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Introduction

Lie groups were first introduced by the Norwegian mathematican Sophus Lie in the final
years of the nineteenth century in his study on the symmetry differential equations. Heuris-
tically, Lie groups are groups whose elements are organized in a smooth way, contrary to
discrete groups. Their symmetric nature makes them a crucial ingrediant in today’s study
of geometry. Lie groups are often studied through representation theory, that is, the iden-
tification of group elements with linear transformations of a vector space. This enables to
reduce problems in abstract algebra to linear algebra, which is a well-understood area in math.

Nowadays, Lie groups play a dominant role in theoretical physics, as symmetry groups of
physical systems. This started off with Wigner’s influential 1939 paper On Unitary Repre-
sentations of the Inhomogenous Lorentz Group. In this paper, Wigner made the connection
between certain representations of the Poincaré group, the symmetry group of special relativ-
ity, and elementary particles. This has for a long time been the attempt to define elementary
particles, and to classify them accordingly. This is nowadays known in theoretical physics as
Wigner’s classification.

Structure of this thesis

In this thesis, we will explore the fundamental ideas of the theory of Lie groups and we will
qualitatively discuss the aspects of Wigner’s classification. The first chapter serves as an
introduction in the theory of Lie groups, whereas the second chapter gives an introduction
to representation theory of Lie groups. We will develop a way to analyse the necessary
representations of the Poincaré group in chapter 3, by what is known as Mackey Theory.
We will bundle all results of the first 3 chapters in the last chapter to discuss Wigner’s
classification. We will assume that the reader is known with basic differential geometry as
can be found in chapter 1 up to 4 in [2] and basic representation theory as can be found in
[10].
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Chapter 1

Lie Groups and Lie Algebras

In this chapter, we will introduce the fundamental concepts which will play a central role
throughout the rest of this thesis: Lie groups and Lie algebras. As we will see in chapter 2,
these concepts will appear naturally in quantum mechanics. In this chapter, we will introduce
Lie groups and Lie algebras as individual objects and we will study their basic properties.
Then, we will show how every Lie group gives rise to a Lie algebra which we call the Lie
algebra of the Lie group. We mainly follow Lee [2] and van den Ban [3] and try to be brief
and concise whenever it is possible, but still attempt to present the material exhaustively
and rigorously.

1.1 Lie Groups

In this section, we introduce Lie groups and study their basic properties. We assume the
reader is familiar with basic group theory as can be found in [1]. Nevertheless, let us recall
the definition of a group.

Definition 1.1 (Group [1]). A group G is a set G together with a multiplication µ : G×G→
G, (g, h) 7→ µ(g, h) = gh and an inversion ι : G→ G, g 7→ ι(g) = g−1 which satisfies:

i. Associativity: (gh)k = g(hk) for all g, h, k ∈ G.

ii. Identity element: There exists e ∈ G such that eg = ge = g for all g ∈ G.

iii. Inverse element: gg−1 = g−1g = e for all g ∈ G.

Example 1.2. Consider the circle group T := {z ∈ C : |z| = 1}. Then T forms an abelian
group under multiplication of complex numbers with identity element 1, since |zw| = |z||w| =
1 for all z, w ∈ T and every z ∈ T has an inverse 1

z
.

When we restrict the Euclidean topology on C to T, the multiplication and inversion map
become continuous. This turns T in a topological group.

Definition 1.3 (Topological group [3]). A topological group G is a group G together with a
Hausdorff topology on G such that the multiplication map (g, h) 7→ gh and the inversion map
g 7→ g−1 are continuous.
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Lie Groups and Lie Algebras

Where discrete groups only allow us to describe discrete symmetries of an object, topological
groups enable us to consider continuous symmetries as well and therefore appear naturally
in many areas in phsyics. When we return to our example T, both the group multiplication
and the inversion are smooth maps, which means that T is a Lie group.

Definition 1.4 (Lie group [2]). A Lie group G is a finite dimensional smooth manifold
equippped with a group structure such that the multiplication map (g, h) 7→ gh and the inver-
sion map g 7→ g−1 are smooth.

Apart from T, we will discuss two other important examples of Lie groups.

Example 1.5 ([2]). The space GLn(R) of invertible n × n-matrices with real entries is a
group under matrix multiplication. The multiplication (A,B) 7→ AB is smooth, as the en-
tries of AB are polynomials in the entries of A and B. The inversion map A 7→ A−1 as the
entries of A−1 are given by a−1

ij = 1
det(A)

Cji, with C the cofactor matrix, so the entries of

A−1 are polynomials in the entries of A, hence smooth.

Given Lie groups G1, ..., Gk, the direct product G1×...×Gk with componentwise multiplication
(g1, ..., gk)(h1, ..., hk) = (g1h1, ..., gkhk) is a Lie group.

If G is a Lie group and H is a subgroup of G, we would like to know whether H is a Lie
group itself. This happens to be the case when H is a smooth submanifold of G, since the
restrction µG|H and the inversion ιG|H are smooth.

Theorem 1.6 ([3]). Let G be a Lie group and H ⊂ G a subgroup. Then the following
statements are equivalent.

i. H is topologically closed.

ii. H is a smooth submanifold of G

Proof. For the proof, we refer to Theorem 2.16 in [3].

We can infer from Theorem 1.6 that every closed subgroup of a Lie group is again a Lie
group.

Definition 1.7 (Lie group homomorphism [2]). Let G and H be Lie groups, a Lie group
homomorphism is a smooth group homomorphism f : G→ H. If f is a diffeomorphism, we
call f a Lie group isomorphism.

Definition 1.8 (Lie subgroup, [3]). Let G be a Lie group and H ⊂ G a subgroup equipped
with the structure of a Lie group. We call H a Lie subgroup if the inclusion map ι : H ↪−→ G
is a Lie group homomorphism.

Example 1.9. we see that T is a Lie subgroup of C∗ since T is a subgroup of C∗ and the
inclusion map ι : T ↪−→ C∗ is a Lie group homomorphism.

Definition 1.10 (One-parameter subgroup,[3]). Let G be a Lie group. A one-parameter
subgroup is a Lie group homomorphism α : R→ G.
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Lie Groups and Lie Algebras

Example 1.11. A more interesting example of a Lie group homomorphism is the map ζ :
R→ T given by ζ(x) = e2πix. This map is also a one-parameter subgroup of T.

If M and N are smooth manifolds and f : M → N is a smooth map, we denote the tangent
space at p ∈M by TpM and the tangent map of f at p by (df)p : TpM → Tf(p)M . We denote
the collection of all vector fields on M by X(M). Whenever f is a diffeomorphism, we can
transfer a vector field X on M to a vector field f∗(X) on N where f∗(X)f(p) = (df)pXp. In
the case of Lie groups, it turns out that there exists an important one-to-one correspondence
between one-parameter subgroups and TeG. Before we are able to describe this, we need the
notion of left-invariant vector fields.

Let G be a Lie group and let g ∈ G. Then the left translation by g, denoted by Lg : G→ G,
h 7→ gh is a smooth map. The map Lg happens to be a diffeomorphism since the map Lg−1

is a smooth inverse of Lg. Likewise, the right translation by g, denoted by Rg : G → G,
h 7→ hg is a diffeomorphism as well. So, for every pair x, y ∈ G, the maps Lyx−1 and Rx−1y

are Lie group isomorphisms mapping x to y. As we will see, many important theories in
Lie theory arise from the fact that any point can be mapped to any other point by a global
diffeomorphism.

Definition 1.12 (Left-invariant vector field [3]). Let v ∈ X(G) be a vector field on G. We
say v is left-invariant if v = (Lx)∗v for all x ∈ G.

Note that Definition 1.12 is equivalent to saying that

vxy = (dLx)yvy. (1.1.1)

The collection of left-invariant vector fields forms a linear subspace of X(G) which we denote
by XL(G). The following result shows that there exists a one-to-one correspondence between
TeG and XL(G).

Proposition 1.13 ([3]). The spaces XL(G) and TeG are isomorphic vector spaces.

Proof. We mainly follow [3] for this proof. Define the map eve : XL(G) → TeG by v 7→ ve.
Linearity of this map is clear. We will first show injectivity. Let v ∈ XL(G). From (1.1.1)
with y = e, it follows that vx = (dLx)eve, hence a left-invariant vector field is completely
determined by its value at the identity. It follows that eve is injective.

For surjectivity, let X ∈ TeG and define the vector field vX on G by vXx = (dLx)eX. Since
the map (x, y) 7→ Lx(y) is a smooth map G × G → G, it follows from differentiating this
map with respect to y at y = e that x 7→ (dLx)eX is a smooth map G→ TG. Therefore, vX

indeed defines a vector field on G. We will now show that vX is left-invariant. Remark that
Lxy = Lx ◦ Ly, hence (dLxy)e = (dLx)y ◦ (dLy)e. A quick computation shows that

vXxy = (dLxy)eX = (dLx)y(dLy)eX = (dLx)yv
X
y ,

hence vX ∈ XL(G). Also note that vXe = X and it follows that eve is not only injective, but
surjective too.
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Lie Groups and Lie Algebras

For X ∈ TeG, we define αX to be the maximal integral curve of vX starting at e.

Lemma 1.14 ([3]). Let G be a Lie group and let X ∈ TeG. The integral curve αX is a one-
parameter subgroup of G for which the map (X, t) 7→ αX(t) is a smooth map TeG× R→ G.

Proof. We refer to Lemma 3.2 in [3].

We are now able to define the exponential map of a Lie group, which allows us to pass
information from the tangent space of a Lie group to the Lie group itself.

Definition 1.15 (Exponential map [3]). Let G be a Lie group. We define the exponential
map expG : TeG→ G by expG(X) = αX(1).

We will summarize the main properties of the exponential map in the following proposition.

Proposition 1.16 (Properties of the exponential map [3]). Let G be a Lie group. Then for
all s, t ∈ R and X ∈ TeG, we have that:

i. expG(sX) = αX(s).

ii. expG((s+ t)X) = expG(sX) expG(tX).

iii. The map expG is smooth and (d exp)0 = IdTeG.

iv. There exists an open neighbourhood V ⊂ TeG of 0 and W ⊂ G of e such that expG :
V → W is a diffeomorphism.

Proof. We mainly follow [3] for this proof. For i, we consider the curve γ : t 7→ αX(st). Then
γ(0) = e and

d

dt
γ(t) = sα̇X(st) = svXγ(t) = vsXγ(t).

Since the domain of γ is R, we see that γ is the maximal integral curve of vsX starting at e,
hence γ = αsX . Evaluating at t = 1 yields expG(sX) = αsX(1) = γ(1) = αX(s).

Formula ii follows directly from i and Lemma 1.14: expG
(
(s + t)X

)
= αX(s + t) =

αX(s)αX(t) = expG(sX) expG(tX).

For iii and iv, we know from Lemma 1.14 that the map (X, t) 7→ αX(t) is a smooth map
TeG× R→ G, hence the map X 7→ αX(1) = expG(X) is smooth. Besides, we find that

(d expG)0X =
d

dt

∣∣∣∣
t=0

expG(tX) = α̇X(0) = vXe = X,

hence (d expG)0 = IdTeG. This last map is an isomorphism. By the inverse function theorem,
there exists an open neighbourhood V ⊂ TeG of 0 and an open neighbourhood W ⊂ G of e
such that expG : V → W is a diffeomorphism.
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Lie Groups and Lie Algebras

The exponential map turns out to be important in establishing the relation between Lie
groups and Lie algebras, as we will see in Section 1.3. We finish with our discussion on
one-parameter subgroups with the following proposition which establishes the one-to-one
correspondence between TeG and one-parameter subgroups of G.

Proposition 1.17 ([3]). Let G be a Lie group and let X ∈ TeG. Then the we have the
following:

i. The map α : t 7→ expG(tX) is a one-parameter subgroup of G.

ii. Let α be a one-parameter subgroup and let X = α̇(0). Then α(t) = expG(tX).

Proof. We mainly follow [3] for this proof. We first proof i. By combining Lemma 1.14 and
Proposition 1.16, we immediately have that α : t 7→ exp(tX) = αX(t) is smooth and that
α(t+ s) = α(t)α(s), hence α is a one-parameter subgroup of G.

For ii, let α be a one-parameter subgroup with α̇(0) = X. Note that α(0) = e and that

d

dt
α(t) =

d

ds

∣∣∣∣
s=0

α(t+ s) =
d

ds

∣∣∣∣
s=0

α(t)α(s) = (dLα(t))eα̇(0) = (dLα(t))X = vX(α(t)),

so α is an integral curve of vX starting at e. It follows by uniqueness of integral curves that
α = αX and we use Proposition 1.11 to conclude that α(t) = αX(t) = expG(tX).

What the lemma above tells us is that for each X ∈ TeG, there exists a unique one-parameter
subgroup α with α̇(0) = X. Now, we come to an important result about Lie groups in which
we need all the concepts we have developed up to this point.

Theorem 1.18. Let G and H be Lie groups and let φ : G → H be a Lie group homomor-
phism. Then the following diagram commutes:

G H

TeG TeH

φ

expG

(dφ)e

expH

Proof. Let X ∈ TeG and put Y = (dφ)eX. Then α : t 7→ expH(tY ) is the unique one-
parameter subgroup of H with α̇(0) = Y . We see that β : t 7→ φ(expG(tX)) is also a one-
parameter subgroup of H as φ is a Lie group homomorphism, with β̇(0) = (dφ)e(d exp)0X =
(dφ)eX = Y . It follows by Proposition 1.14 that α = β and the result follows by setting
t = 1.

We denote by Cg the conjugation map h 7→ ghg−1, which is readily seen to be a diffeomophism
fixing the identity element e.

Definition 1.19 (Adjoint representation [4]). Let G be a Lie group and let x ∈ G. We define
the adjoint mapping of x by Ad(x) := (dCx)e : TeG→ TeG. The mapping Ad : G→ GL(TeG),
x 7→ Ad(x) is called the adjoint representation of G in TeG.
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Lie Groups and Lie Algebras

Proposition 1.20 ([3]). let G be a Lie group. The adjoint representation of G in TeG is a
Lie group homomorphism.

Proof. We refer to Lemma 4.4 in [3].

Since Ad(e) = IdTeG and TIdTeGGL(TeG) = end(TeG), we define the linear map ad : TeG →
end(TeG) by ad = (dAd)e. In Section 1.3, we will use the linear map ad to equip TeG with
some extra structure to turn it into a Lie algebra.

1.2 Lie Algebras

In this section, we will introduce Lie algebras as individual objects and study their structure
and properties, preparatory to relating them to Lie groups. In this section, we will mostly
follow [4] and [5].

Definition 1.21 (Lie algebra [5]). A Lie algebra g is a finite dimensional vector space over
K together with a bilinear map [·, ·] : g× g→ g satisfying:

i. Anticommutavity: For all X, Y ∈ g, we have [X, Y ] = −[Y,X].

ii. Jacobi identity: For all X, Y, Z ∈ g, we have [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

The Jacobi identity is in some sense a substitution for associativity. In general a Lie algebra
need not be commutative. If a Lie algebra g is commutative, then [X, Y ] = 0 for all X, Y ∈ g.
We will now discuss some examples of Lie algebras.

Example 1.22. The vector space R3 equipped with the cross product forms a Lie algebra.
The reader can easily verify that x×y = −y×x and that x×(y×z)+y×(z×x)+z×(x×y) = 0.

The vector space Mn(R) of real n×n-matrices together with the commutator bracket [A,B] =
AB −BA becomes an n2-dimensional Lie algebra, denoted by gln(R).

Similar to Lie groups, we want to define when Lie algebras are homomorphic Lie algebras.

Definition 1.23 (Lie algebra homomrphism [5]). Let g, h be Lie algebras. A linear map φ :
g→ h is called a Lie algebra homomorphism if it preserves the Lie bracket, i.e. φ([X, Y ]) =
[φ(X), φ(Y )] for all X, Y ∈ g. We call φ a Lie algebra isomorphism if φ is bijective.

Important in Lie theory are the notions of a Lie subalgebra and an ideal.

Definition 1.24 (Lie subalgebra and ideal [5]). A linear subspace h ⊂ g is a Lie subalgebra
of g if [X, Y ] ∈ h for all X, Y ∈ h; it is called an ideal in g if [X, Y ] ∈ h for all X ∈ g, Y ∈ h.

Example 1.25. Let g and h be Lie algebras and let φ : g→ h be a Lie algebra homomorphism.
Then φ(g) is a Lie subalgebra of h and ker(φ) is an ideal in g.

Proof. Let X, Y ∈ φ(g). There exist X̃, Ỹ ∈ g such that X = φ(X̃) and Y = φ(Ỹ ). Then
[X, Y ] = [φ(X̃), φ(Ỹ )] = φ([X̃, Ỹ ]) ∈ φ(g), hence φ(g) is a Lie subalgebra of h.

Let X ∈ g and Y ∈ ker(φ). We see that φ([X, Y ]) = [φ(X), φ(Y )] = [φ(X), 0] = 0, hence
[X, Y ] ∈ ker(φ), so ker(φ) is an ideal in g.
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Lie Groups and Lie Algebras

We see from Definition 1.24 that every ideal is a subalgebra, but the reverse need not be the
case. If g is a Lie algebra, we see that {0} and g are always ideals in g. This motivates us to
define simple and semisimple Lie algebras.

Definition 1.26 (Simple and semisimple Lie algebra, [3]). Let g be a Lie algebra. We call
g simple if it is not abelian and its only ideals are {0} and g. We call g semisimple if g has
no non-zero abelian ideals.

It can become quite tedious to prove that a Lie algebra is semisimple. We will therefore
introduce a criterion known as Cartan’s criterion to check whether a given Lie algebra is
semisimple. This is based on the Killing form κ of a Lie algebra. First, we introduce the
adjoint map.

Definition 1.27 (Adjoint map, [5]). Let g be a Lie algebra. We denote the linear map
ad : g→ end(g) by ad(X)Y = [X, Y ].

The observant reader will note that the notation used in Definition 1.27 is the same as in
Section 1.1. We will return to this issue in Section 1.3 and give reasons to justify it. We see
that the adjoint map is well-defined and linear, since the Lie bracket on g is a bilinear map.
The kernel of the adjoint map consists of all X ∈ g such that [X, Y ] = 0 for all Y ∈ g. This
is called the centre of the Lie algebra g, denoted by Z(g). Using Example 1.25, we see that
Z(g) is an ideal in g. Now, we define the Killing form of a Lie algebra.

Definition 1.28 (Killing form, [4]). Let g be a Lie algebra. Its Killing form κ : g× g → K
is defined by κ(X, Y ) = Tr(ad(X)ad(Y )), where Tr is the trace operator.

We see that κ is independent of the choice of basis, since the trace operator is basis indepen-
dent. The proposition below summarizes the basic properties of the Killing form.

Proposition 1.29 ([4],[9]). Let g be a Lie algebra and κg be its Killing form. Then we have
the following:

i. The Killing form is bilinear and symmetric.

ii. The Killing form is invariant under automorphisms of g, i.e. if φ ∈ aut(g), then
κ(φ(X), φ(Y )) = κ(X, Y )

iii. For all X, Y, Z ∈ g, we have that κ([X, Y ], Z) = κ(X, [Y, Z]).

iv. If h is an ideal in g with Killing form κg, then κg|h×h = κh.

Proof. For i, bilinearity follows from the linearity of the trace and the adjoint map. The
symmetry follows from the property that Tr(AB) = Tr(BA).

For ii, note that ad(φ(X))Y = [φ(X), Y ] = φ([X,φ−1(Y )]), so ad(φ(X)) = φ ◦ ad(X) ◦ φ−1

for all φ ∈ aut(g). Therefore, we see that

κ(φ(X), φ(Y )) = Tr(ad(φ(X))ad(φ(Y )) = Tr(φ ◦ ad(X)ad(Y ) ◦ φ−1) = κ(X, Y ),

9
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by cyclicity of the trace.

For iii, note that ad([X, Y ]) = ad(X)ad(Y )− ad(X)ad(Y ), hence

κ([X, Y ], Z) = Tr(ad(X)ad(Y )ad(Z)− ad(Y )ad(X)ad(Z)) =

Tr(ad(X)ad(Y )ad(Z)− ad(X)ad(Z)ad(Y )) = κ([X, [Y, Z]]),

by cyclicity of the trace.

For iv, we refer to [9].

In most cases, the Killing form is not hard to compute. The following theorem connects
the Killing form to the semisimplicity of Lie algebras and is therefore useful to determine
whether a Lie algebra is semisimple.

Theorem 1.30 (Cartan’s criterion, [5]). Let g be a Lie algebra. Then g is semisimple if and
only if its Killing form κ is nondegenerate.

Proof. We refer to Theorem 3.9.2 in [5].

Definition 1.31 (derivation, [3]). Let g be a Lie algebra. A derivation is a map δ ∈ end(g)
satisfying the Leibniz rule:

δ([X, Y ]) = [X, δ(Y )] + [δ(X), Y ], for all X, Y ∈ g.

We denote the set of all derivations on g by Der(g).

It follows readily that Der(g) is a linear subspace of end(g). If δ1 and δ2 are derivations,
δ1δ2 − δ2δ1 is again a derivation, hence Der(g) is a Lie subalgebra of end(g). The following
proposition shows how conveniant Killing forms and Cartan’s criterion can be.

Proposition 1.32. Let g be a semisimple Lie algebra. Then the linear map ad : g→ Der(g)
is a Lie algebra isomorphism.

Proof. We will first show that ad(X) is a derivation for all X ∈ g. We fix X ∈ g. By the
Jacobi identity, we have that

ad(X)[Y, Z] = [X, [Y, Z]] = [Y, [X,Z]]+[[X, Y ], Z] = [Y, ad(X)Z]+[ad(X)Y, Z] for all Y, Z ∈ g,

hence ad(X) is a derivation and satisfies ad([X, Y ]) = [ad(X), ad(Y )], as we saw earlier hence
ad is a Lie algebra homomorphism.

Since g is semisimple, it must be centreless since the centre of a Lie algebra is an abelian
ideal. Therefore, ker(ad) = Z(g) = {0}, so ad is injective. For surjectivity, let I = Im(ad).
We will show that I = Der(g). We remark that ad is a Lie algebra isomorphism g → I, so
I is semisimple. Note that I is an ideal in Der(g), since

[δ, ad(X)](Y ) = δ(ad(X)Y )−ad(X)(δ(Y )) = δ([X, Y ])− [X, δ(Y )] = [δ(X), Y ] = ad(δ(X))Y,

10



Lie Groups and Lie Algebras

for all Y ∈ g, so [δ, ad(X)] = ad(δ(X)) ∈ I for all δ ∈ Der(g) and X ∈ g, so [δ, ad(X)] ∈ I
and I is an ideal of Der(g). We denote by I⊥ the orthogonal complement of I with respect
to κDer(g). Then I⊥ is an ideal of Der(g) by iii of Proposition 1.29. By part iv of the same
proposition, we see that if X ∈ I ∩ I⊥, we have that κDer(g)(X, Y ) = κI(X, Y ) = 0 for all
Y ∈ I.

Since I is semisimple, Cartan’s criterion implies that κI is nondegenerate, hence X = 0,
thus I ∩ I⊥ = {0}. Therefore, we can write Der(g) = I⊕ I⊥, and we are done if we can show
that I⊥ = {0}. Note that [I, I⊥] ⊆ I and [I, I⊥] ⊆ I⊥ since I and I⊥ are both ideals, hence
[I, I⊥] ⊆ I ∩ I⊥ = {0}. If δ ∈ I⊥, we have for all X ∈ g that

0 = [δ, ad(X)] = ad(δ(X)).

By injectivity of ad, it follows that δ(X) = 0 for all X ∈ g, so δ = 0. It follows that I⊥ = {0}
so Der(g) = I and it follows that ad is surjective.

1.3 The Lie Algebra of a Lie Group

In the previous sections, we introduced Lie groups and Lie algebras as individual objects. In
this section, we will see that there exists an inevitable connection between Lie groups and
Lie algebras. We will see that for every Lie group G, we can equip TeG with a Lie bracket
which turns TeG into a Lie algebra. We will call TeG equipped with this Lie bracket the Lie
algebra of the Lie group. Moreover, we will see that every Lie group homomorphisim can be
differentiated and the resulting tangent map will be a Lie algebra homomorphism. Then, we
prove a reverse theorem which provides a sufficient condition for Lie groups to be isomorphic
if their Lie algebras are. We finish this section with the introduction of semidirect products
and the centre of a Lie group. We start with the following useful lemma.

Lemma 1.33 ([3]). Let G be a Lie group. For all x ∈ G and X ∈ TeG, we have that
x expG(X)x−1 = expG(Ad(x)X).

Proof. Since Cx is a Lie group homomorphism, we use Theorem 1.18 to conclude that the
following diagram commutes,

G G

TeG TeG

Cx

expG

Ad(x)

expG

hence the result follows.

Our next aim is to equip TeG with a Lie bracket operation.

Definition 1.34 (Lie bracket on TeG [3]). Let ad : TeG → end(TeG) be as in section 1.1.
We define [·, ·] : TeG× TeG→ TeG by [X, Y ] = ad(X)Y

11
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Note that the operation [·, ·] is well-defined. Before showing that [·, ·] is actually a Lie bracket,
we will first prove that [·, ·] is preserved under the tangent map of a Lie group homomorphism.

Proposition 1.35 ([3]). Let G and H be Lie groups and let f : G → H be a Lie group
homomorphism. Then (dφ)e([X, Y ]) = [(dφ)eX, (dφ)eY ] for all X, Y ∈ TeG.

Proof. We mainly follow [3]. We denote the adjoint representations of G and H by AdG and
AdH . We can easily deduce that φ◦Cx = Cφ(x) ◦φ, hence (dφ)e ◦AdG(x) = AdH(φ(x))◦ (dφ)e
as maps TeG→ TeH. If we fix some X ∈ TeG, we can view them as maps G→ TeG. When
we differentiate in x = e, we see that (dφ)e ◦ adG(X) = adH((dφ)eX) ◦ (dφ)e. When we
apply these maps to Y ∈ TeG we get exactly that (dφ)e([X, Y ]) = [(dφ)eX, (dφ)eY ] for all
X, Y ∈ TeG.

The following proposition shows that [·, ·] is a Lie bracket on TeG.

Proposition 1.36 ([3]). Let G be a Lie group. Then TeG together with [·, ·] is a Lie algebra.

Proof. We follow [3]. The bilinearity of [·, ·] follows from linearity of the map ad : TeG →
end(TeG). By Lemma 1.30, we have for all Z ∈ TeG and s, t ∈ R that

exp(tZ) = exp(sZ) exp(tZ) exp(−sZ) = expG(Ad(expG(sZ))(tZ)).

When differentiating with respect to t in t = 0, we obtain that Z = Ad(expG(sZ))Z. Differ-
entiating once more with respect to s in s = 0, we see that 0 = ad(Z)Z = [Z,Z]. Substituting
Z = X + Y , we see that

0 = [X + Y,X + Y ] = [X,X] + [X, Y ] + [Y,X] + [Y, Y ] = [X, Y ] + [Y,X],

hence [X, Y ] = −[Y,X] for all X, Y ∈ TeG.

By Proposition 1.20, we know that the adjoint representation of G in TeG is a Lie group
homomorphism, hence ad([X, Y ]) = [ad(X), ad(Y )] by Proposition 1.35. Since the Lie
bracket on end(TeG) is just the commutator of linear maps, we get that ad([X, Y ]) =
ad(X)ad(Y )− ad(Y )ad(X). We apply this to an arbitrary Z ∈ TeG and the Jacobi identity
follows from rearranging and using the anticommutativity relation.

We call TeG together with [·, ·] the Lie algebra of the Lie group G. We will call a Lie group
semisimple if its Lie algebra is semisimple. From now on, we will denote a Lie group by a
roman capital letter and use the calligraphic lower case letter to denote its Lie algebra. We
can summarize this whole discussion with the following theorem.

Theorem 1.37 ([3]). Let G and H be Lie groups and let f : G → H be a Lie group
homomorphism. Its tangent map (df)e : g → h is a Lie algebra homomorphism and the
following diagram commutes.

G H

g h

f

(df)e

expG expH

12
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Proof. The first assertion follows from Proposition 1.35. The second assertion follows from
Theorem 1.18.

We see in Theorem 1.37 that the Lie algebras of isomorphic Lie groups are isomorphic as well.
It is natural to ask the reverse question, that is, whether G and H are isomorphic Lie groups
if their Lie algebras g and h are isomorphic. This need not always be the case, as we can
easily show that S1 and R have the same Lie algebra up to isomorphism. This follows simply
from the fact that all one-dimensional Lie algebras carry the trivial Lie bracket structure
and are therefore isomorphic. However, the converse statement is true if G and H are simply
connected. The proof of this statement lies in the following theorem.

Theorem 1.38 (Lie’s second fundamental theorem[4]). Let G and H be Lie groups and
assume that G is simply connected. For every Lie algebra homomorphism f : g → h, there
exists a unique Lie group homomorphism F : G→ H such that f = (dF )e.

In the proof of Theorem 1.38, we need the following result.

Theorem 1.39 ([4]). Let G be a Lie group with Lie algebra g. For each Lie subalgebra h of
g, there exists a unique connected Lie subgroup H of G whose Lie algebra is h. The group H
is generated by expG(h).

This result is proven in [4], Section 1.10.

The following lemma is needed in the proof of Theorem 1.38.

Lemma 1.40. Let G,H be connected Lie groups and suppose φ : G → H is a Lie group
homomorphism. If (dφ)e : g→ h is a Lie algebra isomorphism, then φ is a covering map.

Proof. Since (dφ)e is an isomorphism, the inverse function gives us an open neighbourhood
U of eG and V of eH such that φ : U → V is a Lie group isomorphism. Since Lh is an
automorphism of H, it suffices to check the covering property at eH ∈ H. Denote by P the
subgroup P = ker(φ). Moreover, we see that (φ ◦ La)(g) = φ(ag) = φ(a)φ(g) = φ(g) for all
g ∈ G, a ∈ P . Therefore, we see that φ−1(V) =

⋃
a∈P La(U) and La(U) is homeomorphic to

V for all a ∈ P . What remains to show is that La1U ∩ La2U = ∅ for a1 6= a2 ∈ P . We will
reason by contradiction. Suppose there exist a1 6= a2 ∈ P such that La1U ∩ La2U 6= ∅. We
set a = a1a

−1
2 , then LaU ∩U 6= ∅. We pick x1 ∈ U such that x2 = ax1 ∈ U . Then we see that

φ(x2) = φ(ax1) = φ(x1). However, φ : U → V is bijective, hence x1 = x2, so a = e. But this
means that a1 = a2, which is a contradiction.

Note that if G is connected and H is simply connected, φ is a homeomorphism and hence φ
is a Lie group isomorphism [8]. We therefore have the following corollary of Lemma 1.40.

Corollary 1.41. If G,H are Lie Groups with G connected and H simply connected and
φ : G→ H a Lie group homomorphism with (dφ)e : g→ h a Lie algebra isomorphism. Then
φ is a Lie group isomorphism.

We can now prove Theorem 1.38.

13
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Proof. We mainly follow [4]. Define a = {(g, f(g)) : g ∈ g} ⊂ g ⊕ h. Then a is a vec-
tor space by linearity of f . Note that we can equip a with a Lie bracket in the following
way: [(g, f(g)), (h, f(h))] := ([g, h], [f(g), f(h)]) for all g ∈ g and h ∈ h. Since f is a Lie
algebra homomorhpism, we have that [(g, f(g)), (h, f(h))] = ([g, h], f([g, h])) ∈ a for all
(g, f(g)), (h, f(h)) ∈ a hence a is a Lie subalgebra of g ⊕ h. We remark that g ⊕ h is the
Lie algebra of the Lie group G × H. By Theorem 1.39, there exists a unique connected
Lie subgroup A ⊂ G × H which has Lie algebra a. Consider the map π = pr1 ◦ ιA where
pr1 is the projection on the first coordinate and ιA the inclusion of A in G × H. This is
a Lie group homomorphism since ιA and pr1 are Lie group homomorphisms. Its tangent
map (dπ)eA is the projection of a on g, hence a Lie algebra isomorphism. Then π is a Lie
group isomorphism by Corallary 1.41. Then the map F = pr2 ◦ π−1 : G→ H is a Lie group
homomorphism with (dF )e = f . For uniqueness, remark that {(g, F (g)) : g ∈ G} is a Lie
subgroup of G × H with Lie algebra a, so it follows from the uniqueness in Theorem 1.39
that A = {(g, F (g)) : g ∈ G}, hence F is unique.

Theorem 1.38 can be used to show the following nice result which can be seen as the converse
of Theorem 1.37.

Corollary 1.42. If G and H are simply connected Lie groups with isomorphic Lie algebras,
then they are isomorphic Lie groups.

Proof. If f : g → h is a Lie algebra isomorphism, Theorem 1.38 ensures that there exists
a Lie group homomorphism F : G → H. By Corollary 1.41, the map F is a Lie group
isomorphism.

Apart from the direct product, there exists another construction of Lie groups, known as the
semidirect product.

Definition 1.43 (Semidirect product of Lie groups [14]). Let G and H be Lie groups and
suppose G acts smoothly on H by automorphisms, i.e. there is a Lie group homomorphism
φ : G×H → H such that φg ∈ Aut(H) for all g ∈ G. Then the group GnφH, which has as
underlying set G×H and multiplication (g, h)(g′, h′) = (gg′, hφg(h

′)) is called the semi-direct
product of G and H.

Note that the semidirect product of G and H depends explicitly on the action of G. If the
action of G is obvious, we will write GnH instead. It is readily verified that GnφH is again
a group with identity (eG, eH) and (g, h)−1 = (g−1, φg−1(h−1)). In fact, it is a Lie group since
φ : G×H → H is smooth.

Lemma 1.44. Let G and H be Lie groups and suppose G acts smoothly on H by automor-
phisms. Then there exists a natural smooth action of G nφ H on H given by (g, h) · h′ =
hφg(h

′).

Proof. The proof is straightforward. We see that

(eG, eH) · h′ = eHφeG(h′) = eHh
′ = h′

14
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and

(g1, h1) · ((g2, h2) · h′) =(g1, h1) · (h2φg2(h
′)) = h1φg1(h2φg2(h

′)) = h1φg1(h2)φg1g2(h
′) =

(g1g2, h1φg1(h2)) · h′ = ((g1, h1)(g2, h2)) · h,

hence Gnφ H acts on H.

Example 1.45. The special Euclidean group SE(2) = SO(2) n R2, where SO(2) acts
smoothly on R2 by multiplcation with an invertible matrix on a vector in R2 is the semidirect
product of SO(2) and R2. Lemma 1.42, it acts naturally on R2 by (T, v)x = v+Tx, hence can
be seen as a rotation followed by a translation and is therefore the total group of isometries of
R2. We will we see a similar action in Minkowski space in chapter 4 by the Poincaré group.

Let G and H be Lie groups with Lie algebras g and h and suppose G acts smoothly on H
by automorphisms. We will give a description of the Lie algebra of G nφ H, which we will
currently denote by Lie(GnφH). Since GnφH has G×H as underlying set, it is diffeomorphic
with G×H hence Lie(GnφH) has g⊕h as an underlying vector space. However, GnH and
G × H need not be isomorphic Lie groups, so the bracket structure may differ. Therefore,
we introduce a new construction of Lie algebras, known as the semidirect sum.

Definition 1.46 (Semidirect sum of Lie algebras,[14]). Let g and h be Lie algebras and let
be θ : g→ Der(h) a Lie algebra homomorphism. Then g⊕ h together with the bracket

[(X1, Y1), (X2, Y2)] = ([X1, X2], [Y1, Y2] + θ(X1)Y2 − θ(X2)Y1)

is called the semidirect product of g and h, denoted by g⊕θ h.

It is not difficult to see that g ⊕θ h is again a Lie algebra. Bilinearity follows from the
bilinearity of the Lie brackets on g and h and linearity of θ. Anticommutativity follows from
the Lie brackets on g and h as well. The Jacobi identity holds since θ(X) is a derivation for
all X ∈ g. In fact, we have the following nice result that the Lie algebra of the semidirect
product of two groups is the semidirect sums of their Lie algebras.

Proposition 1.47. Let G and H be Lie groups with Lie algebras g and h and suppose G acts
smoothly on H by automorphisms. Define ψ : g → end(h) by ψ(ξ) = (dφ)(eG,eH)(ξ, ·). Then
Lie(Gnφ H) = g⊕ψ h.

Proof. For notation, we define the two maps φg : H → H and φh : G→ H as the restriction
of φ to {g} × H and G × {h} for all g, h. Then φg and φh are smooth maps. We denote

the associated differentials at the identity by φ′g = (dφg)eH and φ̇h = (dφh)eG . Let C(g,h) :
Gnφ H → Gnφ H be the conjugation by (g, h). Then

C(g,h)(k, l) =
(
gkg−1, hφg(l)φgk(φg−1(h−1))

)
Taking derivative of this map yields

Ad(g, h)(X, Y ) =
(
Ad(g)(X), Ad(h)(Y ) + σh(Ad(g)(X))

)
,

15
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where σh : TeG→ TeH is given by σh(ξ) = (dLh)eH (φ̇h
−1

(ξ)). Then taking derivatives again,
we obtain the Lie bracket on Lie(Gnφ H).

[(X1, Y1), (X2, Y2)] = ad(X1, Y1)(X2, Y2) =
(
[X1, X2], [Y1, Y2]+

(dφ)(eG,eH)(X1, Y2)− (dφ)(eG,eH)(X2, Y1)
)

=
(
[X1, X2], [Y1, Y2] + ψ(X1)Y2 − ψ(X2)Y1

)
.

We are done if we show that ψ(ξ) is a derivation for all ξ ∈ g. Since φg ∈ Aut(H), we have
that φg ◦ Ch = Cφg(h) ◦ φg, hence φ′g ◦ Ad(h) = Ad(φg(h)) ◦ φ′g. Differentiating this relation
with respect to h yields

φ′g([ξ1, ξ2]) = [φ′g(ξ1), φ′g(ξ2)].

Differentiating with respect to g gives the required property of ψ.

We will finish this chapter with the following two propositions. The first proposition will
give a characterization of the Lie algebra of a Lie subgroup and it will be used to prove the
second proposition, which says that Lie(Z(G)) = Z(g) and will be used in Section 2.4 to pass
from Lie groups to Lie algebras and back.

Proposition 1.48 ([2]). Let G be a Lie group and H a Lie subgroup of G with Lie algebra
h. Then h = {X ∈ g : expG(tX) ∈ H, t ∈ R}.
Proof. We refer to theorem 20.9 in [2].

Proposition 1.49 ([3]). Let G be a connected Lie group with Lie algebra g. Then the centre
of g is the Lie algebra of the centre of G.

Proof. By Proposition 1.48, the Lie algebra of Z(G) is given by {X ∈ g : exp(tX) ∈ Z(G), t ∈
R}. Note that for a connected Lie group G, we have that ker(Ad) = {x ∈ G : Ad(x) = Id} =
{x ∈ G : xgx−1 = g for all g ∈ G} = Z(G). If we apply Theorem 1.34 with the Lie group
homomorphism Ad, we see that the following diagram commutes:

G GL(TeG)

g end(TeG)

Ad

expG

ad

expGL(TeG)

So, we derive the relation Ad(expG(X)) = expGL(TeG)(ad(X)) for all X ∈ g. If X ∈ Z(g),
note that ad(X) = 0. For all t ∈ R, we see that

Ad(expG(tX)) = expGL(TeG)(ad(tX)) expGL(TeG)(t ad(X)) = Id,

hence we see that expG(tX) ∈ ker(Ad) = Z(G) for all t ∈ R. The reverse inclusion is shown
similarly.

To summarize this chapter, we have introduced Lie groups and we have discussed several
examples of them. We have given several constructions of forming new Lie groups out of
old ones such as taking direct products and semidirect products. We have in particular had
a detailed discussion about subgroups of Lie groups. We have introduced Lie algebras and
discussed the basic notions of ideals and subalgebras. Then we have given a description
of how to turn the tangent space of a Lie group into a Lie algebra. We have shown that
isomorphic Lie groups have isomorphic Lie algebras and that the reverse statement holds for
simply connected Lie groups.
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Chapter 2

Unitary Representation Theory

In this chapter, we will study the representation theory of topological groups and Lie algebras.
Representation theory aims to describe abstract algebraic objects such as groups and Lie
algebras more concrete by an action on a, not necessarily finite dimensional, vector space.
We will start this chapter by introducing representation theory of finite groups, topological
groups and Lie algebras. Then, we will restrict ourselves to representations over Hilbert
spaces, which allows us to talk about unitary representations. Next, we will motivate why
quantum mechanics demands for a so-called projectivized Hilbert space and we will describe
projective representations of topological groups. We will finish the chapter by showing that
every projective representaion of a simply-connected semisimple Lie group lifts to a unitary
representation. In this chapter, we mainly follow [7].

2.1 Introduction to representation theory

In this section, we will give the definition of a representation and study some basic examples
and properties. All vector spaces we consider will be over K. We will assume that the reader
is familiar with representation theory of finite groups as can be found in [10]. Nevertheless,
we wish to recall the definition of a representation.

Definition 2.1 (Representation of finite group [10]). Let G be a finite group and V a vector
space. A representation of G in V is a pair (ρ, V ) consisting of a vector space V and a group
homomorphism ρ : G→ GL(V ).

If G is a topological group, we want the representation (ρ, V ) to be continuous, too. To make
this exact, we need to equip the vector space V with a topology, turning V into a topological
vector space.

Definition 2.2 (Topological vector space [11]). A topological vector space V is a vector
space over K equipped with a topology such that the addition map V × V → V and the scalar
multiplication K× V → V are continuous.

If V is a topological vector space, a topological automorphism of V is a vector space auto-
morphism V → V which is a homeomorphism. We denote the automorphism group of V by
Aut(V ).
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Definition 2.3 (Representation of a topological group [7]). Let G be a topological group. A
representation of G in V is a pair (ρ, V ) consisting of a topological vector space V and a group
homomorphism ρ : G→ GL(V ) such that the action map (g, v)→ ρ(g)v is a continuous map
G× V → V .

Example 2.4. Consider the circle group T. For n ∈ N, define ρn : T→ GL(R2) by

ρn(eiθ) =

(
cos(nθ) sin(nθ)
− sin(nθ) cos(nθ)

)
.

Then ρn is a group homomorphism since ρn(eiθeiφ) = ρn(eiθ)ρn(eiφ) and the map (eiθ, v) 7→
ρn(eiθ)v is continuous as a map T × R2 → R2 for each each n ∈ N, hence (ρn,R2) is a
representation of T in R2.

Lemma 2.5 ([7]). Let G be a locally compact topological group, V be a Banach space and
ρ : G→ GL(V ) a group homomorphism. Then the following statements are equivalent:

i. The pair (ρ, V ) is a representation of G.

ii. For every x ∈ G, the map ρ(x) is continuous for each x and the map (x, v) 7→ ρ(x)v is
continuous at the group identity for all v ∈ V .

Proof. We mainly follow [7]. By definition of a representation of G, ii follows directly from
i. Now, we assume ii. It suffices to prove that the map (x, v) 7→ ρ(x)v is continuous. For
v ∈ V , the map x 7→ ρ(x)v = ρ(x0)ρ(x−1

0 x)v is continuous at x0. Now, fix v0 ∈ V and let U
be a compact neighbourhood of x0. Then {ρ(x) : x ∈ U} is a collection of continuous linear
maps V → V . For all v ∈ V , the map x 7→ ‖ρ(x)v‖ is continuous, hence bounded on the
compact set U . By the uniform boundedness principle [12], the collection of {‖ρ(x)‖ : x ∈ U}
is bounded by some M > 0. We see that for all x ∈ U , v ∈ V , we have that

‖ρ(x)v − ρ(x0)v0‖ ≤‖ρ(x)v − ρ(x)v0‖+ ‖ρ(x)v0 − ρ(x0)v0‖ ≤
M‖v − v0‖+ ‖ρ(x)v0 − ρ(x0)v0‖,

from which we conclude that the action map (x, v) 7→ ρ(x)v is continuous at (x0, v0).

Apart from representations of topological groups, we will also consider representations of Lie
algebras.

Definition 2.6 (Lie algebra representation[3]). Let g be a Lie algebra over K. A Lie algebra
representation is a pair (π, V ) where V is a vector space and π : g→ end(V ) is a Lie algebra
homomorphism.

Remark 2.7. Let G be a Lie group and (ρ, V ) a continuous representation of G such that ρ
is a Lie group homomorphism1, then (dρ)e is a Lie algebra representation of g. The converse
hold if G is simply-connected, by Theorem 1.38.

If (ρ, V ) is a representation of G, we call V a G-module and we will often use the notation
g · v for ρ(g)v. Similar, if (π, V ) is a representation of g, we call V a g-module and use the
notation Xv for π(X)v. A representation is said to be n-dimensional if dim(V ) = n.

1In fact, this is always the case if V is finite dimensional, see Lemma 20.4 in [3]

18



Unitary Representation Theory

Definition 2.8 (Invariant subspace and irreducible representations. [3]). Let (ρ, V ) be a
representation of a finite group, topological group or Lie algebra. A linear subspace W ⊂ V is
called an invariant subspace if gW ⊂ W for all g ∈ G (respectively XW ⊂ W for all X ∈ g).
We call a representation irreducible if {0} and V are the only closed invariant subspaces.

If (ρ, V ) is a representation of a topological group G and W is a closed invariant subspace of
V , then (ρ|W ,W ) where ρ|W (g) = ρ(g)|W is a representation of G.

Example 2.9 ([3]). Let g be a simple Lie algebra. The adjoint representation ad : g→ end(g)
is irreducible.

Proof. Since end(g) is finite dimensional, every invariant subspace will be closed. Let W ⊂
end(g) be an invariant subspace. Then it follows that [X,W ] ⊂ W for all X ∈ g, which
means that W is an ideal in end(g). Since g is simple, it follows that W = {0} or W = g so
ad is irreducible.

Let G be a topological group and (ρ1, V1) and (ρ2, V2) two representations of G. A continuous
linear map T : V1 → V2 satisfying T ◦ ρ1(g) = ρ2(g) ◦ T for all g ∈ G is called G-equivariant.

Definition 2.10 (Equivalent representations [7]). Let G be a topological group and (ρ1, V1)
and (ρ2, V2) two representations of G. We say that the representations are equivalent if there
exists a continuous linear isomorphisim T : V1 → V2 which is G-equivariant.

We finish this section with one more result of irreducible representations, which is known as
Schur’s lemma in the finite dimensional case.

Lemma 2.11 ([10]). Let G be a group or topological group and let (ρ1, V1) and (ρ2, V2) be
finite dimensional representations of G and suppose T : V1 → V2 is G-equivariant. Then
ker(T ) is an invariant subspace of V1 and Im(T ) an invariant subspace of V2.

Proof. The proof is an easy computation. Let v ∈ ker(T ) and let g ∈ G. Then T (gv) =
gT (v) = 0, so gv ∈ ker(T ). We conclude that ker(T ) is an invariant subspace of V1. Similar,
let v ∈ Im(T ). Then there exists w ∈ V1 such that v = T (w). Then, T (gw) = gT (w) = gv,
hence gv ∈ Im(T ), and Im(T ) is a G-equivariant subspace of V2.

If V1 is irreducible, Lemma 2.11 tells us that ker(T ) = {0} or ker(T ) = V1. In the first case,
T is injective and in the second case, T = 0.

Lemma 2.12 (Schur’s lemma [10]). Let G be a group or topological group and let (ρ1, V1)
be an irreducible representation. If T : V → V is G-equivariant and admits an eigenvalue
λ ∈ K, then T = λIdV1.

Proof. We follow [10]. If T is G-equivariant, then T − λIdV1 is G-equivariant as well. Since
V1 is irreducible, T − λIdV1 is either injective or zero. Note that T − λIdV1 has nontrivial
kernel, so it cannot be injective. Therefore, it must be zero hence T = λIdV1 .

19



Unitary Representation Theory

2.2 Unitary Representations

In this section, we will restrict to representations over complex Hilbert spaces. By an operator,
we will always mean a linear map between two Hilbert spaces. Recall the following definition
of a Hilbert space.

Definition 2.13 (Complex Hilbert space[12]). A complex Hilbert space is a vector space
H over C with a complete inner product denoted by (·, ·), i.e. the inner product induces a
complete metric.

A Hilbert space is said to be separable if it contains a countable, dense subset. Recall
that every separable Hilbert space has a countable orthonormal basis. For details, see [12].
Throughout the rest of this thesis, we will assume all Hilbert spaces are separable. If H1 and
H2 are both complex Hilbert spaces and if T : H1 → H2 is a bounded operator, there exists
a unique bounded operator T ∗ : H2 → H1 satisfying (Tx, y)2 = (x, T ∗y)1 for all x ∈ H1 and
y ∈ H2 [12]. We call T ∗ the adjoint of T .

Definition 2.14 ((Anti)-unitary and self-adjoint operator [12]). Let H1,H2 be complex
Hilbert spaces and let T : H1 → H2 be a bounded operator. We call T unitary if TT ∗ = IdH2

and T ∗T = IdH1. If T : H1 → H2 is a bounded antilinear map, that is, T (λx + y) =
λ̄T (x)+T (y) for all λ ∈ C and x, y ∈ H1, satisfying TT ∗ = IdH2 and T ∗T = IdH1, we call T
anti-unitary. If T : H1 → H1 is a bounded operator satisfying T = T ∗, we call T self-adjoint.

Proposition 2.15. Let H1 and H2 be complex Hilbert spaces and T : H1 → H2 a bounded
operator. Then T is unitary if and only if T is surjective and

(Tx, Ty)2 = (x, y)1

for all x, y ∈ H1.

Proof. If T is unitary, TT ∗ = IdH2 , so T is surjective and satisfies

(x, y)1 = (x, T ∗Ty)1 = (Tx, Ty)2.

We now prove the converse assertion. By hypothesis, we have for all x, y ∈ H1 that

(x, y)1 = (Tx, Ty)2 = (x, T ∗Ty)1,

from which it follows that y = T ∗Ty, hence T ∗T = IdH1 .

We will now show that TT ∗ = IdH2 . For all y ∈ H2 there exists x ∈ H1 such that Tx = y,
since T is surjective. Therefore,

TT ∗y = TT ∗Tx = Tx = y,

hence TT ∗ = IdH2 and we conclude that T is unitary.
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If H is a complex Hilbert space, we denote by U(H) the set of all unitary automorphisms of
H. We equip this set with the strong operator topology. That is, the topology generated by
the sets

U(T0, x, ε) = {T ∈ U(H) : ‖Tx− T0x‖ < ε}, (2.2.1)

where T0 : H → H is any bounded operator, x is any element in H and ε > 0. Note that
Tj ∈ H converges to T in the strong operator topology if and only if Tj(x) converges to T (x)
in H for all x ∈ H.

Proposition 2.16. Let H be a complex Hilbert space. Then the group U(H) equipped with
the strong operator topology forms a topological group.

Proof. For Hausdorffness, let T, S ∈ U(H). Take x ∈ H such that Tx 6= Sx and set ε =
‖(T − S)x‖. Then U(T, x, ε/2) and U(S, x, ε/2) are disjoint open neighbourhoods of T and
S. It follows from the separability of H that the strong operator topology on U(H) satisfies
the axiom of first countability. Therefore, it suffices to proof that the multiplication map is
sequential continuous. Let T, S ∈ U(H) and let (Tk)k∈N and (Sk)k∈N be sequences in U(H)
that converge to T and S in the strong operator topology. For all x ∈ H, we have that

‖TkSk(x)− TS(x)‖ ≤‖TkSk(x)− TkS(x)‖+ ‖TkS(x)− TS(x)‖ =

‖(Sk − S)(x)‖+ ‖(Tk − T )(S(x))‖.

It follows from the estimate above that TkSk converges to TS in the strong operator topology,
hence the multiplication map is continuous. For continuity of the inversion, let (Tk)k∈N be a
sequence in U(H) converging to T . We have to show that (T−1

k )k∈N converges to T−1. For
all x ∈ H, we have that

‖T−1
k (x)− T−1(x)‖ = ‖T−1

k (T − Tk)T−1(x)‖ = ‖(T − Tk)T−1(x)‖,

hence (T−1
k )k∈N converges T−1 in the strong operator topology, so the inversion map is con-

tinuous.

Let H be a complex Hilbert space with countable orthonormal basis {ei}i∈N. Then, we can
define a map J : H → H by J(

∑
i∈N ciei) =

∑
i∈N ciei. The map J is a anti-unitary au-

tomorphism of H. We denote the set of all anti-unitary automorphisms of H by U−1(H).
In fact, it is readily verified that U−1 = J(U(H)). The union U+(H) = U−1(H) ∪ U(H)
is again a topological group when equipped with the strong operator topology, in which
U(H) is both open and closed. If we consider the map I : T → U(H), z 7→ zIdH, we can
view the image of T under I, which we will denote by T̃, as a topological subgroup of U(H) [7].

We go back to representations over Hilbert spaces. Let G be a group and H a complex
Hilbert space. When we consider a representation (ρ,H) of a topological group G, we want
the structure of the inner product on H to be respected. In virtue of proposition 2.16, it is
therefore natural to demand that ρ(g) is unitary for all g ∈ G. This motivates the following
definition.
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Definition 2.17 (Unitary representation, [7]). Let G be a topological group and H a complex
Hilbert space. A unitary representation of G in H is a continuous representation (ρ,H) such
that ρ(g) is unitary for all g ∈ G.

Example 2.18. If we endow R2 with the standard inner product 〈·, ·〉, the representation of
T in R2 from Example 2.4 is unitary, since 〈ρn(eiθ)v, ρn(eiθ)v〉 = 〈v, v〉 as rotations preserve
distances.

The following lemma is useful in determining whether a representation is unitary.

Lemma 2.19 ([7]). Let G be a topological group, let H be a complex Hilbert space and
ρ : G→ GL(H) a group homomorphism satisfying:

i. the map ρ(g) is unitary for all g ∈ G.

ii. There exists a dense subset V ⊆ H such that lim
g→e

ρ(g)v = v for all v ∈ V .

Then (ρ,H) is a unitary representation of G.

Proof. We follow [7]. We have to prove that the action map G×H → H is continuous. Let
h ∈ G and w ∈ V . By the unitarity of ρ(g), we infer using Proposition 2.15 that

‖ρ(g)v − ρ(h)w‖ ≤ ‖ρ(g)(v − w)‖+ ‖ρ(g)w − ρ(h)w‖ = ‖v − w‖+ ‖ρ(h−1g)w − w‖.

We are done if we can show that lim
g→e

ρ(g)w = w.

Let ε > 0. By denseness of V , there exists some v ∈ V such that ‖v − w‖ < ε/3. By
hypothesis, there exists an open neighbourhood U of e such that ‖ρ(g)v − v‖ < ε/3 for all
g ∈ U . Using i, we see for all g ∈ U that

‖ρ(g)w − w‖ ≤ ‖ρ(g)w − ρ(g)v‖+ ‖ρ(g)v − v‖+ ‖w − v‖ = 2‖w − v‖+ ‖ρ(g)v − v‖ < ε,

hence lim
g→e

ρ(g)w = w, and we are done.

Similar to continuous representations of G, we also have a notion of equivalent unitary rep-
resentations.

Definition 2.20. Let G be a topological group and let H1,H2 be complex Hilbert spaces. Two
representations (ρ1,H1) and (ρ2,H2) are unitarily equivalent if there exists a G-equivariant
unitary isomorphism T : H1 → H2.

If G is a topological group and (ρ, V ) a representation of G, it is an interesting question to ask
whether there exists an inner product on V which turns (ρ, V ) into a unitary representation.
If this happens to be the case, the representation is said to be unitarizable.

Example 2.21 ([10]). Let G be a finite group and let (ρ, V ) be a finite dimensional repre-
sentation of G. Then this representation is unitarizable.
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Proof. As V is finite dimensional, we can equip V with a standard inner product 〈·, ·〉 inher-
ited from Rn and we use it to define a new inner product (·, ·) on V by

(v, w) =
∑
g∈G

〈ρ(g)v, ρ(g)w〉.

Then (·, ·) satisfies all the properties of an inner product and

(ρ(h)v, ρ(h)w) =
∑
g∈G

〈ρ(h)ρ(g)v, ρ(h)ρ(g)w〉 =
∑
g∈G

〈ρ(hg)v, ρ(hg)w〉 =

∑
g∈G

〈ρ(g)v, ρ(g)w〉 = (v, w),

so ρ(g) is unitary for all g ∈ G, hence the representation is unitary.

In the next section, we will see why unitary representations are of particular interest to us.

2.3 Representation Theory in Quantum Mechanics

In this section, we will discuss how we can apply representation theory to quantum mechanics.
In quantum mechanics, the physical properties of a system are determined by a nonzero vector
|Ψ〉 in a separable Hilbert space H often referred to as the state of the system. Physical
observables such as energy or momentum correspond to a self-adjoint operator T acting on
H. If |Φ〉 is an eigenstate of T , the probability that a system in a state collapses in the
eigenstate |Φ〉 during an experiment is given by the transition probability.

P (|Ψ〉 → |Φ〉) =
|〈Ψ,Φ〉|2

〈Φ,Φ〉〈Ψ,Ψ〉
. (2.3.1)

Example 2.22. Consider the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

We will compute the transition probabilities for σx. The eigenstates of σx are |Φ1〉 = (1, 1)T

and |Φ2〉 = (−1, 1)T . Consider two systems, one in state |Ψ1〉 = (1,−1)T and one in state
|Ψ2〉 = (0, 2)T . Then

P (|Ψ1〉 → |Φ1〉) =
|(1,−1)T · (1, 1)T |2

4
= 0 P (|Ψ1〉 → |Φ2〉) =

|(1,−1)T · (−1, 1)T |2

4
= 1

and

P (|Ψ2〉 → |Φ1〉) =
|(0, 2)T · (1, 1)T |2

8
=

1

2
P (|Ψ2〉 → |Φ2〉) =

|(0, 2) · (1,−1)|2

8
=

1

2
.

Physically, this means that the first system will always collapse in |Φ2〉 and the second system
collapses either in |Φ1〉 and |Φ2〉 with equal probabilities.
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Notice that two states |Ψ〉 and |χ〉 in H that differ by a nonzero scalar λ ∈ C will always
have the same transition probability. Physically, this means that they are the same states
since all transition probabilities will be the same. This motivates us to define an equivalence
relation ∼ on H \ {0} by x ∼ y if and only if x = λy for some nonzero λ ∈ C. The resulting
quotient space is denoted by P(H) := (H \ {0})/ ∼ is known as the projectivized Hilbert
space. It carries the natural quotient topology inherited from H. It is readily verified that
P(H) is a Hausdorff space and the quotient map π : H \ {0} → P(H) is open.

Definition 2.23 (Projective homomorphism [7]). Let H1 and H2 be complex Hilbert spaces.
A continuous map T : P(H1) → P(H2) is called a projective homomorphism if T preserves
the transition probabilities, i.e. P (T (|Ψ〉)→ T (|Φ〉)) = P (|Ψ〉 → |Φ〉) for all |Ψ〉, |Φ〉 ∈ H1.

We denote the group of all projective automorphisms of P(H) by Aut(P(H)) which forms a
group under composition. The following lemma helps us to describe the natural topology on
Aut(P(H)).

Lemma 2.24 ([7]). The map q : U+(H) → Aut(P(H)) defined by q(T )([v]) = [Tv] is a
surjective group homomorphism with kernel T̃.

Proof. This is Lemma 1.12 in [7].

Note that q is an open map, since q is a projection under a group action of U+(H) on
Aut(P(H)) We infer from Lemma 2.24 that q induces an isomorphism U+/T̃ ∼= Aut(P(H))
and we can equip Aut(P(H)) naturally with the quotient topology induced by the strong
operator topology on U+ and it is readily verified that Aut(P) is again a topological group.

Lemma 2.25 ([7]). The topology on Aut(P(H)) is generated by the sets S(x, V ) = {T ∈
Aut(P(H)) : Tx ∈ V } with x ∈ P(H) and V an open subset of P(H).

Proof. Let x ∈ P(H). Then x = π(v) for some v ∈ H \ {0}. Remark that the image under q
of the set {A ∈ U+(H) : A(v) ∈ π−1(V )} for some open V ⊂ P(H) is exactly the set S(x, V ).
Since U+(H) is a topological group and every operator is bounded, it follows that the action
map U+(H) ×H → H is continuous, so N(x, V ) is open in Aut(P(H)) and we see that the
topology on Aut(P(H)) is finer than the topology generated by the sets S(x, V ). To show
that the topology on Aut(P(H)) is contained in the topology generated by the sets S(x, V ),
we refer to Lemma 1.14 in [7].

Suppose a quantum system with projectivized Hilbert space P(H) has a natural symmetry
which can be described by a topological group G. Then it is natural to assume that G
acts by a projective automorphism on P(H). This motivates the definition of a projective
representation.

Definition 2.26 (Projective representation,[7]). Let G be a topological group and H a com-
plex Hilbert space. A projective representation of G in H is a pair (ρ,P(H)) where ρ : G →
Aut(P(H)) is a group homomorphism such that the map (g, x) 7→ ρ(g)x is a continuous map
G× P(H)→ P(H).
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If (ρ1,H1) and (ρ2,H2) are two projective representations of the same topological group G, we
say that ρ1 and ρ2 are equivalent if there exists a projective isomorphism T : P(H1)→ P(H2)
such thath T ◦ρ1(g) = ρ2(g)◦T . A projective representation (ρ,P(H)) is said to be irreducible
if the only closed invariant subspaces are {0} and P(H). If (ρ,H) is a unitary representation
of G, the composition ρ̃ = q ◦ ρ is a projective representation of G. Hence, every unitary
representation induces a projective representation. More intereseting is the converse question,
whether a projective represenation is induced by a unitary representation. Such projective
representations are said to lift to a unitary representation. In the next section, we will show
that each projective representation of a Lie group lifts to a unitary representation if the Lie
group is semisimple and simply-connected.

2.4 Lifting projective representations

In this section, we will prove a condition for when projective reperesentations lift to unitary
representations. This is formulated in the following theorem.

Theorem 2.27 (Lifting projective representations [7]). Let G be a semisimple simply-connected
Lie group. Then every projective representation ρ : G→ Aut(P(H)) lifts to a unitary repre-
sentation of π : G→ U(H).

The proof of Theorem 2.27 is based on the notion of central extensions, which are a special
kind of exact sequences.

Definition 2.28 (Exact sequence of groups [2]). Suppose G0, ..., Gn are groups and fi : Gi →
Gi+1 are homomorphisms. The sequence

G0
f0−→ G1

f1−→ G2
f3−→ ...

fn−1−−→ Gn

is called exact if im(fi) = ker(fi+1).

In particular, the sequence

{e} ι−→ G
ϕ−→ H

is exact if im(ι) = {eG} = ker(ϕ), hence if ϕ is injective. Likewise, the sequence

G
ϕ−→ H

ι−→ {e}

is exact if im(ϕ) = ker(ι) = H, so if ϕ is surjective. For defining continuous central extensions,
we need specific exact sequences, namely the short exact sequences.

Definition 2.29 (Short exact sequence [2]). A short exact sequence is an exact sequence of
the form

{e} ι1−→ G
f1−→ H

f2−→ K
ι2−→ {e}. (2.4.1)

By our discussion above, the sequence (2.4.1) is exact only if f1 is injective and f2 is surjective.
We can now define central extensions of topological groups.
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Definition 2.30 (Central extensions of topological groups [7]). Assume G and K are topo-
logical groups. A continuous extension of K by G is a triple (H,φ, η) where H is a topological
group and φ : G→ H, η : H → K are continuous homomorphisms such that

{e} → G
φ−→ H

η−→ K → {e} (2.4.2)

is an exact sequence. The extension is called central if φ(G) is contained in the centre of H.

The central extension in (2.4.2) is called trivial if there exists a section µ : K → H of η, i.e.
a continuous homomorphism µ : K → H such that η ◦ µ = IdK .

Lemma 2.31. Suppose the central extension in (2.4.2) is trivial. Then there is a continuous
isomorphism Φ : G×K → H.

Proof. The proof is straightforward. Define Φ : G ×K → H by Φ(g, k) = φ(g)µ(k). Conti-
nuity of Φ is clear. It is a homomorphism since

Φ((g, k)(g′, k′)) = φ(g)φ(g′)µ(k)µ(k′) = φ(g)µ(k)φ(g′)µ(k′) = Φ(g, k)Φ(g′, k′).

We will construct a continuous inverse. For h ∈ H, note that x = hµ(η(h−1)) ∈ ker(η), since

η(hµ(η(h−1))) = η(h)(η ◦ µ ◦ η)(h−1) = η(h)η(h−1) = eK .

Since ker(η) = im(φ), there exists a unique gh ∈ G such that φ(gh) = x. Then define
Ψ : H → G×K by Ψ(h) = (gh, η(h)), which is evidently continuous. Then

Φ(Ψ(h)) = Φ(gh, η(h)) = hµ(η(h−1))µ(η(h)) = h

and
Ψ(Φ(g, k)) = Ψ(φ(g)µ(k)︸ ︷︷ ︸

=h′

) = (gh′ , η(φ(g)µ(k))) = (g, k),

so Ψ is a continuous inverse for Φ. We conclude that G×K ∼= H.

Definition 2.32 (Fibered product). Let X, Y and Z be topological spaces and let f : X → Z
and g : Y → Z be continuous maps, we define the fibered product by f ∗(Y ) = {(x, y) ∈
X × Y : f(x) = g(y)}, which we endow with the subspace topology.

Now we return to our question whether we can lift projective representations. Let ρ : G →
Aut(P(H)) be a projective representation of G in a complex Hilbert space H and recall that
the natural map q : U+(H) → Aut(P(H)) is a continuous group homomorphism. Then the
fibered product ρ∗(U+(H)) = {(g, A) ∈ G × U+(H) : ρ(g) = q(A)} is a closed topological
subgroup of G × U+(H). The projection prG : ρ∗(U+(H)) → G is a surjective continuous
group homomorphisms with ker(prG) = {(eG, A) : q(A) = IdAut(P(H))} = T̃. Note that T̃ is
naturally embedded in ρ∗(U+(H)) and that this embedding is a closed map by compactness
of T̃. Therefore, T̃ is homeomorphic to a closed normal subgroup of ρ∗(U+(H)). It follows
that

{e} → T̃ φ−→ ρ∗(U+(H))
prG−−→ G→ {e} (2.4.3)

is a central extension of G by T̃.
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Lemma 2.33 ([7]). The map prG : ρ∗(U+(H)) → G is open and hence induces an isomor-
phism ρ∗(U+(H))/T̃ ∼= G.

Proof. We refer to Lemma 3.4 in [7].

The following proposition forms the first connection between lifting projective representations
and trivial central extensions.

Proposition 2.34 ([7]). Let ρ be a projective representation of G in some complex Hilbert
space H. Then the following statements are equivalent.

i. The projective representation ρ lifts to a map π : G→ U+(H).

ii. The central extension in (2.4.3) is trivial

Proof. We mainly follow [7]. First, suppose that ρ lifts to a map π : G → U+(H), i.e.
ρ = q ◦ π. Define the map Φ : G→ ρ∗(U+(H)) by Φ(g) = (g, π(g)). This map is well-defined
since ρ(g) = (q ◦ π)(g). Moreover, it is a section of the map prG in (2.4.3), hence the central
extension (2.4.3) is trivial.

Now suppose the central extension is trivial. Let Φ : G → ρ∗(U+(H)) be a section of
prG. Define by prU : ρ∗(U+(H)) → U+(H) the projection on the second coordinate. Then
π := prU ◦ Φ is a continuous lift of ρ.

The proposition above forms the body of the proof of Theorem 2.27. In the rest of this
section, we will show that the central extension in (2.4.3) is trivial for semisimple simply-
connected Lie groups.

If G is a Lie group, we want to know whether ρ∗(U+(H)) admits the structure of a Lie
group as well. This would make everything much easier since we could pass to its Lie alge-
bra. In fact, this is question can be answerd affirmatively when we use the following result of
Gleason, Montgomery and Zippin, which is a part of the solution of Hilbert’s fifth problem.

Theorem 2.35 (Hilbert’s fifth problem [16]). Let H be a locally compact separable topological
group. Then H has a compatible Lie group structure if and only if there exists an open
neighbourhood around the identity which contains no nontrivial subgroup of H.

Proof. In fact, necessity of the condition is fairly easy to proof. We follow [7]. The idea will
be to construct an open neighbourhood which does not contain a nontrivial subgroup of H.

Suppose H has the structure of a Lie group and let h be its Lie algebra. Let Ω be a bounded
neighbourhood of 0 ∈ h such that expH : Ω→ exp(Ω) is a diffeomorphism onto an open neigh-
bourhood containing e. Define Ω′ = 1

2
Ω. Suppose expH(Ω′) contains a nontrivial subgroup K

and let eH 6= k ∈ K, so k = expH(X) for some unique nonzero X ∈ Ω′. Since Ω′ is bounded,
there exists a maximal n ∈ N such that 2nX ∈ Ω′. Note that 2n+1X ∈ Ω \ Ω′. Since expH is
injective on Ω, we get that k2n+1 = expH(2n+1X) /∈ expH(Ω′). Since k2n+1 ∈ K ⊆ expH(Ω′),
this is a contradiction. The sufficiency result is far more involved and we refer to [16].

We can apply this result to show that ρ∗(U+(H)) carries the structure of a Lie group.
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Theorem 2.36 ([7]). If G is a Lie group, then ρ∗(U+(H)) is a Lie group as well.

Proof. We mainly follow [7]. Every Lie group is locally Euclidean, hence locally compact.
Recall from topology that G is locally compact if H ⊆ G is a closed normal subgroup such
that H and G/H are locally compact. Since T̃ is locally compact, it follows by Lemma 2.33
that ρ∗(U+(H)) is locally compact. We will now construct an open neighbourhood of the
identity in ρ∗(U+(H)) which contains no nontrivial subgroups.

By Theorem 2.35, there exists an open neighbourhood O1 of the identity in T̃ containing
no nontrivial subgroups. The embedding φ : T̃ → ρ∗(U+(H)) is a homeomorphism onto a
compact subgroup, hence there exists an open neighbourhood O2 of e ∈ ρ∗(U+(H)) such
that φ−1(O2) = O1. Since G is a Lie group, there exists an open neighbourhood O3 of the
identity which does not contain a nontrivial subgroup. Define O = O2 ∩ (prG)−1(O3), which
is an open neighbourhood of the identity of ρ∗(U+(H)). Let H be a subgroup of ρ∗(U+(H))
contained in O. Then PrG(H) is a subgroup of G contained in O3, and must be trivial.
Since the sequence (2.4.3) is exact, H ⊆ ker(prG) = im(φ). Then φ−1(H) is a subgroup of T̃
contained in O1, hence φ−1(H) is trivial, so H is trivial. By Theorem 2.35, ρ∗(U+(H)) has
the structure of a Lie group.

From now on, we assume that G and K are Lie groups and that (G̃, φ, η) is a Lie group
extension of K by G. That is, G̃ is a Lie group and φ and η are Lie group homomorphisms
such that

{e} → G
φ−→ G̃

η−→ K → {e} (2.4.4)

is a short exact sequence. Differentiating each map in (2.4.4) yields an extension of Lie
algebras.

Definition 2.37 (Extension of Lie algebras [7]). Let g and h be Lie algebras. An extension of
k by g is a triple (h,Φ,Ψ) where h is a Lie algebra and Φ,Ψ are Lie algebra homomorphisms
such that

0→ g
Φ−→ h

Ψ−→ k→ 0 (2.4.5)

is a short exact sequence of Lie algebras. The extension is called central if Φ(g) is contained
in the centre of h.

We call the Lie algebra extension (2.4.5) trivial if there exists a section χ : k → h of Ψ.
Similar to Lemma 2.31, h and g ⊕ k are isomorphic Lie algebras if the extension (2.4.5) is
trivial.

Differentiating the Lie group extension (G̃, φ, η) in (2.4.4) yields a Lie agebra extension
(g̃, (dφ)e, (dη)e) of k by g. If the original extension (G̃, η, φ) was central, the Lie algebra
extension (g̃, (dφ)e, (dη)e) is central as well by Proposition 1.49.

Proposition 2.38 ([7]). The extension of Lie groups (2.4.4) with K simply-connected is
trivial if and only if the extension of Lie algebras (g̃, (dφ)e, (dη)e) is trivial.
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Proof. We mainly follow [7]. Suppose the Lie group extension (2.4.4) is trivial and let µ be a
section of η. Then η ◦µ = IdK . Differentiating at the identity yields that (dη)e ◦ (dµ)e = Idk,
so (dµ)e is a section of (dη)e and the extension of Lie algebras (g̃, (dφ)e, (dη)e) is trivial.

Conversely, assume that the extension of Lie algebras (g̃, (dφ)e, (dη)e) is trivial and let µ
be a section of (dη)e. Since K is simply-connected, Theorem 1.38 ensures that there exists a
unqiue Lie group homomorphism ψ : K → G̃ such that (dψ)e = µ. Since (dη)e ◦ (dψ)e = Idk
and K is simply-connected, we have that η ◦ ψ = IdK so the Lie group extension (2.4.4) is
trivial.

By Proposition 2.38, we have the following corollary to Proposition 2.34.

Corollary 2.39. Let G be a simply-connected Lie group and let ρ be a projective represen-
tation of G in a complex Hilbert space H. Then the following statements are equivalent.

i. The projective representation ρ lifts to a map π : G→ U+(H).

ii. The central extension

0→ t̃
(dφ)e−−−→ Lie(ρ∗(U+(H)))

(dprG)e−−−−→ g→ 0

is trivial.

In view of Corollary 2.39, we will further investigate central extensions of Lie algebras.
Suppose g and k are Lie algebras and suppose that (g̃, φ, η) is a Lie algebra extension of k by
g. Let {k1, ..., kn} be a basis of g. Since η is surjective, there exist {g̃1, ..., g̃n} ⊂ g̃ such that
η(g̃i) = ki. We define the linear map β : k → g̃ by β(ki) = g̃i. Note that we do not require
β to be a Lie algebra homomorphism. We remark that η ◦ β = Idk. We use the map β to
define the bilinear map Θ : k× k→ g̃ by

Θ(X, Y ) = [β(X), β(Y )]− β([X, Y ]).

Note that β is a Lie algebra homomorphism if and only if Θ = 0, hence the central extension
(g̃, φ, η) is trivial if and only if Θ = 0.

Remark 2.40. The map Θ satisfies the following two properties.

i. The map Θ is anticommutative, i.e. Θ(X, Y ) = −Θ(Y,X) for all X, Y ∈ k.

ii. The map Θ satisfies

Θ(X, [Y, Z]) + Θ(Y, [Z,X]) + Θ(Z, [X, Y ]) = 0 for allX, Y, Z ∈ k.

The first property follows from the anticommutativity of the Lie bracket and the linearity of
β. For the second property, remark that

η(Θ(X, Y )) = η([β(X), β(Y )])−η(β(X, Y )) = [η(β(X)), η(β(Y ))]−[X, Y ] = [X, Y ]−[X, Y ] = 0,
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for all X, Y ∈ k, since η is a Lie algebra homomorphism and η ◦ β = Idk. So, Θ(X, Y ) ∈
ker(η) = im(φ) for all X, Y ∈ g. Since im(φ) is central in g̃, we have that [f,Θ(X, Y )] = 0
for all f ∈ g̃. Therefore,

Θ(X, [Y, Z]) =[β(X), β([Y, Z])]− β([X, [Y, Z]]) = [β(X),−Θ(Y, Z)]+

[β(X), [β(Y ), β(Z)]]− β([X, [Y, Z]]) = [β(X), [β(Y ), β(Z)]]− β(X, [Y, Z]).

Now, the second property in Remark 2.40 follows from the bilinearity of Θ and the Jacobi
identity on g̃ and k.

Definition 2.41 (Cocycle). Let g and h be Lie algebras. A bilinear map Θ : g × g → h
satisfying property i and ii in Remark 2.40 is called a cocycle. We call a cocycle Θ exact if
there exists a linear map µ : g→ h satisfying Θ(X, Y ) = µ([X, Y ]).

If g and h are Lie algebras, we denote by Z2(g, h) the vector space of all cocycles Θ : g×g→ h
and we denote by B2(g, h) the vector space of all bilinear maps Θ : g × g → h such that
Θ(X, Y ) = µ([X, Y ]) for some linear map µ : g → h.. It follows by the Jacobi identity on g
that B2(g, h) ⊂ Z2(g, h).

Definition 2.42 (Second cohomology group). Let g and h be Lie algebras. We define by

H2(g, h) = Z2(g, h)/B2(g, h)

the second cohomology group of g in h.

If Θ and Ψ are two cocycles, we have that [Θ] = [Ψ] if and only if Θ − Ψ ∈ B2(g, h). In
particular if H2(g, h) = 0, every cocycle is exact.

We return to the question whether a given central extension is trivial. As the following
theorem shows, this is the case if the second cohomology group is 0.

Theorem 2.43 ([7]). Let g and k be Lie algebras such that H2(k,R) = 0. Then every central
extension (g̃, φ, η) of k by g is trivial.

Proof. We choose a linear map β : k → g̃ such that η ◦ β = Idk. We define the cocycle Θ
as above. Since Θ(X, Y ) ∈ ker(η) = im(φ) for all X, Y ∈ g by Remark 2.40, there exists a
bilinear map Θ̄ : k× k → g such that φ(Θ̄(X, Y )) = Θ(X, Y ). By bilinearity and injectivity
of φ, the map Θ̄ is a cocycle k× k→ h. We canonically identify H2(k, g) ∼= H2(k,R)⊗ g, so
H2(k, g) = 0. It follows that the cocycle Θ̄ is exact, so there exists a linear map ξ : k → g
such that Θ̄(X, Y ) = ξ([X, Y ]). Now, we claim that the map Ψ : k → g̃ defined by Ψ(X) =
β(X) + (φ ◦ ξ)(X) is a Lie algebra homomorphism satisfying η ◦Ψ = Idk. We compute that

Ψ([X, Y ]) = β([X, Y ]) + φ(ξ([X, Y ])) = β([X, Y ]) + Θ(X, Y ) = [β(X), β(Y )].

On the other hand, since im(φ) is in the centre of g̃, we get

[Ψ(X),Ψ(Y )] = [β(X) + φ(ξ(X)), β(Y ) + φ(ξ(Y ))] = [β(X), β(Y )],

so Ψ is a Lie algebra homomorphism. For the second part of the claim, remark that im(φ) =
ker(η), so

η(Ψ(X)) = (η ◦ β)(X) + η(φ(ξ(X))) = X + 0 = X,

so η ◦Ψ = Idk. We conclude that (g̃, φ, η) is trivial.
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We can now prove Theorem 2.27

Proof. The proof will consist of two parts. In the first part, we will show that H2(g,R) = 0.
Then, we will invoke Theorem 2.43 to conclude that

0→ t̃
(dφ)e−−−→ Lie(ρ∗(U+(H)))

(dprG)e−−−−→ g→ 0

is trivial and show that ρ lifts to a unitary representation π.

If G is a semisimple Lie group, its Lie algebra g is semisimple. Let ω : g × g → R be a
cocycle. Since the Killing form is non degenerate, there exists a linear map φ : g → g such
that ω(X, Y ) = κg(X,φ(Y )) for all X, Y ∈ g. Since ω is a cocycle, it follows that φ is a
derivation. By Proposition 1.32, there exists Z ∈ g such that φ = ad(Z), so

ω(X, Y ) = κg(X, ad(Z)(Y )) = κg(X, [Z, Y ]) = −κg(X, [Y, Z]) = −κg([X, Y ], Z) = λ([X, Y ]),

where λ(·) = −κg(·, Z). It follows that ω is exact and since ω was arbitrary, H2(g,R) = 0.

It follows by Theorem 2.43 that the central extension

0→ t̃
(dφ)η−−−→ Lie(ρ∗(U+(H)))

(dprG)e−−−−→ g→ 0

is trivial, hence ρ lifts to a map π : G → U+(H). Since π−1(U(H)) is both open and closed
in G, it equals G and it follows that π : G→ U(H) so every projective representation lifts to
a unitary representation.

The final goal of this thesis will be to find the physical relevant projective representations of
the connected Poincaré group SO(3, 1)◦ n R4. We will prove that it is semisimple and that
its second cohomology group vanishes. Unfortunately, this group is not simply connected.
Fortunately, the following theorem solves this problem.

Theorem 2.44 (Universal cover group, [2]). Let G be a connected Lie group. The pointed
universal cover (G̃, ẽ) of (G, e) is a Lie group and the covering map p : G̃→ G is a Lie group
homomorphism.

Proof. Since G is locally Euclidean, there exists a univeral covering manifold [8]. The rest of
this proof is standard in literature, see for example Theorem 7.7 in [2].

We will show that the univeral cover of the connected Poincaré group equals SL(2,C) nR4.
If ρ is a projective representation of SO(3, 1)◦ n R4, ρ̃ = ρ ◦ p is a projective representation
of SL(2,C) nR4 and lifts to a unitary representation.

To summarize this chapter, we have introduced continuous representations of topological
groups. First over any vector space, and later restricted ourselves to Hilbert spaces which
allow us to introduce unitary representations. Then, these unitary representations are closely
related to the projective representations which appear naturally in quantum mechanics. In
the case of Lie groups, we have shown that each projective representation has a lift to a
unitary representation if the Lie group is semisimple and simply-connected. We will apply
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this theorem to the connected Poincaré group SO(3, 1)◦ n R4, the symmetry group of flat
spacetime. This will allow us to qualitatively discuss the classification of elementary parti-
cles, as we see in Chapter 4. In the next chapter, we will develop the necessary techniques
to find all irreducible unitary representations of semidirect products.
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Chapter 3

Representations of semidirect
products

In this chapter, we will start with an investigate unitary representations of semidirect prod-
ucts. We will show that every irreducible unitary representation of a semidirect product
G = H n N with N abelian, is induced by a representation of a certain subgroup. The
route we take is a little unorthodox: all groups in this chapter will be finite to stay away
from the more advanced techniques in measure theory and functional analysis which will not
contribute directly to our understanding what is happening. We will first describe intuitively
what is happening for finite groups, omitting the proofs. Then, we will in fact develop the
techniques neccessary to prove a classification theorem on the irreducible unitary represen-
tations of G. Although we do not treat the case in full generality, this chapter may serve as
an upshot for a generalization to locally compact groups. For more details on this, see [7].

In this chapter, we will first recall some basics from representation theory of finite groups. We
will introduce induced and restricted representations and prove Frobenius reciprocity which
relates them. We will provide a description how to construct all irreducible representations
of G, but we omit the standard proof, as it cannot be generalized to Lie groups.

We will actually give a proof in the second part of this chapter, which can be extended
to Lie groups. We will introduce projection valued measures and systems of imprimitivity
and prove the Imprimitivity Theorem, which is a further tool for analyzing induced represen-
tations. Then we will focus on systems of imprimitivity of a semidirect products and invoke
the Imprimitivity Theorem to classify the irreducible unitary representations of G.

3.1 Character theory

This section is focused on the convenient property of a finite group that it admits only finitely
many non-equivalent irreducible representations. More precisely, we have the following result.

Theorem 3.1 ([10]). Let G be a finite group. There are only finitely many non-equivalent
irreducible representations (ρi, Vi)1≤i≤n where n is the number of conjugacy classes of G.
If (ρ, V ) is any finite dimensional representation of G, we have a unique decomposition in
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irreducible representations

V ∼=
k⊕
i=1

V ni
i V ni

i = Vi ⊕ Vi ⊕ ...⊕ Vi︸ ︷︷ ︸
nitimes

.

Moreover, we have

|G| =
n∑
i=1

dim(Vi)
2.

Proof. This is a combination of Corollary 10.7, Theorem 11.12 and Theorem 15.3 in [10].

It is insightful to study a representation of a finite group in terms of its character. We will
see that a representation of a finite group is completely determined by its character values.
Moreover, we can use its character as a useful tool to see whether the representation is
irreducible.

Definition 3.2 (Character of a representation, [17]). Let G be a finite group and let (ρ, V )
be a representation. The character χ of (ρ, V ) is the function χ : G → C defined by χ(g) =
Tr(ρ(g)), where Tr is the trace operator.

The most elementary properties of a character are summarized in the following proposition.

Proposition 3.3 ([17]). Let G be a finite group and (ρ, V ) an n-dimensional representation
of G with character χ. We have

i. χ(e) = n.

ii. χ(g−1) = χ(g) for all g ∈ G.

iii. The character χ is a class function, i.e. χ(ghg−1) = χ(h) for all g, h ∈ G.

Proof. For i, we remark that ρ(1) = IdV , hence χ(1) = Tr(IdV ) = n since V is n-dimensional.
For ii, note that ρ(g) has finite order for all g ∈ G. Therefore, the same must be true for the
eigenvalues λg,1, ..., λg,n of ρ(g) hence they have absolute value one. Then

χ(g) = Tr(ρ(g)) =
n∑
i=1

λg,i =
n∑
i=1

λ−1
g,i = Tr(ρ(g−1)) = χ(g−1).

Property iii follows from the cyclicity of the trace, so

χ(ghg−1) = Tr(ρ(ghg−1)) = Tr(ρ(g)ρ(h)ρ(g)−1) = Tr(ρ(g)) = χ(g).

We denote by C(G) the vector space of functions φ : G→ C.

Definition 3.4 (Inner product on C(G) [17]). Let G be a finite group and let. We define the
map 〈·, ·〉G : C(G)× C(G)→ C by

〈φ, ψ〉G =
1

|G|
∑
g∈G

φ(g)ψ(g). (3.1.1)
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It is not difficult to check that (3.1.1) is an inner product on C(G). Moreover, it is a real
number if φ, ψ are characters of G. This inner product can be used for further analysis of
characters.

Theorem 3.5 ([10]). Let G be a finite group and let (ρV , V ) and (ρW ,W ) be representations
of G. We have

i. If the representation V is irreducible, then 〈χV , χV 〉G = 1.

ii. If V and W are not equivalent, 〈χV , χW 〉G = 0.

iii. If V is irreducible the number of times that V occurs in the decomposition of W is the
number 〈χV , χW 〉G ∈ N.

iv. If 〈χV , χV 〉G = 1, the representation V is irreducible.

Proof. The first two assertions follow from Theorem 14.12 in [10]. For iii, we decompose W
in irreducible representations as in theorem 3.1, so W ∼= (V1⊕ ...⊕V1)⊕ (V2⊕ ...⊕V2)⊕ ...⊕

(Vk ⊕ ... ⊕ Vk) where for each i, there are di factors of Vi. Then χW =
k∑
i=1

diχVi and using i

and ii, we see that 〈χVi , χW 〉G = di ∈ N, so 〈χV , χW 〉G is the number of times that V occurs
in the decomposition of W .

For iv, We again decompose V ∼=
k⊕
i=1

V di
i with each Vi irreducible. Then 1 = 〈χV , χV 〉G =∑k

i=1 d
2
i , hence there is a unique i such that di = 1 and all other di are zero, so V ∼= Vi and

V is irreducible.

We call characters corresponding to 1-dimensional representations linear characters.

Lemma 3.6. Let G be a group and let χ be any character of G and suppose that λ is a
linear character of G. Then χλ is a character of G which is irreducible if and only if χ is
irreducible.

Proof. Let ρ : G→ GL(V ) be the representation corresponding to χ. Then λρ : G→ GL(V )
defined by λρ(g) = λ(g)ρ(g). Since ρ and λ are both homomorphisms, it follows directly that
λρ is a representation of G with character χλ. Since λ is a root of unity, we get

〈χλ, χλ〉G =
1

|G|
∑
g∈G

χ(g)λ(g)χ(g)λ(g) =
1

|G|
∑
g∈G

χ(g)χ(g) = 〈χ, χ〉G,

so χλ is irreducible if and only if χ is irreducible, by the previous theorem.

By Schur’s lemma, all irreducible representations of an abelian group G are linear. Thus,
the irreducible characters of G are group homomorphisms G→ C∗. By the previous lemma,
they form a group Ĝ = hom(G,C∗), which we call the character group. Since an abelian

group G has |G| different conjugacy classes, G has |G| different characters hence |G| = |Ĝ|.

We end this section with the following example, which shows how to apply the basic as-
pects of representation theory we have just discussed to the group D8.
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Example 3.7. Consider the dihedral group D8 = 〈a, b|a4 = b2 = e, bab = a−1〉. Define the
matrices A and B by

A =

(
0 −1
1 0

)
B =

(
1 0
0 −1

)
.

Define the function ζ : D8 → GL(2,R) by ζ(biaj) = BiAj. Since A4 = B2 = IdR2 and
BAB = A3, ζ defines a representation of D8. We will now construct its character, χζ. By
part iii of Proposition 3.3, we only have to determine χζ on the conjugacy classes of D8,
which are {e}, {a, a3}, {a2}, {b, ba2}, {ba, ba3}. We can now construct the character table of
χζ.

xG e a a2 b ba
|xG| 1 2 1 2 2
χζ 2 0 -2 0 0

We compute that 〈χζ , χζ〉D8 = 1
8
(4 + 0 + 4 + 0 + 0) = 1, so the representation ζ is irreducible.

3.2 Representations of semidirect products

In this section, we will show how to obtain all irreducible representations of a semidirect
product G = H n N , with N abelian, from certain subgroups. To describe this in more
detail, we first have to introduce the notions of restricted and induced representations.

Suppose that G is a finite group with a subgroup H. If (ρ, V ) is a representation of a
group G, the restriction (ρ|H , V ) is a representation of H. We will denote this representation
by ResGH(ρ) and we call it the restricted representation. More fascinating is the fact that ev-
ery representation of H induces a representation of G, known as the induced representation.
We will now give a characterization of this representation.

Definition 3.8 (Induced representation [17]). Let G be a finite group with subgroup H and
suppose (ρ, V ) is a representation of H. Define the vector space

IndGH(V ) = {φ : G→ V : φ(hg) = ρ(h)φ(g) for all g ∈ G, h ∈ H}.

We define the induced representation IndGH(ρ) of G by H to be the vector space IndGH(V )
together with the group action (g · φ)(g′) = φ(g′g).

Proposition 3.9. The action of G on IndGH(V ) is well-defined action.

Proof. We check that g · φ ∈ IndGH(V ) for all g ∈ G. We see that

(g · φ)(hg′) = φ(hg′g) = ρ(h)φ(g′g) = ρ(h)(g · φ)(g′)

for all g′ ∈ G and h ∈ H, so g · φ ∈ IndGH(V ). A similar computation shows that e · φ = φ
and g2 · g1 · φ = g1g2 · φ, so the action is well-defined.
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If G is a finite group and if H is a subgroup of G, we can consider a partition of G in right
cosets of H in G. That is,

G =
d∐
i=1

Hgi

for some representatives {g1, ..., gd} where d = |G|/|H|. We set Ci = Hgi, then we define the
right coset space H\G = {C1, ..., Cd}.

Definition 3.10 (Support). Let G be a finite group and let V be a vector space. Let f : G→
V be a map. Then we we define its support, denoted by supp(f), to be {g ∈ G : f(g) 6= 0}.

If f ∈ IndGH(V ), then we have that g ∈ supp(f) if and only if hg ∈ supp(f) for all h ∈ H. In
particular supp(f) is a union of right cosets of H in G. For C ∈ H\G, we set VC to be the
subspace of functions f ∈ IndGH(V ) supported in C.

Proposition 3.11 ([19]). Let G be a finite group and let H be a subgroup of H and let (V, ρ)
be a representation of H. Then we have the following.

i. The map ⊕
C∈H\G

VC → IndGH(V ), (fC)C∈H\G 7→
∑

C∈H\G

fC

is an isomorphism of vector spaces.

ii. Let C ∈ H\G and choose gC ∈ G such that C = HgC. Then the map evgC : VC → V ,
f 7→ f(gC) is an isomorphism of vector spaces.

Proof. The map in i is clearly linear. We will give an inverse map for the map in i. Let
C ∈ H\G be a right coset of H in G. For f ∈ IndGH(V ), we set fC be the map which equals
f on C and is zero everywhere else. Then fC ∈ VC for all C ∈ H\G. Define the linear map
IndGH(V ) →

⊕
C∈H\G

VC by f 7→ (fC)C∈H\G. This map is clearly linear and it is a two-sided

inverse for the map in i since
∑

C∈H\G fC = f .

The map in ii is linear. We will again give an inverse map. Let v ∈ V and define fv ∈ VC by
fv(hgC) = ρ(h)v and fv is zero elsewhere. Then the map v 7→ fv is a two-sided inverse for
the map in ii.

We deduce from Proposition 3.11 that

dim(IndGH(V )) =
∑

C∈H\G

dim(VC) =
d∑
i=1

dim(V ) = d dim(V ) =
|G|
|H|

dim(V ). (3.2.1)

Definition 3.12 ([10]). Let G be a finite group and let (ρ, V ) and (ρ′, V ′) be two represen-
tations of G. Then we set homG(V, V ′) to be the vector space space of G-equivariant maps
V → V ′.
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Proposition 3.13 ([10]). Let G be a finite group and suppose that (ρ, V ) and (ρ′, V ′) are
two representations of G with characters χV and χV ′. Then

〈χV , χV ′〉G = dim homG(V, V ′).

Proof. This is Theorem 14.24 in [10].

In the setting of the lemma above, we agree to write 〈V, V ′〉G = 〈χV , χV ′〉G. We call two
representations disjoint if 〈V, V ′〉G = 0.

The following theorem shows that the induced and restricted represenations are closely re-
lated.

Theorem 3.14 (Frobenius reciprocity,[17]). Let G be a finite group and let H be a finite
subgroup of G. If (ρ, V ) is a representation of G and (π,W ) a representation of H, we have
that

homG(V, IndGH(W ))) ∼= homH(ResGH(V ),W ) (3.2.2)

Proof. We present a proof which is based on [17] using character theory. Suppose f : H → C
is a class function. By Proposition 20 in [17], the function

IndGH(f)(g) =
1

|H|
∑
t∈G

t−1gt∈H

f(t−1gt). (3.2.3)

is a class function on G. If χ is the character of π, then IndHG (χ) is the character of IndHG (π)
[17].

Now, we can extend the character χ to a function χ◦ : G → C by setting χ◦(g) = 0 on
for g ∈ G \H. Suppose ψ is the character of ρ. Then, we compute that

〈ψ, IndGH(χ)〉G = 〈IndGH(χ), ψ〉G =
1

|G|
∑
g∈G

IndGH(χ)(g)ψ(g−1)

=
1

|G||H|
∑
g∈G

( ∑
t∈G

t−1gt∈H

χ(t−1gt)

)
ψ(g−1)

=
1

|G||H|
∑
g∈G

∑
t∈G

χ◦(t−1gt)ψ(g−1)

=
1

|G||H|
∑
t∈G

∑
h∈H

χ(h)ψ(th−1t−1)

=
1

|H|
∑
h∈H

χ(h)ψ(h−1) = 〈χ,ResGH(ψ)〉H = 〈ResGH(ψ), χ〉H ,

where we have used that t−1gt ∈ H if and only if there exists h ∈ H such that g = tht−1. By
proposition 3.13, it follows that

dim homG(V, IndGH(W )) = dim homH(ResGH(V ),W ) <∞,

from which we deduce that homG(V, IndGH(W )) ∼= homH(ResGH(V ),W ).
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Suppose G is a finite group with subgroup H. If (ρ,W ) is an irreducible representation of
H, it is an interesting question to ask under which conditions the induced representation of
G by H is irreducible as well. If χ is a character of ρ, we have by Frobenius reciprocity that

〈IndGH(χ), IndGH(χ)〉G = 〈ResGH(IndGH(χ)), χ〉H . (3.2.4)

This means that our question simply reduces to the question how ResGH(IndGH(W )) splits into
irreducible representations. For our purposes (classifying the irreducible representations of
semidirect products), we can restrict ourselves to the case where H is a normal subgroup of G.

Suppose that H is a normal subgroup of G and that (ρ,W ) is a representation of H. For
each g ∈ G, we define a representation (ρg,W g) of H over the same vector space W by
ρg(h) = ρ(ghg−1). If g and g′ belong to the same coset C of H in G, there exists some h ∈ H
such that g′ = hg. It follows that the invertible map ρ(h) : W g → W g′ is an H-equivariant
isomorphism, so W g ∼= W g′ . The following proposition shows how ResGH(IndGH(W ))

Proposition 3.15 (Mackey’s restriction formula, [17]). Let G be a finite group and let H be
a normal subgroup of G. Let {g1, ..., gd} be a set of representatives for the set of right cosets
H\G. Suppose that (ρ,W ) is a representation of H. We have the following decomposition of
ResGH(IndGH(W )).

ResGH(IndGH(W )) ∼=
d⊕
i=1

W gi .

Proof. By Theorem 14.21 in [10], it suffices to proof that the characters of both sides are the
same. Let χ be the character of (ρ,W ). Since H is a normal subgroup, the character on the
left hand side is the function H → C which maps h 7→ 1

|H|
∑

g∈G χ(ghg−1) =
∑d

i=1 χ(gihg
−1
i ),

which is exactly the character of the right hand side, so we are done.

Now that we know that the decomposition of ResGH(IndGH(W ))) for normal subgroups, we can
infer necessary and sufficient conditions for the induced representation to be irreducible.

Theorem 3.16 (Mackey’s irreducibility criterion, [17]). Let G be a finite group and let H
be a normal subgroup of G. Let {g1, ..., gd} be representatives for the coset space H\G. If
(ρ,W ) is a representation of H, the induced representation IndGH(W ) of G is irreducible if
and only if the following two condintions hold.

i. The representation (ρ,W ) is irreducible.

ii. The two representations W and W gi of H are disjoint for all gi 6= e.

Proof. We follow [17] for this proof. The representation IndGH(W ) is irreducible if and only if

〈IndGH(W ), IndGH(W )〉G = 1.

By (3.2.4) and Proposition 3.15, we have that

〈IndGH(W ), IndGH(W )〉G = 〈ResGH(IndGH(W )),W 〉H =
d∑
i=1

〈W gi ,W 〉H .
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We may assume that g1 = e, so we have that

〈IndGH(W ), IndGH(W )〉G = 〈W,W 〉H +
d∑
i=2

〈W gi ,W 〉H ≥ 1 +
d∑
i=2

〈W gi ,W 〉,

so 〈IndGH(W ), IndGH(W )〉G = 1 if and only if 〈W,W 〉H = 1 and 〈W gi ,W 〉H = 0 for all gi 6= e,
which are precisely the conditions i and ii.

Armed with Mackey’s irreducibility criterion, we can give a classification of all irreducible
representation of a semidirect product G = HnN , with N abelian. The following description
is based on [17].

Recall from Definition 1.43 that H acts on N by automorphisms. This action induces a
natural action of H on the character group N̂ given by

(h · χ)(n) = χ(φh−1(n)).

The inverse is necessary to obtain a well-defined left action. For χ ∈ N̂ , we denote the stabi-
lizer subgroup by Hχ = {h ∈ H : h · χ = χ}. Now, let (χi)1≤i≤k be the set of representatives

of the orbits of H in N̂ . For each i, we define Gi = Hχi nN as a subgroup of G. and extend
each character χi to a function χ◦i : Gi → C∗ by χ◦i (h, n) = χi(n). Since Hχi stabilizes χi, we
see that

χ◦i
(
(h1, n1)(h2, n2)

)
= χ◦i (h1h2, n1φh2(n2)) = χi(n1φh2(n2)) =︸︷︷︸

χi is linear

χi(n1)χi(φh2(n2))

= χi(n1)(h−1
2 · χi)(n2) = χi(n1)χi(n2) = χ◦i (h1, n1)χ◦i (h2, n2),

so χ◦i defines a one-dimensional representation of Gi. Now, let ρi be an irreducible represen-
tation of Hχi We compose ρi with the natural projection Gi → Hχi to obtain an irreducible
representation ρ̃i of Gi. Note that the irreducibility is preserved since the characters of ρ̃i and
ρi agree. Then, consider the tensor product representation χ◦i ⊗ ρ̃i of Gi. By irreducibility of
ρ̃i, this representation is again irreducible. Now, let θi,ρ = IndGGi(χ

◦
i⊗ρ̃i) be the corresponding

induced representation of G. The following theorem shows that we have indeed classified all
irreducible representations of G.

Theorem 3.17 ([17]). For θi,ρ as above, we have the following.

i. The representation θi,ρ is irreducible for each i and each ρ.

ii. If θi,ρ and θi′,ρ′ are isomorphic, then i = i′ and ρ is isomorphic to ρ′.

iii. Every irreducible representation of G is isomorphic to one of the θi,ρ.

Thus, we have classified all irreducible representations of G.

Proof. A proof of this theorem can be found in [17]. We do not prove it here, since the proof
uses techniques which are not generalizable to Lie groups. The proof in [17] primarily relies
on Mackey’s irreducibility criterion (Theorem 3.16) and Theorem 3.1.

40



Representations of semidirect products

3.3 Systems of Imprimitivity

The classification of all irreducible representations of G = H n N (Theorem 3.17), uses
specific results which only apply for finite groups. Unfortunately, this method cannot be
extended to Lie groups, which is what we aim for after all. In this section, we will introduce
systems of imprimitivity, which are a method of analyzing induced representations. These
systems will allow us to derive the result of Theorem 3.17 in such a way that this can be
generalized to Lie groups. This generalization is performed in [7]. In this section, we will
reduce the arguments in [7] to just finite groups to abstain ourselves from the functional
analysis and topological measure theory which is required for a full description, but it will
still give a good overview of what is happening in the general case.

Essential for a system of imprimitivity is the notion of a projection valued measure.

Definition 3.18 (Projection valued measure,[7]). Let X be a set and let H be a finite di-
mensional Hilbert space. A projection valued measure on X is a map P : P(X) → S(H) =
{A ∈ end(H) : A∗ = A = A2}, where P(X) is the power set of X, satisfying

i. P (V1 ∪ V2) = P (V1) + P (V2) for all disjoint V1, V2 ∈ P(X).

ii. P (V1 ∩ V2) = P (V1)P (V2) for all V1, V2 ∈ P(X).

iii. P (X) = IdH

It follows directly from property i that P (∅) = 0. With the definition of a projection valued
measure, we can define systems of imprimitivity.

Definition 3.19 (System of imprimitivity, [7]). Let G be a group which acts on some set X.
A system of imprimitivity of G based on X is a pair (ρ, P ) where ρ is a unitary representation
of G in a Hilbert space H and P is a projection valued measure P(X)→ S(H) on X satisfying

P (g · V ) = ρ(g)P (V )ρ(g)−1 (3.3.1)

for all g ∈ G and all V ∈ P(X).

If the group G acts on some set X, we call X a G-set. As in representation theory, we have
a similar notion of equivalent and irreducible systems of imprimitivity.

Definition 3.20 (Equivalent and irreducible systems of imprimitivity, [7]). Suppose that G is
a finite group and that (ρ1,H1) and (ρ2,H2) are two unitary representations of G. If (ρ1, P1)
and (ρ2, P2) are two systems of imprimitivity based on a G-set X, we call them equivalent if
there exists an isometric isomorphism T : H1 → H2 such that:

i. T is G-equivariant, so T ◦ ρ1(g) = ρ2(g) ◦ T for all g ∈ G.

ii. T intertwines P1 and P2. That is, T ◦ P1(E) = P2(E) ◦ T for all E ⊂ X.

If (ρ, P ) is a system of imprimitivity of G based on a G-set X, an invariant subspace of the
system (ρ, P ) is a linear subspace W ⊂ H such that
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i. W is invariant for ρ, i.e. ρ(g)W ⊂ W for all g ∈ G.

ii. W is invariant for P , i.e. P (E)W ⊂ W for all E ⊂ X.

We call the system (ρ, P ) irreducible if {0} and H are the only invariant subspaces.

If G is a finite group with a subgroup H, we will show that each unitary representation of
H induces a system of imprimitivity of G based on the coset space H\G. Then, we will
prove the Imprimitivity Theorem (Theorem 3.22) which states that each irreducible system
of imprimitivity of G based on H\G is induced by an irreducible unitary representation of H,
and that this representation is unique up to equivalence. Then, we will use the Imprimitivity
Theorem to rederive the classification of Theorem 3.17.

We will first show how to induce a system of imprimitivity by a unitary representation.
Suppose G is a group with subgroup H and suppose (ρ,W ) is a unitary representation of
H. We endow the vector space IndGH(W ) with the following inner product to turn it into a
Hilbert space:1

〈φ, ψ〉IndGH(W ) =
1

|H|
∑
g∈G

〈φ(g), ψ(g)〉W .

Then the induced representation of G by H is unitary, since

〈g · φ, g · ψ〉IndGH(W ) =
1

|H|
∑
g′∈G

〈φ(g′g), ψ(g′g)〉W =
1

|H|
∑
g′′∈G

〈φ(g′′), ψ(g′′)〉W = 〈φ, ψ〉IndGH(W ).

We have a natural left action of G on the coset space H\G given by g ·Hg′ = Hg′g−1. To
finish this construction, define the map P ρ : P(H\G) → S(IndGH(W )) by P ρ(E)φ = IEφ
where IE is the indicator function of E, where E is seen as a subset of G.

Proposition 3.21. In the setting above, the pair (IndGH(ρ), P ρ) is a system of imprimitivity
of G based on the coset space H\G.

Proof. We should prove that P ρ is a projection valued measure satisfying (3.3.1). we re-
mark that P ρ(E) is linear for all E ⊂ H\G and that IEφ ∈ IndGH(W ) for all E ⊂ H\G
and all φ ∈ IndGH(W ), so P ρ is well-defined. Next, we note that IH\Gφ = φ for all φ ∈
IndGH(W ), so P ρ(H\G) = IdIndGH(W ). Note that IV1∩V2 = IV1IV2 for all V1, V2 ⊆ H\G, so

P ρ(V1 ∩ V2) = P ρ(V1)P ρ(V2). If V1 and V2 are disjoint, we have that IV1∪V2 = IV1 + IV2 , so
P ρ(V1∪V2) = P ρ(V1)+P ρ(V2). It follows similarly that (P ρ(V ))2 = P ρ(V ) for all V ⊂ H\G.

Now, we show that P ρ(V ) is self-adjoint for all V . Recall that (P ρ(V ))∗ is the unique
map such that

〈P ρ(V )φ, ψ〉IndGH(W ) = 〈φ, P ρ(V )∗ψ〉IndGH(W ).

Writing out the left hand side yields

〈P ρ(V )φ, ψ〉IndGH(W ) =
1

|H|
∑
g∈G

〈IV φ(g), ψ(g)〉W =
1

|H|
∑
g∈G

〈φ(g), IV ψ(g)〉W = 〈φ, P ρ(V )ψ〉IndGH(W ),

1This can be done for Lie groups by changing the summation into an integral. The requirement that ρ is
unitary is only essential when one is dealing with Lie groups, which is Proposition 9.4 in [7]. We choose not
to omit it as it will not turn out to be a burden (by Example 2.21) and it resembles the general theory more.
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so P ρ(V )∗ = P ρ(V ) for all V ⊂ H\G. We conclude that P ρ is a projection valued measure.

To show (3.3.1), we have to show that (Ig·Eφ)(x) = (g · IE(g−1 · φ))(x) for all x ∈ G. The
left hand side equals φ(x) for x ∈ g · E and zero otherwise. On the other hand, the right
hand side equals (g · IE(g−1 · φ))(x) = IE(g−1 · φ)(xg), so is equal to φ(x) for xg ∈ E and to
zero for xg not in E. Note that xg ∈ E if and only if x ∈ Eg−1 = g · E, so indeed we have
that Ig·Eφ = g · IE(g−1 · φ). We conclude that (IndGH(ρ), P ρ) is a system of imprimitivity of
G based on the coset space H\G.

We call the system of imprimitivity (IndGH(ρ), P ρ) the system of imprimitivity induced by ρ.
Now, we arrive at the promised Imprimitivity Theorem.

Theorem 3.22 (Imprimitivity theorem, [7]). Let G be a finite group with subgroup H. Sup-
pose that (ρ, P ) is a system of imprimitivity of G based on the coset space H\G. There exists
a unitary representation ξ of H such that (IndGH(ξ), P ξ) is equivalent to (ρ, P ). This equiva-
lence determines ξ uniquely (up to equivalence). Moreover, the system (ρ, P ) is irreducible if
and only if the representation ξ is.

Before we can present a proof of Theorem 3.22, we need an equivalent characterization of a
system of imprimitivity. Let G be a finite group with subgroup H and let (ρ,H) be a unitary
representation of G. Suppose that P : P(H\G) → S(H) is a projection valued measure on
H\G. Then P induces a linear map P̄ : C(H\G)→ end(H) by

P̄ (f) =
∑

x∈H\G

f(x)P (x)

The action of G on the coset space H\G induces an action on C(H\G) by

(g′ · f)(Hg) = f(Hgg′−1).

Then (ρ, P ) is a system of imprimitivity of G based on H\G if and only if

P̄ (g · f) = ρ(g)P̄ (f)ρ(g)−1 (3.3.2)

for all f ∈ C(H\G) and all g ∈ G, so (3.3.1) is equivalent with (3.3.2).

We will now present a proof of the Imprimitivity Theorem.

Proof. The proof will go in several steps. First, we will construct a unitary representation ξ
of H. Then, we will prove that (ρ, P ) ∼= (IndGH(ξ), P ξ) and that this equivalence determines
ξ uniquely. We finish this proof by showing that (ρ, P ) is irreducible if and only if ξ is irre-
ducible.

Suppose H is the representation space of ρ. We define the sesquilinear form β : H×H → C
by

β(v, w) = 〈P̄ (IHe)v, w〉H.
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Then its kernel ker(β) = {v ∈ H : β(v, w) = 0 for allw ∈ H} is an H-invariant linear subspace
of H, since

β(h · v, h · w) = 〈P̄ (IHe)(h · v), h · w〉H = 〈h · P̄ (IHe)v, h · w〉H = 〈P̄ (IHe)v, w〉H = β(v, w),

where we have used that (ρ,H) is a unitary representation and that P̄ (IHe) = P̄ (h · IHe) =
h · P̄ (IHe) · h−1. The form β factors to a well-defined sesquilinear form β̄ : H/ ker(β) ×
H/ ker(β) → C. Indeed, this map is well defined since if v1 − v2 ∈ ker(β), then β(v1, w) =
β(v2, w) for all w ∈ H. In fact, β̄ is positive definite, hence an inner product on H/ ker(β),
since

β̄([v], [v]) = β(v, v) = 〈P̄ (IHe)v, v〉H = 〈P̄ (IHe)v, P̄ (IHe)v〉H ≥ 0,

and we have equality if and only if [v] = 0. Indeed, if β([v], [v]) = 0, we have that β(v, v) = 0,
so P̄ (IHe)v = 0. It follows that β(v, w) = 0 for all w ∈ H, hence v ∈ ker(β), which is equiva-
lent with saying that [v] = 0.

We denote H̄ = H/ ker(β) and we endow this vector space with the inner product β̄ such that
it becomes a Hilbert space. We define the representation ξ : H → GL(H̄) by ξ(h)v̄ = [ρ(h)v],
where [v] = v̄. Since ker(β) is H-invariant, the representation ξ is well-defined. By the com-
putation above, the representation ξ is unitary.

Now, we prove that the system of imprimitivity (ρ, P ) is equivalent to (IndGH(ξ), P ξ). Define
T : H → IndGH(H̄) by T (v)g = [ρ(g)v]. Indeed, T (v) ∈ IndGH(H̄) since

T (v)(hg) = [ρ(hg)v] = [ρ(h)ρ(g)v] = ξ(h)[ρ(g)v] = ξ(h)T (v)g.

We will show that T is the required isomorphism. First, we show that T is a G-equivariant
isometric isomorphism. The map T is G-equivariant, since

(g · T (v))(g′) = T (v)(g′g) = [ρ(g′g)v] = [ρ(g′)ρ(g)v] = T (ρ(g)v)(g′).

The map T is an isometry, since

〈Tv, Tw〉IndGH(H̄) =
1

|H|
∑
g∈G

β̄([ρ(g)v], [ρ(g)w]) =
1

|H|
∑
g∈G

β(ρ(g)v, ρ(g)v) =

1

|H|
∑
g∈G

〈P̄ (IHe)ρ(g)v, ρ(g)w〉H =
1

|H|
∑
g∈G

〈ρ(g)P̄ (IHg)v, ρ(g)w〉H =

1

|H|
∑
g∈G

〈P̄ (IHg)v, w〉H =
1

|H|
〈|H|IdHv, w〉 = 〈v, w〉H,

where we have used that ρ is a unitary representation and that the cosets of H in G are
disjoint. Since T is an isometry, it is necessarily inective. Surjectivity follows by a similar
computation, and we conclude that T is a G-equivariant isometric isomorphispm.

We still have to show that T intertwines P and P ξ. It suffices to show that T intertwines
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P̄ (f) and P̄ ξ(f) for all f ∈ C(H\G). Let v′ ∈ IndGH(H̄) arbitrary and choose w ∈ H (T is
surjective) such that Tw = v′. Note that for all f ∈ C(H\G), we have that

〈P̄ ξ(f)Tv, v′〉IndGH(H̄) =
1

|H|
∑
g∈G

β̄(f(Hg)[ρ(g)v], [ρ(g)w]) =
1

|H|
∑
g∈G

β(f(Hg)ρ(g)v, ρ(g)w) =

1

|H|
〈f(Hg)P (He)ρ(g)v, ρ(g)w〉H =

1

|H|
∑
g∈G

〈ρ(g) f(Hg)P (Hg)v, ρ(g)w〉H =

1

|H|
∑
g∈G

〈f(Hg)P (Hg)v, w〉H = 〈P̄ (f)v, w〉H = 〈T (P̄ (f)v), v′〉IndGH(H̄),

By nondegeneracy of the inner product, we conclude that T ◦ P̄ (f) = P̄ ξ(f) ◦ T , for all
f ∈ C(H\G), hence T intertwines P and P ξ and we conclude that the systems of imprimi-
tivity (ρ, P ) and (IndGH(ξ), P ξ) are equivalent.

Now, we show the uniqueness of ξ. Suppose that (ζ,H′) is another unitary representation of
H such that (IndGH(ζ), P ζ) ∼= (ρ, P ), there exists an isometric isomorphism S : H → IndGH(H′)
intertwining IndGH(ζ) and ρ and intertwining P and P ζ . For arbitrary v, w ∈ H, we get

β(v, v) =〈P (He)v, v〉H = 〈SP (He)v, Sv〉IndGH(H′) =
1

|H|
∑
g∈G

〈(SP (He)v)(g), Sv(g)〉H′ =

1

|H|
∑
g∈G

〈(P ζ(He)Sv)(g), Sv(g)〉H′ =
1

|H|
∑
g∈G

〈IHe(Sv)(g), Sv(g)〉H′ =

1

|H|
∑
h∈H

〈Sv(h), Sv(h)〉H′ = 〈Sv(e), Sv(e)〉H′ ,

where we used in the first line that S is an isometry, that S intertwines P and P ζ in the
second line and that ζ is unitary in the last line. It follows that the map v 7→ (Sv)(e) factors
through ker(β) to a well-defined H-equivariant isomorphism H/ ker(β) → H′, [v] 7→ Sv(e).
Indeed, if [v] = [w], we have that v − w ∈ ker(β). Hence, we have that

〈S(v − w)(e), S(v − w)(e)〉H′ = β(v − w, v − w) = 0,

so S(v−w)(e) = 0. By linearity of S, it follows that Sv(e) = Sw(e) hence the canonical map
H/ ker(β) → H′ is well-defined. It is H-invariant since S intertwines both representations
and it is an isomorphism, by a similar computation as above.

Lastly, we show that (ρ, P ) is irreducible if and only if (ξ, H̄) is. If (ξ, H̄) is reducible,
we can decompose H̄ as H̄ = H1 ⊕ H2. Let ξ1, ξ2 denote the restriction of ξ to H1 and
H2. It follows readily that (IndGH(ξ), P ξ) ∼= (IndGH(ξ1), P ξ1)⊕ (IndGH(ξ2), P ξ2), hence (ρ, P ) is
reducible.

Conversely, assume that (IndGH(ξ), P ξ) is reducible, hence it splits into two nontrivial sys-
tems of imprimitivity of G based on H\G, so (IndGH(ξ), P ξ) ∼= (ξ1, P 1) ⊕ (ξ2, P 2). Each of
the summands is induced by a unitary representation ηi with i = 1, 2 of H. Let η = η1 ⊕ η2,
then (IndGH(η), P η) ∼= (ξ1, P 1) ⊕ (ξ2, P 2). By uniqueness, it follows that ξ ∼= η = η1 ⊕ η2,
hence ξ is reducible. This concludes the proof of Theorem 3.22.
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3.4 Systems of imprimitivity and semidirect products

With the Imprimitivity Theorem, we will rederive the result of Theorem 3.17. We will assume
throughout this section that G = H nN where N is abelian. We follow Chapter 11 from [7].
First, we need the following preliminary definitions.

Definition 3.23 ([7]). Let N be an abelian group and let (π,H) be a unitary representation
of N . For f ∈ C(N), we define

π(f) =
∑
n∈N

f(n)π(n).

Recall that we denoted the character group of an abelian group N by N̂ . The character
group allows us to define Fourier transforms of class functions on N .

Definition 3.24 (Discrete Fourier transform, [7]). Let N be an abelian group with f ∈ C(N).

We define the discrete Fourier transform of f by f̂ : N̂ → C

f̂(χ) =
∑
n∈N

f(n)χ(n).

Note that the discrete Fourier transform in Defintion 3.24 is bijective. By orthogonality of
the irreducible characters, we can decompose f as f =

∑
χ∈N̂〈f, χ〉Nχ. Then the Fourier

transform is given by f̂(χ) = |N |〈f, χ〉N . It follows that the inverse Fourier transform is then
given by f = 1

|N |
∑

χ∈N̂ f̂(χ)χ.

Our method will be centered around the Imprimitivity Theorem. First, we will show that
for each unitary representation π of N , there exists a unique associated projection valued
measure Pπ based on N̂ such that π(f) = P̄π(f̂). We will use this associated projection
valued measure to establish a one-to-one correspondence between irreducible unitary repre-
sentations of G and irreducible systems of imprimitivity of H based on N̂ . In order to invoke
the Imprimitivity Theorem, we transfer this system of imprimitivity to a system of imprimi-
tivity of G based on a coset space of some subgroup, and we use this system of imprimitivity
to classify all irreducible representations of G.

First, we describe the associated projection valued measure of a unitary representation.

Proposition 3.25 ([7]). Let N be an abelian group and let (π,H) be a unitary representation

of N . There exists a unique associated projection valued measure Pπ on N̂ satisfying π(f) =
P̄π(f̂) for all f ∈ C(N).

Proof. For the moment, suppose such a projection valued measure exists. Writing out the
definitions, it must satisfy for all f ∈ C(N)∑

n∈N

f(n)π(n) =
∑
χ∈N̂

f̂(χ)Pπ(χ) =
∑
n∈N

∑
χ∈N̂

f(n)χ(n)Pπ({χ}).
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In particular, if we take f = δn
′

n , we obtain that it should satisfy

π(n′) =
∑
χ∈N̂

χ(n′)Pπ({χ}),

so for ψ ∈ N̂ , we get that∑
n∈N

π(n)ψ(n) =
∑
n∈N

χ(n)ψ(n)Pπ({χ}) = |N |
∑
χ∈N̂

〈χ, ψ〉NPπ({χ}) = |N |Pπ({ψ}), (3.4.1)

since irreducible characters are orthogonal. Note that a projection valued measure is com-
pletely determined by its values on the singletons, hence Pπ is uniqe if it exists. Also, we
have obtained a possible definition for Pπ. Thus, if we prove that Pπ defined in (3.4.1) is
indeed a projection valued measure, we have proven Proposition 3.25.

Note that Pπ({χ})∗ is the unique linear map satisfying

〈Pπ({χ})v, w〉H = 〈v, Pπ({χ})∗w〉H

for all v, w ∈ H. Writing out the left hand side, we see that

〈Pπ({χ})v, w〉H =
1

|N |
∑
n∈N

〈χ(n)π(n)v, w〉 =
1

|N |
∑
n∈N

〈v, χ(n)π(n)∗w〉H,

from which we deduce that

Pπ({χ})∗ =
1

|N |
∑
n∈N

χ(n)π(n)∗ =
1

|N |
∑
n∈N

χ(n−1)π(n−1) =
1

|N |
∑
n∈N

χ(n)π(n) = Pπ({χ}).

Likewise, we see that

Pπ({χ})2 =
1

|N |2
∑
n∈N

∑
n′∈N

χ(n)χ(n′)π(n)π(n′).

Since χ is always a linear character, we get that

Pπ({χ})2 =
1

|N |2
∑
n∈N

∑
n′∈N

χ(nn′)π(nn′) =
1

|N |
∑
n∈N

Pπ({χ}) = Pπ({χ}).

Lastly, we see that

Pπ(N̂) = Pπ(∪χ∈N̂{χ}) =
∑
χ∈N̂

Pπ({χ}) =
1

|N |
∑
χ∈N̂

∑
n∈N

χ(n)π(n) =

1

|N |
∑
n∈N

(∑
χ∈N̂

χ(n)

)
π(n) =

1

|N |
∑
n∈N

χreg(n)π(n) =
1

|N |
|N |π(e) = IdH.

We conclude that Pπ is a projection valued measure, and we have proven Proposition 3.25.
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In particular, it follows from Proposition 3.25 that two unitary representations (π1,H1) and
(π2,H2) of N are equivalent if and only if their associated projection valued measures are.

As we have seen in the previous section, projection valued measures can give rise to sys-
tems of imprimitivity. This is also happens to be the case for the associated projection
valued measure.

Proposition 3.26 ([7]). Let (π,H) be a unitary representation of G. Then (π|H , Pπ|N ) is a

system of H based on the character group N̂ .

Proof. We have already verified that Pπ|N is already a projection valued measure. Thus, we
only have to check that it satisfies (3.3.2). By the bijectivity of the Fourier transform, each

g ∈ C(N̂) is the Fourier transform of a unique f ∈ C(N), so we have to check (3.3.2) for all

f̂ with f ∈ C(N). Since H acts on N̂ , it also acts on C(N̂) by

(h · f̂)(χ) = f̂(h−1 · χ) =
∑
n∈N

f(n)χ(φh(n)) =
∑
n∈N

f(φh−1(n))χ(n) =∑
n∈N

(h · f)(n)χ(n) = ĥ · f(χ),

hence h · f̂ = ĥ · f . Then we see that

Pπ|N (h · f̂) =Pπ|N (ĥ · f) = π|N(h · f) =
∑
n∈N

π|N(n)(h · f)(n) =
∑
n∈N

π|N(n)f(φh−1(n)) =∑
n∈N

π|N(φh(n))f(n) =
∑
n∈N

h · π|N(n)f(n) · h−1 = h · Pπ|N (f̂) · h−1.

We conclude that (π|H , Pπ|N ) is a system of imprimitivity of H based on N̂ .

We can analyze this system of imprimitivity even further. We use the notation from the
proposition above. Suppose that the system of imprimitivity (π|H , Pπ|N ) is reducible and let
W ⊂ H be an invariant subspace. By definition, we have that π|H(h)W ⊆ W for all h ∈ H
and that Pπ|N (f̂) = π|N(f)W ⊆ W for all f ∈ C(N). Now, take f = δn

′
n so that we have

that π|N(f) = π(n′). Then we get that n ·W ⊂ W for all n ∈ N . In particular, it follows
that (h, n)W = (e, n)(h, e)W ⊂ (h, e)W ⊂ W , so the representation (π,H) is a reducible
representation of G. Likewise, suppose that π is a reducible representation of G, with invari-
ant subspace W ⊂ H. Then π(h, n)W ⊂ W for all (h, n) ∈ G. In particular, it follows that
π|H(h)W = π(h, e)W ⊂ W and Pπ|N (f̂)W =

∑
n∈N f(n)π(e, n)W ⊂

∑
n∈N f(n)W = W , so

the system of imprimitivity (π|H , Pπ|N ) is reducible.

Moreover, suppose we are given a system of imprimitivity (ρ, P ) based on N̂ , with (ρ,H) a
unitary representation of H. Now, we define π : N → GL(H) by π(n) =

∑
χ∈N̂ χ(n)P (χ).

Then, we obtain a group homomorphism π̄ : G→ GL(H) by setting π̄(h, n) = π(n)ρ(h). In
particular, the maps (ρ, P ) 7→ (π,H) and (π,H) 7→ (π|H , Pπ|N ) are mutual inverses, up to
equivalences.

We can summarize the two important observations from above in the following corollary.
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Corollary 3.27. Let (π,H) be a unitary representation of G. The system of imprimitiv-
ity (π|H , Pπ|N ) is irreducible if and only if (π,H) is irreducible. Moreover, there exists a
one-to-one correspondence between equivalence classes of unitary representations of G and
equivalence classes of irreducible systems of imprimitivity of H based on N̂ .

Our next aim is to transfer the system of imprimitivity (π|H , Pπ|N ) to a system of imprim-
itivity of G based on the coset space of some subgroup of G. The following lemma will be
useful.

Lemma 3.28 ([7]). Let (π,H) be an irreducible unitary representation of G. There exists a

unique orbit O of the action of H on N̂ such that supp(Pπ|N ) = O.

Proof. Let O be an orbit of the action of H on N̂ . Then the linear subspace Pπ(O)H is
H-invariant, since h · Pπ|N (O)H = Pπ|N (h−1 · O)(h · H) = Pπ|N (O)H, since h−1 · O = O
and h · H = H. Inspecting the proof of Proposition 3.25, we see that Pπ|N (O) is also N -
invariant. In particular, it follows that (h, n)Pπ|N (O)H = (e, n)(h, e)Pπ(O) = Pπ|N (O)H, so

all Pπ|N (O)H are G-invariant. Since the orbits of the action of H on N̂ are disjoint, we obtain
a decomposition

H =
⊕
O

Pπ(O)H.

By irreducibility of the representation, there are no invariant subspaces. Therefore, there
must be exactly one orbit O for which Pπ|N (O)H = H, and Pπ|N (O)H = 0 for all other
orbits, thus Pπ|N is fully supported in a unique orbits O.

Now, we describe how to obtain a system of imprimitivity of G. Let (π,H) be an irreducible
unitary representation of G, let O be the unique orbit on which Pπ|N is supported and pick
a χ ∈ O. Denote by Hχ the stabilizer subgroup of χ and set Gχ = Hχ nN as a subgroup of

G. Define the canonical map ι : G→ N̂ by ι(h, n) = h−1 · χ.

Proposition 3.29 ([7]). In the setting above, the canonical map ι descends to a well-defined
bijection ι̃ : G\Gχ → O and induces a system of imprimitivity of G based on the coset space
G\Gχ.

Proof. We define ι̃(Gχ(h, n)) = ι(h, n). We first have to show that ι̃ is well-defined. Note that
h−1

1 ·χ = h−1
2 ·χ if and only if h2h

−1
1 ∈ Hχ, hence it follows that ι̃(Gχ(h1, n1)) = ι̃(Gχ(h2, n2)) if

Gχ(h1, n1) = Gχ(h2, n2). Moreover, it implies that ι̃ is injective. Note that Im(ι̃) = H ·χ = O,
so ι̃ is surjective. This establishes the first part of Proposition 3.29. Next, we define
ι̃∗Pπ : P(Gχ\G) → end(H) by ι̃∗Pπ(S) = Pπ(ι(S)). By the previous lemma, we have that
ι̃∗Pπ(Gχ\G) = Pπ(ι̃(Gχ\G)) = Pπ(O) = IdH. Since ι̃ is bijective, the other two properties
of a projection valued measure follow almost directly. To conclude that ι̃∗Pπ is a projection
valued measure, we have to check that ι̃∗Pπ satisfies (3.3.1).

We have to check that ι̃∗Pπ(g ·S) = g · ι̃∗Pπ(S) · g−1. Writing out both sides of the equations,
we have to check that Pπ(ι̃(g ·S)) = g ·Pπ(ι̃(S)) · g−1 = Pπ(g · ι̃(S)). This means we are done
if we can show that ι̃(g · S) = g · ι̃(S) for all S ∈ P(Gχ\G). Note that we have a natural
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action of G on N which is induced by the action of H on N . This yields that

ι̃((h, n) ·Gχ(h′, n′))(N) =ι̃(Gχ(h′n′)(h, n)−1)(N) = (hh′−1 · χ)(N) = χ(φh′h−1(N)) =

(h′−1 · χ)(((h, n)−1 ·N)) = ι̃(Gχ(h′, n′))((h, n)−1 ·N) =

((h, n) · ι̃(Gχ(h′, n′)))(N),

so we conclude that ι̃(g · S) = g · ι̃(S) for all S ∈ P(Gχ\G). It follows that ι̃∗Pπ is a system
of imprimitivity of G based on the coset space Gχ\G.

By a similar approach as described in the proposition above, we can also construct an ir-
reducible system of imprimitivtiy (π|H , τ ∗Pπ) of H based on the coset space Hχ\H, where

τ : H → N̂ is the canonical map. By the Imprimitivity Theorem, there exists an irreducible
unitary representation (ξ,W ) such that π|H ∼= IndHHχ(ξ).

Now, we define the tensor product rerpresentation (ξ ⊗ χ),W ) of Gχ by ((ξ ⊗ χ)(h, n)w =
χ(n)ξ(h)w. Similar to the classification carried out in [17], we have the following results.

Theorem 3.30 ([7]). Keeping the notations and hypotheses above, we have that

IndGGχ(ξ ⊗ χ) ∼= π.

Proof. Since π|H ∼= IndHHχ(ξ), the Imprimitivity Theorem ensures that there exists an iso-

metric H-equivariant isomorphism T : H → IndHHχ(W ). We can use the map T to real-

ize π as a representation over IndHHχ(W ). Namely, define π̃ : G → GL(IndHHχ(W )) by

π̃(h, n)f = (T ◦ π(h, n) ◦ T−1)f . Since T is H-equivariant, it follows that π̃|H ∼= IndHHχ(ξ).
Let Oχ denote the orbit of χ. To compute the N -action of π̃ remark first that

π(n) =
∑
ψ∈Oχ

ψ(n)Pπ({ψ}) =
∑
Hχh

(h−1 · χ)(n)Pπ( {h−1 · χ}) =

∑
Hχh

χ(φh(n))Pπ(τ(Hχh)) =
∑
Hχh

χ(φh(n))τ ∗Pπ(Hχh),

hence

(π̃(n)f)(h′) =
∑
Hχh

χ(φh(n))(T ◦ τ ∗Pπ(Hχh) ◦ T−1)f(h′) =
∑
Hχh

χ(φh(n))P ξ(Hχh)f(h′) =

∑
Hχh

χ(φh(n))P ξ(Hχh)f(h′) = χ(φh′(n))f(h′),

We will now investigate IndGGχ(ξ ⊗ χ) and see how to realize this representation on IndHHχ .

First, we define the canonical vector space isomorphism S : IndGGχ(W ) → IndHHχ(W ) by
(Sφ)(h) = φ(h, e). Indeed, this map is an isomorphism since linearity and injectivity are
clear. It is also surjective since IndGGχ(W ) and IndHHχ(W ) have equal dimensions. Since

S(h′ · φ)(h) = (h′ · φ)(h, e) = φ(hh′, e) = (Sφ)(hh′, e) = h′ · (Sφ)(h),

50



Representations of semidirect products

the map S intertwines the action of the group H on both vector spaces. The map S is
unitary, since

〈φ, ψ〉IndGGχ (W ) =
1

|Hχ||N |
∑

(h,n)∈G

〈φ(h, n), ψ(h, n)〉W =

1

|Hχ||N |
∑

(h,n)∈G

〈χ(n)φ(h, e), χ(n)ψ(h, e)〉W =

1

|Hχ|
∑
h∈H

〈φ(h, e), ψ(h, e)〉W = 〈Sφ, Sψ〉IndHHχ (W ).

Similar as we did above, we define η : G → GL(IndHHχ(W )) by η(h, n) = S ◦ IndGGχ(ξ ⊗
χ)(h, n) ◦ S−1. It follows directly that η|H = IndHHχ(W ). As we did above, we compute the

N -action of η on IndHHχ(W ). Note that for all (h, n) ∈ G and all f ∈ IndGGχ(W ), we have that

(IndGGχ(ξ ⊗ χ)(e, n) · f)(h, e) = f(h, φh(n)) = χ(φh(n))f(h, e),

hence

η(n)φ(h) = (S ◦ IndGGχ(ξ ⊗ χ)(e, n) ◦ S−1)φ(h) = χ(φh(n))φ(h).

It follows that η|N ∼= π̃|N . This establishes the unitary equivalence π ∼= IndGGχ(ξ ⊗ χ).

Theorem 3.31 ([7]). Let χ ∈ N̂ and let ξ be an irreducible representation of Hχ. Then

the induced representation IndGGχ(ξ ⊗ χ) is irreducible. Furthermore, if η ∈ N̂ and if ω is

an irreducible representation of Hη such that IndGGχ(ξ ⊗ χ) ∼= IndGGη(ω ⊗ η), then there exists
g ∈ G such that g · χ = η and ξ ∼= ω ◦ Cg.

Proof. The first part follows by the calculations performed in the proof of Theorem 3.30. We
have seen that IndGGχ(ξ ⊗ χ) is completely determined (up to equivalence) by the projection

valued measure P ξ. Since ξ is irreducible, P ξ is irreducible, too. By the Imprimitivity The-
orem, IndGGχ(ξ ⊗ χ) is irreducible.

For the second part, assume that IndGGξ(ξ ⊗ χ) ∼= IndGGη(ω ⊗ η). Then, their associated
projection valued measures are isomorphic as well, hence they are supported in the same
orbit. This means that there exists (h, n) = g ∈ G such that g · χ = η. Next, we claim that
Gη = gGχg

−1. Indeed, g1 ∈ Gη if and only if g1 · η = η. But since η = g ·χ, this is equivalent
with stating that g1 · g · χ = g · χ. So, we see that g1 ∈ Gη if and only if g−1g1g ∈ Gχ, from
which it indeed follows that Gη = gGχg

−1.

This relation between Gη and Gχ enables us to define a representation g ·ξ of Hη by g ·ξ(x) =
(h−1xh). We have to show that g ·ξ ∼= ω. Define the map R : IndGGχ(ξ⊗χ)→ IndGGη(g ·ξ⊗χ

′)

by Rφ(g′) = φ(gg′g−1). Then this map is well-defined since g−1g′g ∈ Gχ for g′ ∈ Gη. Also,
it is unitary since

〈φ, ψ〉IndGGχ (W ) =
1

|Gχ|
∑
g∈G

〈φ(g), ψ(g)〉W =
1

|Gη|
∑
g′∈G

〈φ(gg′g−1), ψ(gg′g−1)〉W =
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1

|Gη|
∑
g∈G

〈Rφ(g), Rψ(g)〉W = 〈Rφ,Rψ〉IndGGη (W ).

It follows that R is unitary, hence an isometry thus injective. Since both spaces have equal
dimensions, R is surjective, too and it establishes a unitary equivalence IndGGχ(ξ ⊗ χ) ∼=
IndGGη(g · ξ⊗ η). Then it follows that IndGGη(g · ξ⊗ω) ∼= IndGGη(ω⊗ η). By Corollary 3.27, the
equivalence of these representations induces an equivalence of their systems of imprimitivity
based on N̂ . The canonical map τ from Propostion 3.29 induces equivalent systems of
imprimitivity based on the coset space H\Hη. The Imprimitivity Theorem implies that
g · ξ ∼= ω, which concludes the proof.

It follows from Theorem 3.30 and Theorem 3.31 that we have classified all irreducible unitary
representations of G. We can summarize this in the following corollary. Note how this
statement equivalent to Theorem 3.17.

Corollary 3.32. Let G = H n N , with N abelian. Let χ ∈ N̂ and let ξ be an irreducible
representation of the stabilizer group Hχ. Then we have the following

i. The representation IndGGχ(ξ ⊗ χ) is irreducible.

ii. Each irreducible representation of G is isomorphic to IndGGχ(ξ⊗χ) for some χ ∈ N̂ and
some irreducible representation χ of Hχ.

iii. If η ∈ N̂ and ω is an irreducible representation of Hη such that IndGGχ(ξ⊗χ) ∼= IndGGη(η⊗
ω), then there exists g ∈ G such that g · χ = η and ξ ∼= ω ◦ Cg.
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Chapter 4

Wigner’s classification, a qualitative
discussion

In this section, we aim to give a qualitive discussion of Wigner’s classification of elementary
particles we will introduce the Lorentz group and use it to define the Poincaré group, the
symmetry group of flat Minkowski spacetime. We will first study basic properties of these
groups, and discuss the relation between elementary particles and irreducible projective rep-
resentations of the Poincaré group. We will show how to apply Theorem 2.27 and the Mackey
machine from Chapter 3 to give a first classification of elementary particles.

4.1 The Lorentz and the Poincaré group

Before we introduce the Lorentz group, we fix some notation. For x = (x1, ..., x4) ∈ R4, we
write x = (x1, x

′) with x′ = (x2, x3, x4). We define a bilinear form β on R4 by

β(x, y) = x1y1 − 〈x′, y′〉

We call R4 together with the form β flat Minkowski space.

Definition 4.1 (Lorentz group,[7]). The Lorentz group L = O(1, 3) is defined to be the
subgroup of GL(4,R) leaving the quadratic form (x1, x2, x3, x4) 7→ x2

1−x2
2−x2

3−x2
4 invariant,

i.e. β(Lx, Lx) = β(x, x) for all L ∈ L.

An equivalent characterization of L is given by

L = {A ∈ GL(4,R) : ATJA = J}, (4.1.1)

where J =

(
1 0
0 −I3×3

)
.

We see from (4.1.1) that L is a closed subgroup from GL(4,R) and therefore a Lie group
itself. It is not compact since it is unbounded.

We now want to compute its Lie algebra l. We can rewrite (4.1.1) as JATJ = A−1. Dif-
ferentation of this relation implies that X ∈ l if and only if JXTJ = −X, so l = {X ∈
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End(R4) : XTJ = −JX} and the bracket structure is given by the commutator of matrices.
Far less trivial is that L is disconnected and has exactly 4 connected components. We refer to
[7] to see the exact reasoning. We denote its component containing the identity by SO(1, 3)◦.
The form β induces a “metric” g on R4 which is given by

g(x, y) = β(x− y, x− y) = (x1 − y1)2 −
4∑
i=2

(xi − yi)2.

Not only is g invariant under transformations in L, it is invariant under translations as well.
This gives a motivation for the defintion of the Poincaré group.

Definition 4.2 ([7]). The Poincaré group P is defined by P = O(1, 3) n R4, where O(1, 3)
acts canonically on R4.

Where the special Euclidean group SE(n) was the full symmetry group of Rn as in Example
1.45, a similar argument shows that the Poincaré group is the full symmetry group of R4

endowed with the metric g.

We will now discuss the physical application we had in mind from the beginnning: to provide
a qualatative classification of elementary particles. Consider a particle in flat Minkowski
space. As we discussed in Section 2.3, its state space should be P(H) for some complex
Hilbert space H. If two obervers O and O′, related by a transformation Λ ∈ P , perform
a quantum-mechanical experiment, they measure a different [ΦO] 6= [ΦO′ ]. Since the laws
of physics should be the same in each inertial frame, we expect these two states to be P-
equivarianty related, i.e. [ΦO] = TΛ[ΦO′ ] for some TΛ ∈ Aut(P(H)). This leads to a group
homomorphism P → Aut(P(H)): a projective representation of P . The key idea is to identify
our particle in Minkowski space with a projective representation of the Poincaré group. If
we make the (rather plausible) assumption that the whole system is built up of elementary
particles, these elementary particles should exactly correspond to the irreducible projective
representations of P [15].

This means that the question of classifying elementary particles is just a matter of classifying
all irreducible projective representations of P . Unfortunately, the group P is not connected,
which has as consequence that studying its projective representations is a challenging task.
It does describe interesting physical phenomena such as parity inversion, but we will not do
this here. Instead, we will restrict ourselves to the identity component, SO(1, 3)◦nR4. Since
this group is connected, we can pass to its universal covering group, which happens to be
SL(2,C) nR4, as the following lemma shows.

Lemma 4.3. The group SL(2,C) is simply-connected and is a double cover for SO(1, 3)◦.

Proof. For the first part, we sketch the argument given in [7], but we do not give a full proof,
since it makes use of the Cartan decomposition which we will not discuss here.

The fact that SL(2,C) is simply-connected follows from the Cartan decomposition ofGL(2,C).
We can express GL(2,C) as

GL(2,C) = U(2) exp(S),
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where U(2) is the unitary group of degree 2 and S the space of Hermitian 2 × 2 matri-
ces. Moreover, the map U(2) × S → GL(2,C), (u, s) 7→ u exp(s) is a diffeomorphism. Let
S0 ⊂ S denote the space of traceless Hermitian matrices. Recall that for any matrix, we
have that det(exp(X)) = eTr(X). Therefore, the map above restricts to a diffeomorphism
SU(2)× S0 → SL(2,C). Since S0 is simply-connected and SU(2) ∼= S3 is simply-connected,
the same holds for SL(2,C).

To prove the second part of the claim, we identify R4 with S by

(x1, x2, x3, x4) 7→
(
x1 + x4 x2 − ix3

x2 + ix3 x1 − x4

)
.

We denote the corresponding isomorphism R4 ∼= S by Ψ. Remark that det(Ψ(x)) = β(x, x).
Now, we define Φ : SL(2,C) → SO(1, 3)◦ by Φ(A)x = Ψ−1(AΨ(x)A†). First, we have
to check well-definedness of the map Φ. First, remark that (AΨ(x)A†)† = AΨ(x)†A† =
AΨ(x)A†, so AΨ(x)A† is again Hermitian. Since det(A) = 1, for all A ∈ SL(2,C), we have
that

β(Φ(A)x,Φ(A)x) = det(AΨ(x)A†) = det(Ψ(x)) = β(x, x),

so Φ(A) ∈ SO(1, 3)◦ and Φ is well-defined. Also, note that Φ is a Lie group homomorphism,
since Φ(AB)x = Φ(A)Φ(B)x for all x ∈ R4. By Proposition 9.29 in [2], the map Φ is a
covering map if we can prove that its kernel is discrete.

We remark that ker(Φ) = {A ∈ SL(2,C) : Ψ(x) = AΨ(x)A† for all x ∈ R4}. If we take
x = (0, 0, 0, 1), we deduce that AA† = Id, hence A† = A−1. Thus, we see that ker(Φ) =
{A ∈ SL(2,C) : AΨ(x) = Ψ(x)A for all x ∈ R4}. In particular, all real diagonal matrices are
contained in S. Note that A commutes with all real diagonal matrices if and only if A = ±Id.
From this, we deduce that ker(Φ) = {±Id} which is discrete, hence Φ is a smooth covering
map.

Lemma 4.3 has a few interesting consequences. First of all, we remark that SL(2,C) n R4

is the universal covering group of SO(1, 3)◦ n R4, as we promised before. Another direct
consequence is that the Lie algebras so(1, 3) and sl(2,C) are isomorphic as Lie algebras.
The Lie algebra sl(2,C) is well-known and is treated in most books on Lie algebras (for
example, see [20]), and one of its key properties is that it is both simple and semisimple.
This immediately implies that so(1, 3) is both simple semisimple as well. This simplifies the
task of finding all irreducible projective representations of SO(1, 3)◦ n R4 greatly, since we
can show that they are in bijective correspondence with irreducible unitary representations
of SL(2,C) nR4, as we will see in the next section.

4.2 Projective representations of the Poincaré group

The fundamental goal of this section is to set up a one-to-one correspondence between irre-
ducible projective representations of SO(1, 3)◦ n R4 and irreducible unitary representations
of SL(2,C) n R4. First, we will show a one-to-one correspondence between the irreducible
unitary representations and the irreducible projective representations of SL(2,C) n R4 and
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use this to set up a one-to-one correspondence between the irreducible projective represen-
tations of SO(1, 3)◦ nR4 and the irreducible unitary representations of SL(2,C) nR4.

We agree to write Lie(SL(2,C) n R4) = sl(2,C) n R4, the semidirect sum of the Lie al-
gebras. Recall from Theorem 2.27 that each projective representation of SL(2,C) nR4 lifts
to a unitary representation if the second cohomology group of its Lie algebra in R vanishes.
Thus, our first aim is to show that H2(sl(2,C) nR4,R) = 0.

Let g be a finite dimensional Lie algebra and let V be a finite dimensional g-module. We
can use the module V to construct new g-modules. For example, its dual space V ∗ is a
g-module as well, where the action of g on V ∗ is given by (X · f)(v) = f(−Xv). Also,
the tensor product V ⊗ V is a g-module, where the action of g on V ⊗ V is given by
X(v ⊗ v′) = Xv ⊗ v′ + v ⊗ Xv′. This implies that the Hom(V,W ), which is isomorphic to
V ∗ ⊗W , is a g-module where (X · f)(v) = X · f(v) − f(X · v). Also, its quotient ∧2V is
a g-module as well, where X(v ∧ v′) = Xv ∧ v′ + v ∧ Xv′. Hence, we can define the linear
subspace

(∧2V )g = {v ∈ ∧2V : gv = 0}.
As usual, we identify ∧2V ∗ with the space of bilinear alternating maps V × V → R. The
following proposition will help significantly to show that H2(sl(2,C) nR4,R) = 0.

Proposition 4.4 ([7]). Let g be a semisimple Lie algebra and let V be a finite dimensional
g-module satisfying (∧2V ∗)g = 0. Then H2(gn V,R) = 0.

In the proof of Proposition 4.4, we will use the following result.

Theorem 4.5 (Weyl’s theorem on complete reducibility,[21]). Let g be a semisimple Lie
algebra. Then every finite dimensional g-module is completely reducible.

We postpone the proof of this theorem to the Appendix. If V is a finite dimensional g-module
with submodule a, it follows from Theorem 4.5 that each short exact sequence

0→ a→ b
p−→ c→ 0

of g-modules is trivial, i.e. there exists a g-module homomorphism f : c → b such that
p ◦ f = Idc. This is the key to prove Proposition 4.4.

Proof. We follow [7] for this proof. We set s = g n V . Let ω : s × s → R be a cocycle.
We have to prove that ω is exact. It is readily seen that ωg = ω|g×g is a cocycle on g.
Since g is semisimple, ωg is exact, hence there exists a linear map λ : g → R such that
ωg(X, Y ) = λ([X, Y ]). We can extend λ to a linear map λ̃ : s→ R by setting λ̃(X, v) = λ(X).
We define ω1 : s× s→ R by

ω1((X, v), (Y, v′)) = ω((X, v), (Y, v′))− λ̃[(X, v), (Y, v′)].

We can observe directly that ω1 − ω is exact, hence [ω1] = [ω] in H2(s,R). Note that the
restriction of ω1 to g× g is trivial. Now, We define the linear map ρ(X) : R⊕V → R⊕V by

ρ(X)(t, v) = (ω1((X, 0), (0, v)), Xv).
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Then ρ is a Lie algebra representation since ω1 is a cocycle. Moreover, the short sequence

0→ R ι
↪−→ R⊕ V PrV−−→ V → 0

is exact. By Weyl’s theorem, this sequence is trivial. This means that there exists a Lie
algebra homomorphism φ : V → R⊕ V . We can write φ = (µ, IdV ) with µ ∈ V ∗. Since φ is
a Lie algebra homomorphism, it follows that µ(Xv) = ω1((X, 0), (0, v)). We extend µ to a
linear map µ̃s→ R by putting it to zero on g. Then ω2 : s× s→ R defined by

ω2((X, v), (Y, v′)) = ω((X, v), (Y, v′))− λ̃[(X, v), (Y, v′)]− µ̃[(X, v), (Y, v′)]

vanishes on g × s, hence is complete determined by its restriction ω2|V×V . By closedness of
ω2, we have that

0 = ω2((X, 0), (0, [v, w])) = ω2|V×V (Xv,w) + ω2|V×V (v,Xw)

Thus, we see that ω2|V×V ∈ (∧2V ∗)g, hence ω2 = ω2|V×V = 0. We infer that

ω((X, v), (Y, v′)) = (λ̃+ µ̃)[(X, v), (Y, v′)],

hence ω is exact. This proves the claim.

Proposition 4.4 has the following corollary, which we are looking for.

Corollary 4.6 ([7]). H2(so(1, 3) nR4,R) = 0.

Proof. By the Proposition 4.4, we have to check that each so(1, 3)-invariant alternating bi-
linear map R4 ×R4 → R is zero. Let ω : R4 ×R4 → R be such a map. By nondegeneratness
of the bilinear form β, there exists a linear map T : R4 → R4 such that

ω(x, y) = β(Tx, y) for allx, y ∈ R4.

Since ω and β are so(1, 3)-invariant, the map T commutes with the so(1, 3) action, hence
T = C Id for some C ∈ R. By linearity of β, it follows that ω = Cβ. Since ω is alternating,
we get that

0 = ω(e1, e1) = Cβ(e1, e1).

Since β(e1, e1) 6= 0, it follows that C = 0 so ω = 0. By Proposition 4.4, we conclude that
H2(so(1, 3) nR4,R) = 0.

Since we had already established that sl(2,C) ∼= so(1, 3) as Lie algebras, we see that
H2(sl(2,C) nR4,R) = 0. Now, we can establish our first equivalence.

Theorem 4.7 ([7]). Let H be a complex Hilbert space. Every projective representation ρ :
SL(2,C) n R4 → Aut(P(H)) lifts to a unique unitary representation ρ̃ : SL(2,C) n R4 →
U(H), which is irreducible if and only if ρ is irreducible.
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Proof. The existence of the lift ρ̃ follows from Theorem 2.27 and Corollary 4.6. Assume
that π̃ is a second lifting. By what we established before, there exists a unique map φ :
SL(2,C) n R4 → T̃ such that π̃(x) = ρ̃(x)φ(x) for all x. Let φ̄ be the restriction of φ to
SL(2,C). Then we have that dφe : sl(2,C) → R is a Lie algebra homomorphism. Since
sl(2,C) is simple, it contains no non-zero abelian ideals. Since ker(dφe) is an abelian ideal,
it follows that ker(dφe) = {0}, so φ̄ = Id, as SL(2,C) is connected. Note that the set
ker(dφe)∩R4 is SO(1, 3)◦-invariant, it must be all of R4. Therefore, we have that φ = Id, hence
ρ̃ = π̃. Note that if H is a closed invariant subspace for ρ̃, it follows from the construction
of P(H) that P(V ) is a closed invariant subsapce for ρ. The converse holds by a similar
argument.

This is the first correspondence we wished to establish. The following theorem shows the
second.

Theorem 4.8 ([7]). Every irreducible unitary representation of SL(2,C) nR4 in a complex
Hilbert space H induces an irreducible projective representation of SO(1, 3)◦ n R4 in P(H).
Moreover, every such a representation comes from a untiary representation of SL(2,C).

Proof. Recall that the kernel of the covering map Φ× Id : SL(2,C) n R4 → SO(1, 3)◦ n R4

has kernel {(±Id, 0)}, which happens to be the centre of SL(2,C) n R4. Thus, if π is an
irreducible unitary representation SL(2,C) n R4, the subgroup ker(Φ × Id) acts by scalars.
Thus, π induces an irreducible projective representation π̃ of SL(2,C)nR4 which is trivial on
ker(Φ× Id), hence factors through an irreducible projective representation of SO(1, 3)◦nR4.

Conversely, assume that ρ̃ is an irreducible projective representation of SO(1, 3)◦nR4. Then
ρ̃ ◦ (Φ × Id) is an irreducible projective representation of SL(2,C) n R4. By the previous
theorem, this has a unique lift to an irreducible unitary representation of SL(2,C)nR4.

Now that we know that we can lift each irreducible projective representation to an irreducible
unitary representation of SL(2,C) nR4, we can classify them according to Corollary 3.32.

4.3 Wigner’s Classification

In this section, we classify the unitary irreducible representations of SL(2,C)nR4, hence the
irreducible projective representations of SO(1, 3)◦ n R4. By the Mackey machine, these are

classified by two parameters: a representative χ of an orbit in R̂4 and an irreducible repre-
sentation of the stabilizer of χ under the SL(2,C) action. We follow [7] for this classification.

First, we remark that the continuous unitary characters of R4 are exactly the continuous
homomorphisms R4 → S1. By the nondegenerateness of β, we can identify R4 with its
character group by the isomorphism

v 7→ ξv, where ξv(x) = eiβ(v,x).

Indeed, ξv is a homomorphism for all v ∈ R4. By linearity of β, we have that ξv(x +
y) = eiβ(v,x+y) = eiβ(v,x)eiβ(v,y) = ξv(x)ξv(y). Also, this map intertwines the SL(2,C) action
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induced by the covering map Φ on R4 with the action of SL(2,C) on the character group.
Indeed, since β is SO(1, 3)◦ invariant, we have for A ∈ SL(2,C) that

(A · ξv)(x) = ξv(Φ(A)−1x) = eiβ(v,Φ(A)−1x) = eiβ(Φ(A)v,x) = ξΦ(A)v(x).

It follows that v ∈ R4 is SL(2,C) invariant if and only if ξv is, too. Indeed, A · ξv = ξv if and
only if v = Φ(A)v. So instead of computing the orbits of the SL(2,C)-action in the more

abstract space R̂4, we can compute the orbits of the induced SL(2,C) action on R4. As a
preparation to finding these orbits, define

Y =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 .

It follows that Y J = −JY , so Y ∈ l, the Lie algebra of the Lorentz group. As a linear space,
define a = RY . Then a computation shows that

exp(a) = exp(tY ) =


cosh(t) 0 0 sinh(t)

0 1 0 0
0 0 1 0

sinh(t) 0 0 cosh(t)


is a closed subgroup of SO(1, 3)◦, since it contains the identity matrix.

For c ∈ R, define the sets
Xc = {x ∈ R4 : β(x, x) = c}.

By invariance of β, the sets Xc are SL(2,C) invariant. Since this group is connected, its
orbits must be connected as well. This provides us with the following families of orbits.

For c = m2 > 0, we have that x2
1 − x2

2 − x2
3 − x2

4 = m2, hence all x ∈ Xc satisfy x1 6= 0. The
sets Xm2 form a family of two-sheeted hyperboloids, distinguished by the sign of x1. For fixed
m2, the two sets X±m2 = {x ∈ Xm2 : x1 ∈ R±} are disjoint and both connected. Therefore,
to check that these sets form two families of orbits, it suffices to check that SO(1, 3)◦ acts
transitively on both (the orbits cannot be bigger by connectedness). We prove this only for
X+
m2 , since X−m2 works similar.

Let v = (m, 0, 0, 0) ∈ X+
m2 . It follows that exp(tY )v = m(cosh(t), 0, 0, sinh(t)). Let w ∈ X+

m2 ,
it follows that w1 ≥ v1, since v1 is minimal. Therefore, there exists t ∈ R such that
w1 = cosh(t)v1. Since w ∈ X+

m2 , we know that w2
2 + w2

3 + w2
4 = m2 sinh2(t). Therefore,

there exists a rotation R ∈ SO(3) such that R(0, 0,m sinh(t)) = (w2, w3, w4). Embedding
SO(3) in the lower right corner of SO(1, 3)◦, we get that R exp(tY )v = w. We conclude that
X+
m2 is an orbit. The same holds for X−m2 , so we have two families of orbits.

For c = 0, we get that X0 = {x ∈ R4 : x2
1 = x2

2 + x2
3 + x2

4}. Clearly, {0} is a SL(2,C)-
orbit as this is a fixed point of the action. Then X0 \ {0} has again two connected compo-
nents, depending on the sign of x1, which we denote by X+

0 and X−0 . If x1 > 0, consider
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v = (1, 0, 0, 1) ∈ X+
0 . Note that exp(tY )v = etv. If w ∈ X+

0 , there exists t ∈ R such that
etv1 = w1. Then it follows that

e2t(v2
2 + v2

3 + v2
4) = e2tv2

1 = w2
1 = w2

2 + w2
3 + w2

4,

so there exists a rotation R ∈ SO(3) such that etR(v2, v3, v4) = (w1, w2, w3). Embedding this
R in the lower right corner of SO(1, 3)◦, it follows that R ◦ exp(tY )v = w, hence X+

0 is an
orbit. The same holds for X−0 , so this gives us three other orbits.

Now, we consider c = −m2 < 0. Since this level set is connected, we expect the exis-
tence of only one family of orbits. Indeed, let v = (0, 0, 0,m) ∈ Xc. Then exp(tY )v =
m(sinh(t), 0, 0, cosh(t)). If w ∈ Xc, there exists t ∈ R such that w1 = sinh(t)m. Since
w ∈ Xc, we know that w2

2 + w2
3 + w2

4 = m2 cosh2(t). Therefore, we know that there exists a
rotation R ∈ SO(3) such that R(0, 0,m cosh(t)) = (w2, w3, w4). We embed R in SO(1, 3)◦

and see that R ◦ exp(tY )v = w. This gives us the last family of orbits.

Now, we come to the computation of the stabilizer of each of the orbits. As in the proof of
Lemma 4.3, we identify elements in R4 with a Hermitian matrix.

First, consider c = m2 > 0. For X+
m2 , we take the representative (m, 0, 0, 0). As we saw

in Lemma 4.3, the stabilizer condition implies that(
m 0
0 m

)
= A

(
m 0
0 m

)
A† = AA†

(
m 0
0 m

)
,

hence AA† = Id. It follows that A is unitary and since A ∈ SL(2,C), we know that det(A).
Combining these two facts yields that the stabilizer for the orbits X+

m2 is the group SU(2).
The same discussion holds for the orbits X−m2 .

Now, suppose c = 0. We have three different orbits under the SL(2,C). The stabilizer
of {0} is the full group SL(2,C). For X+

0 , we take the representative v = (m, 0, 0,m). The
stabilizer condition reads(

2m 0
0 0

)
= A

(
2m 0
0 0

)
A† =

(
a11 a21

a21 a22

)(
2m 0
0 0

)(
a∗11 a∗21

a∗12 a∗22

)
=

2m

(
|a11|2 a11a

∗
21

a∗11a21 |a21|2
)
,

from which we deduce that |a11| = 1, hence a11 = eiϕ for some ϕ ∈ R, and a21 = 0. From the
condition that A ∈ SL(2,C), we deduce that a22 = a−1

11 = e−iϕ and a12 can be any complex
number. Thus, the stabilizer group is given by{(

eiϕ a
0 e−iϕ

)
: ϕ ∈ R, a ∈ C

}
,

which is isomorphic to the group SO(2) nR2. The same holds for X−0 .
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Now, suppose that c = −m2 < 0. Remember that we had one orbit, and we take (0, 0,m, 0)
as representative (the advantage is that our conjugated matrix is now off-diagonal). The
stabilizer condition implies that

A

(
0 −im
im 0

)
A† =

(
0 −im
im 0

)
To get conditions on A, we apply the following trick. Note that det(A) = a11a22−a12a21 = 1.
Then we see that

A

(
0 −im
im 0

)
AT =

(
0 (a21a12 − a11a22)im

(a11a22 − a12a21)im 0

)
=

(
0 −im
im 0

)

Since both A and

(
0 −im
im 0

)
are invertible, it follows that AT = A†. It follows that all

coefficents of A are real, hence A ∈ SL(2,R).

Now that we have classified the stabilizer subgroups, the last step in the classification pro-
cedure is the analysis of the irreducible representations of these stabilizer groups.

We start with m2 > 0. As we have just computed, the stabilizer of the orbits is the group
SU(2), which is a compact and connected Lie group as it is isomorphic to S3 . It follows
that all its irreducible representations are finite dimensional [3].

We will now construct all its irreducible representations. Denote by P (C2) the space of

polynomials p : C2 → C. We can write g ∈ SU(2) as g =

(
α −β̄
β ᾱ

)
with α, β ∈ C satisfying

|α|2 + |β2| = 1. We define a representation of π of SU(2) on P (C2) by

π(g)p(z1, z2) = p(g−1(z1, z2)) = p(ᾱz1 + β̄z2,−βz1 + αz2).

This is indeed a representation since π(gh)p(z) = p(h−1g−1z) = π(h)p(g−1z) = π(g)π(h)p(z).
For each n, the space Pn(C2) of homogeneous polynomials is an invariant subspace for π. We
denote by πn the restriction of π to Pn(C2). The following lemma helps significantly with
showing that each πn is irreducible.

Lemma 4.9 ([3]). Let (π, V ) be a finite dimensional representation of a Lie group G. If π
is unitarizable and if HomG(V, V ) = CId, then π is irreducible.

Proof. This is Lemma 20.27 in [3].

Now, we can prove irreducibility of the πn.

Proposition 4.10 ([3]). Let πn be as above. Then πn is irreducible for each n.

Proof. We follow [3]. Since SU(2) is compact, a similar argument as in Example 2.21,
but this time involving an integral with respect to an invariant measure, shows that πn is
unitarizable. In view of the previous lemma, it suffcies that each SU(2)-equivariant homo-
morphism Pn(C2) → Pn(C2) is a scalar multiple of the identity. For 0 ≤ k ≤ n, define
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pk(z1, z2) = zn−k1 zk2 . Then the polynomials {pk : 0 ≤ k ≤ n} form a basis for Pn(C2). We
define two closed subgroups R and T of SU(2) by

T =

{(
eiθ 0
0 e−iθ

)
: θ ∈ R

}
R =

{(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
: φ ∈ R

}
.

For tθ ∈ T , we see for each k that

πn

(
eiθ 0
0 e−iθ

)
(pk(z1, z2)) = pk(e

−iθz1, e
iθz2) = eiθ(2k−n)zn−k1 zk2 = eiθ(2k−n)pk(z1, z2).

It follows that all pk are eigenvectors of all πn(t) with t ∈ T . LetA ∈ HomSU(2)(Pn(C2), Pn(C2).
Since A is SU(2)-equivariant, A and πn(t) commute for all t ∈ T , and thus they preserve
each others eigenspaces. It follows that A leaves all the eigenspaces Cpk invariant, thus there
exist λk ∈ C such that Apk = λkpk for each 0 ≤ k ≤ n. Denote by V0 the eigenspace of A
corresponding to λ0. We are done if we can prove that V0 = Pn(C2), since this indeed implies
that A is scalar multiplication by λ0.

The eigenspace V0 is SU(2) invariant. Indeed, we have for all P ∈ V0 that that

A(πn(g)P ) = πn(g)(AP ) = λ0πn(g)P,

so πn(g)P ∈ V0 for all g ∈ SU(2). Also, it contains p0 since

Ap0 = A

(
πn

(
eiθ 0
0 e−iθ

))
einθp0 = einθπn

(
eiθ 0
0 e−iθ

)
Ap0 = λ0p0.

It follows that πn(r)p0 ∈ V0 for all r ∈ R. A computation using Newton’s binomium shows
that

πn

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
p0(z1, z2) = (cos(φ)z1+sin(φ)z2)n =

n∑
j=0

(
j

n

)
cosn−j(φ) sinj(φ)pj(z1, z2).

In particular, it follows that

λ0

n∑
j=0

(
j

n

)
cosn−j(φ) sinj(φ)pj =

n∑
j=0

(
j

n

)
cosn−j(φ) sinj(φ)λjpj

for all φ ∈ R, hence we have for all φ ∈ R that

n∑
j=0

(
j

n

)
cosn−j(φ) sinj(φ)(λj − λ0)pj = 0.

Since the pj form a basis of Pn(C2), we conclude that λj = λ0 for all j. We conclude that
V0 = Pn(C2), so πn is irreducible. This concludes the proof.
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The proof that each irreducible representation of SU(2) is actually isomorphic to one of the
πn is too involved to present here. It uses the Peter-Weyl theorem and several results on
Fourier theory of abelian groups. We refer to Chapter 28 in [3].

We return to the the classification for c = m2 > 0. Without loss of generality, we sup-
pose that m > 0. We call the parameter m the mass of the particle. Having classified the
irreducible representations of SU(2), we see that we can realize them on Pn(C2) ∼= Cn+1,
thus they are classified by their dimension. If we set s ∈ 1

2
N, the representations are thus

realized over C2s+1, hence they are classified by the number s. We call this number s the
spin of the particle. Examples are the electron (s = 1

2
) and Higgs-boson (s = 1).

For c = 0, we have computed that the stabilizer was the group SO(2) n R2. Of course,
we can again apply the Mackey machine to this group. The SO(2)-orbits in R2 are circles
around the origin with radius ρ ≥ 0. For ρ > 0, the stabilizer is trivial, while ρ = 0, the
stabilizer is the group SO(2). Note that SO(2) ∼= S1. Thus, it suffices to classify the ir-
reducible unitary representations of S1. By Schur’s lemma, they are all one-dimensional.
Given a continuous representation ρ : S1 → C×, it has a compact, hence bounded, image.
In particular, the image must be contained in S1, hence the representations are continuous
homomorphisms ρ : S1 → S1. This means that we get a continuous homomorhpism R→ S1

given by x 7→ ρ(eix). By covering theory, there must exist c ∈ R such that ρ(eix) = eicx [8].
Since 1 = e2πic, it follows that c ∈ Z. This means that ρ(z) = zn for some n ∈ Z and in
particular, the list

ρn : S1 → S1, ρn(z) = zn for n ∈ Z

gives a classification of all irreducible representations of S1, hence of SO(2).

We return to the classification for c = 0. We call these particles the massless particles.
If we set s ∈ Z, we can classify these representations by the number s, whose absolute value
we again call the spin of the particle. Examples are the photons (s = 1) and the hypothesized
graviton (s = 2).

In order to give a more exhaustive list of elementary particles, one would have to study
the irreducible unitary representations of the groups SL(2,R) and SL(2,C), both simple and
noncompact Lie groups. The analysis of these representations goes far beyond the aim of
this thesis, as they are all infinite dimensional, except from the trivial representation. The
classification of these representations was first carried out by Bargmann in 1947 and was the
birth of the study of representation theory of noncompact semisimple Lie groups, which is
dominated by the work of Harish-Chandra [7].
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Chapter 5

Appendix: Weyl’s theorem on
complete reducibility

This chapter is devoted to prove Weyl’s theorem on complete reducibility, Theorem 4.5. The
proof we present here is purely algebraic, although the original proof by Weyl was of a more
analytic nature. For this proof we mainly follow [21].

Theorem 5.1 (Weyl’s Theorem on complete reducibility). Let g be a finite dimensional
semisimple Lie algebra and let ρ : g → End(V ) be a finite dimensional representation of g.
Then ρ is completely reducible.

Our first aim in the proof of Theorem 5.1 is to define the Casimir element of the represen-
tation. To do this, we need the following lemma.

Lemma 5.2. Let V be a finite dimensional vector space and let β : V × V → R be a
nondegenerate symmetric bilinear form. If {X1, ..., Xn} is a basis of V , there exists a basis
{X1, ..., Xn} of V such that β(Xi, X

j) = δij.

Proof. The map Φ : v 7→ β(·, v) is an isomorphism V → V ∗. If {X1, ..., Xn} is a basis of V ,
there exists a dual basis {X∗1 , ..., X∗n} of V ∗ such that X∗i (Xj) = δij. Define X i = Φ−1(X∗i ).
Then {X1, ..., Xn} is a basis of V since Φ is an isomorphism and we have that

β(Xi, X
j) = Φ(Xj)(Xi) = Φ(Φ−1(X∗j ))(Xi) = X∗j (Xi) = δij,

so {X1, ..., Xn} is the required basis.

If ρ : g→ End(V ) is a finite dimensional injective representation of a semisimple Lie algebra
g, the bilinear form Bρ : g× g→ R given by

Bρ(X, Y ) = Tr(ρ(X) ◦ ρ(Y ))

is nondegerenate. Remark that if ρ is the adjoint representation, Bρ is nothing more than
the Killing form of the Lie algebra. With this form Bρ, we can define the Casimir element of
the representation.
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Definition 5.3 (Casimir element). Let g be a finite dimensional semisimple Lie algebra and
let ρ : g→ End(V ) be a finite dimensional injective Lie algebra representation. If {X1, ..., Xn}
is a basis of g and if {X1, ..., Xn} is the dual basis with respect to Bρ, we define the Casimir
element Cρ of the representation by

Cρ =
n∑
i=1

ρ(Xi)ρ(X i).

First, we show that the Casimir element Cρ is independent of the choice of basis. If
{Z1, ..., Zn} is another basis of g with dual basis {Z1, ..., Zn} with respect to Bρ, we can
expres Zi =

∑n
j=1 aijXj and Zk =

∑n
l=1 bklX

l. If we set A to be the matrix with coefficients
aij and B the matrix with coefficients bkl, we see that

δik =Bρ(Zi, Z
k) =

n∑
j=1

n∑
l=1

bklaijBρ(Xj, X
l) =

n∑
j=1

n∑
l=1

aijbklδjl =
n∑
j=1

aijbkj,

so BT · A = Id. But this means that

n∑
i=1

ρ(Zi)ρ(Zi) =
n∑

j,l=1

n∑
i=1

aijbilρ(Xj)ρ(X l) =
n∑

j,l=1

δjlρ(Xj)ρ(X l) =
n∑
j=1

ρ(Xj)ρ(Xj),

so the Casimir element is independent on the choice of basis. The Casimir element has several
nice properties. One of them is that it commutes with the g-action.

Lemma 5.4. Let g be a finite dimensional semisimple Lie algebra and let ρ : g→ End(V ) be
a finite dimensional injective representation. The Casimir element Cρ commutes with ρ(X)
for all X ∈ g.

Proof. Let {X1, ..., Xn} be a basis of g and let {X1, ..., Xn} be the dual basis with respect
to Bρ. For X ∈ g, we can write for all 1 ≤ i ≤ n that

[X,Xi] =
n∑
j=1

aijXj,

[X,X i] =
n∑
j=1

bijX
j.

Then we see that aik and bik for all i and k are related by

aik =
n∑
j=1

aijδjk =
n∑
j=1

aijBρ(Xj, X
k) = Bρ(

n∑
j=1

aijXj, X
k) = Bρ([X,Xi], X

k) =

−Bρ(Xi, [X,X
k]) = −Bρ(Xi,

n∑
j=1

bkjX
j) = −

n∑
j=1

bkjδij = −bki.
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Then we see that

[ρ(X), Cρ] =
n∑
i=1

[ρ(X), ρ(Xi)ρ(X i)] =
n∑
i=1

(
[ρ(X), ρ(Xi)]ρ(X i) + ρ(Xi)[ρ(X), ρ(X i)]

)
=

n∑
i=1

(
ρ([X,Xi])ρ(X i) + ρ(Xi)ρ([X,X i])

)
=

n∑
i=1

n∑
j=1

aijρ(Xj)ρ(X i) + bijρ(Xi)ρ(Xj) = 0.

It follows by Schur’s lemma that if the representation ρ : g → End(V ) is injective and
irreducible, Cρ = C · Id for some C ∈ R. On the one hand, this means that Tr(Cρ) =
C · dim(V ). On the other hand, we see that

Tr(Cρ) =
n∑
i=1

Tr(ρ(Xi)ρ(X i)) =
n∑
i=1

Bρ(Xi, X
i) =

n∑
i=1

δii = n = dim(g).

We conclude that Cρ =
dim(g)

dim(V )
Id.

With these properties of the Casimir element, we can present a proof of Weyl’s theorem
on complete irreducibility.

Proof. Remark that we can assume without loss of generality that the representation ρ
is injective (if it is not, we can quotient out its kernel without losing semisimplicity and
(ir)reducibility.) It suffices to show that for each g-submodule W of V , there exists a g-
submodule X of V such that V = X ⊕ W . First, we deal with the case that W is of
codimension 1.

Here, we have two consider two subcases. First, we assume that W is irreducible. Since
the representation ρ is injective, the Casimir element Cρ acts on W by scalar multiplica-
tion. It follows directly that W ∩ ker(Cρ) = {0}. Since W is a g-submodule, V/W is a
one-dimensional g-module, hence Cρ acts trivial on V/W since g is semisimple (as g = [g, g]).
We infer that V/W ⊆ ker(Cρ), hence dim(ker(ρ)) ≥ 1. Since W ∩ ker(Cρ) = {0}, it follows
that V = W ⊕ ker(Cρ). Since Cρ commutes with the g-action, ker(Cρ) is a g-module and we
are done.

Now, we assume that W is a reducible g-submodule of codimension 1. We do induc-
tion on dim(W ). Certainly, if dim(W ) = 0, the statement holds. Now let Z ⊂ W be
a proper g-submodule. Then W/Z is a submodule of V/Z with codimension 1. Since
dim(W/Z) < dim(W ), the induction hypothesis is valid for the pair (W/Z, V/Z), so there
exists a g-submodule Y such that Z ⊂ Y ⊂ V and

V/Z = W/Z ⊕ Y/Z. (5.0.1)

66



Appendix: Weyl’s theorem on complete reducibility

Since dim(Y ) − dim(Z) = 1 and dim(Z) < dim(W ), the induction hypothesis is also valid
for the pair (Z, Y ). Therefore, there exists a g-submodule X ⊂ Y such that

Y = Z ⊕X. (5.0.2)

We will show that V = W ⊕X. First, we remark that (5.0.1) and (5.0.2) imply that

dim(V ) = dim(W ) + dim(Y )− dim(Z) = dim(W ) + dim(X).

Now we are done if we show that W ∩X = {0}. Since X ⊂ Y , it follows that W ∩X ⊂ W ∩Y .
It follows from (5.0.1) that W ∩ Y ⊂ Z. It follows from (5.0.2) that

W ∩X ⊂ W ∩ Y ⊂ Z,

so
W ∩X = (W ∩X) ∩ Z = W (X ∩ Z) = W ∩ {0} = {0}.

We conclude that W ∩X = {0} hence

V = W ⊕X,

and we are done. The result follows by induction.

Now, we assume that W is an arbitrary g-submodule. We look for a section for the canonical

injection ι : V
W
↪−→, i.e. a g-linear map f0 : V → W such that f0|W = IdW , since this would

imply that W ∼= V/ ker(f0), hence V = W ⊕ ker(f0). We would like to reduce this case to
the first case, so we introduce the induced g-module Hom(V,W ) of linear maps f : V → W ,
where the g-action is given by

(X · f)(v) = X · f(v)− f(X · v).

The idea is to consider the g-submodule

V = {f ∈ Hom(V,W ) : f |W = λIdW : λ ∈ R}

and its codimension 1 g-submodule

W = {f ∈ Hom(V,W ) : f |W = 0}.

Note that X · V ⊂ W , since

(X · f)(w) = X · f(w)− f(X · w) = X · (λw)− λX · w = 0.

By the previous cases, there exists a one dimensional g-submodule U ⊂ V such that

V =W ⊕U .

Since U is one-dimensional, we can write U = C · f0 with f0 ∈ V . Without loss of generality,
we can assume f0|W = IdW . Since g acts trivial on U as U is one-dimensional, it follows that
(X · f0)(v) = f0(X · v) − X · f0(v) = 0, so f0(X · v) = X · f0(v). We infer that ker(f0) is
g-submodule of V . Since W = V/ ker(f0) and ker(f0) is a g-module, we have that

V = W ⊕ ker(f0).

This proves Weyl’s theorem on complete irreducibility.
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