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Abstract

Crystalline structure identification is a widely studied topic in condensed matter
physics. Understanding how the structure of materials are determined by the shape
of the particles it is build from is important for the understanding of the properties
of these materials and can potentially help us tweak these properties to develop useful
applications. In this research, we investigate how we can use machine learning tools for
the identification of crystal structures by looking at systems of rounded polyhera. The
bond order parameters of these systems are obtained from Floppy Box Monte Carlo
simulations that produce large, high dimensional data sets. This data is analyzed with
use of unsupervised machine learning, specifically dimensionality reduction techniques
PCA and diffusion maps. We find that these techniques can identify different crystal
structures for simple systems. For more complicated ones, a clear distinction of all crys-
tal structures is hard to make with the naked eye. Additional techniques, like clustering
algorithms, are needed to make a complete identification in more complex systems. Al-
though the differences in results are minimal, diffusion maps reduces dimensionality
slighlty better than PCA.
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1 INTRODUCTION 1

1 Introduction

The organization of individual building blocks into ordered structures is found everywhere
in nature at all length scales. Crystal structures are found in atomic systems as well as in
molecular materials, nanoparticles and colloids. Understanding the relationship between the
macroscopic structure of a material and the properties of its particles is a widely studied
topic in condensed matter physics with useful applications. For instance, nanoscale colloidal
crystals have been shown to assemble into ordered superlattices with interesting mechanical
properties, while micron-sized particles can be used to build materials that interact with
visible light [1].
A particularly interesting aspect in this field are so called “packing problems” where self-
assembly of a system is determined by the shape of the particles [2]. Packing problems of
polyhedral shapes and the crystalline structures they can form as well as the recent advances
in the synthesis of faceted nanoparticles and colloids have attracted interest the phase be-
haviour of such “odd-shaped” particle systems [1, 3, 4]. Discoveries in this field have shown
to be useful and may play a role in tomorrows materials [5]. Furthermore, the rounding of
a particle, due to suface charges or stabilization by a polymeric surface coating also plays a
role in the packing of a system [6].

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Some snapshots of the simulations used in this research. Figures 1a, 1b, 1c and 1d
are close packed systems of cubes, octahedra, tetrahedra and truncated tetrahedra respec-
tively. Figures 1e, 1f, 1g and 1h show the same systems of cubes, octahedra, tetrahedra and
truncated tetrahedra, this time the individual particles are rounded.
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In the process of studying these systems, scientists produce enormous amounts of data from
the computationally expensive process of performing many numerical particle simulations
which moreover have to be analysed. For crystal structure identification, tools called bond
order parameters are used as a measure to quantify the types of crystal structures that occur
in the studied systems. More on bond order parameters will be elaborated in the theory
section (section 2). Still, this analysis is difficult and labor-intensive, partly due to the wide
variety of crystal structures that can be found in self assembling systems [7].
As computer hardware and software continue to develop at high rates, high-performance
methods are needed to study the generated data. Techniques and tools from data science
and machine learning prove themselves remarkably useful in identifying and extracting trends
and patterns within large data sets. One can, for instance, “teach” artificial neural-networks
to identify crystal structures in a system if the types of structures are known beforehand [8].
However, typically it is not known which structures are present in a data set before analysis.
For these type of problems, unsupervised machine learning techniques are used. One of these
techniques that will be used in this thesis are dimensionality reduction techniques, specifically
Principal Component Analysis (PCA) and Diffusion Maps. With dimensionality reduction
techniques high dimensional output data is reduced to a point where the relevant information
hidden in the data can be extracted. This sounds promising for finding structures in the high
dimensional parameter space from particle simulations.

In this thesis crystal structures that are found in systems of rounded polyhedra are studied
where the roundedness is characterized by a parameter r ∈ [0, 1] (r = 0 being an ideal poly-
hedron to r = 1 a sphere). This is done by running particle simulations from which the bond
order parameters are obtained. This leaves us with large, high dimensional data sets, which
is a typical problem where machine learning proves itself to be exceptionally useful. Here,
unsupervised learning techniques are used. Specifically, the bond order parameters from
these simulations using dimensionality reduction techniques PCA and Diffusion Maps. The
results from this analysis are will be discussed and evaluated. In this research we investigate
if PCA and diffusion maps are suitable techniques to identify crystal structures and discuss
the differences and results for the two machine learning techniques.

2 Theory

This thesis can be roughly separated into two parts. The first part consists of the particle
simulations that produces the required data. In the second part, the data sets are analysed
by means of the machine learning methods principal component analysis and diffusion maps.
In this section, the necessary technicalities for the simulations and analysis are elaborated.
First, the derivation of bond order parameters used in this research are discussed and how
they characterize the crystal structures. Next the machine learning techniques that are used
in this research are described. Details on the simulation itself and how the output data is
analyzed is discussed in the methods section (section 3).
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(a) Y m=2
l=4 (θ, φ) (b) Y m=3

l=4 (θ, φ) (c) Y m=4
l=4 (θ, φ)

Figure 2: Real parts of the spherical harmonics plotted for l = 4 and m = 2, 3, 4 as an
illustration

2.1 Bond Order parameters

Crystals are ordered particles in periodic lattices. Depending on the type of crystal, the
neighbourhood of every particle has a certain symmetry. Bond order parameters can charac-
terize these structures by making use of these symmetries. This method was first introduced
in 1982 by Steinhardt et al. and have shown to be useful in studying bond orientational
order in liquids and glasses [9]. The bond order parameters are based on the properties of
spherical harmonics Y m

l (θ, φ). In figure 2 a few spherical harmonics are plotted to give an
idea how these functions can be useful to characterize local structure.

The bond order parameters are constructed as follows: for each particle i a set of bonds to its
closest neighbours is defined ~rij (with j the closest neighbours of particle i). The bonds in the
system are expanded in terms of spherical harmonics Y m

l (~rij) which are then averaged over
the neighbourhood of particle i. The choice of this neighbourhood definition is not unique
and specific methods have proven to be more useful in identifying different types of crystal
structures [10].

Here a definition constructed by Voronoi-cell weighting is maintained. The advantage of this
definition is that the geometry of the particle neighbourhoods is symmetric and parameter
free, in contrast to other definitions. Voronoi-cell weighting works as follows. First a Voronoi
diagram is constructed. An example for a 2D Voronoi cell is described here. Consider a plane
with points (particles) at random positions. For each particle a Voronoi cell is constructed
composed of line segments and vertices. The line segments are points that are equidistant to
two nearest particles and vertices are points equidistant to at least three particles (see figure
3). The contribution of each neighbour is weighted by an associated area factor A(f)/A,
where A(f) is the length (surface area in 3D) of line segment f separating two neighbouring
particles.
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Figure 3: Illustration of Voronoi diagram in 2D for a set of random particles denoted by the
red dots.

Hence, A =
∑

f∈F(a)A(f) is the total area of the Voronoi cell of a particle. The so called
Minkowski metric is defined as

qlm(i) =
∑

f∈F(a)

A(f)

A
Y m
l (θf , φf )

which is used to construct the rotationally invariant bond order parameters (also see [11]):

q̄l(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|qlm(i)|2, (1)

and

w̄l(i) =

∑
m1+m2+m3=0

∣∣∣∣ l l l
m1 m2 m3

∣∣∣∣ q̄lm1(i)q̄lm2(i)q̄lm3(i)(
l∑

m=−l
|q̄lm(i)|2

)3/2
. (2)

2.2 Machine Learning

Machine learning techniques can be roughly classified into four categories: supervised learn-
ing, unsupervised learning, semi-supervised learning and reinforced learning. The categories
are distinguished by the type of available data and the objective of the procedure (see figure
4 for an overview). Here, a brief elaboration is given to distinguish the different types and
their purposes.
Supervised learning uses labeled data sets where both the input and output are known. The
goal of its learning procedure is to find a quantitative model to relate input and output such
that it can predict outcomes for new, unknown data input.
Unsupervised learning is used for unlabeled data sets. The basic idea is to find an underlying
structure or relationships within the data based only on the inputs. Unsupervised learning
can further be classified into clustering algorithms and dimensionality reduction techniques.
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Figure 4: An overview of machine learning types and their algorithms from a topical review
on machine learning in soft materials engineering [12].

Clustering is the process of finding points within a data set that are more similar than others
and divides the data into clusters. With dimensionality reduction, also known as manifold
learning, low-dimensional parametrizations are determined within high-dimensional data sets.
Dimensionality reduction can again be classified into linear and nonlinear techniques. In this
thesis, both will be used for our research.
With semi-supervised learning, one tries to make optimal use of both labeled and unlabeled
data to achieve a better model performance than using either type alone.
Reinforced learning differs from the other types of learning. It seeks an optimal policy for
interacting with a dynamic situation to maximize a reward function rather than finding an
input-output model or looking for structure in a data set.

2.2.1 Principal Component Analysis

Principal component analysis (PCA) is a linear unsupervised dimensionality reduction tech-
nique. This technique is closely related to other techniques like the Karhunen-Love transform,
factor analysis and proper orthogonal decomposition. These techniques are linear in the sense
that they are constrained to collapse the high-dimensional data onto linear hyperplanes. For
PCA, the idea is to search for a set of orthogonal vectors (principal components) that contain
the maximum variance in the data points. Ordering these vectors according to the fraction of
variance often yields a small number of components and leaves an effective low-dimensionality
of the data set.

Mathematically, one considers N observations of d dimensions each, i.e. {xi(t)}di=1, with
t = 1, · · · , N . These observations are stored in a d×N observation matrix
X = (x1,x2, ...,xd)T and mean center X to insure that the decomposition is independent of
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the arbitrary location of the data cloud in its coordinate space (i.e.
∑N

j=1Xij = 0,∀i). The
d× d covariance matrix is constructed as follows

C =
1

N − 1
XXT ,

where Cij is the measure of the covariance between measurement dimensions i and j. Next,
for each observation, a vector W = VTX is found with V an orthonormal d× d matrix such
that the covariance matrix is diagonal in the new basis. Matrix V possesses by definition the
right eigenvectors of covariance matrix C. If a data set can appropriately be decomposed in
orthogonal vectors, a gap in the eigenvalue spectrum is found which separate the first k < d
principal components. This is the part where the dimensionality is reduced. The relevant
eigenvectors of V are left over (corresponding to the first k eigenvalues). We can now project
the original observation matrix onto these vectors,

Wproj = VT
projX,

where Wproj is a matrix of size k×N and where the columns contain the projection of each
data point onto the low-dimensional PCA subspace.

2.2.2 Diffusion Maps

Diffusion Maps (dMaps) is an unsupervised nonlinear dimensionality reduction technique.
Where PCA achieves dimensionality reduction by finding components with maximum vari-
ance in the data, dMaps can make low-dimensional projections onto curvilinear manifolds
which makes its a generally more applicable method.

The method consists of constructing a random walk over the high-dimensional point cloud
followed by a harmonic analysis to find its slowest relaxation modes.
The methods consists in a couple of steps. Consider N data points {xi} ∈ RK in a K-
dimensional space with i = 1, · · · , N . The distances dij = ‖xi−xj‖ between all N points are
computed and stored in a N×N distance matrix d, with ‖·‖ an appropriate distance metric.
In many cases, as for our own case, the Euclidean metric will serve as a good measure. Next,
a Gaussian kernel with standard deviation ε is added to the distance matrix to form

A =


e−d

2
1,1/2ε e−d

2
1,2/2ε · · · e−d

2
1,N/2ε

e−d
2
2,1/2ε e−d

2
2,2/2ε · · · e−d

2
2,N/2ε

...
...

. . .
...

e−d
2
N,1/2ε e−d

2
N,2/2ε · · · e−d

2
N,N/2ε

 , (3)

where Aij ∈ [0, 1] can be seen as the non normalized hopping probabilities of the random
walk from xi to xj with characteristic step size ε. An appropriate value of ε has to be
chosen and is dependent of the structure of the data set. Now, matrix A is normalized by
its row sums to construct the Markov matrix M = D−1A with D diagonal matrix with
elements Dij =

∑
j Aij. Mij can now be seen as the normalized hopping probabilities of the

random walk from xi to xj. Matrix M can now be diagonalized to find the eigenvalues {λ}Ni=1

and corresponding eigenvectors {ψ}Ni=1. Markov matrices hold the property that it always
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contains a trivial eigenvalue and its associated eigenvector that correspond to a stationary
random walk, i.e. λ1 = 1 and ψ1 = 1. Looking at the eigenvalues in non-ascending order, the
remaining eigenvalues leave a gap between λk+1 and λk+2 which indicated the division between
the slow and fast diffusion modes. This is where the dimensionality is reduced K → k. The
eigenvectors corresponding to the slow diffusion modes provide a good parametrization for
the low-dimensional manifold, each point xi is projected onto the ith component of the k
leading non-trivial eigenvectors, the so called diffusional map embedding,

xi →
(
ψ2(i), ψ3(i), ..., ψk+1(i)

)
. (4)

3 Methods

In this research, crystal structures of systems with “odd shaped” particles are studied. Specif-
ically, systems with increasingly rounded cubes, octahedra and tetrahedra are investigated.
The roundedness of the particles, represented by parameter r, is varied in steps of 0.01 be-
tween (and including) 0 and 1.

Crystals are composed of a small group of particles called unit cells. A unit cell is repeated
through the whole crystal structure along its lattice vectors and completely reflects the struc-
ture and symmetry of the crystal. The number of particles per unit cell N of the densest
packing depends on the shape of the particles we chose for our system. All shapes used in this
research are eventually rounded up to perfect spheres, which have a densest packing with a
(primitive) unit cell of N = 1 (face centered cubic system). Cubes (simple cubic lattice) and
octahedra are known for having N = 1 particles per unit cell for their densest packing [2].
The densest packing for tetrahedra is known to have N = 4 particles per unit cell, however
in a paper on spherotetrahedra, a dense packing with a unit cell with N = 2 is also found
[6]. It is plausible that for a specific rounding of the considered shapes, another number of
particles per unit cell N exists (although this is unlikely for the cubes and octahedra). If we
would be interested in the densest packed systems for these particles, the number of unit cells
N would have to be found for each rounding of the particles. However, in this research the
focus lies more on the identification of the crystal structures with use of machine learning.
Therefore, the number of particles per unit cell is fixed for the systems considered in this
research, specifically N = 1 for the rounded cubes, N = 1 for the rounded octahedra and
N = 2 for the rounded tetrahedra.

Furthermore in this section, the particle simulation is described, which grant the bond order
parameters that are used for the machine learning analysis. Also a short description of
how this analysis is done for each dimensionality reduction method. The output of the
simulation, i.e. the bond order parameters q̄l and w̄l with l ∈ [1, 12] are obtained as well as
the packing fraction for each simulated system. This output provides the necessary input for
the techniques described in the theory (section 2.2.1 and 2.2.2) that will be used to make
the analysis. A brief description of how this is done will also be provided in this section.
Furthermore the analysis is done in Python and the scripts with annotations will be provided
along with this report.
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3.1 Simulation

For the simulation part of this research, the floppy-box Monte Carlo (FBMC) method [13] is
used. Here, a description for the setup for the algorithm is given.
The FBMC algorithm is based on a standard Monte Carlo (MC) simulation for an ensem-
ble with a fixed number of particles, pressure and temperature (NPT or isothermal-isobaric
ensemble). There are a few key points in which the FBMC is essentially different from a
standard MC simulation. First, the system is simulated by creating one single unit cell with
a small number of particles which is then copied to create the full system. Furthermore,
additionally to the standard MC moves the shape and size of the box is also varied in each
MC step. Finally the term fixed pressure should be specified here. The algorithm is meant to
simulate close packed systems which is accomplished by increasing the pressure in the system
towards higher densities. The pressure is therefore not fixed at one value but the algorithm
fixes the pressure to an value that increases during the course of the simulation. A detailed
description of the method will be elaborated in this section.

Consider N particles in a box with the positions to the particles centre ri and orientation qi,
where i = 1, 2, ..., N . The orientation is obtained by applying a rotation matrix to an initial
orientation. The box is defined by three vectors vj, with j = 1, 2, 3. One of the corners of
the box is centred in the origin and all of the vectors are given with respect to a standard
Cartesian coordinate system. The packing fraction of the system is given by φ = 1/V

∑N
j=1 Vj

with Vj the volume of particle j and V ≡ |v1 · (v2 × v3)| the volume of the simulation box.
The total potential energy of the system is given by U = U(v3, rN ,qN). Since we consider
only hard-particle interactions U can only take two values,

βU =

{
0 when there is no overlap between particles,

∞ when two particles overlap,
(5)

with β = 1/kbT , kb being the Boltzmann constant and T the temperature. One of the
differences to a standard Monte Carlo simulation is that the number of particles in the box is
small, typically N < 12. In addition to to the standard MC moves, translation and rotation,
scaling and deformation of the box is also applied to the box where the perturbations for these
moves are constructed randomly. These four moves all have to be done while maintaining the
NPT ensemble and while satisfying the overlap restriction. Therefore an acceptance criterion
is defined which has to be satisfied. The probability of a move being accepted written as
acc(o → n) with “o′′ and “n′′ represent respectively the old and new state. The acceptance
criterion for these moves is given by

acc(o→ n) = min

(
1, exp

[
− β(Un − U0) + P (Vn − V0) + (N + 1) log

(Vn
V0

)])
, (6)

where P is the pressure and subscripts n and o indicating the new and old values in the system.

The order in which these moves are made is random but requires a certain probability dis-
tribution in order to make an efficient sampling. For N = 1, efficient sampling is found
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for roughly 70% rotation, 15% scaling, 15% deformation and no translation is applied. For
N ≥ 2 we find efficient sampling for typically 35% translation, 35% rotation, 15% scaling
and 15% deformation moves.

After each of these moves, two criteria have to be satisfied. No overlap is allowed and
the acceptance criteria in equations 6 and ?? have to be satisfied. Checking for overlaps in
the system needs its own algorithm and can be computationally expensive and time con-
suming. There are several methods to check hard-article overlap. In this simulation the
Gilbert-Johnson-Keerthi (GJK) overlap algorithm is used [14]. Since this overlap check can
be rather time consuming, it is first ensured the move is accepted on basis on pressure and
volume (equations 6 and ??) before doing the overlap check.

For this overlap check, as well as for the moves that are applied a, set of scaled coordi-
nates is introduced. Consider rj = Msj, where sj ∈ [0, 1)3 is the scaled coordinates with off
course j = 1, ..., N and matrix M = (v1v2v3) where the vectors are the columns of the matrix.

The next step is to construct the whole system by making periodic images of the box, to check
for overlaps in the system and moreover to make enough nearest neighbours to calculate the
bond order parameters. Checking for overlap in the whole system is essentially equivalent
to checking for a particle in a box and another particle in the box, its own periodic images
and other particles’ periodic images. This is done for every particle making sure they are not
double checked. For efficiency, a minimum amount of periodic images have to be constructed
without going at the cost of the overall speed of algorithm.

Consider a particle in the origin with largest outscribed-sphere RO. For two particles with
a distance 2RO from each other, no overlap takes place. A sufficiently large self-image list is
constructed by considering a cube with vertices cn = 2RO(±x̂± ŷ± ẑ) with n = 1, ..., 8 and
x̂, ŷ and ẑ Carthesian unit vectors, which envelops the sphere at the origin with radius 2RO.
The inverse matrix M−1 is applied to the the vertices of the cube cn to obtain parallelepiped
pn = M−1cn. The upper bounds to the number of images that need to be checked in each
direction are constructed using pn

N1 = dmax
n

(pn · x̂)e;

N2 = dmax
n

(pn · ŷ)e;

N3 = dmax
n

(pn · ẑ)e;

(7)

where d·e indicates the ceiling function ( dae gives the smallest integer larger than a). For
images that fall outside off the rectangle [−N1, N1]× [−N2, N2]× [−N3, N3], no overlap with
the particle at the origin is possible. The equivalent set of images can now be established
as Pim = iv1 + jv2 + kv3 with i = −N1, ..., N1; j = −N2, ..., N2; j = −N3, ..., N3; and
i+j+k 6= 0. When this list is checked for overlap the Monte Carlo cycle is over. A default of
107 MC cycles is used to find to try and determine the crystal structure. When the MC cycles
are finished, the bond order parameters q̄l and w̄l with l ∈ [1, 12] of the crystal structure is
calculated and stored.
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This routine is repeated for 0 ≤ r ≤ 1 with steps of 0.001, i.e. per system, two data sets
(one for q̄l and one for w̄l) with 1001 12-dimensional points are obtained. In the following
sections, a short description of the analysis process of these data sets.

3.2 Principal component analysis

Principal component analysis is relatively straight forward to implement by following the
theory. Here, a short description is given.

First, the data set is stored in the 12 × 1001 observation matrix X. The 12 × 12 covari-
ance matrix C is now constructed from which we obtain the eigenvalues λd and eigenvectors
wd with d ∈ [1, 12] as described in section 2.2.1. The eigenvalues can now be plotted to find
the eigenvalue gap and find the reduced dimension k < d. Furthermore, the eigenvectors wd

corresponding to the eigenvalues λd with d ∈ [1, k] are plotted as a function of xi with index
i ∈ [0, 1000]. xi can essentially be interpreted as roundness parameter r ∈ [0, 1]. Further-
more, it is possible to find out what bond order parameters q̄l and w̄l contribute most to the
eigenvectors wk by projecting them upon the directions of the bond order parameters q̄l (and
w̄l) in the original data set (mathematically these are just the eigenvectors of the 12 × 12
identity matrix).

3.3 Diffusion maps

Implementing diffusion maps takes a few more steps. A short description is given here.

Like described in the theory section 2.2.2, the distances dij = ‖xi − xj‖ between all 12-
dimensional pair points xi and xj with indices i, j ∈ [0, 1000] are calculated and stored in

the 1001 × 1001 matrix Aij = e−d
2
ij/2ε. Now, an appropriate value of ε is to be determined.

This is done by plotting the sum of matrix A as a function of the log10 ε which will show
a flat curve for too small and too large values of epsilon. By trial and error, the best value
of epsilon is found under condition that it is chosen within the range of ε where the slope
of the sum of A as a function of log10 ε is non zero. Now that an appropriate value of ε is
chosen, Markov matrix M is constructed (see theory section 2.2.2) and eigenvalues λi and
eigenvectors ψi are obtained with i ∈ [0, 1000]. The eigenvalues λi are plotted to find the gap
between that reduces the dimensionality 12 → k. The eigenvectors ψd corresponding to the
eigenvalues λd with d ∈ [1, k] are plotted as a function of xi with index i ∈ [0, 1000]. Again,
xi can essentially be interpreted as roundness parameter r ∈ [0, 1].
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4 Results

In this section, both the results obtained from the simulation as well as the results obtained
from the analysis with the machine learning techniques are reported for each of the studied
systems. The results are reported and evaluated per system in the following order; first the
simulation output, secondly the PCA results, then the results for diffusion maps and finally,
for the rounded cubes and octahedra system, snapshots of the simulation are discussed.

4.1 Cubes

In figure 5, the bond order parameters (BOP’s) q̄1 to q̄12 are plotted as a function of round-
edness for the system of rounded cubes for FBMC simulations with unit cell N = 1. Note
that only 6 of the 12 bond order parameters can be seen in the graph. In fact, only the
parameters q̄2, q̄4, q̄6, q̄8, q̄10 and q̄12 (all even BOP’s) show curves. The other BOP’s are all
of order of magnitude 10−16. Most importantly, we notice the jump in the BOP’s just before
r = 0.7. This jump indicates a phase transition between two crystal structures. We therefore
also expect to find this transition in the results for PCA and diffusion maps.

Furthermore, a “messy” part in the region 0 < r < 0.2 is noticed (also more devious data
points are found through the whole range). We have to keep in mind that the FBMC simu-
lation initially looks for the densest packing. However, if for a system several different dense
packed structures exist, there is a good chance the FBMC simulation gives a dense packing
and not the densest one. For a research where the densest packing is studied it would be
important to run the simulation a number of times and chose the densest packing for each
run to be considered in the study. In this case however, we are not so much interested in the
densest packing but more in whether machine learning can identify different structures and
phase transitions. The simulations are also particularly time consuming (some of them can
take up to a week) so for these reasons we have decided to do the machine learning analysis
for one single run per system. Moreover it can also be useful and interesting to see how PCA
and diffusion maps react to noisy data.
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Figure 5: Bond order parameters q1 to q12 plotted as a function of the roundedness for
rounded cubes with unit cell N = 1.

4.1.1 PCA

In figure 6 we see the PCA results for the rounded cubes system. To measure how the di-
mensionality is reduced for each system, the 12 normalized eigenvalues λk of the covariance
matrix of the BOP data set for the rounded cubes are plotted non-ascending order in figure
6a. Like expected from the theory (section 2.2.1), we find a gap in the value of these eigen-
values which quantify the effective dimensionality to where the original data set is reduced.
In this case we see one high value, a lower one and the rest effectively zero. This indicates
that the first eigenvector contains predominantly most of the variance in the original data
set. The second eigenvector still contains some variance in the original data set but with
these two vectors, the whole data set can effectively be reconstructed.
Figure 6b shows which bond order parameters q̄l contribute to the eigenvectors w1 and w2

found by PCA. We see that q̄4 and q̄10 contribute most to eigenvector w1 where q̄6, q̄8 and
q̄12 have a smaller contribution. For eigenvector w2, q̄12 has the biggest contribution where
q̄4, q̄6, q̄8 and q̄10 have a smaller contribution.

In figure 6c the eigenvectors w1 and w2 are plotted respectively as function of xi (rounded-
ness). Notice the similarity of the curve with the BOP plots in figure 5. This is not a surprise
since we have seen in figure 6b how w1 and w2 are constructed from the BOP’s. The jump in
the plot at xi with i ≈ 700 (corresponding to roundedness parameter r = 0.7) can be clearly
seen in both w1 and w2 like we expected from 6b.
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(a) Eigenvalues sorted by variance in
corresponding eigenvector of covariance
matrix in data set for rounded cubes.

(b) Weight of bond order parameters
q̄l contributing to principal components
wk for rounded cubes.

(c) Eigenvectors w1 and w2 found by PCA as a function
of roundedness xi for rounded cubes.

Figure 6: Results from PCA for rounded cubes.
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4.1.2 dMaps

Figure 7 shows the results obtained from diffusion maps on the rounded cubes system. Be-
fore applying diffusion maps on a data set, an appropriate value for ε has to be found. Like
explained in the theory 2.2.2 the value of ε is a measure for the connectedness of the dat-
apoints. For too small values of ε the data points are not connected to other data points
at all, but for too large values, all data points are connected to all other data points. To
find an appropriate value, the sum of matrix A is taken as a function of the log10 of ε (see
figure 7a). The flat regions in this plot correspond to the too small and too large regions for
epsilon (the sum of A does not decrease/grow any more for a smaller/larger ε/connectedness
between data points). Hence, ε has to be chosen somewhere in between these regions for
diffusion maps to have any meaning. By trial and error, we have found that the upper part
of the slope gives the best results. For this data set, a value of ε = 0.5 is chosen.

In figure 7b the first 12 out of 1001 (normalized) eigenvalues of matrix M (see theory 2.2.2)
are sorted and plotted for the measure of dimensionality reduction for this system. Again, like
with PCA, a clear gap between the first and second eigenvalue can be identified after which
all other eigenvalues are (practically) zero. In fact, the dimensionality reduction plots for
PCA and diffusion maps look very much alike. This will be discussed more in another section.

In figure 7c the nontrivial eigenvectors ψ2(i) and ψ3(i) of matrix M are plotted as a function
of xi. Again, the similarities with the curves in the bond order parameter plots in 5 are
strong. In fact the plots in 7c seem to look exactly like the plots found with PCA in figure
6c except for that ψ2(i) is flipped. Also the actual values of the eigenvectors seem to be
translated and scaled, but their form is obviously similar, which is remarkable. Again the
jump in the plot just before x700 (corresponding to roundedness parameter r = 0.7) can be
clearly seen in like we expected from 6b.

4.1.3 Simulation snapshots around phase transition

A clear gap can be identified for roundedness parameter r in 0.660 < r < 0.679 in the BOP
plots (figure 5), results from PCA (figure 6c) and diffusion maps (figure 7c). This suggests a
phase transition in this region and it is therefore worth while to trace back these simulation
runs and to take a look at the simulation snapshots (see figure 8). However, due to the way
the crystals are constructed by the FBMC simulation (orientation of unit cells, etc.) it is
extremely hard find similarities or to distinct the structures from each other. It is very well
possible two crystals don’t look similar from the snapshots (say 8h and 8i) but in fact are
similar (after a slight rotation around one/all of the axes or translation).
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(a) Sum of matrix A as a function of
the log10 of ε for rounded cubes.

(b) Sorted eigenvalues for matrix M
with ε = 0.5 for rounded cubes.

(c) Eigenvectors ψk(i) of matrix M plotted as a function
of i with ε = 0.5 in data set for rounded cubes.

Figure 7: Results from diffusion maps for rounded cubes.
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(a) Simulation snapshot
for r = 0.660

(b) Simulation snapshot
for r = 0.662

(c) Simulation snapshot
for r = 0.663

(d) Simulation snapshot
for r = 0.664

(e) Simulation snapshot
for r = 0.665

(f) Simulation snapshot
for r = 0.675

(g) Simulation snapshot
for r = 0.677

(h) Simulation snapshot
for r = 0.678

(i) Simulation snapshot
for r = 0.679

Figure 8: A few snapshots from the simulation of rounded cubes from r = 0.660 to r = 0.679.
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4.2 Octahedra

In figure 9 the bond BOP’s q̄1 to q̄12 are plotted as a function of roundedness for octahedra.
Again only the parameters q̄2, q̄4, q̄6, q̄8, q̄10 and q̄12 (all even BOP’s) are non-zero and actu-
ally show curves in their plots. The plots look less noisy than the BOP plots for the rounded
cubes (figure 5). In these plots, two clear jumps can be distinguished for roughly around
r = 0.3 and 0.8 < r < 0.9. The jumps here are slightly different than for the jumps in the
plots for rounded cubes (figure 5). It not only suggests a phase transition, there also seems
to be a degeneracy for the regions r = 0.3 and 0.8 < r < 0.9 where there are two compet-
ing phases. Again, this is also expected to be found in the results for PCA and diffusion maps.
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Figure 9: Bond order parameters q1 to q12 plotted as a function of the roundedness for
rounded octahedra with unit cell N = 1.

4.2.1 PCA

Figure 10 shows the PCA results for the rounded octahedra system. Again we want to mea-
sure how PCA reduces the dimensionality for this system. In figure 10a, the 12 normalized
eigenvalues of the covariance matrix of the BOP data set for the rounded octahedra, which
are plotted and sorted in non-ascending order. This time, an even clearer gap is found be-
tween the first eigenvalue and the rest of the eigenvalues. As we see in figure 10a, the first
eigenvalue takes value 1 which means the variance in the original data set can be fully ex-
pressed with one eigenvector and that the whole data set can be effectively expressed with
this vector.
Figure 6b shows how this eigenvector w1 is constructed from the BOP’s. We see that q̄10 is
the largest contributor to w1 by far, q̄12 also contributes a bit and q̄4 and q̄8 even less.

In figure 10c eigenvector w1 is plotted. Again, the similarities with the BOP plots (figure
9) is clear. In fact, the shape of the curve looks exactly like q̄10, which is in agreement with
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the plots in figure 10b. Like expected from the jumps in the BOP plots (figure 9), the jumps
around r = 0.3 and 0.8 < r < 0.9 are very clear and the same degeneracy for these regions
of r can be distinguished as in the BOP plots.

(a) Eigenvalues sorted by variance of
corresponding eigevector of covariance
matrix in data set for rounded octahe-
dra.

(b) Weight of bond order parameters q̄l
contributing to principal component w1

for rounded octahedra.

(c) Eigenvector w1 found by PCA as a function of roundedness xi for
rounded cubes.

Figure 10: Results from PCA for rounded octahedra.
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4.2.2 dMaps

Figure 11 shows the results obtained from diffusion maps on the rounded octahedra system.
Again, the appropriate value is found by taking the sum of matrix A as a function of the
log10 of ε (see figure 7a). A value in the upper part of the slope is chosen, i.e. ε = 0.8.

Figure 11b shows the first 12 out of 1001 (normalized) eigenvalues of matrix M (see theory
2.2.2), which are sorted and plotted for the measure of dimensionality reduction for this
system. Just like with PCA, the first non-trivial eigenvalue takes value 1 wheres the other
eigenvalues are (practically) zero which means we can express the data set with the first
non-trivial eigenvector ψ2(i).

This eigenvector is plotted in 11c as a function of xi. Again, the curve in this plot is the same
as the curve in the plot we find with PCA. The jumps in the plot correspond to the jumps
the BOP plots (figure 9). The apparent phase transitions seem to be unanimous in the BOP
plots, the results PCA and diffusion maps, i.e. around roundedness parameter r = 0.3 and
0.8 < r < 0.9.

4.2.3 Simulation snapshots around phase transition

A clear gaps can be identified for roundedness parameter around r ≈ 0.3 and around r ≈ 0.83
in the BOP plots (figure 10b), results from PCA (figure 10c) and diffusion maps (figure 11c).
This suggests phases transition in these regions and it is therefore worth while to trace back
these simulation runs and to take a look at the simulation snapshots (see figures 12 and 13).
However, due to the way the crystals are constructed by the FBMC simulation (orientation
of unit cells, etc.) it is extremely hard find similarities or to distinct the structures from
each other. It is very well possible two crystals don’t look similar from the snapshots (say
8h and 8i), due to a slight rotations around one/all of the axes or translations, but in fact
are similar.
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(a) Sum of matrix A as a function of
the log10 of ε for rounded octahedra.

(b) Sorted eigenvalues for matrix M
with ε = 0.8 in data set for rounded
octahedra.

(c) Eigenvectors ψk(i) of matrix M plotted as a function
of i with ε = 0.8 in data set for rounded octahedra.

Figure 11: Results from diffusion maps for rounded octahedra.
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(a) Simulation snapshot
for r = 0.285

(b) Simulation snapshot
for r = 0.287

(c) Simulation snapshot
for r = 0.288

(d) Simulation snapshot
for r = 0.289

(e) Simulation snapshot
for r = 0.290

(f) Simulation snapshot
for r = 0.291

(g) Simulation snapshot
for r = 0.292

(h) Simulation snapshot
for r = 0.293

(i) Simulation snapshot
for r = 0.294

Figure 12: A few snapshots from the simulation of rounded octahedra from r = 0.285 to
r = 0.294.
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(a) Simulation snapshot
for r = 0.827

(b) Simulation snapshot
for r = 0.828

(c) Simulation snapshot
for r = 0.829

(d) Simulation snapshot
for r = 0.830

(e) Simulation snapshot
for r = 0.831

(f) Simulation snapshot
for r = 0.832

(g) Simulation snapshot
for r = 0.833

(h) Simulation snapshot
for r = 0.834

(i) Simulation snapshot
for r = 0.835

Figure 13: A few snapshots from the simulation of rounded octahedra from r = 0.827 to
r = 0.835.
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4.3 Tetrahedra

In figure 14 the BOP’s q̄1 to q̄12 are plotted as a function of roundedness for tetrahedra with
unit cell N = 2. The plot is a lot less ordered then the BOP plots for rounded cubes and
rounded octahedra. As opposed to the BOP’s for the rounded cubes and octahedra, the
order of magnitude of all BOP’s are around 10−1 except for q̄2 which is at most in order of
magnitude 10−2 and q̄1 which is at most in order of magnitude 10−8. In other words, almost
all of the BOP’s actually show curves which makes the plot a lot less ordered. Furthermore,
what we have seen in figure 9 with the BOP’s for the octahedra, where for some region of r
a degeneracy in BOP’s is found, also seems to occur for the tetrahedra. For some regions of
r, even three different trends can be identified! Figure 14 shows that the system of rounded
tetrahedra is much more complicated than the previously studied systems, it it hard to tell
where exactly phase transitions are expected and where not since jumps are seen all over the
place. Maybe some dimensionality reduction might come in handy. Why this system also
yields uneven BOP’s has most likely to do with symmetry properties of the spherical har-
monics and the differences in symmetry between the structures in systems with tetrahedra
and with cubes/octahedra. More study is needed for better understanding. Unfortunately
this is not considered in this research.
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Figure 14: Bond order parameters q1 to q12 plotted as a function of the roundedness for
rounded tetrahedra with unit cell N = 2.
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4.3.1 PCA

Figure 15 shows the PCA results for the rounded tetrahedra system. To measure how PCA
reduces the dimensionality for this system, the 12 normalized eigenvalues are plotted in
non-ascending order in figure 15a. There is again a clear gap between the first and second
eigenvalue, suggesting that most of the “information” from the data set can be expressed
with the first eigenvector w1. The second eigenvalue is smaller and the 3rd to the 7th are all
really small but visibly not zero. We see that even for an evidently more complex system the
rounded cubes or octahedra, the dimensionality in such data sets can still be reduced signif-
icantly with PCA, even though we see it is more complex by the fact that the eigenvalues
are non zero up to the 7th eigenvalue.

Figure 15b shows how the first two eigenvectors w1 and w2 are constructed from the BOP’s.
Notice that the uneven BOP’s contribute no less than the uneven BOP’s to the eigenvectors
found by PCA, in contrary to the cubes and octahedra (in figures 6b and 10b) where the
contribution from the uneven BOP’s is zero. This is perfectly in line with what we see in
the BOP plot in figure 15 but still remarkable. We see that both w1 and w2 are a complex
blend of the BOP’s q̄2 to q̄12.

In figure 10c, the eigenvectors w1 and w2 are plotted as a function of xi (roundedness r).
Unlike with the rounded cubes and octahedra we cannot clearly identify any of curves the
BOP’s make in the plots for w1 and w2. Which makes perfect sense since w1 and w2 are a
complex blend of all of the BOP’s as we have seen in figure 15b (also because the plots in
figure 14 are very messy oof course). There are however some regions that have similarities to
the BOP plots. For instance, the three curves we see in both w1 and w2 in the last section for
roughly r > 0.8 (xi with i > 800) can also be found in figure 14 for several BOP’s (for q̄3, q̄5,
q̄8 and q̄12). We can already identify more clearly jumps in the roundedness spectrum than
with the BOP plots only. However, it is still not sufficiently clear to cluster the lines/regions
by hand. It might be useful to try some clustering algorithms to find if it can identify the
clusters in the plot. Further research for this is needed.
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(a) Eigenvalues sorted by variance of
corresponding eigevector of covariance
matrix in data set for rounded tetrahe-
dra.

(b) Weight of bond order parameters
q̄l contributing to principal components
wk for rounded tetrahedra.

(c) Eigenvectors w1 and w2 found by
PCA as a function of roundedness xi for
rounded tetrahedra.

(d) 3D plot of eigenvectors of matrix w1

and w2 found with PCA plotted as a
function of xi with for rounded tetrahe-
dra.

Figure 15: Results from PCA for rounded tetrahedra with unit cell N = 2.
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4.3.2 dMaps

Figure 16 shows the results obtained from diffusion maps on the rounded tetrahedra system.
We find the appropriate value by taking the sum of matrix A as a function of the log10 of ε
(see figure 11a). A value in the upper part of the slope is chosen, i.e. ε = 1.6.

Figure 16b shows the first 12 out of 1001 (normalized) non-trivial eigenvalues of matrix M,
which are sorted and plotted for the measure of dimensionality reduction for this system. We
see that the first non-trivial eigenvalue is around 0.7, the second eigenvalue drops to almost
0.1 and the from the 3rd to the 7th, the values are small but non zero. From this we can say
that most of the data can be expressed with the first non-trivial eigenvector ψ2, eigenvector
ψ3 plays a small role and ψk with k > 3 can effectively be neglected. The eigenvalue plot
again looks very similar to the eigenvalue plot for PCA. More on this will be discussed in
section 4.4.
The eigenvectors ψ2 and ψ3 are plotted as a 2D plot in figure 16c and as a 3D plot in figure
16d as a function of xi. It is hard to say if we can identify any of the bond order parameter
plots from figure 14. One could argue however about similarities with the eigenvector plots
from PCA in figure 15c. These plots gives a much better indication on where phase transitions
can be found than the BOP plots (figure 14) and also shows more clearly where to find jumps
than the eigenvector plot from PCA. Counting by hand results in 8 to 14 different phases
depending on how a cluster is defined. A clustering algorithm would still be a good solution
for this problem.
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(a) Sum of matrix A as a function of
the log10 of ε for rounded tetrahedra.

(b) Sorted eigenvalues for matrix M
with ε = 1.6 in data set for rounded
cubes.

(c) Eigenvectors ψk(i) of matrix M plot-
ted as a function of i with ε = 1.6 in
data set for rounded tetrahedra.

(d) 3D plot of eigenvectors of matrix M
ψ1(i) and ψ2(i) plotted as a function of
xi with ε = 1.6 in data set for rounded
tetrahedra.

Figure 16: Results from diffusion maps for rounded tetrahedra.

4.4 (Non)linear dimensionality reduction

Both dimensionality reduction techniques, principal component analysis and diffusion maps,
have now been reviewed for three different systems of rounded polyhedra. To find which
method is better suited to analyse these types of problems, it is useful to take a closer look
and make a comparison between these different methods.

Firstly, to compare the implementation of the methods, PCA is very fast and straightforward
to implement. The covariance matrix can be found directly from the data set, from which
we can directly find the eigenvalues and eigenvectors which is where we find the information
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of our data set. Diffusion maps is not difficult to implement. It is however much slower for
a few reasons. First of all, it takes some time to construct matrix D (a large matrix which
contains all distances between the data points). Secondly, an appropriate value of ε has to
be found. This is not difficult to do, but it does take some time if ε has to be found by hand.
A standardized way to find ε would be helpful and less arbitrary, more research for this is
needed. And finally, since matrix M is so large, it takes some time to find the eigenvalues
and eigenvectors from where we extract the information of the data set.

Since PCA is linear and diffusion maps a non-linear dimensionality reduction method, we
would expect diffusion maps to give better results (dMaps is more general since it is not re-
stricted to projections on linear planes but can preform projections onto curvilinear-manifolds).
In section 4.4 the dimensionaltity reduction plots for PCA and diffusion maps for each system
are plotted next to each other for comparison. The plots give the dimensionality reduction
for the q̄l as well as the w̄l bond order parameters.
For the rounded cubes in the figures 17 we can see that, for the q̄l BOP’s, the first eigenvalue
is slightly higher and the second eigenvalue slightly lower in the plot for dimensionality re-
duction by diffusion maps than by PCA. This indicates a more reduced dimensionality for
diffusion maps. For the w̄l bond order parameters however, the difference is minimal.
For the rounded octahedra in the figures 18 we see that PCA and diffusion maps give ef-
fectively the same results for the q̄l bond order parameters. For the q̄l BOP’s, the first
eigenvalue is slighlty higher and second eigenvalue slightly lower for the for dimensionality
reduction by diffusion maps than by PCA. This indicates a better reduced dimensionality
preformed by diffusion maps on the w̄l data set. For the rounded tetrahedra in the figures 19
we see that both in q̄l and w̄l the dimensionality seem better reduced for diffusion maps than
for PCA. Another advantage of PCA is that we can easily find out which bond order pa-
rameter contributes to the eigenvectors that are found. This makes PCA a lot more intuative.

Conserning the eigenvector plots for wk and ψk for PCA and diffusion maps. For the rounded
octahedra the plots are effectively the same (except for a scaling factor). For the cubes,
diffusion maps does produce a nicer plot (since we can put and ψ2 in the same figure), but
does not help us find phase transition better than PCA (or even the BOP plots from the
simulation output). For the tetrahedra, diffusion maps does seem to give slightly better
results to identify different structures. It is still hard to count distinct clusters by hand, so
a clustering algorithm is still needed to do this properly. It might also be the case that a
clustering algorithm can find the different types of structures just fine after performing PCA,
which would make diffusion maps redundant. All of this needs more research.
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Cubes

(a) Normalized eigenvalues found with
PCA sorted in non-ascending order for
the data sets with the q̄l and w̄l bond
order parameter.

(b) Normalized eigenvalues found with
dMaps with ε = 0.5 for bond order pa-
rameters q̄l and ε = 0.4 for BOP w̄l,
sorted in non-ascending order.

Figure 17: Dimensionality reduction performed with PCA 17a and diffusion maps 17b for
the data sets of bond order parameters q̄l and w̄l for rounded cubes.

Octahedra

(a) Normalized eigenvalues found with
PCA sorted in non-ascending order for
the data set with the q̄l and w̄l bond
order parameters.

(b) Normalized eigenvalues found with
dMaps with ε = 0.8 for bond order pa-
rameters q̄l and ε = 0.4 for BOP w̄l,
sorted in non-ascending order.

Figure 18: Dimensionality reduction performed with PCA 18a and diffusion maps 18b for
the data sets of bond order parameters q̄l and w̄l for rounded octahedras.
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Tetrahedra

(a) Normalized eigenvalues found with
PCA sorted in non-ascending order for
the data sets with the q̄l and w̄l bond
order parameters.

(b) Normalized eigenvalues found with
dMaps with ε = 1.6 for bond order pa-
rameters q̄l and ε = 0.5 for w̄l, sorted in
non-ascending order.

Figure 19: Dimensionality reduction performed with PCA 19a and diffusion maps 19b for
the data sets of bond order parameters q̄l and w̄l for rounded tetrahedra.

4.5 Note

We find a remarkable result that can be seen in section 4.4 where the eigenvalues from the
analysis of the q̄l and w̄l bond order parameters are plotted. For every studied system (both
with PCA and diffusion maps) we see that the second eigenvalue for the w̄l BOP’s is always
higher than the second eigenvalue for the q̄l BOP data sets. Extra figures are added in the
appendix where we find the same results. This might be an indication more information
can be extracted from analysis on the w̄l bond order parameters for the study of rounded
polyhedra.
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5 Conclusion

In this research, we’ve looked at crystal structures in systems of increasingly rounded cubes,
octahedra and tetrahedra by means of machine learning techniques. This has been done by
analysing the bond order parameters of these systems, obtained with FBMC simulations with
the dimensionality reduction techniques principal component analysis and diffusion maps.

For the system of rounded cubes we find that both PCA and diffusion maps work well to
find the phase transitions, i.e. to find the crystal structure in the system. Although the
differences in the results are small, diffusion maps does reduce dimensionality better than
PCA. However, we already knew from the jump in the bond order parameters that we should
find a transition at this point.

The same goes for the system of rounded octahedra, both PCA and diffusion maps give re-
sults from which we can determine the different crystal structures. However this was already
clear from the gaps in the bond order parameters. For this system there is no advantage in
choosing diffusion maps over PCA.

The system of rounded tetrahedra is much more complicated. Whereas the cubes and oc-
tahedra only need 6 BOP’s to quantify the crystal structures in the systems, the system of
rounded tetrahedra need 10 BOP’s to quantify its crystal structures. Both PCA and dif-
fusion maps do reduce the complexity the system significantly to a point where the crystal
structures can be rougly identified. Diffusion maps does this slightly better than PCA, but
it is still difficult to identify all structures by hand. A good extension of this research would
be to add a clustering algorithm to complete this phase identification.

Diffusion maps reduces the dimensionality of the data sets slightly better for each studied
system. However, improvement in crystal structure identification is small. Also, PCA is much
faster and more intuitive than diffusion maps which makes PCA the preffered technique for
this specific problem. It might however be useful for more complex systems to try diffusion
maps anyways.
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A Figures

In this appendix, all the figures used in this research, plus additional figures are reorted.
Figures of additional systems that have not been discussed in the research itself are added,
as well as the plotted simulation output for the q̄l, w̄l bond order parameters and packing
fractions. Also the plots for the w̄l bond order parameters output for PCA and diffusion
maps are shown.

A.1 Cubes

A.1.1 Simulation output
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Figure 20: Bond order parameters q̄1 to q̄12 as a function of roundedness parameter r for
increasingly rounded cubes.
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Figure 21: Bond order parameters w̄1 to w̄12 as a function of roundedness parameter r for
increasingly rounded cubes.
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Figure 22: Packing fraction as a function of roundedness parameter r for increasingly rounded
cubes.
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A.1.2 PCA

Figure 23: Normalized eigenvalues found with PCA sorted in non-
ascending order for the data sets with the q̄l and w̄l bond order parameters
for rounded cubes.

(a) Weight of bond order parameters
q̄l contributing to principal components
for rounded cubes.

(b) Weight of bond order parameters w̄l

contributing to principal component for
rounded cubes.

Figure 24: Contribution of bond order parameters q̄l and w̄l to principal components wk(i)
found by PCA for rounded cubes.
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(a) Eigenvectors w1 and w2 found by
PCA as a function of roundedness xi

for the bond order parameters q̄l for
rounded cubes.

(b) Eigenvectors w1 and w2 found by
PCA as a function of roundedness xi

for the bond order parameters w̄l for
rounded cubes.

Figure 25: Eigenvectors found with PCA plotted as a function of roundedness xi for rounded
cubes for bond order parameters q̄l (figure 25a) and w̄l (figure 25b).

A.1.3 dMaps

(a) Weight of bond order parameters
q̄l contributing to principal components
for rounded cubes.

(b) Normalized eigenvalues found with
dMaps with ε = 0.5 for bond order pa-
rameters q̄l and ε = 0.4 for BOP w̄l,
sorted in non-ascending order.

Figure 26: Contribution of bond order parameters q̄l and w̄l to principal components wk(i)
found by PCA for rounded cubes.
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(a) Eigenvectors ψ2 and ψ3 found by
dMaps as a function of roundedness xi

for the bond order parameters q̄l for
rounded cubes.

(b) Eigenvectors ψ2 and ψ3 found by
dMaps as a function of roundedness xi

for the bond order parameters w̄l for
rounded cubes..

Figure 27: Eigenvectors found by dMaps plotted as a function of roundedness xi for rounded
cubes for bond order parameters q̄l (figure 27a) and w̄l (figure 27b).

A.2 Octahedra

A.2.1 Simulation output
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Figure 28: Bond order parameters q̄1 to q̄12 as a function of roundedness parameter r for
increasingly rounded octahedra.
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Figure 29: Bond order parameters w̄1 to w̄12 as a function of roundedness parameter r for
increasingly rounded octahedra.
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Figure 30: Packing fraction as a function of roundedness parameter r for increasingly rounded
octahedra.



A FIGURES 40

A.2.2 PCA

Figure 31: Normalized eigenvalues λk found with PCA sorted in non-
ascending order for the data sets with the q̄l and w̄l bond order parameter
for rounded octahedra.

(a) Weight of bond order parameters
q̄l contributing to principal components
for rounded octahedra.

(b) Weight of bond order parameters
w̄l contributing to principal components
for rounded octahedra.

Figure 32: Contribution of bond order parameters q̄l and w̄l to principal components wk(i)
found by PCA for rounded octahedra.
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(a) Eigenvector w1 found by PCA as a
function of roundedness xi for the bond
order parameters q̄l for rounded octahe-
dra.

(b) Eigenvector w1 found by PCA as a
function of roundedness xi for the bond
order parameters w̄l for rounded cubes.

Figure 33: Eigenvectors found with PCA plotted as a function of roundedness xi for rounded
cubes for bond order parameters q̄l (figure 33a) and w̄l (figure 33b) for rounded octahedra.

A.2.3 dMaps

(a) Weight of bond order parameters
q̄l contributing to principal components
for rounded octahedra.

(b) Normalized eigenvalues found with
dMaps with ε = 0.5 for bond order pa-
rameters q̄l and ε = 0.4 for BOP w̄l,
sorted in non-ascending order.

Figure 34: Contribution of bond order parameters q̄l and w̄l to principal components wk(i)
found by PCA for rounded octahedra.
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(a) Eigenvector ψ2 found by dMaps as a
function of roundedness xi for the bond
order parameters q̄l for rounded octahe-
dra.

(b) Eigenvectors ψ2 and ψ3 found by
dMaps as a function of roundedness xi

for the bond order parameters w̄l for
rounded octahedra.

Figure 35: Eigenvectors found by dMaps plotted as a function of roundedness xi for rounded
cubes for bond order parameters q̄l (figure 35a) and w̄l (figure 35b).

A.3 Tetrahedra (N = 2)

A.3.1 Simulation Output
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Figure 36: Bond order parameters q̄1 to q̄12 as a function of roundedness parameter r for
increasingly rounded tetrahedra with N = 2.
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Figure 37: Bond order parameters w̄1 to w̄12 as a function of roundedness parameter r for
increasingly rounded tetrahedra with N = 2.
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Figure 38: Packing fraction as a function of roundedness parameter r for increasingly rounded
tetrahedra with N = 2.
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A.3.2 PCA

Figure 39: Normalized eigenvalues found with PCA sorted in non-
ascending order for the data sets with the q̄l and w̄l bond order parameters
for rounded tetrahedra with unit cell N = 1.

(a) Weight of bond order parameters
q̄l contributing to principal components
for rounded tetrahedra with unit cell
N = 2.

(b) Weight of bond order parameters w̄l

contributing to principal component for
rounded tetrahedra with unit cell N =
2.

Figure 40: Contribution of bond order parameters q̄l and w̄l to principal components wk(i)
found by PCA for rounded tetrahedra with unit cell N = 2.
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(a) Eigenvectors w1 and w2 found by
PCA as a function of roundedness xi

for the bond order parameters q̄l for
rounded tetrahedra with unit cell N =
2.

(b) Eigenvectors w1 and w2 found by
PCA as a function of roundedness xi

for the bond order parameters w̄l for
rounded tetrahedra with unit cell N =
2.

Figure 41: Eigenvectors found with PCA plotted as a function of roundedness xi for rounded
cubes for bond order parameters q̄l (figure 41a) and w̄l (figure 41b) for rounded tetrahedra
with unit cell N = 2.

A.3.3 dMaps

(a) Weight of bond order parameters
q̄l contributing to principal components
for rounded tetrahedra with unit cell
N = 2.

(b) Normalized eigenvalues found with
dMaps with ε = 0.5 for bond order pa-
rameters q̄l and ε = 0.4 for BOP w̄l,
sorted in non-ascending order.

Figure 42: Contribution of bond order parameters q̄l and w̄l to principal components wk(i)
found by PCA for rounded tetrahedra with unit cell N = 2.
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(a) Eigenvectors ψ2 and ψ3 found by
dMaps as a function of roundedness xi

for the bond order parameters q̄l for
rounded tetrahedra with unit cell N =
2.

(b) Eigenvectors ψ2 and ψ3 found by
dMaps as a function of roundedness xi

for the bond order parameters w̄l for
rounded tetrahedra with unit cell N =
2.

Figure 43: Eigenvectors found by dMaps plotted as a function of roundedness xi for rounded
cubes for bond order parameters q̄l (figure 43a) and w̄l (figure 43b).

A.4 Tetrahedra (N = 4)

A.4.1 Simulation Output
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Figure 44: Bond order parameters q̄1 to q̄12 as a function of roundedness parameter r for
increasingly rounded tetrahedra with N = 4.
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Figure 45: Bond order parameters w̄1 to w̄12 as a function of roundedness parameter r for
increasingly rounded tetrahedra with N = 4.

0.0 0.2 0.4 0.6 0.8 1.0

0.75

0.80

0.85

0.90

Roundness

P
a
c
k
in

g
F

ra
c
ti
o
n

Figure 46: Packing fraction as a function of roundedness parameter r for increasingly rounded
tetrahedra with N = 4.
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A.4.2 PCA

Figure 47: Normalized eigenvalues found with PCA sorted in non-
ascending order for the data sets with the q̄l and w̄l bond order parameters
for rounded tetrahedra with unit cell N = 4.

(a) Weight of bond order parameters
q̄l contributing to principal components
for rounded tetrahedra with unit cell
N = 4.

(b) Weight of bond order parameters w̄l

contributing to principal component for
rounded tetrahedra with unit cell N =
4.

Figure 48: Contribution of bond order parameters q̄l and w̄l to principal components wk(i)
found by PCA for rounded tetrahedra with unit cell N = 4.
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(a) Eigenvectors w1 and w2 found by
PCA as a function of roundedness xi

for the bond order parameters q̄l for
rounded tetrahedra with unit cell N =
4.

(b) Eigenvectors w1 and w2 found by
PCA as a function of roundedness xi

for the bond order parameters w̄l for
rounded tetrahedra with unit cell N =
4.

Figure 49: Eigenvectors found with PCA plotted as a function of roundedness xi for rounded
cubes for bond order parameters q̄l (figure 49a) and w̄l (figure 49b) for rounded tetrahedra
with unit cell N = 4.

A.4.3 dMaps

(a) Weight of bond order parameters
q̄l contributing to principal components
for rounded tetrahedra with unit cell
N = 4.

(b) Normalized eigenvalues found with
dMaps with ε = 0.5 for bond order pa-
rameters q̄l and ε = 0.4 for BOP w̄l,
sorted in non-ascending order.

Figure 50: Contribution of bond order parameters q̄l and w̄l to principal components wk(i)
found by PCA for rounded tetrahedra with unit cell N = 4.
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(a) Eigenvectors ψ2 and ψ3 found by
dMaps as a function of roundedness xi

for the bond order parameters q̄l for
rounded tetrahedra with unit cell N =
4.

(b) Eigenvectors ψ2 and ψ3 found by
dMaps as a function of roundedness xi

for the bond order parameters w̄l for
rounded tetrahedra with unit cell N =
4.

Figure 51: Eigenvectors found by dMaps plotted as a function of roundedness xi for rounded
cubes for bond order parameters q̄l (figure 51a) and w̄l (figure 51b) for increasingly rounded
tetrahedra with unit cell N = 4.

A.5 Truncated Tetrahedra

A.5.1 Simulation Output
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Figure 52: Bond order parameters q̄1 to q̄12 as a function of roundedness parameter r for
increasingly rounded truncated tetrahedra with N = 2.
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Figure 53: Bond order parameters w̄1 to w̄12 as a function of roundedness parameter r for
increasingly rounded truncated tetrahedra with N = 2.
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Figure 54: Packing fraction as a function of roundedness parameter r for increasingly rounded
truncated tetrahedra with N = 2.
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A.5.2 PCA

Figure 55: Normalized eigenvalues found with PCA sorted in non-
ascending order for the data sets with the q̄l and w̄l bond order parameters
for rounded truncated tetrahedra.

(a) Weight of bond order parameters
q̄l contributing to principal components
for rounded truncated tetrahedra.

(b) Weight of bond order parameters w̄l

contributing to principal component for
rounded truncated tetrahedra.

Figure 56: Contribution of bond order parameters q̄l and w̄l to principal components wk(i)
found by PCA for rounded truncated tetrahedra.
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(a) Eigenvectors w1 and w2 found by
PCA as a function of roundedness xi

for the bond order parameters q̄l for
rounded truncated tetrahedra.

(b) Eigenvectors w1 and w2 found by
PCA as a function of roundedness xi

for the bond order parameters w̄l for
rounded truncated tetrahedra.

Figure 57: Eigenvectors found with PCA plotted as a function of roundedness xi for rounded
cubes for bond order parameters q̄l (figure 57a) and w̄l (figure 57b) for rounded truncated
tetrahedra.

A.5.3 dMaps

(a) Weight of bond order parameters
q̄l contributing to principal components
for rounded tetrahedra.

(b) Normalized eigenvalues found with
dMaps with ε = 0.5 for bond order pa-
rameters q̄l and ε = 0.4 for BOP w̄l,
sorted in non-ascending order.

Figure 58: Contribution of bond order parameters q̄l and w̄l to principal components wk(i)
found by PCA for rounded tetrahedra.
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(a) Eigenvectors ψ2 and ψ3 found by
dMaps as a function of roundedness xi

for the bond order parameters q̄l for
rounded tetrahedra.

(b) Eigenvectors ψ2 and ψ3 found by
dMaps as a function of roundedness xi

for the bond order parameters w̄l for
rounded tetrahedra.

Figure 59: Eigenvectors found by dMaps plotted as a function of roundedness xi for rounded
cubes for bond order parameters q̄l (figure 59a) and w̄l (figure 59b).
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