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Abstract

The increase in residential solar energy and other Distributed Energy Resources (DER) calls for novel
energy management solutions in the low-voltage (LV) distribution grid. Such solutions may come in the
form of digital Peer-to-Peer (P2P) energy trading platforms or the emergence of energy communities
where households share electricity between them through a microgrid in an optimized manner. In such
networks it is common to have a third party as a central coordinator, in which case issues of privacy,
security and independence arise. A solution may be found in blockchain and smart contract technology
which allows for decentralized and secure coordination of self-interested and independent actors. In
this thesis, an integrated blockchain-based energy management platform is modelled that will optimize
energy flows in a microgrid whilst implementing a bilateral trading mechanism. physical constraints in
the microgrid are respected by formulating an Optimal Power Flow (OPF) problem, which is combined
with a bilateral trading mechanism in a single optimization problem. It is one of the first times such
an integrated, combined optimization problem has been proposed. The Alternating Direction Method of
Multipliers (ADMM) is used to decompose the problem to allow for distributed optimization and a smart
contract is used to function as a virtual aggregator. The smart contract fulfills several functions, including
distribution of data to all participants and executing part of the ADMM algorithm. The model is run
using real data from a prosumer community in Amsterdam and several scenarios are tested to evaluate
the impact of combining physical constraints and trading on performance of the algorithm, social welfare
of the community and scheduling of energy flows and trading scheme. It is found that the combination
of trading and physical constraints in a single optimization problem may mitigate inequality between
households within the community. Furthermore, total costs of the whole community are reduced by 22%
as compared to a baseline scenario, and total grid energy consumption is reduced by 30%. Total social
welfare is found to be highest when optimizing energy flows based on physical constraints without using
a trading mechanism, however such a platform is only viable when all costs are equally shared between
all households. The combined scenario is found to give only a slightly lower total social welfare than the
trade-only scenario, with the added benefit that the inclusion of grid constraints may dampen the market
power of prosumers in the community, decreasing inequality between households.
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1 Introduction

1.1 Background
Several concurrent developments are profoundly transforming the energy system as we know it today. The
main driver for this originates in 2015, when 195 countries committed themselves to keeping global tem-
perature rise in 2050 below 2°C as compared to pre-industrial levels in order to mitigate harmful climate
change effects. In order to attain this goal, it is necessary to greatly reduce emissions of greenhouse gases, the
foremost among them being CO2 [1]. The largest source of CO2 emissions is the burning of fossil fuels such
as coal, natural gas and oil, and it is these fuels upon which the entire energy system is based. Fossil fuels
are used both as a primary source of fuel, for example in internal combustion engines, but are also used to
generate electricity. In order to reduce CO2 emissions to the extent that is needed, alternative, clean sources
of energy must be found and realized [2]. More and more policy options are becoming available for achieving
these goals. These policies may come in the form of CO2 pricing [3], subsidizing of renewables [4] or the
institution of Feed-in-Tariffs (FiT) [5] to allow owners of residential Photovoltaics (PV) systems to sell their
energy surplus back to the grid. Currently the most promising technologies for generating renewable energy
on a large scale are wind energy and solar PV energy [6] [2].

There are several fundamental differences between fossil fuel technologies and renewable energy technolo-
gies. First of all, fossil fuels are very flexible. A power generation plant running on natural gas may be turned
on and off at any time, and the amount of power generated may be increased or decreased at will. Addi-
tionally, transporting and storing fossil fuels is easy and straightforward given their chemical substantiality.
Large amounts of fuel may be amassed in one place for electricity generation, allowing for high efficiency [2].
Since all of human society is dependent on fossil fuel generated energy, this flexibility is taken for granted. for
wind and solar energy, the situation is different. The quantity and timing of energy generated are dependent
on environmental conditions which are outside of human control. Electricity can no longer be generated on
demand at any time, in any quantity. Furthermore, the energy density of wind and sunlight is relatively
low [2]. This means that, whereas fossil fuels can be burned in large quantities to generate large amounts of
power in a single place, renewable energy is generated in a large number of small capacity generator units
that are distributed over a wide geographical area. As a consequence, transportation of energy no longer
occurs by moving a physical substance but instead by transmitting electricity.

For these reasons, a substantial replacement of fossil fuel-based energy with renewable energy will require
a fundamental transformation of the whole energy system, in particular the electricity grid. Currently, the
vast majority of electricity is generated in several primary power plants, and is subsequently transmitted
over high voltage transmission networks to all regions of a country. Then, electricity is distributed through
the distribution network towards small consumers such as households. This flow of electricity is a top-down,
one-way process. As a larger portion of electricity is generated by renewable means however, this hierarchical
network will not be capable of facilitating optimal distribution. The wide geographical distribution of wind
and particularly PV means that to an increasing degree, electricity will be generated in areas where the
distribution grid is not properly equipped to facilitate this [7]. These locations may include lesser populated
areas but also urban environments and privately owned property. On these fringes of the distribution network,
it will be required to install much more complex coordination and control systems to enable the bidirectional
flow of electricity [8]. These consequences are amplified by the electrification of various technologies that
have up to now operated on fossil fuels, e.g. heat pumps and Electric Vehicles (EV). Adoption of these
technologies will cause a significant rise in electricity demand, and in the case of EV, the installation of new
infrastructure is required in the form of charging stations, causing further strain on the distribution network.
Together, these geographically dispersed electricity generating and consuming technologies can be referred
to as Distributed Energy Resources (DER).

Whilst these developments pose considerable technical challenges for grid operators, governments and
other stakeholders, opportunities may also arise for regular citizens. Already, the increasing adoption of res-
idential solar PV has led to an increase in the number of prosumers in the electricity market [9]. Prosumers
are both producers and consumers of electricity, withdrawing electricity from the grid in the conventional
manner as well as selling back electricity generated by their local PV systems at times that they do not
consume it. In various countries, FiT are in place to facilitate prosumers [5], allowing them to sell PV-
generated energy back to the grid for a fixed price. Whilst FiT do provide a solution, it is by no means
an optimal one. First of all, several countries including The Netherlands are planning to abolish FiT in the
coming years [10]. Secondly, it is more efficient, energetically as well as financially, to optimize local use of
energy and minimize interaction with the grid [11]. This can be enabled by the deployment of energy storage
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systems, and the use of schedulable electrical appliances or EVs that are configured to operate or charge
at times when generation exceeds consumption [12]. Still, there is only so much a single prosumer can do
to balance energy management at the household level. A larger degree of efficiency and flexibility may be
reached when generation and consumption are balanced between a number of households. Such solutions
involving multiple households may be implemented in novel types of consumer-centric electricity markets [13],
where prosumers can trade or share energy between them based on their respective consumption and gener-
ation patterns. In other sectors, similar developments are already taking place, enabled by digital platform
technologies and new economic principles such as the sharing economy [14]. These new types of markets are
called Peer-To-Peer (P2P) markets [15]. P2P markets allow agents to conduct trades without involvement
of a third party. Information and Communication Technology (ICT) is used to match supply and demand
and trades are generally conducted as one-off transactions rather than long-term contracts. Companies such
as Uber and AirBnB are examples of this. P2P markets may be designed to prioritize the wellbeing of the
participating individuals by providing maximum individual freedom, financial independence and privacy, or
alternatively they may focus more on the welfare of the community as whole, where participants may choose
to share access to a common resource and aim to achieve a common goal such as total welfare maximization
or autonomy [15]. P2P markets are now started to emerge in the energy sector [16]. This can be recognized
in the rise of community-based energy collectives [17] [18] [13]. The new P2P market constructs may allow
small prosumers to trade energy directly with each other and decrease their dependency on retail markets
which are not transparent and more expensive because of energy service company fees [18].

The evolution of the electricity grid into a decentralized, distributed network is enabled by several impor-
tant advancements in ICT technology. First of all, recent years have seen a large increase in the number of
installed smart metering systems in Europe [9]. Smart meters measure electricity consumption and generation
and allow bidirectional flow of information between a household and the energy service company [19]. These
smart meters generate vast amounts of data as they operate in real time as opposed to traditional metering
systems. Analysis of these large amounts of data provide insight into energy consumption and generation
patterns and further enable energy management solutions and smart optimization of energy flows [20]. The
EU Recommendation 2012/148/EU states that by 2020 a roll out of smart metering systems of at least 80%
should be achieved and emphasizes that smart meters should assist the active participation of consumers in
the electricity supply market [9] [21]. Expanding on a smart metering system is the home energy management
system (HEMS) [22]. A HEMS is a system that is capable of measuring and controlling the operation of all
connected electrical assets in a household, including appliances, solar panels, batteries and EVs. A centrally
coordinating computer can optimally balance power usage in the household by automatically directing charge
and discharge of batteries at appropriate times and scheduling appliances to operate at times over abundant
supply. Furthermore, a HEMS may communicate with the external grid and the energy service company to
receive information about electricity tariffs and the state of the grid.

Finally, digital platform technologies have shown their disruptive potential in the past few years. Besides
transforming the way in which markets function, through these platforms it is now easier than ever for
groups of people to organize themselves and exchange goods and information. This may raise issues when
the platform being utilized is owned by a third party with its own interests [23]. Personal information that is
stored on the platform may be stolen or abused for commercial purposes. Furthermore, the algorithms that
run the functionality of the platform are often not transparent for users, and the controlling party may design
these algorithms with only their own interests into consideration. Also, such a centralized platform may be
vulnerable to cyberattacks and tampering by attackers, since all information is stored in a single location.
Recently, the emergence of blockchain technology may provide a solution to these problems [23] [24]. A
blockchain is a type of distributed ledger technology that is used to connect a large number of anonymous
nodes without the need for a central controlling agent. Blockchain technology utilizes a consensus mechanism
to ensure security of the network and allows participants to store and share data in a secure and verifiable
manner, even when the identity and trustworthiness of other peers is unknown. In order for a piece of data
to be validated, its source must be verified by other nodes on the network by using cryptographic hashes.
Information is stored in sets of data called blocks. A block receives a cryptographic signature which contains
information about its contents and is formed when a predefined number of nodes complete a consensus
algorithm. Participants can join or leave the blockchain network at any moment without impacting the
operation of the system significantly and it is extremely difficult for external attackers to gain control of
the blockchain. The clearest application for blockchain has proved to be verification of ownership, as is the
case with cryptocurrency [25], but distributed computation between all connected devices is also possible.
Extension of a blockchain with smart contract technology expands the utility even further and enables smart
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optimization [23] [26].

1.2 Literature Review
Although there is not yet a universal consensus in the scientific community on the terminology used in this
field of research, most of the work that shall be considered can be categorised under the term “transactive
energy” [27]. Something that all transactive systems have in common is that the system attains global
goals through interactive and networked cooperation of independent and self-interested actors. A precursor
to transactive energy systems can be recognized in demand response programmes, which mainly provide
financial incentives for consumers to withdraw energy from the grid during off-peak hours [28] [29]. Chen and
Liu [30] show the evolution from demand response programmes to transactive energy, with the fundamental
difference being that transactive systems manage both the demand and the supply of energy, incentivizing
both local generation and demand at favourable times. This progression is necessary with the rise of DER
and prosumers. Since transactive systems involve interactions between a large number of self-interested
actors, the design of transactive systems should align individual behaviour with the goals of the system as a
whole [30].

As defined in another study [27], there are three transactive techniques that can be applied to power grids.
There is the method of “Distributed, Constrained Economic Power Flow”, which has a strong foundation in
physics, there are the “Bilateral Trades” which has a foundation in economics, and there is the “Auctions”
method that has the middle ground between the two others. Since ultimately both the economic and phys-
ical layer are required, the development of practical applications requires alignment of business plans and
engineering techniques, which is a considerable challenge. The various layers of a transactive energy system
are also emphasised by Zhang et al. [31] who distinguish the four layers of the physical grid, ICT, control and
market. The scientific literature concerning the physical, economic and information layers is reviewed. In the
information layer, the review is limited to research related to blockchains in the energy sector. Additionally,
scientific literature regarding distributed optimization methods shall be reviewed.

In the physical grid, the problem to be solved is to find the optimal electricity flows within the distribution
grid while respecting physical constraints relating to power lines and connected assets. A common method of
solving this problem is by formulating an Optimal Power Flow (OPF) problem [32]. This is a mathematical
optimization problem that finds the optimal configuration of power flows and voltage levels whilst considering
losses and balancing constraints to attain a certain optimization objective. The objective is typically to
minimize operation costs. OPF problems can be solved for both DC and AC systems and have been in use
to solve issues in the main electricity grid and many scientific studies have recently used OPF to find the
optimal configuration of power flows in a microgrid [31] [33] [34] [35] [36]. A detailed account on how to
apply OPF in a distributed optimization scenario is given by Kraning et al. [37]. Carli & Dotoli [33] use OPF
for the energy management of smart homes that have a number of smart, controllable appliances to find the
optimal schedule for all of these connected assets. One particularly interesting study conducted by Munsing
et al. [35] implements an AC-OPF problem on a blockchain platform for decentralized optimization. Aside
from OPF, power flow tracing methods have been used by Di Silvestre et al. [38] to allocate losses in power
flow to different agents financially.

The economic layer is where most research has been conducted. In this category both market schemes and
prosumer engagement methods shall be considered. Broadly speaking two categories of market structures can
be distinguished [18]. On the one hand there is the full P2P market, where trades are conducted bilaterally
and there is no centralized supervision. In such a market, all peers operate in a self-interested manner by
maximizing their own profit. Maximum independence, freedom and anonymity are guaranteed in a full P2P
market [15]. Full P2P markets in the energy sector have been explored in various recent studies [31] [39] [40].
Morstyn et al. [39] designed a scalable economic and financial model for P2P trading with bilateral contract
networks. Contracts are made between producers, intermediaries and inflexible consumers. One iconic study
from the Brooklyn microgrid [41] has implemented a P2P trading scheme in a real physical microgrid. Supply
and demand bids are matched using a conventional merit-order dispatch. The second category of market
structures is the energy collective or community based market. In this system, the interest of the group
is paramount, and individual agents may sacrifice some of their own profit for the collective social welfare.
Moret & Pinson [42] propose a model where energy collectives may decide upon different goals, including
total welfare maximization or autonomy from the external grid. They employ a community manager for
central coordination and use fairness indicators to ensure equality between all participants. Long et al. [43]
study a scenario where energy is shared in a microgrid by using batteries and show benefits for individuals
as well as the community as a whole. Tushar et al. [44] take a similar approach using an auction scheme.
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Luth et al. [45] conducted a study where market schemes including both individual and community-owned
battery storage systems are employed. In these community-based schemes, the electricity price is usually
uniform across the community. Recently, a unified prosumer peer-to-peer market model has been formulated
by Baroche et al. [46]. This scheme may be operated with both bilateral trades and a centralized pool market,
and provides an option for participants to declare preferred trading partners by including a trading penalty.

Although most of the aforementioned studies explore financial benefits for participants, many alternative
ways have been suggested to engage prosumer participation. Faber et al. [47] emphasise the usefulness of
allowing prosumers to declare trading preferences regarding the source and type of energy that is traded in
the market. This is implemented by Sorin et al. [48] who design a full P2P market using the method of Multi-
Bilateral Economic Dispatch and include product differentiation and consumer preferences. Gamification-
based approaches may also be used to engage prosumers and incentivize participation. Such schemes have
been proposed by AlSkaif et al. [12] and Wang et al. [49]. Li et al. [50] employ a Stackelberg game where a
credit bank acts as game leader for fast and frequent energy trading in the context of the Industrial Internet
Of Things and further incentivize participation by awarding energy coins. In order to effectively incentivize
prosumer participation, it is also necessary to have a good insight into their behaviour. Lampropoulos et
al. [51] propose a methodology for modelling behaviour of electricity prosumers within the smart grid, to
gain insight into the factors that shape residential loads and influence participation.

In the information layer, the application of blockchain technology in the energy sector has been rapidly
gaining attention from the scientific community. Blockchain technology is an enabling technology that may
improve functionality in many different areas by removing the need for intermediaries. An extensive re-
view was conducted by Andoni et al. [23] who cite a large number of studies and initiatives that have em-
ployed blockchain in the energy sector. This includes energy service company operations (e.g. sales, billing
etc.), wholesale energy trading and supply and coordination of Internet of Things platforms. In particular
blockchain is seen as promising in the area of P2P trading and decentralized energy, since through blockchain
a large number of self-interested actors can be connected and coordinated. Thus, by providing anonymity and
independence for participants, the use of blockchain may incentivize participation. The overall conclusion in
this study is that blockchains may provide clear benefits to energy system operations, markets and consumers.
The case study of the Brooklyn microgrid employs a blockchain network to connect participants [41], and
shows that a blockchain can be successfully used to implement local electricity markets. Munsing et al. [35]
expand on this by employing smart contracts on the blockchain network to enable decentralized optimization
of an OPF problem without a central coordinator, as well as for billing using tokens. Other studies that use
blockchains and smart contracts for electricity trading include Liu et al. [52] and Li et al. [50]. In the technical
domain, Di Silvestre et al. [38] review technical issues related to the use of blockchains in microgrids, and
the specific requirements for their setup in this case.

In the domain of distributed optimization algorithms there are several options that may be used to solve
an OPF problem or ensure market clearance. Kargarian et al. [34] conducted a review of the suitable for
this purpose for six decentralized algorithms, including Analytical Target Cascading (ATC), Alternating
Direction Method of Multipliers (ADMM), Proximal Message Passing (PMP), Auxiliary Problem Principle
(APP), Optimal Condition Decomposition (OCD) and Consensus + Innovations (C+I). Of these options,
ADMM has seen the most extensive application in decentralized energy platforms. Baroche et al. [46] state
that ADMM is preferred over C+I for convergence speed and robustness. The ADMM algorithm is well suited
to distributed convex optimization and operates by allowing decomposition of a global optimization problem
into several sub-problems [53]. The sub-problems are solved in parallel and their solutions are coordinated
to come to a solution of the global problem [53]. ADMM has been used by the scientific community to solve
optimization problems in both the physical and economic layer. An OPF problem can be decomposed into
sub-problems using ADMM, where every sub-problem is related to a small part of the grid. This has been
shown in great detail by Kraning et al. [37] who combine ADMM and PMP to optimize power flow in a
network including various types of devices, including generators, fixed loads, storage devices and deferrable
loads, which are connected by both AD and DC lines. ADMM has been used extensively in other recent studies
to decompose OPF problems [33] [35] [54]. Similarly, ADMM can also be utilized to decompose a market
clearing optimization problem, where a common approach is to formulate the global optimization problem
as a maximization of total social welfare. The problem is decomposed into subproblems that maximize total
welfare for every individual agent, and are again coordinated to achieve a global optimum [18] [46] [42].
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Figure 1: Illustration of the different layers of the proposed model and the interaction between them. 1) In the physical layer,
power flows in the horizontal dimension between households through grid connections and is constrained by technical limitations.
OPF is used to find the optimal solution. 2) Information is exchanged in the vertical dimension between the economic and the
physical layer. This means that households combine information from the both layers to find their optimal scheduling of their
DER and trading. 3) In the economic layer, a trading mechanism used to enable monetary compensation for power injections and
withdrawals into/from the grid. Money is exchanged horizontally between the households. 4) Information is exchanged between
the information layer and the layers below. The households send their locally calculated optimal schemes for the economic and
physical layers to the smart contract in 5). The smart contract gathers the optimal solutions from all households and determines
how the schemes must be adapted to come to universal agreement. Each household then receives the feedback on how they
must adapt their optimal schedule.

1.3 Contributions of this study
The aim of this study is to model an integrated energy management platform that implements solutions in the
physical, economic and information layers. The goal of the platform is to optimize the flow of electricity in a
distributed manner, in a realistic microgrid configuration which features a number of households with access
to a variety of DER. OPF is used in the physical layer to ensure that physical constraints and balancing of
power are respected. In the economic layer, a bilateral trading mechanism is implemented to provide personal
choice and freedom to the households. In the information layer, the model is implemented on a blockchain
network to allow for secure and transparent distributed operation. A smart contract is used to coordinate
between the households on the network by acting as a virtual aggregator. Figure 1 shows the structure of the
platform. The goal of optimization is to maximize total social welfare of all connected actors. Social welfare
is typically represented by financial costs. As such, the optimization objective is to minimize total costs of all
households. The ADMM algorithm is used to solve the optimization problem in a distributed manner. The
modelled platform is intended to provide a high degree of independence, privacy and transparence by the
implementation on the blockchain network, as well as personal choice and freedom through bilateral trading.
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Although similar models have been developed before, as has been shown in section 1.2, there are several novel
contributions that this study intends to make.

First of all, to the author’s best knowledge there have not been any such models proposed that have
combined the problems of the technical and economic layers in a single integrated model. In the current
proposal, an AC-OPF problem will be formulated and combined with a bilateral trading mechanism in
a single optimization problem that respects grid limitations and achieves market clearance by optimally
scheduling power flows and the trading scheme. This is one of the first times such an integrated model is
proposed. In order to assess the performance of the integrated model, a comprehensive numerical analysis is
performed and a number of performance parameters is evaluated.

As a second major contribution, the implementation on the blockchain platform and specifically the role
of the smart contract are described in a detailed manner. The smart contract fulfills the role of a virtual
aggregator and executes several parts of the ADMM algorithm. It acts as a coordinator that ensures sym-
metric execution of the algorithm by all actors, and with which all agents on the network must communicate
and exchange information. At every stage in the execution of the ADMM algorithm, the flow of information
between the smart contract and the agents on the network is described.

Given these contributions, the research questions are formulated as follows:

1. How does the combination of physical grid constraints and trading mechanism in a single optimization
problem impact performance of the model?

(a) How does the combination affect convergence of the ADMM algorithm?

(b) How does the combination affect social welfare?

(c) How does the combination affect scheduling of power flows and trading scheme?

2. How can a smart contract fulfill the role of virtual aggregator in the ADMM algorithm?

(a) What are the different functions the smart contract has to execute in the role of virtual aggregator?

(b) How is the flow of information between agents on the network and the smart contract?

The paper is structured as follows. The methodology is presented in section 2, where the general layout
and setup of the grid and households are presented in subsection 2.1. The centralized formulations of the
OPF problem and trading mechanism are given in subsections 2.2 and 2.3 respectively, and the decentralized
formulations of both are given in subsection 2.4. The blockchain implementation is detailed in subsection
2.5 and the configuration of the numerical analysis can be found in subsection 2.6. The results are given in
section 3, and a discussion of these results is found in section 4. Finally, the thesis is concluded in section 5.
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2 Methodology
As a basis for answering the research questions a decentralized blockchain-based P2P trading platform is
modelled. The platform is designed to function on a microgrid network that features consumers and prosumers
with access to private EV charging stations, solar PV installations and batteries. The platform is intended
to function as a day-ahead energy scheduling platform, where energy management is optimized for 24 hours
the day ahead. Every prosumer household is considered as a separate node on the network that consumes
and/or generates energy, and an AC-OPF problem is formulated to optimize energy flows. Households are
able to trade their excess or deficit electricity budget between them by assigning bilateral trading coefficients
to different trading partners at different timesteps. This allows for differentiation of energy products or
designation of preferred trading partners. The main novelty in the proposed platform is that the technical
and the economic optimization problems are combined into one. This optimization problem is formulated in
a distributed form using the ADMM algorithm. Finally, the distributed optimization problem is implemented
on a private blockchain test network by porting part of the algorithm’s functionality to a smart contract that
is deployed on the blockchain network. In order to evaluate the impact that inclusion of grid constraints
and trading mechanism have on social welfare and power flows, different versions of the platform are tested
that include and exclude the grid constraints and the trading mechanism. Furthermore, convergence of
the ADMM algorithm is also evaluated under these different scenarios. A comparison is also made with a
baseline scenario in which the microgrid is non-existent and there is only interaction between households and
the external grid.

2.1 Grid and household setup
The microgrid considered in this study is modelled as a radial Low Voltage (LV) network for a number of
timesteps T , indexed by t = 0, 1, . . . , T . It can be represented by a set of nodes N , indexed by i = 0, 1, . . . , n,
and connecting lines L. Node 0 is designated as the root node. A node in N can be either referred to with
its index number i or as a neighbouring node of another node j. In this relationship, j is defined as the node
that is closer to the root node. As such, j is called the parent node of i, and can be referred to as π(i). In
similar fashion, node i is called the k-th child node of j, and can be referred to as δk(j). Due to the radial
nature of the network, every node will only have one parent node. A node can have multiple children, and
the set of children nodes of node j is referred to as δ(j), indexed by k = 0, 1, . . . , c. For simplicity, every line
in L is designated to have the same index number as the connected child node. In every line i, the complex
impedance is denoted as zi = ri + ixi, where r and x are the resistance and reactance in the line. A 4-node
illustration can be seen in Figure 2.

All households in N have a number of assets available to them that influence the flow of power. First of
all, all households have access to a one-way connection to the external grid, as FiT are not considered in this
study. Power withdrawn from the external grid is designated as pg

i,t. The costs of withdrawing power from
the grid is represented by κt. The costs for each household i in timestep t is given by:

Cg
i,t(p

g
i,t) = pg

i,tκt, ∀ i, t. (1)

Every household also has a fixed real power load pc
i,t and fixed reactive power load qci,t that are uncontrol-

lable. Controllable reactive power generation qgi,t is assumed to be available to those households that have
access to solar PV [55]. The generation of real and reactive power is constrained within upper and lower
limits as follows:

pg
i
≤ pg

i,t ≤ p
g
i , ∀ i, t, (2a)

qg
i
≤ qgi,t ≤ q

g
i , ∀ i, t. (2b)

Other assets that are available only to some households but not others include solar PV, EV and battery
systems. The availability of solar PV yields a fixed, uncontrollable power generation ppv

i,t. The availability
of EV and battery systems yields additional constraints. An EV is considered to be a shiftable load where
both the time and quantity of the charging power pev

i,t can be controlled. Total daily charge must equal the
average daily charging demand of an EV Eev

i , as can be seen in (3). Furthermore, EV charging rate must be
within upper and lower charging limits. A binary parameter ωi,t is used in (4) to indicate the timeslots at
which the EV charging can be scheduled.
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Figure 2: Illustration of the grid setup and power flow dynamics with 4 nodes.

T∑
t=0

pev
i,t∆t = Eev

i , ∀ i, t, (3)

ωi,tp
ev ≤ pev

i,t ≤ ωi,tpev, ∀ i, t. (4)

For the battery, the net battery power pb
i,t is defined as the difference between the discharging power pbd

i,t

and the charging power pbc
i,t, as follows:

pb
i,t = pbd

i,t − pbc
i,t, ∀ i, t. (5)

The state of charge of the battery is represented by ebi,t, and the efficiency of charging and discharging
are represented by ηb

in, η
b
out respectively. ebi,t is determined as follows:

ebi,t = ebi,t−1 + pbc
i,t(η

b
in −

pbd
i,t

ηb
out

)∆(t), ∀ i, t. (6)

pbd
i,t , pbc

i,t and ebi,t are all constrained within upper and lower limits as follows:

pbd
i
≤ pbd

i,t ≤ pbd
i , ∀ i, t, (7a)

pbc
i
≤ pbc

i,t ≤ pbc
i , ∀ i, t, (7b)

ebi ≤ ebi,t ≤ ebi , ∀ i, t. (7c)

Finally, every household has a two-way connection to the microgrid, allowing for withdrawal and injection
of real and reactive power. Net power injections into the microgrid are designated as pi,t and qi,t, with
positive values representing injection and negative values representing withdrawal. pi,t and qi,t are calculated
as follows:

pi,t = pg
i,t + ppv

i,t + pb
i,t − pc

i,t − pev
i,t, ∀ i, t, (8)

qi,t = qgi,t − q
c
i,t, ∀ i, t. (9)

2.2 AC-OPF problem
The complex power flow in line i is denoted as Si,t = Pi,t + iQi,t, where Pi,t and Qi,t represent the real and
reactive power flow through line i at time t, respectively. The convention is adopted that positive values
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represent power flow from i to j, whereas negative values represent power flow from j to i. The squared
voltage at node i is represented by νi,t = v2i,t and the squared current magnitude is represented by ψi,t = I2i,t.
These quantities can be related by adopting the branch flow model for modelling the AC power flow in a
single phase radial network. The branch flow model is a Second Order Cone (SOC) convex relaxation of the
AC-OPF optimization problem [56]. The following equations from the branch flow model are considered:

pi,t = Pi,t −
∑
k∈δi

Pk,t − riψi,t, ∀ i, t, (10a)

qi,t = Qi,t −
∑
k∈δi

Qk,t − xiψi,t, ∀ i, t, (10b)

νi,t = νj,t + 2(riPi,t + xiQi,t)− ψi,t(r2i + x2i ), ∀ i, t, (10c)

ψi,t =
P 2
i,t +Q2

i,t

νi,t
, ∀ i, t. (10d)

The net power balance at node i is given by the departing power quantity minus the arriving power
quantities minus the losses. As such, the net real pi,t and reactive qi,t power quantities at node i are given
by (10a) and (10b). The squared voltage νi,t at node i is given by (10c). Figure 2 illustrates the power
flow dynamics in a 4-node example of the proposed radial network. (10d) is a non-convex constraint, and is
relaxed to the following inequality [57]:

P 2
i,t +Q2

i,t ≤ ψi,tνi,t, ∀ i, t. (11)

Furthermore, the voltage νi,t is to be constrained within upper and lower limits, as in (12). Typically
these limits are 5% above and below a nominally defined voltage.

ν ≤ νi,t ≤ ν, ∀ i, t. (12)

The optimization objective of the present AC-OPF problem is to minimize total costs of grid withdrawal
for every household. It is formulated as follows:

minimize
T∑
t=0

N∑
i=0

Ci,t(p
g
i,t),

subject to (2a)− (12).

(13)

2.3 Trading mechanism
For the trading mechanism, the unified prosumer market proposed by Baroche et al. [46] is adopted. The
unified model provides options for implementing either a pool market model or a bilateral trading system.
For the purposes of this study the bilateral trading form is used, which includes the designation of a bilateral
trading coefficient to every individual trade. This allows participants to declare preferred trading partners,
and may also be used to enable product differentiation. Market participants are assumed to behave rationally
and non-strategically. Every node in N is considered to be a separate market agent. In the unified prosumer
market model, costs for every separate agent are minimized across their set of connected assets. This includes
the costs of trading with the other participants. It is formulated as follows:

minimize
T∑
t=0

N∑
i=0

[ A∑
a=1

fai,t(p
a
i,t) +

M∑
j=0

γij,t|dij,t|

]
, (14a)

subject to Dt = −Dᵀ
t [Ξt] ∀ t (14b)

,

A∑
a=1

pai,t =

M∑
j=0

dij,t ∀ i, t, (14c)

pai,t ∈ Pai,t ∀ a, i. (14d)
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In this formulation, A indexed by a represents the set of assets of agent i, andM indexed by j represents
the set of trading partners of agent i. fai,t represents the cost function of asset a as a function of the power
set point pai,t. γij,t represents the bilateral trading coefficient imposed by agent i on the trade between agents
i and j, and dij,t is the quantity of electricity traded between agents i and j in timestep t. The matrix D
contains the quantities of all trades, and the associated dual variable matrix Ξ contains the prices of all
trades. Set Pai,t contains the feasible set of power set points of i at t. Constraint (14b) enforces reciprocity
of trade quantities, and reciprocity of trading prices Ξ is also implicitly enforced by this constraint as it is
the dual variable. Constraint (14c) ensures that the sum of all power generated by agent i equals the sum of
the quantities of all trades conducted. It can be recognized that low values of the bilateral trading coefficient
γij,t indicate preferred trading partners whereas high values represent undesirable trading partners. In the
current study the only source of costs for every agent besides trading is the external grid connection, of which
the costs function is (1). As such, in a trade-only scenario where grid constraints are not considered, the
optimization problem can be rewritten as:

minimize
T∑
t=0

N∑
i=0

[
Ci,t(p

g
i,t) +

M∑
j=0

γij,t|dij,t|

]
, (15a)

subject to Dt = −Dᵀ
t [Ξt] ∀ t, (15b)

pi,t =

M∑
j=0

dij,t ∀ i, t, (15c)

(2a), (3)− (8).

2.4 Decentralized formulation
2.4.1 General consensus ADMM

In order to solve the optimization problem in a distributed manner, the general consensus optimization form
of the ADMM algorithm is used. The global optimization problem is split in a number of subproblems
f1(x1) + f2(x2) + . . . + fn(xn) where each agent on the network solves their subproblem locally and in
parallel. Accordingly, the variables are split into sets of local variables x1, x2, . . . , xn where each set of local
variables is needed to solve the corresponding local subproblem. Every set of local variables consists of a
number of components (xi)c, each of which corresponds to a component (zg)c of the set of global variables
zg. The set of global variables contains all variables that are used in the global optimization problem and is
used ensure consensus between all agents as they come to a consensus on the value of every global variable
component. For some global variable components, there is only one corresponding local variable component in
one subproblem: in these cases, the consensus procedure is not needed. For other global variable components,
there are two or more corresponding local variable components across an equal number of subproblems, and
consensus must be ensured. Accordingly, every set of local variables xl is split into a set of local private
variables (xl)i, which contains variables that are specific to that agent and subproblem only, and a set of
local coupling variables (xu)i, which contains variables that are shared between two or more agents and are
thus used to couple the different subproblems together. Consensus across the entire network is achieved when
every local variable component (xi)c is equal to the corresponding global variable component (zg)c. Using
notation from [53], this consensus condition can be formulated as:

(xi)c = zG(i,c), ∀ i, c. (16)

We define the variable (z̃i)c which is equal zG(i,c), and define the consensus constraint as xi − z̃i = 0. As
such, the general form consensus problem can be written as follows:

minimize
N∑
i=0

fi(xi), ∀ i, t, (17a)

subject to xi − z̃i = 0, ∀ i, t. (17b)

Then, the augmented Lagrangian of this problem is formulated as:
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Lρ(x, z, y) =

N∑
i=0

(fi(xi) + yᵀi (xi − z̃i) + (ρ/2) ‖xi − z̃i‖22), (18)

where y represents the dual variable, and ρ represents the penalty parameter (i.e. the step size) which
is predefined. In (18), it can be recognized that minimizing the second and third terms enforces constraint
(17b). In the general consensus ADMM algorithm, (18) is solved through a series of iterative steps, in each
of which the x, y and z variables are determined separately. When calculating each of these variables, the
most recently calculated values of the other two are used to do so. As such, in every iteration k+ 1, following
derivation in [53], the three steps are then formulated as:

xk+1
i = argmin

xi

(fi(xi) + yk
ᵀ

i (xi − z̃ki ) + (ρ/2)
∥∥xi − z̃ki ∥∥22), (19a)

zk+1
g = (1/kg)

∑
G(i,c)=g

(xk+1
i )c, (19b)

yk+1
i = yki + ρ(xk+1

i − z̃k+1
i ). (19c)

In (19b), kg represents the number of local variable components that correspond to zg. It can be recognized
that (19b) is essentially an averaging of all local variable components to retrieve the corresponding global
variable component. In the dual variable update (19c), it can be recognized that the larger the difference
between the local and global variables xi and z̃i, the larger the magnitude of the y update will be, and thus
the more strongly the constraint (17b) will be enforced in (19a).

The ADMM algorithm will iterate through the steps until the convergence conditions are met. These
conditions are evaluated through the primal and dual residual values rk and sk, which are defined as follows:

rk = xki − z̃ki , (20a)

sk = zkg − zk−1g . (20b)

The convergence conditions are then defined as:

∥∥rk∥∥
2
≤ εp, (21a)∥∥sk∥∥

2
≤ εd. (21b)

In (21a) and (21b), εp and εd are the allowed tolerances for the primal and dual residuals respectively,
which are typically assigned a low value in the range of 10−2 − 10−3. Besides meeting the convergence
conditions, the execution of and ADMM algorithm is also typically assigned a maximum number of iterations
after which execution of the algorithm will end.

2.4.2 ADMM and AC-OPF

The AC-OPF of (13) is reformulated using the general consensus form ADMM. The global optimization
problem is decomposed into a set of subproblems where every node i ∈ N solves its own local subproblem
using its own set of local variables xi. In this set of local variables, the subset of local private variables
(xl)i := [pi, p

g
i , qi, q

g
i , ψi, p

b
i , p

bc
i , p

dc
i , e

b
i , p

ev
i ] generally contains the variables pertaining to local energy infras-

tructure and the set of coupling variables (xu)i := [Pi, Qi, vi, Pδ(i), Qδ(i), vπ(i)] generally contains the variables
pertaining to its set of branch flow equations. The set of global variables is denoted as zg := [P,Q, v]. Since
for every node the set of coupling variables only contains variables that are related to itself or the neighbour-
ing edges and nodes, the full network topology will not have to be known by any node. Every node must only
know who its neighbouring nodes (i.e. parent and children) are. Figure 3 shows how the locally calculated
coupling variables correspond to the global variables in the present OPF problem. The local subproblem for
a node i looks as follows:

minimize Ci,t(p
g
i,t),

subject to (2a)− (12).
(22)
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Figure 3: An illustration of the coupling between local and global variables in the ADMM-based general form consensus method
for the OPF problem in a 4-nodes network.

The steps of the ADMM algorithm are executed according to (19a) - (19c). In iteration k+ 1 every node
i first receives zkg and solves the following local optimization problem:

minimize Ci,t(p
g
i,t) + yk

ᵀ

i (xi − z̃ki ) + (ρ/2)
∥∥xi − z̃ki ∥∥22 . (23)

The nodes then exchange the coupling variables with the aggregator and z is updated as:

zk+1
g := (1/kg)

∑
G(i,c)=g

(xk+1
i )c. (24)

The nodes then receive z̃k+1
i and update the penalty locally as:

yk+1
i = yki + ρ(xk+1

i − z̃k+1
i ). (25)

Finally, primal and dual residual values rk+1
g and sk+1

g are defined:

rk+1
grid =

N∑
i=0

xki − z̃ki , (26a)

sk+1
grid =

N∑
i=0

zkg − zk−1g . (26b)

2.4.3 ADMM and trading mechanism

As for the OPF problem, the optimization problem (14a) is decomposed into subproblems where every agent
solves their corresponding subproblem. Every agent will determine their own local trading scheduleD, which
is treated as a coupling variable that corresponds to the global variable C. Following [46], C = (D−Dᵀ)/2
is defined as the average of the trading quantity proposed by agent i to agent j and the trading quantity
proposed by agent j to agent i. Since the global variable C is skew-symmetric, it can be rewritten as
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(C − Cᵀ)/2 = D. By using this consensus constraint, the fully decentralized augmented Lagrangian for
bilateral trading can be formulated as follows:

(
pg
i , Di

)k+1
= argmin

pgi ,Ti

T∑
t=0

[
Cg
i,t(p

g
i,t) +

M∑
j=0

[
γij,t|dk+1

ij,t |+

(φ/2)
(dkij,t − dkji,t

2
− dk+1

ij,t + ξkij,t/φ
)2]]

, (27a)

subject to pi,t =

M∑
j=0

dij,t, (27b)

(2a), (3)− (8).

In this formulation the penalty parameter is represented by φ. Dual variable ξ, representing the price of
trading, being updated in the next step:

ξk+1
ij,t = ξkij,t − ρ(dk+1

ij,t + dk+1
ji,t )/2. (28)

Finally, residuals are calculated as follows:

rk+1
trade =

N∑
i=0

T∑
t=0

M∑
j=0

(
dk+1
ij,t + dk+1

ji,t )2, (29a)

sk+1
trade =

N∑
i=0

T∑
t=0

M∑
j=0

(
dk+1
ij,t − d

k
ij,t)

2. (29b)

2.4.4 Combined formulation

As stated, the main contribution of this study is the combination of an OPF problem with a trading mecha-
nism in a single distributed optimization problem. This leads to a fully decentralized algorithm that achieves
maximum total social welfare by minimizing both grid withdrawal costs and trading costs for every agent
i ∈ N separately and in parallel while respecting global grid constraints and balancing the market. The fully
decentralized algorithm consists of several iterative steps. First, the local optimization problem is solved by
agent i:

(
xi,Di

)k+1
= argmin

xi,Ti

T∑
t=0

[
Cg
i,t(p

g
i,t) + yk

ᵀ

i,t (xi,t − z̃ki,t) + (ρ/2)
∥∥xi,t − z̃ki,t∥∥22

+

M∑
j=0

[
γij,t|dk+1

ij,t |+ (φ/2)
(dkij,t − dkji,t

2
− dij,t + ξkij,t/φ

)2]]
,

subject to (2a)− (12), (27b).

(30)

It can be recognized that two separate penalty parameters are used, ρ for the grid constraints and φ for
the trading mechanism. In this first step, agent i calculates both the set of local variables xi and the optimal
trading schedule D for every timestep. In the next step, the global variables zg are calculated:

zk+1
g := (1/kg)

∑
G(i,c)=g

(xk+1
i )c. (31)

In the third step, dual variables y and ξ are updated by every agent:

ξk+1
ij,t = ξkij,t − φ(dk+1

ij,t + dk+1
ji,t )/2, ∀ j, t, (32a)

yk+1
i = yki + ρ(xk+1

i − z̃k+1
i ). (32b)
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After every iteration, separate sets of residuals for grid constraints and trading are calculated as follows:

rk+1
grid =

N∑
i=0

xki − z̃ki , (33a)

sk+1
grid =

N∑
i=0

z̃ki − z̃k−1i , (33b)

rk+1
trade =

N∑
i=0

T∑
t=0

M∑
j=0

(
dk+1
ij,t + dk+1

ji,t )2, (33c)

sk+1
trade =

N∑
i=0

T∑
t=0

M∑
j=0

(
dk+1
ij,t − d

k
ij,t)

2. (33d)

2.5 Blockchain implementation
By using blockchain and smart contracts technology the proposed distributed algorithm can be executed in
a secure, verifiable manner that ensures independence and anonimity of the network participants. In such
a setup, the role of the smart contract is essential. A smart contract is a piece of computer code that is
deployed on the blockchain and can execute certain functions when called upon by other nodes [26] [24].
Smart contract technology allows decentralized optimization on a blockchain network, enabling execution of
the distributed algorithm without dependence on a central agent (e.g., a third party aggregator). The smart
contract takes over the function of this central aggregator, thus effectively functioning as a virtual aggregator.
In this role, the smart contract acts as the primary agent for nodes to interact with during execution. It
should be emphasized that the smart contract is not a computer programme that is executed as a whole, nor
does it loop through the ADMM algorithm steps. Rather it is a collection of functions that are executed when
called upon by other nodes. As a virtual aggregator, the smart contract performs several types of functions:

1. Executing parts of the ADMM algorithm

2. Exchanging information with other nodes

3. Giving permission to other nodes to proceed with the next operation.

Various steps in the ADMM algorithm are distinguished where these functions are executed. The smart
contract is written in the Solidity language, which is the most commonly used for smart contracts, and
the other files that are run locally are written in Python. The Python package Web3.py [58] is used to
communicate between the local files and the contract, and the local optimization problem are solved using
the Cvxpy package [59]. The blockchain network is set up by running a local Ethereum node with Ganache-
cli [60]. It should be noted that the proposed blockchain setup is not assessed for efficiency of communication,
security and execution speed. Furthermore, The inherent built-in delay in the blockchain verification process
may make the use of blockchain for real-time optimization implausible or impractical. Therefore, the model
proposed in this study is intended to provide a day-ahead forecast optimization of energy flows.

Upon setting up the blockchain network every node i is assigned a personal account with address λi. This
account is used to interact with the network and send/retrieve data to/from the smart contract. The smart
contract σ is deployed to the network using a configuration file. This action only has to be performed once
by a single node: the contract remains on the network indefinitely after deployment. This is done using a
set of constructor variables θ := [n, ρ, φ, εgp, ε

g
d, ε

t
p, ε

t
d, µ] that configure the ADMM algorithm. The variable

µ represents the maximum number of iterations, n represents the total number of nodes on the network. It
can be noted that it is not required to pass any information on the network topology. As the contract is
deployed, a new address λσ and the bytecode of the contract’s contents ABIσ are generated. λσ and ABIσ
must be known by all other nodes to allow them to interact with the contract.

In the execution of the ADMM algorithm on the blockchain network for OPF there are several steps that
can be distinguished where there is communication between the smart contract σ and the nodes i ∈ N . The
various steps are visualised in Figure 4.

1. In step 1, i connects to σ by using the adress λσ and bytecode ABIσ. This action only has to be
performed once.
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Step Step Step Step Step Step

Figure 4: A flowchart showing the interaction between the smart contract σ and node i in the steps of the ADMM algorithm.

2. In step 2 a new round of optimization starts for the next day, and all nodes will declare their participation
to the smart contract by passing its number i and the numbers of their parent node π(i) and children
nodes δ(i). Also, the nodes will retrieve θ from the contract to configure the local optimization problem.
As the nodes declare participation, σ keeps track using a counter. In the meantime, the nodes will
periodically call a checking function to check if all n nodes have connected. When all n nodes have
declared participation, the nodes will proceed to solve their local optimization problem.

3. When local optimization (30) is complete, the nodes send their sets of coupling variables (xu)i and
their set of trade bids di to the smart contract which will keep track using a counter, and wait for
further instructions by calling a checking function. When all nodes submitted their coupling variables,
one node is configured to call the z-update step function, which will make the contract execute (31)
of ADMM. Note that the set of trade bids contains the optimally calculated trading quantities for all
trading partners and all timesteps. For the trading portion, the only role of the smart contract is
to gather all trade bids and distribute them to the respective trading partners. While the contract
executes the z-update, all nodes periodically call checking functions to check if the smart contract has
completed its task.

4. When the z-update step is complete, the nodes will retrieve the recalculated global variables as well as
the trade bids of their trading partners dj . The nodes will form their full trading quantity matrix dij,t
from di and dj and calculate their local penalty values (32a) (32b). The nodes will also calculate the
partial residual values as in (33a) - (33d) for their local problem.

5. The nodes send the partial residuals to the contract, which initiates a counter and sums all partial
residuals upon completion to receive the global residuals. The nodes periodically call checking functions
to check for completion.

6. The nodes retrieve the global residual values and evaluate the converge conditions. If the conditions
are not satisfied, go back to step 3) and repeat.

It can be recognized that very little sensitive information is shared by the nodes with the contract. All
information regarding the local energy infrastructure (i.e. local private variables (xl)i) remains private: only
data on power flows in adjacent lines is shared, as well as residual values and trade bids. This information is
stored on the smart contract, and not accessible by any other nodes on the network. Furthermore, it can be
recognized that full network topology is not explicitly stated anywhere. Every node must only know which
nodes its parent and children are. As all nodes share this information with the contract, the full network
topology will be implicitly known by it.
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Figure 5: Topology of the considered microgrid. Owners of EV and PV are indicated.

2.6 Numerical Analysis
For the fixed real power load and solar generation data, real data from the East Harbour Prosumers Commu-
nity [61] in Amsterdam is used in order to give a realistic assessment of the viability of the proposed model in
a microgrid setup. The fixed reactive power load is assumed to be proportional to −1/10th of the real power
load. For the topology and parameters of the radial microgrid, data from the test network of [62] is used.
Figure 5 shows the topology of the radial grid. For grid electricity withdrawals, a time-of-use price signal κt is
used from the day-ahead market clearing prices of the European Power Exchange (EPEX) Netherlands [63].
The lower limit of real power generation pg is set at 0 and the upper limit pg is set at 6.5kW [64]. It is
assumed that each household with EV drives 36 km each day, which is the average daily distance travelled in
the Netherlands [65], with a driving efficiency of 5 km per kWh. This results in an average EV daily charging
demand (Eev) of 7.06 kWh. The maximum hourly charging rate is assumed to be 1.5 kWh. The charging
hours ωi are pre-defined, with some households preferring to charge during the day and others during the
night. Every household that has access to solar PV also owns a battery storage system, with the maximum
charge/discharge rates pbd

i , pbc
i being equal to half of the maximum energy generation of the PV installation.

The maximum (dis)charge rate for every household is shown in Table 1. The minimum stae of charge of the
battery ebi is equal to 1/5th of 4 hours of maximum charging, as 0.2(4pbc

i ), and the maximum state of charge
of the battery ebi is equal to 4/5th of 4 hours of maximum charging, as 0.8(4pbc

i ). Table 1 shows the metadata
for the setup of all households that are considered, and Figure 5 shows the locations of PV and EV owners
in the grid.

The bilateral trading coefficients are pre-determined for every household based on their fixed real power
consumption and solar PV generation data. Since the model is intended to provide a day-ahead forecasting
optimization, it is assumed that a forecast of their own consumption and generation is available to the
households. It is assumed that the willingness to trade of a household i in any timestep t is proportional to
the magnitude of their expected deficit/surplus pci,t − p

pv
i,t. It is assumed that households with an expected

surplus budget are more likely to trade with households that have an expected deficit and visa versa. Two
households that both have a deficit or both have a surplus are assumed to be very unlikely trading partners.
In order to reflect these assumptions in the bilateral trading coefficients, several steps are taken.

First, the expected net budget matrix P net is determined. Along the x1 axis it contains all households
and is indexed by i, and along the x2 axis it contains all timesteps and is indexed by t. P net is defined as:

P net = P pv − P c (34)

From matrix P net, two new matrices P buy and P sell are defined. These matrices contain the amount of
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power that each household wants to sell or buy in every timestep. They are determined as follows:

pbuy
it =

{
0 if pnet

it ≥ 0

pnet
it if pnet

it < 0
(35a)

psell
it =

{
pnet
it if pnet

it > 0

0 if pnet
it ≤ 0

(35b)

From these matrices, two column vectors P
buy
max and P

sell
max are defined. Each element of these vectors

represents the maximum value in the corresponding row of the matrices P buy and P sell. This means that
these vectors contain the maximum deficit and surplus budget of every household across all timesteps. P buy

and P sell are then normalized as:

Γb,rel =
χ

2

P buy

P
buy
max

(36a)

Γs,rel =
χ

2

P sell

P
sell
max

(36b)

Matrices Γb,rel and Γs,rel represent the relative willingness of households to buy or sell electricity. Pa-
rameter χ represents the maximum, baseline value for bilateral trading coefficients. From matrices Γb,rel and
Γs,rel, the final 3D matrix of bilateral trading coefficients Γ is defined as follows:

γij,t =


χ if γs,rel

it > 0 and γs,rel
jt > 0

χ if γb,rel
it > 0 and γb,rel

jt > 0

χ− (γb,rel
it + γb,rel

jt + γs,rel
it + γs,rel

jt ) otherwise
(37)

At the maximum value of γij,t = χ, nodes i and j are considered very unlikely trading partners. In
the present study, χ is set at 10, meaning that all bilateral trading coefficients have a value of anywhere
between 0 and 10. In order to assess performance of the integrated model, several scenarios are considered
and compared. First, the penalty variable for the trading portion of the model φ will be varied to assess its
impact on the convergence of the ADMM algorithm and the costs of trading. These scenarios are run for 1
day (21 June 2018), i.e. 24 timesteps of 1 hour. Based on the results gained from these initial runs, the φ
value that yields the best convergence is used for further testing.

In order to evaluate the impact of including the bilateral trading mechanism and grid constraints on
convergence, social welfare and scheduling of power flows and trading scheme, several scenarios are compared
where these different parts of the model are included and excluded. A baseline model will also be analysed,
where there is no microgrid and households only interact with the external grid. In this baseline model
prosumers are able to feed their excess electricity budget into the grid for 5 ct/kWh. These scenarios are
run for one week in summer (21-28 June 2018) and one week in winter (21-28 December 2018) to evaluate
performance in both seasons.

The scenarios that include both trade and grid portions execute the optimization problem as in (30) -
(33d). Scenarios with grid only execute the problem as in (22) - (25) and scenarios with trade only execute
the problem as in (27a) - (28). All scenarios that are compared are shown in Table 2.
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Code # PV EV pb(kW )

1011W 0 No No 0
1954W 1 No Yes 0
1964J 2 Yes Yes 1.39
2053G 3 No No 0
2442E 4 Yes No 0.79
3070L 5 No Yes 0
3307S 6 No Yes 0
3517V 7 Yes No 0.53
3660D 8 No No 0
3726A 9 Yes No 1.41
3932W 10 Yes Yes 0.51
4226R 11 No No 0
4451M 12 Yes No 2.44
5427W 13 No No 0
5815T 14 Yes Yes 1.58
7426U 15 No Yes 0
7679U 16 Yes No 1.47
7710F 17 Yes No 1.47
8319Q 18 Yes No 1.25
9248C 19 Yes No 0.46
9370J 20 No Yes 0
9506H 21 No No 0
9991J 22 No No 0

Table 1: Household metadata

Code # Scenario

TG0001 1 φ = 0.001
TG001 2 φ = 0.01
TG01 3 φ = 0.1
TG1 4 φ = 1
TG10 5 φ = 10
TG100 6 φ = 100
TG1000 7 φ = 1000

TGS 8 Trade + Grid, summer
TGW 9 Trade + Grid, winter
GS 10 Grid only, summer
GW 11 Grid only, winter
TS 12 Trade only, summer
TW 13 Trade only, winter
BS 14 Baseline, summer
BW 15 Baseline, winter

Table 2: Scenarios of the model

25



3 Results
The objective of this study is to assess the performance of the integrated model in several categories: con-
vergence of the ADMM algorithm, social welfare and scheduling of power flows and trading scheme. In order
to perform this assessment several performance parameters are used in every category.

For assessment of convergence of the ADMM algorithm, the different scenarios are all run for µ = 300
iterations. After 300 iterations the residual values, both for grid and trade portions, are evaluated and
compared between the scenarios. The convergence of residuals for all scenarios can be seen in Figure 6. The
residual values shown represent the combined total residuals for all households. The convergence for scenarios
1-7 are for model runs of 1 day. Based on these results, a φ value of 1000 is chosen for running scenarios
8-15, which are run for 1 week. All subsequent results are based on these 1 week runs of scenarios 8-15.

Scheduling of power flows and trading of all scenarios is visualised in Figures 7, 8, 9, 10, 13 and 14.
Figure 7 shows the magnitude of the total sum of a number of energy flows, including total consumption,
total grid withdrawals, total PV generation and total battery and EV consumption for the 1st day of the
week. Full-week versions of these graphs can be found in appendix A. The scheduling of the energy flows is
compared for all scenarios. Figure 8 shows the exchange of power in the grid, split up in the total volume
of electricity withdrawn externally and the total volume of electricity traded internally. Results for these
figures are only shown for day 1 of the week. Numerical values for the total sum across the entire week for
power withdrawn, in total and at peak hours, are found in Table 3. Figures 9 and 10 show the total amount
of power traded between the nodes over the whole week. A comparison is made with the bilateral trading
coefficients, which are averaged across all timesteps of the entire week. Finally, Figures 13 and 14 show the
power injections and voltage levels in the microgrid for day 1.

In the social welfare category the performance parameters represent financial costs for the households.
Figure 11 shows the total social welfare for scenarios 8-15, with costs split up into money spent on withdrawals
from the external grid and money spent on internal trades. Figure 12 shows the price of electricity across
the entire week, both of internal trading and external grid withdrawals. Table 3 shows numerical values of
total social welfare across the entire week. In this table, a comparison is made between total prosumer costs
and total consumer costs. These costs are summed for all prosumers and consumers respectively.

Summer Winter

Scenario BS GS TS TGS BW GW TW TGW

Prosumer grid costs (Eur) 112.88 8.97 54.49 61.25 234.92 98.01 225.20 228.70
Consumer grid costs (Eur) 95.24 114.17 54.14 66.96 227.81 368.18 217.26 232.81
Prosumer trade costs (Eur) – – -41.21 -28.65 – – -1.45 -1.17
Consumer trade costs (Eur) – – 41.21 28.65 – – 1.45 1.17
Total prosumer costs (Eur) 112.88 8.97 13.28 32.60 234.93 98.01 223.77 227.53
Total consumer costs (Eur) 95.24 114.17 94.85 95.46 227.81 363.18 218.71 233.64

Total grid costs (Eur) 208.22 123.28 108.76 128.35 462.84 466.30 442.58 461.63
Total trade costs (Eur) – – 41.21 28.65 – – 1.45 1.17
Total costs (Eur) 208.22 123.27 156.10 161.06 462.84 466.30 444.12 465.10

Total withdrawal (kWh) 1231 915 741 862 2578 2569 2460 2572
Peak withdrawal (kWh) 333 139 186 211 796 854 738 770
Ratio of peak/total withdrawal 0.27 0.15 0.25 0.24 0.30 0.33 0.30 0.29

Table 3: Numerical results for social welfare and external grid withdrawals. All costs are summed over the entire week and over
all households. Prosumer and consumer costs are summed over all prosumer and consumer households respectively. External
grid withdrawals are also summed over the entire week and over all households. Peak hours are defined as 6-9am in the morning
and 5-8pm in the evening, and peak withdrawals are summed over all peak hours for all days and all households.

Table 4 shows the relative increase or decrease between scenarios in costs and withdrawals of all values
shown in 3. Results from the baseline scenarios BS and BW are set as 100%. For the trade costs, results
from TS and TW are set as 100%.
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Summer Winter

Scenario BS GS TS TGS BW GW TW TGW

Relative prosumer grid costs 100% 8.0% 48.3% 54.3% 100% 41.7% 95.9% 97.4%
Relative consumer grid costs 100% 119.7% 56.8% 70.3% 100% 159.2% 95.7% 102.19%
Relative prosumer trade costs – – 100% 69.5% – – 100% 80.7%
Relative consumer trade costs – – 100% 69.5% – – 100% 80.7%
Relative total prosumer costs 100% 7.9% 11.8% 28.9% 100% 41.7% 95.24% 96.9%
Relative total consumer costs 100% 119.8% 99.5% 100% 100% 159.2% 96.0% 102.8%

Relative total grid costs 100% 59.2% 52.2% 77.4% 100% 100.7% 95.6% 99.7%
Relative total trade costs – – 100% 69.5% – – 100% 80.7%
Relative total costs 100% 59.2% 75.0% 77.3% 100% 100.7% 95.6% 100.5%

Relative total withdrawal 100% 74.3% 60.1% 70% 100% 99.7% 95.4% 99.8%
Relative peak withdrawal 100% 41.7% 55.9% 63.4% 100% 107.3% 92.7% 96.7%
Relative ratio of peak/total 100% 55.6% 92.6% 88.9% 100% 110% 100% 96.7%

Table 4: Relative costs and withdrawals as compared to the baseline scenarios, the values of which are set at 100%. For the
trade costs, the values of the trade-only scenarios is set at 100%.

Based on the results shown in the figures and tables, a comparison can be made between the different
scenarios for every performance category. Building on this, the respective benefits and downsides of the
scenarios can be discussed, as well as their applicability in real-life communities. This analysis is made in
section 4.
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Figure 6: Convergence comparison for all scenarios. Figures a)-d) show comparison of residuals for scenarios 1-7, which are
run for 1 day. Figures e)-h) show comparison of residuals for scenarios 8-15, which are run for 1 week. The residual values
are combined for all households in the community. Note that e) and f) do not include results for TW and TS since only grid
residuals are evaluated. Likewise, for figures g) and h), GW and GW are not shown.
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Figure 7: Energy flows for day 1 of the week. All energy flows represent the combined total sum of all households in the
community.
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Figure 8: Total power exchanged for day 1 of the week. The total power exchanged represents the combined total sum of all
households in the community. The green plot is stacked on top of the red plot. Note that in the baseline scenarios the green plot
represents the feed-in power, in the grid-only scenarios it represents power exchanged (without trade price) and in the trade-only
and combined scenarios it represents total volume of power traded.
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Figure 9: Sum of total power traded over the entire week between the nodes for the summer scenarios. A comparison is made
with the bilateral trading coefficients, which are averaged over all timesteps of the entire week.
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Figure 10: Sum of total power traded over the entire week between the nodes for the winter scenarios. A comparison is made
with the bilateral trading coefficients, which are averaged over all timesteps of the entire week.
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Figure 11: Social welfare comparison for all scenarios. The bars represent the total combined costs for all households over the
entire week, with the green plot being stacked on top of the red plot. Note that the baseline and grid-only scenarios do not
include trading costs.

Figure 12: Price of electricity throughout the week for all scenarios. The bright red plot represents the costs of electricity from
the grid, whereas the other plots represent the average price of trading across the whole community in every timestep.
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Figure 13: Power injection for day 1 for day one. Power injections into the microgrid are shown for every node in every timestep.
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Figure 14: Voltage levels for all nodes for day 1 of the week.
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4 Discussion

4.1 Interpreting the results
Based on the plots in Figure 6 the convergence of the ADMM algorithm can be compared for the different
scenarios. For scenarios 1-7, results are similar for the residuals of the grid constraints portion of the model.
Residuals decrease sharply in the first hundred iterations, after which convergence slows down considerably
around values of 0.1. It can be seen that high values of φ, especially 100 and 1000, yield a stronger oscillation
of convergence as well as a slower decrease of residuals initially. After 300 iterations however, residuals
are around the same values as the other scenarios, and even a little bit lower. When looking at the trade
residuals rt and st, the difference between the scenarios becomes much clearer. For the rt residual it can
be seen that the model does not converge at all for φ values of below 1. Convergence accuracy increases
significantly with the φ value. For st similar results can be seen, where only φ values of 100 and 1000 yield
acceptable convergence of the algorithm. This can be explained by the φ/2 factor in 30. As φ increases, the
factor following φ/2 is multiplied by a higher number, resulting in a larger need to reduce it in the following
iteration. Since this factor contains the consensus constraint, a better convergence is achieved for higher
values of φ. For low φ values of 0.001 and 0.01, the consensus factor is diminished in magnitude, reducing the
need to enforce consensus by reducing the factor. For these reasons, a φ value of 1000 is chosen for scenarios
8-15.

For grid convergence of scenarios 8-15 it can be seen that convergence is very similar for all scenarios.
Residual values sit below 10−1 for all scenarios after 300 iterations and appear to still be on a descending
slope. For the present study, residual values of around 10−1 are considered acceptable for further analysis
of the results considering that the values are calculated across over 10000 variables. The trade residuals of
scenarios 1-15 show that by far the best convergence is achieved in the winter scenarios, which makes sense
considering that it becomes much easier to find the optimal trading scheme and reach consensus in absence of
excess PV generation. It can also be seen that addition of grid constraints (i.e. scenarios TGS and TGW) to
the trading scenarios (i.e. scenarios TS and TW) results in a slower convergence for both winter and summer
scenarios, but also for these scenarios residual values are well within acceptable limits, with the TGS scenario
converging slowest around values of 10−3 after 300 iterations.

Figure 7 shows the scheduling of a number of energy flows on the first day for all scenarios. Overall,
similar patterns can be recognized for all scenarios in summer as well as for all in winter. In the summer
scenarios, it can be seen that grid withdrawals are highest during the nighttime hours. Peaks are seen around
11pm and 2am when the cost of electricity is low. It appears these withdrawals are primarily used to charge
EVs and batteries, which show consumption peaks during the same hours. Grid withdrawals during the day
are very low, except for the BS scenario where no excess PV power can be exchanged internally. Furthermore,
it can be recognized that the TS and TGS scenarios yield higher withdrawals during evening peak hours than
the GS scenario. Regarding the use of the battery systems, it can be recognized that the battery is charged
during the day when there is excess PV power and during the night when electricity from the grid is cheap.
Batteries are discharged during morning and evening peak hours to cover demand across the grid, reducing
the amount of power that must be withdrawn externally. It can be seen that the GS scenario yields a larger
use of battery systems, with higher peaks across the day, especially during peak hours and at nighttime
around 3am. An increased use of battery systems means that the batteries will discharge and charge more
often, resulting in a reduced lifetime. For households that have already invested into these battery systems,
the reduced lifetime may incur extra costs in maintenance or replacement of the system. Since in the GS
scenario the batteries are used for the balancing of power in the whole microgrid as well as increasing of overall
welfare for the whole community, it may be unfair and undesirable to incur extra costs for these households.
It appears that the inclusion of the trading mechanism inhibits excessive trading of battery energy during
peak hours, which reduces overall use of the battery across the day. This is because during peak hours the
electricity price is likely to be higher as demand is high and PV generation is relatively low. Overall, besides
the BS scenario, the largest difference can be seen between the GS and other scenarios. Scheduling is very
similar between the TS and TGS scenarios. For the winter scenarios it can be seen that all scenarios yield
very similar patterns for the scheduling of energy flows. Since there is almost no PV generation there is very
little excess power available, which makes the optimal solution look similar in all scenarios.

Figure 8 shows the amount of power withdrawn from the external grid as well as the excess budget of power
that is either fed into the external grid, exchanged for free or traded between the households. In the summer
scenarios, it can be seen that power withdrawn is by far highest for the baseline scenario, especially during
the day. For the BS, TS and TGS scenarios it can be seen that the excess budget is traded or fed-in during
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the day when there is an excess of PV generated power. Interestingly, the GS scenario shows a considerable
amount of power being exchanged throughout the day and night, not just when there is solar. Without a price
on trading there is no inhibition on exchanging power, and the increased battery activity observed in Figure
6 is also related to this increased exchange of power. When comparing the TS and TGS scenarios, it can be
observed that there is significantly more power traded with the inclusion of grid constraints. It appears that
this increased injection into the microgrid is necessary to respect these grid constraints. For example, the
presence of reactive power flows throughout the microgrid could be related. Although all households have a
small reactive power demand, reactive power can only be generated by owners of PV. As such, consumers
are dependent on the injection of reactive power in the microgrid by prosumers. When reactive power flows
through the microgrid, the branch flow model requires that there is also a flow of real power, resulting in an
increased trading volume. For the winter scenarios a similar pattern is seen, where again in the grid-only
scenario GW a large amount of power is exchanged. In the other scenarios there is no exchange of power.

The amount of power exchanged in the GW scenario is too large to be covered by the excess solar budget
which means that households must be withdrawing electricity externally to inject into the microgrid. The
same thing appears to be happening during the night in the GS scenario, as battery discharge in Figure 7 is
too small to cover the amount of energy that is traded. It appears that withdrawing electricity externally to
inject into the microgrid is most financially efficient way of covering all demand. For the total quantity of
power that is withdrawn from the grid, Table 3 and Table 4 show the numerical results for all scenarios, as
well as the total quantity of withdrawals during peak hours. Peak hours are defined as 6-9am in the morning
and 5-8pm in the evening. From Table 3 it can be seen that in summer, withdrawals are by far highest in
the baseline scenario with a total withdrawal of 1231 kWh. The TS scenario has the lowest withdrawal at
60% of baseline, with 741 kWh. GS and TGS scenarios show withdrawals of 915 and 862 kWh respectively.
As can be expected, the most energy is withdrawn when there is no possibility of exchanging energy. It can
be recognized that inclusion of grid constraints increases the amount of energy is withdrawn, which can be
explained by the efficiency losses that are included in the branch flow equations 10a - 10d. Besides these
losses it seems plausible that further efficiency losses must be incurred in order to respect the grid constraints.
For the external grid withdrawal during peak hours, it can be recognized that this is by far the lowest in the
GS scenario at 41.7% of BS. Inclusion of the trading mechanism increases peak withdrawals, yielding 55.9%
in the TS scenario and 63.4% in the TGS scenario. This is consistent with the earlier observation that there
is an increased exchange of energy during peak hours in the GS scenario by more frequent battery usage,
whereas this is inhibited by the trading price in TS and TGS scenarios. It is interesting to observe that while
total withdrawals are higher in the GS scenario than in TS and TGS, peak withdrawals are lower. When
looking at the values for the winter scenarios in Table 3, it can be recognized there is little difference between
the scenarios. Although there is some small variation, it is not large enough to be significant.

Figures 9 and 10 show the total amount of power traded between households as compared to the average
bilateral trading coefficients. The coefficients are averaged across all timesteps. By comparing the figures
it can be seen whether households are actually conducting trades with their preferred partners. Looking at
the results for the summer scenarios in Figure 9, it does appear that this is the case. In the TS scenario for
instance, node 12 is trading large amounts of energy with 0, 1, 3, 6, 15, 20 and 22. Low trading coefficients
are imposed on these trades. Other nodes that trade a lot are 6 and 16, 6 and 18, 15 and 16 and 15 and 18.
These trades too have low average coefficients associated with them. A similar pattern is seen for the TGS
scenario. From 10 it can be recognized that the TW scenario shows a pattern that is similar to the summer
scenarios. For the TGW scenario however it can be recognized that by far the most power is traded between
node 0 and node 22, even though there is a high bilateral trading coefficient associated with this trade. Since
nodes 0 and 22 are at the head and tail of the radial network respectively it appears that with the inclusion
of grid constraints and absence of solar PV, it is most efficient to inject power at one end of the network
and have it flow all the way to the end, effectively forcing the two nodes to trade. Since the bilateral trading
coefficients are significantly higher in winter than they are in summer, it appears that their influence on the
final optimal solution is smaller than that of physical grid constraints. Still, it should be emphasized that
the quantity of power that is traded in winter, with the absolute maximum being around 3 kWh, is much
lower than in the summer scenarios, where total trade quantities of around 8 kWh are commonplace.

Figure 11 shows the total social welfare of the whole network for the different scenarios, with costs being
split up into grid costs and trade costs. Tables 3 and 4 shows numerical values for social welfare. The grid
costs represent costs that are spent by the community as a whole, whereas trade costs are only individual
costs since payments are made towards other members of the community. It can be recognized that for the
summer scenarios, total costs are lowest for the GS scenario, at 59.5% of BS. Total costs for TS and TGS
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scenarios are at 75% and 77% of BS costs respectively, which means that a significant reduction in total costs
compared to baseline is observed for all scenarios. The TS scenario has lowest grid costs, which makes sense
considering the scenario also has the lowest withdrawals. When comparing TS and TGS scenarios, TS has
lower grid costs but higher trade costs. Total social welfare is similar for both. For the winter scenarios it
can be seen that there is very little variation between the scenarios, which can again be explained by the
absence of surplus solar PV power. In Tables 3 and 4, a comparison is also made between the costs that are
made for prosumers and consumers. In summer, it can be recognized that in the TS and TGS scenarios the
prosumer households costs are much lower than the consumer households since the prosumers make a profit
on the trading, whereas consumers do not. The TS scenario shows 11.8% for prosumer costs compared to BS,
and TGS shows 28.9%. Consumer costs for these scenarios are at 99.5% and 100% of baseline respectively.
As such, it appears this effect is stronger without the inclusion of grid constraints. An interesting result is
found in the GS scenario, where almost all costs of grid withdrawals are made by consumer households as
opposed to prosumer households. In fact, prosumer costs are so low as to suggest that consumers withdraw
from the external grid and feed it into the microgrid to deliver to the prosumers. Prosumer grid costs are
8% of baseline, whereas consumer grid costs are 119.7% of baseline. In the scenarios that include trading,
the difference between prosumers and consumers is much smaller for the grid costs, and the differences only
arise from the trading.

Figure 12 shows the variation of the price of electricity throughout week and compares the price of grid
electricity with the price of trading of the different scenarios. It can be recognized that the price of trading
is almost always lower than the price of external grid withdrawals, financially incentivizing internal trading.
When looking at the summer scenarios, being the blue (TS) and green (TGS) plots, it can be seen that overall
the TGS scenario yields a lower trading price than the TS scenario. When comparing the winter scenarios
TW and TGW a similar pattern cannot be distinguished. However, the volume of trading in winter is so low
that these results on the electricity price are relatively meaningless.

Figure 13 shows the power injection into the microgrid at the different nodes during the first day. Positive
values represent injection whereas negative values represent withdrawal. Looking at the GS scenario, different
patterns can be recognized during daytime and nighttime hours. During daytime, when there is an excess
of PV electricity, it can be seen that injections are made at prosumer nodes like 19, 17, 15, 7 and 5. The
consumer nodes are making withdrawals at these hours, as is to be expected. At the nighttime however,
power injections are focused at two nodes, being node 11 and node 22. It can be seen that these injections
approach the external grid withdrawal limit of 6.5kW. All other nodes make withdrawals from the microgrid
at these times. Looking at the grid topology in Figure 5 it can be seen that node 22 is at the end of the
radial network whereas node 11 is exactly halfway. It appears that in the absence of excess PV power, it
is most efficient to inject large amounts of power through a single injection point to reduce the losses. The
fact that there is still injection at all during these hours can be explained by the need respecting physical
grid constraints. Looking at the GW scenario, where excess solar PV is almost non-existent, this pattern can
be recognized even more clearly. Looking at the TGS and TGW scenario, it can be seen that inclusion of
the trading mechanism prevents this injection into the grid when there is no excess PV. Figure 14 shows the
voltage levels throughout the first day of the week at all nodes. It can be seen that at most times, at most
nodes, voltage is at the minimum level of 0.95 of the nominal value. In the GS scenario, voltage fluctuations
are highest. Voltage levels strongly increase during the night around 1-3am and in the afternoon around
3-7pm. In the night, the voltage increase appears to be related to the high injections in nodes 22 and 11
at times when consumption is low. In the afternoon, the high voltage levels seem to coincide with times of
high consumption and moderate PV generation, i.e. peak hours. Still, it can be seen that minimum and
maximum limits are respected at all times. In the GW scenario, there is an increase in voltage in the nodes
8-13 during the daytime hours of 9-4pm. This could be related to the large injections that are made at node
11. Still, voltage levels are again well within limits. In the TGS scenario, small fluctuations in voltage levels
can be seen during the daytime hours when there is an excess of PV power that is fed into the grid.

4.2 Comparing the scenarios
When comparing the scenarios with all results taken into consideration, some general patterns emerge. First
of all, convergence of ADMM for all scenarios is similar and sufficient for the present purposes. Convergence
is slower when combining trade and grid constraints, which is to be expected given the increase in complexity
of the optimization problem. Furthermore, it can be recognized that for the winter week the results of the
different scenarios show little variation across all categories. It appears that the impact of implementing a
platform such as the one proposed emerges in presence of a considerable excess of PV power. Therefore,
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further comparison is focused on the results from the summer scenarios.
First of all, the BS scenario represents a situation that is similar to the present organization in the

distribution grid. There is no cooperation between households on any level, and prosumers may dispose of
their excess PV-generated electricity by feeding it into the grid. A financial compensation is offered to them
in the form of FiT, and battery storage systems are only for private use. Consumers are completely reliant
on their energy service providers to provide them with affordable, reliable and clean energy as is desired.
Also, this scenario requires the DSO to optimally redistribute energy in the grid and ensure that all physical
constraints are respected. Given the expected increase in DER adoption [8] [66], this task will become more
and more complex. Furthermore, considering the expected abolishment of FiT [10], prosumers must find
other ways to optimally benefit from their installed PV systems. Coupled with the rise of P2P markets,
the increased desire for independence and free choice, and other developments discussed in section 1.1, it
seems likely that the system configuration represented in the baseline scenarios will increasingly be replaced
by other types of systems. This is reinforced by the result from this study that the BS scenario yields the
highest total costs and external grid withdrawals of all summer scenarios.

Out of the GS, TS and TGS scenarios, the GS scenario shows favourable results for total social welfare.
Total costs in this scenario are at 59% of baseline considerably lower than for the other scenarios, which
means that total social welfare is the highest. However, the scenario also has the highest grid withdrawals
at 74% of baseline. Since peak withdrawals are lowest, it appears that this scenario makes optimal use of
the cheap electricity during non-peak hours. This could be beneficial for the DSO and the external grid as a
whole as congestion might be reduced, as well as the need for the dispatch of flexible fossil fuel generation
during these peak hours. There are some downsides too however. First of all, a larger and more frequent
use of battery systems is required. This may incur extra costs in maintenance and possible replacement of
battery systems for their respective owners. These costs are not included in the model. Furthermore, there
is a large inequality between prosumer costs and consumer costs, even without the prosumer market power
that comes with the trading mechanism. This inequality emerges from the large withdrawals made by nodes
22 and 11 during the nighttime: both of these nodes happen to be consumer households. It appears that
these nodes make the largest withdrawals not because they are consumers, but because they are a located
at the end point and halfway point of the radial grid. When considering physical constraints, it is most
efficient to inject large quantities of power at these locations rather than to inject small quantities at many
different nodes. Since the objective is to minimize total costs of the community as a whole, the algorithm
does not consider inequalities in the individual costs made by the different households. Because of this, the
GS scenario appears to only be viable when costs of grid withdrawals are fairly shared across all members of
the network. Furthermore, a way must be found to compensate owners of PV and batteries for their extra
contribution to the total welfare of the community. This would require intensive cooperation between all
participants on the network, and the resulting community would be akin to an energy collective as discussed
in section 1.2. In such a community, there would be no need for a trading mechanism since all households
will act in the interest of the group.

When intensive cooperation is not possible and households act in a self-interested manner however, the
inclusion of a trading mechanism can regulate this whilst still ensuring maximization of total social welfare. In
the TS and TGS scenarios the large injections made at nodes 11 and 22 are not observed. When comparing
the TS and TGS scenarios, costs of grid withdrawals are very similar for prosumers and consumers, and
inequality in costs made only emerge from trading. Inequality is larger in the TS scenario and more money is
exchanged through trading. Interestingly, the quantity of energy traded is actually lower in the TS scenario,
whereas the internal price of trading electricity is higher. This means that the prosumers have a larger market
power in the TS scenario which drives up the price of electricity and inhibits further buying by consumers.
The TS scenario seems viable when all participants on the network are primarily self-interested and little
cooperation between them is possible or desirable. Such a network may be akin to a full P2P market as
discussed in section 1.2. The mechanism allows prosumers to benefit maximally from their PV and battery
systems, and the bilateral trading coefficients are guaranteed to be respected at all times, whereas including
grid constraints may prevent this as has been observed in the TGW scenario. Furthermore, grid management
is left to the DSO, resulting in reduced energy use and costs within the community, as can be observed
when comparing the TS and TGS scenarios. In fact, total grid withdrawal is lowest for the TS scenario
at 60% of baseline. In the TGS scenario, the lower price on internal trades means that market power of
prosumers is reduces by the introduction of physical constraints. This can be explained by the fact that
the model requires that power is injected in order to respect the grid constraints. This required injection
by prosumers can be seen as an extra contribution to total social welfare as the task of balancing the grid
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is taken over from the DSO at the cost of extra profit. Even though total costs and energy consumption
are slightly higher in the TGS scenario than in the TS scenario, the extra costs and efficiency losses are
simply moved from the community to the DSO in the TS scenario. In the TGS scenario, the community
basically takes responsibility for the managing of its local electricity infrastructure, which fits the idea of
independence and free choice. Of course, there would still have to be cooperation between the community
and the DSO regarding maintenance of the grid, and it seems plausible that financial compensation could be
offered by the DSO to the community or its individual members for their contribution to grid management.
It is interesting to observe that the adoption of responsibility for grid balancing in the TGS scenario results
in reduced inequality between households. Also, when comparing TGS to GS, it is observed that inclusion of
the trading mechanism actually reduces total external grid withdrawals, making it the more environmentally
friendly option.

When considering the research questions 1a, 1b and 1c, there are some answers that can be given to
answer these questions. For the convergence of ADMM, it appears from the present study that it is not too
strongly affected by the combination of physical constraints and market mechanism. Although convergence is
somewhat slower in the combined scenarios, it is still at an acceptable level. For social welfare, it appears that
the best result is achieved without implementing a trading mechanism, and a combination of grid constraints
and trading mechanism yields lowest social welfare. However, when considering only grid constraints a strong
inequality of social welfare within the community arises as all costs of grid withdrawals are made by only a
couple of households. When considering only trading, there is also a large inequality in social welfare as the
market power of prosumers is unbounded. This allows them to sell electricity to consumers for higher prices.
When combining trading and grid constraints, both these inequality effects are mitigated, resulting in a more
balanced end result. In this combined scenario, total costs are reduced by 23% compared to the baseline
scenario, and total electricity withdrawal is reduced by 30%. Also, it is more environmentally friendly than
the GS scenario, and possibly even than the TS scenario depending on the efficiency losses incurred by the
DSO grid management. Overall, it seems that applicability of the different scenarios in real life is dependent
on the nature of the cooperation between the participants, as well as the cooperation between the community
and the DSO. Given that the present study proposes a platform that is implemented on blockchain, it seems
reasonable that adopters of such platforms hold independence, free choice and anonymity in high regard,
which could make it feasible or them to adopt any of the platforms modelled in the different scenarios. A
platform similar to the GS scenario would fit a situation where independence and welfare of the community
as a whole are deemed imporant. In this case, individuals must be prepared to collaborate intensively to
fairly share costs and take responsibility for grid management. The TS scenario seems to fit a community
where participants prioritize individual choice, freedom and welfare and do no desire to be involved in local
grid management. The TGS scenario represents a middle ground where extra responsibility is adopted for
management of the grid, but where cooperation between participants is regulated by a trading mechanism.

4.3 Limitations of the model
Although conclusions can be drawn from the present study, there are several limitations that should be
considered. First of all, the modelled platform is intended to function as a day-ahead optimization platform,
meaning that outcomes are dependent on accuracy of generation and consumption forecasts. Regarding the
implementation on blockchain, the suggested configuration has not been extensively tested for communication
efficiency, security and execution speed, even though these are important factors. The aim of this study has
been to provide a general framework for implementation and for using the smart contract. Regarding the
development of the model, there are always inherent uncertainties in the software that is used, in this case
Python, Cvxpy, Ganache-cli and Web3.py. Also, uncertainties are inherently present in the branch flow model
and the ADMM algorithm, since a distributed algorithm will never converge to exactly the same solution
as a centralized algorithm. Other important limitations arise from the assumptions that are made in the
setup of the model. It has been assumed that all EVs have the same average charging demand and charging
hours every day, which is not likely to occur in a real-life situation. Also, values have been assumed for the
battery parameters, and assumptions have been made regarding the availability of reactive power generation
and the topology of the grid. It is unclear whether varying the amount or distribution of DER in the grid
will severely affect the outcome, and the investment costs of the various assets has not been taken into
account. For battery systems in particular, the investment costs can play a large role when making financial
calculations in a model. Finally, the bilateral trading coefficients may have large impacts on the outcomes of
the model. In this study, an effort has been made to set realistic values for the bilateral trading coefficients
in a relatively straightforward manner, but a more extensive modelling of prosumer market behaviour may
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provide further insights into the impact of the coefficient values.

5 Conclusion
This study has shown the modelling of an integrated blockchain-based energy management platform that
respects physical grid constraints and implements a bilateral trading mechanism. The procedure of integrating
the physical, economic and information layers in a single model has been shown in section 2. As a first main
contribution, the formulation of a distributed optimization problem that respects physical grid limitations
through OPF and implements a bilateral trading mechanism has been detailed in section 2.4. As a second
main contribution, the implementation of the distributed algorithm on a blockchain network has been specified
in section 2.5. In order to answer research question 2), it is detailed in this section how a smart contract can
take on the role of virtual aggregator. It has been shown that there are several important functions that the
smart contract has to fulfill: Not only does it have to execute the consensus step from the ADMM algorithm,
it also functions as a central agent for distributing required information and data to all other nodes and it
ensures that the algorithm is executed symmetrically by all nodes. In order to answer research question 1),
performance and outcomes of the proposed model are evaluated by running several scenarios, the setup of
which has been detailed in section 2.6. The results of running the scenarios have been shown in section 3
and have been discussed in section 4. It has been shown that the ADMM algorithm performs well with the
combined optimization problem and achieves acceptable convergence. Furthermore, although combining the
trading mechanism and physical constraints yield a somewhat lower total social welfare, inequality between
households in the community is reduced as compared to the trade-only and grid-only scenarios. This is
because the trading mechanism prevents few households from withdrawing all power to supply the whole
community, and the physical constraints reduce the prosumer market power. As such, it appears that there
are considerable benefits to combining trading with grid constraints when designing energy optimization
platforms, especially when comparing to the baseline scenario: Costs are reduced by 23% and total energy
use is reduced by 30% as compared to the status-quo. Still, the practical applicability of the different scenarios
in real life depends on the needs and priorities of the participants. It is argued that the combined that a
trade-only scenario could represent full P2P type markets, whereas a grid-only scenario could represent an
energy collective. The combined scenario could represent a middle-ground where several downsides of the
other scenarios are mitigated. Research into the social acceptance of the different scenarios and actual wishes
of participants could give further insights into the practical feasibility. The usefulness of the proposed model
can be expanded in several ways. First of all, the model could be implemented on a real blockchain network
to evaluate security, efficiency and execution speed in a real life situation. Furthermore, the sensitivity of
modelling results to input parameters such as trading coefficients, investment costs and DER distribution
could be explored. Also, a detailed techno-economic assessment could be carried out to evaluate social welfare
over an extended period of time.
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Figure 15: Energy flows for summer scenarios
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Figure 16: Power exchanged for winter scenarios
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Figure 17: Power exchanged for summer scenarios
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Figure 18: Power exchanged for winter scenarios
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