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1 Abstract

Further integration of renewable energy will result in higher pressure on land availability especially
in densely populated areas. Therefore, several companies are exploring the possibility of offshore
PV systems. To estimate the potential of offshore PV in the North Sea, this research provides
an offshore irradiance estimation. This estimation is conducted comparing the Machine Learning
Methods (MLMs), Random forest (RF), Extreme Gradient Boosting (XGB) and the Artificial
Neural Network (ANN). The estimation is performed using onshore training data provided by
the Royal Dutch Meteorological Institute (KNMI) containing 15 different climate variables as
input for the MLMs. This research presents a new approach in the solar resource estimation field
by evaluating the role of external factors that influence the performance of the selected MLMs.
An onshore case study is conducted to identify how the distance, cardinal direction and temporal
differences between training and validation data affect the performance of the selected MLMs. This
onshore case study is performed using data of 15 selected stations in the Netherlands. The ANN
produced the overall best performance with an average MAE of 21.5 J/cm? and a relative error
of 1.10. XGB (22.63 J/cm?, 1.092) and RF (22.67, 1.149) produced slightly higher errors. Based
on the onshore case study it is concluded that the external factors distance and cardinal direction
strongly affect the performance of MLMs. Larger distances between training and validation stations
resulted in considerable higher relative errors and models validated west of the training station
showed above average relative errors for all MLMs. Temporal differences between training and
validation data moderately affected the performance of the MLMs. The results of the offshore
estimation produced average irradiance levels of 73.1 J/em? which is slightly lower compared to
onshore levels of 75.6 J/cm?. These results are conflicting as a satellite based study by the KNMI
concluded offshore irradiance levels are 4-8% higher compared to onshore levels. Since most offshore
stations are located north-west of onshore training stations and distances are relatively large, the
result of this estimation should be interpreted with caution. Considerable improvements on the
offshore estimation can possibly be made by combining ground measurements with satellite data.
Nevertheless, this research provides valuable conclusions on the performance of MLMs to estimate

offshore irradiance.
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3 Introduction

Renewables are becoming competitive with fossil fuels which has induced a large scale deployment
of these technologies worldwide. The total Total Primary Energy Supply (TPES) of renewables
(excluding biofuels and nuclear energy) increased from around 11.9 EJ in 2000 to 24.1 EJ in 2016
(IEA, 2018). This development caused a higher pressure on land availability. As can be seen in
figure [1} renewables have significantly lower power densities (W/m?) compared to conventional
energy resources. Therefore, further integration of renewables will result in higher pressure on
land availability. Johansson (2013) identifies land-use as one of the key challenges of the energy

transition. Especially in densely populated areas this creates new challenges for urban development.
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Figure 1: Power density of different energy resources. Source:(Voosen, 2018).

Nowadays around 40 % of the world’s population lives within an approximate 100 km of the coast
(UN, 2017). Therefore, the sea offers great potential solving land scarcity for further renewable
energy integration. Offshore wind has already started to spread widely in north western Europe
and became competitive to fossil fuels. In 2018, the Dutch government announced to build the
first offshore wind farm without public subsidy (Wind Europe, 2018). In contrast to wind farms,
solar parks parks have been only constructed on land and lakes. This has resulted in a significant
increase in public resistance towards onshore solar parks in the Netherlands. According to a recent
study carried out by the Wageningen University (2019), 46 percent of 45,000 people believed
that agricultural land should not be used for new solar parks. Therefore, several companies are
exploring the possibility to harvest the suns energy at the sea: The Norwegian company Ocean
Sun has tested prototypes in Singapore and Norway with satisfactory results (PV-tech, 2018). The
Dutch company, Oceans of Energy is planning to build an offshore floating PV pilot in 2019 (Oceans

of Energy, 2018) and Singapore’s Sunseap group announced to build a 5 MW offshore floating PV



pilot in early 2019 (Bhambhani, 2018). Offshore PV offers potential energy efficiency improvements
compared to its onshore counterpart due to the cooling effect of the seawater. According to Wilfried
van Sark this cooling effect could potentially increase the yield by 15 % (Utrecht University, 2018).
One of the potential niches for offshore PV is the placement between existing wind farms in the

North Sea because it offers several advantages:

e First of all, placement between existing wind farms could be beneficial since transmission

infrastructure is already present.

e Secondly, in contrast to onshore land availability, there is an abundance of unused space

between the offshore wind turbines that can be used for offshore PV.

e Thirdly, combining solar and wind could reduce the volatility in power production. Operators
of offshore wind farms often observe abrupt changes in power production related to the
turbulent nature of the wind (Pinson, 2008). According to Miglietta et al. (2017) wind and
solar are complementary resources and therefore placing PV between existing wind farms

could potentially reduce these abrupt changes in power production.

To estimate the potential of offshore PV in the North Sea, accurate data on solar irradiance
is desired. Specifically for large-scale integration accurate data on irradiance is crucial (Lauret,
2015). The Royal Netherlands Meteorological Institute (KNMI) monitors onshore and offshore
climate variables on a hourly resolution. A comparison of onshore and offshore irradiance data
would provide new insights on the potential of offshore PV. However, the KNMI only measures
solar irradiance at onshore stations. Due to the fact that hourly irradiance data is not available in
the North Sea, one method is to use onshore data to determine offshore irradiance using supervised
learning. In supervised learning a model is provided with a pair of input variables and the desired
output (irradiance). The model produces a function that calculates the desired output based on
the input variables (Voyant et al. 2017). Mellit & Pavan (2010) classified this type of learning in
three categories: The first category estimates solar irradiance based on other climate variables. A
second approach allows predicting the future solar irradiance based on the past observed irradiance
data, and the third approach combines both to forecast solar irradiance. Since hourly irradiance
data is not available in the North Sea, other climate variables are used as input to estimate solar
irradiance. Consequently, Mellit and Pavan’s first approach is used to estimate solar irradiance in
this research.

Many studies have performed similar solar resource estimation assessments. Reddy & Ranjan

(2003) concluded that Artificial Neural Networks (ANN) show promise for estimation of solar



irradiance in India where monitoring stations for irradiance are not always established. S6zen et
al. (2004) concluded that ANN models could enable scientist to locate and design solar energy
systems in Turkey. Gala et al. (2017) showed that Extreme Gradient Boosting (XGB) and Random
Forest (RF) are quite effective and, hence, relevant for solar irradiance estimations. However, the
main difference between these studies and this study is that none of the previous studies considered
geographical and temporal differences that could influence the performance of the Machine Learning
Methods (MLM). When onshore trained algorithms are used to estimate irradiance at offshore
locations, external factors such as distance, cardinal direction and temporal differences should be
taken into account.

For example, in the research of Reddy and Ranjan out of 13 stations, 11 stations were randomly
selected for training purposes and the remaining two for validation. In the research of Sozen
et al. out of 17 stations, 11 were used for training and 6 for validation. The results of these
studies were therefore based on the accuracy’s of the validation stations. The question arises if
the results of these studies would have been significantly different if other stations were selected
for training and validation and if the performance of the MLMs was affected by geographical and
temporal differences between training and validation data. When onshore trained algorithms are
used to estimate offshore irradiance these factors can potentially play an important role. Therefore,
this research provides an evaluation on the performance of the MLMs RF, XGB and ANN to
estimate offshore irradiance using onshore training data. In addition to similar solar resource
estimations studies, in this study the legitimacy to use onshore trained algorithms to estimate
offshore data is assessed and discussed by analysing the impact of distance, cardinal direction
and temporal differences between training and validation stations in an onshore case study. This
study aims to make concrete recommendations on the use of these MLMs in future solar resource
estimation studies by identifying the impact of the external factors. In order to identify the
external factors, first the optimal design of the MLMs is determined. This includes evaluating the
variable importance of the input variables and an evaluation of the bias-variance tradeoff. This
is followed by an onshore case study evaluating the different MLMs to identify the impact of the
external factors distance, cardinal direction and temporal differences. As a result, the impact of the
different external factors is reflected on the estimated offshore irradiance. Eventually this research

will try to answer the following questions:
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How can machine learning be used to estimate offshore solar irradiance using onshore

data ?
Sub-questions:
e 1.What are the feature importance’s of the input variables?
e 2. How are the MLMs affected by the bias-variance tradeoff?
e 3.What is the effect of distance on the performance of the MLMs?
e 4. What is the effect of the cardinal direction on the performance of the MLMs?

e 5.What is the effect of temporal differences on the performance of the MLMs?

By answering these questions this research will add to the understanding on how MLMSs for solar
resource estimation are affected by geographical and temporal factors. It provides an answer to the
question whether external factors should be considered before solar resource estimations are con-
ducted. In addition, this research serves as a guiding tool on how to asses the influence of external
factors when estimating solar irradiance. As a result, this research provides recommendations for
future solar resource estimation assessments in places where irradiance has not been (adequately)

measured.

In section the data used in this research is presented, followed by an introduction of the
different MLMs and the bias-variance tradeoff in section 3] In section 4] the methods to answer
the sub-questions are presented. In section [5|the results of the different sub-questions are presented
followed by an offshore estimation in section [5.6] The results are discussed in section [6] and finally,

in section [7] the conclusions of this research are presented.
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4 Methods

4.1 Overview of Methods

In sub-section [{.Z the data from the KNMI is presented and modifications to this data are
explained. In sub-section [{.3 the different MLMs are introduced. This includes an introduction
of the bias-variance tradeoff and is followed by an introduction of the different MLMs. In sub-
section [{.7) the methods to evaluate the performance of the MLMs are presented for each sub-

question.

4.2 Data

4.2.1 Data collection

HH Time (Hour of day)

DD Mean wind direction [in degrees)

FH Hourly mean wind speed (in 0.1 m/s)

FF Mean wind speed (in 0.1 m/s)

FX Maoximum wind gust (in 0.1 m/s)

T Temperature (in 0.1 degrees Celsius)

™ Dew point temperature (in 0.1 degrees Celsius)
Air pressure in 0.1 hPa)

Horizontal visibility (Ordinal)

Cloud cover {Ordinal)

Relative atmospheric humidity (in percent)
Fog (Binary)

Rainfall (Binary)

Snow (Binary)

Ice formation [Binary)

~emgezgv

Figure 2: Input variables. Source: (KNMI,2018).

The KNMI has 35 onshore weather stations and 10 offshore stations measuring meteorological data
on a hourly resolution. 20 onshore stations measure solar irradiance and from these stations 15
stations are selected that have more than 60.000 measured hours without missing values in the
time interval: 1 January 2000 until 31 December 2017. Furthermore, Only daytime (8:00 -20:00)
is considered in this research. This results in an approximate 12.6 years of data for all onshore
stations. The 15 stations are presented in table [T on page[I3] High irradiance levels are found at
De Kooy, Vlissingen and Volkel, whereas low values are found for Hoogeveen and Eelde. These
stations measure a total of 22 climate variables including irradiance (J/cm?). Offshore stations
measure a total of 19 climate variables (without irradiance). In total, there is a set of 15 shared

variables both measured at onshore and offshore stations presented in figure[2] These variables will

12



be used to estimate irradiance because they are both measured at onshore and offshore stations.

This public accessible data is provided by the KNMI (2018).

Station (number) | LON (East) LAT (North) @ mean (J/cm?) Q std dev. (J/cm?)
De Bilt (260) 5.18 52.10 73.6 79.5
De Kooy (235) 478 52.93 79.2 85.3
Deelen (275) 5.97 52.06 74.2 79.2
Eelde (280) 6.59 53.13 72.2 78.6
Eindhoven (370) 5.38 51.45 75.9 80.5
Gilze-Rijen (350) 4.94 51.57 75.5 80.1
Hoogeveen (279) 6.57 52.75 72.5 79.2
Leeuwarden (270) 5.75 53.22 76.5 80.8
Lelystad (269) 5.52 52.46 74.3 80.7
Maastricht (380) 5.76 50.91 75.2 82.0
Rotterdam (344) 4.45 51.96 76.1 81.7
Schiphol (240) 4.79 52.32 75.8 81.8
Twente (290) 6.89 52.27 74.0 79.9
Vlissingen (310) 3.60 51.44 80.9 85.7
Volkel (375) 5.71 51.66 79.6 82.1

Table 1: Onshore stations used in this study. Source:(KNMI, 2018).

4.2.2 Data preparation

First of all, it is important to make sure there is no missing data in the training and validation
datasets. Therefore, samples with at least one missing variable are removed from the dataset.
Furthermore, the data is checked for anomalies to confirm the data does not contain any extreme
outliers that could affect the performance of the MLMs. This is done by calculating the mean,
standard deviation, maximum and minimum for all input variables. Finally, in forecasting often
only daytime (e.g. 8:00-20:00) is considered as this tends to improve the forecast and thus decreases
the training time. In RF and XGB, the input variables are used to split solar irradiance data
based on a threshold value of a variable (sub-sections and . Data with lower values are
separated from data with values that are higher than the threshold. This mechanism works for
variables with continuous data where higher values indicate higher levels of that variable. However,
this mechanism does not work for the feature HH that has values ranging from 8 until 20. This
variable has a sinus characteristic with higher irradiance levels at HH= 12 and lower values at

HH=8 and 20. Therefore this data is transformed by multiplying the original data by the following

function (Eq. [1)):

1 1
HH = 5sm(ﬁw « (HH = 6)) +1 (1)

This transformation ensures that RF and XGB algorithms are able to separate low and high

13



irradiance levels based on the time of the day. This idea is demonstrated in the figure below where
in figure the data is split using the untransformed dataset and in figure the transformed

dataset is used ensuring that lower and higher irradiance levels are separated.

\\\
@ N\ ; ‘
\ \
A\ \
\ \
\\ \\
\ \\
8 10 12 1 16 18 20 8 10 12 14 16 18 20
Hour of the day (HH) Hour of the day (HH)
(a) Split using using original data. (b) Split using transformed data.

Sola and Sevilla (1997) concluded that input data normalisation with certain criteria, prior to a
training process, is crucial to obtain good results as well as to improve the computation time.
Therefore the input data of the ANN is normalised. The goal of normalisation is to change the
values of all variables into one generic scale without a loss in information of the data. The data
is normalised using the standard error (Eq. where x is the original value of the variable, p
the mean of variable x, and ¢ the standard deviation of variable x. The binary variables are not

normalised.

StandardError = —* (2)
o

4.3 Machine Learning
4.3.1 Bias-variance tradeoff

MLMs can be designed in a very shallow or extremely complex manner. Training of a MLM
improves the understanding between the variables and their correlations to calculate the desired
output(Fortmann-Roe, 2012). However, increasing the complexity does not necessarily improve
the result. An extensively trained MLM with a high model complexity has the tendency to overfit.
As more parameters are added to the model, the model complexity increases which results in a high
variance. On the other hand, when a low complexity MLM is trained, the algorithm is not able
to identify the important relations between the variables (Goodfellow, 2016). This will result in a

high bias but a lower variance called underfitting. This tradeoff, visualised in figure [4]is important
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Figure 4: Bias-variance tradeoff. Source: (Fortmann-Roe, 2012).

considering the performance of MLMs. In this research, the aim is to minimise the bias, referred
to as the 'absolute error’, without significantly increasing the variance, referred to as the 'relative
error’. In sub-section the calculations for the absolute and relative errors will be explained

in further detail.

4.3.2 Random Forest (RF)

Rf is originally developed by Breimann in 2001. In RF a number of decision trees is generated
with for every tree a set of n layers. In every n'* layer there are 2" decision nodes with n=0
for the first layer. Every decision node has its own characteristic variable constraints and based
on these constraints, the node will pass a true or false to the node y in the next layer (n + 1).
In the last layer (leaf layer), for regression this will result in an estimation of the target value
based on the average of all samples reaching that node (Breiman, 2001). In RF multiple decisions
trees are generated. Every tree is trained using a random subset of the training data. The same
training data can be selected by different trees in the forest, this process is called bagging. Figure
visualises a shallow decision tree with 2 layers. In this example the first split is based on the
variable relative humidity (U). In the second layer both splits are based on the time of the day
(HH). This results in 4 different predictions for irradiance. If this tree predicts the irradiance of
a sample with U= 80 and HH =0.9, this will result in an estimated irradiance of 65 J/cm?. The
maximum number of variables to consider at a split is also important. If this for example is set
to 5 variables, for every split only 5 out of 15 variables are randomly considered to make the best
split. Lower values reduce the relative error but increases the absolute error. In this research the

optimal number of trees, layers and number of variables to consider at every split are determined
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to minimise the Bias-variance tradeoff. The RandomForestRegressor from the SKlearn library is

used to perform this analysis. The Python script of this analysis can be found in appendix section

ATl

U==78.5
mge = 72082
gamples = 28325
value = 79.3

mse = 3566.9

gamples = 5134
value = 60.2

True/

HH <= 0.5
mge = §437.7
gamples = 12939
value = 125.6

‘alsse
HH <= 0.8

mse = 2964.4
gamples = 15386
value = 40.2

Lo

vo N\ 7

mse = 6941.8
gamples = 7805
value = 167.7

mse = 1083.1
gamples = 7908
value=17.2

mse = 3807.8
samples = 7388
value = 65.0

Figure 5: Example of a shallow decision tree.

4.3.3 Extreme Gradient Boosting (XGB)

The XGB algorithm is originally developed by Friedman in 2001. The main difference between
XGB and RF is that the former generates one tree at a time to improve the performance of the
previous tree wheras the latter trains each tree independently (Voyant et al., 2017). The first tree
uses the deviation of the mean as input residual, and a second tree uses the residuals of the first
tree to decrease the errors of the first tree (Fan et al. 2018). This process is repeated a number
of times based on the stopping criteria. In figure [6] an example is presented for a small XGB
algorithm with 3 trees. Table [2] presents the calculations used in this XGB algorithm. @ is the
targeted irradiance value in J/cm?. HO represent the estimated irradiance based on the mean of
Q. RO is the residual used as input for the first tree and is calculated by @Q — H0. P1 is the
prediction of the first tree and is calculated by averaging the residuals that end at up at the same
leaf node. For the left node of the first tree: P1 = (—106.8—39.8—37.8)/3 = —61.4 (Figure[6)). The
estimated irradiance of the first tree (H1) is than computed by the following formula: HO+ (P1x1)
where [ is the learning rate, a parameter that controls how fast the algorithm learns. Subsequently,
this process is repeated and R1 is calculated by Q — H1 and used as input for the second tree.
This process is repeated indicated by the number of trees. In this research the optimal number
of layers, trees and the learning rate are determined to minimise the Bias-Variance tradeoff. The

GradientBoostingRegressor from the SKlearn library is used to perform this analysis. The Python
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script of this analysis is fairly similar to the RF script and can be found in appendix section

Q HO RO

9 1158 -106.8
76 1158 -39.8

300 115.8 184.3
78 1158 -37.8

P1

-61.4
-61.4
184.3
-61.4

H1 R1
109.6 -100.6
109.6 -33.6
134.2  165.8
109.6 -31..6

P2 H2

-55.3  104.1
-55.3  104.1
165.8 150.8
-55.3  104.1

Table 2: Example of calculations behind XGB.

Tree l

T <=162.0
mge = 12087.2
samples = 4

>

Tree 2

T==750
mse = 9937.1
samples = 4

— >

Tree 3

TD <= 117.5
mse = §195.6
gamples = 4

value = 0.0 value = -0.0 value = -0.0
Tmi/ Eﬂlse Tmi/ ﬁalse Tmi/ galse
mse = 1028.2 mse = 0.0 mge = 0.0 mse = 1028 mse = 1028 mge = -0.0
samples = 3 samples = 1 gamples = 1 gsamples = gamples = samples =1

value = -61.4

value = 184.2

value = 165.8

value = -55.3

value = -49.?

value = 149.2

R: -106.8, -39.8,-37.8

R: 184.2

R: 165.8

Figure 6: Example of XGB trees.

R: -100.6, -33.6, -31.6

4.3.4 Artificial Neural Networks (ANN)

R: -95.9, -27.9, 26.0

R:149.2

ANN’s consist of one input layer, a number of hidden layers in between and one output layer. If

the input layer has N nodes, the output of a node in the first layer is given by Eq. |3] where z is

the output of the node to the next layer, w; represents the weights multiplied by the z; outputs

of the nodes in the previous layer and b is the bias of the node. This output is summed for all the

nodes of the previous layer and multiplied by the specified activation function . An example of

an activation function is the sigmoid function (Eq that converts the output of the node in to a

non-linear output (Rehmann, 2008).

3)

(4)

In the output layer, the output ¥ is compared to the actual value y with a cost function. In this

research the Mean Squared Error (MSE, Eq is used as the cost function. In the next step the

weights and biases in the network are adjusted using the error computed in the cost function. The

17




number of epochs indicates how often the same training data is fed to the network. The batch
size indicates the number of samples before weights and biases are updated. The ultimate design
of the ANN determines the performance related to the bias-variance tradeoff (Jain, 1996). In this
research the optimal number of layers, nodes, epochs and batch size are determined. In addition,
the best performing learning rate, activation function and optimisation function are determined.
In figure [7] on page [I§ an example of a network is visualised. In the input layer the X variables
correspond to the the different climate variables introduced in figure [2| on page Between the
input and output layer is a number of hidden layers, and at the end there is one output node with
the irradiance prediction. The Keras library of the Tensorflow package is used for this analysis.
Keras is a high-level Application Programming Interface (API) to build and train deep learning
models. It’s used for fast prototyping, advanced research, and production (Tensorflow,2019). The

Python script can be found in appendix section [A-T.3]

Input Layer Hidden layer 1 Hidden layer 2 Hidden layer 3 Output Layer

bifl H H
X

Xy

S,

Xy

Hy Hy Hy

Figure 7: Example of a design of the ANN.
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4.4 Performance Evaluation
4.4.1 Feature Importance

To determine the importance of the variables used to predict irradiance, the MLMs RF and XGB
are used. Next to the predictive power of these two MLMs they are often used to determine the
feature importance of variables (Qi,2012 & Saeys, 2008 & Ma et al., 2017 & Zheng et al.,2017).
In RF and XGB regression the feature importance is calculated using the mean Mean Decrease in
Impurity (MDI). In this research the MSE (Eq is used as impurity measure. The MDI of one
node is calculated using Eq. [6] where M DI is the impurity of the base node, I is the original
MSE of the base node multiplied by the fraction of samples in the bases node Np. Iy, and Ip are
the MSE of the left and right splitting nodes multiplied by the fractions Ny, and Ny representing

the share of samples reaching these particular nodes.

MSE = .+ > (5) — w(i))” (5)
MDIBZ(IB*NB)—(IL*NL)—(IR*NR) (6)

In the context of random trees in RF and XGB, the feature importance of variable X is calculated
by summing all MDI’s of the nodes where feature X is used to split the data divided by the total
MDI of all the nodes in the tree. The next step is to average the feature importance over all the
trees. To answer the first sub-question the results of the RF and XGB are compared to make
conclusions about the feature importance.

As an example how the feature importance for one tree is derived reconsider figure [5| from section
[1332] The feature importance of U and HH is calculated using Equations [7] until [I2] Ny is the
total number of samples in the tree, N, is the number of samples in node z, M SFE, is the mean

squared error of node z and Iy and Iy are the resulting feature importances.
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mse = 3566.9
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gamples = 7803
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mse = 1083.1
gamples = 799§
value = 17.2

mse = 3507.8
samples = 7388
value = 65.0

Figure 8: Example of a shallow decision tree.

N N. N-
MDIy = (MSEy %+ —) — (MSEy % —=) — (MSFEs3 % —>) (7)
Ntot tot tot
N. N, N,
MDIyy, = (MSEy % —2) — (MSE; x —~) — (MSEs5 + —2) (8)
tot Ntot Ntot
N. N, N
MDIyp, = (MSEs % —2-) — (MSEg % —2) — (MSE; % —) ()
tot Ntot tot
MDIH:MDIHH2+MDIHH3 (10)
MDIp = MDIy + MDIy; (11)
MDIy MDIy
frd = 1
Tu MDI,,, "= MDI,, (12)

When evaluating the variable importance, it is important to take into account the (anti-) correlation
between variables: When variable X and Y are highly correlated and both have a high correlation
with irradiance, both variables have a high probability to be selected to split irradiance data.
When variable X is used to split the data, this significantly reduces the importance of variable
Y, since the impurity variable Y can remove has already been removed by variable X. Therefore,
it is important to identify the (anti-)correlations between the variables. The Pearson correlation
(px,y) between variable X and Y is calculated using equation |13 where X and Y are the mean

values of X an Y respectively.

(13)




4.4.2 Bias-variance tradeoff

Let us consider a fictional station A. First the data of station A is split into a training and a
validation dataset. Subsequently, the MLM is trained on the training set and validated on the
validation set. The MLM calculates irradiance levels of the validation set and compares this to
actual irradiance levels of the validation set resulting in the absolute error of station A (A4 4).
This error is calculated using three commonly used metrics (Eq (Voyant et al., 2017). With

7 being the calculated irradiance, y the actual irradiance, § the mean of y and N the number of

observations.
MAE = 7 32 136) ) (14)
1 & 2
RMSE = || = * ; (g(i) - y(i)) (15)
nrMSE — TASE (16)

The next step is to use the trained algorithm of station A to calculate the irradiance at another
fictional station B. This calculated irradiance data is compared to actual irradiance levels at station
B resulting in the absolute error A4 p. To correct for the training error of station A, A4 p is
divided by A a reflecting the performance of estimating B based on model trained at A, also

called the relative error R4 p (Eq. .

Aaa AaB Aga 1 Ra B
_ (1)
Apa AppB Ap B Rp.a 1

In this research 15 onshore stations are used for the analysis. This results in an absolute error
matrix X (Eq. and a relative error matrix Y (Eq. that contain 15 z 15 = 225 errors for all

combinations between the stations with 1’s on the diagonal for matrix Y:

Al,l - A1115
X = (18)
Ais1 ... Aiss
1 e R1715
Y — (19)
Risq ... 1
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To answer the second sub-question, these absolute and relative errors are computed for different
MLMs by changing the hyperparameters introduced in section The optimal configuration of
hyperparameters is determined by minimising the product mean(X) * mean(Y), thereby minimising
the bias-variance tradeoff (Eq. The optimal design is used in the remaining part of this research.
If there is a small difference between two hyperparameter configurations but a significant increase
in computation time, the configuration with the lowest computation time is used. In order to put
the results of the MLMSs in perspective, the results are compared to a reference linear regression

model. The LinearRegression model from the SKlearn library is used to perform this analysis.

Minimze: XY = mean(X) *xmean(Y) (20)

4.4.3 Distance and cardinal performance

To assess the effect of distance between the 15 considered stations on the performance of the MLMs,
a distance matrix Xp (Eq. is created that contains all distances D between the 15 stations
with zeros on the diagonal. To determine the distance performance matrix Y is plotted against

Xp.

Xp = : : (21)

D151 0

Similar to the distance performance, here a matrix X¢ (Eq. is created containing all the
cardinal directions between the stations (E= 0°, N= 90°, W= 180°, S= 270°). For example:
station B is north-west of station A resulting in a value for C4 p = 45°. Matrix Y is plotted
against matrix X to detect a possible relation. The results will be visualised using polar plots.
The different MLMs are compared using these plots to make conclusions on the effect of the cardinal

direction.
0 AN 01)15
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4.4.4 Temporal performance

Offshore data is measured from 2010 until 2018 and onshore training data is used from 2000 until
2018. This results in a temporal difference between training and validation data. In this analysis
150.000 training and 40.00 validation samples are randomly selected from all onshore stations
(Table [3)). To answer the fifth sub-question and evaluate the effect of this temporal difference

between training and validation data two assessments are performed:

2000 2005
[ |
Tand V
2002 2005 2007
[ | |
T Vv
2005 2008 2013
e | |
T A%
2005 2[]|13 ZUIIT
[
T V

[ T= Training
V=Validation

T and V= Traing and validation

Figure 9: Temporal effect: fixed training interval.

e How is the validation accuracy affected by a changing validation interval with a fixed
training interval? In figure [J] the data is trained in the period between 2000 and 2005
for a 5 year time interval. The validation interval is shifted towards the right side of the
timeline with a delta t of 1 year. This results in 14 validation errors. The relative errors are
calculated by dividing the the 14 validation errors by the validation error of the reference

training interval (2000-2005).

2000 2005 2018
e |
T Vv
2005 2010 ‘ 20|18
[—
T \%
2013 2016 2018
|
T Vv
2013 2018
| |
T and V

Figure 10: Temporal effect: fixed validation interval.
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e How is the validation accuracy affected by a changing training interval with a fixed
validation interval? In figure the data is validated in the period between 2013 and
2018 for a 5 year time interval. The training interval is shifted towards the right side of the
timeline with a delta t of 1 year. This results in 14 validation errors. The relative errors
are calculated by dividing the 14 validation errors by the validation error of the reference

validation interval (2013-2018).

Validation Interval ‘ Training samples  Validation samples
5 Years ‘ 150.000 40.000

Table 3: Number of samples.

4.4.5 Offshore estimation

Finally, an offshore estimation is conducted after answering the questions addressed. Onshore
stations will be selected for the estimation of offshore irradiance based on the findings of this
study. The results of this estimation are compared to those of onshore irradiance in order to draw
conclusions on offshore irradiance levels. Furthermore, the results are reflected with respect to the

influence of the external factors.
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5 Results

5.1 Feature Importance

To answer the first sub-question the feature importance is discussed for the RF and XGB algo-
rithms. Furthermore, the correlation between the input variables is discussed. The last part gives

a conclusion regarding the feature importance.

5.1.1 Random Forest

The variables importance for the RF is calculated by generating 1 tree with K Layers for all 15
onshore training stations taking the average of the trees as the feature importance. The number
of trees is set at 1 per station because trees in the RF algorithm do not vary significantly and
therefore will not affect the outcome. From figure it can be concluded that relative humidity
(U) has the highest feature importance followed by the hour of the day (HH) and temperature (T).
This importance is lower for K=20 and the importance of temperature, cloud cover (N) and wind
direction (DD) increase. According to these results it can be concluded that the RF algorithm is

strongly influenced by relative humidity.

0.8 -

0.6
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OunfduOrTEppENDOPOVVEOthers

Figure 11: Feature importance of RF for different number of layers (K).
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5.1.2 Extreme Gradient Boosting
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Figure 12: Feature importance of XGB for different number of trees (N).

The feature importance for the XGB algorithm is calculated by generating a number of trees (N)
for a fixed number of 3 layers using a learning rate of 0.1. Figure [I2] shows the results for this
assessment. From these results it can be concluded that the importance of U decreases strongly
with an increasing number of trees. Furthermore it can be denoted that the variables T and N

have a significant share for N=50.

26



5.1.3 Comparison RF and XGB

T FH DD HH
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| |
-
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Figure 13: Pearson correlation between used variables.

Figure [L3| shows that irradiance is correlated with the variables daytime (HH) , temperature (T),
dew point temperature (TD) and horizontal visibility (VV). Furthermore irradiance (Q) has a
strong anti-correlation with relative humidity (U). U is strongly anti-correlated with T and VV
which indicates that the variable importance of T and VV is significantly reduced by U. If the
variable U would not be used as input variable in RF and XGB, this would result in a higher
variable importance of T and VV. This is important to consider when making conclusions about
feature importance to predict solar irradiance. The RF and XGB algorithm are strongly influenced
by the variables U and HH but it is important to take into account the correlations between
variables to make conclusions about the actual feature importance to estimate solar irradiance.

Compared to the results from RF, other variables such as T and N have a significant larger share
in XGB. As discussed in section and the XGB algorithm uses the residuals of the

precedent tree as input for the next tree, whereas the RF algorithm takes a random subset of
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the original data for every tree. This explains the different outcome of the two MLMs regarding
the feature importance. In the RF algorithm, the Pearson correlation between QQ and the other
variables is constant for all trees in the forest. In the contrary, XGB uses residuals of the precedent
tree and therefore the correlation between the residuals of Q and other variables changes when
more trees are added to the model. When U is used to decrease the impurity in the first tree,
this in turn results in an information loss for U in the next tree. In contrast, N is not used in the
first tree, therefore there is no information loss and the correlation between N and the residuals
of Q remains constant in the first tree. The difference in feature importance between RF and
XGB clearly shows that the importance of a variable depends on the MLM and its design. The
advantage of calculating the feature importance is that it provides a clarification how the MLM
derives its results. However, the results should not be used to make conclusions about the actual
relation between the irradiance and other climate variables. Instead, it should be interpreted as a
clarification how RF and XGB derive their results. Since the aim of this research is to compare
the performance of different MLMs, it is important that all MLMs use the same set of variables

therefore all variables are used in the remaining of this analysis.
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5.2 Design of the MLMs

In this section the optimal size of the RF, XGB and ANN algorithms are determined by minimising
the bias-variance tradeoff. This is followed by a comparison of the MLMs related to the bias-

variance tradeoff.

5.2.1 Random Forest

Table [4] shows the absolute and relative errors for different number of trees and layers. Each
number in the table represent an average performance of all 225 combinations between stations. It
can be concluded that the lowest absolute errors are achieved by a model with 15 layers and 100
trees indicating this forest has the highest absolute accuracy. However, the relative error of this
forest is significantly higher compared to a forest with 10 layers. A relative error of 1.5 indicates
that on average the error increases by 50% when a trained model is validated at another station.
This means overfitting occurs using a model with 15 layers. On the other hand, using a shallow
forest with 5 layers results in higher absolute errors. High absolute errors indicate that the RF is
too shallow and therefore unable to accurately predict irradiance. By multiplying the absolute and
relative errors the lowest resulting values can be found for (N=50, K=10) and (N=100, K=10).
Computation time is significantly larger for N=100, therefore N is set at 50. This RF size is used

in the remaining part of this research.

Absolute N=5 N=50 N=100

MAE RMSE nRMSE | MAE RMSE nRMSE | MAE RMSE nRMSE
K=5 27.04  38.86 0.51 26.80  38.44 0.51 26.80  38.43 0.51
K=10 23.22  34.45 0.45 22.67  33.49 0.442 22.81  33.66 0.44
K=15 23.45  35.14 0.46 22.31  33.16 0.44 22.25  33.06 0.44
Relative N=5 N=50 N=100

MAE RMSE nRMSE | MAE RMSE nRMSE | MAE RMSE nRMSE
K=5 1.05 1.06 1.06 1.05 1.06 1.06 1.05 1.06 1.06
K=10 1.15 1.15 1.15 1.15 1.16 1.16 1.15 1.16 1.16
K=15 1.50 1.44 1.44 1.53 1.49 1.49 1.53 1.50 1.50

Table 4: Absolute and relative errors for different sized number of trees (N) and number of layers
(K) in RF.

The maximum number of features (F) to consider at a split is also determined and the result are
presented in table[9]in appendix section From this table it can be concluded that the absolute
error remains the same for F=10 and F=15 but the relative error decrease slightly. Therefore F=10

is used in the remaining of this research.
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5.2.2 Extreme Gradient Boosting

Instead of using deep decision trees in RF, XGB generates many shallow trees in a sequential

manner, meaning it aims to improve the previous tree. The most important difference between RF

and XGB which can be identified in the table [5] is that relative errors are generally lower. XGB

has a lower tendency to overfit since it uses the residuals as input for the next tree. This shows

that the performance of XGB can be optimised without having a large effect of overfitting which

is the case for the RF algorithm. The optimal parameters for the XGB algorithm are 100 trees

with a learning rate of 0.10 and 200 trees with a learning rate of 0.05. The difference between

(N=100,1=0.10) and (N=200,1=0.05) is relatively small. Considering computation time, N is set

at 100 and | at 0.10. Furthermore the optimal number of layers is found to be relatively shallow

(table appendix section [A.2)) at K=4 layers. K=3 layers results in underfitting whereas K=5

layers results in overfitting.

Absolute N=50 N=100 N=200

MAE RMSE nRMSE | MAE RMSE nRMSE | MAE RMSE nRMSE
1=0.05 26.34  35.80 0.472 23.51 33.73 0.445 22.92 33.11 0.436
1=0.10 23.52 33.76 0.445 22.93 33.12 0.437 22.63 32.76 0.432
1=0.15 23.16  33.39 0.441 22.78  32.95 0.434 22.59  32.69 0.431
Relative N=50 N=100 N=200

MAE RMSE nRMSE | MAE RMSE nRMSE | MAE RMSE nRMSE
1=0.05 1.055 1.067 1.066 1.077 1.086 1.085 1.092 1.099 1.099
1=0.10 1.077 1.086 1.085 1.092 1.099 1.099 1.111  1.116 1.115
1=0.15 1.085 1.093 1.092 1.102 1.107 1.107 1.126  1.129 1.129

Table 5: Absolute and relative errors for different number of trees (N) and learning rates (1) for

XGB.
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5.2.3 Artificial Neural Networks

ANN can be extremely complex or very shallow and compared to RF and XGB more hyperparam-

eters can be adjusted. Due to time constraints the hyperparameter optimisation of the network is

based on training of a network using only data of station De Bilt which is located in the center

of the country. Validation is done for all other onshore stations. After the hyperparameter op-

timisation, the obtained parameters are used to train all onshore stations similar to the RF and

XGB analysis. It must be denoted that hyperparameters can interact and therefore the sequence

of tuning can vary.

e Batch size and number of epochs: The batch size is the number of samples that is fed

to the network before the weights and biases are updated. The number of epochs indicates

how often the same training data is used by the network for training. This network is trained

using 2 hidden layers with both 32 nodes. From table [6] it can be concluded that a network

with Batch size of 20 and 100 epochs has the lowest combined absolute and relative errors.

Absolute E=10 E=50 E=100

MAE RMSE nRMSE | MAE RMSE nRMSE | MAE RMSE nRMSE
B=10 22.96  33.20 0.438 21.88 31.92 0.420 21.48 31.67 0.417
B=20 24.08 34.26 0.451 22.03  32.00 0.421 21.62 31.54 0.415
B=60 28.30 41.17 0.543 22.62  32.42 0.427 21.96 31.81 0.419
B=100 3749 57.41 0.757 23.06 32.76 0.432 21.87 31.83 0.420
Relative E=10 E=50 E=100

MAE RMSE nRMSE | MAE RMSE nRMSE | MAE RMSE nRMSE
B=10 1.075 1.074 1.034 1.094 1.092 1.051 1.096 1.091 1.05
B=20 1.069 1.070 1.030 1.091 1.087 1.047 1.086 1.083 1.043
B=60 1.062 1.058 1.020 1.081 1.083 1.043 1.086 1.085 1.045
B=100 1.061 1.053 1.015 1.075 1.079 1.040 1.088 1.086 1.045

Table 6: Absolute and relative errors for different Batch size (B) and number of Epochs (E).

e Optimiser: The Keras library contains a set of different optimiser algorithms that are used

to minimise the loss function. The lowest combined absolute and relative errors are found

for the RMSprop algorithm. Results for different optimiser algorithms can be found in table

in appendix section

e Learning rate: The learning rate controls how much the weights are adjusted after a batch

is trained. From table [I2]in appendix section it can be concluded that a learning rate of

0.005 results in the optimal performance.
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e Activation function: The activation function converts the sum of the inputs in a node to
a non-linear output signal. Without the activation function the output of a node would be a
linear function which would limit the complexity of the network. From table[L3|in appendix
section it can be concluded that the Sigmoid and Relu function show similar results. For

this analysis the Sigmoid function is used since the relative errors are slightly lower.

e Number of layers and nodes: Table [7] shows the results for the design of the network
with the number of hidden layers and number of nodes per layer. From the table, it can be
concluded that a ANN with 3 layers each containing 16 nodes results in the lowest combined

error.

Absolute L=1 L=2 L=3

MAE RMSE nRMSE | MAE RMSE nRMSE | MAE RMSE nRMSE
N=16 23.11  33.15 0.437 21.68  31.75 0.418 21.26  31.48 0.415
N=32 23.17 3295 0.434 2146  31.52 0.415 21.26  31.88 0.420
N=64 23.11  32.96 0.434 21.51  31.53 0.415 21.77  32.39 0.427

Relative L=1 L=2 L=3

MAE RMSE nRMSE | MAE RMSE nRMSE | MAE RMSE nRMSE
N=16 1.086  1.088 1.047 1.095  1.090 1.05 1.096  1.088 1.048
N=32 1.082  1.086 1.046 1.096  1.088 1.048 1.097  1.091 1.050
N=64 1.084  1.088 1.048 1.10 1.093 1.052 1.097  1.093 1.053

Table 7: Absolute and relative errors for different number of layers (L) and number of nodes (N)
per layer.

5.2.4 Comparison of the MLMs

Considering the bias-variance tradeoff the results of the different MLMs discussed in the previous
sections are compared in one graph. Figure summarises the results for different sized MLMs
with corresponding relative and absolute errors. Each point in the graph represents a different
configuration of hyperparameters. ANN has more configurations of hyperparameters compared
to XGB and RF and therefore has more data points. The black circle represent the performance
of a reference linear regression model. The closer a point is to the left corner of the graph, the
higher the performance related to the bias-variance tradeoff. From figure [[4] it can be concluded
that all MLMs have significant lower absolute errors compared to the linear regression model.
Furthermore, figure [T4h shows that ANN has the highest performance related to the bias-variance
tradeoff, reaching a mean absolute value of around 21.5.J/cm? with a mean relative error of around
1.10, indicating the error increases by 10% when a trained model is validated at another station.
XGB shows slightly higher absolute errors around 22.5.J/cm? with a relative error of 1.10, indicating
that ANN outperforms XGB related to the bias-variance tradeoff. RF has the lowest performance

regarding the Bias-variance tradeoff reaching absolute errors around 22.7.J/cm? with a relative
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error of 1.15. Results for RMSE and nRMSE are comparable with the results of MAE. From
the results it can be concluded that the ANN has the highest performance related to the bias-
variance tradeoff. Therefore, it is recommended to use the ANN to estimate offshore irradiance.

The resulting absolute and relative errors between the 15 stations of the optimal designed MLMS

can be found in appendix section
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Figure 14: Bias-variance tradeoff results for MAE (a), RMSE (b) and nRMSE(c).
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Relative MAE

5.3 Distance performance

To answer the third sub-question the relative errors are plotted against the distance between
training and validation stations. This shows to what extent the error increases with distance. The
results for MAE are presented in figure Results for RMSE and nRMSE are comparable and can
be found in appendix section[A-4] The figure shows the relative MAE for different distance intervals
and the standard deviations. From figure [T5] there are several conclusions. For all MLMs, there
is a clear increase of the relative error when the distance between training and validation station
increases. RF has an average relative error around 1.10 in the interval 0-40 km and an average
relative error around 1.20 in the interval 240-280 km. XGB has an average relative error around
1.05 in the interval 0-40 km and an average relative error around 1.10 in the interval 240-280 km.
ANN shows slightly lower errors compared to XGB. Overall there is a clear increase of the relative
error with larger distances. Furthermore it can be denoted that the standard deviation increases
for larger distances. This indicates that there is an increasing uncertainty in the accuracy of the
MLMs for larger distances. Based on these results there is a clear indication that the accuracy of
MLMs is affected by the distance between training and validation stations. Therefore, this external

factor should be taken into account for the offshore estimation.

I RF

0-40 km 40-80 km 80-120 km 120-160 km 160-200 km 200-240 km 240-280 km
Distance between training and validation station

Figure 15: Relative MAE for different distance intervals.
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5.4 Cardinal performance

To answer the fourth sub-question the cardinal direction between training and validation station
is plotted against the relative error in a polar plot. The results are presented in figure [[6] The
error in each direction is calculated as the average validation error of stations in the particular
direction. The black lines represent the standard deviation of the errors. From this figure it can
be concluded that the relative error is significantly larger when the validation station is located
west of the training station. Furthermore, the standard deviation is larger in this direction. The
RF has an average relative error around 1.25 when validated to the west and 1.05 when validated
to the east. This indicates that there is 20 % point difference in accuracy between validation to
the west and east for RF. XGB shows similar results. However, relative errors are lower with a
relative error of 1.20 to the west and 1.00 to the east. ANN shows fairly similar results compared

to XGB, showing slightly lower relative errors to the west around 1.18.

Figure 16: Cardinal performance of different MLMs based on relative MAE.

Results for the MAE and RMSE are comparable (appendix section@. The nRMSE figure shows
different results. The nRMSE takes in to account the average solar irradiance of the validation
station. Figure [17] shows the result of the MLMs based on the nRMSE. From this figure it can be
denoted that the relative errors are more uniformly distributed. Relative errors are still larger to
the west than to the east but differences are smaller. Therefore, different performances in a west
and east validation direction are for some part a result of differences in average irradiance levels

of the validation station.
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To summarise, it can be concluded that there is a relation between the cardinal direction and
the relative error. All MLMs show higher performances when validated in an eastern direction.
For some part these results are caused by differences in irradiance levels between training and
validation station. The ANN shows the lowest relative errors in all cardinal directions. Since most
offshore stations are located north-west of onshore training stations higher relative errors can be
expected. To estimate offshore irradiance and minimise relative errors it is recommended to use

onshore stations that are located in the north-west part of the Netherlands.

Figure 17: Cardinal performance of different MLMs based on relative nRMSE.
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5.5 Temporal performance

To answer the fifth sub-question the MLMs are assessed on the temporal performance by keeping

a fixed training interval with a varying validation interval and vice versa.

5.5.1 Fixed training interval
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Figure 18: Relative MAE compared to a reference training interval in the period (2000-2005).

Figure 18] shows the relative MAE of a fixed training interval (2000-2005). Results for RMSE and
nRMSE are similar to the results of MAE (appendix section . The figure shows the relative
errors for XGB are the lowest, while RF and ANN are slightly higher. Furthermore, it can be noted
an increasing time difference between training and validation interval does not result in an increase
of the relative error. Instead, the relative MAE is even declining until the interval (2007-2012).
This indicates that an increasing temporal difference between training and validation data does

not necessarily result in a lower performance of the MLMs.
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5.5.2 Fixed validation interval
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Figure 19: Relative MAE compared to a reference validation interval in the period (2013-2018).

Figure [19| shows the results for a fixed validation interval (2013-2018). Note that the same scale
is used as in figure[I8 The results are based on a varying training interval with a fixed validation
interval. RMSE and nRMSE results are similar and can be found in appendix section Unlike
the results of the fixed training interval, the results are fairly constant for varying training intervals.
The ANN now shows the lowest relative errors as opposed to the results of the fixed training interval.
This result shows that when the training interval changes, there is only a small change in relative
error. Based on these results, selecting a specific training interval to estimate offshore irradiance

is not desired.

To summarise, small differences in performance of the MLMs are found with a varying validation
interval. There is no evidence that the performance of MLMs is affected if the time difference
between training and validation interval increases. The results of the varying training interval

prove that the performance of MLMs is barely affected by a changing training interval.
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5.6 Offshore estimation

Based on the results found in sub-sections[5}1 until[5}5 offshore irradiance is estimated by selecting
onshore stations based on certain criteria. First of all, the stations with comparable temperature,
humidity and cloud cover are selected for the offshore estimation based on the feature importance
found in section Based on the results visualised in figures and to estimate offshore
irradiance, the stations De Kooy, Leeuwarden, Eelde and Vlissingen are selected. The bars indicate
the annual mean and the black lines represent the standard deviations of the annual mean. De Kooy
is selected because it has similar relative humidity, temperature and cloud cover levels compared
to offshore values. Leeuwarden and Eelde have comparable temperature and humidity levels, and

Vlissingen shows similar humidity and cloud cover levels.
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Cloud cover (1-9)
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Figure 23: Onshore and offshore stations.

Figure [23| shows the stations selected to estimate offshore irradiance. This figure shows all of the
onshore and offshore stations used in this research. The red dots represent the selected stations
for the offshore estimation. These stations are all located near the coastline, which minimises
the distance between training and validation stations. Training interval is selected in the period
(2000-2018) and the validation interval is selected between (2012-2018). This validation interval
is selected because in this period, average annual temperature differences between onshore and
offshore stations are fairly constant as shown in figure [33]in the appendix section [AZ5] Finally, the
ANN is used because this MLLM has the lowest relative and absolute errors, hence minimising the

bias-variance tradeoff.
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Figure 24: Irradiance levels for onshore (green) and offshore (blue) stations.

Figure shows the results of the offshore estimation using the ANN. On average offshore
irradiance levels are calculated to be 73.1 .J/cm? compared to the onshore average of 75.6 J/cm?.
These results suggest that irradiance levels are slightly higher (3.5%) at onshore stations compared
to offshore stations. In addition, for the various offshore stations there is a large difference between
irradiance levels. Irradiance levels are comparatively low in stations 201, 205 and 239, while the

irradiance levels in stations 212 and 207 are relatively high.
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6 Discussion

From the offshore estimation it is concluded that onshore irradiance levels are 3.5% higher compared
to offshore levels. The results of the onshore case study proved that the distance and cardinal di-
rection between training and validation stations strongly affect the accuracy of the MLMs whereas
temporal differences showed a smaller effect on the accuracy. To make conclusions on the perfor-
mance of the MLMs estimating offshore irradiance, the results should be carefully interpreted and

discussed.

6.1 Interpretation

e Distance performance: The results of this analysis showed a small increase of the relative
error with increasing distances. It also showed that errors could increase be up to 50 percent
in a range of small countries like the Netherlands. More important is that the standard
deviation and thereby the uncertainty increases for larger distances. This is important to
consider when estimating offshore irradiance where distances between onshore and offshore

stations can be up to 500 km.

e Cardinal performance:

N 5 1 = . 1
980 934 1008 1022 1036 1050 1063 1077 1091 1105 1120

Figure 25: Irradiance levels based on satellite data in the period 2005-2017. Source: (Meirkink
,2018).

Figure 25 shows the average irradiance levels in the Netherlands and the North Sea in the pe-

riod 2005-2017. These results are based on satellite data of Meteosat using infrared imaging.
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This figure shows that offshore irradiance levels are higher compared to onshore levels. Based
on this data the KNMI concluded the North Sea receives 4-8% more irradiance compared
to onshore levels (Meirkink ,2018). This is a strong contradiction compared to the results
of the offshore estimation in this study. In this study onshore irradiance was found to be
3.5 % higher. The results of the cardinal performance could be an explanation of this con-
tradiction. Results of this analysis showed higher relative errors for models validated west
of the training station. Models validated east of the training station showed significantly
lower results. As mentioned in the results section, part of this is caused by differences in
average irradiance levels between training and validation stations reflected by the nRMSE.
Based on this result, there is a strong evidence that the validation accuracy is negatively
affected when irradiance levels are higher at the validation station. Conversely, the accuracy
is higher when models are validated for lower irradiance levels. Since most offshore stations
are located north-west of the mainland, there is a strong reason to believe that the offshore

estimation has considerable relative errors.

e Temporal performance: The results of the temporal performance assessment showed lower
fluctuations of the relative error (0.97-1.07) compared to the distance and cardinal assessment.
Especially the results of the fixed validation interval showed low variation in the relative
error. The results of the fixed training interval showed minor variations in relative error.
The question arises how this minor deviation can be explained. Figure 26 shows the same
results as figure 18| but now the 5 year relative average temperature, irradiance and humidity
compared to the reference interval are added to the plot. It is clearly visual from this figure
that for all MLMs there is a strong Pearson correlation (Eq between the temperature
and the relative MAE. For relative humidity and irradiance, this relationship is lower. The
correlation with other variables can be neglected. Table [8] presents the correlation between
MAE and T, Q and U. It can be concluded that the temperature and the relative error are
strongly correlated. Therefore, when selecting a validation interval, it is recommended to

consider temperature differences between training and validation intervals.

MAE | T Q U

RF 0.695 0.126 0.205
XGB | 0.619 0.221 0.522
ANN | 0.62/ 0.099 -0.06

Table 8: Pearson correlation between relative MAE and the variables T, Q and U for the MLMs.
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Figure 26: Relative MAE, T, Q and U compared to a reference training interval in the period
(2000-2005).

Overall, this study should not be interpreted as an inarguable conclusion that when estimating
solar irradiance, external factors always play a role. On the contrary, this research has shown
that the accuracy of the MLM on a local scale is sometimes not affected by external factors
or even improves (< 1) when estimating at other locations and time intervals. Therefore, when
estimating solar irradiance, it is strongly suggested to take these effects into account before making
conclusions about the performance of MLMs. Hence, this study should be interpreted as a guideline

to determine to what extent results are influenced by these external factors.

6.2 Limitations

This research has several limitations to take into consideration. First of all the findings are based
on a relatively small geographical scope. Results should be carefully interpreted if research is
conducted on different geographical scales. Another limitations is the computational power. Due
to this limitation the ANN design in the bias-variance section is solely based on training at station
De Bilt, whereas RF and XGB are based on training at all stations. Nevertheless, it is expected
that the design of the ANN would not change fundamentally if all stations were used. Finally, the
conclusions on the performance of MLMs to estimate offshore irradiance are valuable for future solar

resource estimation studies. There is however a strong need for offshore irradiance measurement
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data in order to verify conclusions.

6.3 Further research

Similar evaluations should be carried out on both larger and smaller geographic scopes to see
how external factors play a role on different scales. Next to this, installing irradiance measure-
ment devices at offshore stations is strongly recommended in order to make accurate and concrete
conclusions on the performance of MLMs. In addition, other estimation assessments should be
performed to estimate offshore solar irradiance in order to accurately compare the performance of
different estimation techniques. Including satellite data interpolation to estimate solar irradiance
could be one such assessment. A research topic would be to compare the results of this assessment
with a satellite data interpolation assessment to estimate solar irradiance at measurement stations.
Since data on offshore irradiance is not yet available, an onshore case study similar to this study
could be used to perform this assessment. Aguair et al.(2016) proposed to combine ground mea-
surements with exogenous inputs provided by satellite and numerical weather prediction models
data in order to improve intra-day solar forecasting. Therefore, the evaluation of ML Ms using both
ground- and satellite- based measurements as input to estimate solar irradiance in the North Sea

is another potential research topic.

7 Conclusion

To answer the research question this research assessed the performance of the different MLMs to
estimate the solar resource in the North Sea. In addition, it provided answers on the effects of the
external factors, distance, cardinal direction and temporal differences on the performance of the
MLMs. This research proves that MLMs are affected by external factors and therefore the results
of the offshore estimations should be interpreted with caution. All MLMs have higher accuracy’s
compared to a linear regression model. The ANN shows the highest overall performance with an
average MAE of approximately 21.5 J/cm? with a corresponding relative error of 1.10 percent,
indicating that the estimation error increased by 10 percent on average when validation occurred
elsewhere. XGB shows higher relative and absolute errors and RF has the lowest accuracy of the
MLMs assessed. Based on the distance performance, it can be concluded that for all MLMs a small
increase in relative error occurs when the distance increases. More importantly, the uncertainty
increases with larger distances. Therefore, When estimating offshore irradiance large distances

can potentially affect the performance of the MLMs. It also turned out that the cardinal direction
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between training and validation station is important. Relative errors are substantially greater when
model validation occurs west of the training station, whereas models validated east of the training
station show almost no increase in relative error. The ANN has an average relative MAE around
1.18 when model validation occurs west of the training station and an average relative error around
1.0 when model validation occurs east of the training station. For all MLMs, temporal differences
with a fixed training interval shows only small differences in relative errors between 0.96 and 1.06.
For a significant part, these deviations are due to differences in temperature between training and
validation intervals. Relative errors did not change significantly for a fixed validation interval.
Estimates of offshore irradiance resulted in an average of 73.1 J/em?, which is lower than the

onshore average of 75.6 .J/cm?

. According to these results onshore irradiance levels are 3.5 %
higher compared to offshore levels. These results are conflicting as a satellite based study by
the KNMI concluded offshore irradiance levels are 4-8% higher compared to onshore levels. The
final offshore estimations are therefore not unquestionable on the basis of this research since there
is a relatively large distance between training and validation stations. Moreover, most offshore
stations are located northwest of onshore stations. This direction showed high relative errors in
the cardinal performance assessment. Based on the results of this study it can be concluded that
the ANN has the best performance to estimate offshore irradiance. Based on the distance and
cardinal direction between onshore and offshore stations the offshore estimation should be taken

with consideration. To make strong conclusions on the performance of MLMs, accurate offshore

irradiance measurements are desired.
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A Appendix

A.1 Python scripts

A.1.1 RF script

from sklearn.ensemble import RandomForestRegressor

## Random Forest

clist =[] # These parameters are used to check if there is one station (e.g.235)
two (235 and 240)

maemat =[] # matrix containt all MAE’s between stations

rmsemat =[] # matrix containt all RMSE’s between stations

nrmsemat =[] # matrix containt all nRMSE’s between stations

featimp = [] #used to calculate feature importances

for i in range(len(combi)): # For all combinations between stations

features= combi[i] # get one combination between stations

labels = features[’Q’] # get irradiance dat

or

a = features[’STN’]| # These parameters are used to check if there is one station

(e.g.235) or two (235 and 240)

b = np.mean(a) # These parameters are used to check if there is one station (e.g

.235) or two (235 and 240)

¢ = features.iloc [0][ ’STN’|# These parameters are used to check if there is omne

station (e.g.235) or two (235 and 240)
clist .append(c) # These parameters are used to check if there is one station

g.235) or two (235 and 240)

(@

features= features.drop(’SIN’, axis = 1) #Drop station from training variable
list

features= features.drop(’Q’, axis = 1) # Drop irradiance from training variable
list

feature_list = list (features.columns) #names of all the features

1f = len(features) # used to split training and validation data

11 = len(labels) # used to split training and validation data

if b= c: # If there is one station

train_features , test_features , train_labels, test_labels = train_test_split (
features , labels, test_size = 0.25, random_state = 1)
if b != c: # If there are two stations

Ifh = int (1f*0.5) #make sure that test data is from the first station and
validation data from the second station

11lh = int (11%0.5) #make sure that test data is from the first station and
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validation data from the second station

28 train_features ,no, train_labels ,nope= train_test_split(features[0:1fh],
labels [0:1lh ], test_size = 0.25, random_state = 1)

29 no, test_features , nope, test_labels = train_test_split(features[1fh:1f],
labels [1lh:11], test_size = 0.25, random_state = 1)

30 del no, nope #ignore

32 #perform random forest

33 trees =50 # number of trees

34 k=10 # number of layers

35 if i==0 or clist [i—1]!= c: #for first training station or new training station
36 rf = RandomForestRegressor (n_estimators=trees , random-_state = 1, max_depth =

k, max_features=10)

37 rf.fit (train_features , train_labels);
38
39 ##Get numerical feature importances (Shows which variables are most

important )
10 importances = list (rf.feature_importances.)

11 featimp . append (importances)

42 la=featimp

43 ncols = len(la[0])

44 nrows = len (la)

45 # Sum all elements in each column:

46 results = ncols #*[0] # sums per column, afterwards average
47 for col in range(ncols):

48 for row in range(nrows):

19 results[col] += la[row][ col]

50 # Then calculate averages:

51 # nrows is also number of elements in every col:
52 nelem = float (nrows)

53 importances = [s/nelem for s in results]

54 #List of tuples with variable and importance

55 feature_importances = [(feature, round(importance, 4)) for feature,

importance in zip(feature_list , importances)]

56 #Sort the feature importances by most important first

57 feature_importances = sorted (feature_importances, key = lambda x: x[1],
reverse = True)

58

59 #Use the forest’s predict method on the test data

60 predictions = rf.predict(test_features)

61 # Calculate the absolute errors
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64

66

68

69

81

83

84

88

91

93

94

95

96

97

errors = abs(predictions — test_labels)

mae = (np.mean(errors))

maemat . append (mae) # create list containing all erros between stations

rmse = sqrt (np.mean((errorskerrors)))

rmsemat . append (rmse) # create list containing all erros between stations

nrmse= rmse/(np.mean(test_labels))

nrmsemat . append (nrmse) # create list containing all erros between stations

print ((len (maemat) /225) %100, %’ ) # show progress

7 # This part marices are created that contain all absolute and relative errors

between stations

maematrix = pd.DataFrame(index=Distance.index, columns=Distance.index) #Create
Error matrix

savemae = pd.DataFrame(index=Distance.index, columns=Distance.index)

rmsematrix = pd.DataFrame(index=Distance.index, columns=Distance.index) #Create
Error matrix

savermse = pd.DataFrame(index=Distance.index, columns=Distance.index)

nrmsematrix = pd.DataFrame(index=Distance.index, columns=Distance.index) #Create
Error matrix

savenrmse = pd.DataFrame(index=Distance.index, columns=Distance.index)

def ermat(x,y,u):
k=—1
for i in range(len(x)):
for j in range(len(x)):
k=k+1
x.iloc [[i], [j]]l= ylk] #store all errors in matrix
u.iloc [[i], [jll= y[k]
Diagonal =[] # matrix is divided by diagonal to calculate relative performance
for i in range (0,15):
D = x.iloc[i,i]

Diagonal . append (D)
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for i in range(len(x)):

x.iloc[i] = x.iloc[i]/Diagonal[i]

return x,u

ermat (maematrix ,maemat ,savemae) # maematrix

error

ermat (rmsematrix ,rmsemat , savermse)

ermat (nrmsematrix ,nrmsemat , savenrmse )

A.1.2 XGB script

relative error & savemae =

XGB script is similar to RF script. Only the following lines are adjusted:

#Random forest script

#from sklearn.ensemble

import RandomForestRegressor

#trees =50 # number of trees

#k=10 # number of layers

# rf = RandomForestRegressor (n_estimators=trees , #random _state

#max_depth =k,

#rf. fit (train_features ,

#predictions

max_features=10)

train_labels);

rf.predict (test_features)

# Extreme Gradient Boosting script

from sklearn.ensemble import GradientBoostingRegressor

trees = 100

k=4

I= 0.1

gb = GradientBoostingRegressor (n_estimators=trees , learning_rate
random_state = 1, max.depth =k,loss="1ls’, criterion ='mse’)

gb. fit (train_features , train_labels);

predictions = gb.predict(test_features)

A.1.3 ANN script

## Artificial Neural Network

import tensorflow as tf

from tensorflow import keras

from tensorflow .keras
clist =[]
maemat = (]

rmsemat =[]

import layers
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s nrmsemat =]

9
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13

14

17

20

21

22

23

36

for

i in range(len(combi)): # For all combinations between stations

features= combi[i] # get one combination from combi list

#labels = features[’Q’] # define the target of the ANN

a = features[’STN’] # These parameters are used to check if there is one station
(e.g.235) or two (235 and 240)

b = np.mean(a) # These parameters are used to check if there is one station (e.g
.235) or two (235 and 240)

¢ = features.iloc [0][ ’STN’] # These parameters are used to check if there is one
station (e.g.235) or two (235 and 240)

clist .append(c)

features= features.drop(’STN’, axis = 1) #Drop station from training variable
list

labels= features[’Q’]

features= features.drop(’Q’, axis = 1) # Drop irradiance from training variable
list
feature_list = list (features.columns) #names of all the features

If = len(features) # used to split training and validation data
11 = len(labels) # used to split training and validation data

if b = c: # If there is one station

X_train, X_test, Y_-train, Y_test = sk.train_test_split(features,labels,
test_size =0.25, random_state = 1)
if b != c: # If there are two stations

Ifh = int (1f*0.5)

11h

int (11 %0.5)

X _train ,no, Y_train ,nope= sk.train_test_split(features[0:1fh], labels[0:1lh],
test_size = 0.25, random._state = 1) #make sure that test data is from the
first station and validation data from the second station

no, X_test, nope, Y_test = sk.train_test_split(features[lfh:1f], labels[llh:
11], test_size = 0.25, random_state = 1) #make sure that test data is from the

first station and validation data from the second station

del no, nope #ignore
# Data normalisation

Xtron = X_train['N’]/9

X _train.update (Xtr_n)
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Xtr_nor= (X_train [[’'DD’,’FH’,’FF’, ’FX’, 'T’, 'ID’,

’,7FH7,7FF7,7FX7, ’T77 VT]D77 7P7’ 7w7’

FX’, 'T’, 'ID’, 'P’, 'VV', 'U’]].std ()

X _train.update(Xtr_nor)

# Data normalisation

Xt.n = X_test['N’]/9

X _test.update (Xt-n)

Xt_nor= (X_test [[’DD’, FH’, ’FF’, 'FX’,

FH’,’FF’,’FX’, °T’, 'TD’, 'P’, 'VV’,
T, "TD’, 'P’, VW', "U’]].std()

X _test.update (Xt-nor)

if i==0 or clist [i—1]!= c: #for first
def build-model () :

model = keras.Sequential ([

layers.Dense (16, activation=tf.nn.sigmoid,

(11,

7T7, 7TD7,

7P7,

7P7,

7wv’

'VV’, ’U’]]—X_train [[ 'DD

U’ ]].mean())/X_train [[ 'DD’, ’FH’, 'FF’,’

"U’]] - X_test [[ DD’ ,’

'U’]].mean())/X_test [['DD’, 'FH’ ,'FF’, FX’,

training station or new training station

layers .Dense (16, activation=tf.nn.sigmoid),

layers .Dense (16, activation=tf.nn.sigmoid),

optimizer = tf.keras.optimizers.RMSprop(0.005)

model. compile (loss="mse’,
optimizer=optimizer ,
metrics=["mae’, ’'mse’])

return model

model = build_-model ()

model . summary ()

# Display training progress by printing a single dot for

epoch

class PrintDot (keras.callbacks.Callback):

def on_epoch_end(self, epoch,

logs):

if epoch % 100 = 0: print (")

print(’.’, end="")

EPOCHS = 100
BATCH= 20
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history = model. fit ( X_train, Y_train, epochs=EPOCHS, batch_size=BATCH,

validation_split = 0.25, verbose=0,callbacks=[PrintDot()])

hist = pd.DataFrame(history . history)
hist [ ’epoch’] = history .epoch

hist . tail ()

loss , mae, mse = model.evaluate(X_test, Y_test, verbose=0)
maemat . append (mae)

rmse = sqrt (mse)

rmsemat . append (rmse)

nrmse =rmse/(np.mean(Y_test))

nrmsemat . append (nrmse)

print (” Testing set Mean Abs Error: {:5.2f} MPG .format (mae))

elge ¢
loss , mae, mse = model.evaluate(X_test, Y_test, verbose=0)
maemat . append (mae)
rmse = sqrt (mse)
rmsemat . append (rmse)
nrmse =rmse/(np.mean(Y _test))
nrmsemat . append (nrmse)

print (” Testing set Mean Abs Error: {:5.2f} MPG .format (mae))

print ((i/225)%100,’%’ ) # show progress

maematrix = pd.DataFrame(index=Distance.index, columns=Distance.index) #Create
Error matrix

savemae = pd.DataFrame(index=Distance.index, columns=Distance.index)

rmsematrix = pd.DataFrame(index=Distance.index, columns=Distance.index) #Create
Error matrix

savermse = pd.DataFrame(index=Distance.index, columns=Distance.index)

nrmsematrix = pd.DataFrame(index=Distance.index, columns=Distance.index) #Create

Error matrix

savenrmse = pd.DataFrame(index=Distance.index, columns=Distance.index)
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110 def ermat(x,y,u):

111 k=—1

112 for i in range(len(x)):

113 for j in range(len(x)):

114 k=k+1

115 x.iloc [[i], [j]]l= yl[k] #store all errors in matrix

w.iloc [[i], [jll= yIK]

117 Diagonal =[] # matrix is divided by diagonal to calculate relative performance

118 for i in range (0,15):

119 D = x.iloc[i,i]

120 Diagonal . append (D)

121 for i in range(len(x)):

122 x.iloc[i] = x.iloc[i]/Diagonal[i]

123 return x,u

124

125

126

127 ermat (maematrix ,maemat, savemae) #maematrix = relative error & savmae = absolute
error

%

s ermat (rmsematrix ,rmsemat , savermse)

120 ermat (nrmsematrix , nrmsemat , savenrmse)
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A.2 Hyperparameter optimisation

Max Features F Absolute Relative

MAE RMSE nRMSE | MAE RMSE nRMSE
F=3 25.03 34.94 0.46 1.120 1.130 1.129
F=5 23.31  33.69 0.44 1.138 1.148 1.147
F=10 22.67 33.41 0.44 1.149 1.159 1.158
F=15(All) 22.67 33.49 0.44 1.154 1.164 1.163

Table 9: Absolute and relative errors for different number of max features (F') in RF.

K layers Absolute Relative

MAE RMSE nRMSE | MAE RMSE nRMSE
K=3 23.68 33.75 0.445 1.076  1.085 1.085
K=4 22.93 33.12 0.437 1.092  1.099 1.099
K=5 22.48 32.75 0.432 1.114  1.120 1.120

Table 10: Absolute and relative errors for different number of layers (K) in XGB.

Optimizer Absolute Relative

MAE RMSE nRMSE | MAE RMSE nRMSE
RMSprop | 21.62 31.54 0.415 1.086 1.083 1.043
SGD 21.66 32.10 0.423 1.105 1.110 1.055
Adagrad 65.99 97.05 1.280 1.036  1.035 0.998
Adadelta | 68.91 102.3 1.349 1.037 1.034 0.997

Adam 21.91 31.94 0.421 1.091 1.088 1.048
Adamax 22.73  32.29 0.425 1.077  1.079 1.039
Nadam 21.67  31.69 0.417 1.088  1.085 1.045

Table 11: Absolute and relative errors for different optimisers.

Learning rate Absolute Relative

MAE RMSE nRMSE | MAE RMSE nRMSE
0.001 21.66 31.74 0.418 1.093 1.089 1.049
0.005 21.64 31.68 0.417 1.089 1.082 1.042
0.01 21.64 31.89 0.420 1.103  1.096 1.055
0.05 23.89 34.60 0.456 1.070  1.069 1.029

Table 12: Absolute and relative errors for different learning rates.

Activation Function Absolute Relative
MAE RMSE nRMSE | MAE RMSE nRMSE

Sigmoid 21.64 31.68 0.417 1.089 1.082 1.042
Softmax 22.23  32.43 0.427 1.098  1.090 1.050
Softplus 21.74  32.08 0.423 1.101  1.097 1.056
Softsign 22.14  32.02 0.422 1.090 1.084 1.044
Relu 21.63 31.47 0.415 1.099 1.095 1.055
Tanh 22.01 32.55 0.429 1.100 1.095 1.055
Hard sigmoid 21.87 31.76 0.418 1.094 1.089 1.048
Linear 33.31  42.97 0.567 1.044 1.050 1.012

Table 13: Absolute and relative errors for different activation functions.
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A.3 Absolute and relative errors between stations
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Relative RMSE

Relative nRMSE

A.4 Distance, cardinal and temporal performance figures
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Figure 27: Relative RMSE for different distance intervals.
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Figure 28: Relative nRMSE for different distance intervals.
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Figure 29: Cardinal performance of different MLMs based on relative RMSE.
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Figure 30: Relative RMSE compared to a reference training interval in the period (2000-2005).
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Figure 31: Relative RMSE compared to a reference validation interval in the period (2013-2018).
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Figure 32: Relative nRMSE compared to a reference validation interval in the period (2013-2018).
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A.5 Onshore and offshore temperatures
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Figure 33: Onshore and offshore average temperatures. Black dotted line represents the difference

in temperature.
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