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Abstract 

Littering is an increasingly problematic phenomenon in urban settings that is exacerbated 

by global tourism. Littering behaviour is typically explained in the focus theory of normative 

conduct, which details how different categories of norms are communicated between 

people and how they affect behaviour. Research into littering behaviour is obstructed by 

practical limitations, particularly with respect to spatially disparate and densely crowded 

areas. Simulation through agent-based modelling lends itself well to experimentation with 

such variables and is therefore presented as a method to expand littering research with. In 

this project, a model is developed that simulates the effect of the descriptive norm on 

pedestrian littering in two spatially distinct streets in Amsterdam. A main finding is that the 

configuration of personal norms as stochastic variables and activated norms as 

corresponding multipliers is a valid interpretation of the theory through which it seems 

empirical data can be reproduced. Furthermore, several incomplete assumptions with 

regard to littering-specific and general norm theory are exhibited. 
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1: Introduction  

1.1: Background 
As one of the main sources of non-degradable pollution, littering harms the environment, 

animals and people (Torgler, García-Valiñas, & Macintyre, 2012). While it was initially 

treated as a mere aesthetic problem, litter is now considered an environmental threat (Ong 

& Sovacool, 2012). It can degrade water quality, endanger wildlife and even contribute to 

flooding by blocking drainage systems. Some types of litter may even harm people directly, 

particularly sharp objects. Litter is not only considered one of the greatest nuisances in 

living areas but also a costly business: the Dutch government spent €250 million on cleaning 

public spaces nationally in 2010 (Milieucentraal, n.d.).  

Global tourism exacerbates the problem of litter even further, especially in popular tourist 

destinations such as Amsterdam. The Dutch capital of roughly 850.000 inhabitants 

accommodated almost ten times as many tourists last year (OIS, 2018). Since continuously 

crowded areas could not be kept litter-free by regular cleaning services anymore, the city 

recently even introduced unorthodox anti-litter measures. These include nightly ‘sweeping 

breaks’, in which busy night life streets are briefly closed to be cleaned, and mobile bins 

mounted on moving bicycles (Van Lieshout, 2018). 

Littering behaviour has been a relatively common social research subject since the 1970s 

(Cialdini, Kallgren, & Reno, 1991). It was soon associated with urban sociology concepts 

such as the broken windows theory, which describes how visual disorder instigates more 

disorder in built environments (Bateson et al., 2015). Through social experimentation, 

littering behaviour has been linked to more detailed theories regarding norms. Cialdini, 

Reno, & Kallgren’s (1990) theory of normative conduct has been influential in explaining 

social norms as distinctly descriptive, injunctive and later personal. The litterer’s age and 

proximity to bins have furthermore been found to affect littering rates (Bator, Bryan, & 

Schultz, 2011), while other socio-economic and demographic characteristics were not 

found to be as important (Bamberg & Möser, 2007). 

However well designed the experiments from which they are derived and however sound 

the reasoning upon which they are based, littering theories can usually not be thoroughly 

tested in real-world settings. In experiments, subjects are typically isolated and monitored 

in manipulated settings intended to influence their behaviour and subsequently given a 

chance to litter (e.g. Cialdini et al., 1990; Reno, Cialdini, & Kallgren, 1993; Sibley & Liu, 2003; 

Ernest-Jones, Nettle, & Bateson, 2011; Keizer, Lindenberg, & Steg, 2011). Such methods are 

highly effective for testing hypotheses on a small scale, though carrying them out in more 

realistic, large scale settings is often virtually impossible due to practical or moral 

constraints. Moreover, as important as other people indirectly are to the behaviour of the 

subject in littering theory, they are often excluded from experiments for the same reasons.  

Agent-based modelling (ABM) might prove instrumental in overcoming some constraints of 

studying littering behaviour in natural settings. By describing behaviour on the level of 

artificial agents, the researcher can use ABM to simulate social patterns, increase 

understanding in underlying mechanisms and experiment with parameters (Eberlen, 

Scholtz, & Gagliano, 2017). ABM has proven especially useful in addressing the sociological 
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micro-macro problem, which concerns the difference between individual’s actions on the 

micro level and behavioural patterns that arise on the macro scale (Bruch & Atwell, 2015). 

The analysis of normative influence on littering behaviour in crowded areas (i.e. non-

isolated individuals) could be facilitated by ABM concepts such as emergence. Furthermore, 

the effects of variables such as the amount of litter present in the environment, the position 

of bins and agents’ line of sight could all be controlled easily because the technique is 

spatially explicit. 

This research project aims to contribute to littering research through (the process of) agent-

based modelling. Theoretical implications will be investigated in simulation, while the 

modelling methodology for this type of explorative research will also be examined. More 

generally, the research will aim to explore the value of agent-based modelling in resolving 

some of the practical limitations of social experimentation in littering research. 

 

1.2: Objectives 
The main objective of this research is to gain insight into littering behaviour through agent-

based modelling by simulating theoretical assumptions in settings that are otherwise difficult 

to examine in practice. In order to meet that aim, the following sub-questions will be 

answered. 

1.2.1: Research questions 
 What theory explains littering behaviour most effectively? The theory that can most 

consistently explain findings, but that is also most focused, i.e. draws upon the fewest 

variables possible (following the principle that a model should be as simple as possible, but 

not simpler [Helbing & Balietti, 2012]) should be used as a framework for the model.  

How can ABM be used to increase understanding about littering? It is necessary to 

address this issue in a sub-objective because it dictates exactly how findings can be 

interpreted and what conclusions may be drawn from the modelling process and the 

finished model. 

 How can littering behaviour plausibly be captured in an ABM?  The theory that is used 

should be condensed in a most basic set of behavioural and environmental rules that can be 

operationalised in an ABM. The subsequent processes of creating and reporting on the 

model are also addressed in this sub-question, as well as model evaluation. 

 How does the physical environment affect littering rates? How do population size and 

composition affect littering rates? These questions are to be used as leading research 

questions to be explored with the finalised agent-based model. These will likely generate 

some insight into potential interventions but are certainly not exhaustive with respect to 

possible topics that may be experimented with. 

1.2.2: Scope 
The final model should be good enough to generate plausible patterns that can provide 

insights into data but should not aim to perfectly replicate empirical data by including too 

many variables. Firstly, ‘over-fitting’ empirical datasets often leads to the inclusion of noise 

or irrelevant details in the model, undermining the believability of the model (Helbing & 

Balietti, 2012). Secondly, models suffering from the ‘curse of dimensionality’, i.e. having too 

many variables are often hard to interpret in a meaningful way (Eberlen et al., 2017). The 
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principle of Occam’s Razor, which states that the explanation with least assumptions is most 

likely, is also to be kept in mind.  

The model should furthermore be used to replicate empirical behavioural patterns and 

explore the workings of theoretical mechanisms in different settings, so as to guide future 

research and potential interventions, but not to produce directly usable quantitative 

findings. The identification of potential measures (such as the capacity or location of bins) 

is a research aim, but it would not be meaningful to quantify such findings because these 

would not be realistic when derived from a relatively simple model. Finally, 

experimentation with, and synthesis of existing theory and finding is a greater focus of this 

research than the formulation of new littering theory. 

1.2.3: Overview 
This report details the research and modelling processes that were critical in developing 

the agent-based model. Chapter two will span a theoretical background of littering 

behaviour through descriptions of behavioural models, social norms, and individual and 

environmental characteristics, and research limitations, as well as a short theoretical 

review of agent-based modelling. In chapter three, the conceptual model on which the ABM 

was based is described, as well as the implementation and evaluation phases. The 

experimentation that was carried out with the model is described in chapter four. In chapter 

five, the central research aim is addressed and potential applications of the model are 

proposed. The limitations of the project are discussed in chapter six. The report will be 

concluded by a reference list in chapter seven. Additionally, several appendices are 

provided in the digital version of the report. 
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2: Theoretical framework 

This chapter will consist of two parts: a synthesis of littering behaviour in theory in 2.1, and 

a review of agent-based modelling in sub-chapter 2.2. The first part comprises sections 

about behavioural, norms, norm activation, interpretations of those theories, other factors, 

and limitations of research methods. The second part is divided in sections detailing ABM 

history, complexity, epistemology, and a previously developed ABM about littering. 

2.1: Littering behaviour 

2.1.1: Attitude, intention and behaviour  
Littering is commonly defined as “the careless, incorrect disposal of minor amounts of 

waste” (Hansmann & Scholz, 2003: p. 753). In their large-scale study, Schultz, Bator, Large, 

Bruni, & Tabanico (2013) observed that littering occurred among 17% of pedestrians in the 

USA, and even among 65% for cigarette butts specifically. Yet Campbell, Paterson de Heer 

and Kinslow (2014) reported that only 9% of their research population admitted to 

occasional littering. A distinction can be made between active and passive littering; failure 

to notice your littering could explain this difference between reported and observed 

littering rates (Sibley & Liu, 2003). However, three fourths of Campbell et al.’s research 

population stated that they felt guilty about littering and moreover, 81% of observed 

littering occurred with intent (Schultz, 2013). Sheer carelessness or mechanical reasons 

thus cannot explain littering behaviour entirely.  

 

Figure 2.1: Theory of planned behaviour (Ajzen, 1991). 

The gap between a person’s (stated) attitude and their behaviour has been the subject of a 

great many psychological and sociological studies. Of particular relevance here is that pro-

environmental attitudes are frequently not translated to pro-environmental behaviours 

(Smith & Louis, 2009). Ajzen’s (1991) theory of planned behaviour has provided a highly 

influential framework for explaining people’s actions in specific contexts. The theory states 

that intentions are the strongest determinant for behaviour, as has been backed by 

numerous statistical reports (Bamberg & Möser, 2007). Intention is in turn shaped by 

attitudes, subjective norms, and perceived behavioural control (see figure 2.1 above). 



9 
 

Subjective norms refer here to a person’s perceived social pressure while behavioural 

control describes the perceived difficulty of carrying out a behaviour.  

The theory of planned behaviour explains that most variance in behaviour is explained by 

‘internal’ variables (attitude and behavioural control) rather than ‘external’ norms. The 

opposite has been found as well, however. The economics of crime perspective aims to 

explain behaviour by arguing that people take into consideration possible penalties for their 

actions while maximising utility (Torgler et al., 2012). Littering is then explained by the 

amount of time and energy that is saved by the litterer in relation to the fine that would be 

issued if they are caught. Such theories are only rarely properly supported by evidence as 

people persistently comply more with rules than would be expected. This high degree of 

cooperation is explained by social norms. Negative consequences of misconduct (i.e. 

littering) include more than legal punishment through fines; internal sanctions such as guilt 

and remorse and social sanctions such as gossip and disapproval seem to have much higher 

prices than expected. Besides its likely underestimation of the importance of norms, the 

theory of planned behaviour may lack the flexibility to capture the dynamic processes 

observed in littering, as well as the influence of people’s environment (Eberlen et al., 2017).  

2.1.2: Broken windows and other norms  
An older, less formalised theory that sheds light on the workings of littering behaviour in 

the context of social norms is the broken windows theory (Wilson & Kelling, 1982). It 

describes how signs of disorder in the built environment (such as litter, graffiti or the titular 

broken windows) are visual cues that communicate information about the quality of social 

environments which stimulate more disorderly behaviour. If individuals perceive that 

residents of a neighbourhood are antisocial, they are more likely to behave antisocially 

themselves (Weaver, 2015).  Littered environments thusly attract more littering. Cialdini et 

al. (1991) tested this in controlled settings, where they reported a 32% littering rate in 

littered environments but only 14% in tidy environments. Similarly, for every unit of 

increase in the amount of litter (on a 1-10 scale) in non-experimental settings, the littering 

rate was found to increase by 2% (Schultz et al., 2003). The ‘spreading of disorder’ as 

described in the broken windows theory makes littering problematic beyond its potential 

environmental detriment: the prevalence of social problems can increase the presence of 

litter but also vice versa (Bateson et al., 2015). 

Note the different meaning of ‘norms’ in the broken windows theory and the theory of 

planned behaviour. In the former, it denotes the behaviour that is ‘normal’ or followed by a 

majority of other people, while in the latter it is meant to indicate the social pressure behind 

acting in a certain way. Cialdini, Reno and Kallgren conducted a series of studies in the 

1990s that together constitute the focus theory of normative conduct to increase 

understanding about social norms. The distinction between the two categories of norms is 

a basic principle in their research. The writers termed them ‘descriptive’ and ‘injunctive’. 

Descriptive norms indicate what others commonly do, while injunctive norms relate to 

people’s perception of what behaviour is expected of them (Cialdini et al., 1990). The broken 

windows theory the refers to how the descriptive norm shapes behaviour, which is 

demonstrated by increased littering in dirty environments. The injunctive norm is rather 

used in paradigms such as the theory of planned behaviour or the economics of crime, 

where it guides behaviour with the threat of social sanctions for (not) behaving in a certain 

way. In regard to littering behaviour, descriptive norms influence one through the amount 
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of litter in a specific environment, while injunctive norms usually keep one from littering. 

In more poetic terms, we may speak of norms of is and norms of ought, respectively 

(Kallgren, Reno, & Cialdini, 2000).  

In the academic literature, the term ‘norm’ usually refers to injunctive norms. A common 

theme in norm-related littering research is when and in what context littering is allowed or 

frowned upon. For instance, some types of litter have been found to be more socially 

accepted than others. Discarding cigarettes in urban areas and organic litter in green areas 

are not frowned upon as much as other items in those settings (Torgler et al., 2012). Sibley 

and Liu (2003) showed that cigarette butts are more tolerated than many other types of 

litter – sometimes even in legal terms. Littering is also considered more acceptable when 

the responsibility of keeping areas tidy is not felt strongly. In many western countries, 

cleaning or keeping areas tidy are expected to be solved by the public sector or cleaning 

services. Ong & Sovacool (2012) contrast western littering with the Japanese urban 

environment, which is kept much cleaner because of the societal injunctive norm that 

prescribes that everybody is equally responsible for the cleanliness of their environment.  

Nonetheless, the widespread injunctive norm in western societies is anti-littering. People in 

Amsterdam, for instance, generally believe they ought not to litter, whether their motivation 

is to preserve an aesthetic, the environment, or to avoid a fine. Still, when an environment 

is littered, this will affect further littering behaviour through descriptive norms. This 

contradiction between the beliefs of injunctive norms and the behaviour of descriptive 

norms is supported by the costly information hypothesis that stems from cultural 

evolutionary theory. The hypothesis states that attaining accurate context-specific 

behavioural information is costly to individuals in terms of time and effort because there 

are so many factors that could be taken into account in different socio-spatial situations 

(Weaver, 2015). Acting in accordance with the descriptive norm (or effectively copying 

others’ behaviour) gives people an information processing advantage and decisional 

shortcut when choosing how to behave (Cialdini et al., 1990). Following the descriptive 

norm provides a less accurate but also much less costly solution and have therefore been 

favoured by evolution, so the cultural evolutionary theory postulates. This phenomenon is 

described in a multitude of well-known idioms, perhaps most popularly: ‘when in Rome, do 

as the Romans do’. 

2.1.3: Norm activation 
Cialdini et al.’s series of studies is mostly cited for a novel finding, rather than their 

elucidation of categories of norms. In their 1990 research, the writers found that the 

influence of both descriptive and injunctive norms on littering behaviour is limited unless 

the norms are salient or activated in the subject. In other words, litterers will behave 

according to the descriptive or injunctive norm especially if their attention is focused on 

either. The researchers came to these findings in controlled settings, initially in an 

experiment about the descriptive norm. They provided their research subjects with an 

unwanted item in littered and clean settings and observed their behaviour. In some test 

runs, a confederate littered the object in the subjects’ view, while in other runs, the person 

merely walked by. Seeing somebody littering led to a much higher littering rate among the 

subjects in unclean settings. The opposite was shown to have the reverse effect: a litterer in 

a clean environment stimulated not littering. Where the broken windows theory described 

the influence of the state of the environment on a person’s behaviour, it was now shown 
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that being exposed to somebody else in the act of littering activates the descriptive norm. 

The results of this particular study are depicted in figure 2.2. The difference in littering rates 

in conditions of low norm salience (14% versus 32%) has not been replicated consistently 

and is instead usually reported as roughly equal (Reno et al., 1993). The difference in this 

study may have been due to an already activated descriptive norm. Nevertheless, the 

pattern that active descriptive norms lead individuals to adjust their behaviour to existing 

litter is significant. 

 

Figure 2.2: Descriptive norm activation experiment results: bars depict the percentage of 

research subjects littering in the given settings (Cialdini et al., 1990). 

While it is intuitive that seeing somebody littering stimulates littering (as imitating others’ 

behaviour has been described as an efficient way to choose the appropriate behaviour in a 

setting), it seems that it merely draws a person’s attention to the state of the environment. 

Exposure to littering in a clean environment led to less littering, which indicates that the 

state of the environment represents the descriptive norm rather than a single other 

person’s littering. Although the effects of correct waste disposal have not been studied as 

thoroughly as those of littering, Reno et al. (1993) found that observing somebody disposing 

of litter properly also activates the descriptive norm. Seeing someone throwing litter in a 

bin thus increases the likelihood of littering in an unclean setting. This counterintuitive 

finding is explained by the lack of social sanctions it exhibits. Others’ correct or incorrect 

waste disposal is seen as personal behaviour, which does not directly inform subjects about 

what others will think of them and their behaviour (i.e. the injunctive norm) but rather only 

draws attention to the state of the environment. 

As a defining characteristic of injunctive norms, the suggestion of social (dis)approval was 

found to be a prompt for injunctive norm activation. The manner in which this is suggested 

has been more continually researched since the dawn of the theory of normative conduct. 

Cialdini et al. (1991) found that observing somebody picking up litter (rather than disposing 

of it, properly or improperly) activated the injunctive norm in subjects, which led them to 
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litter significantly less, regardless of the cleanliness of the environment. Signs with 

normative messages were shown to have the same effect, even if the norm they 

communicated is not directly related to littering (Kallgren et al., 2000). Well-worded signs 

that for instance appealed to people’s help in keeping an area clean proved particularly 

effective (Torgler et al., 2012; Schultz, Nolan, Cialdini, Goldstein, & Griskevicius, 2007). This 

effect lasted longer than that of descriptive norms: while the latter refers to a specific 

setting, injunctive norms seemed to remain active even outside of the area where they were 

made salient. Injunctive norms were furthermore found to be activated through others’ 

facial expressions, particularly those showing disapproval through anger (Hareli, Moran-

Amir, David, & Hess, 2013). The extent to which injunctive norms are activated by different 

prompts is not quite clear yet, however. Moreover, there is evidence that different norms 

can be active simultaneously, but Cialdini et al. (1990; 1991) could not account for their dual 

influence properly and other studies produced yet different results about the effect of 

conflicting norms (Hamann, Reese, Seewald, & Loeschinger, 2015). 

2.1.4: Personal norms and interpretation of normative conduct 
While the notion of personal norms is older than the focus theory of normative conduct, the 

concept later expanded the theory as a third type of norm (Kallgren et al., 2000). Personal 

norms are defined as internalised injunctive norms (Bamberg & Möser, 2007). They relate 

to what is deemed important to people themselves rather than what they perceived as 

important to others. The threat of not following personal norms is therefore not shaped by 

potential social sanctions but by a threat of shame or guilt if personal values are not 

followed (De Kort, McCalley, & Midden, 2008). This is witnessed by the previously described 

widespread feelings of guilt after littering (Campbell et al., 2014). A weak personal norm 

against littering should not be interpreted as pro-littering, however. Rather, motives such 

as carelessness and laziness (which were found as indicators for littering in Torgler et al.’s 

[2012] survey) seem to justify littering to people with a less dominant personal anti-

littering norm.  

Personal norms are also subject to activation. In the words of Kallgren et al. (2000, p. 1010): 

“The data indicate that mere possession of a personal norm does not lead routinely to norm-

based action. Rather, internal or external focus of attention importantly moderates the 

degree to which the personal norm is likely to guide such action”. However, the functioning 

of personal norm activation is not well described in the cited studies. Kallgren et al. (2000) 

focused subjects on their personal values through filling in surveys about their own littering 

standards and by exposing subjects to their own image on a TV monitor. Such prompts do 

not occur naturally, yet personal norm has been described as highly indicative of a person’s 

behaviour, notably in the aforementioned theory of planned behaviour (where it is termed 

‘attitude’). Individual rates of littering rate have also been correlated with personal values 

or disposition (Bator et al., 2011). Whether personal values lead to routine behaviour with 

regard to (refraining from) littering, or whether they are active more commonly than 

suggested in Kallgren et al.’s (2000) research, it seems that their influence on littering 

should not be underestimated. 

The focus theory of normative conduct is sometimes cited or expanded on to explain 

environmental behaviour in general or littering specifically, but the two categories of social 

norms are commonly confused in spite of Cialdini et al.’s (1990) warning that they are 

conceptually and motivationally distinct. For instance, in research about the impact of signs 
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with normative messages, Keizer et al. (2011) use the term ‘norm’ inconsistently, not 

distinguishing between descriptive and injunctive norms but rather drawing from the goal 

frame theory, formulated by two of the same authors (Lindenberg & Steg, 2007). This theory 

describes environmental behaviour as determined by goal frames, which frame the way 

people process information and act upon it. Normative, hedonic and goal frames are 

distinguished, which correspond to people’s aim to comply with injunctive norms, personal 

convenience, or personal gain, respectively.  However, Keizer et al.’s (2011) research design 

is very similar to one of Cialdini et al.’s (1991) studies aimed precisely at explaining the 

difference between descriptive and injunctive norms. The results of both studies were 

similar as well, but there seems to be some struggle in explaining them coherently with the 

newer theory, particularly because it does not account for descriptive norms. This criticism 

is particularly relevant to the present research because inspiration will be drawn from 

Rangoni and Jager’s (2017) agent-based model, which is partly based on Keizer et al.’s 

(2011) study. Rangoni and Jager’s (2017) research will be further explained in chapter 3.2.4. 

2.1.5: Individual characteristics, social context and environment 
Besides analysing relatively concealed mechanics such as injunctive norms, most littering 

studies also test for correlations between littering and demographic patterns. Little 

difference in littering is usually found between the genders. Men sometimes seem to litter 

more than women (Cialdini et al., 1990; Torgler et al., 2012), but the majority of studies find 

no significant evidence for this pattern (Cialdini et al., 1991; Reno et al., 1993; Bator et al., 

2011; Schultz et al., 2013). Age seems to impact littering behaviour to a much larger extent: 

the age group 18-32 is reported to admit to littering the most (Arafat, Al-Khatib, Daoud, & 

Shwahneh, 2007; Torgler et al., 2012; Campbell et al., 2014), and was even observed to litter 

at a 26% rate, compared to an average of 14% for other categories (Schultz et al., 2013). 

This phenomenon is reasoned to be caused by less developed (injunctive) normative 

sensibility among young adults (Torgler et al., 2012; Schultz et al., 2013). Furthermore, the 

level of formal education has not been found to affect littering behaviour (Arafat et al., 2007; 

Torgler et al., 2012). 

Group dynamics are another variable that should intuitively influence littering behaviour. 

Pro-social behaviour has long been theorised to decrease with larger group sizes because 

of diffusion of responsibility. An illustrative example is that people are less likely to act in 

emergency situations in crowded places (Bator et al., 2011). Contrarily, the presence of 

other people nearby is also described as having an encouraging effect on pro-social 

behaviour (e.g. decreasing littering rates). This is in line with classic urban geography 

literature, where it was termed natural surveillance (Bateson et al., 2015). Furthermore, the 

size of the immediate social circle has experimentally been found to decrease littering rates 

in groups of up to four people (Ernest-Jones et al., 2011; Al-Mosa, Parkinson, & Rundle-

Thiele, 2017). No significant correlations between crowdedness or group size and littering 

were found in real-world observations, however (Schultz et al., 2013). The ‘openness’ or 

degree of publicity of Schultz et al.’s studied locations could be used as a reason for this 

pattern (for instance, Keizer et al. [2011] found higher littering rates than expected in their 

research area – a quiet alley), but the divergent direction of the suggested relationship 

between crowdedness and littering in the academic literature demands further research. 

Notably, there seems to be an absence of explicitly descriptive or injunctive norms in the 

research subject, one that is recommended to be elaborated on. 
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Tourism is frequently associated with littering (Weaver & Lawton, 2001; Santos, Friedrich, 

Wallner-Kersanach, & Fillmann, 2005). Tourists as well as non-resident workers are 

typically described as lacking a connection to place, which leads to criticism regarding anti-

social behaviour such as littering, especially from residents. Campbell et al. (2014) found 

evidence to the contrary, however: tourists littered equally to residents and claimed to be 

similarly concerned for the environment. In a large-scale survey on criminal behaviour, 

problems of littering were strongly associated with drunk or rowdy behaviour, such as 

through littered fast food waste and cans or bottles (Upson, 2006). In Amsterdam, 

intoxicated tourists have also been identified as a problematic source of littering. Groups of 

men between the ages of 18-34 who originate from the Netherlands and the United 

Kingdom and travel to Amsterdam for short stays, were recently identified as a troublesome 

target group for littering while publicly intoxicated, among other offences (I Amsterdam, 

2018). The effect of neither tourism nor intoxication on norms seems to have been 

researched academically. It seems evident, however, that tourism is associated with 

intoxication, and that intoxication leads to higher littering rates. 

It was already shown by the great influence of the descriptive norm in littering that 

“individual behavio[u]r is characteri[s]ed by significant plasticity in response to variations 

in geographic context” (Weaver, 2015: p.142). The layout and design of the built 

environment have been shown to affect littering rates critically as well (Bator et al., 2011). 

Although the average distance to a bin at the time of littering is nine meters (Schultz et al., 

2013; Al-Mosa et al., 2017), the sheer number of bins is not as important in influencing 

littering rates as their placement (Pon & Becherucci, 2012). Wever, Van Kuijk, & Boks 

(2008) found that disposed items are piled onto full bins if those are placed more 

conveniently than other bins, regardless of how full those are. This phenomenon likely 

embodies conflicting norms, in which neatly placed litter is still considered unclean but also 

communicates some injunctive value of keeping the environment tidy (Cialdini et al., 1990). 

The extent to which environmental factors explain variance in littering differ: Schultz et al. 

(2013) claim individual factors are much more predictive, while Al-Mosa et al. (2017) 

emphasise the importance of environmental settings. The extent of the influence of bins is 

likely context-specific, but regardless of setting, people have generally shown to be willing 

to walk small distances to dispose of their litter in bins in public areas. 

2.1.6: Practical limitations of littering research 
In conclusion, although a great body of knowledge has been gathered about littering 

behaviour, the research domain is subject to several practical limitations. Large-scale 

observations have the capacity to provide highly accurate data, but they are costly and 

usually do not expose complex or concealed phenomena. Gathering data through surveys or 

interviews is never completely accurate because people have been shown to be unconscious 

about a degree of their littering, their passive littering. Additionally, they may only 

remember instances of littering or disposing of their thrash in a bin if any norm was 

activated, which in the case of injunctive and personal norms would mean when they 

disposed of litter properly. However, if they are conscious about improper littering, the 

injunctive anti-litter norm could lead them to embellish the truth when self-reporting on 

their behaviour in a survey. 

By observing people in field experiments rather than letting them describe their behaviour 

themselves, these issues are circumvented. Field experiments have been proven 
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instrumental in the analysis of individual littering behaviour, but they also lead to a number 

of issues. Firstly, people are often isolated so that they do not influence each other lest it 

may affect the data, but this very influence is of great interest in mechanisms that are 

affected by social phenomena such as norms. Secondly, controlling an environment as part 

of an experiment is often costly, impractical or simply impossible. The settings that are used 

in controlled environments often have little to do with realistic situations, such as when 

research subjects are given the chance to litter by means of a flyer that is attached to their 

vehicle. Finally, the scale of field experiments is often rather small – both in number of 

observations and, as mentioned, number of subjects observed simultaneously. 

“Instead, we might set up a model (in this case, a computer program) which embodies some 

plausible assumptions and see what happens, comparing the behaviour of the program with 

the observed patterns” (Gilbert & Troitzsch, 2005: p. 2). Serendipitous findings, such as 

Cialdini et al.’s (1990) accidental discovery of how neatly swept piles of litter exhibit 

conflicting norms, are unlikely to come by when all rules of a behaviour are pre-imposed, 

but through computer simulation, we may have the capacity to surmount the 

abovementioned obstacles to littering research. 

2.1.7: Summary 
To recap, littering behaviour seems strongly correlated with multiple categories of norms. 

This is reflected in the famous broken windows theory, which states how descriptive norms 

in the environment affect behaviour. The focus theory of normative conduct provides a 

clearly defined theoretical framework for the influence of social norms on littering 

behaviour. Other influential theories, such as the theory of planned behaviour or the goal 

frame theory include more elements with which a generalised explanation of behaviour is 

perhaps more properly given, but they do not capture the social and spatial dynamics that 

are evidently important to littering. While the activation of injunctive and personal norms 

is not as clearly defined in the focus theory of normative conduct, it should provide a 

realistic foundation for a littering ABM. The first sub-question, what theory explains littering 

behaviour most effectively, has hereby been answered. 

 

2.2: Simulation in social research 

2.2.1: Agent-based modelling 
The first university research computers in the 1960s were already used for modelling social 

processes. Simulations were initially used in social research as they were in exact sciences: 

to predict future patterns and behaviours. The necessity of strong empirical evidence for 

quantifying model assumptions and the inherent complexity of social systems made this a 

problematic aim (Gilbert & Troitzsch, 2005). Save for a handful of influential studies (e.g. 

Schelling’s model of residential segregation [1971]), computer simulation was not common 

in the social sciences until the advent of multi-agent simulation in the 1990s, and specifically 

agent-based modelling. 

Agent-based models are defined as “computer programs in which artificial agents interact 

based on a set of rules and within an environment specified by the researcher” (Bruch & 

Atwell, 2015: p.1). Such artificial agents are characterised by heterogeneity, autonomy, the 

capacity to interact with other agents and to adapt their behaviour to changing settings 

(Macal, 2016). During simulation, agents act autonomously based on a set of theoretically 
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justified rules programmed by the scientist. As such, ABM can be used as a virtual 

environment in which to test well-elaborated theory and experiment with mechanisms and 

parameters (Eberlen et al., 2017). Furthermore, ABM has been proven useful in sharpening 

the researcher’s thinking about empirical problems because all underlying assumptions 

need to be made explicit in order to be programmed. With multi-agent models and ABM 

specifically, the aim of modelling in the social sciences has thus shifted from predicting to 

understanding the target system. Bruch and Atwell (2015) wrote of agent-based modelling 

that it bridges the gap between formal but restrictive quantitative models, and rich but 

imprecise qualitative descriptions of phenomena. 

ABM has been proven especially useful in addressing the sociological micro-macro problem, 

which concerns the difference between individual’s actions on the micro level and 

behavioural patterns that arise on the macro scale. Actions of individuals often give rise to 

social organisation and dynamics rather than simple aggregations of individual 

characteristics and behaviour. Social phenomena in turn also affect choices on the level of 

the individual, establishing a feedback mechanism between the micro and macro levels. 

Individuals constantly respond to their (social) environments while the accumulation of 

their choices or behaviour will eventually change their (social) environment (Bruch & 

Atwell, 2015).  

2.2.2: Complexity 
The modelling concept of ‘emergence’ – the manifestation of phenomena as an unintended 

aggregate result of designed individual behaviour – is a key concept in agent-based 

modelling and helps address the micro-macro problem (Eberlen et al., 2017). The 

possibility of emergence sets ABM apart from most other modelling techniques that assume 

linear relationships between variables, i.e. when dependent variables are proportional to 

the sum of independent variables. Complexity theory is the overarching domain concerning 

emergence of complex behaviour from relatively simple activities. The degree of 

interconnectedness of a system’s elements rather than their sheer number make a system 

complex and may cause emergence (Gilbert & Troitzsch, 2005). 

Besides model complexity, the degree to which the model is based on empirical findings, or 

empirical realism, is a central concern in agent-based modelling (Bruch & Atwell, 2015). 

Model complexity can range from abstract to high dimensional worlds, which refer to 

models with respectively singular agent attributes and deterministic rules, and those with 

a multitude of agent characteristics and dynamic environments. The degree of empirical 

realism, in turn, makes models range from virtual laboratories that are as grounded in 

empirical findings as possible, to abstract models that are focused on the clarification of 

theories more than the replication of empirical data. On the intersection between the two 

concepts’ extremes, a model could be characterised as a simple world (with only several 

agent attributes) with low dimensional realism (using some empiricism and some 

abstraction). The appropriate levels of both issues should be dictated by the research goals.  

When the aggregate consequences of strongly assumed micro-level behaviour are explored 

in simulation, as in this research, low-dimensional realism simple worlds are often most 

successful. This relates to the notion that a model’s success should be measured by its 

usefulness to increasing understanding of the research problem rather than its level of 

similarity to the real world, which can usually already be achieved through more abstract 

models. Too much empirical realism is furthermore very rarely suitable in social research. 
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Data and knowledge of human behaviour are often not completely available or suitable, 

leaving key interactions unexplained. However, if policy recommendations are intended to 

be made, or even if manipulation mechanisms are merely to be identified, some grounding 

in empiricism will likely be necessary (Bruch & Atwell, 2015). Gilbert and Troitzsch (2005) 

write that accuracy of model output is an advantage in models that aim at prediction while 

simplicity is a virtue in models that are used to increase understanding.  

2.2.3: Uncertainties and epistemology 
Whatever the level of complexity and empirical realism, models must reflect the target 

system properly. Through the process of verification, it is examined whether a model 

functions as intended. Comparison with the conceptual model and debugging are core 

elements to the process. Verification is difficult to carry out for ABMs, but it is highly 

necessary. Only with mathematical proof can a model be fully verified, but since this is 

impossible to achieve in models with a qualitative focus (Gräbner, 2018), the researcher’s 

intuition is typically relied on to establish sufficient verification (Gilbert & Troitzsch, 2005).  

The basic aim of simulation is to create a model that is simpler to study than the target 

system itself. If it is a correct representation of the target system, conclusions drawn from 

the model should also hold for the target (Gilbert & Troitzsch, 2005). Besides testing 

whether the model works as designed in the process of verification, scrutiny with regard to 

its value as a representation of the target system is also essential, which is carried out 

through validation. Several aspects of a model can be tested for validity. A distinction is 

commonly made between its capacity to replicate existing patterns, to predict future 

patterns, and the accuracy of its structure. Only the latter is always pursued in the social 

sciences as a result of the ubiquity of limited or vague data in the field. A model is generally 

considered structurally sound if its programmed ‘microstructures’ have the capacity to 

emerge in macrostructures as postulated by the theory, and if both structural levels 

reasonably resemble real-world processes (Troitzsch, 2004). In practice, full verification 

and validation is impossible because real-world systems are never closed; there will always 

be external behaviour that outside of the model scope (Oreskes, Shrader-Frechette, & Belitz, 

1994).  

There is no agreement about a single ‘best’ tool for verification and validation (Gräbner, 

2018). A model’s complexity, structure and purpose should guide the choice of an 

appropriate method. Similarly, various criteria for how knowledge is created by models are 

used in different scientific communities. An elementary understanding across communities, 

however, is that models are not intrinsically representations of targets but are rather made 

so by the intentions of the researcher. Frigg and Nguyen’s (2016) DEKI account (an acronym 

for denotation, exemplification, keying up, and imputation) may aid in the description of 

what model features make them representations of their targets, and essentially how 

knowledge is derived from specific models. Gräbner’s (2018) concise table of the DEKI 

account (including this researcher’s intentions with the model in development) is depicted 

in table 2.1. 

Concept Explanation Littering model 

Target of the 

model 

The real or fictional 

system/object that the model 

intends to represent 

Pedestrians’ littering behaviour in 

western urban settings 
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Scope Clarification of what features of 

the target the model intends to 

represent 

The influence of the descriptive norm and 

its activation to individuals’ littering 

behaviour in variously crowded areas 

Assignment Clarification of which part in the 

model corresponds to which 

part in the target, and which 

parts of the model are to be 

ignored 

Agents represent individuals - litter 

represents litter – bins represent bins – 

environments are based on actual streets 

and squares in Amsterdam.  

Kind of 

explanation 

attempted 

Which kind of explanation does 

the model user attempt here? A 

full explanation, a partial 

explanation, or a potential 

explanation? 

Potential explanation: this refers to a 

description of how descriptive norms 

could possibly lead to observed patterns 

– full or partial explanations could not be 

properly validated on account of lacking 

datasets 

Exemplified 

properties of 

model and the key 

The main relevant properties of 

interest and how they should 

correspond to properties of the 

target 

The agents’ generation of litter refers to a 

chance that real pedestrians have litter to 

dispose of  – personal norms in the model 

are intended to represent the effects of 

actual personal and injunctive norms, 

their coincidental activation, and any 

other coincidental effect on people’s 

littering behaviour 

Imputed 

properties 

The properties that the model 

(truly or falsely) imputes on its 

denoted target. 

The effects of the personal and 

descriptive norm (and the activation of 

the latter) and of the accessibility of bins 

on littering behaviour  

Attempted 

dynamic 

sufficiency 

The degree of structural 

sophistication a model must 

have to produce an output 

reasonably similar to that of its 

target 

Patterns in the model output should be 

qualitatively plausible but quantitative 

prediction is not an aim – rough 

calibration could help in this respect 

Attempted 

mechanistic 

adequacy 

The degree of structural 

sophistication a model must 

have to mimic the causal of its 

target adequately 

The functioning of the descriptive norm 

and its activation should be captured 

adequately as well as their interaction 

with the personal norm 

Table 2.1: Epistemological considerations of the DEKI framework that should be clarified 

(Gräbner (2018) and the account of this research. 

2.2.4: Littering in ABM 
No more than a single ABM project about littering behaviour seems to have been published 

academically: by Rangoni and Jager (2017). The researchers based their model on Keizer et 

al.’s (2011) interpretation of the goal frame theory (Lindenberg & Steg, 2007), which was 

touched upon in chapter 2.1.4. The goal frame theory places (injunctive) normative 

influence in a wider motivational framework (Jager, 2017).  Behavioural goals are theorised 

to be framed as normative or one of two other goals, one emphasising hedonism and the 

other gain. The theory was formulated to explain environmental conduct: behaviour was 



19 
 

interpreted as being motivated by social norms, personal convenience, and/or personal 

financial gain, respectively.  

In an empirical study related to littering behaviour, Keizer et al. (2011) used the goal frame 

theory (or rather hedonic and normative motives) to explain littering behaviour. The goal 

frame theory does not explicitly incorporate descriptive norms, but since these have been 

found as critical to littering behaviour, the theory does not seem suitable for explaining 

littering. In the process of accounting for the observed behavioural patterns, the researchers 

seem to have interpreted ‘norms’ as descriptive rather than injunctive as they were 

originally intended in the goal frame theory. In the final analysis, littering behaviour was 

thus explained as a trade-off between hedonic and descriptive goals, which do not exist 

together in either theory. 

 

Figure 2.3: ABM-derived littering rates for different strengths of descriptive norm 

(reinforcement) (Rangoni & Jager, 2017). 

Rangoni and Jager (2017) skilfully captured Keizer et al.’s (2011) explanation of littering 

behaviour in an ABM. Every agent is conceptualised as having a static hedonic score, and a 

dynamic normative score, which changes according to the density of litter on the 

surrounding tiles. The effect of signs with normative anti-litter messages are also 

incorporated eventually (see figure 2.3); they were shown to have effects similar to 

descriptive norm activation (Cialdini et al., 1990), although their influence is explained 

differently. This part of the model was calibrated using Keizer et al.’s (2011) experimental 

data. Bins were graciously programmed in the model under the assumption that the 

attractiveness of disposing of litter properly is a function of the proximity of the agent to the 

bin, where the attractiveness score must weigh up to both of the agent’s goal frame scores. 

The model was ultimately used to investigate the cost-effectiveness of various cleaning 

strategies, i.e. how many cleaners should clean how often and following which patterns. 

However, the incoherent framework upon which the model was based demands another 

attempt at capturing littering behaviour and normative influence in ABM.  

2.2.5: Summary 
In conclusion, agent-based modelling seems to be a very suitable simulation method for 

researching littering dynamics; particularly because of the agents’ capacity for autonomous 

acting and the praised link between micro and macro patterns. Even though a model of little 

complexity should suffice in researching littering behaviour, the model will likely be of 
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limited validity because of incomplete datasets and the general difficulty of validating social 

models. Yet knowledge can certainly be derived from the modelling process and the end-

product because underlying assumptions will be made explicit, parameters can be 

experimented with and future research could be facilitated, particularly with transparently 

described models. The only agent-based model about littering that has been developed has 

produced several usable insights into cleaning strategies and assumptions about littering 

behaviour but was based on a theory of limited reliability. The second sub-question, how 

can ABM be used to increase understanding about littering, has hereby been answered. 
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3: Methodology 

Based on the theory about littering, norms and ABM, a model will be developed. This chapter 

will detail the development process, spanning the conception, implementation and 

evaluation of the model. The final versions of the model will be set in the Dam and 

Kalverstraat, two of the most popular tourist destinations in the Amsterdam city centre that 

attract much litter. While both are pedestrian zones, the former is a large square 

surrounded by bicycle paths, tram rails and automobile lanes around which crowded 

museums and shops are located. The latter is a relatively narrow street that houses a large 

number of stores on both sides, and is crossed halfway by a similar street, Hartenstraat, at 

a right angle. The differences in accessibility and visibility between the two areas are 

hypothesised to affect littering rates, as will be explained later in this chapter. Both research 

areas are shown in their topographic context (derived from OpenStreetMap) in figure 3.1.  

 

Figure 3.1: Dam and Kalverstraat in their topographic context. 
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3.1: Conceptual model 

3.1.1: Overview 
In broad lines, littering behaviour is attempted to be elucidated by simulating individual 

agents that move through an area and potentially generate an unwanted item that is littered, 

pocketed, or disposed of in a bin. Agents have heterogeneous dispositions with regard to 

litter, some being more prone to disposing of it improperly than others. If they see each 

other disposing of litter, the descriptive norm will activate for them, leading them to adjust 

their chance to litter to the amount of existing environmental litter (see the ‘reinforced’ lines 

in figure 2.3). As explained in chapter 2.1.3, the activation of injunctive norms seems to 

occur much less predictably and in a greater multitude of ways. Therefore, to preserve 

mechanistic adequacy, its effect is omitted from the model. 

The model is different from the existing ABM (Rangoni & Jager, 2017) in several ways. Most 

importantly, it has been attempted to be based on a more theoretically grounded 

framework: the theory of normative conduct. Secondly, descriptive norm activation by 

communication of visible behaviour is attempted to be described by the model. This is 

assumed to be both more dynamic and realistic than introducing a global reinforcement 

factor which represents anti-littering messages on signs (as done by Rangoni and Jager 

[2017]). Finally, more variables are intended to be programmed as stochastic rather than 

deterministic because it represents people’s limited rationalism. Where Rangoni and Jager 

(2017) used stochastic variables, they assumed them to be normally distributed and duly 

described as an average and a standard deviation. This approach will be used in the present 

model as well. The following sections will explain the preliminary assumptions behind the 

model’s agents, interactions and environments. The most important model variables are 

summed in a table for each category (3.1-3.3). 

3.1.2: Agents 
The agents in the model represent individual pedestrians. Their defining characteristic is a 

personal norm that explains a great portion of variation between individuals’ littering 

behaviours, which should be reflected by a large standard deviation. Norms, even personal 

ones, have been described as wholly unimportant to behaviour unless they are activated 

(Kallgren et al., 2000). Yet an uneven littering rate is sometimes reported for different 

environmental conditions when norms are understood to be inactive (e.g. figure 3.2). 

Therefore, the variance from the average personal norm should be high to account for 

coincidental injunctive norm activation, which can even be carried over from settings 

outside of the research area (Reno et al., 1993). The average personal norm should be 

valued around a 0.35 chance to litter (Cialdini et al., 1991; Reno et al., 1993; Keizer et al., 

2011). In all these studies, no bins were available to the subjects. Therefore, this number (a 

mean of all littering rates in the studies, regardless of normative influence) could be taken 

as an approximation of the average personal norm independent of other factors. Because 

the accompanying standard deviation will reflect differences in personal norms, as well as 

accidental norm activation and factors outside of the scope of this research, a value of 0.1 is 

presumed to be appropriately large.  

All agents belong to an age group. They can be either between the ages of 18-32, a group 

that was found to litter 1.5x more than average (26% versus 17% in real-world settings), or 

non-18-32, who littered at 0.8x the average rate (14% versus 17% [Schultz et al., 2013]). 

These values will be reflected as multipliers to agent’ personal norms. A third of the 
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individuals described by Schultz et al. (2013) were part of the younger age group. Agents 

are furthermore represented as walking through the environment, one step per model step, 

which corresponds to a real-world second. Their walking speed is assigned a random value 

between 0.85 and 1.35 meters per second; a range that is intended to represent varying 

pedestrian behaviour as a result of individual differences in movement speed and motives 

for walking (e.g. commuting or strolling leisurely). 

With every step, agents have a chance to generate litter. Schultz et al. (2013) reported that 

only 28% of the people in their observations left the research area without pocketing an 

item or disposing of it. However, no detailed description of their research area is available 

and nor is data about littering rates in the research areas of this study. Therefore, every 

pedestrian in the model is programmed to litter once on average during their transversal 

following the formula: 1 / average steps to walk through the area.  

When litter is generated, agents will first locate the nearest bin. They will move towards the 

bin and dispose of their litter there according to a chance calculated by a function of their 

personal norm (since the stronger the personal norm against littering, the more willing one 

is expected to be to walk to a bin) and the distance to the bin. If the agents choose not to 

walk to the bin, they will either litter or pocket the waste following the chance represented 

by their personal norm. Schultz et al. (2013) show that littering rates increase by roughly 

2.3% per meter from a bin, with littering rates of 12% at 0-1.5 meters and 30% at 18 meters 

or more. The mean distance from a bin at the time of littering was around 8.5 meters in their 

survey. While insightful, these data cannot be used directly to calculate the function 

between the personal norm and the distance to a bin because they are highly aggregated 

both across research areas and scales of measuring. Furthermore, they describe several 

more mechanisms than merely the effect of distance on a person’s willingness to walk to a 

bin (such as descriptive norms and the visibility of a bin). 

Although intoxication and tourism have neither been controlled for in the works cited in 

this study, nor are their implications to littering or norms clearly explained on a theoretical 

level, a hypothetical variable could be designed to implement them in the model. A very 

liberal assumption could be that tourists in Amsterdam display above average rates of 

intoxication and therefore have a higher chance to litter as per their personal norm, as well 

as higher chances to generate litter per step. A variable of sorts should merely be used to 

illustrate extreme cases but is omitted in this model because the same effect can be achieved 

by adjusting the ‘age’ variable, as will be done in chapter 4. 

Variable Value Influence Reference 

personal norm 

mean: 0.35, 

standard 

deviation: 0.1 

choice to drop or 

pocket litter and 

willingness to move to 

bin 

Cialdini et al., 1991; 

Reno et al., 1993; 

Keizer et al., 2011 

age 
age 18-32: 1.5, age 

32<: 0.8 

multiplier to personal 

norm 
Schultz et al., 2013 

walking speed 
random: 0.85-1.35 

m/s 
movement - 
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generate litter 
1 / average steps 

in the area 

prompts agent to 

choose disposal 

behaviour 

- 

bin proximity < 9 meters 

max distance at which 

agents are willing to 

move to bin 

Schultz et al., 2013 

Table 3.1: Most important agent variables. 

3.1.3: Interactions 
The descriptive norm has been shown to activate in individuals who observe others 

disposing of litter (properly or improperly). While in reality holding on to litter when it is 

generated is more common than either type of disposal (Schultz et al., 2013), the action is 

not nearly as visible and is therefore not understood to activate descriptive norms. In the 

model, agents also sense the amount of litter in the environment and visible behaviour of 

the agents around them. Norms were activated at 5 meters from the individual in 

experiments (Cialdini et al., 1990), but it would presumably also happen at greater distances 

(up to 12 meters seems reasonable). An agent that litters or throws litter in a bin will signal 

to all agents in whose view it is that the descriptive norm should be activated for them.  

The descriptive norm is a multiplier based on the amount of litter in the environment 

(which is a ratio as will be discussed shortly). It has no effect on the model behaviour or the 

agents unless it is activated for them. If it is active, it will act as a multiplier to the personal 

norm. When there is little litter, the ratio should be a fraction, thusly decreasing the agent’s 

chance to litter. In littered scenarios, the active descriptive norm will increase the likelihood 

that an agent will litter. The descriptive norm will remain active for as long as an agent is in 

the study area (Reno et al., 1993). In the real world, the descriptive norm may be active in 

individuals even when they have not been exposed to another’s behaviour. Therefore, an 

unknown portion of agents should spawn with an active descriptive norm. 

Variable Value Influence Reference 

viewing distance 12 meters 

area in which disposal 

and environmental 

litter are sensed  

- 

descriptive norm 

clean areas: 0.5, 

dirty areas: 1.5 

(approx.) 

multiplier to personal 

norm and willingness 

to walk to bin 

Cialdini et al., 1990 

Table 3.2: Most important interaction variables. 

3.1.4: Environments 
A key environmental feature in the model will be disposed litter. Although the behaviour 

behind littering and its material contents are clearly defined in theory, there is no singular 

description of what constitutes a ‘littered’ area. In one Cialdini et al. (1990) study (the 

results of which are depicted in figure 2.2), a parking lot floor in ‘heavily littered’ condition 

is described as containing “an assortment of handbills, candy wrappers, cigarette butts, and 

paper cups” (p. 1016). The littering rate for inactive descriptive norms in that setting is 32%. 
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Schultz et al. (2013) scored their surveyed areas on a 1-10 scale from ‘not at all littered’ to 

‘extremely littered’, the average rating being 2.4. Every scale point increase was shown to 

lead to a 2% increase in littering (at a 17% littering average), which means in ‘extremely 

littered’ areas the littering rate averaged at 32%, too. These opaque yet surprisingly 

consistent terms suggest an intuitive value could be used for weighing the abundance of 

litter in the model. An assumed value of 10 units of litter in the agents’ 12-meter radius may 

be a plausible number to represent ‘normally’ littered environments – in between clean and 

untidy. It is derived from Cialdini et al.’s (1991) third study, where environments with more 

than 8 pieces of litter attracted above-average littering rates. However, since the increments 

in amount of litter in that study were distributed unevenly, the value is rounded upwards 

to 10 units of litter. 

A variable for agents’ tolerance to litter in the environment was used in Rangoni and Jager’s 

(2017) ABM, which leads to a different interpretation of ‘littered’ for every agent, affecting 

the descriptive norm if it is active. This seems a sensible assumption to make, given the 

unclear definition of the condition in empirical research, and the plausibility that people 

would heterogeneously perceive areas as (un)tidy. However, the variable might be too 

hypothetical to include in a model given the vagueness of the term ‘littered’ in empirical 

studies in the first place. It is therefore omitted from this research but a recommendation 

for future research regarding individual tolerance to litter is in order. 

Bins are another important feature of the modelled environment. They will have a given 

capacity (assumed to be 100 items in Rangoni and Jager [2017]) and will push any 

additionally deposited litter onto neighbouring tiles. A likely emergent phenomenon is the 

clustering of litter around bins – probably mostly around well-placed bins (Wever et al., 

2008). Figure 3.2 depicts the phenomenon in Rangoni and Jager’s (2017) model. The 

placement of litters will be based on real-world locations in one scenario; in others finding 

an optimal location or capacity will be an experimentational objective. 

Figure 3.2: Litter emergently clustering around bins: the ABM at 40, 160 and 320 simulation 

steps (Rangoni & Jager, 2017). 

It is one of the aims of this research to experiment with patterns of littering behaviour in 

varying street layouts. The wideness of streets may affect agents’ distance to bins or how 

many agents can be sensed at once, while corners may even prevent norm activation 

behaviour completely if visibility proves to be limited. The Dam and Kalverstraat are among 

the most crowded and tourist-dense streets in Amsterdam and they have distinctive street 

layouts. Experimentation with different environment layouts could identify the underlying 

causes of litter bottlenecks, for instance.   
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Variable Value Influence Reference 

clean/littered 

10 pieces of litter 

within viewing 

distance 

strength of descriptive 

norm multiplier 

Cialdini et al., 1990; 

1991; Schultz et al., 

2013 

bin capacity 100 

amount of litter 

initially kept off the 

ground 

Rangoni & Jager, 2017 

street layout 
variously shaped 

study areas 

viewing distance and 

bin positioning 
- 

Table 3.3: Most important environment variables. 

 

3.2: Implementation 

3.2.1: Materials 
The modelling process was carried out in GAMA 1.7, a free-to-use agent-based modelling 

platform. The software is spatially explicit and supports shapefiles, ESRI’s ubiquitous 

vector-based data format. Besides GAMA’s intuitive programming language, the platform 

facilitates carrying out multiple simulation runs at once, a feature that is highly useful for 

models that require many permutations because of stochastic variables. The numerical 

model output was furthermore edited and visualised using Microsoft Excel. 

In the advanced versions of the littering model, street layouts of two Amsterdam streets 

were used. These were derived from the Dutch national open-source topographic 

registration (Basisregistratie Topografie, BRT). The datasets were accessed through the 

ESRI geodata portal and adjusted using ArcGIS Pro. Of the roads (‘wegdeel’) dataset, objects 

with the pedestrian (‘voetpad’) attribute in the research areas were isolated. Whenever 

necessary, features were merged using the ArcGIS tool of the same name.  

Additional line-feature shapefiles were created to designate the entrances and exits of the 

research areas, the shapes of which were hand-drawn. The litter heatmaps were created by 

running GAMA shapefile output through the ArcGIS Pro ‘Kernel Density’-function. Finally, 

Google Maps satellite view was used to locate the real-world bin positions in the study areas.  

3.2.2: The modelling process 
3.2.2.1: Agent movement and norms 

In the first version of the littering ABM, a geography has not been defined yet. Instead, 

agents spawn anywhere on either edge in width of a 70 * 25 meter rectangle and define 

anywhere on the opposing edge as their goal to move to. If their goal is reached, they 

disappear from the area. Agents have a 0.33 chance to be below the age of 32, in which case 

they are depicted as green circles; if they are above that age they spawn as purple circles.  

With every step, the agents have a chance to generate litter, which leads them to calculate 

whether they will keep the litter with them, turning pink, or dropping the litter and 

colouring orange. In the latter case, an inert piece of litter (visualised as a small red dot) will 

spawn at their location.  
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The chance that generated litter is dropped rather than pocketed corresponds to the agent’s 

personal norm value. The mean personal norm is 0.35, which means that on average 35% 

of all generated litter will be dropped on the street. However, as established in theory, this 

behaviour is also affected by the litter in the environment if the descriptive norm is 

activated. Although the extent of the effect has not been irrefutably reported on, clean areas 

typically decrease littering rates by 50%, where littered areas seem to increase them by 

50% (Cialdini et al., 1991). The distribution of this effect is approximated in the graph of 

figure 3.3. The corresponding function is as follows:  

𝑁𝑎(𝐿) =
1.7

1 + 2. 4𝑒−0.13𝐿
  

with active descriptive norm Na and visible environmental litter L. 

Figure 3.3: The effect of the descriptive norm (y) as a function of the amount of visible 

environmental litter (x). 

The descriptive norm functions as a multiplier to the personal norm. When an agent litters, 

it signals to other agents within viewing distance that their descriptive norm should be 

activated. With every step, agents also count the number of pieces of litter around them. In 

practice, this means that an agent with an activated descriptive norm and a personal norm 

of 0.35 will on average have a (0.35 * 0.5 =) 17.5% chance of dropping litter in areas devoid 

of litter and a (0.35 * 1.44 =) 50% chance of littering when surrounded by 20 pieces of litter. 

Note surrounding litter is counted locally rather than globally. This reflects the real-world 

pattern that an evenly littered area is perceived as less clean than an equally littered area 

where litter is piled up. Furthermore, to account for pedestrians’ coincidentally active 

descriptive norms, all agents will have a 10% chance to spawn with an active descriptive 

norm. Agents with an active descriptive norm are indicated by a light green outline. A 

screenshot of this version of the model is shown in figure 3.4. 

 



28 
 

Figure 3.4: A simulation of the initial littering ABM in GAMA. The green and purple agents 

were within the visible radius and have witnessed the orange agent dispose of litter, which 

has activated the descriptive norm for them. The pink agent has generated litter but 

pocketed the item rather than littering it. Four pieces of litter can be seen lying on the floor. 

3.2.2.2: Inclusion of bins 

In the next modelling stage, bins are introduced. They are depicted as dark orange squares 

and are defined by the amount of litter they contain, as well as a maximum capacity. With 

the addition of bins to the model, agents have a third option when they generate litter: 

disposing of it in a bin. Whenever they generate litter, agents will locate the nearest bin. If 

it is outside their tolerated distance, they have a chance to drop litter, which is calculated as 

before. If they pocket the potential litter, it now means they will calculate which bin is 

closest with every step. If a bin presents itself within their tolerated distance and litter has 

been generated or is held, agents will replace their movement goal with that bin. Upon 

reaching the bin, they ask the bin to update its contained litter by one piece and revert their 

movement goal back to their initial destination. A schematic overview of the most important 

previously explained agent behaviour is depicted in figure 3.5. 
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Figure 3.5: Schematic overview of key pedestrian littering behaviour in the ABM. Blocks with 

a green outline are communicated to surrounding pedestrian agents. 

Whenever a bin is asked to update its containing litter beyond the maximum capacity, a 

piece of litter spawns anywhere beside it instead. In Rangoni and Jager’s (2017) ABM, this 

phenomenon was not included but rather emerged from the model’s behaviour. In that 

model, agents recalculated the distance to the closest bin upon reaching a full bin, and 

instead tended to litter next to the bin if that distance was overly large. While that 

programming solution is arguably more elegant than the one applied in this research, it 

assumes people cannot see how full a bin is from a distance. The difference between the 

effects of the two programming assumptions is most pronounced in situations where a bin 

is full, but not much litter has accumulated around it: In Rangoni and Jager’s model, agents 

would still have a reasonable chance of moving towards the next bin instead, whereas in 

this new ABM, agents always dispose of litter in the bin regardless of its contents. In the real 

people routinely and willingly dispose of their litter on top of or next to full bins world 

rather than finding the next closest bin (Wever et al., 2008). Bin behaviour is therefore kept 

simpler in this model, even if it is possibly less robust without the emergence present in 

Rangoni and Jager’s design choice. 

Critical in the agents’ behaviour regarding bins is their heterogeneous interpretation of 

proximity. Although the positive correlation between littering rates and the distance to a 

bin has been widely reported on (Bator et al., 2011; Schultz et al., 2013; Al-Mosa et al., 2017), 

the extent of interpersonal heterogeneity regarding this correlation is unclear. A mean 

distance of around 8.5 meters to a bin at the time of littering could be coupled to the mean 

personal norm of 0.35 in this model. A logarithmic relation could plausibly exist between 

the variables, where people with a stronger anti-litter personal norm are willing to walk 

unproportionally further than people with weaker norms. In this suggested relationship, 

personal norms of one standard deviation below mean could correspond to a willingness to 

walk up to 12.5 meters to the nearest bin, while one standard deviation above mean would 

not walk farther than 4.5 meters. The graph in figure 3.6 and the formula below approximate 

the suggested relationship. A screenshot of this version of the model is furthermore shown 

in figure 3.7. This version of the model is included in appendix 8.1. 

 𝑃𝑛(𝐷) =
20

1 + 0. 08𝑒8.2𝐷
 

with personal norm Pn and distance to bin D. 
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Figure 3.6: The maximum distance in meters agents are willing to travel for disposal in a bin 

(y) as a function of their personal norm (x). 

Figure 3.7: A simulation of the second version of the littering ABM in GAMA. After 244 in-

model minutes, the global littering rate is 30.45%. The top bin has been filled beyond 

maximum capacity and some litter has begun to cluster around it, while the bottom one has 

not been entirely filled yet. 

3.2.2.3: Street layouts 

In the final versions of the model, the geometries of the Dam and Kalverstraat are added 

along with the real-world locations of their bins. Together with the newly built 

entrance/exit shapefiles, this change requires an overhaul in agent movement. Agents now 

spawn anywhere on the entrance/exit lines and define their movement goal as any other 

location defined in that geometry. Particularly in the windy Kalverstraat geometry, this 

leads to the issue of agent pathfinding. Where agents could not move outside of the study 

area in earlier model versions because of the rectangular environment, they must now 

restrict their movement to the shape of the street in question. Because no simple built-in 
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pathfinding mechanism is available in GAMA, agents are programmed to check whether the 

line between their location and their destination intersects with any of the street’s edges 

upon spawning. If so, their ad hoc movement goal is a widely accessible point in the middle 

of the street geometry, which they will move to until they can reach their original 

destination without crossing the edges of the street. This solution is not applicable to all 

possible spatial scenarios because a central point that is accessible from every location in 

the geometry is not always available. It is nonetheless free of bugs in the current scenarios 

and requires relatively little processing power. 

Since the 8200 m2 surface of the Dam is 4.7 times that of the stand-in rectangle, and the 

Kalverstraat’s 2800 m2 surface 1.6 times, the chances of pedestrians spawning per model 

step are multiplied accordingly. The chance that agents generate litter is also 

correspondingly adjusted. Where the average number of steps was calculated as a 

Pythagorean equation of the width and half the height of the rectangle’s sides in the 

previous model geometry, it is now defined as the average distance of the entrances/exits 

to the central ad hoc destination point times two, or 1 / (59 * 2) for the Dam setting and 1 / 

(81.5 * 2) for Kalverstraat. (These calculations proved inaccurate, consequently the chance 

that agents generate litter was later adjusted; see section 4.2 for details.) Because of the 

Kalverstraat’s length, this number of steps is higher and consequently its agents have a 

lower chance to generate litter per step. 

 

Figure 3.8: The initial states of the Dam and Kalverstraat simulations with bins in their real-

world locations. 

Besides the agents’ movement, their field of view should also be limited by the boundaries 

of the street. Upon calculating the distance to the nearest bin and when counting the 

surrounding litter, agents leave out objects that are obstructed from their field of view using 

the same intersect procedure. In order to make the efficiency of the model, agents no longer 

count the litter surrounding them with every step (which was the case to keep the 

descriptive norm updated), but only do so when litter is generated in case their descriptive 

norm is active. Screenshots of the Dam and Kalverstraat simulations are displayed in figure 

3.8. This version of the Kalverstraat model is included in appendix 8.2. 
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3.3: Evaluation 

3.3.1: Face and expert validation 
To increase the usability and reliability of the model, face validation is typically carried out 

as an elementary step towards model validity (Klügl, 2008). The process is composed of 

three sub-methods. Animation assessment is a visual inspection of the model behaviour 

during simulation. Immersive assessment follows a single agent during a model run. With 

output assessment, the plausibility of absolute model output is tested. For additional 

reliability, these assessments are often carried out with supervision of an expert in 

modelling or the field of study. The expert validation of this ABM was carried by Daan 

Goppel, an urban planning scientist who has designed new garbage cans for the municipality 

of Amsterdam based on insights from behavioural studies.  

When the model is run, agents move as intended between randomly selected entrances and 

exits. They sometimes generate litter and correctly follow the decisional process described 

in figure 3.5. Litter initially does not appear close to bins frequently, but as the bins fill up, 

it increasingly does. Mr Goppel finds the general processes in the model realistic, but 

comments that pedestrian movement is not as linear as depicted in tourist squares such as 

Dam. People wander more and often sit down, thereby littering passively, he adds. Agents 

leaving their litter next to or on top of a bin when it is full strikes him as very realistic. Many 

do not consider leaving their trash near a full bin littering because they feel it is the 

responsibility of the municipality to maintain the bins. Although litter next to bins is more 

convenient to clean than far from them, it is a concerning behavioural pattern because litter 

is often carried back into the street through wind and weather, thereby certainly 

contributing to the littering rate.  

On the agent level, behavioural choices are made in line with the conceptual model. Mr 

Goppel agrees with the conception of personal norm as a probability of littering. In the real 

world, even people with the strongest anti-littering disposition are sometimes preoccupied 

and litter regardless, he remarks. Furthermore, norm activation is communicated properly 

between agents and if their descriptive norm is activated, the multiplier is duly informed by 

the amount of litter surrounding them. The distance they are willing to move to a bin is 

rather disparate as a result of the selected function – particularly when the descriptive norm 

is active. A willingness to move 8.5 meters to the closest bin on average seems reasonable 

to Mr Goppel, since agents are already moving. If agent movement were more realistic (i.e. 

with the inclusion of sitting or wandering agents), an average of 8.5 might be too high. A 

visible area of 12 meters in radius also seems realistic, but Mr Goppel adds that fields of 

view should be obstructed by other agents; in a more widely applicable model agents should 

not be able to see as far when surrounded by others.   

Comparison of model output to empirical data is problematic because many empirical 

studies are aggregated or produce varying results, which was the reason for using 

hypothetical values for parameters such as the chance to generate litter. Yet assessment of 

dependent variables during the simulation shows that the results are not far from the 

empirical evidence. When streets are clean, the global littering rate is around 20%; when 

dirty it typically increases by roughly 10%. Controlling for activated descriptive norms 

shows very different results. Regardless of the state of the environment, the littering rate 

lies somewhere between those values when the descriptive norm is omitted. On the other 

hand, a ‘reinforcement’ effect (Keizer et al., 2011; Rangoni & Jager, 2017) of littering rates 
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of around 12% in clean, and 40% in littered settings can be observed when the descriptive 

norm is permanently activated for all agents. This output, though not accurately comparable 

to empirical data in itself, suggests that the model is capable of consistently producing 

realistic patterns.  

3.3.2: Sensitivity analysis 
3.3.2.1: Method 

In order to gain insight into the relationships between parameters, a sensitivity analysis will 

be carried out. Whether sensitivity analysis is understood to be part of the verification 

process because it only refers to the workings of the model (Gräbner, 2018) or of its 

validation (Leombruni, Richiardi, Saam, & Sonnessa, 2006), it is highly useful for exploring 

the allocation of uncertainty in model output as a result of different inputs (Bruch & Atwell, 

2015). Although sensitivity analysis is typically recommended to be carried out over small 

parameter variations, larger adjustment steps are more appropriate in this analysis. The 

ABM in development is probabilistic rather than deterministic because many key variables 

regarding agent behaviour are stochastic. This implies that not only are no two model runs 

the same, but the average of 100 runs still differs slightly from another 100-run average. 

Therefore, the relative effect of small parameter adjustments could be mistaken for 

inevitable inherent simulation variations.  

Several parameters will be excluded from sensitivity analysis. The chance that agents 

generate litter per step is not based on real-world rates, but rather calculated in order to 

make all agents decide what to do with their litter once (on average) in their traversal 

through the street. This was programmed with the intention of reflecting littering rates in 

real-world experiments where every subject is given a chance to litter. Similarly, the 

capacity of bins has been given a value that is meant to be exceeded in the late model run, 

rather than reflect a realistic value. Furthermore, the mean personal norm and the effect of 

the activated descriptive norm are based on empirical data. It is therefore not meaningful 

to analyse the effects of these variables in a sensitivity analysis. The chance of agents 

entering the street, their age distribution, and bin positions are experimented with through 

different scenarios in chapter 4. 

Four parameters remain, all of which were based on estimated values because empirical 

evidence was missing or not reported on. These comprise:  

- the standard deviation of the personal norm distribution,  

- agents’ viewing distance,  

- the fraction of agents that enter the area with an active descriptive norm, and  

- the relationship between personal norm and bin proximity.  

The effect of the three variables is tested by means of a ‘one-at-a-time’ (OAT) sensitivity 

analysis. This entails that the variations on a parameter are applied while all other variable 

values are kept constant (using the original value). The model is run 100 times per variable 

configuration; the average global littering rate (the most important quantitative dependent 

variable) for each parameter configuration is calculated over five timesteps.  In addition, the 

percentage of agents whose descriptive norm activates during their traversal will be 

monitored for the viewing distance variations, since that is another factor the parameter is 

reasoned to affect. Finally, to preserve computing speed, the sensitivity analysis will be 

conducted on the second model version, which includes garbage bins but no street layouts. 

The effect of the street layout on littering rates will be discussed in the next chapter. 



34 
 

3.3.2.2: Results 

Variations in personal norm distribution were explored for standard deviations of 0.05 and 

0.15 around the previously established mean of 0.35. The original, rather high value of 0.1 

was selected to reflect Schultz et al.’s (2013) observation that individual differences in 

littering behaviour have a significantly larger effect on littering rates than environmental 

factors. However, the results of the three configurations do not differ much in this model, as 

can be seen in figure 3.9. The greatest divergence shows after the model has run for some 

time, but still does not span much more than a single percentage point. The difference 

between the dependent variable values likely increases over time because the ground is 

highly littered in all scenarios and therefore the activated norm multiplier is at its maximum 

in almost all locations of the street. Higher personal norms (which occur more often when 

the standard deviation is higher) are then multiplied disproportionally to lower personal 

norms, leading the absolute littering rate to increase with them.  

Figure 3.9: Average litter per pedestrian agent for different personal norm configurations. 

Conversely, the littering rate in the original scenario is probably slightly lower than the 

others early in the model run because the difference between high and low personal norms 

is most balanced for that parameter value when the descriptive norm multiplier is generally 

low (due to a relatively small litter build-up early on). Though an explanation can be given 

for the different patterns, the possibility that such minor divergences have arisen from the 

probabilistic nature of the model should not be dismissed completely. Even though little 

difference in model output for different parameters indicates model stability and is 

therefore favourable, more research regarding real-world personal norm distribution is 

recommended. This is especially true because the model variable not only affects agents’ 

chance to drop litter and perceptions of bin proximity, but it is also multiplied. 
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Figure 3.10: Average litter per pedestrian agent for different viewing distance configurations. 

 
Figure 3.11: Average number of descriptive norm activations for different viewing distance 

configurations. 

A similarly shaped litter-per-agent output is generated for the viewing distance alternatives, 

as depicted in figure 3.10. An area with a radius of 12 meters was considered a reasonable 

field of view for the agents, but radii of 7 and 17 meters were also considered in this analysis. 

Their influence is clearly displayed in the graphs: the larger the field of view, the more 

littered they consider their environment, and the more they litter themselves when the 

descriptive norm is active. Moreover, agents can observe each other disposing of litter more 

frequently when they can look farther, which leads to more descriptive norm activations 

and reinforces the littering pattern. The number of norm activations per agent confirm this 

explanation and is shown in figure 3.11. The mild trend upward in all three graphs is 

explained by a decrease in pocketing litter under conditions of activated descriptive norm 
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and littered surroundings; which leads to increased litter disposal and therefore higher 

chances of communicating the descriptive norm to other agents. 

Although the littering patterns for the alternative configurations of viewing distance diverge 

more than those for the personal norm standard deviation, their greatest difference is still 

only two percent. This value can be considered insignificant because real-world littering 

rates typically differ more among different empirical sources. Furthermore, a field of view 

spanning 12 meters in each direction seems realistic and certainly more so than 7 or 17 

meters. 

The chance of agents spawning with an activated descriptive norm was included to account 

for coincidental norm activation in the real world (i.e. when agents enter a street and are 

already focused on the amount of litter around them). The variable was set to 0.1 in the 

implementation of the model, a fraction that seems realistic. The test values that were 

applied in this sensitivity analysis are 0 and 1, or initially completely inactive norms and 

universally activated norms (as depicted in figure 3.12). The effect of the descriptive norm 

‘reinforcement’ is clearly visible in the data; when all agents have an active norm, the 

littering rate is much lower in clean (early model run) settings, and much higher when the 

area is littered (late model run), as postulated by the focus theory of normative conduct.   

 
Figure 3.12: Average litter per pedestrian agent for different chances of agents entering the 

area with an active descriptive norm. 

Although the impact of the variable is rather large (between the two extremes) and its value 

is not based on empirical findings, the inclusion of the initial activation variable seems 

justified. In the real world, being alone in a street does not mean the descriptive norm 

cannot play a role. Correspondingly, in model scenarios with few pedestrians (where inter-

agent norm activation is low), the effect of the descriptive norm is still occasionally relevant. 

As long as there is no clarity as to the percentage of people with coincidentally activated 

descriptive norms in the real world, the value of the parameter should be kept small. 
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In order to analyse the effect of the suggested function of personal norm and bin proximity, 

two additional functions were used. Both describe a weaker reinforcement between the 

variables than the original function; alternative two even has a nearly linear shape between 

the relevant x-values. As with the original function, both alternatives were parameterised 

through trial and error with a graphical calculator. They are depicted in figure 3.13. 

𝑃𝑛(𝐷) =
66

1 + 3.5𝑒2𝐷
 

and 

𝑃𝑛(𝐷) =
140

1 + 10.97𝑒1.1𝐷
 

with personal norm Pn and distance to bin D. 

 

Figure 3.13: Alternative formulas for agents’ willingness to travel to bins (y) under the 

influence of their personal norm (x). 

The effects of the different functions on the average litter per pedestrian agent are shown 

in figure 3.14. Once more, the differences between the graphs are rather small. However, a 

markedly decreased littering rate can be observed for the alternative functions late in the 

model runs. This is a result of the much shorter distances agents are willing to travel (D) in 

the original function if their personal norm (Pn) has a high value, as is the case when the 

environment is heavily littered and personal norms are increased greatly by the activated 

norm multiplier. This shorter tolerated distance to bins leads to increased littering, as 

illustrated by the rising red graph in figure 3.14.  
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Figure 3.14: Average litter per pedestrian agent for different bin proximity functions. 

The original tolerated distance function was shaped the way it is because people were found 

to occasionally litter at high rates even next to bins (Schultz et al., 2013), while it does not 

seem unrealistic that others are willing to walk relatively large distances to dispose of their 

litter in a bin. The logarithmic format seems reasonable because it dictates greater variation 

around the mean personal norm values, which reflects the large individual variation 

observed empirically. Since the relationship between personal norm and tolerated bin 

distance is not only under-studied but even merely assumed in this research project, it is 

highly recommended that the correlation is researched in order to be quantified. 

Regardless, the effect of the different functions still seems minor and therefore the original 

function will be judged as sufficiently reliable to be used in the model. 

 

3.4: Summary 
In this chapter, the previously compiled theory has been attempted to be implemented into 

an ABM. It was shown that though there is a good understanding of the mechanisms behind 

social norms as a whole and their general influence on littering, nuances in pedestrian and 

litterers’ behaviour have not been reported on academically, let alone in a quantitative 

sense. Through iteration and sensitivity analysis, unknown variables such as agents’ 

willingness to walk to a bin could be given a relatively reliable assumed value, while expert 

evaluation served as an additional step towards validity. The third sub-question, how can 

littering behaviour plausibly be captured in an ABM, has thusly been answered.  
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4: Results 

In this chapter, the littering patterns in several scenarios with respect to crowdedness in 

the street, the age distribution of the population and bin positions will be researched. In the 

first part of this chapter, the scenarios are introduced. In the second, they are carried out on 

the ABM and the results are analysed. 

4.1: Scenarios 
Some littering mechanisms implied in the focus theory of normative conduct have been 

empirically researched; there is a relatively clear understanding of how descriptive norms 

activate, what their effect is relative to inactive conditions, in what settings they remain 

active and how their effect relates to those of injunctive norms. As described early in this 

study, other research topics regarding norms in realistic settings are hindered by practical 

limitations. With the finished ABM (that seems to follow the logic of real-world littering and 

the assumptions made in theory), a greater freedom of adjusting conditions that are difficult 

to study in the real world is potentially granted.  

An important first subject of experimentation is the influence of the features of the built 

environment on littering behaviour. The effect of visibility (as a result of the street layout) 

on inter-agent norm activation, agents’ capacity to find bins and their perception of the 

cleanliness of the environment are critical variables in this context. It could be expected that 

with high visibility resulting from little visual obstruction, more activations occur, bins are 

perceived as more nearby, and more litter can be seen. These factors likely affect littering 

rates mixedly, though reinforcement of increased norm activation is expected.  Simulations 

of the model set in the Dam and Kalverstraat should provide sufficiently different contexts 

to analyse the dependent variables owing to their vastly different potential visibility. 

The effect of crowdedness in an area on norm activation and littering behaviour is possibly 

even more difficult to study in the real world. Following the assumption of descriptive 

norms activation through observing litter disposals, it stands to reason that higher exposure 

to other pedestrians leads to increased norm activation rates, thereby increasing the 

reinforcement factor. Therefore, the chance of agents spawning will be increased by factor 

two for both settings.  

A related scenario that is of research interest is the effect of a population composition on 

littering patterns. Although most demographic variables have been shown to be 

unimportant to littering behaviour, a negative correlation between age and littering rates 

was found in multiple studies. Since the recently increased littering rates in Amsterdam 

have also been linked to the relatively large share of younger adults in the city’s tourist body, 

a different age distribution in the ABM will also be researched. On average, 33% of the 

agents are assigned to the ‘below 32’ age group (who were found to litter at 1.5 times above 

average as opposed to the other age groups that littered 0.8 times the average). This 

percentage will be increased to 66%, reflecting the hypothetical age composition of 

pedestrians in Amsterdam on a ‘night out’. 

Finally, based on the spatial patterns of litter in the research areas, alternative, more 

effective locations of bins will be attempted to be identified. The current bin positions are 

informed by aesthetics as well as pragmatism in terms of pedestrian flow obstruction and 

maintenance, which will not be taken into account in the scenario. Agent movement is also 
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not highly realistic in the ABM (pedestrians often wander around the real-world Dam, 

rather than simply traverse it) so this scenario will be mostly aimed at exploring the 

potential uses of the model. 

 

4.2: Experimentation 
As in the sensitivity analysis, simulations for the varying parameter settings are run 100 

times and averaged in the presented data. Upon reviewing the results of the first scenario, 

a wrong assumption seems to have been made with regard to the chance agents can 

generate litter in the different settings. While this chance was intended to be (1 / average 

number of steps to pass through the street), no more than 75% of agents in the Kalverstraat 

model generated litter, and only 46% did in the Dam model. As a simple transformation of 

the dependent variables using these factors would bypass the stochasticity and path 

dependency that make the models realistic, the results were rather used to calibrate the 

‘chance to generate litter’ variable (by multiplying the original with 1 / 0.75 and 1 / 0.46, 

respectively), and the batch experiments were restarted. 

4.2.1: Street layouts 
Although it was expected that norm activations would occur more frequently in the Dam 

setting compared to the Kalverstraat, the opposite was found to be true (see figure 4.1). The 

openness of the square was reasoned to cause greater visibility of agents disposing of litter 

and by extension to more activations. Instead, it seems that the restrictive layout of the 

Kalverstraat forces the agents together, who are then more often within each other’s visible 

range. This is especially true for bin disposals because bins are placed more strategically in 

the Kalverstraat (i.e. almost on agents’ walking courses). The increase in the fraction of 

active norms over time that can be seen in figure 4.1 is a result of higher littering rates late 

in the model run (resulting from the increasingly littered environment) since littering leads 

to inter-agent norm activation. 

 
Figure 4.1: Average descriptive norm activations per agent for different street layouts. 
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Early during the model run, the littering rates for the two streets are as low as in the 

rectangular test area (compare figures 3.9 and 4.2), but they reach much higher rates later 

in the simulation. This is most likely also an effect of the more frequent descriptive norm 

activations in the real street scenarios (compare figures 3.11 and 4.1), which decrease the 

littering rate very early in the simulation, but greatly increase it later. Because the number 

of agents entering the street is modelled as a function of the environment’s surface area, 

there are more agents present in the street scenarios at all times, increasing the chances of 

inter-agent norm activation. This effect will also be researched in section 4.2.2. 

 
Figure 4.2: Average litter per pedestrian agent in different street layouts. 

The descriptive norm activations led to the characteristically shaped ‘reinforced’ graph in 

the Kalverstraat area (figure 4.2). This shape is absent for the Dam graph, which can be 

explained by the temporal scale at which the data was gathered. Because of the large 

amount of litter in absolute terms, the environment shifted from clean to littered state 

(around 10 pieces of litter within agent viewing distance; see section 3.2.2.1) more quickly. 

The threshold was reached not after around three hours like in the Kalverstraat setting, but 

probably somewhere between one and two. If the simulation is run beyond 300 in-model 

minutes, the Kalverstraat graph will likely exhibit the same pattern as the Dam in this time 

scale, while that street will in turn approach a horizontal asymptote when the model is run 

much longer.   

4.2.2: Crowdedness 
When twice as many agents enter the street, both the global and the individual littering 

patterns are sped up. The more agents enter the area, the more litter is generated, filling up 

the bins and environment more quickly and activating more agents’ descriptive norms. 

Moreover, the activated norm multiplier reaches high values sooner because of the 

relatively large amount of environmental litter, increasing agents’ chances to drop litter and 

decreasing the distance they are willing to move to the nearest bin. The threshold of 

whether an environmental is clean or littered is thusly reached sooner when an area is 

crowded. Through the earlier occurrence of the inversion of the activated norm, 

crowdedness therefore greatly increases overall littering rates. 
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The sped-up pattern shows clearly for the Dam graph (figure 4.3), which describes an 

almost identical curve for both configurations of crowdedness, but with significantly higher 

values at every timestep for increased crowdedness. The graphs of the Kalverstraat layout 

have different shapes but both versions, too, seem to fit the hypothesis of sped up littering 

rates. As explained in the previous section, the shift between a clean and littered state of the 

environment is reached before the 120-minute mark in the first Dam scenario, and the 

graph has started flattening as it approaches the asymptote. While the shift between 

environmental states was already visible in the first Kalverstraat scenario, the flattening 

was not yet. In the second, both points are visible: the shift somewhere before 180 in-model 

minutes, the flattening from that point onwards.  

 
Figure 4.3: Average litter per pedestrian agent for different settings of crowdedness in 

different street layouts. 

As mentioned before, crowdedness leads to more frequent descriptive norm activations, 

besides the increased absolute number of littered items in the environment. This number 

of activations is well above 1, meaning that on average all agents have an activated 

descriptive norm from early on in their traversal (figure 4.4). As shown in the sensitivity 

analysis, permanently activated norms have a large effect on littering rates, particularly 

when the environment is littered (figure 3.14). The influence of this factor outweighs the 

increased absolute littering rate, but is all the more influential in conjunction with it. 
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Figure 4.4: Average descriptive norm activations per pedestrian for different settings of 

crowdedness in different street layouts. 

4.2.3: Age distribution 
In the scenario of ‘a night out’ where the streets are populated with a younger demographic, 

littering rates are somewhat higher than in the original situation (figure 4.5). The change to 

the model parameters is effectively an increased mean personal norm. The younger 

demographic originally comprised 33% of the population and littered 1.5 times the average. 

The older demographic correspondingly comprised 67% and littered 0.8 times the average. 

Doubling the chance that younger agents enter the area leads shifts the average personal 

norm from 0.35 to roughly 0.44. 

 
Figure 4.5: Average litter per pedestrian agent for different age distributions in different 

street layouts. 
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Surprisingly, the number of activations per agent is lower for the shifted age distribution 

(figure 4.6). While the explanation of socialising, possibly inebriated tourists who do not 

pay attention to their surroundings could be plausible for real-world littering patterns at 

night, the clarification of the model output has a different focus. Relative littering rates are 

higher, so the lower share of norm activations is a result of less frequent bin disposals. In 

this scenario, bin disposals not only decrease because less pedestrians hold on to litter as a 

result of a higher average personal norm, but also because the average distance agents are 

willing to move to the closest bin is lower. This decrease in bin disposals is also the reason 

for the markedly lower norm activation rate for the Kalverstraat. 

 

Figure 4.6: Average descriptive norm activations per pedestrian for different age 

distributions in different street layouts. 

4.2.4: Bin positions 
As part of the final experiment, the influence of the locations of bins is researched. The 

model is run for the Dam setting without bins with the intention of finding the locations in 

the area that are most highly pressured by littering. A heat map of the results is shown in 

figure 4.7. The spatial pattern of litter is strongly affected by the agents’ simple rules for 

movement in the model. Agents spawn on a random pixel on the entrances/exits layer and 

have another random pixel on that layer set as their destination. Because the top-left and 

bottom-middle entrance/exit are the largest (i.e. have the most pixels), the largest 

pedestrian flow moves between these two locations (resulting in the most litter there). 

Coincidentally, the real-world busiest streets leading to the Dam are the same (Damrak and 

Kalverstraat, respectively). Since no quantitative pedestrian flow numbers are available to 

this author, this pattern is unintended and should not be taken as realistic. Still, the pattern 

is usable in the context of experimenting with the possibilities of the model.  
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Figure 4.7: Heatmap of litter in the Dam setting without bins. 

 
Figure 4.8: Heatmap of litter in the Dam setting with adjusted bin positions. 

The six original bins in the Dam area are moved to the centres of the exposed litter hotspots. 

Their locations and the newly emerged spatial littering pattern are shown in figure 4.8. The 

littering pattern is strikingly concentrated around the new bin locations, with only little 

litter visible in the previously exposed hotspots where no bins were moved to. This is 

explained by the fact that bins do not lose their attractiveness to agents when filled beyond 
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capacity: agents still move to them and dispose of their litter in the bin, which then spills 

onto the surrounding area, reflecting real-world pedestrian littering behaviour. 

Furthermore, the environmental litter is calculated locally by every agent, which leads the 

areas around the bins to be perceived as more littered, increasing littering rates there. Areas 

farther from bins are therefore not only relatively but also absolutely considered cleaner by 

the agents, further reinforcing the decreased littering rates there. Although the pattern 

visible in figure 4.8 is exaggerated, the mechanisms behind it seem to match real-world 

patterns. 

The relative littering rates are counterintuitive - the addition of bins is would not be 

expected to lead to increased littering (figure 4.9). However, the littering pattern is lower 

prior to and on the first timestamp, indicating that norm activation rates have increased, 

and that only the higher values of the reinforced shape are visible, that is, those after the 

environment has on average shifted from a clean to a littered state. The graph of 3.12 (which 

shows the littering rates in the test area for universally activated descriptive norms) again 

seems to have been reproduced in this experiment, but it is also sped up (shifted towards 

the early model run) as a result of higher crowdedness and absolute littering rates in the 

Dam area. The intended optimisation of bin positions is thusly shown to lead to a higher 

descriptive norm activation rate, which counter-intuitively leads to increased littering over 

time.  The highly increased norm activation rates for the adjusted bin locations are also 

shown in figure 4.10. 

 
Figure 4.9: Average litter per pedestrian agent for the original and adjusted Dam bin 

positions. 
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Figure 4.10: Average descriptive norm activations per pedestrian for the original and 

adjusted Dam bin positions. 

 

4.3: Summary 
The finalised agent-based model has been applied to scenarios that are difficult to study in 

real-world littering experiments. In experiments regarding street layouts, crowdedness, age 

composition and alternative bin locations, the activation of descriptive norms repeatedly 

emerged as a critical factor in littering rates. All subjects of experimentation but age 

distribution directly affected the norm activation rate through increased inter-agent 

exposure to litter disposals. Crowdedness and age distribution directly affect individual 

littering rates, but that does not have as much of an effect on global littering rates if not also 

reinforced by high norm activation. The fourth research sub-topics, how does the physical 

environment affect littering rates, how do population size and composition affect littering 

rates, have hereby been addressed. 

  

0.58

0.66

0.74

0.82

0.9

0.98

60 120 180 240 300

D
es

cr
ip

ti
ve

 n
o

rm
 a

ct
iv

at
io

n
s 

p
er

 a
ge

n
t

Minutes
Original Adjusted



48 
 

5: Conclusion 

5.1: Research aim 
Agent-based modelling presented itself as a suitable method for capturing littering 

behaviour because of its capacity for simulating autonomous agent behaviour and its spatial 

explicitness. Complex models, which have the potential for generating predictive output, 

require extensive validation and availability of detailed input data. Because neither is 

available for this research topic, the model was kept relatively abstract and of limited 

validity. A remaining merit of agent-based modelling is that it enables the exploration of 

theoretical assumptions and that it could facilitate the exposal of gaps in theory. The 

research question how can ABM be used to increase understanding about littering is 

answered as such. During the modelling process and the accompanying literature study, 

vagueness in both qualitative and quantitative assumptions was found indeed.  

The most influential and well-rounded explanation of littering behaviour, as described by 

the focus theory of normative conduct, was operationalised in this model. The theory details 

how the state of the local environment affects behaviour, as already observed in the well-

known broken windows theory. However, it was found in the newer theory that increased 

littering occurs in dirty environments and decreased littering in clean environments only 

when the descriptive norm is activated in an individual, which occurs when they observe 

somebody else disposing of litter. This resolves the research question what theory explains 

littering behaviour most effectively. The extent of the influence of descriptive norm has been 

detailed in multiple studies and was approximated in the output of the model developed in 

this project. An important finding of this research is that the configuration of personal 

norms as stochastic variables and activated norms as corresponding multipliers is a valid 

interpretation of the theory through which it seems empirical data can be reproduced. 

Throughout the modelling process and particularly in the final experiments, the importance 

of the activated descriptive norm was further emphasised. It was found to be more 

influential to overall littering rates than the traversing crowd’s age composition or the 

accessibility of bins. Moreover, because people also activate each other’s descriptive norm 

by disposing of their litter properly (in a bin), increased visibility of bins (due to placement 

or street layout) can counter-intuitively even lead to more littering in the long run. Although 

this finding is unforeseen, it is not inconsistent with the theory and is encouraged to be 

studied in practice. These conclusions were drawn during the project stages led by the 

research question regarding model development, how can littering behaviour plausibly be 

captured in an ABM and both questions about experimentation, how does the physical 

environment affect littering rates and how do population size and composition affect littering 

rates. 

Several uncertainties also arose from the modelling process. The values and behaviours of 

numerous parameters of varying importance are not described in theory and were 

therefore given estimated definitions. Most were tested in sensitivity analysis or 

experiments and seemed to be represented reasonably, but the sheer number of uncertain 

variables suggests further research into specific aspects of littering behaviour is in order. 

Under-researched variables include: 

- the distribution of personal norms, 

- the conditions in which inter-personal norm activation occurs, 
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- the definitions of clean and littered areas, 

- the distance people are willing to walk to bins and its correlation to personal norms. 

The main objective of this research was to gain insight into littering behaviour through 

agent-based modelling by simulating theoretical assumptions in settings that are otherwise 

difficult to examine in practice. The agent-based model was successfully developed: its 

output is realistic, in line with theory and partially validated. By extension, this also means 

that the theory on which it was based has a logical foundation; even when its assumptions 

were simulated in unstudied scenarios, the results seemed reasonable. Moreover, several 

uncertainties with regard to underexposed assumptions were found in the modelling 

process. Agent-based modelling has therefore proved valuable in producing insights for 

littering research. A modest contribution to solving the societal and environmental problem 

of littering has thusly been attempted to be made. 

 

5.2: Potential applications 
The knowledge gained in this research and the model that sprouted from it are potentially 

usable in various practical applications. If certain parameters are defined more realistically, 

the spatiotemporal patterns of litter generated in simulation could be used for municipal 

research regarding the selection of areas that should have priority when public space is 

cleaned. Advanced versions of the model might even be used for making existing cleaning 

schedules more efficient, as illustrated by Rangoni and Jager (2017). 

In city planning, an adaptation of the model might also be used in guiding bin placement, as 

shown in the experimentation phase of this research. Adjustments to the physical urban 

environment that could more indirectly affect littering behaviour could be explored in the 

model as well. The impact of far-fetched potential measures such as wind-sheltering 

structures around litter hotspots or see-through street corners could be cheaply examined. 

The framework of the model could potentially also be used for research into different social 

psychological topics on which descriptive norms have been found to have an influence. Such 

topics could include smoking, alcohol consumption, jumping the queue, or situations prone 

to mass-panic such as evacuations. Particularly cases where the spatial component of norm 

activation is relevant may benefit from the general structure of the model developed here. 

Realistically, the model would have to be refined to a significant extent before it is usable in 

practice to such ends. This refinement would principally have to be conducted with regards 

to research into the missing variables identified in the modelling process. The next chapter 

will provide an overview of the limitations of this research project. 
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6: Discussion 

A first point of reflection concerns the central theory that was implemented in the model, 

the focus theory of normative conduct. That theory explicitly distinguishes between the 

effects of two types of norms; the descriptive and the injunctive. Injunctive norms, as 

explained in the conceptual framework section of this report, were omitted from the model 

because their activation occurs in complex, unpredictable ways. Although this choice has 

certainly contributed to the accuracy of the model, it has also abstracted the theory. The 

implementation of the complete focus theory of normative conduct should be considered a 

long-term goal for a future littering behaviour-related simulation. 

The central research aim was finding the merit of ABM for research into littering behaviour 

and several gaps in theory and data were exposed, which is part of the constructive value of 

agent-based modelling. However, the model is built on multiple uncertain parameter values 

that could disproportionally impact the results. For instance, the study from which the 

average personal norm and age distribution and impact were derived, is an aggregation of 

surveys in variously urbanised North-American study areas (Schultz et al., 2013). While it 

appeared the most reliable dataset on which to base those values, it is likely a study in 

Amsterdam or in an urban tourist destination would represent the study area in this 

research more properly. 

Similarly, several qualitative assumptions that were used to model real-world processes 

remained uncertain. The model eventually produced reasonable output that was evaluated 

in multiple ways and stages. but it must be noted that this dynamic sufficiency is not the 

same as mechanistic adequacy (Gräbner, 2018). The patterns produced in the model could 

have resulted from an implementation of mechanisms similar to those of the target model, 

but which differs on a structural level. Leombruni et al. (2006) similarly stated that even 

erroneous models can produce accurate output. Some caution with respect to the 

interpretation of the finished model is therefore advised. 

Besides uncertainties regarding data input, several circumstances arose during the 

modelling process that led to sub-optimal research and model procedures. Critically, the 

quantitative model output was only generated for a limited number of timesteps. 

Continuous temporal output would be most appropriate for studying littering patterns, 

particularly when the descriptive norm is widely active, and the state of the environment 

shifts from relatively clean to relatively littered after little in-model time. No good solution 

for producing such detailed temporal output seemed available in the software, and it proved 

overly processor-intensive to include more time-steps. This was particularly true for the 

early model run because the output was extremely variable there, which would have 

demanded a greater number of permutations, which in turn is even more processor-

intensive.  

Also related to sub-optimal modelling is the agents’ overly simplified visible range, as 

pointed out by Mr Goppel. The circular shape without regard for visible obstruction by other 

agents was selected partly because abstraction was deemed more appropriate than 

introducing additional assumptions. However, exploration of such assumptions about the 

visible range were not carried out because no method was available to the author to keep 

model processing efficient after such drastic behavioural changes. Realistic agent 

movement befell the same fate. An appropriately simple framework for how pedestrians 
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move through the real-world streets was not available, let alone for the research areas. But 

moreover, the technique to simulate such behaviour efficiently was also lacking in this 

project. 

Finally, several undiscussed model elements could contribute to the representational 

quality of a potential future agent-based model about littering behaviour:  

- Realistic or actual pedestrian flows. Searching for optimal bin positions with a 

simulation is not meaningful unless agents’ movement can represent real-world 

bottlenecks. Spatial patterns of litter will also become significantly more accurate. 

- The amount of litter pedestrians generate. A stand-in value was used here to make 

all agents litter once on average during their traversal. If a realistic value is used, 

model time will also become usable in absolute terms with regard to the time it takes 

for the area to become littered. 

- Differentiation between types of litter. Vastly different littering rates have been 

found for cigarettes specifically, and for food items during different times of day. 

Such a differentiation in the model could lead to applicability in a larger number of 

scenarios. 
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8: Appendix 

8.1: Model without street layout 
model litteringNormsBins 
 
global { 
 geometry shape <- rectangle(70#m,25#m); 
 float step <- 1 #s; 
 int minutes <- round(time/60) update: round(time/60); 
  
 int numberPedestriansInit <- 1 parameter:"Initial number of peds"; 
 int numberLitterInit <- 0 parameter:"Initial amount of litter"; 
 int numberLitter <- numberLitterInit update:length(litter); 
 int numberPedestrians <- numberPedestriansInit update:length(totalPedestrians)+numberPedestriansInit; 
 list totalPedestrians <- pedestrian; 
 float litterPerPed <- numberLitter / numberPedestrians update:numberLitter / numberPedestrians; 
 float pedSpawn <- 0.05 parameter:"Chance to spawn peds per tick"; 
 float initActiveNorm <- 0.1 parameter:"Chance to spawn peds with active descriptive norm"; 
 point bin1Pos <- {25,1}; 
 point bin2Pos <- {45,24}; 
 float allActivations <- 0.0; 
 float relativeActivations <- allActivations update:allActivations / numberPedestrians; 
 float persNormM <- 0.35; 
 float persNormSD <- 0.05;  
 float below32Littering <- 1.5; 
 float above32Littering <- 0.8; 
 float stepsToExit <- sqrt(70 ^ 2 + (25 / 2) ^ 2); 
 float generateLitter <- 1 / stepsToExit; 
 int totLitterGenerated <- 0; 
 int viewingDistance <- 12; 
 
 reflex spawnPed when:(flip(pedSpawn)) { 
  create pedestrian { 
   if flip(0.5) { 
    set location <- left; 
    myTarget <- right; 
    add pedestrian to: totalPedestrians; 
   } 
   else { 
    set location <- right; 
    myTarget <- left; 
    add pedestrian to: totalPedestrians; 
   } 
   if flip(initActiveNorm) { 
    descriptiveNorm <- true; 
   } 
  } 
 } 
  
 init { 
  create pedestrian number:numberPedestriansInit { 
   if flip(0.5) { 
    myTarget <- left; 
   } 
   else { 
    myTarget <- right; 
   } 
   if flip(initActiveNorm) { 
    descriptiveNorm <- true; 
   }    
  } 
  create litter number:numberLitterInit;  
  create bin1 { 
   set location <- bin1Pos; 
  } 
  create bin2 { 
   set location <- bin2Pos; 
  } 
 } 
} 
 
species pedestrian skills:[moving] { 
  
 point myTarget; 
 point left <- rnd({0.0,25.0}); 
 point right <- rnd({70,0},{70,25}); 
 point newTarget; 
 float walkingSpeed <- rnd(0.85,1.35);   
  
 bool below32 <- flip(0.33); 
 bool litterer <- false; 
 rgb pedColour; 
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 float personalNorm <- gauss(persNormM,persNormSD) * (below32 ? below32Littering : above32Littering);  
 float activatedNorm <- 1.0; 
 bool descriptiveNorm <- false; 
 list surroundingLitterList; 
 int surroundingLitter <- length(surroundingLitterList) update:length(surroundingLitterList);  
 bool gotLitter <- false; 
 bool closeBin <- false; 
 float binTolerance <- (20 / (1 + 0.08 * #e ^ (8.2 * personalNorm * activatedNorm))); 
  
 reflex moving { 
  do goto target:closeBin ? newTarget : myTarget speed:walkingSpeed #m/#s; 
  if (self.location = myTarget) { 
   do die; 
  } 
  else if (self.location = newTarget) { 
   do throwInBin; 
  } 
 } 
   
 action inactiveLittering { 
  if flip(generateLitter) and (gotLitter = false) { 
   write self.name + ":'oh-oh got litter'"; 
   totLitterGenerated <- totLitterGenerated + 1; 
   do findBin; 
  } 
 }  
  
 action findBin { 
  if (self.location distance_to min(bin1Pos,bin2Pos) > binTolerance) { 
   if flip(personalNorm * activatedNorm) { 
    do dropLitter; 
   } 
   else { 
    pedColour <- #plum; 
    gotLitter <- true; 
   } 
  } 
  else { 
   do moveToBin; 
  } 
 } 
  
 action dropLitter { 
   create litter { 
   set location <- myself.location; 
  } 
  litterer <- true; 
  pedColour <- #orange; 
  write self.name + ":'oopsie'"; 
  ask pedestrian at_distance(viewingDistance) {   
   descriptiveNorm <- true; 
   allActivations <- allActivations + 1; 
  }  
 }   
  
 action moveToBin { 
  pedColour <- #plum; 
  closeBin <- true; 
  if (self.location distance_to bin1Pos < self.location distance_to bin2Pos) { 
   newTarget <- bin1Pos; 
  } 
  else { 
   newTarget <- bin2Pos; 
  } 
 } 
 
 action throwInBin { 
  if (newTarget covers bin1Pos) { 
   ask bin1 { 
    containingLitter <- containingLitter + 1; 
   } 
  } 
  else if (newTarget covers bin2Pos) { 
   ask bin2 { 
    containingLitter <- containingLitter + 1; 
   } 
  } 
  closeBin <- false; 
  gotLitter <- false; 
  ask pedestrian at_distance(viewingDistance) {   
   descriptiveNorm <- true; 
   allActivations <- allActivations + 1; 
  }     
 }  
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 action activeLittering { 
  surroundingLitterList <- litter at_distance(viewingDistance); 
  activatedNorm <- 1.7 / (1 + 2.4 * #e ^ (-0.13 * surroundingLitter)); 
  do inactiveLittering; 
 } 
  
  
 reflex littering { 
  if (descriptiveNorm) { 
   do activeLittering; 
  } 
  else { 
   do inactiveLittering; 
  } 
 } 
  
 reflex holdLitter when:gotLitter { 
  if ((self.location distance_to bin1Pos) <= binTolerance or (self.location distance_to 
bin2Pos) <= binTolerance) { 
   do moveToBin; 
  } 
 } 
  
 init { 
  if (below32) { 
   pedColour <- #green; 
  } 
  else { 
   pedColour <- #purple; 
  } 
 } 
  
 aspect defaultPed { 
  draw circle (0.7) color:pedColour border:descriptiveNorm ? #lime : pedColour; 
 } 
} 
 
species litter { 
 aspect defaultLit { 
  draw circle (0.15) color:#red; 
 } 
} 
 
species bin { 
 int binCapacity <- 100; 
 int containingLitter <- 0; 
 bool fullBin <- false; 
  
 aspect defaultBin { 
  draw square (0.5) color:#darkorange; 
  draw "" + containingLitter + "/" + binCapacity color:#black; 
 } 
  
 reflex spillLitter { 
  if (containingLitter > binCapacity) { 
   create litter { 
    set location <- myself.location + rnd({-1,-1},{1,1}); 
   }  
   containingLitter <- containingLitter - 1; 
  } 
 } 
} 
 
species bin1 parent:bin {} 
species bin2 parent:bin {} 
 
experiment litteringSim type:gui { 
 output { 
  monitor "Minutes passed" value:minutes; 
  monitor "Potential pieces of litter" value:totLitterGenerated; 
  monitor "Pieces of litter dropped" value:numberLitter; 
  monitor "Number of pedestrians passed" value:numberPedestrians; 
  monitor "Pieces of litter per pedestrian" value:litterPerPed; 
  monitor "Activated norm ratio" value:relativeActivations; 
  display map { 
   graphics "worldBackground" { 
    draw world.shape color:#ghostwhite; 
   } 
   species litter aspect:defaultLit; 
   species pedestrian aspect:defaultPed; 
   species bin1 aspect:defaultBin; 
   species bin2 aspect:defaultBin; 
  } 
  display chart { 
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   chart "Litter buildup" type:series { 
    data "Pieces of litter per pedestrian" value:litterPerPed; 
   } 
  }  
 } 
} 

 

8.2: Kalverstraat model  

model litteringNormsStreet 
 
global { 
 file kalverShp <- file("../includes/kalverEdit.shp"); 
 geometry shape <- envelope(kalverShp); 
 file inOutShp <- file("../includes/kalverInOuts.shp"); 
 geometry building <- simplification(shape,2.0); 
   
 float step <- 1 #s; 
 int minutes <- round(time/60) update: round(time/60); 
 
 int numberPedestriansInit <- 1 parameter:"Initial number of peds"; 
 int numberLitterInit <- 0 parameter:"Initial amount of litter"; 
 int numberLitter <- numberLitterInit update:litter count(true); 
 int numberPedestrians <- numberPedestriansInit update:totalPedestrians 
count(true)+numberPedestriansInit; 
 list totalPedestrians <- list(pedestrian); 
 float litterPerPed <- numberLitter / numberPedestrians update:numberLitter / numberPedestrians; 
 float pedSpawn <- 0.05*1.6 parameter:"Chance to spawn peds per tick"; 
 float initActiveNorm <- 0.1 parameter:"Chance to spawn peds with active descriptive norm"; 
 float percentBelow32 <- 0.33; 
 float viewingDistance <- 12.0; 
  
 point bin1Pos <- {110,105}; 
 point bin2Pos <- {71,132}; 
 point bin3Pos <- {175,171}; 
 point bin4Pos <- {88,71}; 
 point bin5Pos <- {18,161}; 
 point bin6Pos <- {75,24}; 
 point bin7Pos <- {133,140}; 
 
 float allActivations <- 0.0; 
 float relativeActivations <- allActivations update:allActivations / numberPedestrians; 
   
 float below32Littering <- 1.5; 
 float above32Littering <- 0.8; 
 float generateLitter <- (1 / (81.5 * 2)) * ( 1 / 0.75); 
 int totLitterGenerated <- 0; 
 float persNormM <- 0.35; 
 float persNormSD <- 0.1; 
   
 reflex spawnPed when:(flip(pedSpawn)) { 
  create pedestrian {  
   set location <- any_location_in(geometry(entrance)); 
   myTarget <- any_location_in(geometry(entrance));   
   add pedestrian to: totalPedestrians; 
   if flip(initActiveNorm) { 
    descriptiveNorm <- true; 
   } 
  } 
 } 
  
 init { 
  create street from:kalverShp{ 
   building <- building - geometry(street); 
  } 
  create entrance from:inOutShp { 
   building <- building - (0.2 around geometry(entrance)); 
  } 
  create pedestrian number:numberPedestriansInit { 
   location <- any_location_in(geometry(street)); 
   myTarget <- any_location_in(geometry(entrance)); 
   if flip(initActiveNorm) { 
    descriptiveNorm <- true; 
   }    
  } 
  create litter number:numberLitterInit {  
   location <- any_location_in(geometry(street)); 
  } 
  create bin1 { 
   set location <- bin1Pos; 
  } 
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  create bin2 { 
   set location <- bin2Pos; 
  } 
  create bin3 { 
   set location <- bin3Pos; 
  } 
  create bin4 { 
   set location <- bin4Pos; 
  } 
  create bin5 { 
   set location <- bin5Pos; 
  } 
  create bin6 { 
   set location <- bin6Pos; 
  } 
  create bin7 { 
   set location <- bin7Pos; 
  }    
 } 
} 
 
species street schedules: [] { 
 aspect defaultStreet { 
  draw shape color:#ghostwhite border:#black; 
 } 
} 
 
species entrance schedules: [] { 
 aspect defaultEntrance { 
  draw shape color:#green size:8.0; 
 } 
} 
 
species pedestrian skills:[moving] { 
  
 point myTarget; 
 point newTarget; 
 bool detour <- false; 
 point altTarget <- {107,109}; 
 float walkingSpeed <- rnd(0.85,1.35);   
  
 bool below32 <- flip(percentBelow32); 
 bool litterer <- false; 
 rgb pedColour; 
 float personalNorm <- gauss(persNormM,persNormSD) * (below32 ? below32Littering : above32Littering);   
 float activatedNorm <- 1.0; 
 bool descriptiveNorm <- false; 
 list surroundingLitterList; 
 int surroundingLitter; 
 bool gotLitter <- false; 
 bool closeBin <- false; 
 list visibleBins; 
 float distToClosestBin; 
 float binTolerance <- (20 / (1 + 0.08 * #e ^ (8.2 * personalNorm * activatedNorm))); 
 
  
 action findBin { 
  do lookForBin; 
  if (distToClosestBin <= binTolerance) and (distToClosestBin > 0) { 
   do moveToBin; 
  } 
  else { 
   if flip(personalNorm * activatedNorm) { 
    do dropLitter; 
   } 
   else { 
    pedColour <- #plum; 
    gotLitter <- true; 
   } 
  } 
 } 
  
 action lookForBin { 
  visibleBins <- []; 
  loop visbin over:[bin1,bin2,bin3,bin4,bin5,bin6,bin7] { 
   if not (link(location,geometry(visbin)) intersects building) { 
    add visbin to:visibleBins;  
   } 
  } 
  distToClosestBin <- visibleBins min_of (self.location distance_to geometry(each)); 
 } 
  
 action moveToBin { 
  do lookForBin; 
  pedColour <- #plum; 
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  closeBin <- true; 
  newTarget <- visibleBins closest_to self.location; 
 } 
  
 action dropLitter { 
   create litter { 
   set location <- myself.location; 
  } 
  litterer <- true; 
  pedColour <- #orange; 
  write self.name + ":'oopsie'"; 
   
  loop witness over:(pedestrian at_distance(viewingDistance)) { 
   if not (link(location,witness.location) intersects building) { 
    ask witness { 
     descriptiveNorm <- true; 
     allActivations <- allActivations + 1; 
    } 
   } 
  } 
 }   
  
 action throwInBin { 
  if (newTarget covers bin1Pos) { 
   ask bin1 { 
    containingLitter <- containingLitter + 1; 
   } 
  } 
  else if (newTarget covers bin2Pos) { 
   ask bin2 { 
    containingLitter <- containingLitter + 1; 
   } 
  } 
  else if (newTarget covers bin3Pos) { 
   ask bin3 { 
    containingLitter <- containingLitter + 1; 
   } 
  } 
  else if (newTarget covers bin4Pos) { 
   ask bin4 { 
    containingLitter <- containingLitter + 1; 
   } 
  } 
  else if (newTarget covers bin5Pos) { 
   ask bin5 { 
    containingLitter <- containingLitter + 1; 
   } 
  } 
  else if (newTarget covers bin6Pos) { 
   ask bin6 { 
    containingLitter <- containingLitter + 1; 
   } 
  } 
  else if (newTarget covers bin7Pos) { 
   ask bin7 { 
    containingLitter <- containingLitter + 1; 
   } 
  } 
  closeBin <- false; 
  gotLitter <- false; 
  loop witness over:(pedestrian at_distance(viewingDistance)) { 
   if not (link(location,witness.location) intersects building) { 
    ask witness { 
     descriptiveNorm <- true; 
     allActivations <- allActivations + 1;    
    } 
   } 
  } 
 }  
  
 action activeLittering { 
  surroundingLitterList <- []; 
  loop vislit over:(litter at_distance(viewingDistance)) { 
   if not (link(location,vislit.location) intersects building) { 
    add vislit to:surroundingLitterList; 
   }   
  } 
  surroundingLitter <- length(surroundingLitterList); 
  activatedNorm <- 1.7 / (1 + 2.4 * #e ^ (-0.13 * surroundingLitter)); 
//  gecheckt met online logistische functierekenmachine op desmos.com 
 } 
  
 reflex moving { 
  if (self.location = myTarget) { 
   do die; 
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  } 
  else if (self.location = newTarget) { 
   do throwInBin; 
  } 
  if (closeBin) { 
   if(link(self.location,newTarget) intersects building) { 
    detour <- true; 
    do goto target:altTarget speed:walkingSpeed #m/#s; 
   } 
   else if not (link(self.location,newTarget) intersects building) { 
    detour <- false; 
    do goto target:newTarget speed:walkingSpeed #m/#s; 
   } 
  } 
  else if not (closeBin) { 
   if (link(self.location,myTarget) intersects building) { 
    detour <- true; 
    do goto target:altTarget speed:walkingSpeed #m/#s; 
   } 
   else if not (link(self.location,myTarget) intersects building) { 
    detour <- false; 
    do goto target:myTarget speed:walkingSpeed #m/#s;  
    
   } 
  } 
 } 
   
 reflex inactiveLittering { 
  if flip(generateLitter) and (gotLitter = false) { 
   write self.name + ":'oh-oh got litter'"; 
   totLitterGenerated <- totLitterGenerated + 1; 
   if (descriptiveNorm) { 
    do activeLittering; 
   } 
   do findBin; 
  } 
 }  
  
 reflex holdLitter when:gotLitter { 
  do lookForBin; 
  if (distToClosestBin <= binTolerance) and !(empty(visibleBins)) { 
   do moveToBin; 
   gotLitter <- false; 
  }   
 } 
  
 init { 
  if (below32) { 
   pedColour <- #green; 
  } 
  else { 
   pedColour <- #purple; 
  } 
 } 
  
 aspect defaultPed { 
  draw circle (0.7) color:pedColour border:descriptiveNorm ? #lime : pedColour; 
 } 
} 
 
species litter schedules: [] { 
 aspect defaultLit { 
  draw circle (0.15) color:#red; 
 } 
} 
 
species bin { 
 int binCapacity <- 100; 
 int containingLitter <- 0; 
  
 aspect defaultBin { 
  draw square (0.5) color:#darkorange; 
  draw "" + containingLitter + "/" + binCapacity color:#black; 
 } 
  
 reflex spillLitter { 
  if (containingLitter > binCapacity) { 
   create litter { 
    set location <- myself.location + rnd({-1,-1},{1,1}); 
   }  
   containingLitter <- containingLitter - 1; 
  } 
 } 
} 
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species bin1 parent:bin {} 
species bin2 parent:bin {} 
species bin3 parent:bin {} 
species bin4 parent:bin {} 
species bin5 parent:bin {} 
species bin6 parent:bin {} 
species bin7 parent:bin {} 
 
experiment litteringSim type:gui { 
 output { 
  monitor "Minutes passed" value:minutes; 
  monitor "Potential pieces of litter" value:totLitterGenerated; 
  monitor "Pieces of litter dropped" value:numberLitter; 
  monitor "Number of pedestrians passed" value:numberPedestrians; 
  monitor "Pieces of litter per pedestrian" value:litterPerPed; 
  monitor "Activated norm ratio" value:relativeActivations; 
   
  display map { 
   species street aspect:defaultStreet refresh:false; 
   species litter aspect:defaultLit; 
   species pedestrian aspect:defaultPed; 
   species bin1 aspect:defaultBin; 
   species bin2 aspect:defaultBin; 
   species bin3 aspect:defaultBin; 
   species bin4 aspect:defaultBin; 
   species bin5 aspect:defaultBin; 
   species bin6 aspect:defaultBin; 
   species bin7 aspect:defaultBin; 
    
  } 
  display chart { 
   chart "Litter buildup" type:series { 
    data "Pieces of litter per pedestrian" value:litterPerPed; 
   } 
  }  
 } 
} 

 


