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Abstract 
Recreational snow avalanche accidents claim about 100 lives yearly in the Alps. Since those 

avalanches are often triggered by the recreationist themselves, growing research attention is given to 

the routes travelled by backcountry recreationists. This thesis aims analyze the relation between 

avalanche terrain and planned ski tours. This is done using a dataset of over 50.000 planned ski tours 

and 800 GPS tracks from Switzerland, combined with new data on avalanche terrain in Switzerland. 

This data allows for new ways to classify and compare routes based on the terrain they intersect.  

 

First, the mean and 95th percentile values for terrain hazard in routes were calculated. Then, the routes 

were clustered using k-means based on the avalanche terrain they intersect. They were also clustered 

spatially using DBScan. Then, the relation between avalanche terrain and route location was 

investigated. Lastly, the GPS tracks and planned routes were compared to place the planned routes 

into a broader context.  

 

The new terrain data proved useful to differentiate between routes based on avalanche terrain. Five 

avalanche terrain clusters were found, with 17% of routes being part of a steep terrain cluster. 34% of 

routes were assigned to 655 spatial clusters. The spatial clusters were generally quite homogeneous in 

terms of avalanche terrain. Heterogeneity within a cluster was often caused by routes following 

different planning strategies. In some cases, official ski touring routes from the Swiss Alpine Club 

were more hazardous in terms of terrain than routes drawn by individuals. The GPS tracks intersected 

less hazardous terrain in the entire dataset, but within individual spatial clusters they often intersected 

more hazardous terrain. In the future, the results from this could be used to suggest safe routes to 

recreationists between given start and end points. 
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1. Introduction 

1.1. Avalanche hazard and recreational behavior 

Avalanches are one of the main hazards faced by backcountry winter recreationists in the Alps and 

mountainous regions elsewhere. Around 100 deaths are recorded in the Alps every year as a consequence 

of avalanches (Techel et al., 2016). Most of those are recreationists travelling in the mountains, for 

example backcountry skiers and mountaineers. Because of this, much research has been devoted to 

improving the knowledge needed to avoid recreational avalanche accidents. An important focus of this 

research is on the geophysical properties of avalanches, such as the terrain types where they are likely 

to occur, the snowpack properties, and the influence of weather (Zweifel & Haegeli, 2014). This has led 

to a body of knowledge on the properties of recreational avalanche accidents. For example, it is known 

that in recreational avalanche accidents, the avalanche is most often triggered in slopes between 35 and 

40 degrees, with a north-facing aspect, and that fresh snow and heavy wind are factors that make 

avalanches more likely (Tremper, 2008). This knowledge has helped improve avalanche education 

courses, which now aim to teach backcountry recreationists to detect and avoid areas and situations 

where triggering and getting caught in an avalanche is more likely. However, despite this knowledge, 

still many people choose to venture in this terrain, and take high risks (Hendrikx, 2018). Analysis of 

past avalanche accidents shows that in many cases the people who got caught or triggered the avalanche 

were educated, and knew the hazard, yet still chose to ski a hazardous slope (McCammon, 2002).  

 

This gap between knowledge of risks among recreationists, and acting based on this knowledge, has led 

to another research theme in recreational avalanche prevention, the human factor (Hallandvik, Andresen, 

& Aadland, 2017). Instead of focusing on geophysical properties of avalanches, the human factor 

focuses its research on the role of humans in triggering recreational avalanches. The reason for this is 

that in the vast majority of recreational avalanche accidents, the avalanche was triggered by the skier 

themselves, or somebody from their party (Techel & Zweifel, 2013). This makes recreational avalanche 

accidents different from many other natural hazards: because humans cause their own avalanches, 

humans are also able to avoid causing those avalanches. Still, as noted before, in many cases 

recreationists still fail to avoid causing avalanches and getting caught in them. 

 

Recently, GPS devices have become more commonly used by recreationists to track their routes. This 

emergence of high-resolution route data makes it possible to analyse routes commonly travelled in the 

backcountry more accurately than before. When this route data is combined with data on avalanche 

terrain, it can be used to assess how hazardous a route is. There are two reasons why this is useful. First, 

it helps assess the risks people take related to avalanche terrain in their ski tours, which adds to insight 

into the human factor of avalanches. The importance of this knowledge is exemplified by various recent 

publications that focus on studying the routes people travel in the backcountry (Haegeli & Atkins, 2016; 

Hendrikx & Johnson, 2016). 

 

Secondly, it is useful to evaluate the hazards in common ski touring routes in a fine granularity. In most 

descriptions of ski touring routes found in route books or online, a broad description of the route and 

possible hazards is provided1. However, when combining crowd-sourced route data with avalanche 

terrain data, it becomes possible to assess this hazard on a more detailed level. Also, it becomes possible 

to identify higher and lower hazard variants within a general route corridor, and to compare the hazard 

between different routes.  

 

Another recent development has been on spatial modelling of potential avalanche terrain. As noted 

before, terrain factors (e.g. slope) play a crucial role in the probability of an avalanche being triggered, 

all other factors being equal. Therefore, using terrain data to model and classify avalanche terrain is 

                                                      
1 For an example see: 

https://www.gipfelbuch.ch/tourenfuehrer/routen/id/12310/Skitour_Snowboardtour/Chueenihorn 
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another focus in the avalanche research community. Many studies use a simple discrete classification 

such as between simple, challenging, or complex terrain (Campbell & Gould, 2013). Also, many studies 

up to this point have focused on the points where an avalanche can be triggered. However, a recent 

model by Harvey et al. (2018) uses both potential triggering points and the areas an avalanche can run 

out into. Also, the model takes into account to what extent serious injury is to be expected as a 

consequence of an avalanche. Therefore, it enables a more detailed modelling of the hazard in avalanche 

terrain. 

 

In this thesis, the goal is to add to the body of knowledge of backcountry route trajectories in relation to 

potential avalanche terrain. For this, the output from the model from Harvey et al. (2018) is used. This 

dataset is combined with a dataset of 53553 planned ski tours, crowdsourced from the route-planning 

platform Whiterisk.ch. The main novelty is that this thesis is the first to use this newly modelled 

avalanche terrain data to analyse the hazard in routes. This is important as it allows for a classification 

of routes based on their hazard attributes. This has not been attempted before at such a high level of 

detail, since the avalanche terrain data used in this thesis is new. A secondary novelty is the fact that this 

thesis used planned route data. This is different from other studies which mostly use GPS tracks of 

actually travelled tours. The interesting thing about planned route data is that it gives an insight into the 

planning phase of backcountry ski touring, which is one of the distinct phases in which recreationists 

should try to avoid risky terrain. The insights gained from this work could therefore describe common 

mistakes made in route planning, which could help to prevent skiers planning hazardous routes.  

 

1.2. Research objectives 

1.2.1 Research questions 

This research focuses on avalanche terrain and the relation this has to planned backcountry recreation 

routes. As such, the main research question is: 

 

"What is the relation between planned backcountry routes and the surrounding avalanche terrain?" 

 

The expectation is that people use the Whiterisk platform to plan routes that avoid avalanche terrain as 

much as possible. However, to a degree the type of avalanche terrain faced by routes is can’t be avoided 

with careful planning, as there is no way around it with the given start and end points of a route. 

Therefore, the relation between route planning and avalanche terrain is complex and varies in different 

locations. The sub-questions go deeper into the specifics of this relationship. The first sub-question is 

related to the different ways in which avalanche terrain can be treated as a route attribute. This question 

is: 

 

1. "Which different methods can be used to relate avalanche terrain to planned routes, and what are their 

(dis)advantages?" 

 

The answer to this question will be a description of the methods used to establish avalanche terrain as a 

route attribute and its visualization in maps. Also, the advantages and disadvantages of the methods will 

be discussed.  The second sub-question attempts to classify routes into similar groups based partly on 

the output from sub question 1: 

 

2. "What clusters exist in the route data based on their avalanche terrain characteristics?" 

 

Such clusters are interesting to find because they can tell us something about what types of routes are 

being planned. An example of such a category could be: a route that is in general safe, but has one very 

dangerous section. This is a more meaningful description of a route than just the route length or the 

mean slope encountered within a route. The expected outcome of this question is a list of the route 

categories and a description of their characteristics. These categories will be called avalanche terrain 
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clusters from this point onwards. Given the large number of routes, it is impossible to discern patterns 

in the route data by eye, therefore a clustering algorithm will be used to categorize the routes. Besides 

patterns in the avalanche terrain data in routes, there are also spatial patterns in the routes. The next 

question is related to this: 

 

3. "What spatial clusters exist in the route data?" 

 

For this, a clustering algorithm will be used. The aim is to filter out route corridors. One glance at the 

route data shows that there are specific areas of high density where many routes are very similar. This 

is mostly related to typical start and end points, e.g. towns and mountain peaks. Also, many trajectories 

follow known routes, for example as defined by the Schweizer Alpen-Club (SAC). Clustering routes 

spatially helps when comparing them, since it enables comparing routes within same spatial cluster 

directly to each other, which helps highlight route-planning decisions. Also, it allows to analyse to what 

extent the avalanche terrain in routes (from question 1) is related to their spatial location. It will be 

interesting to see whether it is possible to plan different routes in terms of avalanche terrain within the 

same spatial corridor. The next question goes deeper into this: 

 

4. “To what extent is avalanche terrain similar for routes within a spatial cluster?” 

 

The reason why this is interesting is that it shows how detailed route planning can be used to avoid 

avalanche terrain. If some routes within a spatial cluster are safer than others, this means that detailed 

planning is useful in that cluster.  To answer this question, the variety of terrain clusters in each spatial 

cluster will be calculated, as well as the variety of the terrain hazard within routes. Also, visual 

inspection will be used to investigate locations where routes are either very homogeneous or 

heterogeneous in terms of avalanche terrain. 

 

The last question concerns the GPS tracks of routes, downloaded from Wikiloc. It will be interesting to 

see if the common attributes of planned routes, defined in the prior questions, are also to be found in 

GPS tracks of routes. While the planned routes and GPS tracks cannot be directly compared, since they 

were made by a different group of people, there could be common characteristics. This question is: 

 

5. "Is there a difference in avalanche terrain of the planned routes and the GPS tracks?" 

 

To answer this question, the methods from question 1 to relate avalanche terrain and routes will be used. 

Also, the terrain clusters from question 2 will be computed for the GPS tracks. This will allow for a 

quantitative analysis of avalanche terrain in both datasets. Then, popular corridors are taken where many 

GPS tracks and planned routes are, and visual inspection is used to compare them. This will serve to put 

the planned routes into a broader context. 

 

1.2.2. Planned routes in relation to an avalanche hazard map 

The main problem that this thesis addresses is the question how planned routes in the backcountry are 

related to exposure to avalanche terrain. This is interesting and relevant because little research has been 

done on how recreationists deal with avalanche hazard in the route planning phase. This is important to 

know as it can be used to improve avalanche education, as well as provide more insight than before in 

the relative hazard of different ski tours. The scientific relevance is in the fact that this thesis adds to the 

body of knowledge of terrain preferences of backcountry recreationists. The societal relevance is in the 

fact that knowledge from this thesis can be used to improve avalanche education. Also, the evaluation 

of hazard in the routes studied in this thesis can be used by backcountry skiers who want to compare 

safe touring options. Because of the new avalanche terrain data used this can be assessed more accurately 

than before. Finally, this thesis is relevant because it serves as an exploration of the modelled avalanche 

terrain data from Harvey et al (2018). This data is a new approach of modelling avalanche terrain, and 
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it will be interesting to see how it relates to typical backcountry routes, as well as its usability for 

analysing routes. 

 

1.2.2. New approaches in this thesis 

The data that is used comprises ski tours planned on Whiterisk.ch, an application that allows users to 

plan their ski routes in a map where some of the avalanche hazard terrain factors are visualised. This is 

a new approach for two reasons. First, as noted before, it uses planned routes as opposed to recorded 

GPS tracks. Second, it uses information that was contributed for personal goals as opposed to research 

purposes. Most other studies in this domain use volunteers who deliberately track their routes with the 

idea that it is then used in scientific research. The people contributing data in this thesis drew their routes 

to use for themselves, unknowing that it would be used in a research. In other words, it can be seen as 

contributed instead of volunteered data (Harvey, 2013). A third way in which this thesis uses a new 

approach, is by making use of a new dataset in which avalanche terrain hazard is mapped continuously. 

This is different from previous studies into this domain, which either used separate terrain metrics (such 

as slope steepness), or used a simple discrete terrain classification, for example ATES which maps 

avalanche terrain into three classes (Campbell & Gould, 2013).    

 

The Whiterisk.ch dataset was already used in the MSc thesis of Christoph Schönenberger (2018). This 

thesis builds on his in the following ways. First, the new avalanche terrain model from Harvey et al. 

(2018) is used. Secondly, the main focus of Schönenberger was to process the raw route data so that 

they could be used in research. In this thesis the focus will be more in-depth on the avalanche terrain in 

routes. 

 

1.2.3. Analysis schema 

The prior two pages have given an overview of the research objectives. In the schema on the next page, 

the structure and reasoning in the research objectives, as well as the analytical steps needed to achieve 

them, is outlined. The schema is tilted 90 degrees to improve ease of printing. The methods are briefly 

presented here, and will be further explained in chapter 3. 

 

To summarize, the proposed outcomes of the research questions are as follows. Q1 will present a 

description of different ways in which avalanche terrain can be used as a route attribute, and a discussion 

of the advantages and disadvantages of these methods. Q2 will give a description of the clusters, and 

descriptive statistics showing the characteristics of the terrain clusters in routes. Also, a map will show 

the geographical of the terrain clusters. Q3 will show the number of clusters existing in the route data, 

as well as the percentage of routes that is appointed to a cluster. Statistics will be used to describe the 

characteristics of spatial clusters (e.g. the average number of routes per cluster). Q4 will have qualitative 

and quantitative outcomes. The qualitative outcome will be a description of a few selected spatial 

clusters, and show with maps how the avalanche terrain is similar or variable within those spatial 

clusters. The quantitative outcome will be a statistical measure of the variability of avalanche terrain 

within spatial clusters. Q5 will have similar methods. Again, maps are used to show how GPS tracks 

and planned routes are different in a few selected locations. The quantitative outcome here will be 

descriptive statistics, and will also describe how terrain cluster membership is different for GPS tracks 

and planned routes. 



 



Figure 1.  Analytical schema (previous page) 

 

1.2.4. Thesis outline 

The rest of this thesis is set-up as follows. In the next chapter, the scientific theories relevant to the 

subject are discussed. In chapter 3, an overview is given of the general methods and data used to answer 

the research questions. In chapter 4, the results are presented, and the research questions are answered. 

The more specific analytical steps needed to achieve specific results are also discussed in this chapter 

as opposed to chapter 3, in order to keep the methodological chapter orderly. Then, in chapter 5, a 

discussion of the results follows as well as the conclusions. The meaning of the results will be interpreted 

here, as well as the research limitations and recommendations for future research. 

  



13 

 

1.3. Definitions 

Some of the terms used often in this thesis have ambiguous meanings in daily use. Therefore, the 

definitions used of those terms are now clarified.  

 

1.3.1. Risk 

Risk is a generally accepted concept, but there are slight differences between different risk definitions. 

For this thesis, the risk definition from disaster management literature is used. The term risk is defined 

as “a measure of the probability and severity of loss to the elements at risk, usually expressed for a unit 

area, object, or activity, over a specified period of time” (Bründl, Bartelt, Schweizer, Keiler, & Glade, 

2011, p.54).  Three elements are present in many scientific definitions of risk: hazard, exposure, and 

vulnerability. When those three elements are known, risk can be defined in an equation as: 

𝑅 = 𝐻 × 𝐸 × 𝑉  

Where R is risk, H is hazard, E is exposure, and V vulnerability. Hazard can be defined as: 

 "A potentially damaging physical event, phenomenon and/or human activity, which may cause loss of 

life or injury, property damage, social and economic disruption or environmental degradation." 

(Schneiderbauer & Ehrlich, 2004, p.10). Exposure in this context is the number of people at risk, and 

vulnerability is determined by how vulnerable those people are in the event of a disaster. It is important 

to note that in order for a situation to be risky, all three elements need to be present. For example, if 

there is a very steep slope with lots of fresh snow, 𝐻 (hazard) will be very high. However, if there are 

no people present (𝐸), or the people present are not vulnerable (𝑉), there is still no risk. In avalanche 

situations, people present when an avalanche occurs are generally vulnerable, since it is usually 

impossible for humans to free themselves when they are caught in an avalanche. The exposure and 

hazard at a specific location do vary. In this thesis the focus is on avalanche terrain, and there is little 

knowledge of temporal aspects of the avalanche risk situation. Therefore, for the hazard part of the 

equation, the terrain hazard is used. The routes form the exposure part of the equation: if we assume 

people follow the routes they plan, then having routes intersect hazardous terrain implies exposure to 

this terrain. Therefore, sometimes the word "risk" is used in this thesis to describe routes that go through 

particularly hazardous terrain.  

 

1.3.2. Terrain hazard 

One of the datasets used in this thesis is of modelled avalanche terrain hazard. This is the amount of 

avalanche hazard the terrain carries. For this, both the potential of triggering an avalanche and the 

consequences of an avalanche happening are used as inputs. The "terrain-" part specifies that this is not  

the temporal avalanche, e.g. snowfall or wind influences on the snowpack. Those factors are 

communicated in the avalanche bulletin, but are not used in this thesis. To diversify, when discussing 

the temporal factors from the avalanche bulletin, the word "danger" is usually used instead of "hazard". 

This is in line with most English-language avalanche bulletins, that often use  "danger rating" or "danger 

scale" to describe the temporal avalanche situation.   

 

1.3.3. Triggering potential 

In this thesis, triggering potential is used as a term to described the potential for slopes for triggering an 

avalanche. This is preferred above likelihood or probability, as those terms imply a measurable chance 

of an avalanche being triggered. However, to be able to calculate that, far more factors need to be 

considered, and even then it remains a broad guess. A distinction is made between triggering zones and 

remote triggering zones. In the former, an avalanche can start. In the latter, an avalanche is not likely to 

start, but they are connected to triggering zones above, where an avalanche can start by loading the 

remote triggering zone with extra weight (e.g. a skier). Lastly, there are runout zones, where no 

triggering or remote triggering potential is present, but where an avalanche triggered from above can 

runout into.   



14 

 

2. Literature review 
In the following section, an overview is provided of the relevant theories surrounding this topic. This 

thesis topic combines three themes of research: avalanche research, VGI, and movement analysis. Based 

on this, the theoretical framework is divided into three sections. 

 

2.1 Avalanche research 

2.1.1. Introduction 

The Cambridge dictionary defines an avalanche as "a large amount of ice, snow, and rock falling quickly 

down the side of a mountain." (Cambridge dictionary online, 2018). There are three types of snow 

avalanches: slab, wet snow, and loose snow avalanches. Slab avalanches occur when a homogeneous 

layer of snow starts sliding as a whole, as it loses contact with other layers beneath it as a consequence 

of increasing pressure. Wet snow avalanches happen when snow loses strength due to moisturizing as a 

consequence of rising temperatures or rainfall. Loose snow avalanches happen in very steep terrain (over 

40 degrees) with snow that has little cohesion between snow crystals, usually due to persistently low 

temperatures.  

 

Slab avalanches are by far the most dangerous, as the slabs are able of completely burying a person and 

suffocating them or causing deadly impact trauma, more so than loose-snow avalanches. Also, slab 

avalanches are able to reach very high speeds (up to 130km/h in 5 seconds, dependant on slope angle), 

more so than wet snow avalanches (Tremper, 2008). Because of this, most avalanche research focuses 

on slab avalanches (SLF, 2018). For backcountry recreationists, such as tour skiers, off-piste skiers, or 

snow-shoe hikers, slab avalanches are one of the major hazards to navigate. Around 100 deaths are 

recorded in the Alps every year as a consequence of avalanches, with the majority of those being 

mountain recreationists who triggered the avalanche themselves (Techel et al., 2016). Besides this, 

avalanches also endanger the infrastructure of mountainous regions, as well as being a potential threat 

to the lives of people living in mountainous regions.  

 

Because of this, much academic attention is being devoted to understanding avalanche mechanics, the 

causes, and the effects of avalanches. Understanding these factors should help in decreasing the risks 

faced by mountain recreationists and inhabitants of mountainous regions alike. The aim of this research 

is not to list all the different directions that avalanche research has taken, but the main research fields 

will be outlined to serve as theoretical framework. To guide this theoretical review, avalanche research 

is divided into two main themes: research into the geophysical aspects of avalanches, and research into 

the human factor in avalanches. Other research fields include the technicalities of avalanche rescue 

(Ayuso, Cuchí, Lera, & Villarroel, 2015) and the sensing of avalanche occurrences (Eckerstorfer, 

Bühler, Frauenfelder, & Malnes, 2016). However, as the goal of this thesis is to analyse route skier 

choices related to avalanche terrain, these research fields are not relevant and will not be delved into 

further. The division between geophysical and human factors in avalanche accidents is often used in 

avalanche research (see for example Hendrikx, Johnson, & Southworth, 2013; Zweifel & Haegeli, 

2014). Nonetheless, it is important to note that both human and geophysical factors are at play in 

recreational avalanche accidents, and as such, they are often interrelated and not to be seen as completely 

separate. As a simple example, the terrain characteristics (geophysical) influence decision making as 

recreationists try to avoid dangerous terrain (human). In this thesis, a combination of human and 

geophysical variables will be researched, and as such, both theoretical themes will be reviewed here. 

 

Another division can be made between recreational avalanche accidents and large-scale avalanche 

disasters. The former are relatively small and are often triggered by a recreationist (e.g. a skier), as well 

as having recreationists as casualties. The latter are very large and happen rarely, but when they do 

happen they threaten infrastructure and residential areas. An example of such a disaster is the Rigopiano 

disaster in Italy in 2017 which killed 29 people (Smith-Spark & Messia, 2017). Although large-scale 

disasters are tragic, the vast majority of avalanche deaths occur in the first type, recreational avalanches 
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(Tremper, 2008). Since the scales and implications of both types of avalanches are so different, they are 

also often researched separately. This thesis focuses strictly on recreational avalanche accidents. 

Therefore, the theory presented below also is mostly relevant for recreational avalanches, although many 

concepts overlap for both types of avalanches. 

 

2.1.2. Avalanche education 

Much of the theory provided in the following section is synthesised in so-called avalanche education 

programs. These are theoretical and practical courses in which recreationists learn about the danger of 

avalanches and how to cope with this danger (e.g. https://www.avalanche.ca/training/courses) . 

Different levels of avalanche education exist, ranging from introduction courses to professional 

education, for example mountain guide education. Besides learning to recognize the danger signs, 

individuals also learn rescue techniques and group tactics. Another source of avalanche education, 

besides courses, are many books about avalanche risk written for recreationists. Since this thesis is about 

behaviour of individuals in avalanche terrain, it is important to note that many recreationists do not 

randomly choose their routes, but often are able to use avalanche hazard factors as a variable influencing 

their behaviour. Also, knowing that avalanche education exists, helps illustrate the relevance of this 

thesis and many other avalanche research projects. Many of the findings of avalanche research 

eventually get distilled into avalanche education.   

 

2.1.3. Geophysical hazard factors 

The geophysical aspects of avalanches can be summarized as weather, snowpack, and terrain. Together 

they combine to form the so-called avalanche data triangle. 

 
Figure 2. Avalanche Data Triangle (Fredston & Fesler, 2011). 

 

In the middle of this are people, forming the human factor. The three factors combine together to form 

the expected avalanche hazard in a specific place at a specific point in time. Also, they are correlated to 

each other, e.g. certain snowpack qualities are often found in certain terrain, and so on. In avalanche 

safety courses, much attention is devoted to reading these three factors and knowing the risks related to 

them. It is important to note at this stage that although knowing the factors will greatly help decrease 

the risk of getting caught in an avalanche, they cannot exactly predict avalanches. Rather, they serve to 

predict where the probability of an avalanche with severe consequences occurring is higher. Individual 

avalanches never happen at a completely predictable moment and place. 

 

Terrain 

The type of terrain at a specific location is of great influence on the avalanche hazard. One of the main 

terrain features that influences the likelihood of avalanches occurring, is the slope angle. Logically, the 

https://www.avalanche.ca/training/courses
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steeper the slope, the more easily snow will slide off the mountain, making avalanches more likely. 

However, this mechanism only works to an extent. The avalanche risk increases with steeper slopes, but 

this effect decreases at about 45 degrees. Above 50 degrees, slab avalanches become increasingly rare, 

as these slopes are so steep that much of the snow rapidly slides off after falling, before being able to 

form a coherent slab. On those extremely steep slopes, loose snow avalanches are common, but those 

only cause a very minor part of avalanche victims (Tremper, 2008). In general, a slope angle of over 30 

degrees is needed for a slab avalanche to form (Schweizer, Bartelt, & van Herwijnen, 2014). The sweet 

spot for avalanche accidents lies at around 39 degrees: here, the highest percentage of accidents occur 

(Harvey, 2002). One research shows that about half of human-triggered avalanche accidents occur at 

slopes between 37 and 42 degrees (Schweizer & Jamieson, 2000). 

 
Figure 3. Rate of avalanches as a function of slope steepness and reported avalanche danger rating 

as stated in the avalanche bulletin, between 1988 and 1999 (Harvey, 2002) 

 

Another important feature of terrain in relation to avalanche hazard is the slope aspect. Sun radiation 

limits the degree to which snow is able to form weak layers and fastens the bonding process of different 

snowpack layers (Tremper, 2008). Therefore, as north- and east facing slopes get the least sunshine, 

most avalanche accidents occur there. This is a general rule, there are some specific situations in which 

south- and west facing slopes are actually more dangerous. For example, in wet snow conditions, which 

mostly occur in spring, south- and west facing slopes produce more wet snow avalanches due to 

increased sun exposure (Tremper, 2008). Besides sun exposure, slope aspect is also important in relation 

to prevailing winds. In the weather section on the next page this will be elaborated on. 

 

A final important part of terrain is the shape. Narrow ridges are dangerous because they often are subject 

to a high degree of wind loading, which means snow gets blown over the edge and forms a weak layer. 

Specific terrain shapes such as gullies are dangerous because snow gets blown into it from the side. 

Quick changes in steepness, e.g. a gully that is steep on the side but flat in the middle, form so-called 

terrain traps. Because of the specific shape, even a small slide can bury a victim very deeply, decreasing 

chances of survival (Tremper, 2008). Lastly, convex terrain shapes are more hazardous than concave 

shapes, as the snow cover has a higher degree of tension (Engel, 2000). 

 

Weather 

The second factor influencing avalanche risk, is weather. The most relevant weather variables for 

avalanches are precipitation, wind, air temperature, and sun radiation (Tremper, 2008). Precipitation can 

come in the form of snow or rain. Fresh snow is risky as it can add weight on top of a layer that is not 

bonded well to the layer underneath it. This can lead to a critical loading level, causing the layer 

underneath the freshly fallen snow to slide. Another possibility is snow falling on top of a layer with 

bad bonding capacities, a so-called weak layer. If this snow then forms a coherent layer (slab) and a 

person adds weight load to it by skiing or walking on it, it may be triggered and form a slab avalanche. 
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The intensity and amount of snowfall are very important to avalanche risk. Intense snowfall within a 

short time-frame is much more hazardous than gradual snowfall (Conlan, Tracz, & Jamieson, 2014). 

Rain can change the temperature within the snowpack, resulting in layers being less well bonded. 

Secondly, rain can increase the weight of the snow on top, causing it to slide (Tremper, 2008). 

 

Wind is a factor in avalanche hazard as it transports loose snow. As most mountains have a prevailing 

wind direction, in which the wind is usually blowing, snow often gets transported from one side of the 

mountain to the other. This effect is mostly noticeable close to mountain peaks and ridges, where wind 

blows snow from windward slopes and drifts it onto lee slopes, forming cornices along the ridge and 

wind pillows beneath it (Tremper, 2008). Also, here convex shapes are more dangerous as snow is 

transported and concentrated more easily by wind there. Transported snow often forms weak layers in 

the snowpack, increasing avalanche hazard. Wind is mostly dangerous combined with specific terrain 

types, for example gullies, ridges, or mountain peaks, which allow for a high concentration of wind-

blown snow. Also, wind combined with snowfall is extra risky, as the fresh snow is immediately blown 

towards terrain-specific spots. 

 

Changes in temperature influence the snow cover, and thus the avalanche risk. Warmer snow is generally 

heavier than lighter snow, leading to higher avalanche risk in some specific cases. Numerous studies 

have found that rapidly increasing temperatures often precede avalanche events, as they decrease the 

homogeneity of the snowpack (Jamieson, Geldsetzer, & Stethem, 2001; Tracz, 2012). However, the 

relation between temperature and avalanche risk is complicated, and dependant on the specific situation. 

In some situations, increasing temperatures decrease avalanche risk, as they speed up the setting process 

of new snow. The effect of sun radiation on snow temperature is much larger than the effect of air 

temperature (Tremper, 2008). As could be read in the terrain section, sun radiation usually decreases 

avalanche risk. 

 

Snowpack 

As slab avalanches are a consequence of a homogeneous layer of snow breaking loose from the layers 

underneath it, the internal structure of the snow cover is a major factor. To form an avalanche, two things 

are needed within the snow pack: a slab, and a weak layer. Many different specific types of snow exist, 

all leading to their own avalanche problem. For the scope of this thesis, it is not feasible to go into them 

all, but a good overview is given in Tremper (2008) chapter 5. 

Important to know is that changes in weather, especially snowfall, temperature, and wind, create layers 

of snow that combine to form hazardous situations. For example, a rain crust forms when rain falls on 

top of snow at low elevations, creating a slippery surface. When new snow falls on top of this layer, 

it does not bond well, and creates a slab laying on a weak layer, which is a prime avalanche risk situation. 

 

Avalanche bulletin 

Together, the risk factors are assessed every day during winter in alpine regions by the local avalanche 

authorities. They are elaborated on in the avalanche bulletin, which gets published online daily in most 

mountain regions during winter. The avalanche bulletin describes the particular hazard factors, for 

example windblown snow or weak layers within the snow pack. Also, a general warning level is given, 

which ranges from one (low) to five (extreme). The information in the bulletin can be used by 

backcountry recreationists to plan their route (relatively) safely. In general, the higher the danger rating 

in the bulletin, the more recreationists should try to avoid hazardous terrain (e.g. steep slopes). However, 

levels four and five are also relevant to officials, as they could mean more general safety measures need 

to be taken, for example closing roads or skiing resorts. During danger levels four and especially five, 

large-scale avalanche disasters become more likely (Tremper, 2008).  
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2.1.4. Human risk factors 

Besides attention to geophysical factors, many researchers focus on the human factor (Zweifel & 

Haegeli, 2014). This is a logical step, as in the majority of incidents, avalanches are triggered by humans 

(Techel et al., 2016). One can assume that many people who travel in avalanche-prone areas are educated 

and know the risks, but still take them, which can be fatal. Many factors are at play in the human factor, 

including peer pressure, risk appetite, heuristics, and personal features. What many lines of research 

within the human factor have in common is that they analyse human behaviour in situations of avalanche 

risk (McClung, 2002). This information is useful as it can be used in education, for example by warning 

people who travel in avalanche-prone terrain for route-planning mistakes that others have made.  

 

Numerous studies focus on the psychological aspects of risk-taking in avalanche terrain. For example  

Mannberg et al. (2018) use surveys combined with hypothetical route choices in avalanche terrain to 

find out the acceptability to risk among backcountry skiers. Sensation-seeking attitudes in other aspects 

in life turn out to also predict willingness to ski risky slopes. Also, many respondents agree to ski slopes 

that are steeper than they prefer, highlighting the risk of peer pressure and group dynamics. This does 

not fully compute with a qualitative study by Frühauf et al. (2017). Here, expert backcountry skiers are 

interviewed about their attitudes to risk. According to this paper, these skiers are not sensation seekers, 

and instead try to minimize risk at all times, while accepting that natural risks are part of their sport. The 

difference between the two studies may be due to the study population: one was a general group of 

backcountry skiers, while the other were only professional skiers who spend a lot of time in the 

mountains. Also, the methods used were different, one was quantitative and the other qualitative.  

 

A study by Fitzgerald et al. (2016) assesses the differences in risk appetite among skiers in backcountry 

and so-called sidecountry terrain. Backcountry and sidecountry share the same general hazard in terms 

of avalanches, but the difference is that sidecountry can be accessed by ski lifts, whereas backcountry is 

completely remote. The main finding of their research is that skiers in terrain that is classified as 

sidecountry are willing to take more risks, and often have less avalanche training. Thus, sidecountry is 

perceived as more 'safe', while in reality the same hazards apply as in backcountry terrain.  

 

Other studies focus on route behaviour. As avalanches are much more likely to occur on specific type 

of slopes (in terms of aspect, steepness, and shape), it is important to assess which slopes will be 

traversed in a route and avoid slopes that are too prone to avalanches. A question that is central to a 

number of research papers is whether backcountry recreationist take care to avoid these dangerous 

slopes. For example, Plank (2016) looks at routes shared by users on an online platform aimed at 

mountain recreationists such as tour skiers. The main finding is that many of the ski touring routes 

submitted contain hazardous slopes. According to the author this can lead to others copying this risky 

behaviour. However, the study only looks at general characteristics of tours (e.g. maximum slope, risk 

rating in the avalanche bulletin), and not on their specific routes. A research project called White Heat 

Tracks (http://www.montana.edu/snowscience/tracks.html) aims at gathering GPS tracks of chosen 

routes from backcountry skiers and snowboarders. Here, the routes are studied on a finer scale. In this 

project, behavioural economists and avalanche experts work together to create better understanding of 

the route choices of backcountry skiers. The GPS tracks are combined with data gathered from surveys. 

One paper focused specifically on Alaskan heli skiing guides shows that on the level of individual skiing 

tracks, they chose less risky tracks on days where the avalanche risk was higher (Hendrikx et al., 2015). 

However, on the entire data set of skiing tracks, there weren't significant differences between routes 

chosen on different days. However, this could be related to the low resolution of the terrain data used.  

 

Another study focusing on the personal features of the skiers who delivered the GPS tracks, has some 

interesting findings. Mainly, people with more expert avalanche training and better skiing skills, in 

general choose more hazardous slopes (Hendrikx & Johnson, 2016). Also, people who are familiar with 

an area, because they have been there before, will take more risks. A third paper from this project asked 
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respondents whether the avalanche risk rating (1 to 5) of the day made them alter their goal (e.g. a 

specific peak or slope) for the day. It turns out that the higher the risk rating of the day, the more likely 

the avalanche hazard influences whether the goal was reached (Hendrikx et al., 2013). Many of these 

findings completely logical and not very surprising, but the important thing is that quantitative analysis 

is made to prove them.  

 

Whereas the White Heat Tracks project focuses on deliberate data gathering from recreationists, others 

look to scrape data from the web. An example of this is a paper by Techel, Zweifel, & Winkler (2015), 

which uses forums where mountain recreationists share trip reports in Switzerland, combined with 

locations of severe avalanche incidents. Being able to quantify the frequency of backcountry usage on 

different days (e.g. days with fine or poor weather, days with high or low avalanche danger ratings), 

enables a calculation of relative risk, as many avalanches are caused by the skiers themselves. An 

important finding of this method is that the risk of being involved in an avalanche accident increases 

with a factor five when the avalanche rating goes from 1 to 2, and a factor two when it increases from 2 

to 3 (Techel & Zweifel, 2013). Schmudlach, Winkler, & Köhler (2018) use a similar approach to come 

up with a quantitative risk reduction method, using GPS routes submitted to a ski touring forum. They 

calculate the amount of avalanches relative to the proportion of travel in specific terrain and avalanche 

risk situations. As such, they have both the exposure and hazard of terrain and temporal avalanche 

factors .With this, they can compute the relative risk of specific terrain in specific avalanche situations.  

 

Another interesting analysis is provided in (McCammon, 2002). Here, 715 accidents are reviewed to see 

whether errors in judgement were made by those involved.  Many of the victims are drawn into so-called 

heuristic traps, where instead of using the information presented to them by the avalanche conditions, 

they use social cues to make their decisions. For example, mixed groups of men and women often take 

higher risks than all-male groups, presumably as men don't want to be seen as overtly careful by women.   

 

 These studies all have in common that they focus on human decisions related to avalanche hazard. 

 

2.1.5. Avalanche terrain modelling 

This thesis uses a fairly new dataset of quantitatively modelled avalanche terrain. Throughout the thesis, 

this dataset will be used to classify and analyse the planned routes. In order to understand this data and 

its novelty, it is required to introduce the topic of avalanche terrain modelling here. An important 

development in avalanche terrain modelling has been the Avalanche Terrain Exposure Scale (ATES) 

(Statham, McMahon, & Tomm, 2006). Here, a set of rules is used to classify avalanche terrain as either 

simple, complex, or challenging. Important inputs for this are slope angle, terrain shape, and the presence 

of terrain traps such as gullies or steep cliffs. The classification is static and insensitive to temporal 

avalanche risk factors. ATES mapping can be performed manually by experts (Statham et al. 2006) or 

in a GIS algorithm (Delparte, 2008). The advantage of this method for mapping avalanche terrain is that 

the three classes are easily understood and communicated, making it suitable for informing backcountry 

recreationists. The disadvantage is that detailed differences in avalanche terrain are not included, and 

that there is always manual input required to model the terrain. Bühler et al. (2013), among others, 

developed a method to automatically detect potential avalanche release areas from digital elevation 

models (DEM). The model is validated using historical Swiss avalanche data. The advantage is that it 

can be used for remote areas where little historical data is known, as the algorithm works universally. 

However, it only identifies potential release areas, which is not as useful for recreationists. Schmudlach 

& Kohler (2016) developed an algorithm to automatically derive ATES classes from a DEM. This 

algorithm takes into account the slope shape at each cell, as well as that of surrounding cells. The 

outcome is a map of continuous ATES values ranging from simple (0) to challenging (100). The 

approach from Harvey et al (2018) continues on this idea. An important novelty of their method is that 

they use the numerical RAMMS avalanche dynamics model (Christen, Kowalski, & Bartelt, 2010). This 

model was designed for predicting large-scale avalanches, but can also be used for medium-sized 
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avalanches (Dreier et al. 2014), which are most relevant for recreationists. Using this model, it was 

possible to calculate possible burial depth for different avalanche release areas. Also, potential fall zones 

were identified. This together with triggering risk of avalanches, leads to a continuous value depicting 

the avalanche hazard. This value includes the potential of triggering an avalanche, combined with the 

severity of consequences when an avalanche is triggered. A second novelty of the approach from Harvey 

et al (2018), was that they differentiate between triggering areas and remote triggering areas. The 

difference between the two is that in the former, there is a potential avalanche start point at that location. 

In the latter, an avalanche is not likely to be triggered at that location, but it is possible to remotely 

trigger an avalanche on a nearby slope by loading that location. This is possible because snow slabs are 

often large and connected across space. Both maps can be used for route planning in relation to 

avalanche terrain. The maps are designed for optimal use with avalanche danger ratings 2 and 3. The 

model used to create the two maps is shown in figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Method used to compute 2 avalanche terrain maps by Harvet et al (2018), p. 

 

  



21 

 

2.2. Volunteered Geographic Information 

2.2.1. Introduction 

Volunteered Geographic Information or VGI is the collection, assembling, and dissemination of 

geographic information by private citizens. The first well-known use of the term is in an article by 

Goodchild (2007). The main difference between VGI and regular geographic information is that VGI is 

gathered by private citizens, as opposed to national mapping agencies or other official mapping 

institutions. VGI is related to the concept of crowdsourcing, with the difference being that in VGI there 

could be an individual gathering the information, whereas in crowdsourcing there's always a mass of 

people gathering information (Goodchild, 2007). VGI is a type of user generated content (UGC). UGC 

is any content on the web that is made by customers or end-users of a website and is publicly available 

to other end-users. This is a central feature of the so-called web 2.0. The web 2.0 has emerged in the 

2000s, and differs from the internet before that in the way that users uploading their own data and content 

play a central role (Antoniou, 2011). Prior to the web 2.0, the internet was used primarily as a 

dissemination, from producer to user. Today, users are at the same time also producers of content, and 

thus a new user type has emerged, the produser (Budhathoki, Bruce, & Nedovic-Budic, 2008). 

 

2.2.2. The Volunteered Geographic Information concept 

Although any geographic data that was sourced from private persons can be called VGI, there are often 

large differences between different VGI datasets. Obviously, VGI data can be about a broad range of 

topics. Besides this, there are also more fundamental, conceptual differences between datasets. These 

mostly relate to the type of data, the data collection process, and the purpose of the data. Those 

differences have implications for the possible uses of the data.  

 

Within the data collection process a distinction can be made between active and passive collection. In 

active collection, volunteers deliberately contribute data for a specific project. An example of this is 

OpenStreetMap (OSM), in which volunteers work together to map areas of the world. In passive 

collection, volunteers collect data for any other purpose, for example to track their athletic progress or 

share their activities. The data can then be used by people with another purpose, for example academic 

research or mapping. Since the data was not collected for this purpose, it is in fact re-used. This 

difference has implications for the quality of data and for privacy. The quality is affected since in a 

purposeful data-collection it is easier to assign quality thresholds a priori, whereas in re-used data there 

are no such thresholds, since individuals don't know that their data will be re-used. The privacy is 

affected since in purposeful data-collection, individuals deliberately choose to collect their data, whereas 

in passive collection their data is often re-used without their knowing. This difference in collection 

method marks the difference between volunteered, and contributed geographic information (CGI) 

(Harvey, 2013).  

 

Related to this is the type of data that is collected. Since active VGI is collected with a specific goal in 

mind, it is often possible to collect detailed and specific information. In the example of OSM, semantic 

information is collected about shops and services in an area, as opposed to just geographic locations. In 

the example of the Whiteheat avalanche research project, personal information such as age, gender, and 

education level is collected in combination with GPS tracks. This personal information is part of the 

dataset. As such, many active VGI data have semantic value in their own right. Passively collected 

information, on the other hand, often needs added context before it becomes valuable. An example of 

this are activity trajectories from fitness apps such as Strava. These trajectories are used in various 

research domains, such as urban planning. However, a single trajectory is not of much semantic value. 

Instead, the patterns recorded from a large set of Strava trajectories need to be combined with other data 

such as land use, density, or road types, in order to be useful as research data (Griffin & Jiao, 2015). In 

reality, this difference is not absolute, as almost all applications of VGI data fall somewhere in between. 

For example in the Whiteheat project, the GPS tracks with the personal data could be analysed by 

themselves, but they only become interesting when they are overlaid with terrain data such as slope and 
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aspect.  

 

Another distinction is made in the type of data by Stefanidis, Crooks, and Radzikowski (2013). They 

differentiate between data that is explicitly spatial, such as OSM maps, and data that is not spatial per 

se but has a spatial footprint. A prime example of this second type are geo-tagged tweets. Tweets 

themselves are not spatial in nature, they are a piece of text which is not necessarily related to location. 

However, when many geo-tagged tweets are collected and analysed as a set, they can provide useful 

spatial information. For example, they can convey information about spatiotemporal trends and 

preferences. A major difference between this so-called ambient geospatial information and "typical" 

VGI is that in the latter, the volunteers act as sensors, recording the world around them. In the former, 

however, the world around is not the main subject of research, and instead the "volunteers" are the 

observable phenomena (See et al., 2016). In a broad way this is similar to Harveys notion of contributed 

geographic information (Harvey, 2013), and indeed in some instances both concepts overlap. Yet, the 

definitions of both are different, as both authors focus on a different component of VGI. Whereas Harvey 

focuses on the collection process, Stefanidis et al. (2013) focus on the content of the data. As such, 

geospatial data that is actively collected by volunteers but at the same time has the volunteers as main 

research subject, is not CGI but is ambient geospatial information. An example of this is the white heat 

project, where volunteers agree to collect data, making it VGI and not CGI. At the same time, the 

volunteers are the ones being researched, not the world they sense per se, making it ambient geospatial 

information. For the rest of this chapter, VGI is usually used to avoid confusion, as most articles about 

VGI-related concepts use that term. 

 

2.2.3. Volunteered Geographic Information Challenges 

VGI can offer interesting, novel forms of data, which official mapping agencies cannot provide. For 

example, VGI offers insight into the behaviour of people submitting the data. It is therefore better suited 

than traditional sources of geographical information to map citizen behaviour in time and space. Also, 

VGI allows for a participation of ordinary citizens, which enables collaboration between them to tackle 

common problems, democratizing the process of mapping the world (Antoniou, 2011). However, there 

are several challenges related to the collection of VGI. These will be addressed in the next section. 

 

Quality 

One of those challenges relates to the quality of the data. As many contributors of VGI do not have a 

background in GIS or cartography, their contributions may be inaccurate. Also, as the data in VGI comes 

from many different contributors, it is hard to hold the contributor accountable for any errors (Turner, 

2006). Expert editing of the collected data can be a measure to counteract this (Antoniou, 2011). 

 

Quality is not a straightforward concept, as it has evolved over time. Whereas in the beginning period 

of geographical information science, quality was merely judged on whether the positions on a map were 

accurate with the real world. Later, this evolved to a wider concept, including whether data is fit for its 

intended use (Van Oort, 2006). The responsibility of judging whether data is fit for its intended purpose 

has shifted from the data provider to the user (Antoniou, 2011). 

A good overview of spatial data quality measures is given in (Antoniou, 2011). These are as follows. 

 

- Completeness: whether or not there is data missing that should have be included as it falls within 

the scope of the product specifications or user requirements. Conversely, also whether data is 

included that falls out of this scope. 

- Logical consistency: whether the volunteered data adheres to basic rules of logic. For example, 

when a GPS track is uploaded where somebody is skiing at 1000 km/h, this does not follow 

logical consistency. 

- Positional accuracy: how accurate the positions in the recorded dataset are with the real world. 

- Temporal accuracy: how accurate the temporal features of the data are. 
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- Thematic accuracy: all other accuracy measures not included in the previous two. For example, 

whether an attribute stored in the spatial data is accurate (e.g. temperature in a weather map). 

- Purpose and usage: whether the recorded data fits the intended purpose. This can be viewed 

from the perspective of the data contributor or from the perspective of the data collector. 

- Lineage: the recording history of the data. For example: the data and time of recording, who 

recorded it, which software was used.  

 

Testing a dataset against these measures is a way to ensure its quality is sufficient. However, whereas 

some of the measures are objective (i.e. positional accuracy), others depend on the person reviewing the 

data. Whether data is fit for the purpose depends entirely on the purpose. Also, how much importance 

is given to specific aspects of quality depends on the purpose. Since the data used in this thesis has 

already been processed in a prior thesis project, some of the quality concerns will have been taken away 

or lessened. Some challenges still persist. Most notably, whether the data mapped fits the intended 

purpose remains an interesting question, as the data originally was mapped for personal use and not for 

research purposes. The positional accuracy is another challenge that remains. Although the trajectories 

can be thought of as positionally accurate in the strict sense, they may not be accurate in the sense that 

people actually travelled them. These and other challenges will be further addressed in chapter 4. 

 

Privacy 

Another major challenge in VGI is ensuring personal privacy in collected data. To determine how to 

ensure privacy we first need to define what exactly privacy is. A famous definition (and the one followed 

here) of privacy by Alan Westin is that privacy is the right of an individual or group to decide for 

themselves which information about them is shared with others (Westin, 1967). A question that rises 

from this definition, is: what exactly can be defined as "information about a person"? 

 

An important document on privacy related to data processing is the general data protection regulation 

of the EU (European Parliament and Council, 1995). In this document, the following definition is given 

of personal data: personal data is any information relating to an identified or identifiable person. What 

is important here, is that the information has to be related to an individual. For example, somebodies 

occupation alone is not personal information, as many more other people will have this occupation. A 

unique identifier such as a phone number, on the other hand, is personal data. Thus, the more specific a 

piece of information is about a person, the more likely it is to be considered personal data. Also, 

somebodies occupation in combination with their full name is considered personal data, as they can be 

used to uniquely identify a person. Multiple pieces of information that can be combined to form personal 

data, are to be considered personal data (van Loenen, Kulk, & Ploeger, 2016). In this sense, geospatial 

data takes a special role. Many geospatial pieces of data are anonymous or easy to anonymize. For 

example in the case of backcountry skiers' GPS tracks, it is easy to remove the names and other 

identifiers in the processing phase. However, when combining geospatial data points with each other, 

or combining geospatial data with other types of data, it is often possible to identify a person. An 

example of this is the app Strava, which is used by cyclists and runners to track their sports activities. 

Anonymous data published on the Strava global heat map, which contains all public Strava tracks, can 

be combined to find a person's address or name (Moody, 2018; Brewster, 2018). 

 

Although privacy is not the biggest subject among researchers that make use of VGI (Granell & 

Ostermann, 2016), some articles have been written about it. The following general guideline for 

academic use of VGI is given in (Mooney et al., 2017):  

 

"During the dissemination of research outputs, care must be taken not to expose the identities of or other 

private information related to the citizens who contributed to the VGI project. Patterns and inferences 

made about the contributors of the data must be carefully considered so as not to breach the privacy of 

those citizens." (Mooney et al, 2017, p. 124) 
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The first part of this quote is not hard, simply leaving out names or personal data will suffice for this 

thesis research. However, the second part requires some consideration. When using crowd-sourced GPS 

data, it is key to make sure the GPS tracks cannot be used to find out personal facts about the persons 

who contribute them. Oksanen, Bergman, Sainio, and Westerholm (2015) deal with this problem. Their 

solution is quite simple: they count the number of tracks at a given location and filter out tracks that are 

too unique, as they are most easily used to track personal details (e.g. addresses).  

 

However, their article uses bike tracks, which are more inherently problematic than ski tracks as people 

often bike from their home, making it possible to track a person's address. Also, people often bike in a 

city and use their bike to commute to places of interest such as their work place, which can also be seen 

as personal information. Ski tracks often start somewhere at a parking lot or on a mountain top, leaving 

out this problem. Therefore, the expectation is that simply anonymizing ski tracks will suffice to make 

sure they do not qualify as personal data. Still, it is important to keep in mind that the data, when 

combined with other public datasets, does not become personal data. This, however, is only an issue 

when this combination is relatively easy. For example, when it takes days of computer processing to 

turn a dataset into personal data, it is not to be considered an issue (van Loenen et al., 2016).  

 

Inequality 

A third set of issues in VGI is related to inequality. in this context, inequality refers to the fact that VGI 

is often collected by a small portion of the general population, which can make it problematic in terms 

of representativeness. Different types of inequality exist within VGI participation due to the different 

reasons for inequality. The first inequality in VGI is a consequence of the so-called digital divide 

(Ferster, Nelson, Robertson, & Feick, 2018). This divide separates people without internet and computer 

access from those with it. In many cases, the digital divide follows other divisions based on privilege, 

for example social class, gender, ethnicity, and other social and economic factors (Foster & Dunham, 

2015). As a consequence, some groups are better able to participate in VGI, and as a result are also better 

represented by VGI (Foster & Dunham, 2015).  

 

Aside from inequality stemming from the digital divide, there is usually also a general participation 

inequality, even within user populations that all have access to internet. The reason for this is that in 

many cases, a very small group of contributors is responsible for a very large proportion of the work 

being done. Both in physical and digital volunteering projects, this is the case (Haklay, 2016). 

Participation inequality follows the 90-9-1 rule: 90 percent of users don't contribute, and instead only 

consume information. 9 percent contribute occasionally, and 1 percent contributes by far the most 

content. Of course, in reality these percentages vary, but the principle is the same. An extreme case such 

as Wikipedia sees only 0.003% of users contribute two-thirds of the content (Haklay, 2016). 

 

The problem that arises from this inequality is that there is also an inequality in the type of contributions 

made by volunteers. In other words, topics that are of interest to the 1 percent of high-level contributors, 

are also more reflected in the contributions. For example, OSM contributors are predominantly male, 

young, and educated. As a result, points of interest related to activities that are traditionally seen as 

feminine, such as child care, are underrepresented on OSM (Stephens, 2013). Also, geographic 

inequality may be a result of participation inequality. This happens when the main contributors are 

mostly contributing about their surroundings, leading to an overrepresentation of that area within the 

data (Haklay, 2016). When using VGI as a main data source, these consequences of participation 

inequality are important as they may lead to a biased dataset. 

 

Most studies that use VGI as a data source, recognize the fact that participation inequality exists (e.g. 

Foster & Dunham, 2015; Ogie, Clarke, Forehead, & Perez, 2018). However, what is less obvious is how 

to deal with it. In general, three approaches can be distilled. Firstly, there are techniques to encourage 
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more users to contribute, for example by making contributing easier or by rewarding quality 

contributions (Nielsen 2006). As I will be working with data that has already been contributed, this is 

not possible for my research. The second approach is to assess the participation inequality in a dataset, 

and explicitly adjust any conclusions to this. The third approach means editing the dataset so that the 

effects of participation inequality are decreased. An example of this is given in Oksanen et al. (2015). 

This article goes into the possibilities of creating a heatmap of cycling GPS tracks where participation 

inequality has a decreased role. Instead of counting how many times a GPS track is created along a 

certain line, they look at the number of unique users creating a track along that line. Another option they 

use is to compute a density map that uses the diversity of users in an area as a secondary input, thus 

combining the number of different users with the use intensity of a line. However, this article focuses 

on cycling tracks, which are inherently different from backcountry skiing tracks as they follow roads 

and are thus set in specific locations. Also, cycling is often used as a means of commuting, which means 

that a single user making one track multiple times is more likely. Another approach to deal with 

participation inequality is given in Techel et al. (2015): they divide the group of data contributors based 

on the proportion they contributed, and analyse the differences between the groups.  

 

2.2.4. Route Volunteered Geographic Information  

As this thesis is about using GPS tracks and planned routes as passive VGI, some similar studies are 

now outlined. This serves to guide the spatial analysis of routes in this thesis. Many articles focus on 

GPS tracks of cycling routes, this is interesting in the realms of urban planning and health (e.g. Griffin 

& Jiao, 2015; Jestico, Nelson, & Winters, 2016; Menghini, Carrasco, Schüssler, & Axhausen, 2010). A 

major difference between cyclists' GPS tracks and backcountry skiers' tracks, is that the former are 

generally tied to a road network, whereas the latter aren't. This influences the type of analyses that are 

possible. For example, Griffin and Jiao (2015) analyse which types of roads (e.g. bike-specific roads or 

streets with broad shoulders) are most popular based on Strava activity. Also, many cycling studies focus 

on urban features, such as building densities and land use diversity (Griffin & Jiao, 2015), which is also 

irrelevant skier tracks.  However, some areas of analysis can be applied to both skier and cyclist tracks. 

For example, many studies assess the role of slope gradient on cycling routes. Also, although ski tours 

do not follow official roads, they often do follow existing routes through the terrain, for example routes 

published by the Schweizer Alpen-Club. What most studies into VGI trajectories have in common, is 

that they focus on the route behaviour of humans in relation to their physical environment. As such, they 

work from an assumption of a sufficiently modelled or realistic physical environment, and analyse the 

trajectories in relation to this environment. This is also the goal of this thesis. 
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2.3. Route and movement analysis 

2.3.1. Introduction 

Since this thesis deals with the spatial analysis of recorded movement paths and planned route 

trajectories, it is important to place it within the existing body of work in this field. The analysis of 

planned routes differs from the analysis of recorded routes in two major aspects. First, in the former, 

one cannot be sure that the routes were actually travelled, in other words that the person who planned 

the route went through with it. In recorded GPS tracks of routes, one can be sure that the route was 

travelled, since it cannot be recorded otherwise. Secondly, in the former, there is no time recorded, 

whereas in the latter there is. Most existing studies focus on spatiotemporal analysis of recorded routes 

with time stamps, and not on planned routes. Therefore, these will be outlined here. It is important to 

keep in mind that any techniques that require time stamps in routes cannot be performed here, or at least 

not to their full extent.  

 

2.3.2. Basics of movement analysis and spatiotemporal analysis 

One of the earliest systems used to analyse people's behaviour within a spatiotemporal context was 

proposed by Hägerstrand (1970). His paper highlights the movement of people in time and space when 

faced with different types of constraints. Although these constraints are mostly related to daily 

movement patterns within cities, the idea that an individuals' movement must be analysed within 

constraints is relevant for this research.  

 

Hägerstrand's work can be seen as the beginning of the time-geography perspective. In time-geography, 

human behaviour (e.g. movement) is analysed with time and physical space as basic dimensions 

(Lenntorp, 1999). This behaviour can be captured in spatiotemporal data. This is data with both spatial 

and temporal attributes. Spatial objects have a location variable. Temporal objects have a variable time 

and are not existent indefinitely (Andrienko,  Andrienko, Bak, Keim, & Wrobel, 2013). This 

spatiotemporal data broadly allows three categories of queries, based on three aspects of the data, namely 

objects ("what?"), space ("where?"), and time ("when?"). One can also combine these queries, for 

example asking: "where and when was this object moving?" (Peuquet, 1994). This is the most basic 

definition of spatiotemporal analysis. Movement analysis is a form of spatiotemporal analysis. 

 

Central within movement analysis are so-called movement observations, which are spatiotemporal data 

points (Dodge, Weibel, Ahearn, Buchin, & Miller, 2016). The central questions that movement analysis 

tries to answer are: why, how, and by which forces does an object move? The movement ecology 

paradigm by (Nathan, Getz, Revilla, & Holyoak, 2009) distinguishes between the intrinsic motivations 

of an object, its internal capacity to move and navigate, and the surrounding context (e.g. external 

constraints), which together influence the movement parameters. Dodge, Weibel, and Lautenschütz 

(2008) elaborate on this, noting four categories of factors that influence movement:  

 

1. intrinsic properties of agents 

2. spatial constraints 

3. environment 

4. the influence of other agents.  

 

Of particular interest here is the distinction between spatial constraints and environment. Whereas spatial 

constraints are 'hard' rules on where an object can and can't move (e.g. a steep cliff or a body of water), 

different environments can have varying degrees of attractiveness for objects to move into. For example, 

depending on skiing level, a person will find progressively steeper terrain increasingly attractive to ski, 

until a certain steepness where it gets too scary and the attractiveness starts going down again. Since the 

data in this thesis does not contain intrinsic properties of the agents (beyond some basic metrics), the 

focus is on the latter three categories of factors. Most important here are spatial constraints and 

environment. The direct influence of other agents can't be tracked in the dataset, as it is impossible to 
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see which agents where at a route at the same time. The routes can be compared to each other, which 

forms an interesting line of analysis, but this is not part of the direct influence of other agents. 

 

2.3.3. Computational movement analysis and trajectory analysis: techniques 

Several techniques exist to analyse the trajectory of a moving object. These will be outlined below. 

Laube (2014) has written a comprehensive book on recent issues and techniques in computational 

movement analysis. Computational Movement Analysis (CMA) is "the interdisciplinary research field 

studying the development and application of computational techniques for capturing, processing, 

managing, structuring, and analysing data describing movement phenomena, both in geographic and 

abstract spaces, aiming for a better understanding of the processes governing that movement" (Laube, 

2014, p. 4-5). Although the dataset of planned routes is not technically movement data (since there is no 

timestamp), many of the techniques outlined  in his book do apply. Another point to stress is that many 

articles cited here do not explicitly mention the concept of CMA, the methods or concept described do 

fit within the definition above.  

 

General considerations   

Movement data is usually recorded as a collection of spatial points with time stored as an attribute. 

However, when these points are recorded at a high enough granularity, they allow an almost continuous 

trajectory to be constructed from them (Long & Nelson, 2013). Laube (2014) states the importance of 

deciding on a conceptual model in which movement data is to be analysed. This and other decisions 

influence the outcome of analysis, and are important to fit to the type of data and type of analysis. He 

distinguishes six conceptual model spaces for trajectories, depicted in figure 5: 

1. A space in which objects move completely freely between positions without any restrictions is 

called homogeneous (unconstrained) Euclidean space (a) 

2. A space in which the possible movement space is constrained, for example by terrain features 

such as water or steep slopes. This is constrained Euclidean space (b) 

3. Some visualisation tasks ask for a space-time cube as per Hägerstrand (1970) (c) 

4. Movement can also be captured between discrete steps in space, for example a grid. This is 

called heterogenous field space (d) 

5. A specific conceptual type is based on cell phone reception areas, which create an irregular grid 

of visited tiles, named irregular tessellation (e) 

6. The final type is based on a transport network of nodes and edges: network space (f) 
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Figure 5. (previous page) Conceptual movement spaces: (a) Euclidean homogeneous space, (b) 

constrained Euclidean space, (c) space-time aquarium, (d) heterogeneous field space, (e) irregular 

tessellation, (f) network space Source: Laube, 2014, p.12  

 

These six conceptual spaces are based on three dimensions. Firstly there is a distinction to be made 

between a Lagrangian and Eulerian movement perspective. In the Lagrangian perspective, positions are 

captured at a time interval, and a line is drawn between those positions to annotate the movement 

trajectory. In the Eulerian perspective, a position is recorded every time the object passes a checkpoint, 

for example a toll booth at a road. As the data in this thesis is GPS data or unconstrained routes, they 

are to be considered Lagrangian trajectories. However, they could also be considered in an Eulerian 

perspective, for example when counting how many routes pass a specific point of interest (e.g. a 

mountain peak). 

 

 
Figure 6. Two perspectives of movement: Lagrangian, for example GPS tracking (a) versus Eulerian, 

for example traffic check points (b) or cell phone reception areas (c). Source: Laube, 2014, p.13 

 

A second dimension to consider are constrained or unconstrained movement spaces. In this context, 

constrains determine where objects can or cannot move. Although it may seem tempting to model 

movement in an unconstrained space, this is often not realistic. Most objects experience some sort of 

constraint, as originally mentioned by Hägerstrand (1970). According to Laube (2014), human 

movement is typically constrained as well, for example by road or path networks. Ski-touring and 

freeriding are quite special in that respect, as they do not follow paths. However, a constraint is that 

there has to be snow to ski on, and a slope to ski off. Also, skiing routes generally cannot access 

extremely steep slopes. Furthermore, most skinning too steeply uphill is experienced as uncomfortable 

by many tour skiers. As such, many ski touring routes follow the same terrain features. Choosing 

whether to model movement in a constrained space is important, as it changes the options. In the example 

of human movement, modelling in a constrained space allows for map-matching with a road network. 

This is generally not applicable to the free route choices in ski touring. However, an interesting study is 

provided in Taczanowska et al. (2017), who model ski touring GPS tracks in a node- and edge network 

based on a trails system. This network is then enhanced based on the intensity of use, focusing on the 

most important nodes. This shows that even if ski touring does not officially follow roads, methods 

taken from road and network modelling could apply to ski touring as well. 

 

The third dimension Laube mentions in his book is whether data is recorded continuously (top row in 

figure 5) or discretely (bottom row in figure 5). As mentioned before, GPS data with a fine granularity 

could be seen as continuous when a smooth line is depicted of it. However, Laube (2014) mentions that 

GPS data can also deliberately be treated as discrete if the research goal is helped by this. An example 

is an urban network, where the entire segment in which a person is on a specific edge (e.g. a tram line) 

is treated as one discrete step. A similar thing is done in the aforementioned study by Taczanowska et 

al. (2017).  

 

Movement parameters 

To analyse movement, one needs to address its characteristics, or movement parameters. Movement 
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characteristics or movement parameters both mean the same thing: they are variables that describe the 

movement. Although there is some variance, most studies use the same basic set of parameters (Laube, 

2014). Andrienko, Andrienko, Pelekis, and Spaccapietra (2008) distinguish between moment-related 

and overall characteristics. Whereas moment-related characteristics are at a specific moment or timestep 

(e.g. the speed at a specific place) , overall characteristics are about the whole trajectory (e.g. the overall 

average speed). A different distinction is made by Dodge et al. (2008). They differentiate between three 

groups of parameters: primitive parameters, primary derivatives and secondary derivatives. A second 

dimension of distinction is between spatial, temporal and spatiotemporal parameters. The primitive 

parameters are the coordinate positions at time instances and intervals. The primary derivatives are 

derived from this, for example the distance or the direction. The secondary derivatives are derived from 

the primary derivatives, for example the acceleration, which is derived from the speed by calculating 

the change in speed between two moments or two positions. Also, the derivatives are computed by 

combining different parameters. For example, to compute direction, one needs multiple sets of 

coordinates as well as the times at which these coordinates were travelled. The classification from Dodge 

et al. (2008) is depicted in figure 7. 

 
Figure 7. A classification of movement parameters. Source: Dodge et al., 2008, p. 243 

 

Although many of the derivatives are also stored directly in advanced GPS sensors, from a transparency 

and control perspective it is advised to (re)compute them as well (Laube, 2014). 

 

Movement patterns 

Movement parameters offer a useful framework to investigate an individual movement trajectory. 

However, even more interesting is to analyse a set of trajectories and their interrelations. To do this, one 

has to look at the movement patterns. A useful overview of possible movement patterns is given in 

Dodge et al (2008), although explaining all of them would be beyond the scope of this chapter. What's 

important, is that different movement patterns can be classified based on the variables in figure 7. Pattern 

analysis is often applied to data where different objects move in congruence with each other, for example 

a flock of birds or football players on a field. However, it can also be interesting to find out about places 

where trajectories concentrate at different moments in time. Since the former is impossible with the 

dataset used here, the focus will be on the latter. 

 

2.3.4. Challenges in movement analysis 

Several challenges can be identified in computational movement analysis. From those challenges, future 

research directions are formulated in articles that deal with CMA. 

 

Context 

Several authors stress the need to include context in movement analysis (e.g. Buchin, Dodge, & 

Speckmann, 2014; Dodge, 2016; Purves, Laube, Buchin, & Speckmann, 2014; Laube, 2014). Context 

can be defined as "the locational circumstances of a moving agent" (Buchin et al., 2014, p.2). Dodge et 

al. (2016) argue that within movement analysis many studies focus on the characteristics of trajectories 

in isolation, not paying attention to context. Context can be improved by recording additional data with 

the trajectories, such as demographics. Another way to add context is to add extra geographic 

information to the study, such as a road network within which trajectories can be placed. This is an 
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example of the importance of constraints that limit movement possibilities as per Hägerstrand (1970). 

There are quite some examples of recent trajectory studies that include context in their analysis. Buchin 

et al. (2014) study hurricane and albatross flight trajectories and model their similarity taking into 

account the context. They differentiate between contexts that enable and that limit movement, and 

between partially or fully enabling or limiting. For example, a road fully limits a car's movement, 

whereas a tractor is partially limited as it can go off-road but will be slower. Their article offers an 

interesting technique for quantitatively taking into account context in similarity analysis. Basically, they 

increase the distance between two trajectories when their contexts differ, for example one on land and 

one is one water. This corrects trajectories that are close in absolute sense but far away contextually, 

and conversely trajectories that are further away in distance but contextually closer. This is something 

that also needs to be thought of when analysing skier trajectories: two tracks may be very close in space, 

but contextually far apart, because a steep ridge separates them, creating a different spatial context. 

 

Siła-Nowicka et al. (2016) use a combination of GPS tracks of human movement with contextual 

information such as points of interest to analyse urban movement patterns. Conversely, they also draw 

conclusions about the context based on the movement patterns. For example, they evaluate which places 

are frequently visited by humans in their daily life. In this way, human movement and geographic place 

are studied together, instead of separately, improving the semantic value. An example of a contextual 

point of interest in ski touring is a mountain top or pass, which is often used as a target of a ski tour.  

 

Including context in the analysis in this thesis is of particular interest as it could make up for the lack of  

temporal information in the planned routes.  

 

Uncertainty 

Although GPS data is often treated as reliable, there are many possible inaccuracies in the capture. Three 

categories of uncertainty surround movement data: 

• Uncertain specifications: what exactly is meant by a description of a trajectory. For example, 

exactly which trajectories do we include when we report on "daily trips?"  

• Uncertain measurements: this can be due to inaccuracy in the measuring tool, but also because 

GPS is recorded at discrete time steps, and what happens in between is uncertain. 

• Uncertain transformations: stems from the transformation of raw measurements into processed 

information. 

(Laube, 2014).  

 

How important measurement inaccuracies are, depends on the goal of study. When the goal is 

aggregating a large number of routes, inaccuracies aren't that important. However, when point-in-

polygon analysis has to be applied, inaccuracies can be important, as they may lead to incorrect 

classifications (Laube, 2014). 
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3. Methodology and data 
In the following section the methods used in this thesis are outlined. Prior to this, the study area and data 

used are described.  

 

3.1. Study area 

This thesis is limited to the Swiss alps. The reason for this is that this is the only area for which all used 

datasets have coverage. The original datasets have coverage for the entirety in Switzerland. However, 

the planned ski tours were already processed in the thesis of Schönenberger (2018), and he decided to 

focus on the Swiss alps and exclude the Jura mountains and the flat areas of Switzerland which have no 

avalanche bulletin, so that he could have a contiguous study area. This are also contains the majority of 

planned routes. The area of study is presented in the figure below.  

 
Figure 8: Study area of this thesis. After Schönenberger (2018), p. 36 

 

A small test area was chosen to develop the methods needed and to provide examples of some of the 

results. This area comprises the routes leading up to Pigne d'Arolla (3796 m.a.s.l). The reason this peak 

was chosen is that it has multiple possible routes leading to the top with different terrain attributes, and 

that there were many GPS tracks on Wikiloc leading to this peak. Within this area, there are 173 planned 

routes and 31 GPS tracks.  
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Figure 9. Smaller study area around Pigne d'Arolla 
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3.2. Data 

Several datasets are used in this thesis. They are described in the following section.  

 

3.2.1. Planned ski tours 

The main dataset that is subject to analysis in this thesis are the planned ski tours from Whiterisk.ch. In 

total, they are 53553 lines in a vector dataset in .shp format. As noted before, they have already been 

used in a prior MSc thesis last year (Schönenberger, 2018). A large part of the workload in that thesis 

was processing the routes and filtering out routes that were not suitable. In that thesis, routes were 

filtered out because they were unrealistic, too short, because they were not ski touring routes, or because 

they were not within the study area. Because of this, the dataset is already quite reliable, although some 

tours will still contain errors. Also, some key terrain characteristics of the planned tours were already 

included, such as the average and maximum altitude and slope of each slope. In total, 26 of such 

characteristics are included. Table 1 shows the attributes stored in the processed routes.  

 
Table 1. Attributes in Whiterisk routes. Source: Schönenberger, 2018, p. 42 
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Figure 10. all the ski touring routes from Whiterisk.ch (source: Whiterisk.ch, processed by C. 

Schönenberger, edited M. Hogeweij) 

 

The entire dataset has been visualized in figure 10. Some of the major valleys can be identified since 

they have no routes. Also, it is clear that the Italian-speaking part has less activity. This is in line with 

other studies into ski touring activity (Techel et al., 2015). The mean route length is 7628 meters, and 

the mean altitude difference within a route is 1067 meters. 

 

3.2.2. GPS tracks from Wikiloc 

A secondary dataset comprises GPS tracks of ski tours. Those were downloaded manually by the author 

from Wikiloc.com, a social media platform on which users can share tracks of their outdoor activities. 

The main difference between this dataset and the one from Whiterisk is that these tracks were all 

recorded with GPS devices, whereas the ones from Whiterisk were all drawn on a digital map.  

When querying the website, thresholds were put in to leave out trips which were probably not ski tours 

(less than 200m altitude difference or less than 3km distance). Also, to make the data comparable to the 

Whiterisk data, probable multiday trips were filtered out. The threshold for this was 21008 meters in 

distance, the same as used by Schönenberger (2018) when filtering the planned route data. Then, some 

tracks where it was obvious a part was recorded in a car or where ski lifts were used, were manually 

filtered out. In the end this resulted in a dataset of 777 ski (and splitboard) touring tracks. As can be seen 

on figure 11 below, there are far less tracks. Also, the data is more concentrated in some specific areas, 

compared to the Whiterisk data which has coverage throughout the Swiss alps. To compare the coverage 

of the two datasets, the number of routes in each municipality with the size of the municipality they are 

in to make up their density. Then, the relative differences between municipalities in track densities were 

compared. Given the low number of Wikiloc tracks, this gave a better view of the route density than a 

normal line density measure. The density is quite evenly spread throughout the Whiterisk dataset. In the 

Wikiloc dataset however, there is an obvious concentration of tracks in some regions, and zero tracks in 

other regions.  
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Figure 11: All the used ski touring GPS tracks from Wikiloc.com (source: Wikiloc.com, edited M. 

Hogeweij) 

 
There are various possible reasons for this uneven spread in the Wikiloc data, but it is not very important 

for the scope of this thesis. Since there are less Wikiloc routes, there are also more areas for the Wikiloc 

dataset with no routes at all. The high density regions are almost exclusively located in the southwest 

corner of the swiss Alps, in the French-speaking part of Valais/Wallis canton. This may tell us something 

about the set of users of Wikiloc, maybe it is more popular among people from the French-speaking part 

of Switzerland.  

 

3.2.3. Avalanche terrain hazard model 

Another dataset that is used in this thesis is the modelled avalanche terrain from Harvey et al. (2018). 

They modelled two different raster maps of avalanche terrain. One depicts the potential of triggering a 

small or medium-sized avalanche (which form the majority of recreational avalanche accidents). The 
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other depicts the hazards (consequences) of triggering within the avalanche terrain. 

 

Classified avalanche terrain 

In the classified avalanche terrain map, each raster cell (resolution of 5 by 5 meters) is assigned to a 

nominal terrain class. The values that are not avalanche terrain are given a value of 0. The rest is split 

into areas from which avalanche releases are possible (trigger points), and areas where remotely 

triggered avalanches can runout into (so-called runout zones). These areas were modelled based on the 

terrain characteristics of 5200 mapped avalanche starting zones. The runout zones were computed with 

the avalanche simulation model RAMMS:EXTENDED (Bartelt, Buser, Valero, & Bühler, 2016). The 

triggering areas are divided into four classes, as are the remote triggering/runout zone areas. Although 

the different classes cannot be compared numerically, there is a decrease in triggering potential from 

“high triggering potential” down to “maximum runout zone”. To give an impression of this dataset, a 

zoomed in view is provided in figure 13 of the area directly around Saas-Fee in the Wallis canton. Note 

that areas with no avalanche terrain are made transparent so that the underlying terrain is visible. 

 
 

Avalanche terrain hazard map 

In this map, each cell (5 by 5 meters) is assigned a value between 0 and 1, where 1 is most dangerous. 

The inputs for this are the map of modelled avalanche triggering potential and runout zones. This is 

combined with the potential and severity of burial in case of an avalanche, and with the potential of 

injury by falling when caught in an avalanche. The potential of falling was modelled by using a 10m 

DEM. Since the severity of potential consequences is combined with the avalanche release potential, it 

gives an overview of the hazard of the terrain, instead of just the potential for triggering an avalanche. 

For example, a place where triggering an avalanche is not extremely likely since it is not very steep, 

may be assigned a low value for triggering potential. However, if it is right above a steep drop, it will 
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have a higher value for terrain hazard, since the potential consequences are severe. The downside of this 

approach is that the thematic difference between different sources of hazard cannot be seen by the 

viewer. In other words, it can't be seen from just looking at the values whether a place is dangerous 

because of falling risk, because of triggering risk, or because it is in a run-out zone. The advantage of 

this dataset is that cells can be compared numerically as they are ratio type. An example of this data is 

provided in figure 14, showing the same area around Saas-Fee.   

 
Figure 14.  avalanche terrain hazard for small area around Saas-Fee (source: Harvey et al, 2018, 

edited by author) 
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3.3. Methods 

The following subsections present the methods in the order of the research questions that they relate to. 

 

3.3.1. Processing terrain rasters 

In this thesis the avalanche terrain data is used to compare and classify routes. Before this can be done, 

the avalanche terrain data has to be processed. The data was clipped with the Swiss country boundaries 

as well as with the outer bounds of the area in which all the planned routes are located.  

 

In order to interpret the results of the raster overlay with the routes, some knowledge is needed on the 

distribution of values in the original classified avalanche terrain raster. For this purpose, the data was 

clipped with the extent of the area in which the routes were planned, so that the non-mountainous regions 

were excluded. For this, the minimum bounding box around the routes was used. The goal of this is to 

exclude terrain that is out of the area where routes are planned. Then, the total surface of each terrain 

class within that polygon was calculated. This gives an overview of the spread of values in the avalanche 

terrain raster. However, within the bounding polygon of all planned routes, many areas where no skiing 

activity takes place are included. There are some very wide valleys within these boundaries. Therefore, 

to make a more accurate assumption of the values in the terrain rasters, they were clipped again, but this 

time with each individual bounding box of each route, and the surface of each raster class was again 

calculated. The difference between both methods is shown in figure 15. 

 
The reason why this was done is to be able to compare the terrain in planned routes to the general terrain. 

The results of this are discussed in section 4.1. 

 

3.3.2. Defining the avalanche terrain characteristics of planned routes 

A goal of this thesis is to analyse to what extent planned routes are traversing avalanche terrain. 

Therefore, the information contained in the terrain rasters needs to be added to the vector datasets of the 

routes. This is done differently for both raster datasets, since the data contained in them is of a different 

nature. In the terrain hazard dataset, the data is at a ratio measurement scale. Because of this, descriptive 

statistics can be calculated based on the intersection of each route with the hazard data, and these can be 

used to compare routes. The classified avalanche terrain data on the other hand is of ordinal nature. Cells 

in the class "high triggering potential" have a higher potential for triggering avalanches than those in the 

class "medium triggering potential". However, this difference cannot be quantified.  

 

Mean terrain hazard values 

The terrain hazard data was used to calculate the mean "hazard rating" across all routes. This is shown 

for the routes in the Pigne d'Arolla study area in figure 16.   
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Figure 16: GPS tracks and planned routes leading up to Pigne d'Arolla, coloured by mean terrain 

hazard rating.Source: Whiterisk.ch, Wikiloc.com, edited by author 

 

To calculate this mean terrain hazard value, the cumulative value of all terrain hazard cells intersected 

by a route is divided by the total number of cells in that route. The results of this operation are discussed 

in more detail in section 4.1. 

 

95th percentile values 

When one wants to know how dangerous a route is, the mean hazard rating has some flaws. This is 

further discussed in section 4.1. As is often the case with mean values, longer routes tend to have lower 

values, even when they traverse the same dangerous sections as short routes. Therefore, to assess how 

dangerous a route is, the maximum values for terrain hazard may be more useful. However, 

Schönenberger (2018) shows in his thesis that using maximum values is also problematic due to minor 

mistakes which lead to large differences in route planning when a route intersects a high value cell for 

a short amount of time. Hendrikx et al. (2015) show that using top percentile values is a useful measure 

when analysing route trajectories. Here, instead of using the value of the highest valued terrain cell, one 

uses the value of the 95th percentile highest terrain cell. The advantage of this is that a single cell with a 

very high value, which may be there due to an inaccuracy in the data, does not give a route an artificially 

high value as it would when using maximum values. In other words, the 95th percentile values are 

deemed more robust to minor inaccuracies than the maximum values. 

 

However, computing top percentile values is not straightforward here, as the route data used are 

polylines instead of points, which makes discrete sampling impossible. Also, the avalanche terrain data 

is continuous. To avoid this issue, the terrain hazard is rounded and divided into 1000 discrete classes 

(from hazard 0.001 to 1, with intervals of 0.001). This makes it possible to see the percentage of each 

terrain hazard value that is traversed by a route. From this, the 95th percentile values are calculated. First, 

the cells intersected by a route are ordered by value. Then, the 95th percentile point of this list is found. 

Then, the value of the cell at this point is returned. This is illustrated in figure 17. As an example, the 

95th percentile terrain hazard values for the Pigne d'Arolla sample are shown in figure 18. The pattern 

in the 95th percentile values shows some similarities to that in the mean hazard values. The difference 

between both of the measures is discussed in more detail in section 4.1 in the results chapter.  
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Figure 18. 95th percentile terrain hazard around Pigne d'Arolla 

 

3.3.3. Clustering based on avalanche terrain characteristics 

A next step is clustering routes based on avalanche terrain. For this, the discrete terrain classes were 

used instead of terrain hazard. The reason for this is that they hold more semantic meaning. Two routes 

may have similar values for 95th percentile or mean hazard, but still be highly different routes. For 
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example, one could be very steep in some sections while very flat in the rest, whereas the other is 

moderately steep throughout. To do this, the percentage of each route in each of the 12 terrain classes 

was calculated. Then, these values are normalized using: 

  
𝑧=(𝑥−𝑢)

𝑠
  

where x is the percentage of a route in that terrain class, u is the mean value for that class amongst the 

whole population, and s the standard deviation. As an example, the chart in figure 19 shows those scores 

for a single route. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Avalanche terrain "signature" of single route showing normalized proportional area in 

each discrete avalanche terrain class 

 

For each terrain class, it is shown how much that route traverses it, relative to the mean of all routes. 

These scores can be seen as the “terrain signature” of a route. As can be seen, this route has below 

average scores for the terrain classes "no avalanche terrain" and all the remote triggering terrain classes. 

It has above average scores for high to very low triggering terrain, and very high scores for above 50 

and above 60-degree terrain. As such, this route traverses relatively much of that terrain. Therefore, this 

route probably is planned in a steep area, for example a high alpine peak.  

 

A hypothesis at this point is that there exist patterns in the data related to this avalanche terrain signature. 

For example, upon manual inspection it was found that routes leading to high alpine peaks (for example 

the Weisshorn at 4505 m.a.s.l.) show very high scores for terrain above 50 and 60 degrees, since to reach 

those peaks they traverse very steep ridges. This makes them very different from almost all routes, since 

most skiers tend to avoid terrain over 50 degrees.  

 

Because of this hypothesis, it is useful to try to cluster the routes based on their terrain signatures. First 

because this can give insight into the characteristics of planned routes in general. For example it is 

interesting if there exists a class of routes with extreme terrain, and how many routes are part of that 

class. Second because these terrain signature clusters can be compared to spatial clusters of routes. 

Whether or not terrain clusters and spatial clusters are related is interesting to know for route planners. 
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For example, heterogeneous areas in terms of terrain clusters are more interesting for avalanche safety 

training courses, because when planning a route there, more meaningful planning decisions can be made. 

 

For the clustering based on avalanche terrain, different methods were considered. At first, the DBScan 

algorithm was tried. The reason for this is that it wasn't known beforehand how many clusters exist in 

the data, and in DBScan the algorithm decides the amount of clusters suitable for the data. This algorithm 

uses 2 parameters, epsilon and minPts. For each point, it is assessed whether it has minPts around it 

within a sphere of diameter epsilon. If this is the case, the point is labelled as a core point. Then, for 

each core point, the points within that points epsilon are added to the cluster. Then, the cluster is grown 

by adding every point that is within epsilon of any point in the cluster.  However, the results here were 

not satisfactory. The algorithm ended up either choosing a large number of small clusters, or one very 

large one. However, the goal here is to categorize the routes in a way that they can be compared across 

the dataset, which is impossible with numerous clusters of around 30 members. Different parameters 

were tried, but the results did not end up being useful. 

 

Another method tried was principal component analysis (PCA). This is useful when there are multiple 

dimensions, as is the case here, since it can help reduce the dimensionality and thus increase the clarity 

of the clusters. In this technique, the variables are converted to principal components, with each principal 

component correlating negatively or positively with each of the variables. Then, the correlation between 

each point (in this case each route) with each component is shown. However, too much information was 

lost when doing this. Also, the correlation between the principal component and each of the variables 

was generally quite low (between -0.3 and 0.3) which makes it hard to use the components to say 

something useful about the variables. Besides, the number of dimensions was not so high (12) that 

dimensionality reduction was seen as absolutely necessary. 

 

The next approach which was tried was k-means. Here, the only user-defined parameter is k. In the first 

iteration, k centroids are computed for the data. Then, each object is assigned to the cluster belonging 

to the nearest k. Then, the centroids of each cluster are recomputed as the centroid of all points assigned 

to that cluster. Steps two and three are repeated until the centroids no longer move. The value given to 

k is of great influence on the outcome of clustering. Different methods exist for defining k. The one 

chosen here is the elbow method. This method comprises calculating the sum of squared distances of 

each point to its cluster centroid. This is done repeatedly for an increasing k value. The higher k, the 

smaller the inertia. Ideally, both inertia and k should be as low as possible. Therefore, when plotting k 

and inertia, the ideal value for k is at the elbow of the graph, which is the point after the largest relative 

decrease of inertia.  
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Figure 20. K means and inertia for the attribute terrain classes in routes 

 

The elbow in figure 20 is found at k=5 (although there is also a rapid increase in slope at k=1, but this 

would make clustering useless). Therefore, this value was chosen for k. The elbow method does not 

always produce the optimal amount of clusters for the data and goal of analysis provided. Also, the 

elbow in figure 20 is not extremely clear, one could also argue that there is an elbow at k=4 or k=6. 

Therefore, other values for k were also tried to see whether any more meaningful clusters showed up, 

but this was not the case. Therefore, 5 was chosen as the best value for k. The results of this are provided 

in chapter 4.2. 

 

3.3.4. Spatial clustering 

Visual inspection shows that there exist spatial corridors in the routes. In the Pigne d’Arolla example, 

some clear patterns can be defined, as there are a few standard routes to the peak that are more or less 

followed by most routes. Therefore, it makes sense to cluster the routes spatially. The reason why this 

is useful is that it allows for comparison of individual routes. Routes with the same general trajectory 

can be compared to see whether they are different in terms of avalanche terrain, and what planning 

strategies are the cause of those differences.  

 

Different methods exist for computing the similarity of two lines. The most simple is to compute the 

centroid of each line and calculate the distance between the centroids. This however is often inaccurate, 

as routes can be planned in any direction, and this method also does not take into account route length. 

A slightly more complex method is Hausdorff distance. This calculates the minimum distance from any 

point in a line to any other point in the other line. However, this does not take into account the sequence 

of the points which make up the lines, and is also inaccurate when lines have some points closely 

together but a majority of points far away from each other (Alt & Scharf, 2012). 

 

The measure chosen here is discrete Fréchet distance (Eiter, Mannila, & Eiter, 1994). This is a variety 

of Fréchet distance. Fréchet distance is the maximum distance between two ordered trajectories. This is 

often imagined as a man walking a dog along a leash, from a starting point towards an end point. They 

both cannot backtrack. The Fréchet distance is the minimal length of the leash between the man and the 

dog needed to traverse the two trajectories. The reason this measure is chosen is that it is suitable for 

ordered trajectories, and takes into account subtle differences between trajectories, as well as using the 
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whole of the trajectory instead of just the closest points. 

 

The discrete Fréchet distance is an approximation of this distance which only takes into account the 

nodes of both lines. This method uses the sequence of points within each line, but does not need a time 

stamp. Instead, the points are seen as an ordered list. This is ideal for the dataset at hand, as the points 

in this dataset have no timestamp. Further, a python module (trajectory_distance) was available for 

download which already included an implementation of discrete Fréchet distance which takes variable 

record lengths into account, which is required for this dataset. The disadvantage of the method used here 

is that when there is a large difference between number of points, the method loses accuracy, as the line 

with less points will be assigned a larger distance to other lines then it has in reality. However, this is 

accepted as lines with less points are generally less accurate, whichever method is used.  

 

A problem faced at this point was the size of the dataset. Since in the most simple implementation for 

each line, the Fréchet distance to every other line has to be checked, giving the algorithm a complexity 

of O(n²). To speed this up, the Euclidian distance between route centroids was first computed, and only 

the 200 closest lines in Euclidian distance were assessed when calculating the Fréchet distance. 

Although computing the Euclidian distance of each line to each other line also has O(n²) complexity, it 

is much simpler since it only needs to process a single metric for each line, as opposed to each point of 

each line. 

 

To cluster the routes, an algorithm has to be picked. Several algorithms exist for this purpose. They can 

be grouped into hierarchical, partitioning, grid-based, and density-based algorithms (Ram, Jalal, Jalal, 

& Kumar, 2010). Partitioning methods are not suited here, as they need a priori definition of the number 

of clusters. Given the continuous nature of this dataset, it is impossible to establish the number of clusters 

needed beforehand. Hierarchical methods suffer from the same problem. Grid methods were considered, 

but no python implementation could be found, and developing an algorithm seemed tedious work. 

Therefore, a density-based approach was chosen. The chosen approach was DBSCAN, which has an 

implementation in the scikit python module. How this algorithm works was already explained in section 

3.3.3. The implementation of DBSCAN used here allows the user to input a custom distance matrix, 

instead of calculating the distances between lines as part of the clustering. The Fréchet distance from 

each route to the nearest 200 routes was input for this.  An added advantage of density-based clustering 

is that the problem of differences in number of points, identified above, becomes less serious. The reason 

for this is that to join a cluster a line need not be similar to each line in that cluster, it only has to be 

within the threshold of one other line. 

 

Using the right parameters is important for DBScan, as it greatly influences whether clusters are 

accurately classified as such. In this case this was problematic, as the spatial similarity of routes is 

influenced by the terrain. For example, at alpine peaks all routes follow a narrow ridge, and therefore 

they are very similar. On large glaciers however routes are quite far apart while still being part of the 

same cluster. Therefore, it is impossible to assign the perfect parameters for the entire dataset. 

Experimenting with different parameters showed that the best parameters for the whole dataset were 

epsilon = 600 and minPts = 10. This was on the strict side, to prevent false positives, with the drawback 

of not including some routes that were broadly part of a cluster. The results of this are shown in chapter 

4.3. 

 

3.3.5. Assessment of similarity of avalanche terrain for routes within a spatial cluster 

To find out the influence of the surrounding terrain on a route, the spatial clusters are used. These are 

analysed in combination with the avalanche terrain attributes in the routes, and the avalanche terrain 

clusters. As such, the outputs of research questions 1 to 3 are used as input for research question 4. A 

combination of qualitative and quantitative methods will be used for this. The quantitative part will 

mean calculating the intra-cluster variance in terms of cluster membership and 95th percentile values. 
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For the 95th percentile value, Pearson’s r will be calculated for each spatial cluster to assess whether the 

values are normally distributed. If they are, standard deviation is used as a measure of variance. To 

measure the variance in terms of terrain cluster membership, the ratio between the count of the most 

occurring terrain cluster and the total number of routes within each cluster is calculated. The higher this 

number, the more homogeneous a spatial cluster is in terms of terrain cluster membership. 

The qualitative part of this question is be comprised of visual inspection. Spatial clusters that are either 

very heterogeneous of homogeneous are projected on a map. Then, they are inspected in order to find 

out why they are like that. Also, the area around the routes is viewed in the Whiterisk website to find 

out whether there are any pointers there as to why routes are planned in the way they are. 

 

3.3.6. Comparison of GPS tracks and planned routes 

To answer this question, the GPS tracks from Wikiloc are compared to planned routes. First, the values 

calculated in question 1 are compared for the entire dataset.  This gives an overview of the avalanche 

terrain in both datasets. After this, the terrain clustering steps are repeated for the GPS tracks. For this 

the percentage of each GPS track that goes through each discrete avalanche terrain class is calculated. 

Then, this data is added to the signatures of the planned routes and the clustering is repeated. The 

clustering is not performed for the GPS tracks separately as that would lead to different clusters which 

makes comparing them to the planned routes impossible. The third comparison will be on a more 

detailed level. A number of spatial clusters will be chosen with a sufficient number of planned routes 

and GPS tracks. Then, it will be reviewed whether there are any differences between the two in dealing 

with the avalanche terrain in their routes.  
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4. Results 
In this chapter, the results of the analysis are presented in the order of the related research questions. 

 

4.1 Relating modelled avalanche terrain to planned routes 

4.1.1. Bounding polygons 

The first step in this thesis was establishing a method to treat modelled avalanche terrain as a route 

attribute. For this, several methods were used. First, the bounding polygon of the terrain in which routes 

are planned were used. In this bounding polygon, relatively much terrain is in the category “not typical 

avalanche terrain or no data”. This is because this area includes some major valleys without steep slopes. 

Then, the bounding polygon of each route individually was used to clip the avalanche terrain and 

calculate the surface of each terrain class. As can be seen in table 3, there is now less terrain in the “no 

avalanche terrain” class. That is because some of the terrain where no skiing takes place because it is 

too flat, is now excluded. 

 
 

 
 

As a next step, for each route the intersecting cells of the discrete terrain classes were counted in an 

overlay operation. The result is a table like tables 2 and 3, but for each route individually. When counting 

up the amount of cells in each route and calculating the terrain, the resulting table gives an overview of 

the relative amount of terrain of each class intersected by an average route. 
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Table 4. Mean percentage of terrain classes intersected by routes (route length taken into account) 

 

 
Figure 23. route with bounding polygon 

Interestingly, the routes on average traverse more terrain defined as no avalanche terrain, and less 

potential triggering terrain than is included in their minimum bounding polygons. Perhaps one would 

expect the routes to traverse steeper terrain on average then is included in their bounding polygons, since 

steeper terrain is often seen as more fun to ski. This is, however, not reflected in the data. When visually 

inspecting some bounding polygons and the routes they are based on, it becomes clear why this is the 

case. The routes often follow terrain corridors that are easy to follow, and usually go around extreme 

terrain. The bounding polygons however include this steep terrain. This is clearly visible in the above 

example: whereas the route mostly traverses two rather flat glaciers, the bounding polygon includes the 

very steep ridge in between the glaciers, as well as some other steep terrain. Because of this, minimum 

bounding polygons should only be used to give an overview of the modelled avalanche terrain, and are 

not suited to represent the terrain traversed by actual routes.  
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4.1.2. Mean terrain hazard 

When trying to classify routes based on the avalanche terrain they traverse, the modelled terrain hazard 

is a suitable dataset. One way of relating the routes and the terrain data, is by calculating the mean value 

for intersecting cells of the terrain hazard dataset for each route. This is done by simple counting the 

values of all raster cells intersected by a route and dividing this number by the total number of cells 

intersected. Since the terrain hazard is modelled as a ratio value between 0 and 1, the mean value for 

terrain hazard can be compared between routes. For the entire population of routes both planned routes 

and GPS tracks, the mean of this value is 0,307, and the standard deviation is 0,088. The histogram of 

the mean terrain values is shown in figure 24. The goal of using this data as a route attribute, is ranking 

or classifying routes based on the avalanche terrain they traverse. As such, the mean terrain hazard value 

should be a good representation of how “good” the route planning is at avoiding avalanche terrain. To 

what extent this is the case is illustrated on the next pages by using the Pigne d’Arolla area as an example.  

 

 
Figure 24. mean terrain hazard value of all routes 
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Figure 25. routes leading to the peak of Pigne d'Arolla, coloured by mean terrain hazard 

 

The above figure shows the mean hazard value for planned routes and GPS tracks around Pigne d’Arolla. 

There is not a clear pattern to be identified in the mean terrain hazard values in those routes. On first eye 

it seems that the routes that approaches the peak from the east have slightly higher values than the ones 

coming from the west. Also, there is not a clear difference between the GPS tracks and the planned 

routes as far as the mean terrain hazard values go. What is interesting is the fact that the GPS tracks 

generally follow the same terrain corridors as the planned routes. Mostly though, there seems to be a 

high variance of mean hazard values between routes that follow a similar trajectory. This may indicate 

that mean hazard values are not suitable for measuring the amount of risky terrain a route traverses: 

spatially similar routes should have similar values. However, for a large part this is due to the fact that 

many routes have similar trajectories, but different start and end points. For example, some routes finish 

at the peak, while other traverse it and go down on the other side, which of course influences the terrain 

they meet on the way. When only viewing routes with similar start and end points, there is a clear relation 

between spatially similar routes in terms of mean hazard values.  
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Figure 26. routes within one corridor to Pigne d'Arolla, coloured by mean avalanche terrain hazard 

 

Using the same colouring scheme as before, most routes now seem quite similar in terms of mean hazard 

values. The mean value is now 0,32, with a standard deviation of 0,04. Still, there are differences 

between the routes. Two passages seem important in determining the mean hazard value assigned to 

routes. This is shown in figure 26. Here, only routes that are one standard deviation above or below the 

mean terrain hazard value are shown.  There are two passages that seem to determine the value. First, 

the routes pass a through a broad glacier. The eastern way through clearly passes more terrain with high 

hazard values. Then, just before the top, the low-value routes all take a detour south, and by doing this 

they go around an area with high values.  



51 

 

 
Figure 27. routes in one corridor to Pigne d'Arolla, 1 sd above or below mean terrain hazard value 

 

This example shows that mean terrain hazard values do well at showing whether a route passes through 

terrain with high hazard values. However, there are also cases when it does not work so well. Longer 

routes tend to have lower values than shorter ones that pass the same high-risk sections. This is of course 

logical. However, it is not an “accurate”, since these routes can be seen as carrying the same risk, they 

just have more low-risk sections bringing the value down. This effect is enhanced when a long route 

also passes through a lot of cells with values near zero. These cells may have almost the same terrain as 

adjacent no-data cells, but no-data cells do not count towards the mean value. An example of this is 

shown in figure 27 below. This route has a mean hazard rating of 0,24, well below the mean. However, 

it passes through two sections with very high terrain hazard, encircled in black. As such, it is not a “safe” 

route. However, because it passes through many cells with near-zero values (encircled in blue), it gets 

assigned a low mean hazard value. 
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Figure 28. a long route near Pigne d’Arolla with a low mean hazard value 

 

For the majority of routes, mean hazard values do give a good view of the risk in a route. As such, they 

will still be used throughout this thesis as an indication of the terrain hazard in a route. 

 

However, the above example has shown that it does not work well in all cases. Passing dangerous 

sections should give a route a high value for avalanche danger, regardless of the other terrain it passes 

through. As such, a next step is to find a way to represent the amount of risky terrain passed by a route, 

ignoring the flat sections.  

 

4.1.3. 95th percentile hazard values 

The previous section has shown that in some cases, it is necessary to show the top values of avalanche 

terrain hazard in a route as opposed to the mean value. One could simply calculate the maximum value 

intersected by a route. However, Schöenberger (2018) has already shown that calculating max. values 

for terrain intersected by planned routes is problematic. The reason for this is that minor differences in 

planning can make a very large difference when a single high-risk cell is intersected. Therefore, instead 

of maximum values, the 95th percentile values of terrain hazard in routes was calculated. How this was 

done was already explained in the methods chapter. The mean 95th percentile hazard value is 0,64.  
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Figure 29. histogram of 95th percentile hazard values 

 

The histogram above shows that almost no routes have a 95th percentile value of over 0,9 or under 0,35. 

Also, the distribution is skewed negatively, with the mean being less than the most occurring values. As 

such, there are more extreme values on the low end of the distribution than on the high end. 

The mean hazard values and 95th percentile values are somewhat related, with a Pearson’s r correlation 

coefficient of 0,21 (p<0.01). Again, the example of Pigne d’Arolla was used to inspect the advantages 

and disadvantages of this measure. 

 

The pattern identified in figures 26 and 27 is also there for the 95th percentile values. The same two key 

sections seem to be important in determining whether a route has a high value. A difference is that the 

95th percentile hazard values show larger differences within the same corridor. The standard deviation 

in this corridor for the 95th percentile values is 0,8, against 0,4 for the mean hazard values. The reason 

for this is that the routes are now judged based on the upper 5% of cells instead of for all the intersecting 

cells. As such, a small difference in route drawing has more effect. This is useful as it shows the true 

difference between routes in terms of how risky they are. 
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Figure 30. single corridor of routes to Pigne d’Arolla, coloured by 95th percentile value 

 

In the example above, the routes that take the detour south around the steep section (lower circle) get 

assigned vastly different values. This is a good representation of the reality, as they manage to avoid a 

very steep section with high potential for avalanche triggering. Also, the long route from figure 28 now 

has a high value (0,80) assigned which accurately represents the fact that it intersects two areas with 

high terrain hazard. These are clear advantages of using 95th percentile hazard over mean terrain hazard. 

There is one situation though in which mean hazard values should be better, namely when analysing 

routes on the aggregated level instead of on individual level, treating the above routes as a single 

corridor. This is the case when one does not want to plan routes in detail but instead wants to know 

about the characteristics of a general route corridor. In that case, the high variability of 95th percentile 

values may make them less accurate, if one does not exactly follow individual routes. 

 

The mean terrain hazard and 95th percentile hazard values of individual routes are useful for pairwise 

comparisons between individual routes. However, as was discussed in section 3.3.3, they do not give a 

lot of information about the characteristics of a route. In the next section, the discrete terrain classes are 

used to cluster the routes based on avalanche terrain. For this, the percentage of each terrain class 

intersected by each route is used. 
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4.2 Clustering based on avalanche terrain 

4.2.1. Cluster attributes 

Clustering based on avalanche terrain resulted in five classes of routes. The mean percentages of each 

terrain class in each cluster is presented in the table below. 

 
Table 5. Mean values for the four clusters. Route length is not taken into account 

 
Table 6. Terrain class abbreviations 

 

Cluster 0 is small in terms of number of routes, and contains dangerous routes. It has the highest value 

for high triggering potential terrain. Also, it has very high values for both of the steep terrain classes 

with above 50 and 60 degree slopes. This last bit is interesting as this terrain is very rarely encountered 

in the other routes, with mean values of 0.4 percent and 0.1 percent respectively. Cluster 1 is large, 

containing 34% of all routes. The main distinguishing feature of this route is the high value for non-

avalanche risk terrain, while all other values are lower than the dataset mean. Therefore, these routes are 

generally the safest, traversing the least typical avalanche terrain of all clusters. Cluster 2 contains 15% 

of all routes and consists of routes that traverse quite a lot of high triggering potential terrain. Also, the 

routes in this cluster traverse more medium triggering potential than average. What distinguishes this 

cluster from cluster 0 is the fact that far less extremely steep (<50 degrees) terrain is traversed. Cluster 

3 has about average values for triggering terrain. However, the remote triggering terrain is much more 

prevalent in this cluster than in the rest of the data. Also, the no avalanche terrain values are lower. 

Routes in this cluster are probably safer than the routes in cluster 0 and 2, but not as safe as cluster 1. 

The final cluster, cluster 4, has very similar values to the means of the whole dataset. Routes in this 

cluster can be considered typical or average. Based on these characteristics, the following names are 

given to the clusters.  
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Table 7. Cluster names 

 

 
Figure 31. The five k-means clusters plotted based on two attributes: the percentage of the 

route not traversing avalanche terrain and the percentage traversing the most ‘high triggering 

potential’ terrain class.   

 

To give an idea of the way the routes within the clusters are positioned in terms of avalanche terrain, 

they have been plotted in the figure above. For this, the two most telling terrain classes, namely "high 

triggering potential" and "no avalanche terrain", have been used. The normalized scores of each route 

on both these terrain classes is shown. Because of the large number of points, it is hard to see the 

differences in density between cluster centres and cluster edges. To show the density of points within 

each cluster, the points are coloured by cluster density in figure 32.  Also, the cluster means have been 

added into the plot. This highlights the concentration of the points. It has to be noted that this is a plot 

of just two attributes. Some clusters may seem to overlap based on these two attributes, but are different 

in other attributes. 
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Figure 32. Kernel density plot of terrain clusters, including cluster centres. 

 

The difference in density around the cluster centres of cluster 4, 2 and 1 highlight the different 

characteristics of those clusters. This is less obvious between cluster 0 and 3, As a next step, the routes 

were grouped based on cluster membership and the mean values for other route characteristics (e.g. 

length) were calculated to assess whether there is any pattern in this. Then, t-tests were performed to 

check whether these values were significantly different. For this, Welch's t-test was used, which is more 

accurate than student's t-test for variable sample sizes (Fagerland & Sandvik, 2009). The results of this 

are shown in figure 32. All bolded values are significantly different from the mean with p < 0.05. The 

values with a green background are higher than the mean, and the ones with red backgrounds are lower. 

As expected, the flat routes have lower mean terrain hazard values and lower mean 95th percentile values, 

and very steep routes and relatively steep routes have higher values then average here. What is 

interesting besides this, is that the two steep and relatively dangerous clusters (numbers 0 and 2) have 

below-average danger ratings as defined in the avalanche bulletin. This means that these routes are more 

often planned when the bulletin gives off a lower warning number. This is interesting as it means that 

people plan more dangerous routes when the conditions are more favourable. Also, the very flat routes 

are often planned when the warning number from the bulletin is higher than average. This is again an 

expected outcome, as it is expected that people take the warnings from the avalanche bulletin into 

account when planning routes, and adjust the terrain traversed in their routes accordingly. However, it 

is still interesting to see this reflected in the data. A note that has to be made here is that only about a 

quarter of the routes have the avalanche warning rating defined, and for the others it is not possible to 

assess in what conditions they were planned. Furthermore, the very steep routes (cluster 0) relatively 

often have no danger rating defined by the user. 
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Table 8. Mean values for route attributes per cluster (green = significantly below population mean, 

red = significantly above population mean) 

 

What's interesting besides this, is that the very flat routes (cluster 1) have far lower values for route 

height than the mean. This suggests that the more mellow terrain traversed by these routes is more often 

found on lower slopes. Also, the very steep routes have by far the highest values for height, with an 

average max. height of 3001 meters. This suggests that these routes are often planned in high alpine 

terrain, where many of the extremely steep slopes that are typical for this cluster are found. Finally, the 

step length of routes gives an interesting picture. The very flat routes have the shortest step length, 

suggesting these routes are planned most carefully. This fits with the idea that these routes are the safest 

category. However, cluster 4, the typical routes, have the biggest step length. This is not expected, since 

these routes are not the most unsafe. Apparently, the relation between careful route-drawing and 

avoidance of avalanche terrain is not straightforward.  

 

4.2.2. Cluster locations 

Of the routes in cluster 0 and 2, relatively many are located in the south-western corner of Switzerland. 

This is where many of the high alpine routes can be found. In contrast, the routes in cluster 1, the very 

flat routes, are more often located in the Northern part of the Swiss alps. Here, terrain with less altitude 

and mellower slopes can be found. However, there is not a strong spatial trend in the terrain clusters. 

Most areas have some routes in each of the terrain clusters, which is why the route centroids are not very 

far apart.  
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Figure 33. Cluster centroids and all routes coloured by their terrain cluster label 
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4.3 Spatial clusters 

Using the DBSCAN clustering algorithm with the parameters defined in chapter 3.3.4, 655 spatial 

clusters were found. 18225 (34%) of the 53553 routes were assigned to a cluster, with the rest being 

labelled as noise. The mean number of routes per spatial cluster is 28,9, the median is 19, and the 

minimum and maximum are 10 and 181 respectively. All route clusters are shown in figure 34. They 

have been assigned random colours. 

 
Figure 34. All spatial clusters in the planned route data 

 

Clusters usually start either in towns or at mountain refuges, and usually lead to mountain peaks or other 

mountain refuges. There are areas where many routes follow the same terrain corridor, but still not 

cluster is found. This happens when routes follow a corridor but then disperse after, for example when 

some of the routes end at a peak while others traverse it.  

 

As was mentioned in chapter 3, it is hard to find a clustering algorithm and parameters that perfectly 

clusters all route data without false positives or false negatives. As such, there are some cases where 

routes are divided into separate clusters while in fact they should have been one, and vice versa. This is 

shown on the figure below. The example on the left shows five route clusters that have been correctly 

assigned to separate clusters. They all have the same start points, but are leading to different end points. 

The yellow and brown clusters lead to the same end point, but take a different route to get there. One of 

the brown routes has been incorrectly assigned as such, and should have been yellow instead. This is a 

downside of the DBScan clustering algorithm: when a point can be included in two different clusters, 

the cluster it is assigned to is dependent on the order the data is traversed. This particular route probably 

can be included in both clusters, but was traversed first by the brown cluster and as such joined that one.  

 

The right figure shows a set of routes where the clustering algorithm didn’t work that well. When 

inspecting these routes by eye, it is clear that the brown routes on the west form a separate cluster from 

the rest, as they go over a ridge whereas the rest go through an open field. The algorithm however does 

not take this context into account, and as such assigns them to the same cluster. The green cluster has 

more routes on the eastern side, but both clusters have a number of routes going through the middle.  
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Ideally, all routes here would have been assigned either to one cluster or to two clearly defined clusters. 

With a smaller epsilon, the clusters would be more clearly defined, and the routes in the middle would 

perhaps not be joined to the brown cluster. With a larger epsilon, the two clusters would have been 

joined. Whether or not routes are “correctly” clustered seems partly to depend on the terrain. In cases 

where there is a uniform start and end point, the clustering algorithm performs better. In the case such 

as the right figure, the strand and end points are dispersed, which makes clustering messier. The way to 

solve this would be to change clustering parameters, but this would lead to poor results in locations with 

more spatially homogeneous routes. As a test the epsilon was increased, and this did result in the two 

clusters merging. However, it also ended up assigning to them merging with another cluster nearby, 

which makes them even worse as a representation of planned routes. Cases such as the right figure are 

however quite rare in the results. There are situations where seemingly uniform routes get assigned to 

different clusters, but usually this has a reason and they are actually different routes in reality, for 

example having different start points. Still, it is important to keep in mind when further analysing the 

clusters that they are partly a result of the parameters chosen. 

 

 
Figure 35. two examples where clustering worked 

relatively well (left) and poorly (right) 
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4.4 Relation between spatial clusters and avalanche terrain 

The next step was to investigate how much the avalanche terrain attributes in routes are coherent within 

spatial clusters. To do this, the 95th percentile values from Q1 and the terrain clusters from Q2 are used.  

 

4.4.1. Terrain cluster membership 

To see how varied spatial clusters are in terms of terrain cluster membership, the count of the most 

occurring terrain cluster was divided by the total number of routes in for each terrain cluster. This results 

in a value between 0.2 and 1, where 0.2 is a completely heterogeneous spatial cluster (with 20% of 

routes belonging to each of the five clusters respectively). 1 means all routes in a spatial cluster are part 

of the same terrain cluster. The mean for this value is 0.80, the median 0.83, the minimum 0.333 and the 

maximum 1. The division of this value is shown in figure 36. 

 

 
Figure 36. Variability of terrain clusters within spatial clusters (closer to 1 means more uniform) 

 

As can be seen, many spatial clusters (252)  have a value of over 0.9, meaning  90% of the routes in that 

spatial cluster have been assigned to the same terrain cluster. This supports the hypothesis that spatial 

cluster membership and terrain cluster membership are related. There is no trend between the number 

of routes in a cluster and the variability of terrain cluster membership within that cluster. 

 

4.4.2. 95th percentile values 

A next step is to evaluate the variability in terms of 95th percentile values within spatial clusters. As 

noted, an assumption is that routes that are similar spatially have similar 95th percentile values. To 

evaluate this, the standard deviation of 95th percentile values within spatial clusters was calculated. 

However, using standard deviation as a degree of variability is mostly meaningful when the data is 

normally distributed. Therefore, for each spatial cluster the D’Agostino k-squared measure was 

calculated for the 95th percentile values (D’Agostino, Belanger, D’Agostino jr., 1990). For 560 of the 

652 spatial clusters, the 95th percentile values were normally distributed. Of those 560 clusters, the 

standard deviation was calculated. The mean 95th percentile terrain hazard value for those clusters was 

62,73, and the standard deviation was 6,97. To compare: for the whole dataset the mean is 63,68 and the 
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standard deviation 14,04, twice as high as within spatial clusters. This supports the assumption that 

routes within a spatial cluster are similar in terms of avalanche terrain.  However, between the spatial 

clusters, the degree of similarity varies. In figure 37, a histogram is shown of the standard deviation in 

terms of 95th percentile terrain hazard within clusters. Only the clusters where this value is normally 

distributed are shown.  

 
Figure 37. histogram of SD for 95th percentile values within spatial clusters 

 

Perhaps an expectation would be at this point that within a spatial cluster, routes that with shorter step 

length possess lower 95th percentile values, as they are drawn in more detail and thus better able to avoid 

dangerous sections. However, this was only to be true found in a limited part of the data. Using Pearson’s 

r, only in 97 of the spatial clusters a significant relationship (p<0,05) was found between step length and 

95th percentile hazard. In those 97, the correlation coefficient was 0,36, which does support the idea that 

longer step length leads to higher 95th percentile values. 

 

4.4.3. Relation between variability and route attributes 

The degree of variability within a route cluster can be seen as a characteristic of the routes within that 

cluster. Therefore, it is interesting to see whether this variability has any relation to the other attributes 

within routes. To do this, Pearson’s r was calculated as a measure of correlation between the cluster 

variability of routes and other route attributes. The results of this are shown in table 9. Only the results 

that are significant with p<0,05 are included. 
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Table 9. Pearson’s r correlation coefficients for correlation between standard deviation for 95th 

percentile values in spatial clusters and mean route attributes within clusters 

 

There are no very strong relations between the route attributes and variability within a cluster. It seems 

that shorter route cluster with less height difference tend to show more variance in terms of terrain 

hazard. Possibly, because of the short length, small variations in route planning have relatively more 

influence. One would perhaps expect the step length in a route cluster to be of influence on the 

variability. Routes with longer step lengths tend to be planned more coarsely and thus may more often 

be different from the other routes within their spatial cluster. However, this assumption is not really 

reflected in the data, only for the minimum step length, and there the relation is not very strong.  

 
Table 10. Pearson’s r correlation coefficients for correlation between terrain cluster membership 

variety in spatial clusters and mean route attributes within clusters 

 

In table 10, the same is done for the terrain cluster membership variety. In general, the trends here are 

similar, although the relationships are even weaker and there are less significant relationships. 

 

4.4.4. Visual inspection – 95th percentile values 

The previous section has shown that avalanche terrain is often similar for routes within a spatial cluster. 

However, figures 36 and 37 show that there are clusters where this is not the case, or to a lesser degree. 

In the following section, some of these clusters will be discussed. This serves as an exploration into the 

patterns in the route planning. Given the large number of routes it is impossible to visually inspect them 

all. Therefore, care should be taken when generalizing the findings to all the routes.  

 

Below is the histogram of 95th percentile values in spatial cluster 9512, where the standard deviation is 

far higher than average. The mean value for 95th percentile hazard in this cluster is 54,33, and the 

standard deviation 13,84, and 40 routes are part of this cluster.  
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Figure 38. Histogram of 95th percentile hazard values within spatial cluster 9512 

 

 
Figure 39. Spatial cluster near Brig, coloured by 95th percentile hazard value 
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When visualizing this route cluster, the reason for the high variability manifests itself. Three variants 

within this spatial cluster can be identified. The first one, shown with a green circle, encompasses only 

a few routes and avoids some of the hazardous terrain by taking a shortcut. The red-encircled route takes 

a longer way but actually end up going straight through an area with highly hazardous terrain, shown in 

red in the background. The blue-encircled routes follow a similar trajectory but avoid this dangerous 

section and as such have lower 95th percentile values. Why are these three variants visible in the data? 

It seems they follow three approaches when drawing routes. The red circle routes follow the SAC ski-

touring route. This is visible as a map layer on Whiterisk. The blue circle follows a regular hiking trail, 

which is also visible on the Whiterisk map. The green circle does not follow any existing trail, but 

instead seems to take the safest route by avoiding the steepest slope angles on Whiterisk. The three 

approaches are shown in figure 40. This example shows how different ways of route-planning lead to 

different amounts of hazardous terrain encountered within a route. 

 

 
Figure 40. The three ways routes are planned in this case based on the Whiterisk visualization 
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4.4.5. Visual inspection – terrain clusters 

The spatial clusters also vary in terms of terrain cluster membership. In the following section, four sets 

of spatial clusters are inspected to highlight cases where this variety is very high or very low. 

 

Two uniform spatial clusters near Pigne d’Arolla 

The following two spatial clusters are uniform in terms of terrain cluster membership. They are 

respectively majority cluster 3 and cluster 4. These terrain clusters are quite similar, with both being not 

extremely dangerous but also not extremely safe. The main difference is that cluster 3 traverses far more 

remote triggering areas, whereas cluster 4 traverses more non-avalanche terrain. The two spatial clusters 

are clearly visible in figure 41, one leading to Pigne d'Arolla (west) and the other to Cabane de Bertol 

(east). The variety measure for the clusters in terms of terrain cluster membership is 0,73 and 0,89 

respectively. When looking at the terrain surrounding both route clusters, it becomes clear why the 

routes in the respective spatial clusters are assigned to the different terrain clusters. 

 
Figure 41. two spatial route clusters with majority in semantic cluster 3 or 4 

 

 
As can be seen in figure 43, the route to Pigne d'Arolla traverses a broad, open terrain section, marked 

with a blue circle. The Cabane de Bertol route, on the other hand, goes through a far narrower section 

of terrain, marked by the green circle. Then, both routes make a turn and go up to their destination. Here, 

the same pattern can be seen: the Pigne d'Arolla route traverses mostly grey, relatively flat terrain. The 
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Cabane de Bertol route does so as well, but again the corridor it follows is narrower, and therefore more 

subject to avalanche runouts or remote triggering. When viewing the terrain of both routes in google 

earth, this difference is clearly visible. The green routes have steep slopes on both sides for the first 

section, before going into a more open terrain. The purple routes on the other hand are consistently on 

open terrain, without any steep slopes above them. In this case, it is clear that the terrain faced on the 

way to a destination is determent to the cluster a route belongs to. In other words, when planning a route 

between those two points, one always faces the same terrain. Therefore, the majority in both of the route 

corridors is assigned to a single terrain cluster. The standard deviation for 95th percentile values in the 

respective clusters is 7,98 and 6,50. 

 

 
Figure 44. Both spatial clusters, viewed in google earth imagery. (source: google earth pro) 

 

 

Two uniform spatial clusters in Graubünden 

Another example of this are the two spatial clusters in figure 46.  These are two sets of routes from 

Cresta in Graubünden. The south-directed set of routes are almost all in the blue cluster (cluster 1: very 

flat routes), with a few in cluster 4: typical routes. The set of routes in the northern direction on the other 

hand are mostly in clusters 2 and 3: steep routes and relatively flat routes with many runout zones. 

Again, this is a consequence of the terrain faced. As can be seen, the blue routes are mostly traversing a 

broad, grey slope, meaning an area with mostly no avalanche terrain. The orange routes on the other 

hand have to cross many sections with high triggering potential terrain. Where possible, they manage to 

choose the grey terrain, but this is not always possible. For example, the right zoomed in view shows 

the terrain they have to pass before reaching the peak which is their destination (the Piz Platta, 3392 

m.a.s.l.). The blue routes, on the other hand, are also faced by some steep terrain sections, but always 

have safe options nearby, allowing them to go around the dangerous sections.  

 

When visualizing both routes in 3d, this difference is more clear. The blue routes have wide and open 

area on their way to the top, which allows them to avoid steep sections. The orange routes, especially 

near the top, have no options of avoiding very steep terrain. Again, the terrain that is faced by routes 

between their start and end points is crucial in deciding to which terrain cluster they are assigned. 
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Figure 46. Both sets of routes seen in google earth 
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A spatial cluster with three possible variants, all belonging to different terrain clusters 

However, in other cases, this dependency on terrain is not so clear. Many spatial clusters have a mix of 

different terrain clusters. An example of this is given below. This is a spatial cluster of 64 routes that all 

start in the town of Schwenden im Diemtigtal and go up south to slightly different destinations.  

They are highly varied in terms of cluster membership, with a variety measure of 0.38 For the first half, 

the routes follow the same trajectory, but then they divert into three branches. These three branches get 

assigned to different terrain clusters. Why this happens becomes clear when viewing the routes in google 

earth imagery. From the left image it is clear that the routes follow the same trajectory for the majority 

of the distance. However, when they are near the top, they branch out into three different areas, leading 

to slightly different peaks. The distance between each of the goals is only 400 meters. Through these 

different route choices, the routes get assigned to different terrain clusters. The routes on the right take 

the steepest path, which is steep going up, and also has steep slopes to the sides. Therefore, the routes 

here get assigned to the clusters "relatively steep" and "relatively flat, many remote runout zones". The 

routes on the left aim for a lower, more mellow goal. Therefore, they manage to avoid most of the steep 

terrain, and consequently are assigned to the cluster "very flat routes". The routes in the middle take 

something of a middle ground and are thus assigned to "typical routes".  

 

This shows how routes that are quite similar spatially, can still be different in terms of the terrain they 

encounter, by planning differently the key passages. An implication of this could be that somebody who 

wants to do a ski tour here looks at the avalanche bulletin of the day and decides which variant he 

chooses consequently. This is also clear from the figure below, where the routes have been coloured by 

their 95th percentile terrain hazard values. There is a clear pattern to be seen here, with the routes that 

lead to the high peak being more dangerous than the ones leading to the lower destination on the left. 

This example shows that in some spatial clusters there is a high variety of terrain options. It has to be 

noted however that these routes don't lead to the exact same end destination. Thus, although being 

defined as a single spatial cluster, the routes are not exactly similar. 

 

 
Figure 47. Spatial cluster of 64 routes heading south from Schwenden im Diemtigtal. 
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Although the three variants are not exactly similar spatially, this example does show that minor 

alterations in route destination can have large effects of the type of avalanche terrain a route meets. The 

example below shows how routes leading to the same destination can have differing avalanche terrain 

characteristics by small variations in the path followed between start and end point. 
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Spatial cluster near Alt. St. Johann 

This route cluster is highly varied in terms of cluster membership, with a variety measure of 0,41. These 

routes start at a lift station in the Toggenburg ski area in north-eastern Switzerland. In general, three 

varieties of routes can be identified. The eastern routes are in cluster 2 and 3: slightly steep or many 

runout zones. This is because they are planned underneath a very steep ridge, with a few sections where 

they traverse steep terrain. The western routes are part of cluster 4: typical routes. These routes traverse 

less triggering potential terrain than the western routes, but are still not traversing enough “no avalanche 

terrain” to be part of cluster 1. They are still crossing steep terrain in the last part of the route. The blue 

routes in the middle go up through an open field, with mellow slopes. There are also no steep slopes 

around them. Therefore, they are part of the safest cluster, cluster 1. The routes in the center also have 

the lowest 95th percentile terrain hazard value within this spatial cluster. When looking at the terrain 

here, it seems clear that the middle corridor is the gentlest slope going up. The reason why the majority 

of routes follow the eastern corridor, is probably the fact that this is where the official SAC route runs. 

Again, exactly following this line does not lead to the safest route.     

              

 

 

Figure 50. spatial cluster near Alt St. Johann. 
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Figure 51. Zoomed in view of spatial cluster near Alt St. Johann, coloured by 95th percentile terrain 

hazard values (left), view of route in Whiterisk website (right) 

 

The zoomed-in view of the upper section of these routes shows clearly how the decision to strictly follow 

the line of the SAC routes leads to higher 95th percentile hazard values. Namely, this line goes directly 

parallel to a steep slope with remote triggering and triggering zones. It is quite interesting that, like in 

the example in figure 40, directly following the SAC route actually leads to less safe routes than planning 

an alternative route. The Whiterisk website mentions that SAC routes should only be used as general 

guidelines, and aren’t meant to be followed precisely. However, in reality the data reflects that they are 

followed precisely by a large proportion of users.  

 

4.4.5. Discussion 

The previous four examples have shown how avalanche terrain in routes can be spread out or similar 

within a spatial cluster. In the first two cases, the terrain faced by a route is determent. The routes are 

constrained in the degree in which they can avoid avalanche terrain classes, since they cannot reach the 

intended goal without passing through the same terrain types. In the last two cases, on the other hand, 

there are possibilities to change the avalanche terrain signature of the route through careful planning. 

This degree of variability within a spatial cluster has implications for planning. Route clusters with high 

variability can be more suitable for avalanche training courses, as planners can make more meaningful 

decisions. Also, if there is a safe variant within those clusters, they can be suited for experienced route 

planners if the conditions are unstable. On the other hand, less experienced route planners could be better 

off sticking to safe route clusters without many planning options, as those will not allow them to make 

route-finding mistakes easily. Unsafe corridors with little variety should only be traversed in stable 

conditions, because here it is impossible to avoid the dangerous sections. 

 

Although these results are interesting, there are some limitations. First, the routes are mere plans, and it 

is unknown to what degree they are exactly followed by users. In the last case for example, many people 

followed the relatively unsafe SAC line, but it is well possible that once they arrived at the location they 

saw that the more westerly route had more mellow terrain and followed that. In any case, it is important 
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to remember that many people choose to follow skin tracks, and thus may stray from their planned route. 

Also, the degree of variability is subject to the parameters used in spatial clustering. In the third case for 

example, there are three variants to the route that have slightly different end destination. These 

destinations are about 400 to 500 meters apart. Given the fact that the maximum distance used in the 

spatial clustering was 600 meters, the routes were assigned to the same spatial cluster. With stricter 

parameters, they would be three different clusters, all with a low degree of variability. Converesly, the 

same goes for case one and two, where more lenient clustering parameters would have included more 

routes and perhaps a higher degree of variability. 

 

Aside from the specific visual inspection cases, it is interesting to see that routes are often relatively 

homogeneous in terms of avalanche terrain within  a spatial cluster. A large number (252 of 655) of 

spatial clusters had over 90% in the same terrain cluster. Also, the standard deviation for 95th percentile 

values within spatial clusters on average was half that of the entire dataset. More research is needed to 

decide what makes some spatial clusters more heterogeneous than others. The hypothesis here is that 

terrain plays a role in it. Open, unconstrained terrain with different route options leads to more 

heterogeneous clusters. This is supported by the fact that route height is negatively correlated with 

variability within a cluster, since low terrain is often more open than high alpine terrain, although this 

trend is not very strong. 
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4.5. Comparison of GPS tracks and planned routes 

In the next section, the GPS tracks and planned routes are compared. This is done in two ways. First, 

some descriptive statistics are presented to compare the two datasets. Then, a number of locations is 

inspected visually to see how GPS tracks and planned routes deal with avalanche terrain differently.  

 

4.5.1. Quantitative differences 

Regarding the avalanche terrain traversed by both sets of routes, they are quite similar. On average, the 

GPS tracks seem to traverse a bit less hazardous terrain. The main difference though is in the route 

length. The GPS tracks are far longer on average. Visual inspection shows that many GPS tracks include 

multiple peaks and are often more complex than the planned routes. One reason why this may be the 

case is that people plan their routes in shorter segments, whereas GPS tracks include the entire route. 

Also, some GPS tracks include long traverses through flat valleys for example to get back to the car 

park. This is not really relative terrain for planning related to avalanche terrain, which might be the 

reason these sections are often left out in Whiterisk route plans. Thirdly, GPS tracks include all the cut-

backs made on steep terrain sections, whereas most people on Whiterisk draw those sections as a straight 

line. 

 

 
Table 11. mean, median, and standard deviation for terrain hazard values and route length for 

planned routes and GPS tracks 

 

 
Figure 52. Histograms of terrain hazard values and route length for planned routes and GPS tracks 

 

The histogram of the route length is interesting. Not only is the mean length of the GPS tracks higher 

than that of the planned routes, there is also a peak just before the cut-off point of 21 kilometres. Among 

the planned routes, there are hardly any routes near this point. This is the threshold used to filter out 

routes that are probably multi-day trips. This indicates that there are probably more multi-day trips 
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among the GPS tracks. This further supports the idea that people may plan their routes in segments. 

Many of the planned routes are leading to mountain huts, and are thus part of a multi-day tour. Yet, 

hardly any routes are planned as such. One reason why this may be the case is that the Whiterisk app is 

used for route-finding. This is simpler when they can load a new route for each day.  

 

Another result is the fact that the routes are quite similar in terms of terrain hazard values. The GPS 

tracks are a little bit safer in general. However, this does not say as much for the entire dataset, since the 

geographical spread of the routes is different (the GPS tracks are concentrated in the south-west whereas 

the planned routes are evenly spread over the Swiss alps). Therefore, in a next step the planned routes 

and GPS tracks are compared at a spatial cluster level. First, however, the terrain clusters in the GPS 

tracks are analysed in order to see if there is a different pattern there. 

 

4.5.2. Terrain clusters 

The GPS tracks had the percentage of each route in each of the discrete terrain classes calculated. On 

average, these percentages are as follows: 

 
Table 12. discrete terrain classes for entire GPS track dataset and entire planned route datset 

 

Although the percentage of each terrain class traversed by both datasets is quite similar, there is one 

interesting difference. The planned routes have higher values for all triggering terrain, while the GPS 

tracks have higher values for all remote triggering terrain. Since remote triggering terrain usually borders 

triggering terrain, this means GPS tracks tend to go around triggering terrain more often. This is the 

reason why GPS tracks have slightly lower values for terrain hazard. Based on these values, the GPS 

tracks were assigned to terrain clusters. This allows for a comparison between the cluster membership 

of GPS tracks and planned routes, shown in table 13. 

 

 
Table 13. terrain cluster membership for GPS tracks and planned routes 

 

The fact that GPS tracks traverse more remote triggering terrain is reflected in the higher percentage of 

routes being assigned to the cluster “flat routes, many remote triggering zones”. Also, the lower terrain 

hazard values and lower percentage of route segments traversing triggering terrain is reflected in the 

lower percentage of routes being classified as “steep routes”. 
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4.5.3. Visual inspection 

Cabane Prafleuri 

Two locations were chosen to inspect the difference in planned routes and GPS tracks in detail. The first 

runs between Cabane Prafleuri and the Nendaz ski area in Valais. What is interesting here is that the 

GPS tracks and planned routes follow the same spatial pattern. However, some of planned routes 

traverse less dangerous terrain, and have lower 95th percentile values. Two locations are key in this, one 

at the beginning, the other at the start of the routes. These are shown in figure 54.   

 
Figure 53. Planned routes & GPS tracks near Nendaz ski area, coloured by 95th percentile hazard 
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Figure 54. two key sections in the planned routes and GPS tracks near Nendaz ski area 

 

These two sections are important because they have high values for terrain hazard. Some of the planned 

routes and GPS tracks overlap, but there are also a number of planned routes that take a considerably 

safer trajectory. In both cases this means taking a longer but flatter route to go around steep and 

dangerous sections. This is not done in the GPS tracks. Perhaps the reason for this is that it takes longer. 

In the right image, the safer option also involves a traverse that goes up and down in quick succession. 

This is especially tiring, as involves either walking up without climbing skins or putting on climbing 

skins for a short period of time. Although the planned routes have lower values for 95th hazard, the mean 

hazard values are actually higher.  

 

Pigne d'Arolla – Western side 

A similar pattern can be detected in the following set of routes traversing Pigne d’Arolla from the 

western side. Again, the planned routes have lower 95th percentile values than the GPS tracks. This is 

mostly because of the encircled section. Here, some of the planned routes take a longer way in order to 

avoid some steep terrain. Only one of the GPS tracks does this, which leads to high 95th percentile 

values. This section is encircled in figure 55, and a zoomed-in view of it is provided in figure 56. 
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Figure 55. Planned routes & GPS tracks traversing Pigne d’Arolla, coloured by 95th percentile 

hazard 

 

 
Figure 56. key section in routes traversing Pigne d’Arolla from west side 

 

As can be seen by the many cut backs in the GPS tracks, they were going up at this section. The safer 

way would have been to follow the wide bend around the steep section. However, then they would have 

to spend a period of time going slightly downhill, and then uphill again. This is more tiring, and perhaps 

that is why this shortcut was taken.  

 

Although the 95th percentile values in the GPS tracks were higher, the mean values were lower again. 

This could be due to the greater level of detail in the GPS tracks. As seen by the many cut backs in figure 

56, tour skiers often try to follow a way through the terrain that takes as little effort as possible. In doing 

so they may be avoiding some slightly steeper terrain cells subconsciously. The planned routes draw a 

straight line at those sections, ignoring minor variations.  

 

In the above two cases, the GPS tracks had higher 95th percentile values but lower mean values. Given 

the low density of GPS tracks, it was not possible to reliably check whether this pattern persists for other 
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spatially similar routes. A hypothesis at this point is that in general people plan routes able to avoid risky 

sections successfully, compared to how well people avoid those sections in real life. However, more 

GPS data needs to be collected to prove this, as there are far fewer GPS tracks than planned routes, 

which makes drawing conclusions problematic. 

 

This comparison has shown that on dataset level, the differences between GPS tracks and planned routes 

are minor. The GPS traverse a bit more remote triggering terrain and a bit less triggering zones, which 

leads to lower hazard values for the GPS tracks. However, on individual spatial cluster level, the GPS 

tracks are quite a bit more dangerous, and this seems to come from the GPS tracks seemingly prioritizing 

short and efficient routes over safety. However, the small number of GPS tracks makes it hard to 

generalize this idea. Also, participation inequality probably plays a role in the different patterns in both 

datasets. Lastly, temporal data would be needed to test whether this pattern persists with different 

temporal avalanche danger ratings. 
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5. Discussion & conclusion 
The findings from the results chapter are now discussed and interpreted. First, a discussion of the results 

and the considered and used methods is presented based on the five sub-questions. Then, concrete 

conclusions are drawn per sub-question. Limitations and further research directions are identified as 

well.  

 

5.1. Discussion 

5.1.1. Relating modelled avalanche risk terrain to planned routes 

Several methods were assessed for relating avalanche risk terrain factors to the route data. In the end, 

the 95th percentile hazard and mean hazard were chosen for comparisons between individual routes. 

Other measures were also considered but not included in the thesis. One of those was the maximum 

terrain hazard. Visual inspection shows this correlates with 95th percentile values. However, it was 

deemed that the 95th percentile values were more robust to small errors in route planning and 

inaccuracies due to the digital representation of routes. Another possibility was to choose one of the 

discrete terrain classes and compare how much routes intersect it. For this, the class “high triggering 

potential” seemed useful. However, since this is a discrete class, it was decided to be less suited than the 

continuous terrain hazard data. Small variations between routes can lead to high differences when they 

are near the border of a class. With the continuous data, this problem is not present. 

 

Minimum bounding polygons are useful to describe the general terrain in which the routes are planned. 

However, visual inspection shows that they are not accurate on an individual route level. Another 

possibility is the proportion of a route intersecting each of the discrete terrain classes. This is useful for 

clustering the routes and to get an idea of the characteristics of a route. However, for differentiating 

between pairwise routes, the terrain hazard measures are better since they summarize the terrain in a 

route in a single number. 

 

There are limitations to the methods described above. The planned routes are a digital representation of 

reality. In reality, many tour skiers choose to follow existing skinning tracks as this takes less effort than 

making their own track. As such, they may not follow their planned route in the amount of detail that is 

assumed in the methods described here. This especially holds true for the 95th percentile values. A drawn 

route may do well to go around a small dangerous section and because of that it will have a lower 95th 

percentile value than a route that goes through it. In reality, they may have followed a track that goes 

through the steep section. However, for this thesis the planned routes were treated as real routes, because 

the goal was to analyse the planning phase of touring, not the travelling phase. As such, the planned 

routes should be compared with each other, since it is impossible to know whether the people who drew 

them followed them in reality. 

 

Another limitation is regarding no data in the calculations. Cells with no data are not used in the 

calculations of mean and 95th percentile terrain hazard values. As such, a route that traverses many routes 

with values near zero will have lower values than a route that follows a similar trajectory but has more 

no data cells, while in reality the former is actually more dangerous. The obvious solution to this would 

be to treat no data cells as zero. However, this results in long routes having even lower values, and the 

terrain hazard values in routes becoming too much related to route length. This effect is reversed for the 

95th percentile values. When including no data cells, there are more cells included with values lower 

than the 95th percentile value, which makes the value higher.  

 

The calculation of 95th percentile values is based on a discrete representation of the continuous terrain 

hazard data. To do this, the values in the terrain hazard data were multiplied by 1000, and a discrete 

raster was built containing those values. As such, the precision is brought down to three decimal points. 

Some accuracy is lost in this process. However, the values computed in this way are not compared on a 

very fine scale anyway, and the processing speed won in this process is deemed worth the loss in 
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precision. 

 

Using visual inspection, the 95th percentile was judged as a useful measure to compare individual routes. 

However, field observations and expert input would be needed to further prove this if it were to be used 

in the future to select safe routes. 

 

5.1.2. Clustering based on avalanche terrain 

The next step was to cluster route based on the avalanche terrain they intersect. For this, the discrete 

terrain classes were used. The goal of this was to detect patterns in the avalanche terrain classes traversed 

by routes. Five clusters were identified using the k-means algorithm with k=5. The differences between 

the clusters are clear when viewing them on a map, and routes that follow similar trajectories were 

usually assigned to the same cluster. The other route attributes for the majority differed significantly 

between clusters. The very flat routes, for example, are usually in lower terrain, whereas the very steep 

routes are significantly shorter than average. Also, for routes that have the avalanche bulletin danger 

rating specified, there was a logical pattern. The very flat cluster had higher mean danger ratings than 

the steep and extreme terrain clusters.  

 

Some decisions had to be made to come to this clustering. The first was the attributes to perform 

clustering on. Other route attributes such as length or height could have been included. This would 

perhaps have led to more clearly defined clusters (with bigger inter-cluster differences). However by 

not doing this it was possible to compare how those attributes differed between clusters. If they would 

have been included, the algorithm would have actively used them to divide the data, which would 

perhaps have made the inter-cluster differences in those attributes less interesting. It would also have 

been possible to include mean and 95th percentile hazard values in the clustering. However, since those 

values are strongly correlated to the discrete terrain classes, it would not have made a large difference. 

Also, the goal was to diversify based on the type of terrain, instead of just on terrain hazard. For example, 

clusters 3 and 4 on average intersect different terrain. Cluster 4 has almost twice as much “no avalanche” 

terrain, and only half in most remote triggering terrain classes. As such, those clusters are found in 

different locations: cluster 4 is more often in broad, mellow terrain, such as glaciers, whereas cluster 3 

is more often found in gradually inclining terrain with very steep slopes to the sides, such as narrow 

valley floors. However, their mean values for 95th percentile and mean terrain hazard are almost similar. 

Therefore, including those values in the clustering algorithm would have perhaps decreased the inertia 

for routes in those clusters and placed the optimal value for k at 4, effectively merging clusters 3 and 4. 

Therefore, not including those values has in this case made the clusters better defined. 

 

Another consideration that is relevant in nearly all clustering tasks is the chosen algorithm and 

parameters. Since the number of clusters was hard to dissect beforehand from the data, DBScan was 

first deemed a good algorithm. Here, the user does not need to choose the number of clusters beforehand. 

However, the results here were not useful. The algorithm either found a large number of very small 

clusters or one very large cluster. This is due to the nature of the data. DBScan works best when there 

are clear, discrete boundaries to the clusters. This is the case in the spatial distribution of routes. 

However, the route attributes have a smoother distribution. Therefore, DBScan will keep adding routes 

to each cluster, as most routes have at least one route that is somewhat similar. 

 

This problem is not there when using k-means. However, since the data is so smooth, clusters from k-

means will be somewhat arbitrary. Quite a large proportion of routes will be close to their cluster 

boundary. Therefore, the cluster membership of a route should be analysed with some care. This is also 

why in a section after this, the clusters were visually inspected. This showed that despite smooth nature 

of the data, the clustering algorithm has done quite well at assigning different routes to different clusters. 

However, it also became clear in the visual inspection that homogeneous routes weren’t always assigned 

to the same cluster. Often, a majority of routes following the same trajectory was assigned to the same 
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cluster, with one or two routes being assigned to a different one. In many cases this was because this 

route was actually significantly different. In some, however, those routes were just over the boundary 

of another cluster. 

 
Figure 53. three different variations within one spatial cluster 

 

This is for example the case in the above figure from chapter 4.4. There are three clearly distinguishable 

trajectories among the routes. They have rightly been assigned to three different terrain clusters. 

However, among each of the trajectories there are also numerous routes in another cluster than the 

majority. In the green one, there are several orange and purple. In the purple one, there is a blue one and 

vice versa. Those are probably routes near the boundary of their terrain cluster. Cases like this have been 

ignored in the visual inspection section. However it is important to acknowledge that in a better fitting 

clustering approach  they should have probably been assigned to a different terrain cluster. Given more 

time, a systematic approach should have been used to differentiate between a larger number of clustering 

algorithms, parameters, and input data. Internal validation measures such as silhouette analysis or the 

Davies-Bouldin method (Baarsch & Celebi, 2016) could be used for this. However, it was decided after 

inspection that the method used was good enough for the purpose and scope of this thesis. 

 

5.1.3. Spatial clusters 

In a next step the routes were clustered based on spatial locations. For this the Frechet distance was used 

to compute the similarity, and then input to the DBScan clustering algorithm. This proved a useful 

measure for the purpose of clustering, which was to compare routes that are spatially similar. In the 

results chapter it was already discussed that it is impossible to find perfect parameters for this dataset. 

The reason for this is that with varying terrain, the similarity between routes becomes different. Areas 

with narrow valleys should have stricter parameters than broad  terrain. One way to solve this issue is 

to include context in the clustering. A good example of this is provided in Buchin et al. (2014). This 

could make clustering here more accurate. For example, a steep slope separating two routes should 

increase the measured similarity, while a homogeneous area between two routes should decrease it.  

 

5.1.4. Relation between spatial clusters and avalanche terrain 

The relation between spatial clusters and avalanche terrain was then researched. It was found that in 

general, there is a strong homogeneity among routes within spatial clusters in term of terrain cluster 

membership. The same goes for 95th percentile values. However, for both there are also heterogeneous 
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spatial clusters. Those were visually inspected. It seems that terrain is of influence on the homogeneity 

within a spatial cluster. Areas that are homogeneous in terrain also produce more homogeneous routes. 

For the heterogeneous routes, two things seem to cause the variability. First, some routes are treated as 

a spatial cluster as they have the majority of their trajectory follow the same line. However, they disperse 

at some point and end up at different destinations. If these destinations are different in terms of avalanche 

terrain, it causes a large degree of heterogeneity within the spatial cluster. This is only possible if the 

terrain is open enough that different routes can be planned.  Some spatial clusters are limited by the 

terrain, for clusters that traverse narrow ridges or narrow valleys. Clusters in more open terrain seem to 

be more heterogeneous. However, this hypothesis would have to be tested quantitatively. One way this 

could be done is to assign a score to the terrain in a spatial cluster, with more limiting terrain having a 

lower score. Then, correlation between this score and the variability in a spatial cluster could be 

calculated. 

 

The second cause is when routes are planned using different “strategies”.  It seems many routes follow 

SAC ski touring routes and regular hiking trails, which are visible as a map layer in Whiterisk. However, 

those are not always the optimal routes in terms of avalanche safety. In a future research, it would be 

interesting to digitize the SAC routes, and the compute terrain hazard measures for them. They could 

then be compared per spatial cluster to the planned routes. In this thesis this was done for two examples, 

both of which had safer alternatives drawn by users. However, to test whether the alternatives drawn by 

users are structurally safer, they would have to be compared quantitatively for each spatial cluster. In 

any case, the SAC routes probably weren’t meant to follow precisely. However, when people draw 

routes that exactly follow them, and then used those routes for navigation in the Whiterisk app, this is 

what they are in fact being used like. 

 

Other methods were considered to investigate the relation between surrounding terrain and avalanche 

risk in a route. Analysing the surrounding terrain within a defined zone per route, instead of the terrain 

in other surrounding routes, was tried. The bounding polygons provided an exploration into this, but 

produced inaccurate results. Other methods to do this could be to use a watershed model to make sure 

only spatially similar terrain is included, or a simple buffer around each route. The terrain in this buffer 

could then be compared to the terrain within the route. However, the spatial cluster was chosen as it was 

considered more realistic, since it makes use of planned data from other people, and as such is more 

sensitive to spatial context. 

 

5.1.5. Comparison between GPS tracks and planned routes 

The planned routes and GPS tracks were compared for two reasons. First, to establish whether there are 

any notable differences between route planning and actual travel. Second, to put the planned routes into 

the broader context of backcountry routes. Across the datasets, there were no major differences in terms 

of the types of terrain traversed by both sets of routes. The GPS tracks on average were slightly safer. 

This was due to them intersecting more remote triggering terrain and less direct triggering terrain. 

However, as we don’t know when and by whom the planned routes and GPS tracks were undertaken, it 

is hard to compare them directly. Further, the GPS tracks are more often multi day trips, since they have 

a far higher mean length. This also makes comparisons across the datasets difficult, since the GPS tracks 

often include long traverses trough valleys, e.g. to get back to the start point. Most route planners exclude 

such traverses. 

 

Because of this, two sites were chosen to compare both datasets within the same spatial cluster. Here an 

interesting finding was that within a spatial cluster, GPS tracks are actually more often intersecting 

avalanche terrain. The reason for this seems to be that GPS tracks tend to avoid longer, safer routes if 

this means a lot of extra effort. The planned routes more often do take those detours. However, given 

the low number of GPS tracks, it is hard to prove this hypothesis. Also, again, it is not known when the 

routes were travelled. Perhaps the GPS tracks that avoided the safe routes were all travelling in very 
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stable situations. Also, participation inequality probably plays a role in the different patterns. For future 

research, it would be interesting to let people first plan a route and then equip them with trackers to see 

to what extent they really follow those routes.  

 

The GPS tracks are also more precise than the planned routes. In steep sections, the GPS tracks are using 

cut-backs to find an efficient way up, whereas many planned routes draw a straight line. Because of this, 

it can be expected that GPS tracks have artificially high values for terrain hazard, as they spend more of 

the route proportionally in the steep hazardous terrain. This is artificial because in reality the people who 

drew the planned routes will not take a straight line up, and also spend more time there. However, in the 

visual inspection it was shown that GPS tracks also take more dangerous routes when ignoring this.  

 

5.1.6. Route suggestions 

Given the fact that many people follow SAC routes, and that in some examples those routes turned out 

to be relatively unsafe, it seems like a logical next step to offer an alternative route layer that users can 

base their plan on in Whiterisk. In the figure below, an example of this is shown for the Pigne 

d’Arolla. Here, a spatial cluster is first identified. Then, the route in this cluster with the lowest 95th 

percentile value is selected. This is shown in the figure below.

 
Figure 54. Lowest 95th percentile planned route within spatial cluster near Pigne d'Arolla, and least 

cost path computed route using similar start and end points 

 

This route can then be shown on Whiterisk as a guideline. This is useful for people who know the start 

and end point and want a safe route in between. The way this would work is users specify a start and 

end point. Then, it is checked whether there are already routes in the data with similar start and end 

points (within a search radius). Then, the safest of those is shown and users can base their route on that. 

However, it should probably only be shown if a. there is at least a specified number of routes with a 
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similar trajectory (a spatial cluster) and b. one or more of those routes is significantly (above a specified 

threshold) safer than the rest. If those requirements are not met,  the suggested trajectory may not be that 

safe, relative to the specified start and end point, and the user may be better off drawing their own route 

from scratch. In the figure above, another approach is also shown. This makes use of least cost path 

analysis (de Smith, Michael, & Goodchild, 2016) to calculate the shorterst path from start to end point, 

including terrain hazard as a cost factor. This path also does well at avoiding hazardous terrain. However, 

there are several reasons why in my opinion the optimal route based on the planned route data is better 

than the computed least cost path. First, the computed optimal route takes an alternative path that has 

low values for terrain hazard but is still avoided by most routes. Near the top, it follows a good path in 

terms of avalanche terrain, but this goes through an area with many crevasses (Ski libre, 2011). This is 

probably the reason why the planned routes avoid this section. Secondly, as the computed least cost path 

is looking to get the shortest possible route, it stays very close to the boundary of the avalanche terrain 

hazard where this is possible. As such, if someone follows this route but goes a bit off the track, chances 

are they will end up in hazardous terrain. Thirdly, the planned routes are not just safer, but also take 

other preferences from users into account, such as taking an aesthetically pleasing track or passing by 

points of interest. Those things are hard to model as inputs for the least cost path. As such, my suggestion 

would be to use the data to give users a suggested route where this is possible given the two demands 

stated above. If this is not possible, a least cost path could be shown. In both cases, users will have to be 

made clear that those routes are mere suggestions and they should still look for themselves if they agree 

with them.  

 

Another method that uses terrain data to automatically compute the safest (and also most efficient) route 

between a given start and end point, is made by Eisenhut (2011). He used a multi-criteria assessment 

that gives a penalty for steep slopes, and also takes land cover into account. Instead of drawing a single 

line, he shows a buffer within which planning is relatively safe, called a corridor. To compare, the lowest 

95th percentile route, the computed route, and the corridor from Eisenhut are shown below. 
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Figure  55. Lowest 95th percentile route, computed least cost path route, and Eisenhut’s corridor 

 

The main difference between the safest planned route and the corridor is the way they approach the key 

section in the southern end of the route. In previous sections, it was shown that this is an important factor 

in the 95th percentile values of route. Of the planned routes, the ones that take a detour around this section 

generally have lower 95th percentile values. Therefore, it is interesting that the corridor does not take a 

detour. This is due to the way terrain is interpreted in the algorithm from Eisenhut. In the terrain hazard, 

possible consequences are also integrated, which leads to different results. Also, in Eisenhut’s algorithm, 

the route with the least effort is preferred. The detour is probably seen as more effort than the short route 

up. The data give a good new way to give safe route suggestions, as they take into account preferences 

by users and at the same time prioritize avoiding steep terrain. Also, the safest 95th percentile route has 

the lowest 95th percentile of the three, 0,51. The least cost path has 0,57, and a typical route drawn in 

the middle of the Eisenhut corridor has 0,54.  
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5.2. Limitations 

Some specific limitations regarding the research questions were already identified. There are also more 

general limitations to this research. The data used in this research has biases which are common in most 

user-generated content, such as demographic and spatial biases. This was already identified by 

Schönenberger (2018). Some of the hypotheses in this thesis were based on specific study sites. For 

example, the fact that routes following SAC trajectories are more unsafe than routes in the same cluster 

that don’t. This should be researched quantitatively. Another idea that came forward in this thesis is the 

fact that many people plan routes that are unsafe but shorter than routes that take a detour around 

dangerous terrain. This would mean they regard a little less safety acceptable if it means an easier way 

up. However, it is not known to what extent the routes are exactly followed. It is possible that people 

still deviate from their route in the field when it turns out that another alternative is safer.  

Another important limitation is on the visual inspection used. Here, cases were selected where a 

sufficient number of routes were drawn, and some other attribute of the drawn routes made the case 

especially useful for inspection. This should be seen as an exploration. More quantitative analysis would 

be needed to generalize the findings of the visual inspection to the whole population. Lastly, temporal 

data on the routes would really make the research more robust. It would allow for an analysis of how 

well people plan to avoid specific risk factors, such as instable snow on one slope aspect.  
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5.3. Conclusion 

The goal of this research was to identify the relationship between planned routes and avalanche terrain. 

In the introduction it was already stated that this relation is complex and dependant on location. 

However, some interesting results were produced. Those are presented here per sub-question.  

 

1. "Which different methods can be used to relate avalanche terrain risk to planned routes, and what are 

their (dis)advantages? 

 

Of the two modelled terrain datasets from Harvey et al. (2018), the terrain hazard data was deemed most 

suitable for calculating route terrain attributes, since this data is scaled from 0 to 1 and thus allows for 

numerical comparisons. Two measures were computed from  this data: the mean terrain hazard rating 

and the 95th percentile hazard rating. Of those, the mean hazard rating is less sensitive to minor 

variations between spatially similar routes. As such, it is a useful measure to describe the general 

character of a spatially similar set of routes in terms of the terrain hazard. The 95th percentile is more 

sensitive to small planning differences. Therefore, it is more useful to identify the safer individual 

trajectory within a spatial cluster of routes.  

 

2. "What clusters exist in the route data based on their avalanche terrain characteristics?" 

 

To cluster the routes, the proportion of each route intersecting the discrete terrain classes was used. Five 

clusters were identified. Visual inspection showed that the terrain clusters relate quite well with the real 

differences between routes. The clusters reflect the terrain they are planned in. For example, the routes 

with extreme terrain were often planned leading to high, alpine peaks with steep ridges. The class of 

routes with many remote triggering zones were often in narrow valleys with steep slopes going up on 

either side of the route.  

 

3. "What spatial clusters exist in the route data?" 

 

Using density based clustering, 34% of the routes was assigned to a spatial cluster. 655 clusters were 

found. The route clusters usually start in towns or mountain huts, and end on peaks or mountain huts.  

 

4. “To what extent is avalanche terrain similar for routes within a spatial cluster?” 

 

The standard deviation within spatial clusters for 95th percentile values is half of that for the entire 

population. Also, in 252 of 655 spatial clusters, over 90% of the routes was assigned to the same terrain 

cluster. As such, in general there is quite a strong relationship between spatial cluster membership and 

avalanche terrain in a route. However, there are also numerous spatial clusters where this pattern does 

not hold up. Visual inspection shows that the variability of avalanche terrain within a spatial cluster is 

dependent on the terrain. Terrain where there are not many options to deviate, such as narrow valleys, 

have more homogeneous routes than more open terrain where different route planning options exist. 

Secondly, route swithin a spatial cluster are often planned using different strategies. Some routes strictly 

follow the suggested SAC trajectory, while others follow hiking trails, and again others seem to mostly 

pay attention to the slope angles. These different strategies lead to variety within spatial clusters.  

 

5. "Is there a difference in avalanche terrain of the planned routes and the GPS tracks?" 

 

On dataset level, the differences between GPS tracks and planned routes are quite small, with the GPS 

tracks being on average somewhat safer and traversing more remote triggering terrain. However, on 

spatial cluster level, the GPS tracks are more dangerous. GPS tracks often seem to take the most 

economical route in terms of effort, avoiding long traverses even if it leads to a safer route. However, 

given the small amount of GPS tracks it is hard to generalize this finding.   
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5.4. Future research 

5.4.1. SAC routes 

Several future research directions were identified during this thesis. The first one is related to the SAC 

routes and their avalanche characteristics. Since it turns out that they are often followed by Whiterisk 

users, it makes sense to evaluate how well they deal with avalanche terrain. The way to do this is to filter 

out the routes that are part of a spatial cluster, and then compare them to the routes in that cluster. They 

will have similar avalanche terrain values to many routes in their spatial cluster, as these routes follow 

the SAC routes. However, in some of the more heterogeneous clusters there will be alternative routes 

that have different avalanche terrain ratings. Those can be compared to the SAC routes in their spatial 

cluster. Researching the avalanche terrain in the SAC routes in this regard is interesting as they are used 

by so many people to base their Whiterisk routes on. Furthermore, they are also used outside of 

Whiterisk when people use more traditional ways of route planning, e.g. paper maps or tour books. The 

modelled avalanche terrain makes it possible to quantify the avalanche risk in SAC routes.  

 

5.4.2. Analysing route decisions 

In this thesis the focus was on assessing how much avalanche terrain planned routes traverse and how 

they deal with avoiding this terrain. In a few examples visual inspection was used to differentiate 

between routes that carefully plan to avoid avalanche terrain and routes that don’t. It is perhaps possible 

to quantatively analyse the process of drawing routes There was no strong relation found between the 

average step length and avalanche danger in this thesis. One way this could be researched further is by 

counting at which types of locations people draw vertices. In theory they should draw more vertices near 

key sections. Converting the lines back to vertices allows for counting points within each discrete terrain 

class, or within a range of cells above a specified terrain hazard value. This can then be compared to the 

proportional amount of a route intersecting each terrain class. The outcome of then could then be 

correlated to mean or 95th percentile hazard values. It would be an interesting finding if there is a pattern 

in this within spatial clusters. Perhaps routes that plan proportionally more vertices near steep sections 

are safer than spatially similar routes that plan proportionally more vertices in flat areas.  

 
Table 14. proportion of route vertices per terrain class vs. proportion of total route in each terrain class 

 

The route in the example above has drawn far more vertices in high triggering potential terrain. It would 

be interesting to see whether this holds for the entire dataset, and whether this has influence on the 

relative hazard values of routes.  
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Appendix A. python modules used 
The following python modules were used in this thesis: 

 

 
Table 14. python modules used 


