bit larger. This is to gain more statistics.
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in a simulation. From this analysis, we can conclude that the code is functional and accurate, as it gives results
that are consistent with experiments.

We observe that the error bars for the Symmetric Cumulants grow for higher centrality bins. This is because
there are less particles per event in these bins as the collisions become more peripheral. So there is less statistics
available in the high centrality bins. We could introduce a bias in the generated events, such that more peripheral
collisions are simulated more often. This is however not yet available in the current simulation program.
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Figure 4.1: SC(3, 2) (left) and SC(4, 2) (right) as a function of centrality in 5.02 TeV lead-lead collisions. The
blue data points come from the simulation and the red ones from experiments with

√
sNN = 2.76 TeV [35].

4.2 Relevance of substructure

Each nucleon consists of three quarks. We can choose to model a nucleus as a bunch of nucleons without
underlying substructure. We then have a Gaussian shaped energy distribution for each nucleon and the nucleus
consists of some superposition of all these energy distributions. Although this is not the most realistic case, it is
easier to implement in the program than taking into account a substructure for each nucleon. For large systems,
such as PbPb, adding a substructure will likely not change the results significantly. However for smaller systems,
such as a proton that collides with a lead nucleus, a substructure could make a significant difference.

Figure 4.2 shows the results for SC(3, 2) and SC(4, 2) as a function of Noff
trk in pPb collisions, where we have

not taken any substructure into account. We have done 100,000 simulations, where Noff
trk is determined by using

0.4 < pt < 10, 000 GeV and |η| < 2.4 as cuts.16 For the calculation of the Symmetric Cumulants, the used
cuts are 0.3 < pt < 3000 GeV and |η| < 2.4. The red data points come from experimental data [38] and one
immediately sees that simulation and experiment do not coincide. This is a sign that neglecting the substructure
of nucleons is not a reasonable assumption.
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Figure 4.2: SC(3, 2) (left) and SC(4, 2) (right) as a function of the amount of offline tracks in 5.02 TeV proton-
lead collisions. The simulation is done without substructure of the nucleons. The data points in red are the
experimental data [38] and the data points in blue come from the simulation.

16 The experiment uses pt > 0.4 GeV. As we have to supply an upper bound for pt to the simulation program, we chose a safe
upper bound of 10, 000 GeV.
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We would then like to confirm that simulations can match the experiments when we do take a substructure
into account. Unfortunately, a problem arises when that is done. A nucleon is not a single Gaussian energy
distribution anymore, but rather a superposition of Gaussian energy distributions that come from the quarks. It
becomes less likely that the collision between all the constituents of two colliding nucleons is head-on, so the
chances of maximal entropy production are slim. So in general, less entropy will be produced in a collision and
therefore there is no data for the higher values of Noff

trk. This is supported by figure 4.3, where we clearly see that
for high Noff

trk, there are no charged particles.
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Figure 4.3: The amount of charged particles in 5.02 TeV proton-lead collisions as a function of Noff
trk.

4.3 Symmetric Cumulants for OO and XeXe collisions

We will now investigate the behaviour of the Symmetric Cumulants in oxygen-oxygen and xenon-xenon collisions.
As there is no experimental data available of the Symmetric Cumulants for these kind of collisions, we will just
show the results from the simulations. We start off with OO collisions, which is a relatively small system. We
performed 100,000 collisions and the same pt- and η-cuts are used as for pPb collisions. The results are shown in
figure 4.4 and 4.5.

We continue with XeXe collisions. Xenon nuclei are larger than oxygen nuclei, but a bit smaller than lead
nuclei. We performed 2,500 XeXe collisions and we again used the same cuts as for pPb collisions. The results
are shown in figure 4.6 and 4.7.
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Figure 4.4: SC(3, 2) (left) and SC(4, 2) (right) as a function of centrality in 5.02 TeV oxygen-oxygen collisions.
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Figure 4.5: SC(3, 2) (left) and SC(4, 2) (right) as a function of the amount of offline tracks in 5.02 TeV
oxygen-oxygen collisions.
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Figure 4.6: SC(3, 2) (left) and SC(4, 2) (right) as a function of centrality in 5.02 TeV xenon-xenon collisions.
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Figure 4.7: SC(3, 2) (left) and SC(4, 2) (right) as a function of the amount of offline tracks in 5.02 TeV
xenon-xenon collisions.
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Chapter 5

Concluding page

5.1 Conclusion

In the previous chapter we have looked at the Symmetric Cumulants as a new observable in the current simulation
program. From section 4.1 we concluded that there is no apparent reason to believe that the code to compute
the Symmetric Cumulants is wrong. It produces results that are consistent with experimental data.

In section 4.2, we saw that there is the need to introduce a substructure of the nucleons, which is physically
also more realistic. We could not reproduce the experimental results when we do not model substructure.
However, adding a substructure posed a different problem. We still could not reproduce the experimental results,
because there is an absence of high Noff

trk. Experimentally, these higher Noff
trk are measured however. From this we

can conclude that the used set of parameters is not accurate enough. Perhaps, the modelled width and amount
of quarks play a role. This is also a good reason why the Symmetric Cumulants are investigated for different
kind of systems. The PbPb system is insensitive for the added substructure, while it turns out that it does
matter for another system. Different systems therefore can behave differently.

At last, the behaviour of the Symmetric Cumulants in OO and XeXe collisions are shown in section 4.3. In
some cases the pattern is more evident than in other cases. For OO collisions, one can conclude that 100,000
simulated collisions are really necessary to produce significant results that are not just consistent with zero. In
particular, when the Symmetric Cumulants are plotted against Noff

trk, the trend is obvious. For XeXe collisions it
is a bit harder. This is mainly because of the relatively small amount of simulations, namely 2,500. We did not
do more, as simulations for big systems is a time-consuming activity. If the amount of simulations increases with
a factor N , then the errors approximately decrease with a factor 1/

√
N . In order to produce results that could

be relevant for further research, the errors have to decrease at least by a factor of 2, meaning that a data set
of 10,000 events could suffice. The amount of simulations that have to be done is important information for a
Bayesian analysis in the future. This will come back in the outlook.

5.2 Summary and outlook

In this thesis, I tried to give a rather complete overview of the theory of heavy-ion collisions. We started off
with the description of a quark-gluon plasma, which is a state of matter in QCD. It can be investigated if one
performs a high-energy nuclear collision, i.e. a heavy-ion collision. The QGP is one of the stages that exist after
such a collision and it can be described by relativistic hydrodynamics. After some time, the temperature has
decreased enough to describe the system as a hadron resonance gas, i.e. a gas of individual particles. Eventually,
these particles will be detected by particle detectors. These detections give information about the particles and
from that we can extract useful physical quantities. We quantified the observed anisotropy in the transverse
momentum distribution by introducing flow coefficients vn. We looked for a reliable formula that can compute
them. We then looked at the Symmetric Cumulants and implemented this observable in the simulation program.
We produced results that are consistent with experimental data and found out that a substructure of the nucleons
can drastically change the outcome of the observable. We noticed that we could improve the results if we
introduce a bias in the generated events, such that more peripheral collisions are simulated more often, but
that is for the future. At last, we simulated OO and XeXe collisions. We could not compare the results with
experimental data, as there are none. However, it is useful to have this simulated data for a future Bayesian
analysis. As this analysis is time-consuming, it is important to know how many simulations are sufficient for
significant results. If it turns out that the outcome of the Symmetric Cumulants for OO and/or XeXe collisions
is sensitive to the used parameters, experimentalists can consider to actually perform these experiments. We
then would have a reliable source of data, instead of an educated guess. This helps to further constrain the
parameters and to better understand the behaviour and properties of the quark-gluon plasma.
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Appendix A

Fourier series and derivation of the
flow coefficients vn

Take a distribution function, i.e. a probability density function (p.d.f.), f : R/2πZ→ R. This function f(x)
is 2π periodic. In our case, f will be the azimuthal transverse momentum distribution. Formally, one can always
write down a power series of a function, even though it is possible that it does not converge at all. Let us write
f as a Fourier series [39, Chapter 5], i.e.

f(x) =
∑
k∈Z

cke
ikx, (A.1)

with ck ∈ C for all k ∈ Z. These coefficients are given by

ck =
1

2π

∫ π

−π
f(x)e−ikxdx. (A.2)

A first constraint on ck is given by the fact that f maps to the real numbers. This means that∑
k∈Z

cke
ikx = f(x)

!
= f(x)∗ =

∑
k∈Z

c∗ke
−ikx, (A.3)

and as eikx is orthogonal to eilx for k 6= l, we must have that c−k = c∗k for all k ∈ Z. Next, we can rewrite f(x)
a bit to get it into a more familiar form:

f(x) =
∑
k∈Z

cke
ikx =

−1∑
k=−∞

cke
ikx + c0 +

∞∑
k=1

cke
ikx

= c0 +

∞∑
k=1

(
c−ke

−ikx + cke
ikx
)

= c0 +

∞∑
k=1

[(
cke

ikx
)∗

+ cke
ikx
]

= c0 + 2

∞∑
k=1

Re
(
cke

ikx
)

= c0 + 2

∞∑
k=1

|ck|Re
(
ei(kx+ϕk)

)
= c0 + 2

∞∑
k=1

|ck| cos(kx+ ϕk),

(A.4)

for some ϕ ∈ [0, 2π). This already looks a lot like (3.3). Next, we calculate c0. We now use the fact that f is a
p.d.f., so if it is integrated over all space, it will result in 1.17 This means that

c0 =
1

2π

∫ π

−π
f(x)dx =

1

2π
. (A.5)

17 We can assume that f is already normalised. If not, we can redefine it as f 7→
(∫ π

−π f(x)dx
)−1

f .
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We can relabel some variables and rescale18 the coefficients to get the more common relation

f(ϕ) =
1

2π

(
1 + 2

∞∑
n=1

vn cos(n(ϕ−Ψn))

)
. (A.6)

Notice that we now have Ψn in our expression and not ΨR. This is indeed a difference, but this does not affect
the experimental measurements [40]. That is because we do not know ΨR and Ψn a priori.

We will now proof that equation (3.4) is indeed the right expression. This requires a computation [41]:

〈cos(n(ϕ−Ψn))〉 =

∫ π

−π
cos(n(ϕ−Ψn))f(ϕ)dϕ (A.7)

=
1

2 · 2π

∫ π

−π

[
ein(ϕ−Ψn) + e−in(ϕ−Ψn)

](
1 +

∞∑
k=1

vk

[
eik(ϕ−Ψk) + e−ik(ϕ−Ψk)

])
dϕ

=
1

4π

∫ π

−π
ein(ϕ−Ψn) + e−in(ϕ−Ψn) +

∞∑
k=1

vk

(
ei(k+n)ϕe−i(nΨn+kΨk)+

ei(n−k)ϕe−i(nΨn−kΨk) + ei(k−n)ϕei(nΨn−kΨk) + e−i(n+k)ϕei(nΨn+kΨk)

)
dϕ

=
1

4π

(
2πδn,ke

−i(nΨn−kΨk)vk + 2πδk,ne
−i(nΨn−kΨk)vk

)
=

1

4π
(2πvn + 2πvn)

= vn.

(A.8)

Here we used that integrating a complex exponential over the domain [−π, π) results in zero if |n+ k| 6= 0 or
|n− k| 6= 0. If |n− k| results in zero, the integral contributes 2π to the result, while |n+ k| can never become
zero, as n, k ≥ 1. We see that the expression for the nth harmonic vn is indeed given by equation (3.4).

18 Notice that this factor 1
2π

comes from the definition of the coefficients as in equation (A.2).
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Appendix B

Generating functions for k-particle
cumulants

We will not give a complete proof of the way the cumulants are defined, but it will be more a line of reasoning to
show where they come from. Therefore, many results are just stated without proof.

There is a very elegant way to express these cumulants as detailed by [32, 42]. We will use the formalism
of a generating function. In general, generating functions transform problems about sequences to problems
about functions. We know a lot about manipulating functions, so this transformation can be of great help. For
each event, we define Gn : C→ R by

Gn(z) :=

M∏
j=1

(
1 +

z∗einϕj + ze−inϕj

M

)
. (B.1)

Next, we can average over all events to get 〈Gn(z)〉 and expand this in powers of z and z∗. The coefficients of
this power series yield multiparticle azimuthal correlations of all orders. Now we can define

Cn(z) := M
(
〈Gn(z)〉1/M − 1

)
, (B.2)

which we can also expand in powers of z and z∗:

Cn(z) =
∑
k,l

z∗kzl

k! l!
cn{k, l}. (B.3)

Equation (B.3) defines the cumulants. Of special interest are the coefficients for which k = l, because they are
linked to vn. So we define cn{2k} := cn{k, k} and after some manipulation of functions, we obtain the following
approximation [32]:

Cn(z) ≈ ln I0(2vn|z|), (B.4)

with I0 a modified Bessel function of the first kind. We can match this to equation (B.3) after converting (B.4)
into a power series in z and z∗. Coefficients can be matched and one then concludes that

vn{2}2 = cn{2}, (B.5)

vn{4}4 = −cn{4}, (B.6)

which can be continued for higher order correlations.
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Appendix C

Computations needed for the program

This appendix is added to explain certain parts of the code that is written. The code is shown in Appendix
E. The main formulas are already discussed in Chapter 3, but this appendix gives an explanation why it is
implemented in the way it is. The code is presented in Appendix E.

C.1 Rewriting product of complex numbers

To compute the quantities in equation (3.27), we need the real part of a product of three complex numbers. As
a complex number is represented in the code by two real numbers, i.e. the real and imaginary part, instead
of one complex number, we have to implement this manually. Generally, let u, v, w ∈ C such that u = a+ bi,
v = c+ di, w = e+ fi with a, b, c, d, e, f ∈ R. Then the real part of the product uvw is:

Re(uvw) = Re [(a+ bi)(c+ di)(e+ fi)]

= Re [(ac− bd+ (ad+ bc)i)(e+ fi)]

= (ac− bd)e− (ad+ bc)f.

(C.1)

C.2 Standard deviation

To compute the variance (also called the standard deviation or the error) of the Symmetric Cumulants SC(m,n)
we need the covariance matrix C ∈Mn(R) for stochastic variables x1, x2, ..., xn, which is written as

C :=


σx1,x1 σx1,x2 . . . σx1,xn

σx2,x1 σx2,x2 . . . σx2,xn
...

...
. . .

...
σxn,x1 σxn,x2 . . . σxn,xn

 . (C.2)

The covariance σxi,xj has two important properties, namely:

(i) σxi,xj = σxj ,xi (symmetry),

(ii) σxj ,xj = σ2
xj , the regular standard deviation squared.

Now consider a function f depending on the stochastic variables x1, x2, ..., xn. The standard deviation is then
given by [43]

σ2
f =

(
∂f

∂x1
. . .

∂f

∂xn

)
C


∂f
∂x1

...
∂f
∂xn

 . (C.3)

In the case of the Symmetric Cumulants we have that f(X,Y, Z) = SC(m,n) = (X − Y Z)(m,n). Its derivatives
are easily found. The same method can be applied for the normalised Symmetric Cumulants sc(m,n).
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Appendix D

Parameters used for resulting plots

D.1 Parameterlist

We first give a full list of the used parameters with a short explanation where they come from.

Parameter list
Parameter name Symbol Explanation
trentodmin dmin minimal distance between nucleons
trentwow w width of nucleon in fm
trentosigmann σNN cross-section NN in mb
trentosigmafluct - multiplicity fluctuation standard deviation
trentop p p as in equation (2.22)
trentonorm Norm proportionality factor from thickness to entropy density
trentofreestreamingtime τfs time for free streaming
trentocouplingstrength - coupling strength during free streaming
trentonc - amount of constituents in nucleon
trentov - width of constituent of a nucleon in fm
numlatticesites - amount of lattice sites
latticesize - size of the lattice
rhomax ρmax ρmax as in equation (2.33)
xi0 ξ0 ξ0 as in equation (2.31)
cflconstant ∆t

∆x modified lattice spacing
shearhrg (η/s)hrg η/s in de hadron resonance gas

shearcrv (η/s)crv (η/s)crv as in equation (2.29)
shearmin (η/s)min (η/s)min as in equation (2.29)
shearslope (η/s)slope (η/s)slope as in equation (2.29)

shearrelaxationtime τπ τπ as in equation (2.13)
bulkmax (ζ/s)max (η/s)max as in equation (2.30)
bulkT0 (ζ/s)T0

(η/s)T0
as in equation (2.30)

bulkwidth (ζ/s)width (ζ/s)width as in equation (2.30)
bulkrelaxationtime τΠ τΠ as in equation (2.13)

deltapipiovertaupi δππ
τπ

parameter for second order hydrodynamics

phi7overpressure ϕ7p parameter for second order hydrodynamics
taupipiovertaupi τππ

τπ
parameter for second order hydrodynamics

lambdapiPiovertaupi λπΠ

τπ
parameter for second order hydrodynamics

deltaPiPiovertauPi δΠΠ

τΠ
parameter for second order hydrodynamics

lambdaPipiovertauPi λΠπ

τΠ
parameter for second order hydrodynamics

freezeouttemp Tswitch temperature that indicates change of system description
rapidityrange |ηmax| rapidity range for which particles will be counted

Table D.1: Parameter list of the parameters that are used to determine the system with its physical meaning.

27



D.2 Values used parameters

The following values for the parameters are used. If we do not take substructure into account, we do not need
trentonc and trentov.

TRENTo:
trentodmin=0
trentow=0.89
trentosigmann=70
trentosigmafluct=1.1
trentop=0.03
trentonorm=20.8
trentofreestreamingtime=0.59
trentocouplingstrength=0
trentonc=6
trentov=0.52

secondorderhydro:
numlatticesites=100
latticesize=25
rhomax=10
xi0=0.1

finitedifferencesolver2/
musclsolverktminmodmidpoint:
cflconstant=0.08

LatticeEOStempdep:
shearhrg=0.06
shearmin=0.06
shearslope=2
shearcrv=0.05
shearrelaxationtime=5
bulkmax=0.015
bulkT0=0.154
bulkwidth=0.02
bulkrelaxationtime=0.2
deltapipiovertaupi=1.3333333333333333333333333333333
phi7overpressure=0.128571
taupipiovertaupi=1.42857
lambdapiPiovertaupi=1.2
deltaPiPiovertauPi=0.66666666666666666666666666666666666
lambdaPipiovertauPi=1.6

cooperfryehadronizer:
freezeouttemp=155
rapidityrange=4
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Appendix E

Code Symmetric Cumulants

1 #ifndef SC_H

2 #define SC_H

3
4 #include "measuredquantity.h"

5
6 class SC : public MeasuredQuantity{

7 private:

8 int Orderm;

9 int Ordern;

10 bool Charged;

11 int ParticleClass;

12
13 int NumParticles;

14 long double ReQm;

15 long double ImQm;

16 long double ReQn;

17 long double ImQn;

18 long double ReQmplusn;

19 long double ImQmplusn;

20 long double ReQmminusn;

21 long double ImQmminusn;

22 long double RHS11; // first part of equation with average over particles

23 long double RHS21; // second part of equation with average over particles

24 long double RHS31; // third part of equation with average over particles

25
26 void WriteSpecificSettings(ofstream& OutputFileIn);

27 public:

28 SC(bool* CreationSuccess, int OrdermIn, int OrdernIn, bool ChargedIn, int ParticleClassIn);

29 ~SC();

30 bool Reset();

31 bool Setup();

32 void AddInput(int NumParticlesInParticleArray, Particle** ParticleArray, long double*

AuxiliaryQuantitiesIn);

33 long double GetSubMeasurement(int Number);

34 long double GetSubMeasurementWeight(int Number);

35 bool DoFinalComputations(ofstream& FileStream, ofstream& MathematicaFileStream, long double

LowerCentralityBound, long double UpperCentralityBound, bool CentralityBins, AverageQuantity*

AverageQuantityIn);

36 };

37
38 #endif

29



1 #include "SC.h"

2 #include "averagequantity.h"

3 #include <math.h>

4 #include <iostream>

5 using namespace std;

6
7 SC::SC(bool* CreationSuccess, int OrdermIn, int OrdernIn, bool ChargedIn, int ParticleClassIn) :

MeasuredQuantity(){

8 Orderm = OrdermIn;

9 Ordern = OrdernIn;

10 Charged = ChargedIn;

11 ParticleClass = ParticleClassIn;

12
13 Name = "SC";

14 Name += to_string(Orderm);

15 Name += to_string(Ordern);

16 Description = "SC(";

17 Description += to_string(Orderm) + ",";

18 Description += to_string(Ordern) + ") of ";

19 if(Charged){

20 Name += "charged";

21 Description += "charged";

22 }

23 else

24 Description += "all";

25 if(ParticleClass == 0)

26 Description += " particles.";

27 else if(ParticleClass == 1){

28 Name += "pion";

29 Description += " pions.";

30 }

31 else if(ParticleClass == 2){

32 Name += "kaon";

33 Description += " kaons.";

34 }

35 else if(ParticleClass == 3){

36 Name += "proton";

37 Description += " protons.";

38 }

39 else if(ParticleClass == 4){

40 Name += "neutron";

41 Description += " neutrons.";

42 }

43 else if(ParticleClass == 5){

44 Name += "lambda";

45 Description += " lambdas";

46 }

47 else if(ParticleClass == 6){

48 Name += "xi";

49 Description += " xis";

50 }

51 else if(ParticleClass == 7){

52 Name += "omega";

53 Description += " omegas";

54 }

55
56 NumParameters = 3;

57 ParameterNames = new string[NumParameters];

58 ParameterDescriptions = new string[NumParameters];

59 Parameters = new long double[NumParameters];

60 if(ParameterNames == 0 || ParameterDescriptions == 0 || Parameters == 0){

61 *CreationSuccess = false;

62 return;

63 }

64 ParameterNames[0] = "lowerptbound";
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65 ParameterNames[1] = "upperptbound";

66 ParameterNames[2] = "etamax";

67 ParameterDescriptions[0] = "Lower pt boundary for which particles will be counted.";

68 ParameterDescriptions[1] = "Upper pt boundary for which particles will be counted.";

69 ParameterDescriptions[2] = "Maximum absolute value of eta for which particles will be counted.";

70
71 *CreationSuccess = true;

72 }

73
74 SC::~SC(){

75 return;

76 }

77
78 void SC::WriteSpecificSettings(ofstream& OutputFileIn){

79 return;

80 }

81
82 bool SC::Reset(){

83 NumParticles = 0;

84 ReQm = 0.;

85 ImQm = 0.;

86 ReQn = 0.;

87 ImQn = 0.;

88 ReQmplusn = 0.;

89 ImQmplusn = 0.;

90 ReQmminusn = 0.;

91 ImQmminusn = 0.;

92 RHS11 = 0.;

93 RHS21 = 0.;

94 RHS31 = 0.;

95
96 return true;

97 }

98
99 bool SC::Setup(){

100 NumSubMeasurements = 3;

101 SubMeasurementNames = new string[3];

102 if(SubMeasurementNames == 0){

103 cout << "Error: failed to allocate memory." << endl;

104 return false;

105 }

106 //SC(m,n) = X - Y * Z

107 SubMeasurementNames[0] = "RHS11"; //first part RHS of equation with average over particles

108 SubMeasurementNames[1] = "RHS21"; //second part RHS of equation with average over particles

109 SubMeasurementNames[2] = "RHS31"; //third part RHS of equation with average over particles

110
111 return true;

112 }

113
114 void SC::AddInput(int NumParticlesInArray, Particle** ParticleArray, long double*

AuxiliaryQuantitiesIn){

115 for(int i = 0; i < NumParticlesInArray; i++){

116 if(Charged){

117 if(!ParticleArray[i]->IsCharged())

118 continue;

119 }

120 if(ParticleClass == 1){

121 if(!ParticleArray[i]->IsPion())

122 continue;

123 }

124 else if(ParticleClass == 2){

125 if(!ParticleArray[i]->IsKaon())

126 continue;

127 }

128 else if(ParticleClass == 3){

129 if(!ParticleArray[i]->IsProton())
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130 continue;

131 }

132 else if(ParticleClass == 4){

133 if(!ParticleArray[i]->IsNeutron())

134 continue;

135 }

136 else if(ParticleClass == 5){

137 if(!ParticleArray[i]->IsLambda())

138 continue;

139 }

140 else if(ParticleClass == 6){

141 if(!ParticleArray[i]->IsXi())

142 continue;

143 }

144 else if(ParticleClass == 7){

145 if(!ParticleArray[i]->IsOmega())

146 continue;

147 }

148
149 long double ParticlepT = ParticleArray[i]->pT();

150 long double Particleeta = ParticleArray[i]->eta();

151 if(ParticlepT < Parameters[0] || ParticlepT > Parameters[1] || fabs(Particleeta) > Parameters

[2])

152 continue;

153 // calculate flow vector

154 long double ParticlePhi = ParticleArray[i]->phi();

155 long double ReQmAddition = cos((long double)(Orderm) * ParticlePhi);

156 long double ImQmAddition = sin((long double)(Orderm) * ParticlePhi);

157 long double ReQnAddition = cos((long double)(Ordern) * ParticlePhi);

158 long double ImQnAddition = sin((long double)(Ordern) * ParticlePhi);

159 long double ReQmplusnAddition = cos(((long double)(Orderm + Ordern)) * ParticlePhi);

160 long double ImQmplusnAddition = sin(((long double)(Orderm + Ordern)) * ParticlePhi);

161 long double ReQmminusnAddition = cos(((long double)(Orderm - Ordern)) * ParticlePhi);

162 long double ImQmminusnAddition = sin(((long double)(Orderm - Ordern)) * ParticlePhi);

163
164 NumParticles++;

165 ReQm += ReQmAddition;

166 ImQm += ImQmAddition;

167 ReQn += ReQnAddition;

168 ImQn += ImQnAddition;

169 ReQmplusn += ReQmplusnAddition;

170 ImQmplusn += ImQmplusnAddition;

171 ReQmminusn += ReQmminusnAddition;

172 ImQmminusn += ImQmminusnAddition;

173 }

174
175 long double NumParticleslong = (long double)NumParticles;

176 RHS11 = (ReQm * ReQm + ImQm * ImQm) * (ReQn * ReQn + ImQn * ImQn);

177 RHS11 -= 2. * (ImQmplusn * ImQn * ReQm - ImQm * ImQn * ReQmplusn + ImQm * ImQmplusn * ReQn + ReQm

* ReQmplusn * ReQn);

178 RHS11 -= 2. * (-ImQmminusn * ImQn * ReQm + ImQm * ImQn * ReQmminusn + ImQm * ImQmminusn * ReQn +

ReQm * ReQmminusn * ReQn);

179 RHS11 += ReQmplusn * ReQmplusn + ImQmplusn * ImQmplusn;

180 RHS11 += ReQmminusn * ReQmminusn + ImQmminusn * ImQmminusn;

181 RHS11 -= (NumParticleslong - 4.) * (ReQm * ReQm + ImQm * ImQm + ReQn * ReQn + ImQn * ImQn);

182 RHS11 += NumParticleslong * (NumParticleslong - 6.);

183 RHS11 /= NumParticleslong * (NumParticleslong - 1.) * (NumParticleslong - 2.) * (NumParticleslong -

3.);

184 RHS21 = (ReQm * ReQm + ImQm * ImQm - NumParticleslong) / (NumParticleslong * (NumParticleslong -

1.));

185 RHS31 = (ReQn * ReQn + ImQn * ImQn - NumParticleslong) / (NumParticleslong * (NumParticleslong -

1.));

186 }

187
188 long double SC::GetSubMeasurement(int Number){

189 if(NumParticles == 0)
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190 return 0.;

191 else if(Number == 0)

192 return RHS11;

193 else if(Number == 1)

194 return RHS21;

195 else if(Number == 2)

196 return RHS31;

197 else

198 return 0.;

199 }

200
201 long double SC::GetSubMeasurementWeight(int Number){

202 long double NumParticleslong = (long double)NumParticles;

203 if(NumParticles == 0)

204 return 0.;

205 else if(Number == 0)

206 return NumParticleslong * (NumParticleslong - 1.) * (NumParticleslong - 2.) * (NumParticleslong

- 3.);

207 else if(Number == 1 || Number == 2)

208 return NumParticleslong * (NumParticleslong - 1.);

209 else

210 return 0.;

211 }

212
213 bool SC::DoFinalComputations(ofstream& FileStream, ofstream& MathematicaFileStream, long double

LowerCentralityBound, long double UpperCentralityBound, bool CentralityBins, AverageQuantity*

AverageQuantityIn){

214 if(!FileStream.is_open() || !MathematicaFileStream.is_open())

215 return false;

216
217 FileStream << "# " << Name << ":" << endl;

218 FileStream << "# Format: " << Name << " = #1 \u00b1 #2 (stat.)." << endl;

219 MathematicaFileStream << "{{\"" << Name << "\",\"" << LowerCentralityBound << "to" <<

UpperCentralityBound;

220 if(CentralityBins)

221 MathematicaFileStream << "central\",\"centrality [%]";

222 else

223 MathematicaFileStream << "ntrkoff\",\"\\!\\(\\*SubsuperscriptBox[\\(N\\),\\(trk\\),\\(off\\)

]\\)";

224 MathematicaFileStream << "\",\"SC(" << Orderm << "," << Ordern << ")";

225 MathematicaFileStream << "\",\"";

226 if(ParticleClass == 1)

227 MathematicaFileStream << "\\[Pi]";

228 else if(ParticleClass == 2)

229 MathematicaFileStream << "K";

230 else if(ParticleClass == 3)

231 MathematicaFileStream << "p";

232 else if(ParticleClass == 4)

233 MathematicaFileStream << "n";

234 else if(ParticleClass == 5)

235 MathematicaFileStream << "\\[CapitalLambda]";

236 else if(ParticleClass == 6)

237 MathematicaFileStream << "\\[CapitalXi]";

238 else if(ParticleClass == 7)

239 MathematicaFileStream << "\\[CapitalOmega]";

240 else

241 MathematicaFileStream << "total";

242
243 MathematicaFileStream << "\"},{Around[" << ConvertNumberToMathematicaFormat(0.5 * (

UpperCentralityBound + LowerCentralityBound)) << "," << ConvertNumberToMathematicaFormat(0.5 *

(UpperCentralityBound - LowerCentralityBound)) << "],Around[";

244
245 long double RHS1 = AverageQuantityIn->GetSubMeasurement(0);

246 long double RHS2 = AverageQuantityIn->GetSubMeasurement(1);

247 long double RHS3 = AverageQuantityIn->GetSubMeasurement(2);

248 long double SCmn = RHS1 - RHS2 * RHS3;
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249
250 long double Error1 = AverageQuantityIn->GetSubMeasurementError(0);

251 long double Error2 = AverageQuantityIn->GetSubMeasurementError(1);

252 long double Error3 = AverageQuantityIn->GetSubMeasurementError(2);

253 long double Cov12 = AverageQuantityIn->GetSubMeasurementCovariance(0, 1);

254 long double Cov13 = AverageQuantityIn->GetSubMeasurementCovariance(0, 2);

255 long double Cov23 = AverageQuantityIn->GetSubMeasurementCovariance(1, 2);

256 long double ErrorOfSCmn = Error1 * Error1 - 2. * Cov13 * RHS2 + Error3 * Error3 * RHS2 * RHS2 - 2.

* Cov12 * RHS3 + 2. * Cov23 * RHS2 * RHS3 + Error2 * Error2 * RHS3 * RHS3;

257
258 FileStream << SCmn << "\t" << sqrt(ErrorOfSCmn) << endl;

259 FileStream << "\n" << endl;

260 if(ErrorOfSCmn < 0. || Error1 == -1. || Error2 == -1. || Error3 == -1.){

261 MathematicaFileStream << "Missing[],Missing[]]}}";

262 }

263 else{

264 ErrorOfSCmn = sqrt(ErrorOfSCmn);

265 MathematicaFileStream << ConvertNumberToMathematicaFormat(1000000. * SCmn) << "," <<

ConvertNumberToMathematicaFormat(1000000. * ErrorOfSCmn) << "]}}";

266 }

267
268 // normalised SC

269 MathematicaFileStream << ",{{\"" << "small" << Name << "\",\"" << LowerCentralityBound << "to" <<

UpperCentralityBound;

270 if(CentralityBins)

271 MathematicaFileStream << "central\",\"centrality [%]";

272 else

273 MathematicaFileStream << "ntrkoff\",\"\\!\\(\\*SubsuperscriptBox[\\(N\\),\\(trk\\),\\(off\\)

]\\)";

274 MathematicaFileStream << "\",\"sc(" << Orderm << "," << Ordern << ")";

275 MathematicaFileStream << "\",\"";

276 if(ParticleClass == 1)

277 MathematicaFileStream << "\\[Pi]";

278 else if(ParticleClass == 2)

279 MathematicaFileStream << "K";

280 else if(ParticleClass == 3)

281 MathematicaFileStream << "p";

282 else if(ParticleClass == 4)

283 MathematicaFileStream << "n";

284 else if(ParticleClass == 5)

285 MathematicaFileStream << "\\[CapitalLambda]";

286 else if(ParticleClass == 6)

287 MathematicaFileStream << "\\[CapitalXi]";

288 else if(ParticleClass == 7)

289 MathematicaFileStream << "\\[CapitalOmega]";

290 else

291 MathematicaFileStream << "total";

292
293 MathematicaFileStream << "\"},{Around[" << ConvertNumberToMathematicaFormat(0.5 * (

UpperCentralityBound + LowerCentralityBound)) << "," << ConvertNumberToMathematicaFormat(0.5 *

(UpperCentralityBound - LowerCentralityBound)) << "],Around[";

294
295 long double smallSCmn = SCmn / (RHS2 * RHS3);

296 long double Der1 = 1. / (RHS2 * RHS3);

297 long double Der2 = - RHS1 / (RHS2 * RHS2 * RHS3);

298 long double Der3 = - RHS1 / (RHS3 * RHS3 * RHS2);

299 long double ErrorOfsmallSCmn = Der1 * Der1 * Error1 * Error1 + 2. * Der1 * (Der2 * Cov12 + Der3 *

Cov13) + Der2 * Der2 * Error2 * Error2 + 2. * Der2 * Der3 * Cov23 + Der3 * Der3 * Error3 *

Error3;

300
301 FileStream << smallSCmn << "\t" << sqrt(ErrorOfsmallSCmn) << endl;

302 FileStream << "\n" << endl;

303
304 if(ErrorOfsmallSCmn < 0. || Error1 == -1. || Error2 == -1. || Error3 == -1.){

305 MathematicaFileStream << "Missing[],Missing[]]}}";

306 }
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307 else{

308 ErrorOfsmallSCmn = sqrt(ErrorOfsmallSCmn);

309 MathematicaFileStream << ConvertNumberToMathematicaFormat(smallSCmn) << "," <<

ConvertNumberToMathematicaFormat(ErrorOfsmallSCmn) << "]}}";

310 }

311 return true;

312 }
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