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1 Introduction

It is a common occurrence in air transport that two adjacent passengers bought

tickets which differ largely in price. Markups and markdowns set by re-sellers only

have a small impact on the price differences, whereas large price fluctuations are

mainly caused by another phenomenon. It is revenue management what makes

airline customers feel like they are in an unpredictable whirlpool of prices. Accord-

ing to Robert Cross, the man hailed by the Wall Street Journal as ”the guru of

revenue management”, revenue management can most accurately be described as

’a selling technique of companies to sell the right product to the right customer

at the right time for the right price’ [1]. Major research fields of revenue manage-

ment are forecasting, overbooking and pricing. Dynamic pricing (DP) is an area

in revenue management (RM) what mainly deals with the price: how to determine

the (optimal) price for different periods of time for different customers? The main

objective of dynamic pricing is effectively managing a companys reservations in-

ventory and thereby increasing (maximizing, if possible) revenue. Dynamic pricing

is a legal practice and although most customers possess little to zero knowledge

about the subject, they seem to accept the price fluctuations by considering it as

given. The airline industry is an industry in which firms have to face the challenge

of effectively managing their reservations inventory on a daily basis. They also

compete in an environment of stiff price competition and due to the continuous

developments in technology and the presence of big data, airlines are forced to use

dynamic pricing if they want to avoid bankruptcy.

However, the airline industry is not unique to revenue management nor dynamic

pricing in particular. According to Andersen [2], revenue management can be ap-

plied to any business if there exist:

• Perishable inventory

• Fixed capacity

• Advance purchase of products

• Dynamic demand

• High fixed costs and relatively low marginal costs of selling one additional

unit
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If we translate these conditions to the airline industry, we see that a seat on a flight

is a typical perishable good and can be priced dynamically indeed [3]. It is therefore

no surprise that revenue management has it roots in the airline branch. Dating

back to the 70s, the Airline Deregulation Act of 1979 paved the way for airlines to

choose their own set of prices instead of fixed prices set by the U.S. Civil Aviation

Board. The consequence of this act was that low-cost carriers were formed, offering

prices low enough to steal customers of the established airlines. New strategies were

required in order for the established airlines to survive. It was American Airline

who responded with DINAMO (Dynamic Inventory and Maintenance Optimizer),

a system providing a flight specific analysis which made it possible to offer prices

just as low or even lower than the budget airlines. In 1985, huge investments in

DINAMO resulted into the introduction of Ultimate Super Saver Fares [4]. These

were non-refundable fares that had to be purchased in advance and were capacity

controlled. The system assigned these discount fares to only those flights where

they had a surplus of empty seats. American Airline became a pioneer in revenue

management as the systems net impact was enormous: additional revenues were

estimated at 1.4 billion dollars over a three year period, while it also increased the

productivity per revenue management- analyst by 30% [5].

As this is a Bachelor’s thesis, the mathematical complexity of real-life decision-

systems like DINAMO simply outgrow the mathematics we will treat here. How-

ever, we are able to simplify the pricing problems that real airlines face in such a

manner that we can provide a mathematical background of how dynamic pricing

works generally. This is done by proposing two model types; a monopoly model

and a competitive model. Among the literature most articles concern monopoly

problems and not so much the competitive cases. However, the major part of this

thesis is devoted to the competitive model and the motivation for treating both

types results from the desirability of possessing prior knowledge of the monopoly

case.

It does not take much of an effort to conclude the existing literature contains

many different approaches, models and objectives. Those who gained interest in a

wide range of applications of RM are referred to McGill & Van Ryzin (1999) [6],

who provide a clear research overview of the area of revenue management covering

research done from 1958 until 1999.
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Related literature

The amount of literature on RM and DP in the airline industry specifically took

off as soon as the success of DINAMO became known. It was Belobaba (1987)

[7] who examined the seat inventory control component of airline RM by laying

an emphasis on the need for a practical solution of the problem. Until the begin-

ning of the 90s most work focused on capacity management and overbooking while

there was only few discussion of dynamic pricing policies available. Most models

assumed fixed prices and it were people who were in charge of changing the fares

[8].

In the 90s, dynamic pricing became one of the most prolifically investigated areas

of revenue management. Generally, in the existing literature, pricing models can

be decomposed into the following aspects: the arrival process of customers, the

buying process, the optimization problem, assumptions and conditions belonging

to the problem, and the solution to the problem. The arrival process of customers

is mostly depicted as some type of Poisson point process, in which customers ar-

rive random at a certain rate, and this will be the case in this thesis as well. One

approach is to assume that the willingness-to-pay (the price a customer is willing

to pay for a ticket) of arrived customers is unknown to the airline. Gallego &

Van Ryzin (1994) [9] use this approach to study dynamic pricing under imperfect

competition and they control the intensity of demand by changing prices. Their

paper is most often referred to in the articles on dynamic pricing. It also acts as

the major source for Dolgui & Proth (2009) [10], whose structure we follow in the

monopolistic model.

The use of competitive models gradually increased among the literature since the

millennial switch. Most articles on dynamic pricing under competition show the

use of game theory, treating one airline as the dynamic fare operator and the other

as the fixed fare operator. However, more realistically is when both airlines are

using dynamic pricing policies, and this is what Li & Peng (2007) [11] investigated.

Currie, Cheng & Smith (2008) [12] joined this discussion, while current research

about competition rises in complexity as it regularly involves more than two air-

lines. Gallego & Hu (2014) [13] do this by considering an oligopolistic market with

m airlines. Because of the popularity of the field of dynamic pricing, researchers

follow each other quickly. The pricing models become increasingly realistic and the

field has reached some kind of level of maturity. Partially because of this high level
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of research, this thesis has become more of an independent analysis of the existing

literature rather than a piece of research.

Layout

We will start section 2 by introducing a dynamic pricing problem within the monop-

olistic environment. In section 3 we extend the problem by discussing a different

model concerning competition. Finally, we will review this thesis in section 4.
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2 The monopoly system

This section is devoted to a stochastic dynamic pricing model of a monopoly system.

A system that is in our case resembled by an air travel market without rivalry

between competitor airlines selling tickets for the same flight path. Here, we show a

model that is based on Gallego & Van Ryzin (1994) [9], but adopt the mathematical

structure and notation of Dolgui & Proth (2009) [10]. Although Dolgui & Proth

(2009) [10] use the same approach as Gallego & Van Ryzin (1994) [9], they use

more modern notation which benefits both legibility and comprehensibility. Before

introducing the model we will make some assumptions for both economic and

modeling reasons:

• Assume that the airline is in a market with imperfect competition, i.e., the

airline has a monopoly on the product and so is able to influence demand by

varying its price.

• There is an unlimited pool of potential customers that can buy a ticket.

• Customers are assumed to buy a ticket if the price is equal to or less than

the price they are willing to pay for the ticket.

• Customers do not adjust their purchasing behaviour in response to the sell-

ing behaviour of the airline. More precisely, customers only respond to the

current price and thus not act strategically. A strategic customer always tries

to maximize its utility and that is not the case if they do not adjust their

behaviour in response to price fluctuations.

• Tickets are the only product considered, and other selling activities by the

airline do not affect ticket sales.

• We assume an unsold seat has no salvage value if the plane departs.

Throughout the section some additional assumptions concerning the mathematical

model are made.
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2.1 The model

Consider an airline selling N seats on a specific flight over a finite time horizon

[0, T ]. Potential customers arrive in the system at random and buy a ticket if its

price is lower or equal to the price they are willing to pay for the ticket, and if

it is higher they do not buy. The willingness-to-pay for a ticket depends on the

customer. In turn, the airline seeks to maximize its expected revenue.

Potential customers arrive according to a Poisson process. A Poisson process is

a common way to describe the stochastic process where a number of events occur

with a constant average rate. In our case a Poisson process models demand by

generating arrivals with rate or intensity λ, and because we have a monopoly, λ

can be interpreted as the market demand. The airline controls this intensity by

setting a price p over an infinitesimal time interval δ. During this time interval,

the intensity λ will generate exactly one potential customer with probability λδ

and none with probability 1−λδ. The probability of more than potential customer

arriving during the time interval δ is o(δ) and is negligible small if δ becomes in-

finitely small. See Gallego & Van Ryzin (1994) [9] for this last claim.

In order to describe the process where a potential customer will buy a ticket or

not, we denote the probability density function (pdf) as f(p), which represents

the probability that a customer is willing to pay the price p. Assume that f(p)

is non-increasing in price p, because of the obvious principle that the higher the

price p of a product, the smaller the probability a customer is willing to pay p for

it. Therefore, we can state the probability to buy a ticket at price p as follows:

P (p) =
∫∞
u=p

f(u) du = 1 −
∫ p
u=0

f(u) du = 1 − F (p)

Here, F (p) is the distribution function of the price and also the probability to

not buy a ticket at price p.

Also, it holds that:

• limp→∞ P (p) = 0

• P (0) = 1
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Notice that the first bullet implies that when the price becomes infinitely large,

the probability a customer is willing to pay that amount reaches 0. In reality,

this price might of course be a real number. The second bullet shows that any

potential customer becomes an actual customer, when ticket prices are equal to

0. Meanwhile, the airline tries to maximize expected revenue over the finite time

horizon [0, T ] by selling as much seats as possible.

Definition 2.1.1. Let V (t, n) be the maximum expected revenue that can be earned

by time T from n seats available at time t, with t ∈ [0, T ] and n ∈ {1, 2, ..., N}.

Assumption 1. (Concavity and differentiability) The maximum expected

revenue function V (t, n) is concave and continuously differentiable function with

respect to t.

Furthermore, we have

V (t, 0) = 0, ∀t ∈ [0, T ] (1)

and

V (T, n) = 0, ∀n ∈ {1, 2, ..., N} (2)

respectively meaning that when the flight is sold out we do not generate any further

revenue and when time is running out there is indeed no salvage value.

From now on, we will say that any pair (t, n), with t ∈ [0, T ] and n ∈ {1, 2, ..., N},
is a state under which the maximal expected revenue is determined. After any in-

finitely small increment of time δ the state corresponding to time t evolves to a

new state. When this happens, there are three possible situations regarding to the

expected revenue:

• No potential customer arrives in the time interval [t, t + δ). The probability

of this happening is equal to 1 − λδ, while the expected revenue under the

new state (t + δ, n) is given by V (t + δ, n).

• A potential customer arrives in the time interval [t, t + δ), but does not buy a

ticket. The first event has a probability of λδ to occur, while the latter occurs
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with a probability of F (p). Therefore the joint probability is λδF (p) and the

expected revenue under the new state (t + δ, n) is still given by V (t + δ, n).

• A potential customer arrives in the time interval [t, t + δ) and decides to

buy a ticket. The joint probability of these two events to occur is λδP (p) =

λδ[1− F (p)] and the expected revenue under the new state (t + δ, n− 1) is

given by V (t + δ, n− 1) + p for n ≥ 1, where p is the price of the ticket.

Because V (t, n) is the maximum expected revenue corresponding to the state (t, n),

we let p∗(t, n) be the optimal price of one ticket at time t with inventory level n.

Then, at time t + δ the maximum expected revenue can take on two possible values

for n ≥ 1: V (t + δ, n) with probability 1 − λδ[1 − F (p)] or V (t + δ, n − 1) with

probability λδ[1− F (p)].

In the latter case, the airline has actually sold a ticket during the the infinitesimal

time interval δ, therefore the value at time t + δ becomes p∗ plus the maximum

expected revenue for the remaining period V (t + δ, n − 1). Now we are able to

express the balance of maximum expected revenue for n ≥ 1:

V (t, n) = [1 − λδ[1− F (p∗)]]V (t + δ, n) + λδ[1− F (p∗)][V (t + δ, n− 1) + p∗]

The airline wants to maximize the right-hand-side of the equation, thus we have:

V (t, n) = max
p≥0

[V (t+δ, n)−λδ[1−F (p)]V (t+δ, n)+δλ[1−F (p)][V (t+δ, n−1)+p]]

Then rewrite to obtain:

−V (t+ δ, n)− V (t, n)

δ
= λmax

p≥0
[−[1−F (p)]V (t+δ, n)+[1−F (p)][V (t+δ, n−1)+p]]

By basic calculus we know that if we let δ → 0 the LHS of the above equation is

equivalent to the negative partial derivative with respect to t. Thus, we get:

∂V (t, n)

∂t
= −λmin

p≥0
[[1− F (p)]V (t, n)− [1− F (p)][V (t, n− 1) + p]] (3)

for n ≥ 1.

Assumption 2. The probability density function is f(p) = µe−µp and so the dis-

tribution function of the price p is given by F (p) = 1− e−µp, with µ> 0.
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Above assumption is made due to the fact that we want to analyze how the cus-

tomer’s behaviour, that is the willingness to pay a price p, affects the solution of

the problem. This is not possible when we use a general function F (p). Note that

f(p) = µe−µp is indeed decreasing in p as required. Thus, when we substitute in

equation (3), we get

∂V (t, n)

∂t
= −λmin

p≥0
[e−µp[V (t, n)− V (t, n− 1)− p]] (4)

for n ≥ 1.

2.2 Solution

In order to maximize its expected revenue, the airline has to find the optimal price

p∗, for each state (t, n), and does so by solving the minimization problem with

regard to p within equation (4). That means setting the partial derivative of the

second member of (4) equal to 0:

e−µp × [−µV (t, n) + µV (t, n− 1) + µp− 1] = 0 (5)

The solution of (5) is:

p∗(t, n) = V (t, n)− V (t.n− 1) +
1

µ
(6)

for n ≥ 1.

By substituting p for p∗(t, n) inside equation (4) we derive:

∂V (t, n)

∂t
= −λ

µ
e−µ[V (t,n)−V (t,n−1)+ 1

µ ] (7)

Equation (7) is a differential equation that only holds for n ≥ 1. Since we know

that V (t, 0) = 0 for all t ∈ [0, T ], it also holds that ∂V (t,0)
∂t = 0 for all t ∈ [0, T ].

For n=1, we get the following differential equation:

∂V (t, 1)

∂t
= −λ

µ
e−µ[V (t,1)+ 1

µ ]
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The above differential equation is valid. However, solving a differential equation

such as (7) algebraically is no easy task, if not impossible in some cases. As we will

not be actually engaging in dynamic programming, we state an explicit solution

through the following lemma.

Lemma 2.2.1. The solution

V (t, n) =
1

µ
ln

(
n∑
i=0

λie−i(T − t)i

i!

)
(∗)

satisfies the differential equation (7) for n ≥ 1.

Proof. Note that (∗) can be rewritten such that eµV (t,n) =
∑n
i=0

λie−i(T−t)i
i!

(∀n), and likewise eµV (t,n−1) =
∑n−1
i=0

λie−i(T−t)i
i! (∀n).

Thus, the RHS of (7) has the form

λ

µ
e−µ[V (t,n)−V (t,n−1)+ 1

µ ] =
λ

µ
e−µ[V (t,n)−V (t,n−1)]−1

=
λ

µ
e−1

∑n−1
i=0

λie−i(T−t)i
i!∑n

i=0
λie−i(T−t)i

i!

In case of the LHS of (7) we get

∂V (t, n)

∂t
=
−1

µ

∑n
i=1

λie−i(T−t)i−1(−1)i
i!∑n

i=0
λie−i(T−t)i

i!

=
1

µ

∑n
i=1

λie−i(T−t)i−1

(i−1)!∑n
i=0

λie−i(T−t)i
i!

=
1

µ
λe−1

∑n
i=1

λi−1e−(i−1)(T−t)i−1

(i−1)!∑n
i=0

λie−i(T−t)i
i!

=
λ

µ
e−1

∑n−1
i=0

λie−i(T−t)i
i!∑n

i=0
λie−i(T−t)i

i!

Therefore the LHS equals RHS and (∗) indeed satisfies (7).

Remember that the optimal price p∗(t, n) depends on the maximum expected rev-

enue associated with the state (t, n). By substituting V (t, n) for the solution stated

in Lemma 2.2.1., the formula for p∗(t, n) becomes rather cumbersome to read.

Therefore we let

K(t, n) =

n∑
i=0

λie−i(T − t)i

i!
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such that the solution becomes

V (t, n) =
1

µ
ln[K(t, n)] (8)

and we substitute in equation (6) to get

p∗(t, n) =
1

µ
[ ln

(
K(t, n)

K(t, n− 1)

)
+ 1] (9)

for n ≥ 1.

Thus, eventually, the airline can find the optimal price for any state (t, n) by

determining the value of the recursively established term K(t,n)
K(t,n−1) such that it

maximizes expected revenue over the selling season [0, T ].
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3 Dynamic pricing under competition

So far we have only considered dynamic pricing in a non competitive environment.

In practice however, the airline industry is by no means monopolistic. In order

to pursuit realism, this section treats a dynamic pricing model under competition.

The objective remains the same, i.e., each airline seeks to maximize its revenue. The

upcoming model is based on Li & Peng (2007) [8] and throughout this section we

will follow their mathematical structure. We consider a continuous-time dynamic

pricing model for two competitive flights, which uses stochastic control theory

as well as game theory. Because its approach also assumes customer arrivals are

generated by a Poisson process, it is a suitable extension of the monopolistic model.

A key difference with the monopolistic model is that here only two prices levels are

considered. The motivation for this contraction predominantly lies in the fact that

we want to analyze optimal policies under effect of competition without making the

game more complex than necessary. Another important feature of the competitive

model is that we assume arriving customers will certainly buy a seat, either at

airline 1 or at airline 2. This seems reasonable, because in the monopoly case

customers did not have an alternative while in this case the customer can switch

to the competitor for a cheaper ticket. Indeed, this results into demand being

dependent on both ticket prices. Eventually, we discuss the sufficient optimality

conditions for the model to support the optimal solutions.

3.1 Competitive model

Suppose two airlines operate a flight simultaneously from the same origin to the

same destination with departure time T . This allows both airlines to sell tickets

within the time horizon [0, T ]. At t = 0, the number of available seats for flight

1 operated by airline 1 and flight 2 operated by airline 2 are given by N1 and N2

respectively. It is assumed that unsold seats have no salvage value at t = T . The

airlines offer only high fare and low fare tickets, therefore the set of allowable prices

for flight k (k = 1, 2) is given by Pk = { pki | pk1 > pk2} with i = 1, 2 representing

the fare class. A Poisson process models the customer arrival rate with intensity

λ(t), t ∈ [0, T ]. We assume that demand of a flight is affected by the price of both

airlines, thus demand is correlated. Taking this into account, we denote λki,j(t)

as the demand intensity of fare class i = 1, 2 for flight k at time t when price of
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flight 1 is p1i (i = 1, 2) and price of flight 2 is p2j (j = 1, 2). In contrast to the

model in section 2 there is complete information; both airlines are aware of each

others actual price as well as the number of unsold seats. Also, customers have an

incentive to switch airlines if the rival airline offers a lower price. Therefore, we have

λ1i,1(t)>λ1i,2(t) (10)

λ21,j(t)>λ
2
2,j(t) (11)

Assumption 1. Revenue is a decreasing function in price, so that

λ11,jp
1
1<λ

1
2,jp

1
2 (j = 1, 2) (12)

λ2i,1p
2
1<λ

2
i,2p

2
2 (i = 1, 2) (13)

Also, the game is non-cooperative.

Inequalities (12) and (13) show that if an airline prices at high fare, then rev-

enue is lower than it would be at low fare, regardless of what price the competitive

airline uses. This would imply that in a cooperative game, which this is not, the

airlines would cooperate by setting their prices at low fare from the start. If as-

sumed otherwise, no airline will ever drop its price voluntarily.

For a random t in the sales season [0, T ], when remaining seats of both airlines

are (n1, n2), airline k looks to maximize its total expected revenue by determining

the price pk(s, n1, n2) at any point s in the remaining time horizon [t, T ]. We can

define the price of airline k under the state (s, n1, n2) as follows:

pk(s, n1, n2) =

pk1 if high fare at time s

pk2 if low fare at time s

where s ∈ [t, T ].
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The price determined by an airline therefore depends on the remaining sales time

and the number of unsold seats, as well as the price set by the competitor airline.

Intuitively one would argue that as unfilled capacity grows, the airline has an in-

centive to lower its price.

Assumption 2. At any given time s, the optimal price of flight k decreases in the

number of unsold seats (n1, n2).

An alternative way to formulate this assumption is to say that when the remain-

ing seats (n1, n2) of both flights are fixed, then the optimal price of each flight is

decreased with time s. By interpreting it in this way, it is clear that the airline has

an incentive to move from high fare to low fare at a certain moment in time, given

that no additional seats are sold since time t. Thus, consider a random decision

time t in the sales horizon [0, T ] when remaining seats are (n1, n2). In this state

both airlines respectively decide their switching points c1t,n1,n2
and c2t,n1,n2

. That

means before ckt,n1,n2
airline k will price at high fare and it will price at low fare

after ckt,n1,n2
. Despite that revenue is expected to be higher if an airline prices at

low fare (Assumption 2), both airlines start to price at high fare, otherwise there

is no opportunity to draw more customers by switching to a lower fare if no ad-

ditional seats are sold. In reality, however, this exact mechanism probably won’t

apply. Nowadays, when a flight’s selling season starts, tickets are offered relatively

cheap, then after a period of time the airlines start to increase their prices. During

the period of high fares, the airline expects that on average most customers arrive

and therefore it will try to maintain this price-level. It is most likely that after a

while, when time T is relatively close, there is still a number of unsold seats left.

This moment can be described as flight k’s switching point ckt,n1,n2
. In our model,

airlines can maintain high price and take the risk of unfilled capacity or they set

low fares hoping the flight leaves fully-packed by moving the switching point on

the time horizon. Therefore, indirectly, these switching points can be interpreted

as the policies set by the airlines. That means if no additional seat has been sold,

the model describes the behaviour of a last-minute buying process.

Definition 3.1.1. Let ckt,n1,n2
be a point in time where a flight k switches its price

from high to low fare. The position of the switching point is established at decision

time t with remaining capacities (n1, n2).
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Therefore, the optimal price at time s, determined at time t through ckt,n1,n2
, is

given by

pkt (s, n1, n2) =

pk1 t ≤ s ≤ ckt,n1,n2

pk2 ckt,n1,n2
<s ≤ T

where k ∈ 1, 2.

Unless a new customer arrives at time s and buys a ticket, the airlines will stick

to this policy. However, if a customer indeed buys a ticket at time s, we are in the

next turn of the game and both airlines will have to update their inventory state

(n1, n2) in order to decide new switching points. Prices will then restore to high

fares. This process continues until the moment both airlines are out of stock, that

is (n1, n2) = (0, 0), or when both planes leave the ground, that is t = T .

Lemma 3.1.2. Customers arrive according to a non-homogeneous Poisson process

with an intensity λ. Then the inter-arrival times are independent and obey the

exponential distribution with parameter λ.

Although it is obvious, a proof of Lemma 3.1.1. can be found in Appendix A.1.

Switching between high- and low fare means changing demand and thus switching

parameters. Therefore the switching points ckt,n1,n2
partitions the time horizon

[t, T ]. Assume the intensity is λ1 at time interval [t, c] and λ2 at time interval [c, T ].

Then, since the last customer arrival time t or from the start of the selling season,

when t = 0, the next customer arrival time s follows the exponential distribution

with pdf:

fc(s) =

λ1e−λ1(s−t) t ≤ s ≤ c

λ2e
−λ2(s−c)−λ1(c−t) c ≤ s ≤ T

(See Appendix A.2 for explanation)

Since we have a symmetric game, we can assume c1t,n1,n2
≤ c2t,n1,n2

. This means the

next customer arrival time s can lie in one of the intervals [t, c1t,n1,n2
], [c1t,n1,n2

,c2t,n1,n2
]

or [c2t,n1,n2
,T ]. In the interval [t, c1t,n1,n2

] both airlines are still using high fare. In

[c1t,n1,n2
,c2t,n1,n2

] airline 1 has switched to low fare, while airline 2 is still using high

fare. The next customer arrival time s can also lie in [c2t,n1,n2
,T ], where both air-

lines have switched to low fare. According to Lemma 3.1.1, from time t, flight k
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will sell one seat at time s according to the following pdf:

fkc1t,n1,n2
,c2t,n1,n2

(s) =



λk1,1e
−(λ1

1,1+λ
2
1,1)(s−t) t ≤ s ≤ c1t,n1,n2

λk2,1e
−(λ1

2,1+λ
2
2,1)(s−c

1
t,n1,n2

)×
e−(λ

1
1,1+λ

2
1,1)(c

1
t,n1,n2

−t) c1t,n1,n2
≤ s ≤ c2t,n1,n2

λk2,2e
−(λ1

2,2+λ
2
2,2)(s−c

2
t,n1,n2

)−(λ1
2,1+λ

2
2,1)(c

2
t,n1,n2

−c1t,n1,n2
)×

e−(λ
1
1,1+λ

2
1,1)(c

1
t,n1,n2

−t) c2t,n1,n2
≤ s ≤ T

(14)

(See Appendix A.3 for additional explanation)

Definition 3.1.3. Let Vk(t, n1, n2) be the expected revenue that can be earned by

time T from respectively n1 and n2 seats available at time t, with t ∈ [0, T ] and

n1 ∈ 1, 2, ..., N1, n2 ∈, 1, 2, ..., N2.

Every time an airline sells a ticket, the expected revenue for the upcoming period

changes for both airlines. Suppose flight 1 sells a seat under the state (s, n1, n2),

then it gathers either p11 or p12, depending on the position of ckt,n1,n2
. The state

changes to (s, n1 − 1, n2), hence the expected revenue for the remaining period

is V1(s, n1 − 1, n2). Therefore the total expected revenue of flight 1 becomes

p1i + V1(s, n1 − 1, n2), and flight 2 becomes V2(s, n1 − 1, n2). The equivalent ap-

plies to flight 2 when it sells a seat at p2j ; the expected revenue of flight 2 is

p2j + V2(s, n1, n2 − 1) and flight 1 is V1(s, n1, n2 − 1).

The expected revenue for flight 1 can be expressed as follows:

V1(t, n1, n2) =

∫ c1t,n1,n2

t

[(V1(s, n1 − 1, n2) + p11)λ11,1 + V1(s, n1, n2 − 1)λ21,1]×

e−(λ
1
1,1+λ

2
1,1)(s−t)ds+∫ c2t,n1,n2

c1t,n1,n2

[(V1(s, n1 − 1, n2) + p12)λ12,1 + V1(s, n1, n2 − 1)λ22,1]×

e−(λ
1
2,1+λ

2
2,1)(s−c

1
t,n1,n2

)−(λ1
1,1+λ

2
1,1)(c

1
t,n1,n2

−t)ds+∫ T

c2t,n1,n2

[(V1(s, n1 − 1, n2) + p12)λ12,2 + V1(s, n1, n2 − 1)λ22,2]×

e−(λ
1
2,2+λ

2
2,2)(s−c

2
t,n1,n2

)−(λ1
2,1+λ

2
2,1)(c

2
t,n1,n2

−c1t,n1,n2
)×

e−(λ
1
1,1+λ

2
1,1)(c

1
t,n1,n2

−t)ds

(15)
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The expected revenue for flight 2 is:

V2(t, n1, n2) =

∫ c1t,n1,n2

t

[(V2(s, n1, n2 − 1) + p21)λ21,1 + V2(s, n1 − 1, n2)λ11,1]×

e−(λ
1
1,1+λ

2
1,1)(s−t)ds+∫ c2t,n1,n2

c1t,n1,n2

[(V2(s, n1, n2 − 1) + p21)λ22,1 + V2(s, n1 − 1, n2)λ12,1]×

e−(λ
1
2,1+λ

2
2,1)(s−c

1
t,n1,n2

)−(λ1
1,1+λ

2
1,1)(c

1
t,n1,n2

−t)ds+∫ T

c2t,n1,n2

[(V2(s, n1, n2 − 1) + p22)λ22,2 + V2(s, n1 − 1, n2)λ12,2]×

e−(λ
1
2,2+λ

2
2,2)(s−c

2
t,n1,n2

)−(λ1
2,1+λ

2
2,1)(c

2
t,n1,n2

−c1t,n1,n2
)×

e−(λ
1
1,1+λ

2
1,1)(c

1
t,n1,n2

−t)ds

(16)

Above definitions may need some explanation. If needed, first see Appendix A.2

to remember how all probabilities are established. Now, observe the first integral

of the expected revenue for flight 1. It consists of the expected revenue values

under corresponding state multiplied by all possible probabilities of what might

happen during the interval [t, c1t,n1,n2
]. For example: the term (V1(s, n1 − 1, n2) +

p11) is the expected value at time s if flight 1 sold a seat while flight 2 has not

during the interval [t, c1t,n1,n2
]. This value is multiplied by the probability of this

actually happening, which is λ11,1e
−(λ1

1,1+λ
2
1,1)(s−t). On the other hand, the term

V1(s, n1, n2 − 1) represents the expected value at time s when flight 2 sold a seat

while flight 1 has not during the same interval. This value is also multiplied by

the probability of this happening, which is λ21,1e
−(λ1

1,1+λ
2
1,1)(s−t). Consequently, the

integral is taken of the average expected value at time s over the period [t, c1t,n1,n2
].

The same procedure is executed with the other two integrals corresponding to the

intervals [c1t,n1,n2
, c2t,n1,n2

] and [c2t,n1,n2
, T ]. Because of the game’s symmetry, the

same reasoning applies to the expected revenue of flight 2. Now that we have

expressed the expected revenue functions for both flights, we seek to maximize

their values by determining equilibrium policies.
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3.2 Equilibrium

Earlier we have shown that the switching moments c1t,n1,n2
and c2t,n1,n2

respectively

act as the policies set by the two airlines. Expected revenue of an airline k (k = 1, 2)

is affected by its own policy as well as the competitor’s policy. In game theory, an

equilibrium policy consists of a pair of those policies which are optimal policies for

each other under the given policy of its competitor. An optimal policy is a policy

that generates maximal expected revenue.

Assumption 3. (Concavity and differentiability) The expected revenue func-

tion Vk(t, n1, n2) is a concave function and continuously differentiable with respect

to t.

The optimal policy for airline 1, given the competitor’s policy is c2t,n1,n2
, is found

by taking the partial derivative of V1(t, n1, n2) in its own policy c1t,n1,n2
and setting

it to 0. Therefore, given the competitor’s policy is c2t,n1,n2
, the partial derivative

of V1(t, n1, n2) in c1t,n1,n2
is

∂V1(t, n1, n2)

∂c1t,n1,n2

=[V1(c1t,n1,n2
, n1 − 1, n2)(λ11,1 − λ12,1) + p11λ

1
1,1 − p12λ12,1+

V1(c1t,n1,n2
, n1, n2 − 1)(λ21,1 − λ22,1)]× e−(λ

1
1,1+λ

2
1,1)(c

1
t,n1,n2

−t)+

(λ12,1 + λ22,1 − λ11,1 − λ21,1)

∫ c2t,n1,n2

c1t,n1,n2

[(V1(s, n1 − 1, n2) + p12)λ12,1+

V1(s, n1, n2 − 1)λ22,1]× e−(λ
1
2,1+λ

2
2,1)(s−c

1
t,n1,n2

)−(λ1
1,1+λ

2
1,1)(c

1
t,n1,n2

−t)ds+

(λ12,1 + λ22,1 − λ11,1 − λ21,1)e−(λ
1
2,1+λ

2
2,1)(c

2
t,n1,n2

−c1t,n1,n2
)×

e−(λ
1
1,1+λ

2
1,1)(c

1
t,n1,n2

−t) ×
∫ T

c2t,n1,n2

[(V1(s, n1 − 1, n2) + p12)λ12,2+

V1(s, n1, n2 − 1)λ22,2]e−(λ
1
2,2+λ

2
2,2)(s−c

2
t,n1,n2

)ds

(17)

Similarly, given the competitor’s policy is c1t,n1,n2
, the partial derivative of V2(t, n1, n2)

in c2t,n1,n2
is
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∂V2(t, n1, n2)

∂c2t,n1,n2

=[V2(c2t,n1,n2
, n1, n2 − 1)(λ22,1 − λ22,2) + p21λ

2
2,1 − p22λ22,2+

V2(c2t,n1,n2
, n1 − 1, n2)(λ12,1 − λ12,2)]× e−(λ

1
2,1+λ

2
2,1)(c

2
t,n1,n2

−c1t,n1,n2
)×

e−(λ
1
1,1+λ

2
1,1)(c

1
t,n1,n2

−t) + (λ12,2 + λ22,2 − λ12,1 − λ22,1)×∫ T

c2t,n1,n2

[(V2(s, n1, n2 − 1) + p22)λ22,2 + V2(s, n1 − 1, n2)λ12,2]×

e−(λ
1
2,2+λ

2
2,2)(s−c

2
t,n1,n2

)−(λ1
2,1+λ

2
2,1)(c

2
t,n1,n2

−c1t,n1,n2
)−(λ1

1,1+λ
2
1,1)(c

1
t,n1,n2

−t)ds

(18)

(See Appendix B.1 on how (17) and (18) are established)

By the symmetry of the game the equilibrium policy (c1t,n1,n2

∗
, c2t,n1,n2

∗
) is given

by the pair of policies that satisfies the following two equations:

∂V1(t, n1, n2)

∂c1t,n1,n2

= 0 (19)

and

∂V2(t, n1, n2)

∂c2t,n1,n2

= 0 (20)

Hence, the solution of (19) and (20) is an extreme value point. By assumption 3.

we know that Vk(t, n1, n2) is concave, which implies that second partial derivatives
∂2Vk(t,n1,n2)

∂2ckt,n1,n2

< 0 and thus the solution is a maximum. Notice that basic calculus

tells us that endpoints of a closed interval may behave as extreme value points as

well. Therefore expected revenue will take on its maximum value if equilibrium

policy (c1t,n1,n2

∗
, c2t,n1,n2

∗
) is the extreme value point which satisfies (19) and (20) or

is at the endpoints. The following propositions concern a policy (c1t,n1,n2
, c2t,n1,n2

).

Proposition 3.2.1. Decision time t does not affect the position of equilibrium

policy, that is, for t, t′ ∈ [0, T ], if (c1t,n1,n2

∗
, c1t,n1,n2

∗
) is the equilibrium policy at

time t, then at time t′ (c1t,n1,n2

∗
, c1t,n1,n2

∗
) is still the equilibrium policy that makes

both airlines gather maximal expected revenue in the remaining time interval [t′, T ].
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Proof. Notice that in the partial derivative equations (17) and (18) at time t the

only term affected by t is

e−(λ
1
1,1+λ

2
1,1)(c

1
t,n1,n2

−t)

and it always holds that ef(t)> 0. Therefore, time t will not change the sign of the

value of the partial derivative at time t. If (c1t,n1,n2

∗
, c2t,n1,n2

∗
) is the equilibrium

policy, then optimality conditions (19) and (20) imply that the other terms are

equal to 0. At time t
′

we still have that these terms are 0 as ef(t
′
)> 0, therefore

(c1t,n1,n2

∗
, c2t,n1,n2

∗
) still satisfies (19) and (20) and is still the equilibrium policy.

Proposition 3.2.2. For a given policy (c1t,n1,n2
, c2t,n1,n2

), expected revenue is de-

creasing in t.

Proof. Assume that the optimal price of two flights are p1i and p2j respectively.

Then by Proposition 3.2.1, for a sufficiently small positive δ, the optimal prices

are still p1i and p2j at time t− δ. For the time interval [t− δ, t] we can distinguish

two cases: either a customer arrives and buys a ticket or no customer arrives at

all. The expected revenue function of flight 1 at time t − δ can be formulated as

follows:

V1(t− δ, n1, n2) =

∫ t

t−δ
[(V1(s, n1 − 1, n2) + p1i )λ

1
i,j + V1(s, n1, n2 − 1)λ2i,j ]×

e−(λ
1
i,j+λ

2
i,j)(s−t+δ)ds+ V1(t, n1, n2)e−(λ

1
i,j+λ

2
i,j)δ

Notice that the above expected revenue function at time t−δ consists of two terms,

one with and one without an integral. The integral represents expected revenue

if one seat is sold at time s by either one of the airlines during [t − δ, t], while

the second term represents the expected revenue if both airlines have not sold a

seat during [t − δ, t]. This means the expected revenue at time t − δ is equal to

that at time t and it is multiplied by the probability of both airlines not selling

during [t− δ, t]. It is unknown where [t− δ, t] is located in [0, T ] compared to the

switching points, therefore the fare classes of the price and demand intensities are

not defined. Now, if we let δ → 0, then we get by approximation:

V1(t− δ, n1, n2) ≈ [(V1(t, n1 − 1, n2) + p1i )λ
1
i,j + V1(t, n1, n2 − 1)λ2i,j ]×

e−(λ
1
i,j+λ

2
i,j)δ × δ + V1(t, n1, n2)e−(λ

1
i,j+λ

2
i,j)δ

≥ V1(t, n1, n2)

(21)
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(See Appendix B.2 on how to approximate integral term in order to derive (21))

Symmetrically, we get

V2(t− δ, n1, n2) =

∫ t

t−δ
[(V2(s, n1, n2 − 1) + p2i )λ

2
i,j + V2(s, n1 − 1, n2)λ1i,j ]×

e−(λ
1
i,j+λ

2
i,j)(s−t+δ)ds + V2(t, n1, n2)e−(λ

1
i,j+λ

2
i,j)δ

≈ [(V2(t, n1, n2 − 1) + p2i )λ
2
i,j + V2(t, n1 − 1, n2)λ1i,j ]×

e−(λ
1
i,j+λ

2
i,j)δ × δ + V2(t, n1, n2)e−(λ

1
i,j+λ

2
i,j)δ

≥ V2(t, n1, n2)

(22)

3.3 Solution

In order to solve the model, some boundary conditions have to be met. This model

has the following:

(1) There is no salvage value at time t = T . In mathematical terms,

Vk(T, n1, n2) = 0 (k = 1, 2) (23)

(2) Flights that have reached capacity do not gather additional revenue, thus

V1(t, 0, n2) = 0 (24)

V2(t, n1, 0) = 0 (25)

(3) If one of the flights has reached capacity, then the expected revenue of the other

flight equals that of a flight acting in a monopolistic environment. Thus, we have

V1(t, n1, 0) = V monopolistic1 (t, n1) (26)

V2(t, 0, n2) = V monopolistic2 (t, n2) (27)
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Monopoly case

The above stated V monopolistick (t, nk) represents the value under the state (t, nk) in

a monopoly market. By equations (26) and (27) we mean that when a competitor

airline has no seats left to sell, the model should be solved in a monopoly situation.

Notice that in this case demand no longer depends on the competitor’s price.

Furthermore, if we follow the framework of this model, it makes no sense that in

monopoly the airline would ever price at high fare (see Assumption 1.), because

an arriving customer is guaranteed to make a purchase at the remaining airline

and therefore there exist no switching point ckt,nk . The expected revenue of the

airline in this case would be the expected number of sold seats × low fare. Thus,

in monopoly an airline will adopt a fixed price policy instead of a dynamic price

policy. Remember that in section 2 we assumed that an arriving customer does not

always buy depending on its willingness-to-pay and although this is more realistic,

the solution of that model would not be directly applicable here. Therefore, see

Appendix C on how to determine V monopolistick (t, nk) within the framework of this

section. We derived the following,

V monopolistick (t, nk) = min
(
λk2(T − t), nk

)
× pk2 (28)

Recursive procedure

The expected revenue functions are recursive formulas and therefore the model can

be solved by undergoing a recursive process. We use a bottom-up approach, that

is building up a complex system by combining individual problems:

• Let n1 = 1, n2 = 1. Consider inventory levels (1, 0) and (0, 1); using boundary

condition (3) and a solution derived from the monopoly market to determine

the values of V1(t, 1, 0) = V monopolistic1 (t, 1) and V2(t, 0, 1) = V monopolistic2 (t, 1).

• Next step is using equations (15) and (16), according to the inventory level

(1, 1), in order to determine the values of V1(t, 1, 1) and V2(t, 1, 1). Using

boundary condition (2), within (15) and (16), we get that V1(s, 0, 1) =

V2(s, 1, 0) = 0 and the other terms needed are known already. Therefore,

V1(t, 1, 1) and V2(t, 1, 1) can be solved.

• Now check that V1(t, 2, 1) and V2(t, 1, 2) can be solved using equations (15)

and (16) again, because all terms are already evaluated. Also from boundary
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condition (3) we know that V1(t, n1, 0) = V monopolistic1 (t, n1) and V2(t, 0, n2) =

V monopolistic2 (t, n2).

• Therefore, for a given policy (c1t,n1,n2
, c2t,n1,n2

), proceed this method to derive

all values of V1(t, i, j) and V2(t, i, j) for all i ≤ N1 and j ≤ N2.
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4 Conclusion

In this thesis, we have taken a closer look at dynamic pricing in the airline industry.

The goal of this thesis was to introduce the reader to the mathematical background

of dynamic pricing problems. By analyzing the existing literature and concluding

there was a clear line between articles treating monopolistic models and those which

treat competition, there was an incentive to show both situations. Therefore, we

followed two specific articles, both discussing problems from the airline point of

view with an objective of maximizing expected revenue. In Li & Peng (2007) [11]

we discovered a few errors in determining the partial derivatives (17) and (18),

therefore we derive different optimal policies, although the principles remain the

same.

In the first model we assumed the airline acts in a market with imperfect compe-

tition and so is able to influence demand by varying its price. The set of allowable

prices chosen by the airline has continuous values, but in reality airlines use dis-

crete prices. Next to the assumption that potential customers arrive according to

a Poisson process with an intensity λ, we also assumed a potential customer is not

willing to pay for any price p set by the airline and let this price p be exponentially

distributed.

Both concavity and differentiability of the maximum expected revenue function

were necessary in order to allow a maximum. The optimization problem was de-

fined through a differential equation and although it is particularly hard to solve

these kind of differential equations without dynamic programming, we showed a

solution through Lemma 2.2.1 that satisfies the optimality condition. Therefore,

we are able to find the optimal price for any state (t, n).

Subsequently, we have extended the monopoly model to a competitive case. By

adding an airline into the field and contracting the set of allowable prices down to

two, namely, high- and low fare, we let arriving customers directly decide which

airline offered the lowest fare in order to book a seat on their flight. We assumed

that if no seats were to be sold, the optimal price decreased over time. More specif-

ically, we introduced a switching point ckt,n1,n2
after which airline k switched from

high to low fare. Unless a new customer arrives and buys a ticket at any airline,

both airlines will stick to this policy. However, if a customer does buy a ticket, the
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game evolves to the next turn. This means both airlines renew their prices, but

will always be p11 and p21 respectively. Hence, to future research, we consider the

game where after any turn the set of allowable prices is able to change. Moreover,

an increase of the set of allowable prices would be a favorable addition to the model

as well.

Furthermore, it was inevitable to make the strong, but crucial assumption of con-

cavity and differentiability once again. Finally, when we follow the recursive pro-

cedure, it is required to determine an explicit value of the monopolistic case. We

see that within the framework of section 3, in monopoly the airline changes from

dynamic to fixed pricing. The expected revenue is simply the expected number of

arrivals multiplied by the low fare.

For further research, it would be interesting to investigate a model with n air-

lines, all of whom have the choice between different policies, including fixed price

policies. Furthermore, we did not have enough incentives to show a numerical ex-

ample. Although Li & Peng (2007) [11] have done this, the values of the intensity

parameters and prices would be randomly chosen such that results might differ too

much to conclude interesting statements. However, the availability of a realistic

data set would be an incentive to do a numerical experiment.
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A Distributions

A.1 Proof of Lemma 3.1.1.

Proof. Let Nt denote the number of arrivals during a period of time t and Xt the

inter-arrival time assuming the last arrival was at time t. We know by definition

that:

(Xt>h) ≡ (Nt = Nt+h)

Simply put, having no arrivals during the interval [t, t+h] is equivalent with saying

the number of arrivals at time t+ h is still equal to that at time t.

By definition,

P (Xt ≤ h) = 1− P (Xt > h)

thus, using the equivalence relation we get:

P (Xt ≤ h) = 1− P (Nt+h −Nt = 0)

Obviously,

P (Nt+h −Nt = 0) = P (Nh = 0)

As we have a Poisson distribution with parameter λ, which denotes the average

number of arrivals per unit of time, and h is a number of time units, the probability

mass function can be expressed as:

P (Nt+h −Nt = 0) = (λh)0

0! e−λh = e−λh

If we substitute this into the cumulative distribution function (cdf), we have:

P (Xt ≤ h) = 1− e−λh

Thus, we derived the cdf of an exponential distribution with parameter λ and by

differentiation with respect to h, we derive its probability density function.
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A.2 Exponential distribution: pdf with multiple parameters

A continuous random variable X is said to have an exponential distribution with

parameter λ if it has a probability density function fX(t|λ) = λe−λt for t> 0. Let

X be the next arrival at time s in interval [t, c], which is exponentially distributed

with parameter λ1. Then fX(s− t|λ1) = λ1e
−λ1(s−t) for t ≤ s ≤ c. Now, for the

density function fc(s) of the next arrival lying in [c, T ], let Z be no arrival in interval

[t, c] and Y the next arrival at time s in interval [c, T ], which is exponentially

distributed with parameter λ2. The probability of having no arrival in [t, c] is

fZ(c − t|λ1) = e−λ1(c−t) and fY (s − c|λ2) = λ2e
−λ2(s−c) for c ≤ s ≤ T . Thus,

finally we get fc(s) = fZ(c− t|λ1)fY (s− c|λ2) = λ2e
−λ2(s−c)−λ1(c−t) for c ≤ s ≤

T .

A.3 Exponential distribution: pdf fk
c1t,n1,n2

,c2t,n1,n2

(s)

Notice that fk
c1t,n1,n2

,c2t,n1,n2

(s) is established by using the general probability den-

sity function of an exponential distribution which is explained in ’1. Probability

density function of exponential distribution’. Now, the switching points ckt,n1,n2

(k = 1, 2) have partitioned the interval [t, T ] such that fk
c1t,n1,n2

,c2t,n1,n2

(s) consists

of three different density functions. Also the inter-arrival time is exponentially

distributed with correlated demand intensity λki,j , with (i = 1, 2)(j = 1, 2). The

following reasoning applies to both flights k, because we have a symmetric game.

Suppose k = 1 and s ∈ [t, c1t,n1,n2
] such that demand is λ11,1. Let X be the next ar-

rival for airline 1 in interval [t, c1t,n1,n2
], then fX(s − t|λ11,1) = λ11,1e

−λ1
1,1(s−t).

Let Y be no arrival at airline 2 in interval [t, c1t,n1,n2
], then fY (s − t|λ21,1) =

e−λ
2
1,1(s−t). Therefore, we derive the first formula of f1

c1t,n1,n2
,c2t,n1,n2

(s) which is

fX(s− t|λ11,1)fY (s− t|λ21,1) = λ11,1e
−(λ1

1,1+λ
2
1,1)(s−t) for t ≤ s ≤ c1t,n1,n2

.

Similarly, let s ∈ [c1t,n1,n2
, c2t,n1,n2

] such that demand is λ12,1. Let X be the next

arrival for airline 1 in interval [c1t,n1,n2
, c2t,n1,n2

], then fX(s− c1t,n1,n2
|λ12,1) =

λ12,1e
−λ1

2,1(s−c
1
t,n1,n2

). Now consider the joint event of no arrival at airline 2 in

the intervals [t, c1t,n1,n2
] and [c1t,n1,n2

, c2t,n1,n2
], and no arrival at airline 1 in interval

[t, c1t,n1,n2
], then the joint probability of this event is given by e−λ

2
2,1(s−c

1
t,n1,n2

)−(λ1
1,1+λ

2
1,1)(c

1
t,n1,n2

−t).

Therefore, we derive the second formula: λ12,1e
−(λ1

2,1+λ
2
2,1)(s−c

1
t,n1,n2

)−(λ1
1,1+λ

2
1,1)(c

1
t,n1,n2

−t)

for c1t,n1,n2
≤ s ≤ c2t,n1,n2

.
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Trivially, for s ∈ [c2t,n1,n2
, T ] demand is λ12,2. The probability of the next arrival for

airline 1 to happen first in interval [c2t,n1,n2
, T ] is given by λ12,2e

−λ1
2,2(s−c

2
t,n1,n2

) and

will be multiplied by the joint probability of no arrival for airline 2 to happen in

the third interval [c2t,n1,n2
, T ] and no arrivals for both airlines in the first two inter-

vals, [t, c1t,n1,n2
] and [c1t,n1,n2

, c2t,n1,n2
], in order to derive the third formula, which

is λ12,2e
−(λ1

2,2+λ
2
2,2)(s−c

2
t,n1,n2

)−(λ1
2,1+λ

2
2,1)(c

2
t,n1,n2

−c1t,n1,n2
)−(λ1

1,1+λ
2
1,1)(c

1
t,n1,n2

−t).
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B Calculus related issues

B.1 Partial derivatives

Using the first fundamental theorem of calculus:

Let f be a continuous function on a closed interval [a, b] and F (s) defined by

F (x) =
∫ x
a
f(s)ds , for all x ∈ [a, b].

Then F is uniformly continuous on [a, b], differentiable on the open interval (a, b)

and F
′
(x) = ∂

∂x

∫ x
a
f(s)ds = f(x) for all x ∈ [a, b].

Similar for F (x) =
∫ a
x
f(s)ds, we get F

′
(x) = − ∂

∂x

∫ x
a
f(s)ds = −f(x) for all

x ∈ [a, b].

Also, by using the product rule, we have ∂
∂x

∫ x
a
f(s)g(x)ds =

∫ x
a
f(s)g

′
(x)ds +

f(x)g(x) and ∂
∂x

∫ a
x
f(s)g(x)ds =

∫ a
x
f(s)g

′
(x)ds − f(x)g(x).

Therefore, for V1(t, n), we can evaluate the first two integrals as follows:

∂
∂c1t,n1,n2

∫ c1t,n1,n2
t [(V1(s, n1 − 1, n2) + p11)λ11,1 + V1(s, n1, n2 − 1)λ21,1]×

e−(λ
1
1,1+λ

2
1,1)(s−t)ds = [(V1(c1t,n1,n2

, n1−1, n2)+p11)λ11,1+V1(c1t,n1,n2
, n1, n2−1)λ21,1]×

e−(λ
1
1,1+λ

2
1,1)(c

1
t,n1,n2

−t)

and by using the product rule

∂
∂c1n1,n2

∫ c2t,n1,n2

c1t,n1,n2

[(V1(s, n1 − 1, n2) + p12)λ12,1 + V1(s, n1, n2 − 1)λ22,1]×

e−(λ
1
2,1+λ

2
2,1)(s−c

1
t,n1,n2

)−(λ1
1,1+λ

2
1,1)(c

1
t,n1,n2

−t)ds=

(λ12,1+λ22,1−λ11,1−λ21,1)
∫ c2t,n1,n2

c1t,n1,n2

[(V1(s, n1−1, n2)+p12)λ12,1+V1(s, n1, n2−1)λ22,1]×

e−(λ
1
2,1+λ

2
2,1)(s−c

1
t,n1,n2

)−(λ1
1,1+λ

2
1,1)(c

1
t,n1,n2

−t)ds -

[(V1(c1t,n1,n2
, n1 − 1, n2) + p12)λ12,1 + V1(c1t,n1,n2

, n1, n2 − 1)λ22,1]×
e−(λ

1
1,1+λ

2
1,1)(c

1
t,n1,n2

−t) .

In case of the third integral, notice that it is of the form
∫ a
b
f(s)g(x)ds with g(x) rep-

resenting the only term which contains c1t,n1,n2
. Thus we have ∂

∂x [g(x)×
∫ a
b
f(s)ds]
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where
∫ a
b
f(s)ds is a constant. If we evaluate, we get the following:

(λ12,1 + λ22,1 − λ11,1 − λ21,1)e−(λ
1
2,1+λ

2
2,1)(c

2
t,n1,n2

−c1t,n1,n2
)−(λ1

1,1+λ
2
1,1)(c

1
t,n1,n2

−t) ×∫ T
c2t,n1,n2

[(V1(s, n1 − 1, n2) + p12)λ12,2 + V1(s, n1, n2 − 1)λ22,2]e−(λ
1
2,2+λ

2
2,2)(s−c

2
t,n1,n2

)ds

In a similar manner the partial derivative of V2(t, n1, n2) with respect to c2t,n1,n2
is

evaluated:

Obviously, the partial derivative of the first integral is equal to 0. In case of

the second integral we get,

∂
∂c2t,n1,n2

∫ c2t,n1,n2

c1t,n1,n2

[(V2(s, n1, n2 − 1) + p22)λ22,1 + V2(s, n1 − 1, n2)λ12,1]×

e−(λ
1
2,1+λ

2
2,1)(s−c

1
t,n1,n2

)−(λ1
1,1+λ

2
1,1)(c

1
t,n1,n2

−t)ds =

[(V2(c2t,n1,n2
, n1, n2 − 1) + p22)λ22,1 + V2(c2t,n1,n2

, n1 − 1, n2)λ12,1]×
e−(λ

1
2,1+λ

2
2,1)(c

2
t,n1,n2

−c1t,n1,n2
)−(λ1

1,1+λ
2
1,1)(c

1
t,n1,n2

−t)

In case of the third integral, by using the product rule, we have

(λ12,2+λ22,2−λ12,1−λ22,1)
∫ T
c2t,n1,n2

[(V2(s, n1, n2−1)+p22)λ22,2+V2(s, n1−1, n2)λ12,2]×

e−(λ
1
2,2+λ

2
2,2)(s−c

2
t,n1,n2

)−(λ1
2,1+λ

2
2,1)(c

2
t,n1,n2

−c1t,n1,n2
)−(λ1

1,1+λ
2
1,1)(c

1
t,n1,n2

−t)ds -

[(V2(c2t,n1,n2
, n1, n2 − 1) + p22)λ22,2 + V2(c2t,n1,n2

, n1 − 1, n2)λ12,2]×
e−(λ

1
2,1+λ

2
2,1)(c

2
t,n1,n2

−c1t,n1,n2
)−(λ1

1,1+λ
2
1,1)(c

1
t,n1,n2

−t).

B.2 Approximation of integral in Proposition 3.2.2

By letting δ → 0, we can state the behaviour of expected revenue in relation to

infinitely small changes in t. The integral term of the expected revenue function

of flight 1 at time t− δ is of the form
∫ t
t−δ f(s)ds. This represents the area under

the curve f(s) from s = t − δ to s = t. If we perceive the integral as a limit of a

Riemann sum, then because δ is infinitesimal we can take the height to be constant

equal to f(t) with the width equal to δ such that the area is f(t)δ. In mathematical

terms, that is

∫ t
t−δ f(s)ds = F (s)|tt−δ = F (t)− F (t− δ) = F ′(t)δ = f(t)δ,
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where F is the antiderivative of f .

C Monopoly model of section 3

Consider that at time t airline 2 sold all its seats. Then according to (26), the

objective of airline 1 is to maximize V monopolistic1 (t, n1) by selling tickets within

the time horizon [t, T ]. We assume airline will always choose to price at low fare

p12 as it wants to maximize its expected revenue. Therefore, conclude that we have

switched to a fixed pricing policy if we are in a monopoly situation. Obviously,

demand no longer depends on the price of airline 2, so we assume λ12 denotes the

demand intensity.

Therefore, from time t, the expected revenue of airline 1 is the expected num-

ber of sold seats × low fare. As the average number of arrivals (sold seats) per

time-unit is given by the demand intensity λ12, the expected number of sold seats

in the remaining time horizon [t, T ] is then given by λ12(T − t). So, the expected

revenue is given by

V monopolistic1 (t, n1) = min
(
λ12(T − t), n1

)
× p12

Similar, the expected revenue of airline 2 when it is in monopoly, is given by

V monopolistic2 (t, n2) = min
(
λ22(T − t), n2

)
× p22

Note that if t is close enough to 0, the expected number of sold seats might be

higher than the number of available seats, depending on the value of the demand

intensity. Thus, we take the minimum value of the two and multiply by low fare

in order to calculate the expected revenue.


	Introduction
	The monopoly system
	The model
	Solution

	Dynamic pricing under competition
	Competitive model
	Equilibrium
	Solution

	Conclusion
	References
	Distributions
	Proof of Lemma 3.1.1.
	Exponential distribution: pdf with multiple parameters
	Exponential distribution: pdf fkc1t,n1,n2,c2t,n1,n2(s)

	Calculus related issues
	Partial derivatives
	Approximation of integral in Proposition 3.2.2

	Monopoly model of section 3

