
Faculty of Science

From graphene to T-graphene
The electronic and topological properties of one- and

two-dimensional square-octagon lattices in a magnetic field

Bachelor Thesis

Salma Ismaili

Physics and Astronomy

Supervisors:

Sander Kempkes MSc

Institute for Theoretical Physics, Utrecht

Prof. Dr. Cristiane Morais Smith

Institute for Theoretical Physics, Utrecht

January 15, 2020



Abstract

The discovery of graphene and its extraordinary properties, which arise from the existence of
Dirac cones in the band structure, has sparked interest in other electronic lattices with different
geometries. In this thesis, the electronic properties of T-graphene, or a square-octagon lattice,
are studied using a tight-binding model. The band structure is calculated for different values
of the intracell t1 and intercell t2 hopping parameters. A uniaxial strain is introduced and the
band structure of the resulting highly anisotropic T-graphene shows the merging of Dirac-like
points upon varying the hopping parameters. A finite-size T-graphene system does not show
topologically protected edge states due to the hybridization of the zero-energy edge states with
the zero-energy excitations in the bulk. To open a gap in the bulk, a magnetic flux is introduced
in a T-graphene lattice and the band structures and topological properties are studied. However,
no topological phases emerge due to the hybridization of the wave functions of the edge states.
Additionally, the band structure of a one-dimensional T-graphene chain is calculated and shows
two edge modes at zero energy and no closing of the gap (except for t2 = 0). The calculated
Zak phases of the energy bands suggest the absence of topologically protected edge states, but
the localization of the wave functions does indicate the existence of robust compact localized
states. Further research is needed to determine whether the introduction of superconductivity
or Rashba spin-orbit coupling can open the gap to obtain these compact localized states.
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Introduction

A new era of two-dimensional materials started with the discovery of graphene. Graphene
was first isolated by André Geim and Konstantin Novoselov in 2004 [1]. For years, graphene
had been merely a theoretical consideration, and the isolation of a single layer of any
material was considered to be impossible. After the isolation, the scientific community
was sceptical at first, especially since Geim and Novoselov used the simple Scotch Tape
method, in which a piece of tape is used to peel off graphene layers of a piece of graphite. In
the following years, the special properties of graphene were discovered and a revolution in
condensed matter physics began to unfold. Geim and Novoselov were eventually awarded
the Nobel Prize “for groundbreaking experiments regarding the two-dimensional material
graphene.”

The special properties of graphene arise from the existence of Dirac points, which are
points in the band structure where the bands cross linearly. The linear dispersion relation
around the Dirac points was originally attributed to the honeycomb structure of graphene.
However, Choi et al. [2] reported in 2010 that the semimetallic nature of graphene persisted
up to a very large uniaxial strain of 30%. This implies that a hexagonal lattice is not a
necessary condition for the existence of Dirac fermions. Dirac points were also found
to exist in α- and β-graphene [3, 4], 6,14,18-graphyne [5], 6,6,12-graphyne [6] and T-
graphene [7]. T-graphene is sometimes also called the square-octagon or diamond-octagon
lattice.

In 1988, Haldane introduced a two-dimensional toy model, the Haldane model [8], which
uses graphene as a starting point because of its Dirac cones. Haldane showed how to open
a gap in the band structure of graphene by introducing complex next-nearest-neighbour
(NNN) hopping. As a result, chiral edge states with a topological origin appeared for
certain values of the NNN hopping. This Haldane model, or Chern insulator, may be
considered the precursor to today’s time-reversal invariant topological insulators.

In 2005, Kane and Mele published two papers on the quantum spin Hall (QSH) effect
in graphene [9, 10]. They predicted that a band gap could be opened by introducing
spin-orbit coupling, but they overestimated the intrinsic spin-orbit coupling of graphene.
However, very quickly a new proposal was made by Bernevig, Hughes and Zhang [11]
for the realization of the QSH effect in HgTe-CdTe semiconductor quantum wells. This
resulted in the first observation of a material that is insulating in the bulk, is conducting at
its edges, and hosts counterpropagating spin currents within it: a topological insulator [12].

The exploration of this field of topological matter started around 1980, drawing upon
the concepts of the much older mathematical field of topology. In the last twenty years,
the field of topology in condensed matter has become more and more popular. The
significance of topological materials was highlighted in 2016, when the Nobel Prize in
Physics was awarded to Thouless, Haldane and Kosterlitz “for theoretical discoveries of
topological phase transitions and topological phases of matter.” Their theoretical work in
the 1970’s and 1980’s has sparked enormous interest in these new types of materials, which

4



INTRODUCTION 5

can be used as quantum bits in quantum computers or in new generations of electronics
and superconductors.

In this thesis, the electronic properties of graphene and T-graphene are studied. In addi-
tion, we determine whether a topological phase exists in different one- and two-dimensional
T-graphene lattices. In Chapter 1, the band structures of graphene and graphene nanorib-
bons are calculated to familiarize ourselves with the tight-binding model. An introduction
to topology in condensed matter is given in Chapter 2. In Chapter 3, T-graphene is intro-
duced and the band structure is calculated for different hopping parameters. Additionally,
the electronic properties of highly anisotropic T-graphene and several different T-graphene
nanoribbons are studied. Finally, the topological properties of a finite-size T-graphene lat-
tice are investigated. Specifically, a magnetic field is introduced to study the topological
phases in a two-dimensional T-graphene lattice in Chapter 4 and a one-dimensional T-
graphene chain in Chapter 5. The research performed in Chapter 3, 4 and 5 is original,
except for a few limiting cases where the results are compared to the literature.



CHAPTER 1

The electronic properties of graphene

1.1 An introduction to graphene

Graphene is a one-dimensional sheet of carbon atoms arranged in a honeycomb lattice.
The lattice (see Fig. 1.1a)) contains two equal atoms per unit cell. They belong to two
sublattices, A and B, with each atom from sublattice A surrounded by three atoms from
sublattice B, and vice versa. The Bravais lattice is a triangular lattice with lattice vectors

a1 =
a

2

(√
3, 1
)
, a2 =

a

2

(√
3,−1

)
, (1.1)

where a is the C-C bond length (1.42 Å in graphene [13]). The nearest-neighbour vectors
are given by

δ1 =
a

2
√

3

(
1,
√

3
)
, δ2 =

a

2
√

3

(
1,−
√

3
)
, δ3 =

a√
3

(−1, 0) . (1.2)

The first Brillouin zone and lattice vectors b1 and b2 make up the corresponding lattice in
reciprocal space (Fig. 1.1b)). The important high-symmetry points in the Brillouin zone
are labeled by Γ, K, K′ and M.

Graphene has incredible properties, which originate from its sp2 hybridization and atomic
thickness. As we will see in the next section, electrons near the Fermi-level (at the Dirac
points) behave as photons because their mass is effectively zero, which results in an ex-
tremely high mobility. However, the electrons in graphene move with the Fermi-velocity
vF , which is about 300 times smaller than the speed of light. In addition, each hexagon
in graphene has free π-electrons, but due to the zero density of states at the Dirac point,
the conductivity is actually quite low at the Fermi-energy. However, the properties of
graphene can be changed by doping it, which could make it an excellent conductor or,
by opening the band gap, a great transistor [14]. Graphene has incredible strength, stiff-
ness and toughness due to the stable sp2 carbon bonds [15]. At the same time, it also
has elastic properties [16] and is very thin and light. This combination is what makes
graphene so special and allows for the use of graphene-based composites in vehicles and
optoelectronics [17]. In addition, it absorbs 2.3% of white light [18], which makes it visible
but still transparent.

In this chapter, we discuss a tight-binding model for graphene and calculate the band
structure. Next, we look at the electronic properties of armchair and zigzag graphene
nanoribbons (GNRs).

6



CHAPTER 1. THE ELECTRONIC PROPERTIES OF GRAPHENE 7

Figure 1.1: a) The geometric structure of a layer of carbon atoms in a honeycomb lattice,
with a unit cell consisting of two atoms, A (blue) and B (red), and lattice vectors a1 and
a2. b) The corresponding lattice in reciprocal space with the first Brillouin zone and the
lattice vectors b1 and b2.

1.2 A tight-binding description of graphene

In the following section, we will use the tight-binding or Hückel model to determine the
band structure of graphene. In the Hückel description of conjugated hydrocarbons, molec-
ular orbitals are written as linear combinations of the atomic 2pz-orbitals on the C-atoms.
The σ-orbitals are not taken into account because they are more strongly bound and simply
give rigidity to the material. The electronic properties are determined by the 2pz-orbitals.

According to Bloch’s theorem, wave functions in crystals can be described as plane waves
multiplied by some function that has the same periodicity as the lattice. The Bloch orbitals
consisting of A or B atoms are given by

Φj(k, r) =
1√
N

N∑
Rj

eik·Rj ψj(r −Rj), (j = A,B), (1.3)

where the summation is taken over the atom site coordinate Rj for the A or B carbon
atom, with N the number of unit cells and ψj(r −Rj) the normalized atomic 2pz-state
located on atom j at coordinate Rj . If we assume that the overall wave function consists
of a sum of Bloch waves, we can write the wave function

Ψi(k, r) =
n∑
j=1

Cij(k)Φj(k, r). (1.4)

Now, we can determine the dispersion relation by evaluating the ith expectation value of
the energy using the wave function in Eq. (1.4), such that

Ei(k) =
〈Ψi|Ĥ|Ψi〉
〈Ψi|Ψi〉

=

∑n
j,j′=1Hjj′(k)C∗ijCij′∑n
j,j′=1 Sjj′(k)C∗ijCij′

, (1.5)

where Hjj′ and Sjj′ are called the transfer and overlap integral matrices respectively, and
are defined by

Hjj′(k) =
〈
Φj

∣∣Ĥ∣∣Φj′
〉

and Sjj′(k) =
〈
Φj

∣∣Φj′
〉
, (j, j′ = A,B). (1.6)
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Minimizing Ei(k) with respect to the coefficients C∗ij , leads to the following matrix equa-
tion (

HAA − EiSAA HAB − EiSAB
HBA − EiSBA HBB − EiSBB

)(
CiA
CiB

)
=

(
0
0

)
. (1.7)

In the tight-binding model, the overlap between orbitals on neighbouring atoms is ne-
glected. Therefore, the overlap integral Sjj′ will be either unity for the same atom or zero
for different atoms. Another approximation is made by neglecting the hopping of electrons
to non-neighbouring atoms. This is reasonable to first order since the overlap of pz-orbitals
on non-neighbouring atoms is very small. In that case, there is only an integration over a
single atom in HAA and HBB, and thus

HAA = HBB = ε, (1.8)

with ε the on-site energy. For the off-diagonal matrix element HAB, we only have to
consider the three nearest-neighbour B atoms relative to an A atom, which are denoted
by nearest-neighbour vectors δn in Eq. (1.2). This yields

HAB = −tf(k) and HBA = H∗AB = −tf∗(k), where f(k) =

3∑
n=1

eik·δn , (1.9)

with t the hopping parameter. The matrix equation then becomes(
ε− Ei −tf(k)
−tf∗(k) ε− Ei

)(
CiA
CiB

)
=

(
0
0

)
. (1.10)

This equation can be solved by setting the determinant to zero. Using the definitions of
nearest-neighbour vectors δn in Eq. (1.2), we find the final dispersion relation of graphene

E(k) = ε± t

√√√√1 + 4 cos2

(
aky
2

)
+ 4 cos

(
aky
2

)
cos

(√
3akx
2

)
. (1.11)

If we set ε = 0, we can calculate and plot the band structure (Fig. 1.2a)). There are two
bands and they touch at the K-points. Since every C-atom has one contributing orbital and
one electron, the valence band is completely filled and the conduction band is completely
empty. The band diagram (Fig. 1.2b)) shows the dispersion relation plotted along the
high-symmetry points Γ → M → K → Γ. Close to the K-points, where the bands touch,
the energy depends linearly on the wave vector. These points are called Dirac points and
the density of states in those points is exactly zero. This makes graphene neither a metal
nor a semiconductor or insulator, and therefore it is usually referred to as a semimetal or
zero-gap semiconductor.

One can show that the energy bands in the region close to the K-points are cones by
doing a Taylor expansion around the K-point (or K′-point). First write k = K + δk and
substitute this into Eq. (1.11). After performing the expansion, only the quadratic terms
in δkx and δky are nonzero. We then find

E(k) =± t

√
3a2

4
(δk2

x + δk2
y)

=± t

√
3a

2
|δk| . (1.12)

Using p = ~k, we rewrite

E(p) = ±vF |δp| , with vF =

√
3at

2~
. (1.13)
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Figure 1.2: a) Electronic dispersion in graphene calculated using the tight-binding model
with ε = 0. The conduction band (blue) is completely empty and the valence band (orange)
is completely filled. b) Band structure of graphene along the high-symmetry points Γ →
M → K → Γ calculated using the tight-binding method. The two bands touch at the
Dirac point.

The linear dependence of the energy is strikingly similar to what can be observed in the
dispersion relation of photons (E(p) = c |p|). Electrons in graphene thus behave as if they
have no mass and are therefore called massless Dirac fermions. The speed of propagation
is nevertheless the Fermi-velocity vF , which is proportional to the hopping parameter t.
Because the mass is effectively zero, the electrons are very mobile, resulting in an extremely
low electrical resistivity. This makes graphene particularly suitable for faster electronics
and thin, strong, flexible, electrically conducting and transparent films.

1.3 The electronic properties of graphene nanoribbons

The application of graphene in electronic devices calls for successively smaller pieces of
graphene. In bulk graphene, the edge effects can be neglected, but when the system
size is decreased, the role of the edge states becomes more important. The presence of
edges significantly changes the electronic properties of graphene. There are two basic
edge shapes: armchair and zigzag (Fig. 1.3). Now, we investigate the band structure of
armchair and zigzag ribbons by using the tight-binding approach and discuss the physical
consequences of their energy dispersion.

1.3.1 Armchair GNRs

A unit cell of armchair graphene nanoribbons (AGNRs), marked by the dashed rectangle
in Fig. 1.3a), spans the entire lattice in the y-direction. The width of the lattice in
the x-direction is determined by the number of dimer lines N , such that the unit cell
contains 2N carbon atoms. After taking into account the tight-binding approximation,
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Figure 1.3: Geometric structure of graphene nanoribbons with a) armchair edges and b)
zigzag edges. The unit cells are defined by the dashed rectangles.

the corresponding matrix equation is given by

E



b1
b2
b3
...

b2N−1

b2N


=



ε −t 0 −t 0
−t ε −t 0 0
0 −t ε −teika 0 · · ·
−t 0 −te−ika ε −t
0 0 0 −t ε

...
. . .





b1
b2
b3
...

b2N−1

b2N


. (1.14)

The matrix has a periodicity of 4. One can show (see Ref. [19]) that there exists a diagonal
matrix that can transform the tight-binding matrix into another matrix with periodicity
2, which is given by

G =



0 −te−ik/2 0 −t 0

−teik/2 0 −t 0 0

0 −t 0 −te−ik/2 0 · · ·
−t 0 −teik/2 0 −t
0 0 0 −t 0

...
. . .


, (1.15)

where we have set ε = 0 and a = 1 for convenience. We can now express the eigenvalue
problem as a set of two equations

Ecm = −te−ik/2cm+1 − tcm−1 − tcm+3 for m odd,

Ecm = −teik/2cm−1 − tcm+1 − tcm−3 for m even.
(1.16)

If we introduce the notation An for odd m and Bn for even m, corresponding to the
sublattices A and B, such that c1, c2, c3, c4, . . . ≡ A1, B1, A2, B2, . . . , we can rewrite the
equations above as

EAn = −te−ik/2Bn − tBn−1 − tBn+1,

EBn = −teik/2An − tAn+1 − tAn−1,
(1.17)

with the boundary conditions A0 = B0 = AN+1 = BN+1 = 0. Using the ansatz An =
V eiqn + We−iqn and Bn = Xeiqn + Y e−iqn and substituting these into the boundary
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Figure 1.4: a) Band structure of AGNRs with N = 4 (semiconducting), b) N = 5 (metal-
lic), c) N = 30 (semiconducting).

conditions, we find

(I) A0 = 0 = V +W =⇒ V = −W,
(II) B0 = 0 = X + Y =⇒ X = −Y.

(1.18)

The other boundary conditions then give

(III) V
(
eiq(N+1) − e−iq(N+1)

)
= V 2i sin (q(N + 1)) = 0,

(IV) X
(
eiq(N+1) − e−iq(N+1)

)
= X2i sin (q(N + 1)) = 0.

(1.19)

We find sin (q(N + 1)) = 0, which yields the trivial solution q = 0 and the nontrivial
solution q = rπ/(N + 1) with r = 1, 2, . . . , N . Substituting our ansatz into Eq. (1.17) and
solving the corresponding 2×2 eigenvalue problem, one obtains for the dispersion relation

E(k) = ±t

√
1 + 4 cos2

(
rπ

N + 1

)
+ 4 cos

(
rπ

N + 1

)
cos

(
k

2

)
, with r ∈ N. (1.20)

The characteristics of the band structure (Fig. 1.4) depend on the value of N . For N =
3m− 1 with m ∈ N, the conduction and valence band meet at k = 0, hence these ribbons
have metallic properties. For N 6= 3m − 1 there is a band gap, resulting in ribbons with
semiconducting properties. The band gap arises from quantum confinement, which can
be characterized by ∆Na ∼ d−1

a , where ∆Na is the band gap belonging to an AGNR with
Na dimer lines [20].

However, first-principle calculations have shown that the size of the band gap is inde-
pendent of the number of dimer lines N [20], which suggests that AGNRs are always
semiconductors. This differs from the tight-binding results because we did not take into
account the edge effects, which turn out to play a crucial role. At the edges, the carbon
atoms are passivated by hydrogen atoms. Therefore, the σ-bonds between carbon and
hydrogen and the on-site energies are different from those in the bulk. In addition, the
bond length between carbon atoms at the edge is smaller, which results in an increase
of the hopping parameter. This opens up the band gaps of the 3m−1-AGNRs and also
changes the band gaps of the 3m- and 3m+1-AGNRs [20]. If one modifies the matrix equa-
tion in Eq. (1.14) to include an extra energy term on the first two and last two entries on
the main diagonal, and a different hopping parameter for hopping between carbon atoms
at the edge, these additional edge effects can also be described within the tight-binding
model.
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1.3.2 Zigzag GNRs

The unit cell of zigzag graphene nanoribbons (ZGNRs), marked by the dashed rectangle
in Fig. 1.3b), is finite in the x-direction and also contains 2N carbon atoms. Constructing
and solving the tight-binding eigenvalue equation in a similar way as before gives

E(k) = ±t

√
1 + 4 cos2

(
k

2

)
+ 4 cos

(
k

2

)
cos (q). (1.21)

Notice in Eq. (1.21) that q and k/2 have switched places compared to Eq. (1.20). This
inversion happens because the structure of a ZGNR is essentially the same as the structure
of an AGNR rotated over an angle of 90◦. Therefore, the kx- and ky-directions are also
interchanged. The q can then be derived from the relation

F (N, q) = 2 cos

(
k

2

)
sin (q(N + 1)) + sin (Nq) = 0. (1.22)

Since q is now a function of both N and k, we cannot solve for q as easily as we did
in the case of armchair nanoribbons. However, if we look at Eq. (1.22), we find that
it yields N results for 0 ≤ |k| ≤ kc, but only N − 1 results for kc ≤ |k| ≤ π, where

kc = 2 arccos
(

1
1+1/N

)
[21]. The N − 1 solutions correspond to the extended states. A

good approximation of the N − 1 solutions to equation (1.22) is given by

q =
rπ

2N + 1
, with r = 1, 2, . . . , N − 1. (1.23)

The missing solution corresponds to the localized edge state. This edge state distinguishes
the zigzag ribbon from the armchair ribbon, which does not have such an edge state. The
energy spectrum of the localized edge state can be obtained by analytical continuation
(see Ref. [19]) as

q →

{
π + iη ≡ qπ, kLc ≤ |k| ≤ π,
0 + iη ≡ q0, π ≤ |k| ≤ kRc ,

(1.24)

such that

E(k) =

±t
√

1 + 4 cos2
(
k
2

)
− 4 cos

(
k
2

)
cosh (η), for qπ,

±t
√

1 + 4 cos2
(
k
2

)
+ 4 cos

(
k
2

)
cosh (η), for q0,

(1.25)

Figure 1.5: a) Band structure of zigzag nanoribbon with N = 8 and b) N = 15. The band
gap is zero for all N , which implies that zigzag nanoribbons are always metallic. Figure
from Ref. [22].
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where η is the solution to the equation

G(N, η) = sinh (Nη)− 2

∣∣∣∣cos

(
k

2

)∣∣∣∣ sinh (η(N + 1)) = 0. (1.26)

The band gap in the band structure of Z-TGNRs (Fig. 1.5) is zero for all values of N ,
hence ZGNRs are always metallic. However, in a real nanoribbon, a band gap may arise
from a staggered sublattice potential due to spin ordered states at the edges [20]. The
spin states on opposite edges have opposite spin and occupy different sublattices. The
difference in exchange potential on the two sublattices results in a band gap. Looking
at it in another way, we see that the inversion symmetry is broken due to the staggered
sublattice, which also results in a band gap [23].

The wave function is completely localized at the edge states for k = π and starts to
penetrate into the inner sites as k moves away from π, reaching the extended state at k =
2π/3 in the limit of large N [24]. The (almost) flat bands at the Fermi-level, corresponding
to the localized edge states, give rise to a sharp peak in the density of states at the Fermi-
level. As a result of the flat band, the kinetic energy term in the Hamiltonian is very
small and therefore any potential energy term has a strong effect. This explains why
infinitesimally small on-site repulsions could make ZGNRs magnetic at the edges [24].
Note that the armchair ribbon does not exhibit such magnetic behaviour, since the band
structure does not contain any flat bands at the Fermi-level.



CHAPTER 2

An introduction to topology in condensed matter

In this chapter, we start with a short introduction to topology and an overview of the
relevant symmetries. Next, we study the Su-Schrieffer-Heeger (SSH) model to familiar-
ize ourselves with the concepts and the calculations. Lastly, we discuss the topological
importance of introducing a gauge field and introduce Berry phases and Chern numbers.

2.1 Topology and symmetry

This section is broadly based on the chapter Topology in toy models from the online course
Topology in Condensed Matter: Tying Quantum Knots by the TU Delft.

In mathematics, topology is the study of properties that remain intact under continuous
deformation of a geometric object. If two objects can be continuously transformed into
each other, they are topologically equivalent. A donut and a coffee cup are examples of
two topologically equivalent objects, since it is possible to continuously stretch and deform
one into the other, because they both have one hole. A property that does not change
under continuous transformation is called a topological invariant.

In condensed matter physics, we do not study geometric objects, but physical systems.
All the information about interactions in a system is contained in the Hamiltonian. A
question we can ask is if two Hamiltonians can be continuously transformed into each
other. Without constraints, every Hamiltonian could be continuously transformed into
every other Hamiltonian, and all systems would be topologically equivalent. However,
when we add constraints, we can divide the Hamiltonians into topological classes, all with
a different topological invariant.

If we use the constraint that a system should have an energy gap, we can define the
topological invariant as the number of energy levels below zero, or as the number of zero
energy crossings. If there is a path that connects two Hamiltonians without closing the
gap, they are topologically invariant. However, if the gap must close for the Hamiltonians
to continuously transform into each other, the topological invariant changes. This is called
a topological phase transition.

We can also restrict ourselves to systems with a certain symmetry. There are several
symmetries that can affect the topology of a quantum system. In condensed-matter theory,
the three important discrete symmetries are time-reversal symmetry, sublattice or chiral
symmetry and particle-hole symmetry.

14
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2.1.1 Time-reversal symmetry

Firstly, we will take a look at time-reversal symmetry. A system is time-reversal symmetric
if it can be described by a real Hamiltonian. The Hamiltonian then obeys

T−1HT = H, (2.1)

with T = UK an anti-unitary matrix, i.e. the product of a unitary matrix U times complex
conjugation K. Time-reversal symmetry maps t 7→ −t, which means that k 7→ −k, but
x 7→ x.

Time-reversal symmetry makes a real difference in spin-dependent systems, because for
systems with spin 1/2, the time reversal operator has the form T = iσyK, such that
T 2 = −1. A Hamiltonian with this type of time-reversal symmetry obeys the relation
H = σyH

∗σy. These Hamiltonians have the property that every eigenvalue is doubly
degenerate, which is also known as Kramers’ degeneracy. This means that for every zero
energy crossing, the topological invariant makes a jump of two and that the topological
invariant is constraint to even values.

2.1.2 Sublattice symmetry

Secondly, consider a set of atoms that can be split up into two groups, such that the
Hamiltonian only contains nonzero matrix elements between two groups, and not inside
each group. In that case, the system has a sublattice symmetry. Sublattice symmetry
is also called chiral symmetry, because the chiral operator in the Dirac equation has the
same symmetry.

A famous example of a system with sublattice symmetry is graphene, which has two
sublattices, A and B. The Hamiltonian of such a system has the form

H =

(
0 HAB

H†AB 0

)
. (2.2)

This matrix obeys the sublattice symmetry relation

σzHσz = −H, with σz =

(
1 0
0 −1

)
. (2.3)

This means that if Ψ = (ψA, ψB)T is an eigenvector with energy E, then σzΨ = (ψA,−ψB)T

is also an eigenvector, but with energy −E. In other words, the spectrum is symmetric
around zero. The number of positive energy states is equal to the number of negative
energy states, and therefore we do not expect a single level to cross zero energy. This
means that all Hamiltonians with sublattice symmetry can be continuously deformed into
each other.

2.1.3 Particle-hole symmetry

Lastly, let us consider a superconductor with the Hamiltonian

H =
∑
n,m

Hnmc
†
ncm +

1

2

(
∆nmc

†
nc
†
m + ∆∗nmcmcn

)
, (2.4)

where the first term describes the dynamics of the electrons and the second term describes
the creation and annihilation of Cooper pairs: pairs of electrons bound together due to
the electron-phonon interaction in a superconductor. We can rewrite this Hamiltonian
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using C =
(
c1, . . . , cn, c

†
1, . . . , c

†
n

)T
, with ci the annihilation operators of electrons and c†i

the creation operators of electrons, such that

H =
1

2
C†HBdGC, with HBdG =

(
H0 ∆
∆∗ −H∗0

)
. (2.5)

HBdG is de Bogoliubov-de-Gennes Hamiltonian, with H0 the single-particle Hamiltonian
and ∆ the pairing term.

If we think of the creation operators of particles as the annihilation operators of holes,
such that there are n annihilation operators of electrons and n annihilation operators of
holes, we have doubled the degrees of freedom. Since holes are related to particles, we
have an extra symmetry: the particle-hole symmetry. The anti-unitary operator P = σxK
exchanges particles with holes, with the Pauli matrix σx acting on the particle and hole
blocks. The symmetry relation is

PHBdGP
−1 = −HBdG. (2.6)

If Ψ = (u, v)T is an eigenvector with energy E, then PΨ = (v∗, u∗)T is also an eigenvector,
but with energy −E. Again, the spectrum is symmetric around zero.

2.2 The Su-Schrieffer-Heeger model

We can now apply all these concepts to one of the simplest one-dimensional models: the
Su-Schrieffer-Heeger (SSH) model, which is a 1D atom chain with staggered hopping (see
Fig. 2.1). The physical structure described by this model is polyacetylene. The staggering
occurs naturally in many solids due to Peierls instability [25, 26]. Peierls theorem states
that a one-dimensional equally spaced chain with one electron per ion is unstable when it
is coupled to phonons. Due to the electron-lattice interaction, the phonons are condensed
to form a lattice distortion. At the points in the lattice where the ions form pairs, positive
charge accumulates, which attracts the electrons. Because of that, the electrons form a
charge density wave, which results in the staggered potential observed in the SSH model.
For this section, we will broadly follow Ref. [27].

2.2.1 A tight-binding model of the SSH chain

The Hamiltonian of an SSH chain with N unit cells and two sublattices, A and B, is

Ĥ = −tw
N∑
m=1

(|m,B〉 〈m,A|+ h.c.)− ts
N−1∑
m=1

(−ts |m+ 1, A〉 〈m,B|+ h.c.) (2.7)

The electrons can hop via alternately a weak hopping tw or a strong hopping ts. Because
of this staggered hopping, the unit cell consists of two atoms, A and B. Since we can split
all the degrees of freedom into two groups A and B, such that the Hamiltonian only has

Figure 2.1: Structure of the SSH chain, with two atoms per unit cell (marked by the red
rectangle) and staggered hopping. The intracell hopping parameter is tw and the intercell
hopping parameter is ts.
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Figure 2.2: The band structure of the SSH chain as a function of k, plotted for a) tw = 0
and ts = 1, b) tw = 0.5 and ts = 1, c) tw = 1 and ts = 1, d) tw = 2 and ts = 1, and e)
tw = 2 and ts = 0.

nonzero matrix elements between two groups, and not inside each group, the system is
chirally symmetric.

Using Bloch’s theorem, we find the bulk Hamiltonian

H(k) =

(
0 −tw − tse−ik

−tw − tseik 0

)
, (2.8)

Solving the eigenvalue problem gives

E(k) = ±
√
t2w + t2s + 2twts cos(k). (2.9)

The band structure is shown in Fig. 2.2 for different values of tw and ts. For tw < ts,
there is a band gap, which closes at tw = ts. The band gap opens up again when tw > ts.
Hence, as long as the hopping amplitudes are staggered, i.e. if tw 6= ts, there is an energy
gap of 2|tw − ts|. If tw = ts, the SSH chain is conducting.

2.2.2 The fully dimerized SSH chain

We can now look at the two fully dimerized limits. The first case, which we call trivial, is
the case where tw = 1 and ts = 0, as in Fig. 2.3a). The energy eigenstates are the even
(E = 1) and the odd (E = −1) superpositions of the two sites from one unit cell that form
a dimer. We have

Ĥ (|m,A〉 ± |m,B〉) = ± (|m,A〉 ± |m,B〉) , (2.10)

where the unit cell is labeled by m. We then find Ĥ(k) = −σx.

In the second case, which is called topological, tw = 0 and ts = 1, as in Fig. 2.3b). Here,
the eigenstates are the superpositions of the two sites from neighbouring unit cells that
form a dimer. We find

Ĥ (|m,B〉 ± |m+ 1, A〉) = ± (|m,B〉 ± |m+ 1, A〉) . (2.11)

The Hamiltonian is now Ĥ(k) = −σx cos(k) − σy sin(k). In the trivial case, all energy
eigenstates are given by Eq. (2.10). However, a topological, fully dimerized SSH chain has
more energy eigenstates than those given in Eq. (2.11). At both ends of the chain there
is a single eigenstate at zero energy,

Ĥ |1, A〉 = Ĥ |N,B〉 = 0. (2.12)

These states are called zero-energy edge states. They are at zero energy because the on-site
potential is zero and they cannot interact with the neighbouring electron.
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Figure 2.3: The structures of the SSH chain in the fully dimerized limits. a) The trivial
case with tw = 1 and ts = 0. b) The topological case with tw = 0 and ts = 1.

Figure 2.4: The energy eigenvalues of a finite SSH chain with N = 10, plotted as a function
of tw with ts = 1. The zero-energy modes stay at zero until tw = ts (in the thermodynamic
limit).

2.2.3 Moving away from the fully dimerized limit

If we move away from the fully dimerized limit tw = 0 and ts = 1, something interesting
happens: the edge states stay at zero until tw = ts in the thermodynamic limit. These
isolated zero-energy edge modes are protected by the chiral symmetry. This is called
the bulk-edge correspondence: the zero-energy edge states can only exist because of a
symmetry in the bulk.

In section 2.1.1, we found that the energy spectrum was symmetric because of the sub-
lattice symmetry. This means that the two edge modes must move away from zero si-
multaneously. Only when the two isolated electrons at the ends of the chain are coupled,
i.e. when tw reaches ts and the gap closes, the edge modes can move away from zero. In
Fig. 2.4, we illustrate this by calculating the energy spectrum of a finite SSH chain as a
function of tw and ts = 1. Here we chose N = 10, but for a system with large N , the edge
modes only move away from zero at tw = 1 = ts.

In an SSH system that is not in the fully dimerized limit, the edge state wave functions
penetrate exponentially into the bulk. This leads to hybridization of the two edge states,
forming a bonding and an anti-bonding state. At half filling, only the bonding eigenstate
will be filled. This means that each edge atom carries half an electric charge. In two-
or three-dimensional systems, this means that the edges or surfaces are conducting, while
the bulk is insulating. The SSH model is therefore the one-dimensional counterpart of a
topological insulator.
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Figure 2.5: The vector d(k) as k goes from 0 to 2π, plotted for a) tw = 0 and ts = 1, with
ν = 1, b) tw = 0.5 and ts = 1, with ν = 1, c) tw = 1 and ts = 1, with ν undefined, d)
tw = 2 and ts = 1, with ν = 0, and e) tw = 2 and ts = 0, with ν = 0.

2.2.4 The winding number as topological invariant

The dispersion relation gives us a lot of information about the physical properties of the
system, but it does not tell us anything about the topology of the system. For that, we
need to identify a new quantity: the winding number.

In general, the Hamiltonian Ĥ(k) for a lattice with two atoms per unit cell without an
on-site potential has the form

Ĥ(k) =

(
0 h(k)

h∗(k) 0

)
= dx(k)σ̂x + dy(k)σ̂y + dz(k)σ̂z. (2.13)

For the SSH model, the three components of the vector d(k) are

dx(k) = −tw − ts cos(k); dy(k) = −ts sin(k); dz(k) = 0. (2.14)

As the wavenumber runs through the Brillouin zone, the vector d(k) traces out a closed
loop, in this case a circle of radius ts on the dx, dy plane, centered at (−tw, 0).

The topology of this loop can be characterized by a topological invariant, the bulk winding
number ν, which counts the number of times the loop winds around the origin. The
winding number can be written using the unit vector d̂(k), defined as:

d̂(k) =
d(k)

|d(k)|
. (2.15)

The winding number ν is then given by

ν =
1

2π

∫ (
d̂(k)× d

dk
d̂(k)

)
z

dk. (2.16)

We can calculate the winding number for different values of tw and ts. The closed loop
traced by the vector d(k) is shown in Fig. 2.5 for five different values of tw and ts. For the
topological case tw < ts, we have ν = 1, for the trivial case tw > ts, we have ν = 0, and
for tw = ts, ν is undefined, because the vector d(k) moves through the origin. When tw
is increased from 0 to 2ts, the system undergoes a topological phase transition at tw = ts,
which is when the winding number changes from ν = 0 to ν = 1.

2.2.5 Exact calculation of the edge states

In order to compute the localization of the edge states in the SSH model, we first need to
calculate the zero-energy edge states exactly by solving

Ĥ
N∑
m=1

(am |m,A〉+ bm |m,B〉) = 0, (2.17)
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using the Hamiltonian given in Eq. (2.7).

Letting the Hamiltonian work on the eigenstate gives 2N equations for the amplitudes{
−twam − tsam+1 = 0;

−tsbm − twbm+1 = 0,
for m = 1, . . . , N − 1, (2.18)

with the boundary conditions

tsa1 = 0; tsbN = 0. (2.19)

Solving these equations gives

am = a1

m−1∏
j=1

−tw
ts

; (2.20)

bm = bN

N∏
j=m+1

−tw
ts

. (2.21)

Now, we can write the edge states as

|L〉 =

N∑
m=1

am |m,A〉 ; (2.22)

|R〉 =

N∑
m=1

bm |m,B〉 , (2.23)

with the coefficients am and bm as in Eq. (2.20) and Eq. (2.21).

To get more insight into the amplitudes of these coefficients, we can calculate the amplitude
of aN and b1, which are given by

aN = a1

N−1∏
j=1

−tw
ts

= a1

(
−tw
ts

)N−1

; (2.24)

b1 = bN

N∏
j=2

−tw
ts

= bN

(
−tw
ts

)N−1

. (2.25)

Taking the absolute value and rewriting gives

|aN | = |a1|
(
e(log|tw|−log|ts|)

)N−1
= |a1| e−(N−1)/ξ; (2.26)

|b1| = |bN | e−(N−1)/ξ, (2.27)

with ξ = 1/ (log |ts| − log |tw|). We observe that the amplitudes of the coefficients am (bm)
decay exponentially from the left (right) of the chain.

2.3 Gauge fields, Berry phases and Chern numbers

The start of a new era of topological materials was marked by the experimental obser-
vation of the quantum Hall effect (QHE) by von Klitzing et al. [28]. The QHE is the
quantum-mechanical version of the classical Hall effect that was discovered by Edwin Hall
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Figure 2.6: a) The setup used by von Klitzing to measure the Hall effect. A perpendicular
magnetic field B is applied to a 2DES with a current I running through it, resulting in a
net Hall voltage VH . b) The quantum Hall resistivity plotted as a function of the magnetic
field B, showing plateaus at certain ranges of the magnetic field (Kosmos, 1986).

in 1879 [29]. Hall used the setup in Fig. 2.6a), with a current running through a two-
dimensional electron system (2DES). When a perpendicular magnetic field is applied, the
electrons experience a Lorentz force, which moves them to one side of the material where
negative charge accumulates. This leaves equal and opposite charge on the other side,
resulting in a transverse electric potential VH . In the classical picture, the transverse or
Hall resistivity depends linearly on the magnetic field.

When a strong magnetic field is applied, the electrons start following circular orbits with
the cyclotron frequency ωc = ~eB/m. Due to their quantum-mechanical nature, the
energy levels of the electrons are quantized. These so-called Landau levels are separated
by an energy difference of ∆E = ~ωc. This causes the Hall resistivity to exhibit interesting
behaviour, as shown in Fig. 2.6b). The Hall resistivity sits on plateaus for certain ranges
of the magnetic field. On these plateaus, the resistivity is

ρxy =
h

νe2
, with ν ∈ Z. (2.28)

In 1988, Haldane showed with his Haldane model that a net magnetic flux was not a
necessary condition for the observation of the QHE [8]. Haldane introduced a magnetic
flux in such a way that the net magnetic flux vanished, thereby breaking time-reversal
symmetry. This was sufficient to quantize the resistivity as in Eq. (2.28). It turned out
that the breaking of time-reversal symmetry was the determining factor in observing the
QHE, and not the presence of a net magnetic field.

In the remaining of this section, we will look at the consequences of adding a gauge field
and how a two-dimensional quantum system can be characterized topologically, by broadly
following Ref. [27].

In momentum space, the eigenfunctions are defined by

H (k) |ψ(k)〉 = E (k) |ψ(k)〉 . (2.29)

Upon moving an infinitesimal amount through the Brillouin zone, from k to dk, the final
state and the initial state will differ by a relative phase

∇γ = i 〈ψ(k) |∇k|ψ(k)〉 · dk = A(k) · dk, (2.30)
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where A(k) is the Berry connection. Under a gauge transformation, the relative phase
and the Berry connection change as

|ψ(k)〉 → eiφ(k) |ψ(k)〉 ; A(k)→ A(k) +∇kφ(k). (2.31)

When moving along a closed curve in momentum space, a Berry phase is picked up, which
is given by

γ =

∮
C
A(k) · dk. (2.32)

The Berry phase, unlike the Berry curvature, is gauge invariant, so the pumped charge is
invariant as long as the energy gap is preserved.

Now, consider C to be the boundary of a surface S within the Brillouin zone. Using Stokes’
theorem, we find

γ =

∮
δS

A(k) · dk =

∫
S

(∇×A(k)) · dS, (2.33)

where dS is the vector normal to the surface S.

Since these equations are analogous to those for magnetic fields, we can consider the Berry
connection as a vector potential, which defines a gauge field in momentum space: the Berry
curvature B(k) = ∇×A(k). The Berry phase can then be written as

γ =

∫
S
B(k) · dS. (2.34)

We now know that pumping a magnetic flux through the system, i.e. multiplying the
hopping parameters with a phase term, adds a Berry phase to the initial state. When
S = BZ, a closed loop δS corresponds to one cycle around the Brillouin zone which is
2π-periodic. The picked up Berry phase must then be a multiple of 2π, or γ(kx + 2π) =
γ(kx) + 2πW . The multiple W defines the Chern number

W =
1

2π

∫
BZ

B(k) · dS (2.35)

=
i

2π

∫
BZ

(∇× 〈ψ(k) |∇k|ψ(k)〉) · dS. (2.36)

The analogy with the magnetic field allows us to express the Chern number in terms of the
wave function and its derivative. Physically, the Chern number is the same integer as the
ν in Eq. (2.28), which is the topological invariant that characterizes the band structure
of two-dimensional Quantum Hall systems. When W = 0, the system is a topologically
trivial insulator, while a nonzero Chern number indicates a topologically nontrivial state.
The sources of the Berry flux are the points where the energy bands touch in momentum
space. This means that the Berry phase can only be computed if the Hamiltonian has an
energy gap.



CHAPTER 3

The electronic and topological properties of T-graphene

3.1 An introduction to T-graphene

In the remaining of this thesis, I will focus on T-graphene (see Fig. 3.1a)). From now on,
the research performed in this thesis is original, except for some limiting cases, where the
obtained results are compared with the literature.

T-graphene is a one-dimensional sheet of (carbon) atoms arranged in a tetragonal lattice
of octagons connected by squares with lattice vectors

a1 = a (1, 0) , a2 = a (0, 1) , (3.1)

where a is the lattice constant. A unit cell consists of four atoms, each with three nearest
neighbours. In T-graphene, the hopping between atoms within the tetra-ring is character-
ized by a hopping parameter t1, and the hopping between nearest-neighbour tetra-rings
is described by hopping parameter t2. In section 3.3 on highly anisotropic T-graphene,
we introduce two other hopping parameters, t′1 and t′2, also shown in Fig. 3.1a). The first
Brillouin zone and the reciprocal lattice vectors b1 and b2 of T-graphene are shown in
Fig. 3.1b). The important high-symmetry points are Γ, X and M.

3.2 A tight-binding description of T-graphene

In this section, we calculate the eigenenergies and show the band structure of T-graphene
for different values of t1 and t2, with t

′
1 = t1 and t

′
2 = t2. Following the tight-binding

method described in section 1.2, we write the Hamiltonian for T-graphene

H =


0 −t1 −t2e−iakx −t1
−t1 0 −t1 −t2eiaky

−t2eiakx −t1 0 −t1
−t1 −t2e−iaky −t1 0

 , (3.2)

where we have set the on-site energy to zero.

The band structure of T-graphene for five different values of t1 and t2 is shown in Fig. 3.2.
For t2 = 0, the band structure consists of three flat bands at E = 0 and E = ±2t1. This
is the band structure of isolated tetra-rings. For 0 < t2 < t1, the two bands around the
Fermi-energy E2 and E3 touch at the M-point and the Γ-point. However, the dispersion
is not linear, which means that the density of states is not zero at that point. The other
two bands E1 and E4 show some dispersion. When t2 = t1, E1, E2 and E3 cross at the
M-point. E1 and E3 touch in a Dirac point, while E2 is flat at the M-point. Similarly, E2
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Figure 3.1: a) The geometric structure of T-graphene with four hopping parameters:
t1, t

′
1, t2, and t′2, two lattice vectors a1 and a2 and the unit cell marked by the red square.

b) The first Brillouin zone (red) and reciprocal lattice vectors b1 and b2 of T-graphene.

and E4 touch linearly at the Γ-point. The band E3 crosses this Dirac point without any
dispersion. Lastly, for t1 < t2 < 2t1, an indirect band gap is opened between E2 and E3,
which turns into a direct band gap in the limit of t2 → ∞ (or t1 → 0). Notice here that
E1 and E2 form a band structure similar to the structure formed by E3 and E4.

Figure 3.2: The energy eigenvalues of T-graphene (E1 in orange, E2 in blue, E3 in green,
and E4 in red) plotted along the path of high-symmetry points Γ → X → M → Γ,
calculated for t1 = 1 and a) t2 = 0, b) t2 = 0.5, c) t2 = 1, d) t2 = 2, and e) t2 = 10.

3.3 Highly anisotropic T-graphene

The energy dispersion of the bands can be modified by introducing uniaxial strain in the
lattice. Changing the distance between lattice points is theoretically equivalent to modi-
fying the hopping parameters. In this section, we therefore vary t′1 and t′2 independently
of t1 and t2, with t1 = t2 = 1, and study the changes in the band structure. Consider a
system where t′1 is varied from 0.5 to 2, while t1 = t2 = t′2 = 1. In Fig. 3.3a), there are two
band crossings between E3 and E4 in the y = -x direction and two band crossings between
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Figure 3.3: The band structures of anisotropic T-graphene (E1 in orange, E2 in blue, E3

in green, and E4 in red) with t1 = t2 = t′2 = 1, for a) t′1 = 0.5, b) t′1 = 1.0, and c) t′1 = 2.0.

E2 and E3 at the two M-points (-π,π) and (π,-π). At the other two M-points (π,π) and
(-π,-π), E2 and E3 touch quadratically in one direction and linearly in the other. Another
band crossing between these two bands can be found at the Γ-point, where the dispersion
relation is parabolic in one direction and linear in the other direction. There are also
two band crossings between E1 and E2, which have moved away from the high-symmetry
points.

Upon increasing t′1 to 1 (see Fig. 3.3b)), we find the same band structure as for normal
T-graphene with t1 = t2 = 1. Note that the two band crossings of E3 and E4 have merged
into one Dirac cone with E2. This is similar to what happens when strain is introduced
in graphene [30]. The band E3 crosses at the same point and is now approximately flat
around the Γ-point. The two Dirac points between E1 and E2 have moved towards the
corners of the Brillouin zone and two more Dirac cones have emerged at the two other
corners. These Dirac cones have merged with the Dirac cones between E2 and E3.

When t′1 is increased even further (see Fig. 3.3c)), we observe that the bands E2 and E3

have opened up a gap. The band crossing between E1 and E2 has remained and the Dirac
cone between E3 and E4 has been distorted, such that it is linear in one direction and
parabolic in the other.

Now, consider a system where t′2 is varied from 0.5 to 2, while t1 = t′1 = t2 = 1. For
t′2 = 0.5 (see Fig. 3.4a)), E2 and E3 touch at six different points. The band crossings look
similar to the critically tilted Dirac cones that were found in graphene [30], where a flat
band crosses a band with dispersion. In this case, there are only critically tilted Dirac
points in the direction of qx and parabolic band crossings in the direction of qy.

In Fig. 3.4b), t′2 is increased to 1.0, which is the case of normal T-graphene. Upon
increasing t′2 even further to 2.0, as shown in Fig. 3.4c), the band crossing between E3

and E4 splits and moves to X-points (π, 0) and (−π, 0). The dispersion is linear in the
direction of qy. In the direction of qx, E4 is flat and E3 is parabolic, which causes an
infinite density of states because the upper band is flat. Furthermore, an indirect band
gap is opened between E2 and E3, which turns into a direct band gap for large t′2. The
band crossings between E1 and E2 have merged at the X-points (0, π) and (0,−π). In this
case, the dispersion is linear in the direction of qy. In the direction of qx, E1 is flat and
E2 is parabolic, resulting in a finite density of states.
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Figure 3.4: The band structures of anisotropic T-graphene (E1 in orange, E2 in blue, E3

in green, and E4 in red) with t1 = t′1 = t2 = 1, for a) t′2 = 0.5, b) t′2 = 1.0, and c) t′2 = 2.0.

3.4 Armchair and zigzag T-graphene nanoribbons

It is important to know the structural dependence of the electronic properties of T-
graphene for applications in nanotechnology. In this section, we study the different kinds
of T-graphene nanoribbons (TGNRs), with t1 = t′1 and t2 = t′2. There are two kinds
of armchair T-graphene nanoribbons (A-TGNRs), one is symmetric (with even N) and
the other one is asymmetric (with odd N). We also study zigzag T-graphene nanorib-
bons (Z-TGNRs) and bearded T-graphene nanoribbons (B-TGNRs), where we might find
protected zero modes.

Figure 3.5: The geometric structures of a) even A-TGNRs, b) odd A-TGNRs, c) Z-TGNRs
and d) bearded TGNRs. Figure based on Ref. [31].

3.4.1 Even armchair TGNRs

The unit cell of A-TGNRs consists of eight atoms, each with three nearest neighbours.
The geometric structures of even and odd A-TGNRs are shown in Fig. 3.5a) and b),
respectively. The nearest-neighbour vectors are given by

δ1 = l (1, 0) , δ2 = l (0, 1) , δ3 = l

(
− 1√

2
,− 1√

2

)
, δ4 = l

(
− 1√

2
,

1√
2

)
, (3.3)

with l = a/(1+
√

2). In principle, the distance between atoms within a tetragon can differ
from the distance between atoms in neighbouring tetragons. However, this distance would
only result in a stretching of the bands, and not in a change of the characteristic electronic
properties. We therefore only make use of the freedom in hopping parameters.
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The tight-binding Hamiltonian for an A-TGNR with even N is

HN,EA =



H0,A Hc,A 0 · · · 0

H†c,A H0,A Hc,A · · · 0

0 H†c,A H0,A
. . .

...
...

...
. . .

. . . Hc,A

0 0 · · · H†c,A H0,A,


(3.4)

The matrix H0,A has the form

H0,A =



0 −t1βA 0 −t1 0 0 0 −t2αA
−t1β∗A 0 −t1 0 −t2α∗A 0 0 0

0 −t1 0 −t1β∗A 0 −t2α∗A 0 0
−t1 0 −t1βA 0 0 0 −t2αA 0
0 −t2αA 0 0 0 0 0 −t1βA
0 0 −t2αA 0 0 0 −t1βA 0
0 0 0 −t2α∗A 0 −t1β∗A 0 0

−t2α∗A 0 0 0 −t1β∗A 0 0 0


. (3.5)

Here, αA and βA are defined by

αA = exp(ik · δ3) = exp(ik · δ4) = exp

(
−2πik

2 +
√

2

)
, (3.6)

βA = exp(ik · δ1) = exp

(
2πik

1 +
√

2

)
, (3.7)

where the momentum vector k = (2πk/a)(1, 0). This matrix represents the hopping within
one unit cell. The matrix Hc,A is given by

Hc,A =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −t1 0 0 0
0 0 0 0 0 0 0 −t1
0 0 0 0 0 0 0 0


. (3.8)

This matrix represents the hopping between different unit cells in the direction with finite
length. In the rest of this thesis, we will refer to these types of matrices as sparse matrices
with all elements equal to zero, except Hc,A(6, 5) = Hc,A(7, 8) = −t1 in this case.

The Hamiltonian for N = 2 is given by H2 = H0,A. Solving numerically for the eigenvalues
of H2 yields for the energy bands near the Fermi level

E±(k) =∓ 1

2
t1 ±

1

2

√
5t21 + 4t22 − 4

√
t41 + 2t21t

2
2 + ((α∗AβA)2 + (β∗AαA)2)t21t

2
2

=∓ 1

2
t1 ±

1

2

√
5t21 + 4t22 − 4

√
t41 + 2t21t

2
2 + 2 cos (2πk) t21t

2
2. (3.9)

The band structure is shown in Fig. 3.6a) for t1 = 2.5 eV and t2 = 3 eV, and in Fig. 3.6b)
for t1 = 1 eV and t2 = 2 eV. We found a critical value for the ratio of hopping parameters
tc = t2/t1. For t < tc, the two bands around the Fermi-level touch at a point K, where
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Figure 3.6: The band structure of even A-TGNRs with a) N = 2, N = 4, N = 6 for
t1 = 2.5 eV and t2 = 3 eV, with b) N = 2, N = 4, N = 6 for t1 = 1 eV and t2 = 2 eV, and
with c) N = 4 for three different combinations of t1 and t2.

there is a gap opening for t > tc. This critical value of t depends on N . For N = 2,
tc ≈ 1.4.

By expanding the energy eigenvalues around the Dirac point K, i.e. k = K + q with
|q| � |K|, we can obtain the dispersion relation to first order. Solving E+(K) = 0 for K
gives

|K| = ± 1

2π
arccos

(
t22
2t21

)
, (3.10)

such that we find

K =
2πK

a

(
1
0

)
=

1

a
cos−1

(
t22
2t21

)(
1
0

)
, (3.11)

K′ =− 1

a
cos−1

(
t22
2t21

)(
1
0

)
. (3.12)

Performing a Taylor expansion around K, we find

E+(k) = E+(K) +
∂E+(K)

∂k
|q|

= 0 +
2πt21t

2
2 sin(2πK)√

5t21 + 4t22 − 4
√
t41 + 2t21t

2
2 + 2 cos(2πK)t21t

2
2 ·
√
t41 + 2t21t

2
2 + 2 cos(2πK)t21t

2
2

|q|

(3.13)
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Calculating cos(2πK) and sin(2πK) separately gives

cos(2πK) = cos

(
2π · 1

2π
arccos

(
t22
2t21

))
=

t22
2t21

(3.14)

sin(2πK) =

√
4t41 − t42
2t21

(3.15)

Using this, we find

E+(k) =
πt22
√

4t41 − t42√
5t21 + 4t22 − 4

√
t41 + 2t21t

2
2 + t42 ·

√
t41 + 2t21t

2
2 + t42

|q|

=
πt22
√

4t41 − t42√
5t21 + 4t22 − 4(t21 + t22) · (t21 + t22)

|q|

=
πt22
√

4t41 − t42
|t1|(t21 + t22)

q

=
2πt21t

2
2

|t1|(t21 + t22)

√
1− t42

4t41
|q| . (3.16)

Similarly, we can expand E−(k) aroundK. Summarizing the result for both energy bands,
we obtain the linear dispersion relations

E±(k) = ± 2πt21t
2
2

|t1|(t21 + t22)

√
1− t42

4t41
|q|. (3.17)

Upon reintroducing a and ~ into the dispersion relations, we obtain

E±(k) = ± 2πat21t
2
2

~|t1|(t21 + t22)

√
1− t42

4t41
|q| = ±vf |q|, (3.18)

which is consistent with the result found in Ref. [31].

For N = 4 and N = 6, the Hamiltonian is given, respectively, by

H4 =

(
H0,A Hc,A

H†c,A H0,A

)
; H6 =

H0,A Hc,A 0

H†c,A H0,A Hc,A

0 H†c,A H0,A

 . (3.19)

The band structures for N = 4 and N = 6 are shown in Fig. 3.6a) for t1 = 2.5 eV and
t2 = 3 eV, and in Fig. 3.6b) for t1 = 1 eV and t2 = 2 eV. For N = 4, tc ≈ 1.7 and for
N = 6, tc ≈ 1.9. The highest valence band and the lowest conduction band meet at the
Fermi level for t < tc. As the width of the nanoribbon increases, the number of Dirac
points at the Fermi-level increases as well. For t > tc, there is a band gap. In Fig. 3.6c),
the band structures are shown for N = 4 for different values of t1 and t2.

3.4.2 Odd armchair TGNRs

In the case of odd A-TGNRs, we have to modify the Hamiltonian to

HN,OA =



H0,A Hc,A 0 · · · 0

H†c,A H0,A Hc,A · · · 0

0 H†c,A H0,A
. . .

...
...

...
. . .

. . . Hd

0 0 · · · H†d H1


, (3.20)
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Figure 3.7: The band structures of odd A-TGNRs with a) N = 3, b) N = 5, c) N = 7,
for t1 = 2.5 eV and t2 = 3 eV.

where H1 is a matrix of the form

H1 =


0 −t1βA 0 −t2αA

−t1β∗A 0 −t2α∗A 0
0 −t2αA 0 −t1βA

−t2α∗A 0 −t1β∗A 0

 , (3.21)

and Hd is a sparse 8× 4-matrix, with all elements zero, except Hd(6, 3) = Hd(7, 4) = −t1.

Fig. 3.7 shows the band structures for N = 3, N = 5 and N = 7 for t1 < t2. Compared
to symmetric A-TGNRs, the band structure of asymmetric A-TGNRs shows a gap at the
Fermi-level for both t < tc and t > tc. For t < tc, A-TGNRs are therefore found to exhibit
oscillating behaviour in their band gap as a function of N . This is probably due to the
mirror symmetry in symmetric A-TGNRs, which is broken in asymmetric A-TGNRs [32].
Asymmetric A-TGNRs are therefore always semiconductors, while symmetric A-TGNRs
show metallic behaviour for t < tc and semiconducting behaviour for t > tc. However,
this result is based on the tight-binding picture, where we have not taken into account the
edge effects. It is therefore possible that first-principles calculations would yield different
results, as discussed previously for AGNRs in section 1.3.1.

3.4.3 Zigzag TGNRs

Z-TGNRs (see Fig. 3.5c)) are formed when T-graphene is cleaved at a 45 degree angle. The
unit cell consists of four atoms, each with three nearest neighbours. The nearest-neighbour
vectors are

δ1 =
1√
2

(1, 1) , δ2 =
1√
2

(−1, 1) , δ3 = (0, 1) , δ4 = (1, 0) . (3.22)

The tight-binding Hamiltonian for N unit cells has the form

HN,Z =



H0,Z Hc,Z 0 · · · 0

H†c,Z H0,Z Hc,Z · · · 0

0 H†c,Z H0,Z
. . .

...
...

...
. . .

. . . Hc,Z

0 0 · · · H†c,Z H0,Z


, (3.23)

where Hc,Z is a sparse matrix, with Hc,Z(3, 1) = −t2, and H0,Z is given by

H0,Z =


0 −t1βZ 0 −t1β∗Z

−t1β∗Z 0 −t1β∗Z −t2αZ
0 −t1βZ 0 −t1β∗Z

−t1βZ −t2α∗Z −t1βZ 0

 . (3.24)
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Figure 3.8: The band structure of Z-TGNRs for t1 = 2 eV and t2 = 3 eV, with N = 2, 4,
5 and 6.

In the matrix above, αZ and βZ are defined by

αZ = exp(ik · δ3) = exp

(
2πik

1 +
√

2

)
, (3.25)

βZ = exp(ik · δ1) = exp(ik · δ2) = exp

(
2πik

2 +
√

2

)
, (3.26)

and the momentum vector k = (2πk/a)(0, 1).

The band structure of Z-TGNRs is shown in Fig. 3.8. There are electron and hole pockets
at the Fermi energy. Our calculations demonstrate that Z-TGNRs have metallic properties,
independent of N, due to their zero band gap. This result is consistent with Ref. [31], in
which the specific case of T-graphene with t1 = 2.525eV and t2 = 2.835eV was investigated.

3.4.4 Bearded TGNRs

T-graphene nanoribbons can also have a bearded edge (see Fig. 3.5d)). This type of
edge is parallel to the zigzag boundary and was first studied by Klein [33]. Bearded
edges are unstable in graphene, but they were found to show edge localization in photonic
crystals [34, 35]. Partially bearded edges have also been studied in the Kekulé lattice, both
theoretically and experimentally [36]. It was shown that the edge mode at the partially
bearded edge in a Kekulé lattice is topological when the hopping within the hexagon is
stronger than the hopping between hexagons. These findings suggest that introducing
bearded edges in T-graphene nanoribbons can lead to topological edge modes.

The Hamiltonian of a B-TGNR is

HN,B =



0 Hb1 0 · · · 0

H†b1 H0,Z Hc,Z · · · 0

0 H†c,Z H0,Z · · · 0
...

...
...

. . .
...

H0,Z Hb2

0 0 0 · · · H†b2 0


, (3.27)

with Hc,Z and H0,Z defined as in section 3.4.3 on Z-TGNRs. Hb1 and Hb2 are given by

Hb1 =
(
−t2 0 0 0

)
, Hb2 =


0
0
−t2
0

 . (3.28)
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Figure 3.9: Tight-binding band structures of B-TGNRs with N = 4 and N = 5 for t1 = 1
eV and t2 = 1.5 eV, where the flat bands are marked in red.

Figure 3.10: The localization of the wave functions ψ corresponding to the flat bands for
the left edge atom (a,b,c) and the right edge atom (d,e,f). The area of the disk on site j
is proportional to |ψij |2, with ψij the component of the wave function belonging to energy
eigenvalue Ei on that particular site j.
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The band structure for B-TGNRs is shown in Fig. 3.9. We find two symmetric flat
bands, but no zero modes (except for t2 = 0), which suggests that the wave functions
are not localized at the edges for t2 6= 0. The localization of the two wave functions
belonging to the flat bands is shown in Fig. 3.10 for different values of t1 and t2. The wave
functions are not localized at the edges when t2 is not exactly zero, but they delocalize
immediately upon increasing t2 from zero to t2 = 0.01. For t1 = 0, we find something that
can be described as a dimer localized mode. However, also in this case the wave functions
become immediately delocalized when t1 is increased.

3.5 A finite system of T-graphene with bearded edges

In this last section, we will consider a finite system of T-graphene with bearded edges
(see Fig. 3.11a)). The system contains 48 atoms, which are connected by two hopping
parameters, t1 and t2 as before. We have calculated the energy eigenvalues and plotted
them against t = t2/t1, with t from 0 to 2 (see Fig. 3.11b)). For t = 0 (or t2 = 0), there are
zero-energy modes. However, when we increase t slightly above zero (as in Fig. 3.11c)),
the energy modes move away from zero immediately. In addition, the wave functions
corresponding to these zero-energy modes are not localized at the edges for t slightly
above zero. This suggests that the edge states are not protected by a chiral symmetry,
and hence the system is not topological. A finite-size effect could be that the system is
too small, such that the edge atoms hybridize already at a very small value of t. However,
upon decreasing t to slightly above zero, the energy modes are still not exactly at zero.
Another explanation, which is more likely, is that the edge modes hybridize with the zero-
energy modes from the isolated squares and consequently move away from zero directly
upon increasing t from zero.

A way to open the gap in the bulk is introducing spin-orbit coupling [37], of which there
are two types. The first is intrinsic spin-orbit coupling: a relativistic interaction between
the spin and the angular momentum of a particle. In this case, complex next-nearest-
neighbour (NNN) hopping leads to the opening of a gap at zero energy. The second type
is Rashba spin-orbit coupling [38], which is a combination of intrinsic spin-orbit coupling
and an asymmetry in the potential of a crystal. Rashba spin-orbit coupling results in
complex nearest-neighbour (NN) hopping and a spin flip, which lifts the spin degeneracy.

Figure 3.11: a) A finite T-graphene lattice with bearded edges, consisting of 48 atoms and
with hopping parameters t1 and t2. b) The energy eigenvalues as a function of t = t2/t1.
c) Zoom-in on the zero-energy modes at small t.
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Essentially, one can open the band gap in the presence of a strong intrinsic spin-orbit
coupling or by applying a perpendicular magnetic field to the system. Both give rise to
complex hopping parameters. In the next chapter, we will investigate if any topologi-
cal properties arise upon including a magnetic flux, i.e. adding a phase to the hopping
parameters.



CHAPTER 4

T-graphene in a magnetic field

In this chapter, we study different structures of T-graphene within a magnetic field. We are
interested in whether a flux can stabilize a topological phase in T-graphene by preventing
the hybridization of the zero-energy edge modes with the zero-energy excitations in the
bulk. We first introduce the concept of a magnetic field in a tight-binding model. Next,
two different gauge fields are applied to a periodic lattice of T-graphene. The resulting
band structures are compared to those of normal T-graphene. Furthermore, we calculate
for which flux the zero modes of the isolated squares in a finite system move away from
zero. This magnetic field is then applied to bearded T-GNRs. The results are compared
with those obtained for bearded T-GNRs without a flux. Lastly, a finite system with
bearded edges and a π-flux is studied to comment on the topology of T-graphene.

4.1 The tight-binding model in a magnetic field

In general, the Hamiltonian is given by

H(t) =
p2

2m
+ U(r). (4.1)

In the presence of a magnetic field, this changes to

H̃(t) =
(p− qA(t))2

2m
+ U(r), (4.2)

where q is the charge of the particle. The wave function in Eq. (1.3) then changes as

ψ̃j(r −Rj) = e
i q~

∫ r
Rj
A(r′,t)·dr′

ψj(r −Rj), (4.3)

which results in new Bloch wave functions

Φ̃j(k, r) =
1√
N

N∑
Rj

eik·Rj ψ̃j(r −Rj). (4.4)

These are now the eigenstates of the full Hamiltonian H̃ with the same energy as be-
fore, such that H̃(t)ψ̃j(r − Rj) = H(t)ψj(r − Rj). When calculating the new hopping
parameters, we find

t̃RjRj′ = tRjRj′e
i q~

∫Rj
Rj′

A(r′,t)·dr′
. (4.5)

Therefore, the matrix elements in the Hamiltonian are the same as in the case without a
magnetic field, except for the phase factor. It turns out that for electrons, the hopping term

tij can be replaced with tije
−i e~

∫ j
i A·dl = tije

−iΦ/Φ0 , which is called Peierls substitution [39,
40].

35
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Figure 4.1: The structures of periodic T-graphene with two different fluxes. a) Every
intracell hopping adds the same phase Φ/4. b) Only one intracell hopping adds a phase
of Φ.

4.2 A T-graphene lattice in different magnetic fields

We consider a periodic T-graphene lattice and apply two different magnetic fields, i.e.
multiply the hopping parameter t1 with two different phase factors. The structures of the
lattice with two different fluxes are shown in Fig. 4.1. The unit cells are marked by red
squares. We will discuss the two cases individually.

4.2.1 Case 1: Homogeneous flux

In the case of a homogeneous flux, shown in Fig. 4.1a), the flux is chosen in such a way
that every intracell hopping has the same phase Φ/4 and the unit cell consists of four
atoms. The flux running through the squares is Φ, while the flux through the octagons is
−Φ. The Hamiltonian is given by

Hhom = −


0 t1e

iΦ/4 t2e
iqy t1e

−iΦ/4

t1e
−iΦ/4 0 t1e

iΦ/4 t2e
−iqx

t2e
−iqy t1e

−iΦ/4 0 t1e
iΦ/4

t1e
iΦ/4 t2e

iqx t1e
−iΦ/4 0

 . (4.6)

For this system, the band structure was calculated for different values of Φ, t1, and t2.
The results are shown in Fig. 4.2. The band structures for Φ = 0 were already discussed
in Section 3.3. Note that a direct band gap only opens for t2 > 2t1. At Φ = π, there are
eight band crossings present for t2 <

√
2t1: four between the upper two bands and four

between the lower two bands. The dispersion relation at these points is linear in the x-
and y-direction. Only at t2 =

√
2t1 , the gap closes. This occurs in the middle and at the

corners of the Brillouin zone with five extra band crossings between the bands around the
Fermi energy. A band-inversion takes place before the gap opens again at t2 >

√
2t1.

Interestingly, the band structures for Φ = 2π are similar to the ones for Φ = 0, but then
reflected in the k-axis. For Φ = 4π, the results are the same as for zero flux. Furthermore,
the band structures at Φ = 3π (not shown here) are equal to those at Φ = π. We thus
find that the band structure is 4π-periodic, which is consistent with the matrix Hhom in
Eq. (4.6) (which is at the most 8π-periodic).
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Figure 4.2: The band structure of periodic T-graphene with a homogeneous flux for t1 = 1
and a-d) t2 = 0.5t1, e-h) t2 = t1 = 1, i-l) t2 =

√
2t1, and m-p) t2 = 2t1, with a flux of

(a,e,i,m) Φ = 0; (b,f,j,n) Φ = π; (c,g,k,o) Φ = 2π; and (d,h,l,p) Φ = 4π.
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Figure 4.3: The band structure of periodic T-graphene with an inhomogeneous flux, for
t1 = 1 and a-c) t2 = 0.5t1, d-f) t2 = t1 = 1, g-i) t2 =

√
2t1, and j-l) t2 = 2t1 with a flux of

(a,d,g,j) Φ = 0; (b,e,h,k) Φ = π; and (c,f,g,l) Φ = 2π.

4.2.2 Case 2: Inhomogeneous flux

The same calculations were done for a slightly different system with inhomogeneous flux,
where only one intracell hopping is multiplied with the phase factor eiΦ, as is shown in
Fig. 4.1b). Note that this results in exactly the same flux Φ running through the squares
as in the homogeneous case. The Hamiltonian is

Hinhom = −


0 t1e

iΦ t2e
iqy t1

t1e
−iΦ 0 t1 t2e

−iqx

t2e
−iqy t1 0 t1
t1 t2e

iqx t1 0

 . (4.7)

In Fig. 4.3, the band structures of T-graphene with an inhomogeneous flux are shown for
different values of t1, t2, and Φ. For Φ = 0, the gap is closed for t2 < t1. At t1 = t2,
the upper band touches the blue band linearly in at least the x- and y-direction, with
the green band approximately flat in between. Upon increasing t2, a gap is opened. For
Φ = π, there are four band crossings when t2 <

√
2t1. Upon increasing t2, the bands
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Figure 4.4: The example system a) before the gauge transformation and b) after the gauge
transformation. The same technique was applied to the system in c) and yielded d). The
difference between c) and d) is the structure in f), which we compare to the structure in
e).

around the Fermi energy move closer towards zero and close the gap at t2 =
√

2t1 with
two extra band crossings. For t2 >

√
2t1, a gap is opened again. The band structures for

Φ = 2π are equal to those for Φ = 0, so the band structures are 2π-periodic. This result
is consistent with the matrix Hinhom in Eq. (4.7), which is manifestly 2π-periodic.

For both types of flux, a phase of Φ is picked up when going around the square loop
(or a phase of −Φ when going around the octagonal loop). We would therefore expect
to see the same band structures. However, the band structures for T-graphene with an
inhomogeneous flux are different. First, notice the difference in periodicity: 2π in the case
of inhomogeneous flux and 4π in the case of homogeneous flux. Next, the bands also look
different. On the other hand, the differences in the band structure could also be caused
by a shift in the Brillouin zone, which may happen when a magnetic field is introduced.

In order to determine whether the two systems are the same, we have to try to transform
one into the other. Take the system in Fig. 4.4a) as an example, which has the Hamiltonian

H =
(
teiφc†Ac0 + tc†Bc0 + tc†Cc0

)
+ h.c., (4.8)

where t is the hopping parameter and c(†) is the creation (annihilation) operator in second
quantization. We can move the phase from the bond between A and 0 by using the gauge
transformation c0 → c0e

−iφ. The Hamiltonian then changes to

H =
(
tc†Ac0 + te−iφc†Bc0 + te−iφc†Cc0

)
+ h.c., (4.9)

which corresponds to the system with the flux drawn as in Fig. 4.4b). Notice that the
minus sign in the phase factor determines the direction of the flux arrow. We can apply this
technique to T-graphene with inhomogeneous flux, which is drawn in Fig. 4.4c), where we
have replaced the phase Φ with four times the phase Φ/4. The result, shown in Fig. 4.4d),
differs from T-graphene with homogeneous flux in that the intercell hoppings are now
multiplied with a phase factor eiΦ/2. Notice that determining whether T-graphene with
homogeneous flux is equal to T-graphene with inhomogeneous flux, effectively is the same
as determining whether the two systems in Fig. 4.4e) and f) are equal.
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Figure 4.5: The band structure of the systems in a) Fig. 4.4e), and b) Fig. 4.4f). c) is the
zoomed-in version of b).

The Hamiltonian

Hdif = −


0 t1 t2e

−iΦ/2eiqy t1
t1 0 t1 t2e

iΦ/2e−iqx

t2e
iΦ/2e−iqy t1 0 t1
t1 t2e

−iΦ/2eiqx t1 0

 (4.10)

describes the structure in Fig. 4.4e) for a phase Φ = 0 and the structure in Fig. 4.4f) for a
phase Φ 6= 0. The band structures for Φ = 0 and Φ = π are shown in Fig. 4.5a) and b) re-
spectively. They are clearly different, but seem to have the same characteristics. However,
when zooming in on Fig. 4.5b), such that there is only one band crossing (see Fig. 4.5c)),
we can observe that they are different. The counter-intuitive behaviour of the flux means
that the choice of flux is important and that the two cases are intrinsically different. The
reason for this is that the two cases are not equivalent by a gauge transformation, which
means that the two configurations cannot arise from the same magnetic field. Further
note that the symmetry of the two configurations is different: four-fold rotation symmetry
is preserved in case 1 (even for nonzero values of Φ), while it is broken in case 2.

Also notice that a netto flux accumulates at the boundaries for the structure in Fig. 4.4f).
After one unit cell, we obtain a flux Φ/2 at the upper and right boundary. For periodic
boundary conditions, a flux of Φ = 4π is necessary, since ei4π/2 = ei2π = ei0π. This
can explain why we find a 4π-periodicity instead of a 2π-periodicity. From here, we only
consider T-graphene systems with a homogeneous flux.

4.3 A finite system with flux

Now, consider a finite system of T-graphene with flux (see Fig. 4.6a)). For this, we have
adjusted the model discussed in section 3.5, by removing the bearded edges and adding
a phase factor eiΦ/4 to the hopping parameters. We do not expect any zero-energy edge
modes, since this finite system has no isolated edge atoms. However, when t2 = 0, the
isolated squares have two modes at zero, which can hybridize with the zero-energy edges
modes in a system with bearded edges. Including a flux would move the bands belonging
to the square plaquettes away from zero. In Fig. 4.7, we have plotted the energy spectrum
as a function of t2 for different values of Φ, where t1 is taken as unity.

We can clearly see that the spectra are 2π-periodic, which is different from the 4π-
periodicity we found for a periodic system. However, the spectrum of a finite-size system is
symmetric around zero. Therefore, a reflection about E = 0 does not result in a different
band structure here. At Φ = π + 2πk, with k an integer, the zero modes emerging from
the bulk have moved away from zero. Consequently, upon including a flux of Φ = π in a
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Figure 4.6: T-graphene with a flux in a) a finite system, b) a T-graphene nanoribbon with
bearded edges, and c) a finite system with bearded edges. The unit cell in b) is marked
by the red dashed rectangle.

T-graphene lattice with bearded edges, we expect that the zero-energy edge modes in a
topologically nontrivial phase cannot hybridize with other zero-energy modes and stay at
zero, until the coupling is strong enough for them to move away from zero symmetrically.

4.4 Bearded T-GNRs with flux

Now, we consider a B-TGNR under a staggered magnetic flux. The structure is shown in
Fig. 4.6b), with the unit cell marked by the red rectangle. To describe this system, we
use a tight-binding Hamiltonian similar to the one introduced in section 3.4.4, with the
hopping parameters now multiplied by a phase factor eiΦ/4.

In Fig. 4.8, the energy eigenvalues E(k) are plotted as a function of k for different values of
t1 and t2, with Φ = π. At t2 = 0, there are two degenerate nonzero energy bands (because
of the isolated square plaquettes) and a zero-energy band which is doubly degenerate
(because of the bearded edge atoms). Upon increasing t2, the bands become dispersive
and the two zero-energy bands also move away from zero. For k 6= 0 and k 6= π, the
dispersion is nonzero. This means that the zero modes can move along k on the edge and
are not localized. The gap is opened at t2 = t1. As t2 increases to values much larger than
t1, the energy values form two bands again, one positive and one negative: the zero-energy
bands have merged into the bulk bands. The band structure does not show any topological
features.

When comparing Fig. 4.8d) with the results for bearded T-GNRs without a magnetic field
(see Fig. 4.8), we notice the absence of flat bands in the band structure for Φ = π (except
for t2 = 0 or t1 = 0). Furthermore, a direct band gap is present instead of the indirect
band gap we found for the case with zero flux. The band structure of the system with flux
is also symmetric around zero, while that is not the case when Φ = 0.

4.5 A finite system with bearded edges and flux

To determine whether T-graphene with bearded edges and a π-flux is topological, consider
such a finite system of 3× 3 unit cells with bearded edges (see Fig. 4.6c)). In this section,
we use the model discussed in section 3.5, with the hopping parameters now multiplied by
a phase factor eiΦ/4. The energy spectrum as a function of t2 is shown in Fig. 4.9a), with
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Figure 4.7: The energy spectrum of a finite system of T-graphene plotted as a function of
t2 with t1 = 1 for a) Φ = 0, b) Φ = π, c) Φ = 2π, d) Φ = 3π, and e) Φ = 4π. Figures a),
c) and e) are equal, and so are b) and d).

Figure 4.8: The eigenvalues E(k) of a B-TGNR with flux, plotted as a function of k for
t1 = 1 and a) t2 = 0, b) t2 = 0.5t1, c) t2 = t1, and d) t2 = 2t1. e) The eigenvalues plotted
for t1 = 0 and t2 = 1. A gap opens up at t2 = t1.
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Figure 4.9: The energy spectrum of a finite system of T-graphene with bearded edges and
a flux of π, plotted for a) t1 = 1 and t2 varying from 0 to 2t1. b) is a zoomed-in version
of a).

Fig. 4.9b) showing a zoomed-in version. The zero-energy edge modes move away from
zero directly upon increasing t2. This suggests that a finite system of T-graphene with
bearded edges does not become topological with a flux of π running through the square
plaquettes.

In this chapter, we tried to induce a topological phase in T-graphene by introducing a flux,
which would move the zero-energy excitations in the bulk away from zero, such that the
edge modes at zero energy could not hybridize. However, the hybridization with the other
zero-energy edge modes was not taken into account. To verify whether this is preventing
the emergence of a topological phase in T-graphene, the upper and lower bearded edges
were removed, as shown in Fig. 4.10a). In Fig. 4.10b), the energy spectrum of this system
is shown. For t2 � t1 and N > 3, there are six bands at zero, corresponding to the six
edge atoms. Upon increasing t2, four bands move away from zero, while the other two
bands stay at zero. The localization of the latter two bands is shown in Fig. 4.10c) for
t1 = 1 and t2 = 0.5. Despite the fact that these modes are at zero energy, there is still
hybridization of the edge states. There is a very small localization of the wave function
on the opposite edge atoms, so the wave function does penetrate into the bulk and along
the upper and lower edges.

In the next chapter, we study the electronic and topological properties of a chain of T-
graphene. In this one-dimensional case, the hybridization could only occur between the two
edge atoms. However, when the coupling is weak enough, we might observe a topological
phase, similar to what happens in the SSH-chain.



CHAPTER 4. T-GRAPHENE IN A MAGNETIC FIELD 44

Figure 4.10: a) The structure of a finite system of T-graphene with two bearded edges,
with the energy spectrum shown in b). c-d) The localization of wave functions ψ associated
with c) the left zero-energy edge mode, and d) the right zero-energy edge mode. for t1 = 1
and t2 = 0.5. The area of the disk is proportional to |ψ|2.



CHAPTER 5

A T-graphene chain in a magnetic field

In this chapter, we study a one-dimensional T-graphene chain within a magnetic field. We
first introduce a homogeneous flux into a periodic chain and calculate the band structure.
Next, the energy spectrum of and localization of the wave functions in a finite chain
with bearded edges and flux are studied. We investigate whether the bearded edges are
necessary for the localization of the wave functions by studying a finite chain without
bearded edges. Lastly, we introduce a new topological invariant, the Zak phase, and
calculate it for a T-graphene chain.

5.1 A periodic T-graphene chain with homogeneous flux

We consider a T-graphene chain with periodic boundary conditions, two hopping param-
eters t1 and t2 and four atoms per unit cell. A magnetic field is applied, which gives rise
to a magnetic flux of Φ running through the squares. The geometric structure is shown in
Fig. 5.1a). A similar structure is the rhombic or diamond chain, shown in Fig. 5.1b).

A T-graphene chain with homogeneous magnetic flux is described by the Hamiltonian

Hchain =


0 −t1eiΦ/4 −t2e−ik −t1e−iΦ/4

−t1e−iΦ/4 0 −t1eiΦ/4 −0

−t2eik −t1e−iΦ/4 0 −t1eiΦ/4
−t1eiΦ/4 0 −t1e−iΦ/4 0

 . (5.1)

Figure 5.1: The structures of a) a periodic T-graphene chain with a magnetic flux Φ and
b) a periodic rhombic chain with a magnetic flux Φ. The unit cells are marked by the
dashed rectangles in red.

45
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Figure 5.2: The band structures of a periodic T-graphene chain a-d) without a flux and
e-h) with a π-flux, for t1 = 1 and a,e) t2 = 0.5, b,f) t2 = 1, c,g) t2 =

√
2, and d,h) t2 = 2.

Similarly to the case of a two-dimensional T-graphene lattice with homogeneous flux,
the hopping parameter t1 is multiplied with a phase factor eiΦ/4 when moving clockwise
around the square loop. The band structure was calculated for different values of t1, t2,
and Φ, and is shown in Fig. 5.2. In the case of zero flux, there is one flat band at zero
energy, independent of the value of t2. The gap closes at three points for t2 =

√
2, where

band-inversions takes place. The gap opens again when t2 is increased further. For Φ = π,
there are four flat bands at finite energy. The gap only closes at t1 = 0 (or t2 → ∞).
This indicates that the wave functions are localized for every value of t1 and t2, except
for t1 = 0 or t2 → ∞, when the flux Φ = π. To further study the localization, we will
consider a finite T-graphene chain with flux in the next section. For Φ = 2π (not shown
here), the band structures are similar to those at zero flux, except the energy bands are
now reflected in the k-axis. The band structures are therefore not 2π-periodic. On the
other hand, the band structures for Φ = 4π (not shown here) are equal to those at zero
flux, so they are 4π-periodic. This is similar to what we have seen for a two-dimensional
T-graphene lattice with flux.

5.2 A finite T-graphene chain with bearded edges and flux

The energy spectrum calculated for a finite system with bearded edges without and with
a homogeneous flux is shown in Fig. 5.3. For Φ = 0, there are multiple zero-energy bands
present that stay at zero when t2 is increased from 0 to 2, with t1 = 1. When including a
π-flux, the zero-energy excitations in the bulk move to nonzero energies, while two edge
modes stay at zero energy. Interestingly, the gap does not close for finite values of t2.
Only when t2 → ∞ (or t1 = 0), the gap closes. The energy spectrum is 2π-periodic,
as can be seen in Fig. 5.3. This is similar to what we found in Chapter 4 for a finite
T-graphene lattice with bearded edges and flux. In the next section, we determine why
the edge modes stay at zero energy for large t2, by studying the localization of the wave
functions belonging to these zero-energy edge states.
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Figure 5.3: The energy spectrum of a finite-size T-graphene chain with bearded edges
with t1 = 1 and N = 5, for a) Φ = 0, b) Φ = π, c) Φ = 2π, d) Φ = 3π, and e) Φ = 4π.
The energy spectrum is 2π-periodic.

5.3 Localization of the wave functions

In this section, the localization of the wave functions associated with the energy bands
at zero energy is calculated as a function of t2 with t1 = 1. For t2 < 2, as shown in
Fig. 5.4a), one of the wave functions is localized predominantly on the first edge atom and
to a lesser extent on the atoms at the upper and lower corners of the first diamond in the
chain. At t2 = 2, the wave function is equally localized on all three atoms at the left end
of the chain. For t2 > 2, the wave function is predominantly localized on the two corners
of the first diamond and less on the first edge atom. The other wave function shows the
same localization on the right end of the chain (see Fig. 5.4b)). Interestingly, the wave
functions do not penetrate into the bulk upon increasing t2 to even higher values. This
nondispersive property could explain why the edge modes stay at zero energy for every
value of t2.

A similar situation was observed experimentally for a magnetic flux in ultrafast laser-
fabricated waveguide arrays in a rhombic geometry (shown in Fig. 5.1b)) [41]. In the
caging limit, which is reached when a flux Φ = π runs through each diamond, the energy
bands become nondispersive. The photons exhibit complete localization due to destructive
interference of the wave functions. This type of localization is called Aharonov-Bohm (AB)
caging. In our case, we observe complete localization for every nonzero value of Φ, not
just for Φ = π. Therefore, it is more accurate to use the general term compact localized
states, which are excitations that vanish outside a finite subpart of the system (due to
destructive interference of the wave functions) [42–44]. This is different from the other
type of localization that we have seen, which is the protection of a topological edge state
due to a symmetry of the bulk. It also differs from Anderson localization, which is caused
by the absence of diffusion in a disordered medium [45].
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Figure 5.4: The localization of the wave functions corresponding to the flat bands at zero
energy in the band structure of a finite T-graphene chain with bearded edges, for t1 = 1
and a) t2 < 2, b) t2 = 2, and c) t2 > 2. We observe compact localized states, which only
delocalize at t1 = 0.

5.4 A finite T-graphene chain without bearded edges

To investigate whether this localization also arises without the bearded edges, we consider a
one-dimensional finite-size T-graphene chain without bearded edges and apply a magnetic
field such that the flux through the squares is Φ = π. The energy spectrum as a function
of t2 is shown in Fig. 5.5a). Interestingly, there are flat bands at nonzero energy for Φ = π.

The localization of the wave functions corresponding to these flat bands is shown in
Fig. 5.5b) for t1 = 1 and Φ = π. The wave functions are localized at the edges, where∣∣ψ2
∣∣ is twice as large at the outermost edge atoms compared to the atoms at the top and

bottom of the outmost diamonds. Contrary to what we observed for the T-graphene chain
with bearded edges, the localization does not change when t2 is varied. Therefore, this
system does not allow for any modification of the localization as a function of the hopping
parameters.

5.5 The Zak phase of a T-graphene chain

5.5.1 The Zak phase as topological invariant

In Chapter 2, we have seen the winding number as a topological invariant to describe one-
dimensional systems. Another topological invariant that is often used for one-dimensional
systems is the Zak phase [46]. In the case of a T-graphene chain with magnetic flux, the
Zak phase is more useful, because it is defined as the integration of the Berry connection
over the one-dimensional Brillouin zone

Zn = Im

∮
dk 〈ψn(k)|∂kψn(k)〉 , (5.2)

where Zn is the Zak phase characterising the topology of the nth band and |ψn(k)〉 is
the wave function belonging to the nth band. Typically, this integral is calculated by
discretizing the path along the Brillouin zone into kj steps with j = 1, . . . , N and kN+1 =
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Figure 5.5: a) The energy spectrum of a T-graphene chain without bearded edges with
t1 = 1, N = 5, and Φ = π. b) The localization of the wave functions corresponding to the
flat bands for t1 = 1, t2 6= 0, N = 5 and Φ = π.

k1. The integral can then be transformed into a sum as∫
〈ψn(k)|∂kψn(k)〉 dk →

∑
kj

〈ψn,k|∂kψn,k〉 |k=kj∆k. (5.3)

This sum can be simplified by making use of

ψn,k+∆k ≈ ψn,k + ∂kψn,k∆k;

〈ψn,k|ψn,k+∆k〉 ≈ 1 + 〈ψn,k|∂kψn,k〉∆k;

log (〈ψn,k|ψn,k+∆k〉) ≈ log [1 + 〈ψn,k|∂kψn,k〉∆k] ≈ 〈ψn,k|∂kψn,k〉∆k. (5.4)

This yields

Zn = Im
∑
kj

log (〈ψn,k|ψn,k+∆k〉) |k=kj . (5.5)

We can now rewrite the sum as a sum from j = 1 to N , instead of a sum over all kj , such
that we can move the sum into the logarithm as a product. After choosing a step size of
∆k = 1, we find

Zn = Im
N∑
j=1

log
(〈
ψn,kj

∣∣ψn,kj+∆k

〉)
;

= Im log
N∏
j=1

〈
ψn,kj

∣∣ψn,kj+∆k

〉
;

= Im log
N∏
j=1

〈
ψn,kj

∣∣ψn,kj+1

〉
. (5.6)

Physically, this is the product of N small rotations of the eigenvector’s phase when it is
transported along the path. The phase is then picked out by taking the imaginary part of
the logarithm of the product.

5.5.2 Calculating the Zak phase of a T-graphene chain

We calculated the Zak-phase for a T-graphene chain with a homogeneous and inhomo-
geneous flux using Eq. (5.6). Due to the bulk-edge correspondence, we can predict the
topology of the edges by calculating the Zak phase from a periodic lattice.
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In Fig. 5.6, a phase diagram of the Zak phase is shown as a function of t1/t2 and Φ. The
Zak phase is zero when t1/t2 is small (< 0.7) and when Φ is close to π (2.4 < Φ < 3.9). It
is equal to π for larger t1/t2 and for Φ much smaller or larger than π. The phase diagrams
of the second and third band have two other regions where the Zak phase is π, namely
when t1/t2 = 0 or when Φ = 0. When the value of t1/t2 or Φ moves away from zero, the
Zak phase changes to zero immediately. This was expected, because the gap is only closed
for t1/t2 = 0 or Φ = 0. From this analysis, it seems that the zero-modes are not protected,
since there is no gap closing around zero. The Zak-phase also suggest that these modes
are not protected. Further investigations are in order.

Figure 5.6: Phase diagrams of the Zak phase of the four energy bands (labeled with n)
of a one-dimensional T-graphene chain, where red indicates Zn = 0 and gray indicates
Zn = π. Notice the lines in b) and c) at Φ = 0 and t1/t2 = 0.



Conclusions and outlook

In Chapter 1, we started with an introduction to the topic of electronic lattices by studying
the electronic properties of graphene. Many of the special properties of graphene can
be attributed to the existence of Dirac cones in the band structure. Due to the linear
dispersion at these Dirac points, the density of states is zero at the Fermi energy. The
linear dispersion at the Fermi-energy makes electrons behave as massless Dirac fermions,
resulting in extremely high mobility of the electrons. Next, the electronic properties of
graphene nanoribbons were calculated for different edge shapes, including the armchair
and zigzag edges. After the discovery of graphene, other lattices were created and studied,
in order to find similar or new properties, including T-graphene (or the square-octagon
lattice). In Chapter 3, 4, and 5, the electronic and topological properties of different
structures with a square-octagon geometry were calculated and studied. The concepts of
topology, lattice symmetries, gauge fields and Berry phases were introduced in Chapter 2.
Additionally, the SSH model was studied as a simple example of a topological system.

In Chapter 3, the electronic and topological properties of T-graphene were studied for
different values of the intracell hopping parameter t1 and intercell hopping parameter
t2. The dispersion relation of T-graphene showed linearity in the kx- and ky-directions.
Furthermore, we included strain on the lattice by varying the hopping parameters inde-
pendently in different directions. The band structures contained band crossings similar
to critically tilted Dirac cones, as investigated in Ref. [30]. Upon changing the hopping
parameters, these Dirac cones merge and a gap opens. Next, T-GNRs with different edge
shapes were studied, including even armchair, odd armchair, zigzag and bearded edges.
The band structure of A-TGNRs showed Dirac cones, with the number of Dirac cones in-
creasing with the width of the nanoribbon. For B-TGNRs, the band structure contained
flat bands at finite energy, which indicate the presence of localized wave functions. This
was studied further in a finite T-graphene lattice with bearded edges. However, the zero-
energy bands in the energy spectrum moved away from zero energy immediately when
the hopping t2 between the edge and the bulk was increased to slightly above zero. The
immediate delocalization of the wave functions belonging to the edge modes suggests the
absence of a topological phase, due to the hybridization of the zero-energy edge states
with the zero-energy excitations in the bulk.

A magnetic field was introduced in Chapter 4 to open the gap of bulk T-graphene to
prevent the above mentioned hybridization. We studied two types of flux, homogeneous
and inhomogeneous, and found that they are different, despite the fact that, in both
cases, a phase Φ is picked up when moving around the square loop. We verified that
the gap of bulk T-graphene could be opened by introducing a π-flux into a finite system
without bearded edges. Next, we calculated the energy spectrum of a finite system with
bearded edges and flux. We expected robust zero-energy edge modes, but found instead
that the edge modes moved away from zero energy directly upon increasing t2, despite the
introduction of a magnetic flux. By studying the localization, we discovered that the edge
states also hybridize with the other zero-energy edge states.
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In Chapter 5, a one-dimensional chain with a flux π was investigated. In this system,
the edge states can only hybridize with the edge state at the other side of the chain. We
expected to see some localization for small values of the hopping between the edges and the
bulk. The band structure of a periodic T-graphene chain contained flat bands at non-zero
energy for Φ = π. Additionally, the energy spectrum of a finite chain with bearded edges
showed flat bands at zero-energy, but the gap did not close for t2 6= 0. Upon looking at
the localization, we found compact localized states. The zero-energy wave functions were
localized at the edge or at the upper and lower corners of the first and last diamond in the
chain, and do not penetrate into the bulk. This localization was also observed for a finite
T-graphene chain without bearded edges. However, these localized states had a nonzero
energy. Lastly, the Zak phase of a T-graphene chain was calculated. The phase diagrams
clearly showed that the Zak phase changes immediately from π to 0 upon increasing Φ or
t1/t2 from zero to slightly above zero.

We can conclude that T-graphene (in both one- and two-dimensional structures) does not
exhibit any topological property with the flux as introduced in Chapter 4. Nevertheless,
the compact localized states found in a finite T-graphene chain with bearded edges have the
same robust property as topologically protected edge states. One can ask whether compact
localized states can be called topological because of the strong localization exhibited by
the wave functions at the edges. However, when the Zak phase changes from 0 to π, the
system undergoes a quantum phase transition from a critical phase to another phase. We
cannot straightforwardly call this other phase topological because there is no trivial phase.
It is possible that the definition of the Zak phase is not sufficient to describe the phase
transition in a T-graphene chain. Further research is needed to investigate the compact
localized states and the phase transition more closely.

Furthermore, we focused on using a magnetic field to open the gap throughout this thesis.
However, there exist other ways to open the gap in the T-graphene chain in order to
obtain compact localized states. One possibility is introducing superconductivity into the
chain, which is similar to the Kitaev chain [47]. Systems with superconductivity show
particle-hole symmetry, which is discussed in section 2.1.3. The superconducting energy
gap is a consequence of the energy that is gained when two electrons form a Cooper pair.
Another way of opening the gap is Rashba coupling [48], which is a direct result of inversion
symmetry breaking.

Another opportunity can be found in the experimental realization of an electronic T-
graphene lattice [49] with a flux. However, there are some practical complications. A
magnetic field of 4T corresponds to a flux Φ = 2 · 10−3Φ0. This is too small to observe
possible compact localized states, even though only a small flux is necessary. However, a
one-dimensional photonic lattice with square-octagon geometry can be realized, similar to
the waveguide arrays in a rhombic geometry mentioned in Chapter 5. The experimental
results could be used to confirm our theoretical predictions and further study the properties
of the T-graphene chain.
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