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Abstract 

As to this date, the influence of regional variety on regional complexity has not been investigated, 

whereas these concepts play a central role in the economic geography literature. This study proposes 

a new method that is based on the influence of the regional technological composition expressed in 

related, semi-related and unrelated variety on regional complexity. The results show that regions in 

general lose complexity. Mainly, high complex regions ‘lose’ technological specializations and face 

difficulties with maintaining the level of complexity. Furthermore, it is shown that geographical 

relatedness density and semi-related variety have a strong and positive effect on the level of regional 

complexity.  
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1. Introduction 

  

How can a region effectively move from being dependent on resources such as oil and gas, to produce 
high-tech products? If we would be able to identify such path, it eventually leads to competitive regions 
on the long-run. More precisely, it would be possible to know when – and how much to invest to create 
a sustainable, resilient and competitive region. However, successful investments are not guaranteed. 
As such, the Dutch newspaper ‘NRC’ stated that European member states are not able to spend their 
European investment funds. In fact, the total amount of non-spent money increased from 267,3€ 
billion euro to 281,2 billion euro in 2019 (NRC, 2019). According to European court of auditors a main 
problem is that the majority of the countries do not know on what they can spend their fund on (NRC, 
2019). 

The European Union has implemented the smart specialization framework to tackle challenges 
like these. The main goal of this framework is to identify existing strengths, and look for hidden and 
novel opportunities on which regions can build competitive advantage (Balland, Boschma, Crespo & 
Rigby, 2019; Foray, David & Hall, 2009). This is crucial for regions because continuous shifts in the 
technological landscape are required to maintain regional competitive advantage. However, as 
illustrated by the previous case, there is not always a suitable destination for EU funds, whereas those 
regions seek to develop and expand their economic activities (Balland et al., 2019).  

Three major concepts in the economic geography literature contribute to the understanding 
of regional development: relatedness, economic complexity, and technological variety. Altogether, 
they bring insight into how such funds could be spent. 

Firstly, Hidalgo, Klinger, Barabási, & Hausmann (2007) took a new approach to look at a 
country’s pattern of development. They mapped the allocation of products within a country into a 
product-space. They found that related products that are not yet produced, are more likely to be 
produced when they are related to the existing products in a country. Building upon this research, 
various studies showed that regions often diversify into related products, industries, skills and 
knowledge (Hidalgo et al., 2007; Neffke et al., 2011; Boschma, Balland & Kogler, 2014; Balland et al., 
2019, Hidalgo et al., 2018).  

Secondly, as strong regional differences exist, all products, skills, technologies, and knowledge 
have a spatially concentrated character (Hidalgo & Hausmann, 2009). This is caused by the nature of 
tacit knowledge. Tacit knowledge is embodied in networks of human capital – and human capital is 
only exclusive to few places (Balland et al., 2019). This implies that some forms of knowledge are 
spatially concentrated and exclusive to very few areas (Balland & Rigby, 2017).  

This creates the foundation of complexity and competitive advantage (Balland et al., 2019). As 
knowledge is a recombination of various fields of technologies (Weitzman, 1998), the diversity of 
technologies within a region fosters new unique recombination opportunities. The more 
recombination opportunities in a small area exist, the more complex knowledge can be developed. For 
instance, it is similar to building a tower of Lego bricks, the more bricks are added to the tower, the 
more complex the building becomes – and thus harder to imitate for other people (Hidalgo & 
Hausmann, 2009). Therefore, complexity is regarded as a source of competitive advantage (Balland & 
Rigby, 2017).  

Besides the principle of relatedness and economic complexity one can understand regional 
development by looking at the variety of technologies (Frenken et al., 2007). The sectoral and 
technological composition of a region influence how regions diversify. As such, a smart phone is 
constructed by a combination of technologies that is related to batteries, chips, video, antennas, audio 
and the internet (Castaldi et al., 2015). This means that a related sectoral composition, related variety, 
is associated with more recombinant innovation opportunities (Castaldi et al., 2015; Frenken et al., 
2007).  

The opposite of related variety, unrelated variety, has a positive effect on breakthrough 
innovations, which on its place leads to new emerging industries and employment growth. In this 
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sense, related variety is regarded as a facilitator of the bulk of innovations, while unrelated variety 
facilitates breakthrough innovations (Castadli et al., 2015).   

However, there has not been any study that has investigated the influence of the regional 
technological composition on complexity, whereas the probability that the technological composition 
of a region influences the level of complex activities within a region is likely. As of yet, there is no study 
that has investigated if regional complexity builds upon a related technological structure, or that the 
influence of semi-related and unrelated activities is more important to foster regional complexity. 

This gap of knowledge brings pressure on the competitive advantage of European regions as 
it is required to adapt to a continuously changing technological landscape (Balland et al., 2019). 
Furthermore, the mismatch of the EU fund destinations illustrates that identifying suitable destinations 
for regional investments is very important. Moreover, economic complexity is found to be a source of 
long-term economic growth (Hidalgo & Hausmann, 2009; Balland & Rigby, 2017; Balland et al., 2019). 
Besides that, it benefits inhabitants of regions as the complexity of economic activities has a positive 
effect on income equality (Hartmann, Guevara & Jara-Figueroa, 2017). Consequently, it is imperative 
to better understand how regions develop complex activities. 

Hence, investigating how technological variety influences the complexity of a region is an 
important contribution to the economic geography literature. Moreover, it brings a stronger 
foundation for the smart specialization framework as it may provide more insight into how regions 
have developed complex capabilities. This research takes a new approach to analyze complexity. It 
proposes a new method that is based on the variety of technologies embedded in a region. It argues 
that, if related variety as well as unrelated variety support innovation (Castaldi et al., 2015), a 
composition of both may facilitate new complex activities. Consequently, the aim of this study is to 
answer the following research question: 

 
“To what extent does regional technological variety, among other factors, influence the level of 

regional complexity in the EU in the period of 2006-2016?” 

The main research question can be disaggregated into two sub-questions: 

1. “To what extent does regional technological variety influence the level of regional complexity?”  

 

2. “To what extent does regional complexity, among other factors, influence entry and exit-rates 

of technological specializations?” 

The second sub-question involves the influence of regional complexity on the introduction of new 
technological specializations. As argued previously, regions often diversify into related products, 
industries, skills and knowledge that is related to the existing activities (Hidalgo et al., 2018). On the 
other hand, it has not been investigated if already complex regions are able to attract new technologies 
more easily. According to Hidalgo & Hausmann (2009) complex regions are diverse and specialized 
because of its ubiquity of activities. This would imply that those regions have a high relatedness with 
technologies that are not yet present in that region. Furthermore, Balland et al. (2019) found that 
complex technologies are not likely to enter a region, but the probability increases when they are 
related to the already existing technologies.  

However, there has not been any study that investigated to what extent complex regions 
influence the entry-rates of new technological specializations. This, while Balland & Rigby (2017) found 
that complexity in various US cities has decreased. It could be possible that complex regions lose 
momentum as they are not able to adapt to a rapid changing technological landscape. Therefore, the 
second question involves the influence of regional complexity on the entry-rates of technologies:  
 
This paper will be structured as follows. In the following chapter, the theoretical framework is 
discussed and elaborates on the concepts of economic complexity, the principle of relatedness and 
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technological variety. The final part of the theoretical framework provides a synthesis of all discussed 
theories and formulates hypotheses for the analysis. The third chapter discusses the data and 
methodology. In this section the concepts of knowledge complexity, relatedness (density), and 
technological variety are operationalized. The fourth chapter presents the analysis in which the results 
are discussed. Furthermore, the hypotheses and research questions will be answered. The fifth and 
final chapter will conclude this paper. It also discusses shortcomings and provides new subjects for 
future research with policy recommendations.  
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2. Theoretical Framework 

 
In this chapter the concepts of relatedness, complexity and regional variety will be described according 
to the economic geography literature. These concepts will be discussed to provide a broad, yet 
narrowed context for the analysis. Firstly, economic complexity will be discussed. Then, the principle 
of (un)relatedness will be described and its implication on regional diversification. The next paragraph 
discusses regional variety. Finally, the main theories will be synthesized and used as a foundation for 
three hypotheses.  
 

2.1, Economic complexity 
For many firms and regions competitive advantage correlates with the production of non-ubiquitous 
activities (Balland & Rigby, 2017; Asheim & Gertler, 2005). Economic success depends on knowledge 
production and organization, national innovation systems and its diffusion. Therefore, most of the 
wealth within the boundary of a nation is intangible (Pugliese et al., 2017). Consequently, the 
exclusiveness of knowledge correlates with long-run economic performance (Balland & Rigby, 2017; 
Maskell & Malmberg, 1999) and economic growth (Hidalgo and Hausmann, 2009, Balland et al., 2019). 
Therefore, the existing regional capabilities are associated with the potential approachable level of 
income (Hidalgo & Hausmann, 2009).  

A method to empirically measure complex capabilities of a region is to look at the complexity 
of products (Hidalgo & Hausmann, 2009) or knowledge (Balland et al., 2019; Balland & Rigby, 2017). 
The most complex activities are exclusive to relatively few regions, because only very few regions are 
able to recombine those activities into more complex activities (Balland & Rigby, 2017; Fleming & 
Sorenson, 2001). That naturally implies that complex activities are associated with the diversity of 
activities because more combinations of interactions take place to increase efficiency and 
specialization (Hidalgo & Hausmann, 2009).  

Complexity can be further understood by dividing knowledge into two forms. On the one hand, 
explicit knowledge involves the flow of knowledge that is transmittable in formal language or 
blueprints (Hausmann et al., 2014). This type of knowledge is easier to imitate and does not have a 
competitive nature. On the other hand, tacit knowledge requires time and direct experience of the 
knowledge in order to transmit and embed the knowledge (Howells, 2002; Pérez-Luño, Medina, 
Lavado, Rodriguez, 2011). Long-term informal actions, such as face-to-face meetings, informal rules 
and local knowhow require the exchange of tacit knowledge between actors. As a result, tacit 
knowledge requires a form of (spatial) proximity and leads to the development of competitive regional 
capabilities (Hausmann et al., 2014). Hence, it explains why knowledge can be sticky and excluded to 
only very few regions (Lorentzen, 2008).  

Hidalgo & Hausmann (2009) argue that the underlying mechanism of economic complexity is 
associated with the theorem of division of labor by Adam Smith. It is assumed that wealth is associated 
with the division of labor. As regions and people tend to specialize, the economic efficiency increases. 
This results in the idea that the productivity of a region resides on embedded regional capabilities that 
are non-tradable (Hidalgo & Hausmann, 2009). In this embedded network of regional capabilities, the 
inhabitants represent a society that reflects the level knowledge. This is formed by the diversity and 
ubiquity of the knowledge across every individual and their ability to recombine that knowledge into 
new knowledge (Hausmann et al., 2014). This, however, depends on the size of the market as more 
participants allow to specialize further.  

As such, the level of complex knowledge is determined by the diversity of knowledge across 
individuals and the possibility to recombine this into new knowledge (Balland & Rigby, 2017; 
Haussmann et al., 2014). Thus, efficiency-seeking or complex activities are determined by the 
inhabitants of a region (Hausmann et al., 2014). Consequently, economic differences can be 
understood by knowledge intensive places, because knowledge intensive activities take place in 
knowledge intensive places (Balland & Rigby, 2017; Hidalgo et al., 2014). Therefore, one can see 
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regional complexity as a tool that enables us to understand the nature of regional capabilities that 
explain differences in levels of wealth across the world.   

 
The construct of complexity is very important and crucial for understanding regional competitive 
advantage. Currently, it was found that regional complexity acts as a source of competitive advantage 
(Balland & Rigby, 2017; Balland et al., 2019) and income equality (Hartmann, 2017). Furthermore, 
Balland et al. (2019) showed that regional technological complexity increases if those technologies 
were related to the existing capabilities. However, relatedness does not necessarily mean that regions 
naturally become more complex. So far, there is still little known under what circumstances 
relatedness matters for regions to develop complex capabilities (Boschma, 2017). The following 
section provides more insight into this by discussing the concept of relatedness.  
 

2.2, Relatedness 
In the previous section it has been argued that economic complexity offers insight into how regional 
differences in terms of wealth and capabilities exist. A central aspect in the field of economic 
geography is to look at the history of a region in order to explain its current development trajectory 
(Kogler, 2015). As showed in the previous section, a fundamental aspect behind regional development 
is the theory of division of labor by Adam Smith. The theorem naturally implied that processes of 
efficiency (i.e. innovative activities to create comparative advantage) between firms, government and 
institutions are place-specific (Kogler, 2015; Hidalgo & Hausmann, 2009) as regional differences exist 
in an open market. Hence, the question arose why and how some regions became locked into 
development paths that lose momentum, while other regions were able to reinvent themselves 
through opening new paths of development (Kogler, 2015; Hidalgo et al., 2018). 
 
A prevalent approach in the economic geography literature is the theory of recombinant innovation 
(Weitzman, 1998). The theory of recombinant innovation is drawn from the assumption that 
innovation is a process of recombined search over different technology landscapes (Fleming & 
Sorenson, 2001; Martin, 2010). Hence, it has been argued that, as innovation is a recombination of 
activities among different actors, a common base of technological, cognitive, social and geographical 
capabilities enhances mutual understanding between actors, thus improving the creation of 
knowledge and innovation (Kogler 2015). This naturally implies that innovation draws on previous 
knowledge (Frenken et al., 2007) and has a path-dependent nature.  

To further understand how economics or regions diversify overtime, the economic geography 
literature has looked into the field of evolutionary economic geography. A starting point for 
evolutionary economic geographers is the assumption of creative destruction described by Schumpter 
(1942, p:82). Essentially, creative destruction involves the ongoing process in which firms strive to 
achieve competitive advantage through novelty and innovative activities (Kogler, 2015). Consequently, 
disruptive change and innovative activities cause the economic landscape to change over time.  

The principle of relatedness is crucial for understanding how the economic landscape has 
changed over time (Hidalgo et al., 2018). Relatedness within the economic geography literature is the 
proximity between products, industries or research areas that require similar knowledge or input 
(Hidalgo et al., 2018). Asheim, Boschma & Cooke (2011) found that regional development is 
presumably fostered, if knowledge is able spillover between local sectors. This suggests that the level 
of relatedness between capabilities (e.g. in terms of an entire industry or a technology field) enables 
one to understand how processes of (regional) diversification occurred (Hidalgo et al., 2018). This has 
also been empirically shown in different fields of analysis.  

As argued previously, innovation occurs in regions by recombining the pre-existing regional 
capabilities (Boschma, 2017; Weitzman, 1998). Capabilities can be products (Hidalgo et al., 2007), 
complexity of knowledge (Balland & Rigby, 2017), professions (Neffke & Henning, 2009; Farinha et al., 
2019), or industries (Neffke et al., 2011).  
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It has been shown that regions branch into industries that are closely related to existing 
portfolio of industries (Hidalgo et al., 2018). Furthermore, Neffke et al. (2011) found empirical evidence 
that rise and fall of industries is strongly conditioned by the level of relatedness between industries at 
the regional level. Moreover, the likelihood of diversifying into previously non-existing capabilities that 
are related to the existing set of regional capabilities is higher than without such a relation (Neffke & 
Henning, 2009; Essletzbichler, 2015; Boschma, Balland & Kogler, 2014; Petralia, Balland, & Morrison, 
2017).   

Consequently, relatedness has shown that the existing experiences, competencies of 
individuals and entities (often described as capabilities) offers insight into present economic structures 
(Neffke et al., 2011) as well as future regional trajectories (Kogler, 2015; Boschma, 2017). Therefore, 
regional capabilities have a path-dependent nature in which the existing capabilities embedded within 
a region shape and reshape this path-dependent trajectory (Pinheiro et al., 2018; Hidalgo et al., 2018). 
Within this path-dependent trajectory, the principle of relatedness is the underlying mechanism of 
(related) diversification that offers insight into why and how some regions became locked into 
development paths that lose moment, while other regions were able to thrive (Hidalgo et al., 2018).  

 
As argued in the latter section, the process of diversification is determined by the existing capabilities 
of a region. It is shown that relatedness is a strong predictor of branching into related activities and 
contributes to the understanding of regional development paths (Boschma & Gianelle, 2013). 
However, Boschma (2015) argued that the principle of regional resilience should be redefined and 
understood via an evolutionary perspective. For instance, by understanding what impact a shock (i.e. 
a collapse of an industry) has on the capacity of a region to branch into a new growth trajectory. This 
perspective linked regional resilience with the ability to branch into a new growing path. Then, the 
purpose behind the principle of relatedness is to seek a strategy that leads to new development paths, 
building on the existing regional capabilities.  

This, however, cannot be solely done by looking at relatedness. The importance of the principle 
of relatedness relies in aborting the impediment of path dependency, i.e. moving away from a 
resource-dependent economy (Hidalgo et al., 2018). Therefore, if a region were to attract only related 
activities, it may specialize, but does that contribute to resilience in the long-run and does it contribute 
to preventing lock-in effect? (Boschma, 2017; Boschma, 2015). Furthermore, if a region were to 
specialize into only high value industries, there is a high chance that investments fail, because it can 
create a cathedral in the desert situation. Similarly, if a region were to invest into too low value 
industries, the region risks limiting its further development (Farinha et al., 2019). Therefore, 
relatedness does not mean that a region should look for over-specialization, but it rather means that 
a region should understand its unique development path that leads to diversification (Boschma, 2015; 
hidalgo et al., 2018). The following section discusses (un)relatedness in terms of a technological 
portfolio.   
 

2.3, Related and unrelated variety 
It has been argued that in economic theory one can distinguish between two types of variety. One 
functions as a source of knowledge spillovers, Jacobs externalities, and one that functions as the 
portfolio to protect regions from external shocks (Frenken et al., 2007). Frenken et al., (2007) 
distinguished between related variety (relatedness), the portfolio of closely related industries that 
enable local knowledge spillovers, and unrelated variety, the present portfolio of unrelated industries 
that protest a region against external shocks.  

As knowledge is a construct of a combination of technologies (Weitzman, 1998), the sectoral 
composition of a region determines its future opportunities (Ejermo 2005; Castaldi et al., 2015). Hence, 
it has been argued that related variety facilitates knowledge spillovers because closely related sectors 
offer more easily recombinant opportunities (Frenken et al., 2007).  

Indeed, empirical evidence was found that related variety stimulates employment growth 
(Frenken et al., 2007) and regional growth (Boschma, Minondo, Navarro, 2012). However, Frenken et 
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al. (2007) found that unrelated variety lowers unemployment growth, confirming the hypothesis that 
unrelated variety protects regions from external shocks. Furthermore, the findings of Frenken et al. 
(2007) opened the question whether related variety supports innovative output (Tavasolli & 
Carbonara, 2014; Castaldi et al., 2015). Moreover, it allowed one to better understand diversification 
processes and regional shock resilience (Hidalgo et al., 2018; Boschma, 20117). 

Recently, more studies made an argument to better understand the function of unrelated 
activities as in most cases relatedness has been attributed as the main component of regional 
diversification, while the role of unrelated variety in the process of diversification remains rather 
unclear (Tanner, 2014; Boschma, 2017). The question arose if unrelated variety may also be an 
important driver of long-term economic development as it may provide a solution to regional shock 
resilience, i.e. such as falling industries in regions that were dependent on that industry (Boschma, 
2017). For instance, firm innovative performance is optimal when firms are located at the perfect 
distance (Fitjar, Huber & Rodríguez-Pose, 2016). Furthermore, it has been argued that diversifying into 
solely related activities may increase the risks of lock-in (Saviotti & Frenken, 2008).  

Evidence of the importance of regional variety has been provided by Castaldi et al. (2015). 
They distinguished between related variety, semi-related variety and unrelated variety. It was argued 
that technological breakthroughs stem from combinations of unrelated technologies and foster radical 
innovation, while related variety enhances the bulk of innovations that are incrementally built on 
related technologies. In their study on technological breakthroughs it was found that related variety 
as well as unrelated variety play a significant role on innovative outputs of a region, while semi-related 
variety has a negative influence. The difference is that related variety accounts for the majority of 
innovative outputs while unrelated variety increased the likelihood of breakthrough innovations 
(Castaldi et al., 2015).  

 Similarly, Boschma & Capone (2015) found that unrelated diversification is associated with 
large jumps in the development of industries and shifts in local capabilities. More studies about 
unrelatedness found that the entrance of unrelated activities into an economy have a significant effect 
on future economic growth, depending on regional stage of economic development (Pinheiro et al., 
2018). The results showed that attracting unrelated activities mostly occurs in countries that are at an 
intermediate or advanced state of development. It has also been shown that, as a country has stronger 
innovative capabilities, the importance of attracting related activities decreases. Therefore, 
relatedness is less important for regions with stronger knowledge and innovative capabilities while it 
is more important for developing regions (Xiao, Boschma, & Andersson, 2018). 

Although relatedness offers opportunities for diversification strategies, branching into 
unrelated activities also can be brought up as a diversification strategy. It can be beneficial for some 
regions that already have a strong existing base of innovative capabilities. Furthermore, it has been 
suggested that diversification is not only about understanding what to target next, but also knowing 
when to target a specific product, industry or technology (Alshamsi, Pinheiro & Hidalgo, 2017).  

Moreover, Alshamsi, Pinheiro & Hidalgo (2018) provided evidence that targeting highly 
connected activities and research areas are more beneficial at an intermediate and relatively low level 
of diversification.  It has also been suggested that policy should not always be directed at targeting the 
most related product, as unrelated activities may also facilitate innovative breakthrough activities. 
Therefore, diversification strategies should not only be involved in targeting the most related activity, 
but also focus on when and how a relatively unrelated activity should be attracted (Hidalgo et al., 
2018).  
 

2.4, Synthesis of theories and hypotheses 
Innovation enables a firm or a region to develop competitive advantage (Schumpeter, 1934). Fleming 
& Sorenson (2001) see innovation as a continuous recombination of different technological 
landscapes. Without innovation, the complexity of economic activities cannot be achieved. At the 
same time, complex activities are more difficult to produce (Hausmann et al., 2014). A general 
characteristic of complexity is that the theory of labor suggests that complexity is based around place-
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based activities (Hidalgo & Hausmann, 2009), and thus difficult to replicate if it were to be reproduced 
in another location (Balland & Rigby, 2017). This is fostered by an eco-system of tacit knowledge, 
indicating that complex activities are sticky in space (Dougherty & Dunne, 2011).  

Methods of Hidalgo & Hausmann (2009), Balland and Rigby (2017) and Farinha et al. (2019) 
allowed one to empirically measure complexity in terms of products, knowledge, technologies and 
jobs. However, little is known about the influence of technological variety on regional complexity. So 
far, it has been investigated that relatedness of technologies has a positive relation with the 
introduction of more complex activities (Balland et al., 2019). 

When the influence of regional variety on regional complexity is discussed it is only known that 
both related variety and unrelated variety lead to innovation (Castaldi et al., 2015). Yet, it is not known 
how complexity is influenced by regional variety. Tavassoli & Carbonara (2014) found that related 
variety enhances innovative input in terms of patent applications. This does, however, tell us nothing 
about the quality of the output. Questions such as the influence of variety on the quality of innovation, 
expressed in complexity, should be answered. Does related variety yield a positive effect on 
complexity? Or are semi-related variety and unrelated variety more important to foster regional 
complexity? And at what level of complexity does technological variety matter most? 

These questions are important to answer as it brings more insight into a diversification 
dilemma (Balland et al., 2019) of when, and how to introduce new technologies. Perhaps it is possible 
that regions may benefit more from the introduction of semi-related or unrelated activities than 
related activities (Boschma, 2017). This study, therefore, focuses to bring more insight into this 
discourse by analyzing how regional variety influences complexity at the regional level.  

Firstly, it is shown that the concept of relatedness predicts entry -and exits of economic 
activities, resilience and future development trajectories (Neffke & Henning, 2009; Essletzbichler, 
2015; Boschma et al., 2014; Petralia et al., 2017). This idea is derived from the recombinant innovation 
theory (Weitzman, 1998). Furthermore, it has been shown that related activities are more likely to be 
introduced than unrelated activities. For instance, a high level of related activities with a non-existing 
activity increases the likelihood that the new activity will enter the regions. Therefore, related variety 
has a positive effect on the introduction of new technological specializations (1). 

Besides the positive effect of related technologies on new technological specializations, it is 
shown that relatedness has a positive effect on the introduction of complex technologies (Balland et 
al., 2019). Hidalgo and Hausmann (2009) argue that complex countries possess diverse and ubiquitous 
technologies. Consequently, regions that are diverse, are easier capable of recombining their existing 
capabilities into new technologies. Thus, the more technologies a region possesses, the more 
branching opportunities exist. The quotient of branching opportunities can be understood as 
relatedness density (Balland et al., 2019). Therefore, relatedness density has a positive effect on 
regional complexity (2).  

Derived from the recombinant innovation theory (Weitzman, 1998), it is expected that related 
variety enhance innovative outputs as related technologies facilitate more technological 
recombination opportunities. On the other hand, unrelated variety shed another light on the 
development trajectory of regions. Castaldi et al. (2015) found that unrelated variety and related 
variety foster innovative output. Furthermore, Boschma & Capone found that unrelated diversification 
is associated with large jumps in the development of industries and local capabilities. Alshami et al. 
(2018) showed that regions should not always be directed at targeting the most related activity, as this 
is more important at a lower state of development. Moreover, the importance of attracting related 
activities to the existing capabilities depends on the stage of development and the innovative 
capabilities (Alshami et al., 2018; Xiao et al., 2018).  

Yet, the effect of related of unrelated variety on regional complexity has not been investigated 
before. Whereas, both related variety as unrelated variety account for innovation, which changes the 
perspective of recombinant innovation (Castaldi et al., 2015). Mainly unrelated variety was the driver 
of radical breakthroughs, while related variety accounted for the bulk of innovations. Therefore, it is 
expected that a synthesis of related variety, semi-related variety and unrelated variety is an important 
driver of regional complexity as each form of variety enhances innovation, and thus complexity. This 
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leads us to the final hypothesis of this study, technological variety, both related, semi-related as well 
as unrelated, have a positive effect on regional complexity (3).  

 

 

Figure 1: Conceptual model. (Source: Author) 

 

As illustrated by the sub-questions, the two independent variables in this model are regional 

complexity and technological entries/exits. Four explanatory variables are used to analyze the 

influence on both independent variables. Firstly, regional technological variety is used and split-up 

between related variety, semi-related variety and unrelated variety. A similar distinction has been 

made in Castaldi et al. (2015). Furthermore, the average geographical relatedness density, based on 

geographical co-occurrences has been used. Finally, regional GDP, population density and 

technological size have been used as control effects. The summation of every hypothesis is as follows:  

Hypothesis 1 
Technological related variety has a positive effect on the entrance of new technological specializations 
at the regional level. 

Hypothesis 2 
Average geographical relatedness density has a positive effect on regional complexity. 

Hypothesis 3 
Technological variety, both related as well as unrelated, have a positive effect on regional complexity 
at the regional level. 
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3. Data 
Smart specialization is aimed to identify technological opportunities and is built on the regional 
capabilities of the region and its potential to upgrade technologies. In the economic geography 
literature patent data has often been used to measure regional capabilities empirically (Balland et al., 
2019). Therefore, in this research, the main source of data is the OECD-REGPAT database. The OECD-
REGPAT derives from PATSTAT which entails all patent applications filed to the EPO between 1977 and 
2016 (Balland et al., 2019). The data include all countries of the OECD. Although the geographical 
coverage of the data accounts for all OECD countries, I will solely investigate the 28 member-states of 
the EU. This is done to bring more focus to the research. The dataset contains the tracking of all 
relevant stages of the patent life-cycle for this research, including location and dates.  

The unit of analysis will be the NUTS1-2 level regions of the 28 European OECD countries. The 
NUTS-2 level is a geographical nomenclature that subdivides the European Union (EU) into regions at 
various levels of aggregation (Eurostat, n.d.). Although NUTS-2 regions do not account for an exact 
economic unit of analysis, it has been used more often in the economic geography literature (Balland 
et al., 2019) as it accounts for basic regions for the application of regional policies (Eurostat, n.d.). 
Furthermore, the dataset entails 290 NUTS-2 regions which are not equally divided across all European 
countries, i.e. Germany contains 39 NUTS-2 regions while Denmark has 6 NUTS-2 regions.  

Another feature of the database is that the patent database distinguishes between 655 patent 
classes, which is aggregated at three levels2. Patents at the one-digit level show large differences, while 
patents at the three-digit level show more similarities because they share common knowledge input 
(Hall et al., 2003). The ability to measure distances between technology patents enables worldwide 
patent offices to group patents systematically under groups, classes and subclasses and further 
aggregates over space and time (Balland & Rigby, 2017). This offers insight into the history, geography 
and technological characteristics of invention (Petralia, Balland & Rigby, 2016) and allows one to 
represent complexity (Hidalgo & Hausmann, 2009; Balland and Rigby, 2017), relatedness (Boschma et 
al., 2014) and variety of the technological landscape (Castaldi et al., 2015).  

To compare entry rates of technologies (expressed in patents) over a period of time, a 
selection has been made of three non-overlapping periods of time, 2002-2006(period 1), 2007-
2011(period 2) and 2012-2016(period 3). The data accounts for the total number of patents granted in 
each 5-year period, i.e. all patents granted in technology i in period 13. This provides insight in the 
evolution of technology entrances over a long time-span and reduces potential noise of outliers.  
 
This research has two dependent variables, the average regional complexity level and technological 
entrances. Both dependent variables offer insight into the geography of complex capabilities and the 
history of regional diversification processes. Furthermore, it enables one to bring more depth to the 
smart specialization framework proposed by Balland et al. (2019).  

Average relatedness density and technological variety are used as explanatory variables - and 
will be discussed profoundly in the following sections. Three types of variety can be distinguished: 
Related Variety (RV), Semi-related Variety (SRV), and Unrelated Variety (UV). By unpacking the regional 
composition in its three types of variety, it may predict that a certain level of variety is optimal for 
attracting new technologies into the respective region. This has never been researched before and 
may lead to new profound knowledge on regional complexity. The main goal is to find what level of 
technological variety and relatedness density is ideal to limit the risks of failed investments.  

 
This chapter consists of three parts. The first part entails operationalizing the independent variables, 
the entry -and exit-rates of technologies for each region. Then, I will proceed to identify geographical 
relatedness (density), technological complexity and computing the level three levels of regional 

                                                           
1 Nomenclature of territorial units for statistics. 
2 An in-depth explanation will be given in section 3.4 
3 Thus, there is no distinction between the year of 2002 and 2003, but only between the period as a whole, 2002-
2006 and the following period. 
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variety. The final part involves the analysis of various regression models to check for significant effects 
on regional complexity and technological growth.  
 

3.2, Explanatory variables 
The creation of a technology space is similar to the method of reflections by Hidalgo & Hausmann 
(2007), in which products are connected with countries. In this research the technology space connects 
technology classes to regions, in which each set of technologies represents a field of specialized 
knowledge in a bipartite network. Hence, the geography of technology production, expressed in 
granted patents in technologies can be made. The connection of technology classes to regions, 
represented in a network, show what type of technology (i) is present in region (r) in time (t). A very 
simplified network representation will be shown in figure 2, in which T accounts for technologies and 
R accounts for regions.  

 

Figure 2: Simplified bipartite network of technologies and regions  

 

The first variable that will be explained is technological complexity. Following the method of reflections 
by Hidalgo & Hausmann (2009), a region possesses complex products if it produces products that 
relatively few other countries are able to reproduce. In the case of this research, the first step is to 
construct an n*k matrix of 290 regions and 655 CPC classes, in which each cell 𝐶 𝑖𝑗 represents the 

number of patents in technology i in region r in time t4. To reduce noise and solely select relevant 
technologies, only regions with revealed comparative advantage (RCA) in terms of patenting activity 
are selected (Balland et al., 2019; Boschma, Balland & Kogler, 2014; Hidalgo et al., 2007). The RCA 
measure is an indication of revealed comparative advantage from a region – technology matrix 
(Balland, 2017). To capture the RCA, the share of patents in a given technology i in region r in time t, is 
divided by the total number of patents granted in technology i for all regions in time t: 
 

RCA = 1 if; 
𝑝𝑎𝑡𝑒𝑛𝑡𝑠𝑟,𝑡(𝑖)/∑ 𝑖 𝑝𝑎𝑡𝑒𝑛𝑡𝑠𝑟,𝑡(𝑖)

∑ 𝑟 𝑝𝑎𝑡𝑒𝑛𝑡𝑠𝑟,𝑡(𝑖)/∑ 𝑟∑ 𝑖 𝑝𝑎𝑡𝑒𝑛𝑡𝑠𝑟,𝑡(𝑖)
>1 

Although, Hidalgo & Hausmann (2009) offer insight in measuring complexity of products in their 
method of reflections, a similar method can be applied for computing the technological complexity 
index (TCI), based on the diversity of regions and the ubiquity of technologies. It is given that the higher 
the amount of RCA’s in a region is, the more diverse the region is. The other variable, ubiquity, is given 
by the number of regions that exhibit RCA in a particular technology. This is the sum of technologies 
embedded in a region weighted by their ubiquity (Balland & Rigby, 2017). In the following formulas 
𝑀𝑟,𝑖is a representation of the regional-technology matrix. Based on the number of RCA’s, 𝐾𝑟,0  is a 
representation of the degree of centrality of the region in the region-technology matrix in region r. 
𝐾𝑖,0is the degree of centrality given by the number of regions that possess and RCA in a particular 
technology: 

                                                           
4 In the case of this research time t refers to one of the three periods, i.e. 2002-2006. 
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𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =  𝐾𝑟,0 = ∑

𝑖

𝑀𝑟,𝑖  

𝑈𝑏𝑖𝑞𝑢𝑖𝑡𝑦 = 𝐾𝑖,0 = ∑

𝑟

𝑀𝑟,𝑖   

However, to construct the knowledge complexity index the eigenvector method proposed by Balland 
& Rigby (2017) is applied5. The starting point method is to compute a binary-valued matrix that 
connects a region to a technology class in which the region exhibits an RCA. For instance, if the region 
were to have a specialization in technology i, it is given the value 1 – and 0 otherwise. This matrix (M) 
has the dimensions of n= 290 regions by k=655 CPC-classes. As mentioned previously, complex 
technologies are relatively low represented in all regions (ubiquity) and are often found in regions that 
possess a high number of RCA’s (diverse regions). In the case of the matrix M, diversity is the number 
of columns in which region r possesses an RCA in a given technology i and ubiquity is captured by 
measuring how often RCA technology i is possessed by all regions (Balland and Rigby, 2017).  

Following the eigenvector method, the next step is to row standardize matrix M and its 

transpose 𝑀𝑡. Then, product matrix (B) = (𝑀 ∗ 𝑀𝑇) is computed by multiplying the transposed ubiquity 

of technologies with the diversity of regions. The result is a square matrix of 290 regions * 290 regions. 

If the order of the multiplication is reversed it results in a 655 technologies * 655 technologies matrix, 

indicating the technological complexity for each technology class i (Balland et al., 2019; Balland and 

Rigby, 2017). Thus, it possible to calculate the complexity of a region and a specific technology. Finally, 

by capturing the second eigenvector of the squared matrix B, the order of the matrix is normalized and 

transformed into a list of rankings with regional complexity. This is standardized as follows: 

𝐾𝐶𝐼𝑖  = 
�⃗� −〈�⃗� 〉

𝑠𝑡𝑑𝑒𝑣(𝑄)
 

A representation of the most complex regions in Europe in the third period is illustrated in the map 

below. The average regional complexity is scaled between 0 and 100, in which 100 means the most 

complex region.  

                                                           
5 This method is based on the method of reflection and has been applied in Balland et al. (2018) and Farinha et 
al. (2019) to calculate a complexity index. 
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Figure 3: Average regional complexity in period 3 (2012-2016), (Source: Author).’ 

 

3.3, Geographical relatedness and relatedness density 
Relatedness is computed as the frequency that two patent classes co-occur based on their 
geographical co-occurrence. Similar to measuring technological complexity, the first step is to identify 
for every technological class i, its revealed comparative advantage (RCA)6. Thus, if region r has more 
than an average number of patents granted in technology i, technology i is an RCA for region r. As a 
result, the RCA is a region-technology matrix in which 1 indicates that a region is specialized in 
technology i, while everything <1 indicates that there is no specialization in technology i. The RCA 
matrix is represented in a 290 regions * 655 technologies binary matrix. Thus, in a similar fashion with 
technological complexity, geographical relatedness is based on regional specialization.  

Then, the geographical measure of relatedness is captured by measuring for each technology 
i, the number of other technologies j that co-occur within region r in period t. This is done by capturing 
the transpose of the RCA matrix, resulting in a technology-technology matrix that accounts for the 
relatedness between each 655 technology classes, based on their co-occurrences. 

Furthermore, the standardization method by Van Eck & Waltman (2009) has been used. This 
standardization method is implemented in the relatedness function of the EconGeo R package 
(Balland, 2017) and involves a conditional-probability-based measurement, which evaluates whether 
the observed co-occurrences are higher than the expected values based on a probability calculus. The 
conditional relatedness formula is represented as follows: 

 
𝐺𝑒𝑜𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠(𝑀 𝑗𝑖 , 𝑆 𝑗 , 𝑆 𝑖 , 𝑇)  

=  𝑀 𝑗𝑖/(𝑁 𝑐𝑜 ∗ ((𝑆 𝑗/𝑇) ∗ 𝑆 𝑖/(𝑇 − 𝑆 𝑗) + (𝑆 𝑖/𝑇)  ∗  (𝑆 𝑗/𝑇 − 𝑆 𝑖))) 

In this formula 𝑀 𝑗𝑖  represents the number of co-occurrences of technology classes i and j. 𝑆 𝑗, 𝑆 𝑖 

are respectively the number of co-occurrences of technology class j and i. Co-occurrences are based 
on the RCA, as co-occurrences are computed as a function of specialization in region r. T is the sum of 

                                                           
6 This is the same formula described in the previous section. 
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every regional technology-class specialisation and M is the sum of all co-occurrences. The outcomes of 
technological relatedness are lower-bounded by zero, while they are not upper bounded, hence there 
is no maximum value. Therefore, if the outcome of the formula were to be zero, technology class i and 
j never co-locate within each of the 290 regions, while an outcome of higher than one indicates that 
two technology classes co-locate more often than is expected by chance (Farinha et al., 2019).  

An interesting feature of geographical relatedness is that it can be illustrated in a tree-span 
network to provide a clear view on the technological structure in the EU. This network is built upon a 
Minimum Spanning Tree network (Farinha et al., 2019) that allows one to create an overview of the 
main links that connect the technological structure of Europe. In the case of the technology space, the 
nodes are the technologies and the ties represent their respective levels of relatedness. Hence, this 
provides an overview of the core technologies and its structure within the EU. The geographical 
relatedness of each technology class is illustrated in figure 4. As shown in figure 4, technologies have 
a tendency to cluster. For instance, various highlighted technologies show that the technology is 
connected with a large number of other technologies and is positioned as a central node.  

 

Figure 4, Geographical relatedness of technologies in period 1, 2002-2006.  
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The final step is to calculate the geographical relatedness density. This is done to analyze the 
relatedness between technological specializations in a regional portfolio to another, previously non-
existing, technological specialization (Balland et al., 2019). Relatedness density is thus an overall 
average score that indicates branching opportunities for regions to develop new technologies. A high 
level of relatedness density indicates more opportunities for branching into previously non-existing 
technologies, while a low level of relatedness density indicates the opposite. The relatedness density 
measure is derived from the relatedness of technology class i to all other technology classes j in region 
r, divided by the sum of relatedness of technology class i to all other technology classes j in all 290 
regions. Multiplying the outcome by 100 gives a percentage of related technology-class specializations 
within a region. 
 

𝐺𝑒𝑜𝑅𝑒𝑙𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑖,𝑟,𝑡 =  
∑ 𝑗𝜖𝑟≠𝑖∅𝑖𝑗 

∑ 𝑗≠𝑖∅𝑖𝑗
∗ 100 

 

For instance, if RCA technology class i is related (in terms of geographical co-occurrences) to 5 other 
RCA technology-classes j, and if region r were to have 1 RCA technology in its portfolio, then the 
relatedness density of technology class i and region r will be 20%, (1/5)*100= 20%. Hence, a 
relatedness density of 0% is an indication that no other technology is related to technology i in region 
r, or the other way around if the relatedness density were to be 100% (Boschma et al., 2014).  
 

3.4, Capturing regional technological variety in all forms 
Regional variety can be considered as a form of technological distance (or proximity) between patents 
by using the information of references, classifications, and inventor identities in patent documents 
(Yan & Luo, 2017). Every technology class belongs to a certain class in which each technology field has 
a different distance to another field (Breschi, Lissoni, & Malerba, 2003; Yan & Luo, 2017). The ability 
to measure distances between technology patents enables worldwide patent offices to group patents 
systematically under groups, classes and subclasses and further aggregates over space and time 
(Balland & Rigby, 2017).  

Essentially, the characteristics of every granted patent identifies to which distinct technology 
class the patent belongs. Hence, the technology code of a patent represents its distance/proximity 
with every other technology. Regarding this research there are 655 technology classes, which belong 
to 126 subgroups and 9 main technology groups. Thus, representing technology classes at the 3-digit 
level, the 2-digit level, and the 1-digit level. Regional variety can be found by computing the 
relationship between each technology class' relationship for every digit-level.  

In Frenken et al. (2007) and Castalid et al. (2015) regional variety has been measured with 
entropy measures. Entropy is derived from information theory and enables one to capture the 
uncertainty of probability distributions based on the amount of information that is available. 
Essentially, the more information there is available, the more likely the probability is that a certain 
event occurs. For instance, if there were to be a region with only 1 patent granted in one of the 655 
patent classes, the uncertainty of where the patent belongs will be zero, as the patent belongs to one 
class. However, if a region were to have a total of 10.000 patents equally distributed over each of the 
655 patent classes, the uncertainty of where the patent belongs will be very high as the probability 
that it belongs to technological class i will be much lower. Therefore, entropy in terms of granted 
patents, tells us how diversified a region is. The entropy level of H is given by: 

𝐻 = ∑

𝑛

𝑖=1

𝑝𝑖𝑙𝑛(
1

𝑝𝑖
)  

with: 
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𝑝𝑖𝑙𝑛(
1

𝑝𝑖
) = 0 𝑖𝑓 𝑝𝑖 = 0 

𝐸𝑖 is the event that region r is patenting in any technological class i, and 𝑝𝑖 is the probability of event 
𝐸𝑖occurs with i depending on the number of n total technology classes. As illustrated by the previous 
example, the entropy level is bounded below by zero because an entropy level of 0 indicates that there 
will be no uncertainty that event 𝐸𝑖occurs.  

Furthermore, entropy is decomposable at different levels of aggregation (Castaldi et al., 2015; 
Frenken et al., 2007). This feature allows one to compute the entropy level H for each finer-grained 
level of technological class. In the case of the data, all 655 patent classes can be grouped into 126 
groups, which on their place can be grouped into 9 technological categories. Each level of aggregation 
represents a finer-grained description of the patent itself.  

For instance, technology class A01B, “Soil working in agriculture or forestry”, can be grouped 

under subcategory A01, agriculture, and agriculture can be placed under category A, human 

necessities. Thus, the sum of all technology classes represents one subcategory, and the sum of all 

subcategories represent one category. In terms of variety, the 3-digit level patent classes A01B and 

A01C have more in common than A01 and A21 as they are different subgroups, -and A01 has more in 

common with A21 than with B01 as they are different categories at the 1-digit level. Therefore, each 

level of aggregation represents a type of variety. Similar to Castaldi et al. (2015), entropy has been 

distinguished into three levels of regional variety: related variety (3-digit patent class), semi-related 

variety (2-digit patent class) and unrelated variety (1-digit patent class).  

The aggregation of patents in smaller subgroups is discussed in the decomposition theory of Theil 
(1972). This theorem entails the relationship between the between-group entropy 𝐻0and the entropy 
level H at the level of events. For this research, it is suggested that technological variety (at the three-
digit level) is given by the sum of technological variety at the two-digit level and one-digit level (Castaldi 
et al., 2015). Consequently, the first measured level of variety is Unrelated Variety. Unrelated Variety 
is given by the entropy at the one-digit level, which entails the sum of all patents for each of the major 
9 different patent categories (i.e. the sum of all technology classes in group A, human necessities in a 
specific region): 

𝑈𝑉𝑟𝑡 = ∑

9

𝑘=1

𝑠𝑘,𝑟𝑡𝑙𝑛(
1

𝑠𝑘,𝑟𝑡
) 

𝑆𝑘,𝑟𝑡is derived from the share of patents in technology group K in region r in time t. Following the 
decomposition theory, Semi-related variety is derived from the entropy at the two-digit level minus 
the entropy at the one-digit level. In other words, SRV is derived from the variety at the subgroup level 
minus the variety at the group level: 

𝑆𝑅𝑉𝑟𝑡 = ∑

126

𝑙=1

𝑠𝑙,𝑟𝑡𝑙𝑛(
1

𝑠𝑙,𝑟𝑡
)  − ∑

9

𝑘=1

𝑠𝑘,𝑟𝑡𝑙𝑛(
1

𝑠𝑘,𝑟𝑡
)  

where l represents the technological subgroup. Consequently, Related Variety is derived from the 
entropy at the three-digit level minus the entropy at the two-digit level. Similarly, related variety is the 
variety of all technological classes minus the variety at the subgroup level: 

𝑅𝑉𝑟𝑡 = ∑

655

𝑖=1

𝑠𝑖,𝑟𝑡𝑙𝑛(
1

𝑠𝑖,𝑟𝑡
)  − ∑

126

𝑙=1

𝑠𝑙,𝑟𝑡𝑙𝑛(
1

𝑠𝑙,𝑟𝑡
)  

in which i represents all technological classes.  
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It should be noted that the level of variety is not mutually exclusive. For instance, a region can be 
characterized by a high level of related variety and a high level of unrelated variety (Castaldi et al., 
2015; Frenken et al., 2007). These regions might be specialized, and therefore possess a large number 
of related technological classes, while the technological portfolio also includes a large number of 
unrelated industries. This brings difficulties when it comes to comparing a region that is characterized 
with a high level of related variety with similarities. In the case of this research there is no single 
variable computed as technological similarity. Thus, for the final regression model each measurement 
of variety will be used in the model to see what the effects are on the entrance of technologies.  
 

3.5, Econometric models 
It has already been investigated that relatedness density and technological complexity influence the 
probability that a region specializes in previously non-existing technologies (Balland et al., 2019; 
Essletzbichler, 2015; Boschma et al., 2014). In the case of this research the dependent variables are 
regional complexity and technological entrances. However, regional complexity has never been used 
as a dependent variable before, while the entry of technologies has been used as a dependent variable 
before.  

Various control variables will be used for the final econometric model. These are included to 
control for the explanatory variables as it is possible that the significance or the effect of the variables 
decreases after including these control variables. There are three variables at the regional level, GDP 
per capita (1), population density (2) and number of regional technological claims (3). 

First of all, GDP7 per capita is used as it was found that it is an important driver of technological 
diversification (Balland et al., 2019; Petralia et al., 2017). Furthermore, population density accounts for 
agglomeration effects8 (Balland et al., 2019; Boschma et al., 2014). Finally, technological size reflects 
the potential of a region to recombine knowledge into new knowledge (Balland et al., 2019). As the 
main source of patent data spans a timeframe of 5 non-overlapping years, and the fact that population 
density changes slightly over time, the average regional GDP and population density for every 5 years 
will be taken. Finally, technological claims accounts for the possibility to recombine knowledge, thus, 
enabling a region to branch into new technologies.  

 
However, as explained previously, an RCA specialization in a region is divided by the total sum of 
patents granted in technology i. Thus, the calculation of RCA’s implies that a regional specialization is 
caused by two types of relationships. On the one hand, it implies that region r is specialized due to its 
high level of specialization in technology i. On the other hand, it implies that region r  is specialized in 
technology i because of its relative number of granted patents in technology i with respect to other 
regions. Therefore, being specialized in technology i may be caused by the average level of 
specialization in the EU as a whole. In other words, an exit of technology i in region r can be caused by 
an increase in the total number of granted patents in technology i across all regions, while the share 
of patents did not decrease in region r.  

To overcome this double relationship a time-lag model for both periods has been included. 
Hence, the influence of all explanatory variables on the dependent variables in 𝑇+1has been 
investigated. Furthermore, the dataset has been split between one time-lagged model for the second 
period and one time-lagged model for the third period9. This means that the models investigate in two 
periods what the influence of the explanatory models is on complexity in 𝑇+1. The econometric 
equation for the first and second model is written in the following way: 

                                                           
7 The GDP per capita is derived from Eurostat, https://ec.europa.eu/.  
8 The population density is derived from Eurostat, https://ec.europa.eu. It accounts for the population density of 

all regions besides regions UKI1 and UKI2. 
9 This selection has been made because the overall complexity levels decreased largely between the second and 
third period. (See section 4.1 for more information). 

https://ec.europa.eu/
https://ec.europa.eu/


22 
 

𝑌𝑟,𝑡 = [𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑟.𝑡] 

 𝑌𝑟,𝑡 = 𝛽1𝑅𝑉𝑟,𝑡−1 + 𝛽2𝑆𝑅𝑉𝑟,𝑡−1 + 𝛽3𝑈𝑉𝑟,𝑡−1 + 𝛽4𝐺𝐷𝑃𝑟,𝑡−1 + 𝛽5𝐺𝑒𝑜𝑅𝑒𝑙. 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑟,𝑡−1  +

 𝛽6𝑃𝑜𝑝𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑟,𝑡−1+ 𝛽7𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑐𝑙𝑎𝑖𝑚𝑠𝑟,𝑡−1 

To bring more insight into whether differences exist by the level of complexity, two models are added. 
One model accounts for the 50% lowest complex regions – and the other model accounts for the 50% 
highest complex regions. Both models are time-lagged and cover two periods.  The third and the fourth 
model are respectively represented in the following manner:  
 
𝑌𝑟,𝑡 = [50% 𝑙𝑜𝑤 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑟.𝑡] with N = 290 

 𝑌𝑟,𝑡 = 𝛽1𝑅𝑉𝑟,𝑡−1 + 𝛽2𝑆𝑅𝑉𝑟,𝑡−1 + 𝛽3𝑈𝑉𝑟,𝑡−1 + 𝛽4𝐺𝐷𝑃𝑟,𝑡−1 + 𝛽5𝐺𝑒𝑜𝑅𝑒𝑙. 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑟,𝑡−1  +

 𝛽6𝑃𝑜𝑝𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑟,𝑡−1+ 𝛽7𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑐𝑙𝑎𝑖𝑚𝑠𝑟,𝑡−1 

and: 

𝑌𝑟,𝑡 = [50% ℎ𝑖𝑔ℎ 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑟.𝑡] with N = 290 

 𝑌𝑟,𝑡 = 𝛽1𝑅𝑉𝑟,𝑡−1 + 𝛽2𝑆𝑅𝑉𝑟,𝑡−1 + 𝛽3𝑈𝑉𝑟,𝑡−1 + 𝛽4𝐺𝐷𝑃𝑟,𝑡−1 + 𝛽5𝐺𝑒𝑜𝑅𝑒𝑙. 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑟,𝑡−1  +

 𝛽6𝑃𝑜𝑝𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑟,𝑡−1+ 𝛽7𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑐𝑙𝑎𝑖𝑚𝑠𝑟,𝑡−1  

Furthermore, a technological entry model has been used to test hypothesis 1. These models unravel 
the impact of all explanatory variables on technological entrances. The starting point is to compute an 
entry-quotient of technologies. That is the change in entries between period T and 𝑇+1, divided by the 
maximum possible entries. Consequently, a region that already possesses a large number of 
technologies will have a higher quotient than a region with a small technological portfolio. 
Technological entry is measured as the change of the sum of RCA technology classes in region r that 
previously did not belong to the technology space of a region in time 𝑇−1, but enters in time t. This is 
illustrated by the following equation: 

𝑌𝑖,𝑟,𝑡 = [
𝐸𝑛𝑡𝑟𝑦𝑖.𝑟.𝑡

∑655
𝑖=1 − 𝐼𝑟,𝑡

] 

In which  ∑655
𝑖=1  is the total number of technologies and 𝐼𝑟,𝑡 the current number of technologies in 

region r in time t. Consequently, the technological entry model is written as follows: 

𝑌𝑟,𝑡 = 𝛽1𝑅𝑉𝑟,𝑡−1 + 𝛽2𝑆𝑅𝑉𝑟,𝑡−1 + 𝛽3𝑈𝑉𝑟,𝑡−1 + 𝛽3𝐺𝐷𝑃𝑟,𝑡−1

+ 𝛽4𝐺𝑒𝑜𝑅𝑒𝑙. 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑟,𝑡−1 𝛽6𝑇𝑒𝑐ℎ𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑖,𝑡−1 +  

 +𝛽7𝑃𝑜𝑝𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑟,𝑡−1+ 𝛽8𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑐𝑙𝑎𝑖𝑚𝑠𝑟,𝑡−1 

Finally, a division is made between two models. This is done in a similar way as the first and second 
model because the total number of technological claims decreased largely between the second and 
third period (33%). Hence, the fifth and sixth model are split between period 2 and 3. The fixed effect 
for time accounts for all independent variables of the previous timespan (𝑡−1). 𝑇−1 does not refer to 
the previous year, but to the previous time period, so the entry-quotient in time t changes because of 
the explanatory variables in time 𝑡−1.   
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4. Results 
In this part of the research the descriptive statistics all variables will be discussed. This part entails an 
in-depth view of the geography of regional variety, complexity and average geographical relatedness 
density over time. The second part outlines the results of the econometric models.  
 

4.1 Descriptive statistics 
This part starts with the summary statistics of the variables. The data overlaps with 3 timeframes, 
hence, the total number of N = 870 cases is three times 290 regions. In the analysis the word 
technology is always regarded as a technology specialization (RCA technology) of a region as this is the 
starting point of measurement in the whole analysis, for more detail see the previous chapter. 
 

Statistic N Mean St.Dev. Min Pctl(25) Pctl(75) Max 

Avg.Rel.Dens 870 21.24  12.4  0 10.75   30.88  54.19 

RCI 870  67.96  17.59  0 58.06  80.10 100 

UV 870 2.695  0.51  0 2.679 2.893 3.068 

SRV 870  2.148 0.65 0 1.94 2.572 3.078 

RV 870 4.16 0.95 0 3.952 4.701 5.189 

Reg.GDP 870  50059  4174 0 18619 60556 623650 

Pop.Density 870 281.02  493.20 0 74.05 257 4253.9 

Tech.size 870 3221 6029.92 0 136.5 3611.2 56862 

Table 1: descriptive of each variable, including control variables. (Source: Author) 

 

First of all, each type of variety has a different mean and max. As expected, the level of related variety 
is higher than the level of variety of SRV and UV. This is due to the fact that it would be more uncertain 
to what technology class a certain patent would belong as it accounts for the most fine-grained level 
of technology class. However, it stands out that the level of UV, on average, is higher than that of SRV, 
which is quite unexpected. This would implicate that regions tend to be characterized by relative higher 
levels of related variety and unrelated variety, while fewer regions possess a portfolio of SRV. However, 
the variation of the standard deviation of each type of variety has a hierarchical order which was also 
found in Castaldi et al (2015).  

It should be noted that, although entropy enables one to measure within-group entropy, 

related variety correlates with unrelated variety (Castaldi et al., 2015; Frenken et al., 2007). This 

correlation is also represented in plot 1. The higher the level of UV, the higher the level of RV (see 

diagonal). 
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Plot 1, Unrelated Variety (UV) versus Related Variety (RV). (Source: Author) 

 

The following two maps show the level of variety (figure 5) and unrelated variety (figure 6) based on 
entropy levels in Europe in the period 2002-2006. Semi-related variety is left out because the purpose 
of this section is to give a rather simple overview of the composition of variety in Europe. Figure 5 
shows that generally most regions have a relative high level of related variety, besides Eastern-
European countries. Mainly central and Northern-European countries possess the highest level of 
related variety. This indicates that those regions have a portfolio of relatively higher related 
technologies. Figure 6 shows the level of unrelated variety in the period 2002-2006. Similar to the level 
of related variety, most regions tend to have a relative high level of unrelated variety (2,5 - max). 
However, the highest levels of unrelated variety are more exclusive to fewer regions. What sparks out 
is that indeed some regions10 possess a high level of related variety as well as a high level of unrelated 
variety, indicating that the type of variety is not mutually exclusive.  

                                                           
10 I.e. the Dutch region Gelderland has both a high level of unrelated variety as well as related variety. 
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Figure 5, Related variety from 2002-2006. (Source: Author) 

 

Figure 6, Unrelated variety from 2002 to 2006. (Source: Author) 
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Secondly, as shown in table 1, the average relatedness density is 21.24, which means that on average 
21.24% of the technological specializations within a region are related. The most diverse region 
possesses an average relatedness diversity of 54.19. The standard deviation of 12.4 indicates that large 
differences exists between the regions. Figure 7 illustrates branching opportunities in Europe based 
on the average relatedness density in 2002-2006. It can be derived from the map that some regions 
possess a much higher relatedness density. For instance, eastern and south-eastern European regions 
show a much lower relatedness density in comparison with the central-northern part of Europe.  
 
Thirdly, table 1 shows that the regional complexity index is bound between zero and hundred. The 
higher the score, the higher the level of average regional complexity. The average level of complexity 
is 67.96 and the 25% highest ranked regions have a complexity score of 80.1 or more. The dispersion 
of regional complexity in the period 2002-2006 is shown in figure 7. 

Similar to the level of relatedness density, the map of complexity shows that Central-Northern 
European countries possess the highest level of complexity while the Eastern -Southeastern European 
countries possess the lowest levels of complexity. A comparison with figure 8 shows that the level of 
complexity is more exclusive to few regions between 2002 and 2006. Mainly the central part of Europe, 
South Germany, Switzerland, Austria and Northern Italy possess a complexity level of 80 or higher. The 
high level of complexity also shows a correlation with relatedness density as the average relatedness 
density is over 40 in those areas. This correlation is also shown in plot 2. The higher the level of 
relatedness density, the higher the level of average regional complexity11.  

 

Figure 712, relatedness density in the period 2002-2006. (Source: author) 

 

                                                           
11 The results of the regression analysis of relatedness density on regional complexity will be discussed in the 
following section.  
12 Due to changing NUTS-2 codes it was not possible the level of complexity of Belgium and a few other regions 

with the map. Therefore, these are left out. The same applies for all other maps. 
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Plot 2, Relatedness density versus regional complexity. (Source: Author) 

 

 

 

Figure 8, regional complexity in the period 2002-2006. (Source: Author) 
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Figure 9, regional complexity in the period 2012-2016. (Source: Author) 

 

Figure 9 shows the regional complexity in the final period, from 2012 to 2016. It can be derived from 
the map that the number of high complex regions has decreased significantly in comparison with figure 
8. Furthermore, as indicated by the colors, the number of mid-complex regions13 has increased in 
comparison with the first period. To show how the geography of complexity has changed over time a 
map is constructed with the percentual change of complexity between the first and final period. 

Figure 10 represents the percentual change of complexity in Europe from 2002 to 2016. It is 
shown that the majority of the regions are subject to much change. Especially regions that possessed 
a relatively high level of complexity show a decline in their respective level of complexity. For instance, 
figure 8 shows that a large part of Germany, France and the Netherlands had a regional complexity 
level of 60 or higher. But, the majority of those regions in these countries showed a decline of 25% to 
5% of their level of complexity (figure 10).  

Furthermore, the figure shows that most regions do not increase their level of regional 
complexity by 5% or more. The majority of the regions show a decline. In fact, the mean level of 
complexity decreased from 69.61 to 62 between the first and third period. This implies that attracting 
complex technologies is not a straightforward process of simply recombining the existing portfolio of 
technologies.  

                                                           
13 Mid complex regions are referred to as the regions with a light-green color. 
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Figure 9, Regional complexity percentual change in the period 2002-2006 as to the period 2012-2016. (Source: 

Author) 

 

Table 2 table gives a fine-grained representation of how complexity has changed over all three periods. 
Similar to figure 5, five levels of complexity are categorized, very low-complexity (0-20), low complexity 
(21-40), mid complexity (41-60), high complexity (61-80), very high complexity (81-100). The final 
column represents the percentual change between period 2 and 3, as the number of complex regions 
decreased largely in the final period. For each category of complexity (1-5), the number of regions has 
been counted. In the table, the categorical change is clearly visible. The number of lower-complex 
regions strongly increased between the second and third period, while the number of high-complex 
regions strongly decreased between the second and third period. It is shown that mainly the most 
complex regions have lost their position in the final period.  
 

Complexity category Total in Period 1 Total in Period 2  Total in Period 3 

1 4 4 4 
2 19 8 28 
3 52 35 92 
4 122 151 128 
5 93 92 38 

Table 2: Regional complexity in period 1 (2002-2006), period 2 (2007-2011) and period 3 (2012-2016) per level 

of complexity. 

 

The regions in Europe show various trends. Firstly, it is shown that a large number of regions move 
from category 3 to category 4 between period 1 and period 2. As mentioned previously, in that period 
the total number of technological claims increased. However, it stands out that the number of very 
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high complex regions declined. Although, the regions showed a general increase in their level of 
complexity, it is shown that regions were not able to reach the highest-complex levels. Secondly, table 
4 shows that especially mid- to high-complex regions show a large decline between the second and 
third period, with a respective decline of 15% and 59%. Thirdly, the number of lower-complex regions 
increased between period 2 and 3 due to regions losing their position (i.e., moving from category 4 to 
category 3).  

This implies that regions in Europe show more equality in their level of complexity, while being 
a high-complex region is much more exclusive. In period 2, most regions sat in category 4 and 5, while 
the number of regions in category 2, 3 and 4 in the final period is much more common. Finally, it is 
visible that the number of regions represented in category 5 has only decreased between the first and 
final period, mostly in the final period. Therefore, it is shown in table 2 that the process of increasing 
or maintaining the regional complexity level is a hard process and that the level of regional complexity 
is subject to change. A plausible explanation could be that the most complex technology patents are 
less likely to be cited (Balland & Rigby, 2017). Nevertheless, it cannot fully justify such a large decrease 
in regional complexity. 

The following table reflects on the top 10 regions that lost the highest level of complexity. Each 
of these regions moved at least one category down. There is no clear geographical pattern in regions 
that lost a high number of complexity, as the regions vary from Eastern-European regions, to the UK – 
and Norway. All regions with a high number of complexity decrease had a complexity level between 
the 60-80 range (7) or the 4-60 range (3). This might indicate that those regions are more subject to 
change in terms of relative complexity loss.  

 

Regions Complexity lost Initial complexity category 

North central (BG) -40,94 4 

Sud-Vest Oltenia(RO) -37,13 4 

Jadranska Hrvatska(HR) -29,19 4 

East Yorkshire and Northern Lincolnshire (UK) -28,55 4 

South central(BG) -28,26 4 

Észak-Magyarország(HU) -27,97 4 

Nord-Norge(NO) -27,4 3 

Centru(RO) -27,29 4 

Extra-regio(DK) -25,31 3 

Extra-regio(NO) -25,3 3 

Table 3: top 10 highest losing complexity regions 

 

In this part of the analysis, the change in entry of new technological specializations will be compared 
with regional complexity. Firstly, the technological size will be discussed. The 25% largest technological 
portfolios of a region have a size of 3269 and above (see table 1). This indicates that, with a standard 
deviation of 6029 and a range of 56862, the technological size per region differs largely. This is similar 
to the findings of Castaldi et al. (2015) – and is an indication that the output of patents strongly differs 
among European regions. Table 4 reflects on the regional composition in terms of patenting activity 
overtime. The number of patents claims firstly showed an increase in the mean, median and the max, 
while it dropped significantly (on average 33%) in the period afterwards. As shown previously, 
complexity has dropped significantly. Therefore, it is expected that the number of technological claims 
has an impact on regional complexity14. 
 
 
 

                                                           
14 This will be further explained in the analysis in section 4.2 
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Timeframe Mean Median Max 

2002-2006 (p1) 3052  832 51361 

2007-2011 (p2) 3559 1104 56862 

2012-2016 (p3) 2362 741 37728 

Table 4: technological size over time, Source: Author 

 

As patent applications and complexity have decreased, the relationship between complexity and the 
entry of new technological specializations is discussed in this part. The complexity changes between 
period 1 and period 2 - and the change in technological entry/exits between period 1 and period 2 is 
represented in plot 3. The blue dots represent the most complex regions, the green dots represent 
high complex regions, the orange dots represent the mid complex regions and the black dots all lower 
complex regions.  

 First of all, plot 3 shows different trends. For instance, Unterfranken is a region with a positive 
balance of entrances in time t, but with a minor decline in its complexity level in time t. This may 
indicate that Unterfranken was a very diverse area and maintained it position. Yet, a large number of 
(non-ubiquitous) technologies entered the region15. Stockholm, on the other hand, is a region that 
showed a large decline in technological entrances but showed a similar decline in the level of 
complexity. 

However, when the color of the dots is investigated there are some visible relationships. In 
general, the complexity change of green and blue dots lies beneath the average change in regional 
complexity, if those regions have technological entrances below average. Although it would be very 
hard for the most complex regions to improve their level of complexity (as complexity is upper-
bounded by 100), they show very little increase and decrease in the level of complexity. The green 
dots, with a lower level of complexity, show a more scattered variation along the scatterplot. 
Moreover, the relationship between regional complexity and technological entrances in category 4 
and 3 seems stronger in comparison with the blue dot.  

Plot 4 compares the change of entry in period 3 with the complexity change in period 3. This 
is done to see whether similar relationships exist because the total technological portfolio has 
decreased with 33% in the final period. Indeed, there is a shift visible between the average entry rates 
of technologies and the average decrease in regional complexity. Similar with the previous period, 
there are regions (Stuttgart) that show high entrances, yet with a minor decrease in complexity, and 
there are regions (Braunschweig) that show a large number of exits with a minor decrease in 
complexity.  

However, in general, the number of high complex regions has visibly decreased. Moreover, a 
somewhat linear relationship is now visible: as the entry rates of technologies went down, the average 
complexity level has visibly decreased in that same period. Especially regions that have a mid-level of 
complexity are below the average decrease of -10,5%. Furthermore, it is visible that the number of 
blue-colored dots has decreased, and the orange dots have increased. This may imply that already 
complex regions face difficulties to maintain their (high) level of complexity.  

                                                           
15 These regions are used as an illustration. It is also possible that no new technological specializations have 
entered the region, but that other regions filed relatively fewer patent applications in that technology.  
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Plot 3: scatterplot of entry-rates and regional complexity level in p2. (Source: Author). 

 

 

Plot 4: scatterplot of entry-rates and regional complexity level in p3. (Source: Author). 
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4.2 Analysis I: regional complexity  
Table 5 represents the analyses of how the explanatory variables influence the level of regional 
complexity. This section provides answer on hypothesis 2 and 3. Before presenting the analysis, various 
assumptions have been tested to check whether the results can be regarded as valid. The results of 
those assumptions can be found in the Appendices. The table starts with each variable regressed on 
the level of regional complexity in time 𝑡+1. A distinction has been made between the second and third 
period. Hence, two models are represented in the table. One model accounts for the regional 
complexity in period 2 (2007-2011, model 1), and one accounts for the regional complexity level in 
period 3 (2012-2016, model 2). Furthermore, two more models have been added to appendix A16. 
 

                      Dependent variable: 
regional complexity             

 

  Regional complexity 𝑇+1. 
(model 1) 

Regional complexity 𝑇2+1. 
(model 2) 

Relatedness density  0.36107682 *** 
(0.06904) 

0.33520904*** 
(0.1184) 

SRV  0.57204036*** 
(1.712) 

0.45260445*** 
(3.610) 

UV  -0.010124800 
(2.192) 

-0.06376551 
(2.323) 

RV  Excluded17 
 

0.15178505* 
(1.364) 

Population density  -0.04379048 
(0.001003) 

-0.05686903  
(0.001201) 

Regional GDP  -0.17202506*** 
(0.0001319) 

-0.20600421*** 
(0.0001527) 

Technological size  0.08795841 
(0.0001122) 

0.17583480** 
0.0001300) 

Constant  45.13*** 
(4.765) 

18.20* 
(7.406) 

Time lag  yes yes 

Observations  290 290 

R²  0.6923 0.6616 

Adjusted R²  0.6846 0.6516 

Residual std. Error  8.143 9.374 

F statistic (df = 240, 238)  90*** 66,46*** 

Table 5, multiple regression analysis of the explanatory variables on the dependent variables’ Regional 

complexity in t+1 (1) and regional complexity in t2+1 (2). Coefficients are statistically significant at the *p < 

0.05, **p < 0.01 and ***p < 0.001 level. 

 

                                                           
16 One model with an entry-quotient is placed in the appendix (table 1 in appendix).  
17 A model with relatedness density (table 2 in appendix) is placed in the appendix because RV showed a large 
VIF and correlation with SRV and RV (figure 3 in appendix). 
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Firstly, both model 1 and model 2 have a strong explanatory power, respectively 69,23% (R² = 
0,6923) and 66,16% (R² = 0,6616) of the variance is explained by the explanatory variables. Mainly, 
relatedness density and semi-related variety (SRV) have a strong and positive effect on regional 
complexity. An increase of one-unit relatedness density increases the regional complexity by 36,1% (ß 
= 0,361) and 33,5% (ß = 0,335), respectively. Furthermore, an increase of one-unit SRV increases the 
regional complexity respectively by 57,2% (ß = 0,572) and 45,26% (ß =0,4526). What sparks out is that 
the effect of related variety (RV) is positive, but much smaller than SRV on regional complexity. This 
effect18, in comparison with SRV, is three times smaller (ß = 0,152). Furthermore, unrelated variety 
(UV) does not have a significant effect on regional complexity.  

Linking these results with the theory it can be argued that the results are somewhat in line 
with the discussed theorem. Firstly, Balland et al. (2019) found that complex technologies are more 
likely to be introduced when those are related to the existing portfolio. Although different dependent 
variables have been used, the underlining idea is similar. Regions that have a large number of 
branching opportunities have a higher regional complexity. Thus, it is likely that relatedness density 
has a positive effect on the introduction of complex activities. This confirms hypothesis 2. 

Furthermore, Castaldi et al. (2015) found that RV and UV enhance invention output. Although 
the effect of RV is positive, it is three times smaller than SRV. However, the effect of unrelated variety 
(UV) was insignificant in both models. While regional complexity has never been used as a dependent 
variable in the economic geography literature, it was expected that RV, SRV as well as UV have a 
positive impact on the regional complexity.   

In both models the population density has no significant effect on regional complexity while 
the effect of regional GDP is significant and negative. Thus, an increase in GDP, decreases the level of 
regional complexity. This may be caused by a relatively low number of cases (N=290) which makes the 
effect of residual outliers stronger. Besides, it is plausible that regional GDP does not reflect innovative 
output in terms of complex activities, but rather reflects robust outputs of regional GDP. Finally, the 
effect of technological size is positive and significant in the second model. This positive effect can be 
explained by the formula that calculates regional complexity, in which diversity (in terms of patenting 
activity) contributes to higher regional complexity.  

Altogether, the results do not confirm hypothesis 3, which expected that technological variety 
has a positive impact on regional complexity. Only RV and SRV showed a significant and positive effect 
on regional complexity. On the other hand, it could be argued that SRV is an optimal technological 
composition of related -and unrelated technologies to foster complex outputs at the regional level. 
The distance between technologies in such a region is sufficient enough to foster recombinant 
opportunities, yet it is distant enough to foster novel and non-ubiquitous technologies. For instance, 
in a practical example regional complexity can be fostered by specializations in class A41 “Personal or 
domestic articles”, A42 “headwear” and A43 “footwear” as they relate in terms of the one-digit class 
“A” but differ in the three-digit category. In practice, the distance of semi-related technologies may 
facilitate relatedness in terms of complementarity effects (Farinha et al., 2019) as the cognitive 
distance is large enough – but not too little to foster innovative output, thus, upgrading regional 
complexity. 

The second hypothesis, relatedness density has a positive effect on the average regional 
complexity has been confirmed. This is shown by the significant and strong positive coefficients in both 
models of relatedness density. The outcomes of relatedness density on average regional complexity 
are in line with previous findings. Balland et al. (2019) found that diversifying into complex 
technologies is easier when technologies are related to the existing knowledge core of a region. 
 
 

                                                           
18 In the appendix another model has been included in which the effect of RV was very similar and significant.  
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As the descriptive analysis showed, complexity has decreased overtime, especially for regions with a 
relative higher level of complexity. Hence, the final part of the analysis on regional complexity is to 
investigate whether differences between high -and low complex regions19 exist.  
 

 Dependent variable: Low 
regional complexity / high 
regional complexity 

                                  

 Low complexity 
(model 3) 

 High complexity 
(model 4) 

Relatedness density 0.17102852 * 
(0.0884) 

 0.37803708***  
(0.06039) 

SRV 0.40549819*** 
(1.503) 

 0.43537220 *** 
(1.312) 

UV 0.07136746  
(2.049) 

 -0.04550018 
(2.615) 

RV 0.07672354  
(1.117) 

 -0.25997844**  
(1.141) 

Population density -0.01648865 
(0.001278) 

 -0.05576878  
(0.0005295) 

Regional GDP -0.08796393  
(0.00001636) 

 -0.23516897*** 
(0.00000706) 

Technological size 0.05450715  
(0.0002031) 

 0.22889502*** 
(0.00005828) 

Constant 24.33*** 
(5.633) 

 56.28*** 
(7.469) 

Observations 290  290 

R² 0.3894   0.3996 

Adjusted R² 0.3703  0.378 

Residual std. Error (df =223, 253) 9.267  6.038 

F statistic (df = 223, 253) 20.32***  24.05*** 

Table 6, effects of the explanatory variables on high – and low regional complexity. Coefficients are statistically 

significant at the *p < 0.05, **p < 0.01 and ***p < 0.001 level. 

 

Table 6 reflects on the effect of the explanatory variables on high -and low regional complexity. Firstly, 
in the third model 37,03% (R² = 0.3703) of the variance can be explained by the explanatory variables 
and in the fourth model 37,8% (R² = 0.378).  

Secondly, the model shows differences in the significance of various variables. On the one 
hand, relatedness density has a stronger effect on high complex regions then on low complex regions, 
respectively 0.17 (ß = 0,17) and 37,8 (ß = 0,378). Similarly, SRV has a positive effect on both low – and 
high complex regions. The positive effect of SRV on regional complexity increases when regions 
become more complex, from (ß = 0,405) to (ß = 0,435).  

                                                           
19 No distinction has been made between period 2 and 3 because more cases can be included. A model with all 
time-lagged periods individually has been added to the appendix (table 3). It is left out because it has less 
explanatory power and more room for outliers because it has a relative low number of cases.   
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However, the effect of RV in model 4 was unforeseen. Model 3 shows that RV has no significant 
effect on lower complex regions, whereas model 4 shows a negative and significant effect for high 
complex regions. Thus, when technological related variety increases with one unit, the regional 
complexity decreases with almost 26%. In previous literature it was found that relatedness is of less 
importance for regions with a stronger and innovative capabilities (Xiao et al., 2018) or at a higher 
state of development (Pinheiro et al., 2018). This might imply that RV is more important at a lower or 
intermediate level of regional complexity.  

On the other hand, the effect of UV is not significant. This suggest that mainly a SRV 
technological composition fosters complexity at the regional level. Furthermore, the effect of every 
control variable on low complex regions is insignificant. For high complex regions the effect of regional 
GDP is negative and significant (-0,235) which was similar in the full model. Technological size has a 
positive effect (ß = 0,229) on high complex regions, which was expected because high complexity is 
partly formed by the number of technological claims in a region.  

 

4.3, Analysis II: Technological entrances 
Balland et al. (2019) found that complex knowledge is more attractive for regions, but at the same time 
harder to produce. Hence, the relationship between technological entrances and complexity is not 
linear. Nevertheless, the influence of regional complexity on entry and exit-rates of technological 
specialization has not been investigated yet. This part of the analysis conducts the analysis of regional 
technological entrances20. It should be mentioned that entry or exit-rate is computed as the number 
of entries in 𝑡+1 divided by the total potential entries for a region in 𝑡+1(see chapter 3). Furthermore, 
a distinction has been made between each period because period 2 is characterized by an average 
growth in technology entrances and period 3 is characterized by a strong decline in technology 
entrances.  
 

  Dependent variable: Entry-quotient of potential 
entries                        

 

  Entry-quotient 𝑇+1.  (model 5) Entry-quotient 𝑇2+1.  (model 
6) 

Regional complexity  -0.59388009*** 
(0.0007684) 

-0.007619744 
(0.000251) 

Relatedness density  Excluded21 Excluded 

SRV  0.31563503 *** 
(0.006861) 

-0.593566934*** 
(0.007049) 

UV  -0.06222147 
(0.009493) 

-0.160657688* 
(0.01032) 

RV  0.13163209 
(0.005328) 

0.589558408*** 
(0.003522) 

Population density  -0.01730323 
(0.000003786) 

-0.04768003  
(0.000003403) 

Regional GDP  -0.09786021  
(0.00000005079) 

0.033022428 
(0.00000004475) 

                                                           
20 Technological entrance is always regarded as a specialization of a technology in this section. 
21 In the appendix a model with the inclusion of relatedness density has been added (Appendix, table 4). Due to 
high correlation values and a high VIF, relatedness density has been excluded (see figure 14 in appendix). 
Furthermore, the explanatory power of the model was smaller with relatedness density included. 
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Technological size  0.05327373 
(0.0000004036) 

0.048853500  
(0.00000636) 

Constant  0.04823 
(0.01955) 

0.02152 
(0.02068) 

Observations  290 290 

R²  0.2008 0.2864 

Adjusted R²  0.1773 0.2654 

Residual std. Error (df = 238, 
238) 

 0.02947 0.02678 

F statistic (df = 238, 238)  8.543*** 13.64*** 

Table 7, effects of the explanatory variables on high – and low regional complexity. Coefficients are statistically 

significant at the *p < 0.05, **p < 0.01 and ***p < 0.001 level.  

 

Firstly, both models show a smaller explanatory power as to the first and second model, respectively 
(R² = 0,1773) and (R² = 0,2654). Furthermore, the fifth model shows that regional complexity has a 
negative effect on the entry-quotient in period 2. A one-unit increase of regional complexity decreases 
the entry-quotient by 59,38% (ß = 0,5938). A plausible explanation could be that complex patents are 
less likely to be cited (Balland & Rigby, 2017), which decreases the number of granted complex patents.  

Another explanation could be that there might be a limit to the diversity of complex regions. 
At a certain point to many technological specializations are embedded within a region, which does not 
arouse competitive advantage. This might imply that, tough it is easier for a complex region to attract 
new technologies, a region either does not benefit from new technological specializations – or they 
cannot keep up with a rapid changing technological landscape (Balland et al., 2019). Furthermore, with 
regards to patenting activity, Balland and Rigby (2017) found that regions with the highest number of 
technological claims are not the most complex regions.  As mainly high complex regions lost complexity 
(see chapter 4.1), those regions could be more focused on specializing, rather than diversifying into 
less relevant technology fields. Nevertheless, this, should be further investigated in future research. 

On the other hand, when the average decline in the entrance of technologies occurred in 
period 3, the level of regional complexity (in period 2) had no significant effect on the entry of 
technologies in period 3. This finding leaves room for more questions and requires more in-depth 
understanding of regional complexity. Therefore, a simple linear regression model has been made to 
understand the effect of regional complexity on entry-rates (in 𝑡+1), without controlling for any 
variables. The effect for both periods was negative and significant with an average beta coefficient of 
-0.274 (ß = -0,274) and an explanatory power of R² = 0.07548. Thus, as regional complexity increased, 
the entry-rates of technologies decreased the period afterwards. This might imply a relation between 
a loss of complexity and technologies (see table 2 in paragraph 4.1). Thus, in general complex regions 
face difficulties to maintain their complex position as they are characterized by a loss in complexity 
and technologies.  

Secondly, the effect of SRV is contrasting. The fifth model shows that SRV has a positive impact 
on technological entrances in period 2, a one-unit increase of SRV increases technological entrances 
with 31,56% (0,3156). However, in the period afterwards, a one-unit increase of SRV decreases 
technology entrances in period 3 with 59,35% (ß = 0,5935), which is a strong and negative relationship. 
Again, a single linear regression model has been applied to better understand the effect of SRV on the 
entry-quotient. It was found that SRV has no significant effect in the first period, while the effect in the 
second period was still negative but smaller, -0.258 (R² = 0.06707). This implies that regions with a 
relatively high semi-related technological portfolio have a negative influence on the entry-rates of 
technologies.  
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Thirdly, relatedness density is not included in this model but in table 4 in the appendix. The 
effect of relatedness density on the entry-quotient of technologies is negative. This is in contrast with 
earlier findings that relatedness density with previously non-existing technologies increases the 
likelihood that regions specialize in those technologies (Hidalgo et al., 2018).  

An explanation could be that previous models suggested that relatedness density fosters 
regional complexity. Thus, if complex regions have a high relatedness density – and high complex 
regions are not likely to introduce new technologies, those regions are not very likely to introduce new 
technologies. This finding suggests a diversification paradox: Very diversified regions are more likely 
to introduce new technologies as they are more related to their existing portfolio of technologies. Yet, 
there might be a limit to diversification as complex regions with a higher level of relatedness density 
tend to have a negative entry-quotient. Similarly, the most complex regions are not necessarily regions 
with the highest number of technological claims (Balland & Rigby, 2017). 

Furthermore, the effect of RV has a strong and positive effect on the entry-quotient according 
to model 6. An increase of a one-unit RV, increases technological entrances with 58,95% (ß = 0,5895). 
Although that is in contrast with the results of relatedness density, it confirms the hypothesis of 
Boschma & Gianelle (2013), in this study a related technological composition, has a positive effect on 
entries of technological specializations. These findings confirm hypothesis 1, related technological 
variety has a positive impact on the entry of technologies in a region.  

Finally, the effect of UV is significant in the final model. UV decreases the entry-quotient of 
technologies (ß = -0,16), which indicates that regions that are characterized with high UV are less likely 
to introduce new technologies. Furthermore, all control variables have no significant effect in both 
models.  
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5. Conclusion & discussion 
  

Previous research has shown that the concept of relatedness is associated with entry -and exits of 
economic activities, regional development processes and future development trajectories (Neffke & 
Henning, 2009; Essletzbichler, 2015; Boschma et al., 2014; Petralia et al., 2017). Furthermore, regional 
complexity is shown to be a source of comparative advantage and economic growth (Balland & Rigby, 
2017). Related variety is regarded as a facilitator of the bulk of innovations and economic growth, while 
unrelated variety facilitates breakthrough innovations (Castadli et al., 2015). Although regional variety 
and complexity are two main concepts of the economic geography literature, the effect of regional 
variety on regional complexity has never been investigated before.   

Nevertheless, it is of great importance to investigate the effect of regional technological 
variety on regional complexity. For policy matters this contributes to the understanding of how a 
certain set of technologies (i.e. semi-related as well as related) positively influence regional complexity. 
Furthermore, the insights have the potential to extent the smart specialization framework of Balland 
et al. (2019). This may lead to competitive regions on the long run (Hidalgo & Hausmann; Balland & 
Rigby, 2017) with a better income equality (Hartmann, 2017). Therefore, this research proposed a new 
method that analyses the effect of regional variety on regional complexity. Furthermore, it has been 
investigated how regional complexity influences the entry and exits of technological specializations at 
the regional level.  

A main contribution of this research is that average regional complexity has a strong and 
negative influence on the entry-quotient of technologies. Mainly ‘high’ complex regions are the biggest 
“losers” in terms of complexity decrease. Those regions generally lost momentum in either 
technological entries, or maintaining their technological specializations. This might suggest a 
diversification paradox: complex, and thus diversified regions, are more likely to introduce new 
technologies. Yet, there might be a limit to diversification, as those regions with a higher level of 
relatedness density and complexity have a negative influence on the entry-quotient.  

Similarly, the descriptive analysis has shown that regional complexity is difficult to maintain 
and has decreased largely between 2002 and 2016. As complexity has dropped in general, the results 
have shown that regions face difficulties with attracting or maintaining complex technologies, 
especially high complex regions. That, in combination with the likelihood that complex patents are less 
likely to be cited (Balland & Rigby, 2017), may cause a loss of regional complexity. Though, more 
research should investigate what has caused a decline in regional complexity.  

Mainly related variety is an important driver of an increase in technological entrances, 
confirming hypothesis 1. This finding is in line with previous research in which was found that a higher 
level of related activities is positively associated with the introduction of previous non-existing 
activities (Hidalgo et al., 2018).  

Another appealing results of this research is that semi-regional variety and relatedness density 
have a significant and strong effect on regional complexity. The effect of related variety was positive, 
but smaller. Especially higher complex regions benefit from a high semi-related technological structure 
and relatedness density. The latter variable is in line with the results of Balland et al. (2019), which 
suggested that relatedness density has a positive effect on the entry of previously non-existing 
complex technologies, thereby confirming hypothesis 2. An explanation for the positive and strong 
effect of relatedness density on regional complexity is that regions with a high level of relatedness 
density are diverse regions, which offer more unique technological recombination opportunities 
(Hidalgo & Hausmann., 2009; Weitzman, 1998).  

 On the other hand, unrelated variety has no influence on regional complexity, which rejects 
hypothesis 3. Yet, the results contribute to the hypothesis of Frenken et al. (2007) and Castaldi et al. 
(2015) in which was argued that related variety is found to be the main driver of recombinant 
innovative outputs and unrelated variety as the driver of breakthrough innovations. It is thus not solely 
a regional composition of related technologies that are of importance to foster regional complexity, 
but mostly semi-related technologies. 
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Moreover, when regions become more complex, a related technological composition of 
technologies seem to negatively influence regional complexity. This implies that too much relatedness 
may lead to a loss in complexity. Although this assumption has not been investigated previously, 
Boschma (2017) argued that too much related activities may harm regional resilience in the long-term 
as it is more subject to external shocks. Moreover, the importance of related capabilities depends on 
the stage of development and the innovative capabilities (Alshami et al., 2018; Xiao et al., 2018. 
Similarly, a too much related composition of technologies may harm the possibility to achieve 
breakthrough innovations that foster unique technological specializations, and thus increases the 
regional complexity.  

Giving an answer to the main question: “To what extent does regional technological variety 

influence the level of regional complexity” it can be concluded that mainly a semi-related technological 

composition and relatedness density are beneficial for the average level of regional complexity. 

Moreover, the effect of relatedness density and semi-related variety is stronger when a region 

becomes more complex. Giving an answer to the sub-question: “To what extent does regional 

complexity influence entry-rates of technological specializations? It can be concluded that regional 

complexity negatively influences the entry of technological specializations.  

Altogether, the findings have various implications for future research and policy matters. Policy 
directed at attracting semi-related sectors can be beneficial for regions to either maintain or increase 
the level of regional complexity. Too much related activities may harm complexity at a higher state of 
development. However, it should be mentioned that the levels of variety are not mutually exclusive. It 
rather indicates that a semi-related technological composition could be more relevant to attract 
complex activities. Furthermore, the findings of Castaldi et al. (2015) suggest that the importance of 
related and unrelated activities should not be neglected. In practice this may imply that a region should 
act as a facilitator that connects semi-related sectors, institutions, industries and knowledge hubs, 
without neglecting the importance of related and unrelated activities. Foremost, regional policy should 
not look for over-specialization, but rather look for diversifying into the right activities (in terms of 
relatedness) at the right time (Alshami et al., 2018; Hidalgo et al., 2018).  

The results also bring some limitations of this research. Firstly, Farinha et al. (2019) showed 
how relatedness can be unfolded into three dimensions. This has brought more insight under what 
granularity of analysis relatedness truly matters. For instance, relatedness density is of great 
importance for regional complexity, but it should be investigated whether relatedness is based on 
complementarities or similarities (Boschma, 2017). Future research on regional complexity should thus 
unravel relatedness into the proposed dimensions (Farinha et al., 2019) to bring more insight into how 
relatedness truly matters for regional complexity.  

Another limitation is that the analysis is conducted at the regional level and only used three 
timeframes. This allowed more room for unwanted noise in the data-analysis as the influence of yearly 
outliers is likely to be much higher. Moreover, the effect of the explanatory variables might have been 
relatively high because of the smaller data sample.  

Furthermore, the analysis has taken into account each form of regional variety. Although, 
entropy allows one to decompose the data at different levels of aggregation, a relative high correlation 
(see appendices for more details) between the types of variety exists (Castaldi et al. 2015).  

Finally, there is still a lack of scientific evidence what caused the large drop of patent 
applications and complexity levels, which may impede future patent research. Patent research is a 
plausible way to empirically measure the geography of knowledge, industries and skills in the field of 
economic geography. However, future researchers should be aware that, if a trend of decreasing 
patent claims were to continue in a larger scale, it might harm the robustness of the research.   
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Appendices 
 

Model assumptions: 

 

Figure 1, linearity of model 1. 

It can be drawn from figure 1 that the assumption of linearity is met. This can be drawn from the fact that the 
dots follow a random pattern (Field, 2013).  
 

 

Figure 2, correlation plot of model 1 

To check for correlation among the variables, the pearson’s correlation has been used. When related variety was 

included in model 1, a correlation of 0,825 was found between UV and RV - and a correlation of 0,875 between 

RV and SRV. Furthermore, after checking in more detail, the VIF of RV exceeded 9. Hence, RV was left out. Figure 

2 represents the Pearson correlation of the model, without RV. It was found that no variables exceed a boundary 

of 0,8 or -0,8 and the maximum VIF of model 1 is 3.2. Therefore, no correlation and multicollinearity exist (Field, 

2013).  
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Figure 3, Q-Q plot model 1 

The residuals follow the ab-line (dotted line) which indicates that the assumption of normal distribution is met 
(Field, 2013).  

 

Figure 4, linearity of model 2. 

The model meets the assumption of linearity as the residuals show a random pattern (Field, 2013). 
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Figure 5, correlation plot of model 2. 

Model 2 meets the requirement of the maximum Pearson correlation as no variable correlates with more than 
0,8 (Field, 2013).  

 

Figure 6, Q-Q plot of model 2. 

The Q-Q plot meets the assumption of normal distribution as the residuals are near the diagonal that indicates 

a normal distribution (Field, 2013).  
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Figure 7, linearity of model 3. 

It can be derived that the effect of a few outliers is large. Therefore, the outliers have been deleted and the 

assumption of linearity is met (de Vocht, 2016).  

 

Figure 8, Pearson’s correlation of model 3. 

All values of the Pearson’s correlation matrix do not exceed -0,8 and 0,8. Hence the assumption of correlation is 

met (Field, 2013). 
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Figure 9, Q-Q plot of model 3. 

The assumption of normal distribution is met. This is shown by the fact that the dotted lines roughly follow the 
diagonal (Field, 2013).  
 

 

Figure 10, linearity of model 4 

Although there is a minor curve, the pattern of the residuals is enough random to meet the requirement of 

linearity (de Vocht, 2016).  
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Figure 11, Pearson’s correlation of model 4 

It can be derived from figure 9 that the maximum Pearson’s correlation is between -0,8 and 0,8. The assumption 

of correlation is met (Field, 2013).  

 

 

 

Figure 12, Q-Q plot of model 4 

The assumption of normal distribution is met as all dots roughly follow the diagonal (Field, 2013).  
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Figure 13, linearity of model 5. 

Figure 13 shows the residuals vs fitted. It is shown that the dots have a random pattern. Therefore, the assumption 

of linearity is met (Field, 2013).  

 

 

Figure 14, Pearson’s correlation of model 5. 

In figure 14 the correlation between all variables is visually represented. When Relatedness density was included 

in the model, a very high correlation between relatedness density and regional complexity existed (0,83). 

Furthermore, the VIF of relatedness density was 5,7. Therefore, relatedness density has been left-out.  
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Figure 15, Q-Q plot of model 5. 

Figure 15 shows the Q-Q plot of model 5. It is shown that the dots follow the diagonal. Therefore, the assumption 

of normal distribution is met (Field, 2013).  

 

 

Figure 16, linearity of model 6.  

As the dots show there is a random patter around the fitted line. The assumption of linearity is met (Field, 2013).  
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Figure 17, residuals vs fitted of model 6. 

It is shown that no variable exceeds a Pearson’s correlation of -0,8 and 0,8. Therefore, the assumption of 

correlation is met (Field, 2013).  

 

 

Figure 18, Q-Q plot of model 6. 

The dots follow the diagonal line. Therefore, the assumption of normal distribution is met (Field, 2013).   
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Extra models 
 

  
 

Complexity model including entry-quotient 

  Regional complexity T2+1 
(model 2) 

Relatedness density  0.24782938**’ 
(0.1215) 

SRV  0.47405713*** 
(2.281) 

UV  -0.04081613  
(3.555) 

RV  0.17634721**  
(1.343) 

Population density  -0.05142707  
(0.00175) 

Regional GDP  -0.20503094*** 
(0.00001493) 

Technological size  0.18947725** 
(0.0001274) 

Entry-quotient  -0.17274005*** 
(19.32) 

Constant  13.81 
(7.352) 

Time lag  yes 

Observations  290 

R²  0.6678 

Adjusted R²  0.6669 

Residual std. Error  9.165 

F statistic (df = 328)  62,32*** 

Table 1, multiple regression analysis of the explanatory variables on the dependent variables’ Regional complexity 

in t+2 with the entry-quotient included. Coefficients are statistically significant at the *p < 0.05, **p < 0.01 and 

***p < 0.001 level. 
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  Dependent variable: regional complexity             

  Regional complexity 𝑇+1. 
(model 1) 

Relatedness density  0.59633754*** 
(0.08193) 

SRV  Excluded 

UV  Excluded 

RV  0.29040796*** 
(1.283) 

Population density  -0.05905396 
(0.001216) 

Regional GDP  -0.18299838*** 
(0.00001612) 

Technological size  0.08795841 
(0.0001365) 

Constant  36.02*** 
(4.385) 

Time lag  yes 

Observations  290 

R²  0.5858 

Adjusted R²  0.5773 

Residual std. Error  9.428 

F statistic (df = 241)  68.18*** 

Table 2, multiple regression analysis of the explanatory variables on the dependent variables’ Regional complexity 

in t+1 with RV included and SRV – and UV excluded. Coefficients are statistically significant at the *p < 0.05, **p 

< 0.01 and ***p < 0.001 level. 
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  High/low 
complexity model 

   

  Low complexity 
period 1 

Low complexity 
period 2 

High complexity 
period 1 

High complexity 
period 2 

Relatedness density  0.21752864 
(0.1403484) 

0.25193089 
(0.1533) 

0.2930191** 
(0.0791) 

0.12786828 
(0.1538) 

SRV  0.60744381*** 
(2.4201228) 

0.28126108* 
(2.628) 

0.4635572*** 
(2.011) 

0.49804957*** 
(2.906) 

UV  0.05014753 
(2.4992172) 

0.03580327 
(3.484) 

-0.1559440* 
(3.669) 

-0.08530624 
(6.3) 

RV  Excluded 0.38770270*** 
(1.379) 

Excluded -0.08005946 
(1.987) 

Population density  -0.02242856 
(0.0019849) 

-0.03221048 
(0.001895) 

-0.1006385 
(0.0008608) 

-0.07301566 
(0.001099) 

Regional GDP  -0.03384904 
(0.0000306) 

-0.10726566 
(0.0002464) 

-0.2698831** 
(0.0001066) 

-0.30349044* 
(0.0001403) 

Technological size  -0.04765866 
(0.0006371) 

-0.04590249 
(0.0005868) 

0.1998103 
(0.00008974) 

0.33213613 
(0.0001224) 

Constant  29.8312*** 
(4.7032887) 

9.88 
(6.808) 

75.14 
(9.438) 

56.77*** 
(14.09) 

Time lag  yes Yes yes Yes 

Observations  145 145 145 145 

R²  0.5648 0.5526 0.4374 0.329 

Adjusted R²  0.5406 0.5243 0.4104 0.2895 

Residual std. Error  8.533 7.424 5.291 7.367 

F statistic (df = 108, 111, 
125, 119) 

 23.36*** 19.58*** 16.2*** 8.334*** 

Table 3, multiple regression analysis of the explanatory variables on high and low complexity divided for every 

period. Coefficients are statistically significant at the *p < 0.05, **p < 0.01 and ***p < 0.001 level. 
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  Dependent variable: Entry-
quotient 

 

  Entry-quotient 𝑇+1. Entry-quotient 𝑇2+1. 

Relatedness density  -0.61929648*** 
(0.0003047) 

-0.27965050* 
(0.0003425) 

Regional complexity  -0.31004706** 
(0.0002002) 

0.07028016 
(0.0002523) 

SRV  0.56744420*** 
(0.005692) 

-0.29653522* 
(0.008317) 

UV  -0.02128332 
(0.008763) 

0.06685847 
(0.01047) 

RV  Excluded  Excluded 

Population density  0.03713555 
(0.000003461) 

0.01763733 
(0.000003764) 

Regional GDP  -0.02696060 
(0.00000004808) 

0.17153995 
(0.00000004856) 

Technological size  0.21708732* 
(0.0000004119) 

0.14847960 
(0.000003764) 

Constant  0.01576 
(0.01934) 

0.008577 
(0.02341) 

Time lag  yes Yes 

Observations  290 290 

R²  0.2763 0.1473 

Adjusted R²  0.255 0.12222 

Residual std. Error  0.02805 0.02928 

F statistic (df = 238, 238)  12.98*** 5.872*** 

Table 4, multiple regression analysis of the explanatory variables on entry-quotient (including relatedness 

density). Coefficients are statistically significant at the *p < 0.05, **p < 0.01 and ***p < 0.001 level. 

 

 


