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Abstract

Viscosity is a way to measure the internal resistance of a fluid to deformation and
it can be seen as the friction between the different layers of the fluid. Contact with
a surface can therefore make it harder to measure the viscosity. Because of this we
will use acoustic levitation, so that we can remotely measure the viscosity of a liquid
droplet without it being in contact with a surface. During our experiments, we will
change different variables that have influence on this viscosity. We will change the
temperature, so that we can test the accuracy of our method. We will also change the
volume fraction of ethylene glycol in demi-water, once again to test the accuracy. In
our third experiment, we will look at the viscosity of water droplets containing nano
particles because we also want to find out if we are able to see the colloidal glass
transition.
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1 Introduction

In physics, we quite often try to understand a complex model by first looking at the simple
version of this model. In the field of nano materials, this often means that we want to study
properties of these nano materials without interference of other variables (or at least as little
interference as possible). A good way to study these properties is to use remote measuring.
If we would be doing this for single particles, we might consider using optical tweezers. The
latest groundbreaking work with optical tweezers was done by Arthur Ashkin[1], where he
found that a laser could be used in order to capture small particles. For bigger particles/-
droplets however, the power of the laser would have to be enormous. And since we are not
interested in small particles, but big droplets, we have decided to go for another method that
has this same useful property that there is no contact with a surface: acoustic levitation.

Acoustic levitation is the process in which some object is levitated with the use of sound
waves. These days acoustic levitation is mainly used for containerless processing. This is
how you transport a substance if you don’t want the substance to come into contact with it’s
surroundings. [2] And this is sort of what we are using it for, or at least for the not touching
it surroundings part. What we want to do is study the dynamic properties of fluid droplets.
However, contact with a surface can sometimes change these properties, thus the acoustic
levitator is a great way to remove contact without changing these properties.

One of the many studies that has been done in this field is from Kramer et all.. [3] Here
they’ve tried to calculate the viscosity and surface tension of a droplet of liquid by using the
change of the radius of the droplet inside of an acoustic field. This is done by having the
surface of the droplet enter an oscillation. Now, though their final data show that their way
is indeed both possible and very reasonable, we’ve decided that we wanted to do it differ-
ently. Kramer et al. actually only use the change in both the x- and y-axis of the radius.
We, however, will be using how the entire surface of the droplet changes during this surface
oscillation. We then calculate the viscosity of the liquid droplet by using the damping that
this oscillation experiences.

In this thesis I’ll start by giving you an introduction to the theory behind our work. In
section 2, I’ll explain to you how acoustic levitation works, what oscillation we are looking
at, what the Cauchy-Lorentz Distribution is, how we go from the damping to the viscosity
and what the data we acquire will look like. This section is ended by me giving you a little
theory on what colloids are. In section 3.1 I’ll show you what the setup of our experiment
looks like as well as explain what equipment we have used and how it works. Section 3.2 then
tells you about the measurement procedure, while in section 3.3 I explain how we process the
data that we gain from our experiments. In section 4 I’ll then also give you the results that we
have acquired for our different experiments, while in section 5 I’ll discuss what these results
mean. Here I’ll also mention what can be done to improve the results, such as optimizing,
getting different equipment or switching to a new method.
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2 Theory

This section starts of with me explaining how acoustic levitation works. Then I’ll show you
what the oscillation we get looks like, what the Cauchy-Lorentz distribution is and why we
use it and how we go from damping to viscosity. In section 2.5 I’ll show you what the data
that we gain will look like, while in section 2.6 I’ll tell you what the colloidal glass transition
exactly is.

2.1 Acoustic levitation

The main idea of this project is to use acoustic levitation to remotely measure the viscosity
of a droplet. Acoustic levitation is a process in which some object is levitated with the use
of sound waves. The way this works is because sounds are mechanical waves that contain
momentum. This momentum comes from the fact that these mechanical waves create a pres-
sure difference, which then exert a force on the object, which, if done correctly, are strong
enough to levitate the object (see figure 1).

Figure 1: Multiple droplets levitating in the
acoustic levitator.

This momentum is carried in standing
waves, which are created by the actuators
in our acoustic levitator. These objects can
only float at points where the nodes of the
standing waves are at. For a single standing
wave, we know:

L =
n

2
λ (1)

where L is the length of the ”box”
where the standing wave is in, n the
node of the wave we are looking at
and λ is the wave length. This for-
mula tells us that the nodes of a sin-
gle standing wave will be formed af-
ter each 1

2
λ. Now using the wave-

equation and filling in the fact that
we have a frequency of 40 kHz and
a wave speed which is equal to the
speed of sound (at room temperature), we
get:

λ =
vsound
f

= 8.6 ∗ 10−3 m (2)
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Formula 2 tells us that, if we had been looking at a one-dimensional field, we could make
an object levitate each 4.3 mm. However, we aren’t looking at a one-dimensional field.
Instead, we have many different actuator, which all produce a standing wave. Now, we have
focused our actuators in such a way that we have about 6 stable point where we can levitate
objects of a couple of milligrams in total. Another reason why we can’t put in more than 6
object is because, whenever you put an new object in, it will interfere with the field and also
weaken the field.

2.2 Explaining the oscillation

In figure 2 you can see three snapshots of the droplet at three different moments during the
oscillation. Picture 2a and picture 2c actually look alike. This is because between these
pictures exactly one period of the oscillation has passed. Now, picture 2b actually differs
exactly half a period with both of these pictures, so if this would be an ordinary and simple
oscillation, you would expect this one to be the exact opposite of the other two. However,
though this picture does indeed differ from the other two, it isn’t the exact opposite. This
is because there are actually a couple of different oscillations going on at the same time (see
2.5). However, from the way the droplet looks in picture 2a and 2c, we see that it matches
with a sphere where there would be a third-degree spherical harmonic on it’s surface (see
figure 2d).

(a) A picture of the droplet at t=0. (b) A picture of the droplet at t= 1
2period.

(c) A picture of the droplet at t = One period.
(d) A picture of what the third-degree
spherical harmonic should look like.

Figure 2: In this figure you can see 3 different stages of the oscillation plus how theory
predicts that a third-degree spherical harmonic should look like.
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This is actually a big difference with Kramer et all.. In their article they show that they
have a second-degree spherical harmonic on the surface of their droplet. For a second-degree
spherical harmonic it suffices to only look at the x and y-radius, because this oscillation can
be computed as if it is indeed only in these directions. In our case however this won’t suffice,
because of the asymmetry of our droplet and thus the fact that, unlike what Kramer et all.
had, the droplet doesn’t always look like an ellipse, which we can fit easily (see section 8 for
how fitting is done).

This oscillation of the surface actually comes from the fact that we break the stable
equilibrium we have created between gravity and the force of the acoustic levitator (see 3.1.2
for how we do this). When we break this equilibrium, the droplet will start to oscillate
around the equilibrium point it was in before. Now, if this object had been a solid object,
the only oscillations that would exist would be those of a translational movement. However,
our droplet is made from liquid, thus there are also surface oscillations. Because of the fact
that our liquid has a viscosity (and thus an internal friction), this oscillation will however die
out after a certain period of time. It’s because of this dying out that these surface oscillations
can be seen as damped harmonic oscillations.

2.3 The Cauchy-Lorentz distribution

We are actually not just looking at a ordinary damped harmonic oscillator. This is because,
in order to get our surface to oscillate, we need to give it a kick. This can be seen as looking
at a driven underdamped harmonic oscillator, for which the kick can be approximated as a
delta function. Now, by giving the surface this kick, it will start oscillating with it’s own
resonant frequency [4].

Frequencies further away from this resonant frequency will actually be influenced less by
this kick, since the surface of the droplet prefers to oscillate with it’s resonant frequency.
To give this phenomena a name, a special term was devised called the quality factor of the
damped harmonic oscillator. For an underdamped harmonic oscillator, this quality factor Q
is given by:

Q =
ω0

∆ω
=
ω0

2δ
=

1

τ
(3)

where ω0 is the resonant frequency ,∆ω the Full Width at Half Maximum (FWHM) of the
resonant frequency (also called the resonant width), δ a scale parameter and τ the damping
constant of the frequency. This FWHM is the point at which the amplitude of the frequency
has gone down by 50 percent. A higher Q will actually mean a smaller damping constant
and thus a weaker damped system (and thus more underdamped).
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Figure 3: An example of how a lorentzian curve should look like.

If you would look at the amplitude of a driven underdamped harmonic oscillator (where
the drive is a kick) and would plot this vs the different frequency’s within the system, one
would see a big peak at the resonant frequency which, if you move away from this frequency,
falls off to a value close to zero (figure 3)[5]. Such a curve is called a Cauchy-Lorentz Curve.
This curve is given by the following formula:

f(ω,A, δ, ω0) =
A

π

δ

(ω − ω0)2 + δ2
, (4)

where f is the height of the peak, A the amplitude of the oscillation, ω0 the resonant
frequency (the center of the peak), ω the frequency and δ again a scale parameter.

Since we are indeed looking at a driven underdamped harmonic oscillator ourselves, it will
indeed be this curve that we are looking for in our amplitude-spectra. Now, the correct way
to get the values that you need from a spectra, is to fit a known function to your data and
then get the values from there. And this is indeed what we’ll be using the Cauchy-Lorentz
Curve for throughout our experiments.

2.4 From Damping to Viscosity

As said, we want to calculate the viscosity of the droplet. To do this, we are gonna use a
formula found by professor Horace Lamb. He has found a relation between the viscosity of a
spherical droplet and the damping constant of the fluid, given by:

µ =
R2

(n− 1)(2n+ 1)τ
[6], (5)

where τ is the damping constant, R is the radius of the sphere in undisturbed state, n is
the mode and µ is the viscosity.

The problem that we have with this formula however, is the fact that, unlike professor
Lamb, we don’t have spherical droplets, but ellipsoidal droplets. However, if we lower the
force done by the acoustic field, our droplets would indeed become less ellipsoidal and more
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spherical again, just as he had. These droplets will actually give the same result for the
oscillation. However, because the acoustic field has become weaker, keeping such a droplet
levitated is quite hard, thus in the end we still do the experiment with ellipsoidal droplets.
And, since kramer et al. have also used formula 5, we assume that we can use it as well. So
what we do is calculate the volume of our ellipsoidal droplet and then act as if it had been
a spherical one to calculate R, so using:

R =
3

√
3 ∗ V

4π
, (6)

where V is the volume of our ellipsoidal droplet. We can now use formula 3 and 6 to
rewrite formula 5. Before we do this, we first rewrite formula 3 in such a way that we can
plug it in, so this becomes:

τ =
2

∆ω
=

1

π∆f
, (7)

where we have used that ∆ω = 2π∆f , or in words: ∆ω is the FWHM in radians per
second, while ∆f is the FWHM in Hz . Now, using this formula for τ and the fact that we
are looking at a third-degree spherical harmonic (so n = 3), we get that the viscosity is given
by:

µ =
R2π∆f

14
, (8)

2.4.1 Dynamic vs Kinematic viscosity

A last thing that needs to be said about the viscosity, before we can continue, is what kind of
viscosity we are actually looking at. Later on in the graphs and tables, you’ll be reading the
term ”dynamic viscosity” a lot. This dynamic viscosity isn’t the same as kinematic viscosity.
The dynamic viscosity is also called the absolute viscosity, since it’s only measured by the
internal resistance of a fluid, while the kinematic viscosity differs with a factor 1/ρ, where ρ
is the density of the fluid.

Now, we have chosen for the dynamic viscosity, since calculating the density of our droplet
would make it a lot harder without giving us a lot of extra knowledge. However, in the text
(above and below) we often don’t specify that we are looking at the dynamic viscosity and
not kinematic viscosity. So, now you know that whenever there is written ”viscosity”, it
should have said ”dynamic viscosity”.
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Figure 4: An example of how the data of the diode could look like. On the x-axis you can
see the amount of measurements taken, while on the y-axis the amount of voltage the diode
measures. In total we have done 7 ∗ 105 measurements with a frequency of 15 ∗ 104 Hz.

2.5 Analyzing the spectrum of the diode

In figure 4 you can see what the oscillation of a droplet looks like, looking at the raw intensity
data we get from our measuring equipment. This is indeed the figure one would expect to
see for a underdamped harmonic oscillator. The question that now arises is: ”What values
do we want to get out of this data in order to calculate the viscosity?”

In order to calculate the viscosity, we will need to know both the size of the droplet as
well as the FWHM of the frequency of the oscillation. The size of the droplet is a value that
we won’t be able to get out of this data. However, the value that we can get out of this
data is the FWHM. In order to get the FWHM, we need to fit the Cauchy-Lorentz Curve
from section 2.3 to the amplitude vs frequency spectra of our oscillation. The way to get this
spectra is by taking the Fourier Transform from the data you see in figure 4. The Fourier
transform is a way to decompose a function that depends on time into the frequencies of it’s
change. In our case, this will give us a frequency spectrum like the one you can see in figure
5. In this figure, you can actually see 8 different physically explainable peaks (you might
think that you see more, but the rest is just noise). This leads to another question: What
peak are we actually interested in? Cause we only need to know the FWHM of the resonance
frequency of the droplet.
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Figure 5: An example of how the frequency spectrum could look like (this spectrum matches
with the diode-data from above). On the y-axis you can see the peak height. It’s important
to add here that this isn’t always the same as the amplitude of the oscillation, because of the
fitting program that we use.

For the full analysis of the spectrum and what all of the different oscillations are that the
peaks represent, you should take a look at 4.1, but for now I’ll tell you that only the peaks at
81.5 and 91 Hz actually have anything to do with the surface oscillation, where in the end,
we’ll only use the FWHM of the first peak (81.5 Hz).

2.6 The colloidal glass transition

Let’s start with a quick recap of our chemistry classes. Colloids (or colloidal suspensions)
are mixtures between solutions and particles ranging between 1 and a 1000 nm in diameter.
Colloids exhibit a so called colloidal glass transition. [7] This is a transition between a col-
loidal droplet (liquid) that you start with and a solid drop that you end with. This transition
happens because the liquid in which the colloidal particles were originally mixed has evapo-
rated. Because of the fact that the liquid evaporates, while the particles stay, the viscosity
rises during this transition. [8] The way that the viscosity should rise is exponentially, which
starts off with a slow slope in the beginning and ends with a steep slope up until the point
when the droplet has become so solid that we can no longer measure the viscosity.
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3 Methods

In the following section, we’ll start by telling you what equipment we have used and what
each part does. We’ll then explain the experimental procedure and how we process the data
that we achieve.

3.1 The equipment used

In figure 6 you can see the setup of our experiment. Some of the more important parts have
been listed below, with a short explanation of what they do.

Figure 6: A block diagram of our setup. Each block represent a piece of equipment. What it
is, is written inside of the block. The wires in this figure represent a data transfer from one
piece of equipment to another.
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3.1.1 The acoustic levitator

Figure 7: A close-up of the acoustic
levitator so you can clearly see what
it looks like and how the actuators
and both domes have been placed.

Let’s once again start with the acoustic levitator. Our
acoustic levitator has been based on the so called
”TinyLev” [9]. It consists of two curved planes with a
radius of 110.5 mm. On these domes we have placed 72
actuators, which all have a sharp resonance at around
40 kHz. These actuators are connected to a signal gen-
erator, which outputs a square wave of 40 kHz with a
peak to peak amplitude of 4.8 V, a voltage amplifier
and a external power supply which supplies 12 V.

3.1.2 The arduino

If you look at figure 7, you can see that the actua-
tors on each curved plane have been placed into three
different rings. The middle ring has been connected
to an arduino. An arduino is a single-board micro-
controller. Arduino’s are used to both sense and send
digital signals. We use our arduino to turn our actua-
tors on/off, to tell our DAQ Card (see 3.1.5) when to
measure and our camera when to take a picture (see
3.1.4).

3.1.3 The laser and the photodiode

We decided that the best way to measure the move-
ment of the surface of the droplet was to use the
change of intensity that a photodiode measures. This
is accomplished by using a Helium-Neon laser which
operates at an wavelength of 623.8 nm. This laser is
pointed towards both the droplet and the photodiode.
Because of the fact that the droplet blocks and deflects some of the incoming light, we can
measure movement by the change in intensity. This change in intensity is then transformed
into a change in voltage by the diode, which is then send to our DAQ Card.

3.1.4 The camera’s

Since we also want to know some import physical features of the droplet, we also need to
regularly take pictures from the droplet. This is done by using a camera called the Basler dart
daA1280-54um, which is a form of camera which can directly be connected to a computer.
This means that it can easily be controlled with code instead of having to try to control it
by hand. Because of the fact that we can control it with code, making the measurement
automated is a lot easier.

We have also made use of a camera called the Chronos 1.4. This is a high-speed camera
which has a maximum speed of 38565 frames per second. This high-speed camera was used
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for the comparing the frequency spectra from figure 5 with the actual movement from the
droplet. This way, we were able to tell how each peak could be physically explained.

3.1.5 The data acquisition device

The instrument that we used in order to get and process the acquired data is the keysight
U2331A Data Acquisition Device. This machine has been programmed in such a way that it
does 7∗105 measurements with a frequency o 15∗104 Hz. To make sure that the DAQ-device
can store the data, it first saves the data as bits. Once it’s done with the measurements, it
sends the acquired data to the computer in these bits. We can than convert these bits to
Volts by using the following formula:

Converted Value (Volts) = (
2 ∗ Non− Converted Value (Bits)

216
) ∗ 0.2 (9)

Where the 16 comes from the fact that this is multitude of bits in which our machine
measures and the 0.2 from the fact that this is the range of expected input voltages.

3.2 The experimental procedure

Now on to explaining how the experiment is actually done. We start by turning on all of our
equipment and running a few quick tests to see if everything is working the way it should.
This means that the laser and the LED’s will be on at all time. Once this is done, we start
by running the code of our arduino, so that all of the equipment starts working synchronized.
We also choose the order in which our equipment works, by sending a triggers with the
arduino at the correct timing. The sending of these triggers have all been automated with
the code. We can now start running our main code, which is called DAQControlDIGitize
(see Appendix C for the actual code).

Now the experiment goes as followed:

Step 1: The first thing that we need to know, before we measure the oscillation of the droplet,
is the size of the droplet. This means that we have to take a picture of our droplet
and process it. Before we take this picture, the arduino actually first makes the shutter
close, so that it blocks the laser. It stays there for 1 second, after which the arduino
opens the shutter again. In this time the arduino tells our basler camera to take a
picture of the droplet. The reason why we need this shutter to block the laser, is
because otherwise this laser will give an extra reflection, which will make it harder to
find the size of the droplet.
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Step 2: Now that we have taken a picture, we can start the measurement. Our arduino has
been programmed in such a way that every 14997 milliseconds (ms), the middle ring
of the acoustic levitator is turned off for 3 ms. In the time that this ring is turned off,
the levitator will no longer exert enough force on the droplet for it to levitate, thus it
falls. The moment this ring is turned back on again, the droplet is once again pushed
upwards into it’s equilibrium position. However, since this ”re-trapping” isn’t a instant
process but happens gradually, the droplet will first oscillate around this equilibrium
point.

Step 3: Now that both our droplet and it’s surface are oscillating, the arduino tells our DAQ-
device that it is time to start gathering data. So our photodiode measures the change
of the intensity (thus how the droplet oscillates), our DAQ-device temporarily stores
this data and once it has indeed gathered 7 ∗ 105 data point, it sends this data to the
computer where our python file is able to convert the bits to volts and then saves this
data in the correct folder.

3.3 Processing the data acquired

There are two different kind of data sets that we actually get from one single measurement.
We get a picture of the droplet, from which we want to calculate the size, and we get a list
of intensity values that the diode has measured from which we, ultimately, want to calculate
the damping constant of the oscillation.

3.3.1 The droplet size

In fig 8 you can see how we measure the size of the droplet. As you can see here, we have fitted
an ellipse to the edge of the droplet. This is done by running the code found in Appendix
A. By running this code, we’ll actually get 8 different values for the ellipse. Many of these
values are connected with each other. The first 4 are actually found by using mathematics
to fit an ellipse to the edge. We then use these 4 values to calculate the latter 4 by using the
formulas:

a = y cos(
π

2
) sin(θ0)− x sin(

π

2
) cos(θ0) (10)

b = y cos(0) sin(θ0)− x sin(0) cos(θ0) (11)

V (Volume Ellipse) =
4

3
πa2b (12)

where the last equation is quite self-explanatory. However, Equation 10 and 11 might
not seem that obvious, but these come from the standard formula’s for an ellipse, where we
have actually already filled in the values for the angles (since we wanted to know the a and
b length of our ellipse). A quick side note here is that θ0 is the angle that the ellipse makes
in comparison to the x- and y-axis.

Now, the value that we need to calculate the viscosity, can be found by using the formula
in 6. One could naturally assume here that instead of using a sphere of the same volume
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Figure 8: A picture of the droplet taken by the basler. The red ellipse is our fit of the edge
of the droplet, which we do so that we can find the size of the droplet

to calculate R, one could also use a circle of the same area. This however is a physically
incorrect assumption, since Lambs analysis and also future analysis was based on a sphere.
But even it hadn’t been a incorrect assumption, we could still see that it’s wrong because
of the data this method gives us. If we do multiple measurements in quick succession, one
should find that, due to evaporation, the R should shrink. If we calculate this R by using
the volume, this is indeed the case. However, if we use the area of the ellipse, this doesn’t
always happen. The reason that the area of the ellipse can grow while the volume shrinks, is
because off the fact that there is a third dimension that the area doesn’t take into account.
And since we assume that the droplet is spherically symmetric, not taking this dimension
into account can cause big fluctuations in R.
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3.3.2 The full width at half maximum

In 2.5, we have said that we only need to look at one single peak, so now we can start trying to
get the values that we need from the data. The proper way to do this is by fitting a function
to the important data and then taking the values from there. For us this will mean that
we will have to try and fit a peak. As explained in 2.3, we have chosen the Cauchy-Lorentz
distribution.

Now, since we only need to look at one peak, you might think that we would also only
need to fit one function and that would be it. However, while doing analysis we have learned
two things. First off, in order to cancel out the noise that we have, we also need to fit a
baseline. The reason we do this is to cancel out the Gaussian noise that we have throughout
our spectrum. Secondly, because of the fact that the 2 or 3 peaks that come from one peak,
they are always quite close to each other. Because of this, we fit all of them, to make the fit
of the important one better (For the code that we use to fit, see B). In the end, the fitting
will look something like the fit in figure 9.

Figure 9: Same frequency spectrum as before, but now zoomed on the frequency range from
approximately 50 to 110 Hz. Also plotted here is the Cauchy-Lorentz curve that we fitted to
the peaks at 81.5 and 91 Hz.
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4 Results

In total we have done three different experiments. The results of these three experiments can
be found below. All of these experiments were predecessed by the following question: ”What
happens to the viscosity if we change ....?

4.1 Defining the peaks

Before we can do any of the experiments, it’s important that we fully understand what we are
looking at. Because of this, we started with a full analysis of the movement of the droplet.
This is done by using the Chronos High Speed Camera. Using this camera and many of it’s
recordings, we’ve coupled the peaks that we can see in our frequency spectrum to different
movements that we can see on our recordings. So let’s go back to figure 5. Of the 8 different
peaks we see, we’ll actually only use the FWHM of 1 peak. This doesn’t mean that we can
just ignore all of the other peaks, cause they are there with a reason. So let’s name all of
them, explain why they are there and why we will/will not use them.

0 Hz: The 0 peak in a Fourier spectrum is actually the DC-component (so an mean value).
Since this peak isn’t interesting to us, we have tried to make it smaller by using a DC-
filter, to filter out some of the noise. However, this DC-filter isn’t perfect so we still get
a high peak here. However, since it doesn’t have anything to do with the oscillation of
the surface of the droplet, we just ignore it.

8.5, 9.5 Hz: These two peaks both represent translational motion. The one at 8.5 Hz represents the
motion from left to right (compared to the diode) while the one at 9.5 Hz a motion
parallel to the direction of the laser. These two peaks don’t mean anything for the
viscosity of the droplet, so we can ignore them. It’s even so that, the more stable
the oscillation of the droplet, the lower these two peaks. So in a perfect world, these
wouldn’t even have been here in the first place.

30.5 Hz: Another translational motion, but this time it’s the motion of the droplet up and down.
Also not important for the viscosity, so ignored, though we do use this peak as a check.
If we don’t see this peak, something has gone wrong, cause it should always be there,
since having the droplet fall down is our way of getting both the surface and the droplet
to oscillate.

50, 100 Hz: These peaks actually don’t represent any type of movement of the droplet. What they
do represent is the movement of the electrons in our wires ( so electrical noise). This
movement is always with a frequency of around 50 Hz and it’s multiples (so 100 Hz,
but also 150 Hz, 200 Hz, etc). Again not important, so dropped.

81.5 Hz: This peak is actually the peak that we are going to use to calculate the viscosity.

91 Hz: If we would have had a simple model, this peak wouldn’t have been here. However,
because of peak-splitting, the resonant frequency peak has been split into 2 peaks (can
sometimes also be split into 3 peaks). The reason that this happens is because of the
aspherical shape of the droplet.[10]
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4.2 Viscosity as a function of temperature

Whenever one thinks about the viscosity of a liquid, it’s usually quite quickly coupled to the
temperature of that liquid, because temperature has such a big influence on the viscosity.
So it’s quit natural, that we’d start there as well. To do this measurement, we’d first crank
up the heat of our setup and than let it cool down. During this cooling down period we
would do the measurements. The reason we did it like this, is because otherwise we would
have to much extra convection currents to deal with, which would make the processing of
the acquired data much harder.

In total, we’ve done 18 measurements going from 33.822 ◦C to 39.587 ◦C. Our results can
be seen in figure 10. As you can see, there aren’t any error bars within this graph (the
explanation for this can be found in section 5.1).

As you can see, the line fitted to our data is quite close to the line predicted by theory.
However, the slope of our line is actually way off compared to the original. It’s actually
because of these results that we don’t truly trust our temperature reader. So from here on
out, whenever we talk about a temperature that we measured, you should definitely keep in
mind that it could also be 2 to 3 degrees higher or lower.

Figure 10: In this figure you can see the data that we acquired when calculating the viscosity
of a drop of demi-water for different temperatures. We’ve also fitted a straight line through
our data and plotted this one, as well as the line predicted by theory.
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Volume Fractions Dynamic Viscosity Error

(EthGl/Water) (Ns/m2 ∗ 10−3) (Ns/m2 ∗ 10−3)

0 0.8863 ± 0.1016
1/178 1.1816 ± 0.0723
1/64 1.0625 ± 0.0781
1/32 1.1609 ± 0.0769
1/16 1.0210 ± 0.0933
1/8 1.4902 ± 0.0842
1/4 1.8354 ± 0.1411
1/2 2.8001 ± 0.3217

Table 1: The values that we have found for the viscosity for different volume fractions of
Ethylene glycol vs demi-water.

4.3 Viscosity as a function of volume fraction

The second experiment that we have done is what we call the ”Volume Fraction vs Viscosity”-
experiment. Here we have taken 8 different volume fractions of ethylene Glycol vs Demi-
Water. Of all 8 different volume fractions, we have placed a small droplet within the acoustic
levitator. For each droplet we have then done 8 different measurements, all around 20
seconds after each other. We than average over these 8 values (or sometimes over 7 or 6, if
measurements have gone wrong) and give them as one single point.

The different volume fractions that we used plus all of the values we get for the viscosity’s
for these volume fractions are listed in Table 1. All of these values below to a temperature
of around 23 ◦C.

The way that we have calculated this errors are by using the formula:

Error = µ

√
στ
τ

2

+
σR
R

2

(13)

where στ is the error in the damping constant, σr the error in the R of the droplet, R the
radius of the sphere of equal volume as the ellipsoidal droplet, τ the damping constant and
µ the calculated dynamic viscosity.

Because of the fact that we also want to see if our values match with the theoretical
values, we need to make one little tweak. The theoretical values that Dizechi et al.[11] found
are not plotted vs the volume concentration, but vs the mole-fraction. However, we can
calculate this by using:

Mole Fraction =
0.017935

0.017935 + 0.9957∗Parts Water
18.0153

(14)

where the 0.017935 comes from the fact that we always have only 1 part ethylene glycol,
the 0.9957 is the density of demi-water at 30 ◦C and 18.0153 is the mole mass of demi-water.
Using this formula, our plot becomes the one in figure 11a. Our results show that for a low
concentration, we can’t really say what the correlation between concentration and viscosity
is. However, once the concentration reaches a certain point, it starts to look like there is a
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linear correlation between the concentration and the viscosity. You can also see that the error
bar becomes larger once the viscosity increases while it stays the same when the viscosity
stays the same.

In figure 11a, you can see our data being compared to the values that Dizechi et al. found
for the viscosity as a function of the mole fraction. During there experiment, the temperature
was 30 ◦C.

(a) The green line is the correlation between vis-
cosity and mole fraction found by Dizechi et al.
for a temperature of 30 ◦C. The blue points are
the data that we found for the viscosity as a
function the mole fraction, while the error bars
are given in red.

(b) The blue points are the data that we found
for the viscosity, while their error bars are given
in red. The striped line is what Tsierkezos et al.
found for the viscosity vs mole fraction, while
the temperature was 20 ◦C. The black line is
what they found while it was 30 ◦C.

Figure 11: In this figure you can see the viscosity’s of different fractions of ethylene glycol vs
demi-water (given in the different Ethylene Glycol Mole Fractions). Each point on the graph
is actually composed out of 8 different measurements, over which was then averaged. This
is done for a temperature of around 23 ◦C. Here we have compared our own data with two
different researches.

In figure 11b you can see our data being compared to another research done by Tsierkezos
et al..[12] They also measured the viscosity for different ethylene glycol mole fractions, but
they have also done this for multiple temperatures (20 and 30 ◦C). And, since we don’t
entirely trust our temperature machine, plotting our own data next to theirs can give us a
more definite answer as to whether we are in the correct ballpark for the viscosity or not.
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PMMA TiO2
Time Dynamic Viscosity Error Dynamic Viscosity Error

(ms) (Ns/m2 ∗ 10−3) (Ns/m2 ∗ 10−3) (Ns/m2 ∗ 10−3) (Ns/m2 ∗ 10−3)

0 1.4677 ± 0.2459 2.0280 ± 0.1535
198 2.3114 ± 0.2216
199 1.6651 ± 0.1860
382 2.7111 ± 0.3529
383 1.9636 ± 0.2764
566 4.3177 ± 0.2585
567 2.5275 ± 0.5568
750 7.4356 ± 0.3776 11.4194 ± 0.1230

Table 2: Our values for the viscosity and there errors of both PMMA and TiO2 in time.

4.4 Finding the colloidal glass transition

For our last experiment, we have looked at how the viscosity of different colloids looks as a
function of both time and the size of the droplet. Here we did 1 measurement once every 180
seconds for both PMMA and TiO2. The results of this you can see in table 2.

As you can see, the times between different points don’t always match for the PMMA
and TiO2. This is because the computer sometimes needs a little bit longer to process the
data.

The points that you see in Table 2 are also once again given in a graph ( see figure 12a).
Here you can see that though the absolute value of the two different solutions is different,
they do follow the same kind of correlation between time and viscosity, which appear to be
some form of exponentially growing function.

We’ve also plotted these same viscosity’s vs the size of the droplet at that point (figure
12b). And as you can see, the functions once again look the same. For TiO2, one point
isn’t where we would expect it to be. However, this point is an error, since the size of the
droplet can’t grow during measurements without us adding more colloid. So this point is
there because of an fitting problem to the image that the basler camera had made. However,
apart from this one point, you once again find the same exponential function as before, now
just mirrored.
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(a) The viscosity of the droplets as a function
of the time. The blue line gives the viscosity of
PMMA, while the red line gives the viscosity of
TiO2.

(b) The Viscosity of the droplets as a function
of their size (compared with the size at which
they began.) The blue line gives the viscosity of
Pmma, while the red line gives the viscosity of
TiO2. For the TiO2, one point is off from the
expected exponential curve.

Figure 12: Two figures in which we have plotted the viscosity of PMMA and TiO2. In both
figures you can see that they both posses the characteristics of an exponential curve. The
temperature for which we did these measurements was around 23 ◦C.
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5 Discussion

. Now that we have showed you the data that we have acquired, let’s discuss whether this
data is correct and if our methods should be improved.

5.1 Viscosity as a function of temperature

A big difference actually between this experiment and all of the later experiments is the
fact that both our setup and our analysis hadn’t been optimized yet, so the results of this
experiment aren’t as thrust worthy as we would wish them to be.

Let’s go back to the graph in figure 10. There are 2 reason why we haven’t used any error
bars in this graph.

• The first reason is because of the fact that we hadn’t yet optimized both the setup and
the analysis. This meant that a lot of the values that we had to use, were gained by
just looking at the frequency spectra by eye. Because of this, we can’t really put any
reasonable error bars on our results.

• The second reason is because we don’t really trust our temperature machine, because
of the weird jumps it can sometimes make. What we mean by this is the fact that,
sometimes, the temperature between measurements can just randomly go up a few
degrees without us directing any extra heat to our setup. An example of this phenomena
can be seen when, inside of our graph, you look at 307.5 K. There you can see that the
temperature has randomly jumped up again.

The first problem with this experiment (the optimizing) can be solved quite easily, since
we’ve already done this. So for better result, we’d just have to redo the measurement.
However, this won’t solve the problem we have with the temperature machine. And to be
truthful, we don’t really yet understand why it has these weird jumps. So that’s definitely
where the focus for this experiment should lie in the future.

5.2 Upgrading the experiment

During this thesis, the setup has been improved and upgraded quite a lot. One of these
improvements is the fact that we have stopped using the high-speed camera for getting the
data to calculate the viscosity. We have still used this high-speed camera to find which
degree our spherical harmonics had and which peak belonged to which oscillation. For the
data needed to calculate the damping constant however, we have started using the Diode,
Laser and DAQ-device. Another improvement was finding the correct degree of the spherical
harmonic. My predecessor’s experiment [13] had been based around trying to get the damping
constant via the radius of the droplet during the oscillation using the camera, since this is
what kramer et al. did as well. However, the ”flaw” that was made is in the fact that, to get
the radius of the droplet, the assumption was made that the droplet would still be an ellipse
during the oscillation. In the case of kramet et al., this was a correct assumption, since they
had a second-degree spherical harmonics on the surface of their droplet. For us however, this
assumption wasn’t correct, since we have a third-degree spherical harmonic.
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Another inconvenience that working with the camera brought, was the fact that processing
it’s data took way to long. Saving the clip that the camera had made already took around
50 minutes, than cutting this to frames takes 30 minutes and fitting an ellipse to all of the
frames costs another 45. This means that doing 1 measurement takes you more than 2 hours.
Using the DAQ however, we get preciser results in a shorter amount of time , which is around
20 seconds for a single measurement.

5.3 Viscosity as a function of volume fraction

In figure 11a we saw that, for concentrations of ethylene glycol in Demi-Water above 10
percent (mole fraction of 0.05), the correlation we get seems to be a linear one. However, for
concentrations below this value, it seems that we get a straight line (a constant value). This
leads to us asking ourselves: Which of these two correlations is correct?

To answer this question, it’s always a good idea to first start by looking at what other
people have found with different methods. In figure 11a, we had also plotted the viscosity’s
found by Dizechi et al.. Looking at their data and than back to ours, we can see that we
are in the right ballpark. It does however look like we are always a little bit to high. This
is probably because of the fact that they did their measurements at exactly 30 ◦C, whilst
ours temperature wasn’t as stable, nor was it 30 ◦C. Since our temperature reader wasn’t
the best, we can’t be exactly sure, but our temperature was somewhere around 23 ◦C. Now,
a lower temperature is indeed cause to a higher viscosity, so this would meant that our data
do follow the correct trend. It’s because of this that we have also compared our data to the
data of another research (figure 11b). They did the same measurement, but they also did it
for 2 different temperatures (20 and 30 ◦C). And here you can indeed see that most of our
data is between these 2 lines, with once again proves that we are in the correct ballpark.

Having answered this question, you might already be able to guess as to why we aren’t
able to get the correct correlation below concentrations of 10 percent. This is because our
set up isn’t yet precise enough for this regime. However, the fact that we are able to find
values that are all so close to each other, while the mole fraction only changes from 0 to 0.02,
shows that we already on the right track precision wise.

This immediately leads to the question of where this project could be going in the future.
We should definitely be trying to find the correct correlation for concentrations below 10
percent. The obvious way to do this is to improve the part of the setup that acquires the
data, but there are actually also other ways that this can be done.

• A good way to make the setup preciser would be to try and lower the noise. This can be
done by enlarging the signal gained, but than filtering out the parts that aren’t needed
(we used a DC-filter). Another good way to lower the noise would be to try to do this
mathematically. The problem that we found however was the fact that, once doing it
mathematically, you also lose some data that you sometimes do want to keep.

• Another good way would be to try and see if we can enlarge the oscillation itself. As we
have told in the beginning, we had chosen for a drop of 3 ms. We had done this because
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this seemed like the safest option. For drops which were much lower, the oscillation
sometimes wouldn’t even be there, because the droplet was just to viscous. For drops
which were much higher, we noticed that, if the droplet had a high density, there was
always a big chance that it would just fall out entirely. So we just chose a number that
worked and stuck with it, but to improve the setup, this might be something to take a
look at.

• Something that we could also try, since we have ignored it from the beginning, is the
peak-splitting. We could use math to combine the different peaks to one. This might
solve our precision problem as well.

• A last place that we could look for improving the setup would be to try and see if
changing the voltage we send to the actuators gives any improvements. This voltage
after all determines how elliptical the droplet will be, which influences the oscillation.

5.4 The colloidal glass transition

In figure 12 you can see 2 different ways to plot the viscosity of PMMA vs TiO2. All of these
lines appear to posses the same exponential characteristics (time and size give a mirrored
exponential, but they still look alike). This means that for both the PMMA and for the
TiO2 we were able to see the colloidal glass transition happen.

For the TiO2, we didn’t really know whether or not to expect this. That’s because the
TiO2 that we have doesn’t really want to be solved in demi-water, neither in the container,
nor in the droplet (see figure 13a). However, as you can see, the part of the droplet that’s
still viscous still gave us the oscillation that we were looking for. So this shows that both
TiO2 and PMMA have the same structural design once dissolved in demi-water, since they
both end up going through the colloidal glass transition.

There are two places where this experiment can go to in the future:

1. Right now, we have only looked at 2 different colloids. However, when making a line
for example, it’s always said that you need at least 3 different points. In our case this
means that, if we really want to know if our setup can always find the colloidal glass
transition, we would need to do this for more colloids. It would also be interesting to
see if, by enlarging the fall of the droplet, we might be able to measure higher viscosity’s
for the colloids that we have already look at (PMMA and TiO2)

2. The other way we could go is by no longer looking at just colloids, but start looking
at mixtures of colloids with polymers. Adding polymers should change the way that
the viscosity changes in time [14] and it would be interesting to find out if we could see
this for ourselves.



Discussion 26

(a) Titanium-Oxide (TiO2) in it’s orig-
inal container. As you can see, it’s
doesn’t want to be mixed within all of
the demi-Water, so we get a clear sepa-
ration line.

(b) A drop of titanium-oxide. Once gain, we can
clearly see an separation line between where the
titanium-oxide did mix and where it has sedi-
mented.

Figure 13: Two different pictures of the Titanium-Oxide not wanting to solve properly in the
demi-water. In both cases you can see that the TiO2 starts to sediment.
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6 Conclusion

In conclusion we can say that acoustic levitation has become a good method to calculate
the viscosity of liquids without it touching other surfaces. With our methods we are always
able to find the correct trend that we should find, but also values that were close to the
theoretical values. Improvement can still be gained however, especially in the temperature-
experiment, since the errors we had were so large that we couldn’t even plot them. For
the ”volume fraction vs viscosity”-experiment we should really try to see if we can also
get the correct linear trend for lower volume-fractions, though at least all of the values are
already in the correct ballpark. In our last experiment we saw that the viscosity of both our
colloidal droplets did what it should have done, which was exponentially rise through time
and exponentially decrease when plotting it vs the size of the droplet. This meant that we
were indeed able to see the colloidal glass transition happen.
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A Fitting an ellipse to the edge of the droplet

import numpy as np
from skimage import f e a t u r e
from skimage import i o
import cv2
import matp lo t l i b . image as mpimg
import matp lo t l i b . pyplot as p l t
from matp lo t l i b . patches import E l l i p s e
from numpy . l i n a l g import e ig , inv
from sc ipy import ndimage
import os

”””
The s t ep s that we do in t h i s f i l e are as f o l l owed :
− We s t a r t by import ing the image , so that we can indeed f i t an e l l i p s e to
i t .
− We than make sure that the middle o f the d rop l e t i s a l s o indeed black ,
s i n c e otherw i s e the programm cannot f i t to the edge o f the e l l i p s e
c o r r e c t l y .
− We than f i n d the edge o f the d rop l e t .
− We now f i t an e l l i p s e to t h i s edge and than c a l c u l a t e the parameters we
need ( See the l i s t below f o r which parameters t h i s are ) .
”””

a l i s t = [ ]
aLength = [ ]
bLength = [ ]
c e n t e r l i s t = [ ]
xLengthList = [ ]
yLengthList = [ ]
A n g l e l i s t = [ ]
OppList = [ ]
Vo lL i s t = [ ]

R = np . arange (0 , 2∗np . pi , 0 . 0 1 )
f o r i in range ( 2 4 ) :

###Import the image
image =cv2 . imread (” F i l e p l a c e . png ” , 2 ) [ 1 5 0 : 4 0 0 , 6 0 0 : 1 0 0 0 ]

###Here we make the middle o f the image black ( i f we don ’ t do th i s ,
the r e w i l l a white spot here , which i s the re because o f the
b r i g h t n e s s
o f the l ed )
image [ 1 2 0 : 1 7 0 , 1 7 0 : 2 3 0 ] = 12
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###Find the edge o f the d rop l e t and there p o s i t i o n
edges = cv2 . Canny( image , 90 , 170)
i n d i c e s = np . where ( edges != [ 0 ] )
p l t . imshow ( image )

###F i t t i n g an e l l i p s e to the edge o f the d rop l e t
de f f i t E l l i p s e (x , y ) :

x = x [ : , np . newaxis ]
y = y [ : , np . newaxis ]
D = np . hstack ( ( x∗x , x∗y , y∗y , x , y , np . o n e s l i k e ( x ) ) )
S = np . dot (D.T,D)
C = np . z e r o s ( [ 6 , 6 ] )
C[ 0 , 2 ] = C[ 2 , 0 ] = 2 ; C[ 1 , 1 ] = −1
E, V = e i g (np . dot ( inv (S ) , C) )
n = np . argmax (np . abs (E) )
a = V[ : , n ]
r e turn a

###Calcu l a t ing the cente r o f the e l l i p s e
de f e l l i p s e c e n t e r ( a ) :

b , c , d , f , g , a = a [ 1 ] / 2 , a [ 2 ] , a [ 3 ] / 2 , a [ 4 ] / 2 , a [ 5 ] , a [ 0 ]
num = b∗b−a∗c
x0=(c∗d−b∗ f )/num
y0=(a∗ f−b∗d)/num
return np . array ( [ x0 , y0 ] )

###Calcu l a t ing the l ength o f the e l l i p s e in the d i r e c t i o n o f both
the x− and y−a x i s
de f e l l i p s e a x i s l e n g t h ( a ) :

b , c , d , f , g , a = a [ 1 ] / 2 , a [ 2 ] , a [ 3 ] / 2 , a [ 4 ] / 2 , a [ 5 ] , a [ 0 ]
up = 2∗( a∗ f ∗ f+c∗d∗d+g∗b∗b−2∗b∗d∗ f−a∗c∗g )
down1=(b∗b−a∗c )∗ ( ( c−a )∗np . s q r t (1+4∗b∗b /( ( a−c )∗ ( a−c )))−( c+a ) )
down2=(b∗b−a∗c )∗ ( ( a−c )∗np . s q r t (1+4∗b∗b /( ( a−c )∗ ( a−c )))−( c+a ) )
r e s1=np . s q r t (up/down1)
r e s2=np . s q r t (up/down2)
re turn np . array ( [ res1 , r e s2 ] )

###Calcu l a t ing the ang le o f the a and b o f the e l l i p s e compared to
the x− and y−a x i s
de f e l l i p s e a n g l e o f r o t a t i o n 2 ( a ) :

b , c , d , f , g , a = [ a [ 1 ] / 2 , a [ 2 ] , a [ 3 ] / 2 , a [ 4 ] / 2 , a [ 5 ] , a [ 0 ] ]
i f b == 0 :

i f abs ( a ) > abs ( c ) :
r e turn 0
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e l s e :
r e turn np . p i /2

e l s e :
i f abs ( a ) > abs ( c ) :

r e turn np . arctan (2∗b/(a−c ) )/2
e l s e :

r e turn np . p i /2 + np . arctan (2∗b/(a−c ) )/2

###Writing a l l o f the parameters to the re l i s t s
a = f i t E l l i p s e ( i n d i c e s [ 0 ] , i n d i c e s [ 1 ] )
a l i s t . append ( f i t E l l i p s e ( i n d i c e s [ 0 ] , i n d i c e s [ 1 ] ) )
c e n t e r l i s t . append ( e l l i p s e c e n t e r ( a ) )
c en te r = e l l i p s e c e n t e r ( a )
yLengthList . append ( e l l i p s e a x i s l e n g t h ( a ) [ 0 ] )
yLength = e l l i p s e a x i s l e n g t h ( a ) [ 0 ]
xLengthList . append ( e l l i p s e a x i s l e n g t h ( a ) [ 1 ] )
xLength = e l l i p s e a x i s l e n g t h ( a ) [ 1 ]
A n g l e l i s t . append ( e l l i p s e a n g l e o f r o t a t i o n 2 ( a ) )
Angle = e l l i p s e a n g l e o f r o t a t i o n 2 ( a )
p r i n t ( i )

aLength . append ( ( yLength∗np . cos (np . p i /2)∗np . s i n ( Angle ) +
xLength∗np . s i n (np . p i /2)∗np . cos ( Angle ) )∗0 . 0 1 4 6 )

bLength . append ( ( yLength∗np . cos (0)∗np . cos ( Angle ) −
xLength∗np . s i n (0)∗np . s i n ( Angle ) )∗0 . 0 1 4 6 )

VolL i s t . append ((4/3)∗np . p i ∗aLength [ i ]∗∗2∗ bLength [ i ] )

###I f we want , we can use the data below to p l o t the e l l i p s e we
j u s t f i t t e d so that we can see that our code a c t u a l l y works

yy1 = cente r [ 0 ] + yLength∗np . cos (R)∗np . cos ( Angle ) −
xLength∗np . s i n (R)∗np . s i n ( Angle )

xx1 = cente r [ 1 ] + yLength∗np . cos (R)∗np . s i n ( Angle ) +
xLength∗np . s i n (R)∗np . cos ( Angle )

p l t . p l o t ( xx1 , yy1 , c o l o r = ’ red ’ )
p l t . x l a b e l (” p i x e l s ”)
p l t . y l a b e l (” p i x e l s ”)
p r i n t ( aLength , bLength )
#p l t . show ( )

###Now we save the va lue s that we want to save in t h e i r cor re spond ing
f i l e s us ing np . save txt (” Storage−Place ” , f i l e −name , fmt=’%1.6 f ’ )
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B Fitting a Cauchy-Lorentz Curve to the frequency

spectrum

from l m f i t . models import LorentzianModel
from l m f i t . models import ConstantModel
import numpy as np
import matp lo t l i b . pyplot as p l t

###We s t a r t by wr i t i ng a func t i on that those the f o u r i e r−trans form o f
the data that the diode f i n d s
de f f requency ( data ) :

f r e q = np . f f t . f f t f r e q ( data . s i z e , d=sp f )
spec t = np . abs (np . f f t . f f t ( data ) )
ang le = np . ang le (np . f f t . f f t ( data ) )
re turn f req , spect , ang le

fp s = 500000
sp f = 1/ fp s

### Here we import the data
DiodeDataRaw = np . l oadtx t (” Fi l e−Place . txt ”)

###Here we p lo t the data o f the diode , so that we can see i f the
measurement was a succe s
p l t . p l o t ( DiodeDataRaw )
p l t . x l a b e l (” Measurement ”)
p l t . y l a b e l (” Voltage (mV)”)
p l t . f i g u r e ( )

###Here we have our func t i on to the f o u r i e r trans form
freqdata , spectdata , ang ledata = frequency ( DiodeDataRaw )
freqdataR = np . array ( f r eqdata )
spectdataR = np . array ( spectdata )

”””
Everything below t h i s po int i s the re to make a f i t to the data .
−We s t a r t by f i n d i n g the c o r r e c t po in t s where we t e l l the f i t to search
a peak .
−We can than c a l l LorentzianModel ( ) , which uses Scipy to f i n d a f i t to
the data .
−We can than p lo t i t to check i f i t has indeed worked the way that i t
should .
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”””

begin = 120
middlepoint2 = 140
middlepoint3 = 160
middlepoint4 = 180
middlepoint5 = 200
end = 250

Lorentz ian1 = LorentzianModel ( p r e f i x = ’ L1 ’ )
parsL1 = Lorentz ian1 . guess ( spectdataR [ begin : middlepoint2 ] ,

x=freqdataR [ begin : middlepoint2 ] )

parsL1 [ ’ L1 center ’ ] . s e t (67 , min=60, max=70)

Lorentz ian2 = LorentzianModel ( p r e f i x = ’ L2 ’ )
parsL1 . update ( Lorentz ian2 . guess ( spectdataR [ middlepoint3 : middlepoint4 ] ,

x=freqdataR [ middlepoint3 : middlepoint4 ] ) )

parsL1 [ ’ L2 center ’ ] . s e t (85 , min=80, max=90)
parsL1 [ ’ L2 sigma ’ ] . s e t ( 0 . 1 , min=0.01 , max=20)

Lorentz ian3 = LorentzianModel ( p r e f i x = ’ L3 ’ )
parsL1 . update ( Lorentz ian3 . guess ( spectdataR [ middlepoint5 : end ] ,

x=freqdataR [ middlepoint5 : end ] ) )

parsL1 [ ’ L3 center ’ ] . s e t (115 , min=105 , max=120)
parsL1 [ ’ L3 sigma ’ ] . s e t ( 0 . 1 , min=0.01 , max=20)

Constant = ConstantModel ( )
parsL1 . update ( Constant . guess ( spectdataR [ begin : end ] , x=freqdataR [ begin : end ] ) )

modL1 = Lorentz ian1 + Lorentz ian3 + Constant
outL1 = modL1 . f i t ( spectdataR [ begin : end ] , parsL1 , x=freqdataR [ begin : end ] )
p r i n t ( outL1 . f i t r e p o r t ( m in co r r e l =0.25)) #Gives a l l o f the parameter va lue s
p l t . p l o t ( f r eqdata [ begin : end ] , outL1 . b e s t f i t , l a b e l = ’ Fit ’ )
p l t . p l o t ( f r eqdata [ begin : end ] , spectdata [ begin : end ] , l a b e l = ’ data ’ )
p l t . x l a b e l (” Freqency (Hz)” )
p l t . y l a b e l (” Peak Hight ”)
p l t . l egend ( )
p l t . show ( )
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C Controlling the Data Acquisition(DAQ) Device

import sys
import os
import time
import v i s a
import numpy as np
import datet ime
from pypylon import pylon
import matp lo t l i b . pyplot as p l t

”””
The code below i s used to c o n t r o l the DAQ and t e l l him when and
how to measure :
− We s t a r t by having the computer search the DAQ and connect with i t .
− We than g ive the DAQ it ’ s used parameters . These are the channel ’ s
which he needs to look at , the ra t e at which he a c q u i r e s po ints ,
the amount o f po in t s he needs to acqu i r e and the range o f the
incoming v o l t a g e s ( the l a s t one i s very important , s i n c e i t dec id e s how
big the b i t s are (how many vo l tage per 16 b i t s ) )
− We than t e l l our DAQ to only s t a r t measuring once i t ’ s t r i g g e r e d
by the arduino ( which i t does each time the o s c i l l a t i o n has begun )
− After the DAQ i s done measuring , we c a l c u l a t e the measured v o l t a g e s
by r e w r i t i n g the incoming b i t s .
”””

###We have our computer search f o r the camera and connect with i t . We
a l s o g ive the camera the c o r r e c t va lue s so that i t works once t r i g g e r e d
and etc .
os . makedirs (”C:\\ Users \\ l i n x \\My Documents\\ S t i j n H e l s l o o t

\\Bas l e r P i c tu r e s /PMMA/ Droplet1 ” , e x i s t o k = True )
camera = pylon . InstantCamera ( pylon . TlFactory . GetInstance ( ) .

CreateF i r s tDev i ce ( ) )
camera . Reg i s t e rCon f i gu ra t i on ( pylon . Conf igurat ionEventHandler ( ) ,
pylon . Registrat ionMode ReplaceAl l , pylon . Cleanup Delete )
camera . Open ( )
camera . Acquis it ionMode . SetValue ( ’ Continuous ’ )
camera . MaxNumBuffer = 15
camera . T r i g g e r S e l e c t o r . SetValue ( ’ FrameStart ’ )
camera . TriggerMode . SetValue ( ’On’ )
camera . Tr iggerSource . SetValue ( ’ Line1 ’ )

###We have our computer search f o r the DAQ and connect with i t
rm = v i s a . ResourceManager ( )
dev i ce = rm . open re source ( ’USB0 : : 0 x0957 : : 0 x1518 : : TW56100007 : : 0 : : INSTR ’ )
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channel Temperature = 112
channel Diode = 116

###We have our machine do one warm−up measurement , s i n c e the f i r s t
measurement always takes a l i t t l e b i t l onge r
p r i n t ( dev i c e . query (”MEAS:VOLT? (@112 ) ” ) )

dev i ce . t imeout = 500000

###We g ive our DAQ the c o r r e c t parameters that i t needs to use
dev i ce . wr i t e (”ACQ:SRAT 150000”)
p r i n t ( dev i c e . query (”ACQ:SRAT?”) )
dev i ce . wr i t e (”ACQ:POIN 700000”)
p r i n t ( dev i c e . query (”ACQ:POIN?”) )
dev i ce . wr i t e
(”ROUT:SCAN (@112 , 1 1 6 ) ” )
p r i n t ( dev i c e . query (”ROUT:SCAN?”) )
dev i ce . wr i t e (”ROUT:CHAN:RANG 0 . 2 , (@112 , 1 1 6 ) ” )
p r i n t ( dev i c e . query (”ROUT:CHAN:RANG? (@112 , 1 1 6 ) ” ) )

numberOfImagesToGrab = 100
camera . StartGrabbingMax ( numberOfImagesToGrab )

de f Measurement ( x ) :
n = 0
whi le n<x :

TempList = [ ]
DiodeList = [ ]

# We t e l l i t to only measure once i t i s g iven a t r i g g e r
dev i ce . wr i t e (”TRIG:SOUR EXTA”)
p r i n t ( dev i c e . query (”TRIG:SOUR?”) )
dev i ce . wr i t e (”TRIG:ATR:COND BLOW”)
dev i ce . wr i t e (”TRIG:ATR:LTHR 3”)
dev i ce . wr i t e (”TRIG:TYP POST”)
timenw = datet ime . datet ime . now ( )

###We s t a r t by having our camera take a p i c t u r e the moment the
shut t e r i s in f r o n t o f the l a s e r

grabResult = camera . Ret r i eveResu l t (25000 ,
pylon . TimeoutHandling ThrowException )

i f grabResult . GrabSucceeded ( ) :
# Access the image data .
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img = grabResult . Array
p l t . imshow ( img )
p l t . s a v e f i g (”C:\\ Users \\ l i n x \\My Documents\\

S t i j n H e l s l o o t \\Bas l e r P i c tu r e s \\PMMA\\
Droplet1 \\Meas”+s t r ( timenw . s t r f t i m e (

’%Y−%m−%d−%H−%M−%S ’ ) ) + ” . png ”)
grabResult . Re lease ( )
p r i n t (”Done Pic ture ”)

dev i ce . wr i t e (”DIG”)

###We make our computer f a l l ” a s l e e p ” , so that our DAQ
get s enough time to do the measurement
time . s l e e p (180)

###We c a l c u l a t e the incoming v o l t a g e s by r e w r i t i n g the
inncoming b i t s
meas = dev i ce . que ry b ina ry va lue s (”WAV:DATA?” ,

datatype = ’h ’ , i s b i g e n d i a n = False )
measDiode = [ ]
measTemp = [ ]

p r i n t ( l en ( meas ) )
f o r i in range (700000 ) :

measDiode . append ( meas [ 1 + 2∗ i ] )
measTemp . append ( meas [ 0 + 2∗ i ] )

f o r i in range (700000 ) :
DiodeList . append ((2∗measDiode [ i ] ) / ( 2∗∗1 6 )∗0 . 2 )
TempList . append ((2∗measTemp [ i ] ) / (2∗∗16)∗200 )

###We can now save the data in to the c o r r e c t f o l d e r .
DiodeMeasurement = np . array ( DiodeList )
TempMeasurement = np . array ( TempList )
os . makedirs (”C:\\ Users \\ l i n x \\My Documents\\ S t i j n H e l s l o o t

\\DataDAQ/PMMA/ Droplet1 ” , e x i s t o k = True )
os . makedirs (”C:\\ Users \\ l i n x \\My Documents\\ S t i j n H e l s l o o t

\\DataDAQ\\PMMA\\Droplet1 /”
+s t r ( timenw . s t r f t i m e ( ’%Y−%m−%d−%H−%M−%S ’ ) ) ,

e x i s t o k = True )
np . savetxt (”C:\\ Users \\ l i n x \\My Documents\\ S t i j n H e l s l o o t

\\DataDAQ\\PMMA\\Droplet1 \\”
+s t r ( timenw . s t r f t i m e ( ’%Y−%m−%d−%H−%M−%S ’))+ ”\\

TempData . txt ” , TempMeasurement , fmt = ’%1.6 f ’ )
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np . savetxt (”C:\\ Users \\ l i n x \\My Documents\\ S t i j n H e l s l o o t
\\DataDAQ\\PMMA\\Droplet1 \\”

+s t r ( timenw . s t r f t i m e ( ’%Y−%m−%d−%H−%M−%S ’))+ ”\\
DiodeData . txt ” , DiodeMeasurement , fmt = ’%1.6 f ’ )

n = n+1
pr in t (” Measurement Done”)

###Ca l l i ng the func t i on 8 t imes means that the measurement i s done 8
t imes in t o t a l
Measurement (8 )
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