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Abstract 

A variety of neurological and psychiatric illnesses are characterized by verbal communication 

disorders. Recently, there has been growing interest in automated speech-based techniques for 

screening mental disorders. Schizophrenia spectrum disorders are characterized by diminished 

effective expression and disturbances in thought and language, which results in disorganized 

speech. Diagnosing schizophrenia is often a challenging process prone to subjectiveness, as 

deviancies in speech are subtle and follow each other rapidly.  Schizophrenia is the most 

common disorder in psychosis, which is a set of related conditions. As speech contains markers 

for schizophrenia, we believe that automated speech-based techniques may also be used to 

improve and simplify the process of diagnosing this disorder.   

In this study, we implement multiple machine learning algorithms to examine the extent 

to which psychosis can be classified using syntactic, semantic and phonological features of 

speech. These features were extracted from speech samples using the tools T-Scan, Word2Vec 

and OpenSMILE, resulting in three separate data sets. Speech samples were collected by 

interviewing 50 psychotic patients and 50 healthy controls. We investigate the suitability of five 

different classification algorithms, namely Logistic Regression, Naïve Bayes, Random Forest, 

Stochastic Gradient Descent and Support Vector Machines on the separate data sets for 

classifying psychosis.  

Our results show that distinguishing psychotic patients from healthy controls is possible 

using speech-derived features and techniques. Reasonably high accuracy scores can be achieved 

by using syntactic, semantic or phonological information about speech. This research adds to 

the field of clinical language analysis and has implications for future use of speech-based 

analytics in the clinical diagnostic process.  

 

Keywords: psychosis, machine learning, automated speech-based techniques, syntax, 

semantics, phonology, T-Scan, Word2Vec, OpenSMILE.   
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Chapter 1 

Introduction 

Various neurological and psychiatric illnesses are characterized by verbal communication 

disorder. In schizophrenia spectrum disorders, mental resources are taxed, which results in 

diminished effective expression and disturbances in thought and language. This results in 

impaired social communication and disorganized speech, sometimes to the extent that speech 

is completely incomprehensible (Cohen, Kim, & Najolia, 2013). Many of the language 

abnormalities in schizophrenic spectrum disorders fall within formal thought disorder. Both 

positive and negative thought disorders pose restrictions on speech.  

Positive thought disorder is characterized by an excess of normal function, which leads 

to derailment – a pattern of speech that tends to slip off track and in which remarkably unrelated 

concepts are expressed. Some patients with positive thought disorder produce neologisms – 

words that are self-invented - or use common words in an unusual way. In severe cases, this can 

lead to unintelligible speech in which neither sentences nor individual words seem to convey an 

overall meaning.  

In negative thought disorder, normal behavior is partly absent, impaired or delayed, 

which leads to poverty of speech. These abnormalities are most evident in the syntactic, 

semantic and production aspects of language (Cokal, Zimmerer, Varley, Watson, & Hinzen, 

2019). A detailed overview of the exact ways in which speech of schizophrenia patients differs 

from normal speech is provided in chapter 2.  

It is evident that speech is an important aspect of the disorder profile of schizophrenia, 

so it should not come as a surprise that speech collected during a psychiatric interview is a crucial 

guideline for establishing a diagnosis. It is a relatively easily accessible measure that provides 

insight into the underlying clinical and cognitive aspects of schizophrenia (Cohen & Elvevag, 

2014). Other guidelines for establishing a diagnosis are interviewer-based rating scales. 

However, these scales often contain relatively few response options and ambiguous operational 

definitions (Cohen, Kim, & Najolia, 2013). Besides, the ability and desire of a patient to 

communicate their symptoms have a large influence on the results of these scales (Cummins, et 

al., 2015). Identifying signals that indicate the presence of thought disorders is often challenging 

and subjective. Speech abnormalities are normally subtle and can succeed each other rapidly. In 

schizophrenia, the process is especially difficult when patients are not undergoing an acute 

psychotic episode at the time of the interview (Bar, 2019). The term psychosis covers a set of 
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related conditions, of which the commonest is schizophrenia, and includes schizoaffective 

disorder, schizophreniform disorder, delusional disorder and non-affective psychosis (National 

Collaborating Centre for Mental Health, 2014). As the diagnosis of schizophrenia spectrum 

disorders is established purely through clinical observation (Kuperberg, 2010; M. J. Kas, 2019), a 

full understanding of speech deviancies in psychotic individuals should be established. 

Furthermore, diagnosis would benefit from an objective screening mechanism that is sensitive 

to subtle abnormalities in speech that are normally imperceptible to clinicians. 

Recently, there has been growing interest in automated speech-based techniques for 

screening psychiatric disorders. For instance, Marmar, Brown, Quan, Laska, Siegel, Li, Abu-

Amara, Tsiartas, Richey, Smith & Knoth (2019) established a speech-based algorithm that can 

objectively differentiate posttraumatic stress disorder (PTSD) cases from controls using 

phonological features extracted from clinical interviews. It demonstrates the usability of speech 

in the classification process of mental disorders. We believe that these or similar automated 

speech-based techniques are also suitable for classifying psychosis. However, unlike the PTSD 

study, phonology is not the only domain within language we are interested in with regard to 

psychosis. Fortunately, it is possible to extract syntactic, semantic and phonological quantified 

features of speech using different automated speech-based techniques in the realm of natural 

language processing (NLP). 

Using semantic space models, it is possible to objectively extract precise and detailed 

information from a speech sample. The models represent words as points in an abstract 

multidimensional space. The models are designed so that words with similar meanings appear 

in similar contexts; the distance between word points is a measure for difference in semantic 

meaning. A method of semantic space models that can both capture semantic as well as some 

syntactic features is Word2Vec. Word2Vec uses neural networks to measure semantic and 

syntactic regularities in a large data set of words (de Boer J. N., et al., 2018). Phonological 

features, for example loudness, can be extracted from a speech sample using the toolkit 

OpenSMILE (Eyben, Wöllmer, & Schuller, 2010). The complexity of speech can be extracted using 

the software tool T-Scan, which yields mostly syntactical information. Using these toolkits, a 

multitude of variables can be extracted from speech samples that form a comprehensive 

syntactic, semantic and phonologic representation of a sample. To utilize these features in 

classification of psychosis, multiple machine learning methods will be implemented.  
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1.1 - Goals 

In this research, we explore the possibilities for classification of psychosis using features of 

speech. We aim to answer the following sub-questions: 

- How well can psychosis be predicted based on syntactic, semantic or phonologic 

information? 

- What are the most important features of speech in the classification process within 

each domain (i.e. syntax, semantics and phonology)? 

- How well can psychosis be classified combining the three domains? 

- Which features of the combinatory dataset play an important role in the classification 

process? 

The eventual aim of this study is to investigate the extent to which psychosis can be 

detected from controls using NLP and classification algorithms. A successful classification model 

can be used to guide clinicians in the process of diagnosing schizophrenia and increase our 

understanding of the disorder. Using NLP tools, subtle deviancies in speech that currently go 

unnoticed that could help to identify individuals at higher risk of psychosis can be detected at 

an early stage, as some of the cognitive impairments of psychosis are already detectable before 

the onset of the disease (Magaud, et al., 2010).  

This is an exploratory study; the use of semantic space models and other NLP methods 

for classifying psychosis is a relatively new field. The results of this study can be used as a 

guideline for future research; if the predictability of psychosis proves to benefit from the use of 

features of speech, the feature importances found in this study can be used and validated in 

data sets acquired from different participants.    

1.2 - Thesis structure 

In chapter 2, a more detailed account of the conducted literature study on deviancies in speech 

of schizophrenia patients will be given. Chapter 3 and 4 contain the methods and results. 

Chapter 5 consists of the discussion.  

Chapters 3 and 4 are built up by the following reoccurring structure: the three domains 

of speech - syntax, semantics and phonology - are first discussed separately (in that particular 

order), followed by a combinatory approach.    
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Chapter 2 

Literature review 

A literature review of the abnormalities in speech of schizophrenia patients was conducted. 

Based on this review, we identified features of speech that are abnormal in schizophrenia 

patients. In this chapter, an account of the most interesting findings will be given for the 

syntactical, semantical and phonological domains of speech. It needs to be stated that the 

reported findings are generalized findings on the group level of schizophrenia patients. These 

deviancies need not be present in each psychotic individual, for the patient group is 

heterogeneous. However, statements apply to the majority of the psychotic population and are 

thus reported as generally valid for the patient group. The findings presented in this chapter 

show that speech contains a multitude of markers for psychosis, which makes it a suitable 

domain for the classification of the disorder.  

2.1 - Syntax 

Syntax refers to the way words are arranged together (Jurafsky & Martin, 2009). Syntactic 

dysfunction disturbs the structure of language on all levels. Even when semantics and discourse 

organization of speech are impaired, the syntax of speech of schizophrenia patients can still be 

intact. Still, several aspects of syntax are abnormal in schizophrenia patients.  

First of all, schizophrenia is characterized by reduced syntactic complexity and 

comprehension of speech (Covington, et al., 2005; Stanislawski, 2019; Kuperberg, 2010). 

Patients produce utterances which are syntactically less complex, and which contain more 

syntactic errors (Çokal, Zimmerer, Varley, & Watson, 2019). Patients also have difficulties with 

interpreting long and grammatically complex sentences (Kuperberg, 2010). 

Furthermore, the use of parts of speech (nouns, verbs, pronouns, prepositions, adverbs, 

conjunctions, participles and articles) is deviant in schizophrenia patients (Jurafsky & Martin, 

2009). Stanislawski (2019) showed that the use of determiner pronouns such as “which” and 

“that”, which introduce dependent clauses, is negatively correlated with negative symptoms in 

schizophrenia patients. In addition, usage of nouns is lower in schizophrenia patients compared 

to controls. Patients also use less adjectives and different adjectives to modify certain nouns 

compared to healthy controls (Obrebska & Obrebski, 2007; Bar, 2019). Pronoun use is also 

decreased in schizophrenia, particularly the personal pronoun “I” (Deutsch-Link, 2016). Lastly, 

patients use more verbs compared to controls (Obrebska & Obrebski, 2007).  
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Formal thought disorder in schizophrenia results in the diminished use of embedded 

clauses in spontaneous speech (Çokal, Zimmerer, Varley, & Watson, 2019). An embedded clause 

is a clause that in itself is not a complete sentence, but which is placed in the middle of another 

clause. Patients suffering from formal thought disorder also show a deficit in comprehending 

embedded clauses (Çokal, Zimmerer, Varley, & Watson, 2019).  

2.2 - Semantics 

Lexical semantics is the study of the meaning of words. Semantic impairment affects the ability 

to map thoughts onto language and pursue a communicative goal (Covington, et al., 2005). In 

schizophrenia patients, semantic coherence and word use is deviant.  

Words that appear within the same context are usually more semantically related than 

words appearing in different contexts. Speakers with schizophrenia often jump from one subject 

to another based on the sounds or associations of words they have uttered earlier. Patients 

produce a greater number of associations between words than healthy controls, which results 

in a higher number of shifts between topics that are not or only remotely related to previous 

topics. This difference is particularly noticeable in units of text greater than fifteen words, which 

suggests that associations between words stretch over longer periods in patients than in 

controls (Kuperberg, 2010). Reductions in semantic coherence are a predictor of psychosis onset 

in clinical high-risk individuals (Stanislawski, 2019). 

In conversation, patients with schizophrenia often use words that are incompatible with 

preceding sentences (Kuperberg, 2010). Discourse often includes neologisms and rare words, 

indicating the presence of a large and intact vocabulary. Schizophrenia patients use different 

adjectives from controls to modify certain nouns (Bar, 2019). A recent study conducted by Rezaii, 

Walker & Wolff (2019) found that besides low semantic density, conversion to psychosis is also 

signaled by increased usage of words related to voices and sounds.  

2.3 - Phonology 

Phonology is concerned with the systematic organization and production of sounds in speech. 

The main phonologic feature deviant in speech of schizophrenia patients is pause length; 

schizophrenic speech contains abnormal pauses. Furthermore, pause length and percentage of 

pauses is significantly correlated with negative symptom severity (Stanislawski, 2019; Cohen, 

Kim, & Najolia, Psychiatric Symptom versus Neurocognitive Correlates of Diminished 

Expressivity in Schizophrenia and Mood Disorders, 2013). Increasing severity of negative 

symptoms is also associated with less prosody (the patterns of stress and intonation)  (Cohen, 
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Kim, & Najolia, 2013). In a meta-analysis of 46 articles conducted by Alberto, Arndis, Vibeke & 

Riccardo (2019), weak atypicalities in pitch variability related to flat affect and stronger 

atypicalities in proportion of spoken time, speech rate and pauses related to alogia and flat 

affect were found. However, these effects are modest compared to perceptual and clinical 

judgements and characterized by heterogeneity between studies.    

The features of speech discussed in this chapter can be quantitatively extracted from 

speech samples. Based on our findings in this literature review, we expect these features to be 

valuable for classification purposes. 
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Chapter 3 

Methods 

In this chapter, the methods and approaches used in this thesis are described, including a 

description of the participants and the collection of speech samples. NLP tools used to extract 

features from the samples of speech will be discussed, followed by a description of feature 

selection methods. Because NLP tools and feature selection methods differ in the syntactic, 

semantic and phonological domain, this section will be partitioned into these 3 domains. Next, 

the process of classifying psychosis using the selected features of speech will be clarified. This 

includes a description of feature selection methods and the machine learning algorithms that 

were implemented. This chapter ends with a description of how the results from the machine 

learning models were analyzed and compared. Lastly, a description of the statistical analysis 

conducted on the 3 data sets will be given.  

3.1 - Participants 

50 patients with a schizophrenia spectrum disorder and 50 healthy controls were included. 

Healthy controls were screened for former or current mental illness. This was done either by a 

neuropsychologist using the Comprehensive Assessment of Symptoms and History (CASH) or 

with the use of a modified psychiatric history screener. In case of former or current mental 

illness, controls were excluded. For healthy participants that underwent CASH screener, family 

history of psychotic symptoms was also a criterion for exclusion. Patients were diagnosed by 

their treating psychiatrist. In addition, the diagnosis was confirmed using the outcome of the 

CASH or the Mini International Neuropsychiatric Interview 5.0.0. (M.I.N.I. Plus (Sheenan, et al., 

1998)). The severity of psychotic symptoms was assessed by means of the Positive and Negative 

Syndrome Scale (PANSS (Leucht, et al., 2005)). All participants were age eighteen or above and 

had Dutch as their first language. To be included, patients also required a DSM-IV diagnosis of 

295.x (schizophrenia, schizophreniform disorder, schizoaffective disorder) or 298.9 (psychotic 

disorder NOS)  (Millon & Davis, 1996).  Exclusion criteria were the presence of uncorrected 

hearing disabilities and speech impediments, for example excessive stutter. Informed consent 

was obtained from all participants before study participation. Participants received a small 

monetary reward.  
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3.2 - Data collection 

Samples of spontaneous speech were collected in semi-structured interviews of 5 to 30 minutes. 

In these interviews, a set of questions about general life experiences was used, with the aim to 

avoid topics that could be expected to have noticeably different emotional charge for patients 

and healthy controls. Potential variations in speech due to the discussed topics were controlled 

for using this approach. If a participant did not want to answer a question, the interviewer would 

move on to the next question.  

The subject’s speech was recorded using an AKG-C544l head-worn cardioid microphone. 

Speech was digitally recorded onto a Tascam DR40 solid state recording device at a sampling 

rate of 44,100 kHz with 16-bit quantization. Per interview, two audio tracks were recorded; one 

for the participant and one for the interviewer to aid in speaker separation. Each segment of 

speech was coded, using the Praat software, as belonging either to the participant or the 

interviewer. When both speakers spoke at the same time, the segment was coded as belonging 

to both speakers. The pause resulting from a switch between speakers was attributed to the 

speaker following the pause. For every individual, a new audio file was created consisting only 

of the speech segments in which the participant in question was speaking or pausing. Data files 

were blinded for diagnosis to prevent bias in separating the speaker. Inter-rater reliability for 

tier separation was 97.7 percent. All files were set to an average sound pressure level of 60dB 

to avoid differences in the analyses based on speaking volume. Transcription of the interviews 

were produced using the tools CLAN  (MacWhinney & Wagner, 2014) and CHILDES (MacWhinney 

B. , 2014).  

3.3 – Data preprocessing 

Features of speech were extracted from the speech samples using three different linguistic 

tools; namely T-Scan, Word2Vec and OpenSMILE. These tools extract mainly syntactical, 

semantical and phonological features, respectively. For all three domains, feature selection was 

executed to remove irrelevant and redundant features that can otherwise negatively impact 

model performance in terms of accuracy and time to build the model (Gnana, Balamurugan, & 

Leavline, 2016). The feature selection procedures used are clarified for each domain in their 

respective sections. Prior to training of classification algorithms, features were standardized 

using min-max scaling, which brings each value between 0 and 1.  
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3.4 – Syntactic data 

Syntactic features of speech were extracted from the transcriptions of the interview using T-

Scan. T-Scan is a software tool for text analysis that mainly captures information about text 

complexity by measuring word difficulty, sentence complexity, referential and relational 

coherence, verbiage, use of semantic classes, personal elements, use of names, probability 

measures and usage of part-of-speech tagging. A text is analyzed on the level of words, 

sentences, paragraphs and in its entirety. The Output of T-Scan gives a syntactical representation 

of a text (Maat, Kraf, & Dekker, 2017). The output of T-scan consists of 457 variables in total.   

To create a more suitable data set for our sample size, feature selection guided by 

literature research was carried out. An overview of previous findings on syntactical deviations 

in schizophrenic speech can be found in chapter 2. Using these findings, 24 corresponding T-

Scan variables were identified and selected to be used by the machine learning models. The 

selected variables are given in table 3.1.  

Table 3.1 

Selected variables from t-scan output with description.  

 Variable name Description* 

1 D_level Measure for syntactic complexity 

2 Wrd_per_morf Number of words per morpheme, measures word length 

3 Al_gem Measure for the distance between two clauses that are 

dependent of each other 

4 Lem_over_buf_dz Measures the number of referential repetitions   

5 Onbep_nwg_dz Number of indefinite noun groups 

6 Conn_temp_dz Number of temporal connectives (e.g. “before”, 

“formerly”) per clause 

7 Conn_reeks_zin_dz Number of words that connect clauses (e.g. “and”, 

“furthermore”) per sentence 

8 Conn_contr_dz Number of oppositive connectives (e.g. “still”, “even so”) 

per clause 

9 Conn_caus_dz Number of causal connectives (e.g. “when”, “because”) 

per clause 

10 Ww_tt_p Proportion of present tense verbs 

11 Vd_vrij_dz Number of free-standing past participles per clause 

12 Inhwrd_d Density of content words 

13 Pv_Frog_d Density of verbs 

14 Ontk_tot_d Density of refutations 

15 Pers_vnw1_d Density of first-person personal and possessive pronouns  
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16 Pers_vnw3_d Density of third-person personal and possessive 

pronouns 

17 Bvnw_d Density of adjectives 

18 Vg_d Density of conjunctives 

19 Vnw_d Density of pronouns 

20 Lidw_d Density of articles 

21 Tuss_d Density of interjections 

22 Int_bvnw_d Density of intensifying adverbs 

23 Alg_bijw_d Density of general adverbs 

24 Spec_bijw_d Density of specific adverbs 

* these descriptions are translations from the Dutch descriptions as given in the T-Scan 

manual (Maat, Kraf, & Dekker, 2017).  

 

3.5 – Semantic data 

The Word2Vec model is a tool for learning word embeddings using neural networks. The model 

contains a dictionary in which each word is represented by a feature vector. This feature vector 

captures syntactic and semantic relationships between words and can thus be used for 

quantitative examination of words. The feature vector is established during training of the 

model. Training takes places either according to the continuous bag of words (CBOW) or Skip-

Gram architecture. In CBOW, the model uses the context of a word, e.g. its neighboring words, 

to predict that word. In Skip-Gram, the model uses a word to predict its context. The limit on 

the number of words in a context is determined by a parameter called window size. When the 

feature vector assigned to a word cannot be used to accurately predict the word’s context, or 

the other way around, the components of the vector are adjusted. A well-trained set of word 

vectors will place similar words close to each other. The resulting representations of words 

exhibit a linear structure that makes precise analogical reasoning possible (Mikolov, Sutskever, 

Chen, Corrado, & Dean, 2013).  

We trained our Word2Vec model on the corpus gesproken Nederlands (REF) (Oostdijk, 

2000) using the skip-gram architecture, with a 300-dimensional semantic model. Following 

model creation, each word of each participant’s transcript was semantically compared to other 

words in the window size, using the cosine of the angle between vectors as a metric for distance 

in 300-dimensional semantic space. Average, minimum, maximum and mean distances over a 

given window are indications of semantic coherences. These measures are calculated for a 

window of fixed size that moves over the words one by one (we will call this simple) and a 
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partition of the words according to a fixed window size (we will call this summary). We repeated 

these measures for window sizes ranging from 2 to 20. After having been run on the speech 

samples, Word2Vec generated 159 output variables.  

Because the output from Word2Vec takes on a different form than results found in 

similar studies, see chapter 2, our literature review could not be used as a method for feature 

selection. Instead, the Random Forest algorithm (RF) was used for this purpose. Feature 

selection based on RF has been found to provide multivariate feature importance measures 

which are relatively cheap to obtain, and which have been successfully applied to high 

dimensional data. Multiple studies indicate the efficiency of the importance measures for a RF 

classifier in an explicit feature selection (Menze, et al., 2009), and the method was also applied 

to create a subset of features for the classification of PTSD (Marmar, et al., 2019). A more in-

depth description of RF is given in section 3.7. Running the RF classifier on the output of 

Word2Vec results in a feature importance measure for all variables. The 20 features with the 

highest measure were selected to be used for classification using other algorithms.  

3.6 – Phonological data 

OpenSMILE is an audio analysis toolkit that retrieves phonological information from a segment 

of speech. It enables explorative analysis of audio segments by combining feature extraction and 

pattern recognition. OpenSMILE extracts some Low-Level Descriptors (LLD) and applies various 

functionals and transformations to these. These LLD’s include waveform, signal energy, 

loudness, pitch and voice quality. For a complete overview of the OpenSMILE feature set, we 

refer to Eybe, Weninger, Wöllmer & Schuller (2014). The functionals that can be applied to the 

LLD’s are extremes, means, moments, percentiles, regression, peaks, segments, sample values, 

times/durations, onsets, coefficients of the Discrete Cosine Transformation (DCT) and zero-

crossings. Functionals can be applied repeatedly in a hierarchical structure. This results in a a 

large quantity of variables; the emo_large feature extraction setting that is used in this study 

produces 6557 variables.  

In order to create a suitable data set of phonological features to be used in classification, RF 

was used. The 19 features with highest feature importance coefficients were selected before 

being used by other classification algorithms. 

3.7 – Machine learning models 

For every domain, multiple machine learning algorithms were used to classify psychosis in order 

to find out which model is most capable in distinguishing psychosis patients from controls using 
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the respective data sets. The models that were implemented are Support Vector Machines 

(SVM’s), Logistic Regression (LR), Naïve Bayes (NB), Random Forest (RF) and Stochastic Gradient 

Descent (SGD). The models were implemented using the open source python module Scikit-

learn. In this section, a description of these algorithms will be given. Leave-two-out cross-

validation (L2O-CV) was implemented to optimize parameter settings for every model while 

minimizing risk of overfitting. A description of this process is also given. 

3.7.5 - Support Vector Machine 

When used for classification, Support Vector Machines (SVMs) separate a given set of binary 

labeled training data with a hyperplane that is maximally distant from these data points. When 

SVMs are combined with kernel functions, they become applicable even when linear separation 

is not possible. A kernel function maps the dataset into a higher dimensional space where a 

hyperplane can then be found that does separate the samples. In this study, the Radial Basis 

Function (RBF) is applied, whose value depends only on the distance between two points. The 

hyperplane found by an SVM corresponds to a decision boundary in the input space. The 

location of a data point from a test set in respect to this hyperplane then determines which class 

is assigned to that point. A benefit of SVMs is that they can be used to identify instances whose 

established classification is incorrect. SVMs are well suited to working with high dimensional 

data and are remarkably proof against sparse and noisy data (Furey, et al., 2000). 

3.7.1 – Logistic Regression 

Logistic Regression (LR) is one of the most used Machine Learning algorithms for binary 

classification. The LR classifier assigns a class to a data point based on the logistic function whose 

values lie between 0 and 1. The LR hypothesis is  

ℎ𝜃(𝑥⃑) = 𝑔(𝜃0 + 𝜃1𝑥1 + ⋯ + 𝜃𝑛𝑥𝑛) 

where 𝑥⃑ is the feature vector of a data point and 𝑔 is the logistic function. Based on the value of 

ℎ𝜃(𝑥⃑) in respect to a certain threshold, one of two classes will be assigned to the data point 𝑥⃑. 

The optimization problem of a LR classifier consists of computing the optimal parameter vector 

𝜃.  The LR classifier is suitable for dichotomous data. It can handle both dense and sparse input. 

An advantage of LR is its simplicity; it is highly interpretable, relatively easy to implement and 

training is efficient. However, solving non-linear problems with LR is more difficult to implement 

(James, Witten, Hastie, & Tibshirani, 2013).  



18 
 

3.7.2 - Naive Bayes 

Bayesian classifiers assign the most likely class to an example that is described by its feature 

vector. The Naive Bayes classifier (NB) simplifies learning by assuming that features are 

independent, given a class. Although independence is an unrealistic assumption, NB often 

competes well with more sophisticated classifiers in practice; its classification decision is often 

correct even when its probability estimates are inaccurate. The NB classifier has proven effective 

in many practical applications, including text classification and medical diagnosis (Rish, 2001).  

3.7.3 - Random Forest classifier 

The Random Forest classifier (RF) consists of a combination of tree classifiers where each 

classifier is generated using a randomly selected combination of features. Each tree in RF casts 

a unit vote for the most popular class to classify an input vector. RF uses averaging over the tree 

classifiers, which improves the accuracy of the overall model and controls overfitting (Pal, 2005). 

A benefit of RF is that its decision trees can be seen as a collection of if-statements, which makes 

the results highly interpretable (James, Witten, Hastie, & Tibshirani, 2013).    

3.7.4 – Stochastic Gradient Descent classifier 

The Stochastic Gradient Descent (SGD) classifier implements linear classification models (e.g. 

SVM, logistic regression) with SGD learning; at each iteration the gradient is estimated on a 

single data point that is randomly selected, and weights are updated accordingly. SGD decreases 

the error with respect to one data point at a time. The algorithm does not remember which data 

points were visited during previous iterations (Bottou, 2010). Applying SGD learning to linear 

classifiers speeds up computation time (Wijnhoven & de With, 2010).   

3.7.5 – Evaluation of classification models 

All classification algorithms in this study have parameters that can be tuned. Tuning of these 

parameters has a great impact on the performance of the models; parameter tuning is often 

more important than the choice of algorithm (Lavesson & Davidsson, 2006). In order to find the 

optimal parameter setting for each combination of classifier and data set, leave-two-out cross-

validation (L2O-CV) is implemented. L2O-CV is a method for estimating pointwise out-of-sample 

prediction accuracy from a trained classification model. It requires refitting the model with n/2 

different training sets, where n is the number of available data points. In our case, this means 

that the model is trained 50 times in total. Each time the data set is partitioned by withholding 

two data points, one psychosis patient and one healthy control, of which the classes are 

predicted by the model that is trained on the remaining 98 data points. All data points are used 
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as testing point exactly once (Vehtari, Gelman, & Gabry, 2016). An average accuracy score over 

all 50 partitions is then calculated. This process is repeated for all possible combinations of 

parameter settings of a model.  

Performance of a model is measured not only by accuracy, but by precision and recall as 

well. A data point can be labeled in 4 different ways which are given in the confusion matrix in 

table 3.2. 

 Table 3.2 

Confusion matrix 

  True value 

P
re

d
ic

te
d

 

va
lu

e
 

 Control  Psychotic 

Control True negative False negative 

Psychotic False positive True positive 

 

For every fold (one instance of the 50 times the data set is partitioned during L2O-CV), 

the labels of two data points are predicted. The entries of the confusion matrix for these 

predictions are recorded. When the cross-validation process is completed, accuracy, precision 

and recall scores are calculated. Accuracy score is  

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

100
 

and measures the percentage of correctly labeled data points. Precision is the ratio  

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

and is a measure for the model’s ability to not label negative samples as positive. Recall is the 

ratio  

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

and measures the model’s ability to find all the positive samples of a data set (Powers, 2011). 

Only accuracy scores are used to determine the optimal parameter setting. Recall and precision 

scores are used to gain insight of the prediction abilities of the classifier and are used to compare 

the performance of different classifiers.  

After the optimal parameter setting of a model has been established, training is 

repeated on the full training set using this setting. After the model has been trained on the 
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training data set in its entirety, a test set can be used to validate in-training scores. Due to time 

limits, validation of the models has not yet been carried out.  

To increase our understanding of the differences between normal and psychotic speech, 

it is informative to know which features of speech play an important role in the classification 

process; these measures are important for separating healthy controls from psychotic patients.  

Using the Scikit-learn tools, feature importances for both SVM with linear kernel can be accessed 

and visualized.  

3.8 - Combining the domains 

Combining the results from the different classifiers and domains of speech makes analyzing the 

results on a participant level possible. We are interested in which participants are relatively 

often misclassified and who receive a correct label most of the time. This information can be 

extracted from the accuracy, precision and recall scores in the following way: per fold in the 

cross-validation process two subjects (one from the patient and one from the control group) 

receive a predicted label. For each classifier, the test set in a specific fold includes the same 

subjects, which makes comparison of each subject over the different classifiers possible. As 

there is only one patient and one control per fold, accuracy and precision scores must be either 

0, ½ or 1 and recall must be either 0 or 1. Because of how these scores are calculated, there are 

only 4 possible combinations of these values, which makes the identification of a predicted label 

a deterministic process. Whether the participant from the patient group and the healthy control 

received a correctly predicted class label can be read off table 3.3.  

Table 3.3. 

Table to read out the correctness of a predicted label for the 

patient and control in the test set of a fold of L2O-CV using the  

accuracy, precision and recall scores of that fold.  

Accuracy Precision Recall 
Correctly classified? 

Patient Control 

1 1 1 Yes Yes 

0.5 0.5 1 Yes No 

0.5 0 0 No Yes 

0 0 0 No No 

 

Using table 3.3, we can calculate whether a subject’s predicted class was correct and derive the 

predicted class for each classifier and domain. The mode of the predicted classes for a subject 
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can then be calculated over all classifiers and domains. The mode of a set of values is the value 

that appears most often. This metric is a form of ensemble learning and provides a classification 

of a subject based on multiple classifiers. The mode is expected to have lower variance and 

thereby higher accuracy than a single classifier would have (Polikar, 2012).   

3.9 - Statistical analysis 

As mentioned in section 3.7, feature importances are only visualized for the SVM model. Due to 

time limitations, no further methods for data visualizations are implemented. To gain more 

insight into the exact ways syntax, semantics and phonology of psychotic speech differs from 

normal speech, statistical analysis is applied. Independent-samples t-tests are conducted to 

compare the selected features of the T-Scan, Word2Vec and OpenSMILE data sets for the patient 

group and controls. As this is an exploratory study and the results from the statistical analyses 

are complementary the evaluation of the classification models, we have chosen not to correct 

for multiple testing. We are however aware of the consequential increased risk of finding 

correlations by chance. The results of these analyses can help to understand the classification 

processes described in the previous chapter; findings can explain why certain features are 

important in the classification process. It improves interpretability of the machine learning 

models and underpins why a certain decision is made, which is valuable as these models are 

designed for use in clinical diagnosis. Besides, results from the statistical analyses can be used 

in the feature selection process of future comparable studies.   
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Chapter 4 

Results 

In this chapter, performance of the classification algorithms is presented per domain of speech 

after a general report of our findings has been given. Figure 4.1 shows in-training accuracy scores 

for each classification algorithm on the T-Scan, Word2Vec and OpenSMILE data sets.  

Figure 4.1 shows that all possible combination of classifier and data sets achieved 

accuracy scores between 0.67 and 0.78. As a reminder, these scores are the averages of all leave-

one-out cross validation scores. Note that model performance strongly depends on the data set 

that is used for classification. No single classifier can be pointed out that consistently attains 

highest accuracy. After calculating average accuracy scores per classifier, we find that the SVM 

and RF classification algorithms achieve the highest overall accuracy. The NB model performs 

worst on average. Looking at the separate data sets, it is striking that OpenSMILE consistently 

achieves relatively high accuracy. Average accuracy scores per data set were also computed. For 

T-Scan, average accuracy was 0.726; for Word2Vec 0.716 and for OpenSMILE 0.758.  

 

Figure 4.1. In-training accuracy scores of classifiers trained on T-Scan, Word2Vec and OpenSMILE data 

sets. SVM stands for Support Vector Machine, LR for Logistic Regression, NB for Naïve Bayes, RF for 

Random Forest and SGD for Stochastic Gradient Descent. 
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4.1 - T-Scan 

Table 4.1 contains the performance scores (accuracy, precision and recall) of the classification 

models trained on the T-Scan data set. Models were trained using the optimized parameter 

setting as found using leave-one-out cross validation. The optimized parameter settings per 

classification algorithm are given in table 4.2. 

Table 4.1 

Performance scores of the optimized models trained on the T-Scan data set. 

Model Accuracy score Precision score Recall score 

Support Vector Machine 0.73 0.58 0.64 

Logistic Regression 0.72 0.58 0.66 

Naïve Bayes 0.69 0.53 0.60 

Random Forest 0.74 0.59 0.66 

Stochastic Gradient Descent 0.75 0.62 0.70 

 

 Note that all performance scores are above 0.5, which means that all models are better 

at classifying psychosis from controls than a procedure that randomly assigns classes would be. 

Precision scores lie relatively close to 0.5 in comparison to the other performance measures. As 

precision measures the ratio of true positives to the total of positively classified cases, this 

means that relatively many control cases are classified as psychotic; as recall scores give us the 

proportion of psychotic cases that were classified as such. In figure 4.2, precision score is plotted 

against recall score for each model.  

Figure 4.2. Recall and precision scores of the optimized models trained on the T-Scan data. 
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Regarding the overall performance on the T-Scan data set, we deduce from table 4.1 

and figure 4.2 that the SGD model performed best, and the NB model performed worst. The 

optimal parameter settings found in this process are given in table 4.2.  

Table 4.2  

Optimized parameter values for the classification algorithms on T-Scan data. 

Classification algorithm Optimized parameter values 

Support Vector Machine C = 10 

gamma = 0.1 

kernel = rbf 

Logistic Regression C = 1 

penalty = l2 

tol = 1 x 10-6 

Naïve Bayes var_smoothing = 1 x 10-10 

Random Forest criterion = entropy 

min_samples_leaf = 2 

min_samples_split = 3 

Stochastic Gradient Descent alpha = 0.01 

loss = log 

penalty = elastic net 

To gain insight in which features play an important role in the classification process, an 

SVM with linear kernel was run on the T-Scan data. The feature importances of the 20 most 

important features in classification for the SVM model with linear kernel are shown in figure 4.3. 

A clarification of the variable names in this figure can be found in table 3.1. 

Feature importance coefficient 

Figure 4.3. Feature importances of the 20 most important features of T-Scan data of a Support Vector 

Machine with linear kernel. 
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4.2 - Word2Vec 

To create a smaller data set more suitable for classification, the top 20 features of the Word2Vec 

data for the Random Forest classifier were selected. These 20 features were then used by the 

other classifiers. Table 4.3 lists these features. 

Table 4.3 

Selected features from the Word2Vec data set. 

1 Var_summary_5 

2 Min_summary_9 

3 Min_summary_17 

4 Min_simple_8 

5 Min_summary_20 

6 Mean_summary_14 

7 Max_simple_18 

8 Max_simple_17 

9 Max_summary_10 

10 Mean_summary_2 

11 Min_simple_3 

12 Var_simple_17 

13 Var_simple_19 

14 Var_simple_10 

15 Var_simple_14 

16 Max_summary_12 

17 Var_simple_9 

18 Max_summary_17 

19 Var_simple_5 

20 Min_simple_20 

Var stands for variance, min for minimum, 

max for maximum and n for window size. 

Summary and simple are explained in 

section 3.5. 

Table 4.4 contains the performance scores of the classification models trained on the 

Word2Vec data subset. Models were trained using the optimized parameter setting found using 

cross validation. These parameter settings are given in table 4.5.  
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Table 4.4 

Performance scores of the optimized models on the Word2Vec data subset. 

Model Accuracy score Precision score Recall Score 

Support Vector Machine 0.75 0.59 0.64 

Logistic Regression 0.71 0.57 0.66 

Naïve Bayes 0.72 0.54 0.58 

Random Forest 0.73 0.58 0.64 

Stochastic Gradient Descent 0.67 0.48 0.58 

 

Table 4.5 

Optimized parameter values for the classification algorithms on 

Word2Vec data subset.  

Classification algorithm Optimized parameter values 

Support Vector Machine C = 10 

gamma = 0.1 

kernel = rbf 

Logistic Regression C = 1 

penalty = l1 

tol = 0.1 

Naïve Bayes var_smoothing = 0.01 

Random Forest criterion = entropy 

min_samples_leaf = 2 

min_samples_split = 4 

Stochastic Gradient Descent alpha = 1 x 10-7 

loss = squared hinge 

penalty = elastic net 
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Note again that all performance scores are above 0.5. As was the case for the T-Scan 

data set, precision scores are low in comparison to the other performance measures. In figure 

4.4, precision score is plotted against recall score for each model. 

Note that as opposed to the T-Scan data set, the SGD classifier has lowest performance 

scores on the Word2Vec data. The SVM classifier has highest performance scores.   

Figure 4.5 shows the feature importance coefficients for the 20 variables that were 

selected using RF. Notice that the label ‘simple’ appears relatively often in the list of variables in 

comparison to the label ‘summary’. Recall that for the simple variables minimum, maximum, 

mean and variance were calculated on subsets of the data resulting from a moving window size 

of size n, while for the summary variables the data was split in n disjoint sets. Especially variables 

of the form ‘var_simple_n’, which measure the variance of coherence of all instances of a moving 

window of size n, appear relatively high in the list.  

Figure 4.4. Recall and precision scores of the optimized models on Word2Vec data subset. 
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Figure 4.5. Feature importance coefficients for the top 20 variables of the Word2Vec 

data for a Support Vector Machine with linear kernel. 
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4.3 – OpenSMILE 

As was the case with the Word2Vec data, a subset of features from the OpenSMILE data was 

selected using the Random Forest classifiers. The selected features are enumerated in table 4.6. 

Table 4.6 

Selected features from the OpenSMILE data set. 

1. Pcm_fftMag_melspec_sma_de[4]_percentile95.0 

2. Mfcc_sma[9]_stddev 

3. Mfcc_sma[9]_kurtosis 

4. Mfcc_sma_de_de[2]_peakMean 

5. Pcm_fftMag_spectralCentroid_sma_amean 

6. Pcm_fftMag_melspec_sma_de_de[6]_qregerrA 

7. Pcm_fftMag_dband0-650_sma_variance 

8. Pcm_fftMag_melspec_sma_de_de[14]_maxPos 

9. Pcm_fftMag_melspec_sma[19]_qregc3 

10. Pcm_fftMag_melspec_sma[24]_nzqmean 

11. Mfcc_sma[12]_linregc1 

12. Pcm_fftMag_melspec_sma_de_de[12]_iqr1-2 

13. Pcm_fftMag_melspec_sma_de[17]_variance 

14. Mfcc_sma_de[4]_variance 

15. Pcm_fftMag_spectralFlux_sma_amean 

16. Pcm_fftMag_melspec_sma[15]_iqr1-3 

17. F0env_sma_qregc3 

18. Pcm_fftMag_spectralRollOff50.0_sma_de_de_iqr2-3 

19. Pcm_fftMag_melspec_sma[6]_iqr1-3 

A description of the variable names can be found in Eyben, Wöllmer & 

Schuller, 2010.  

 

Table 4.7 contains the performance scores of the classification models trained on the 

OpenSMILE data subset. were trained using the optimized parameter setting found using cross 

validation. These parameter settings are given in table 4.8.  
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Table 4.7 

Performance scores of the optimized models on the OpenSMILE data subset. 

Model Accuracy score Precision score Recall Score 

Support Vector Machine 0.78 0.64 0.70 

Logistic Regression 0.77 0.65 0.72 

Naïve Bayes 0.73 0.68 0.84 

Random Forest 0.77 0.66 0.72 

Stochastic Gradient Descent 0.74 0.63 0.76 

 

Table 4.8 

Optimized parameter values for the classification algorithms on 

OpenSMILE data subset.  

Classification algorithm Optimized parameter values 

Support Vector Machine C = 100 

gamma = 0.01 

kernel = rbf 

Logistic Regression C = 10 

penalty = l2 

tol = 1 x 10-6 

Naïve Bayes var_smoothing = 0.1 

Random Forest criterion = gini 

min_samples_leaf = 2 

min_samples_split = 2 

Stochastic Gradient Descent alpha = 0.01 

loss = squared_hinge 

penalty = l2 

 

 We notice that classification using the OpenSMILE data performs consistently better 

than when T-Scan or Word2Vec data is used; all performance scores for each classifier is higher 

for the OpenSMILE data subset than for the T-Scan or Word2Vec data sets. Recall scores for 

OpenSMILE lie within the range from 0.70 to 0.84, whereas recall scores for T-Scan lie between 

0.60 and 0.70 and for Word2Vec between 0.58 and 0.66. OpenSMILE also generates better 

precision scores; namely scores ranging from 0.63 to 0.68, compared to scores from 0.53 to 0.59 
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for T-Scan and scores from 0.48 to 0.59 for Word2Vec. In figure 4.6, precision score is plotted 

against recall scores for the results from the OpenSMILE data subset. 

In figure 4.7, the feature importance coefficients of the selected features from the 

OpenSMILE data are depicted.  

4.4 – Combining the domains 

The accuracy, precision and recall scores for each classifier with optimal parameter setting can 

be found in appendix 4.A. This information was used to identify the predicted class of each 

subject for each classifier, of which the results can be found in appendix 4.B. From these results, 

we inferred for each participant the percentage of correctly predicted class per domain, which 

is given in table 4.9.  

 

Feature importance coefficient 

Figure 4.7. Feature importance coefficients for the top 20 variables of the OpenSMILE data of a Support Vector 

Machine with linear kernel. 
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Figure 4.6. Recall and precision scores of the optimized models on OpenSMILE data subset. 
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Table 4.9 

Percentage of correctly predicted class and modus of predicted 

classes per subject. 

Fold 
subjects 

class 

Percentage of correct class predictions 
M 

T-Scan Word2Vec OpenSMILE 

1 p 100 40 100 p 

 c 100 80 20 c 

2 p 100 100 100 p 

 c 80 0 60 c 

3 p 100 100 100 p 

 c 100 100 100 c 

4 p 100 60 100 p 

 c 20 100 100 c 

5 p 100 60 100 p 

 c 100 100 100 c 

6 p 20 0 100 c 

 c 80 100 60 c 

7 p 0 100 100 p 

 c 100 100 80 c 

8 p 80 60 100 p 

 c 100 80 80 c 

9 p 100 100 100 p 

 c 100 100 100 c 

10 p 0 40 20 c 

 c 20 40 100 p 

11 p 60 20 20 c 

 c 20 80 0 p 

12 p 100 80 100 p 

 c 0 100 100 c 

13 p 100 100 100 p 

 c 80 100 100 c 

14 p 40 60 40 c 

 c 20 0 80 p 

15 p 40 20 40 c 

 c 100 100 100 c 

16 p 100 100 100 p 

 c 100 100 100 c 

17 p 0 0 80 c 

 c 100 100 100 c 

18 p 100 80 100 p 

 c 40 100 100 c 

19 p 100 100 40 p 

 c 100 100 80 c 

20 p 100 80 80 p 

 c 100 100 100 c 

21 p 0 20 0 c 

 c 20 100 100 c 

22 p 20 80 40 c 

 c 60 100 100 c 

23 p 40 100 40 c 
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 c 100 60 100 c 

24 p 60 0 80 p 

 c 100 100 80 c 

25 p 0 0 20 c 

 c 100 60 80 c 

26 p 100 100 100 p 

 c 80 80 80 c 

27 p 100 80 100 p 

 c 60 80 0 c 

28 p 60 0 20 c 

 c 100 80 60 c 

29 p 100 100 60 p 

 c 100 40 80 c 

30 p 40 80 20 c 

 c 60 100 80 c 

31 p 100 80 100 p 

 c 100 100 80 c 

32 p 0 60 0 c 

 c 100 80 100 c 

33 p 100 60 100 p 

 c 20 100 100 c 

34 p 100 100 80 p 

 c 100 60 80 c 

35 p 40 20 100 c 

 c 100 100 20 c 

36 p 100 100 100 p 

 c 100 100 100 c 

37 p 100 60 60 p 

 c 100 20 60 c 

38 p 0 40 80 c 

 c 100 60 40 c 

39 p 100 100 100 p 

 c 100 100 100 c 

40 p 60 40 40 c 

 c 100 40 60 c 

41 p 60 20 100 p 

 c 100 80 100 c 

42 p 0 40 20 c 

 c 100 80 60 c 

43 p 0 0 100 c 

 c 100 100 100 c 

44 p 100 100 100 p 

 c 80 100 80 c 

45 p 100 60 100 p 

 c 80 100 100 c 

46 p 80 100 100 p 

 c 100 80 40 c 

47 p 40 80 100 p 

 c 100 80 0 c 

48 p 100 100 100 p 
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 c 60 60 80 c 

49 p 20 80 100 p 

 c 100 20 20 p 

50 p 100 100 100 p 

 c 20 100 60 c 

p stands for patient group, c for control group. M stands for the 

mode has as value the class that was predicted most often over 

all classifiers and domains for that subject.  

 

Table 4.9 shows that for 10 subjects from the psychosis group and 11 subjects from the 

control group, the predicted class is correct for every classifier in each domain. There are 3 

subjects, all from the patient group, that received only 0 to 40 percent correctly predicted 

classes for each domain of speech. It is striking that a low percentage for one domain of speech 

often occurs together with a high percentage for another domain of speech. Accuracy, recall and 

precision scores are calculated for the mode of all classifiers taken over the three domains; 

accuracy is 0.78, recall is 0.64 and precision is 0.89.       

4.5 – Statistical analysis 

4.5.1 - Syntax 

In table 4.10, the results of independent t-tests on the selected T-Scan features are reported.  

 

Table 4.10 

Results of independent t-tests on T-Scan data for patients and control group 

Variable name Patients group Control group  

 M SD M SD t-score p-value 

D_level 1.825 0.819 2.577 0.747 4.796 <0.001* 

Al_gem 0.970 0.317 1.302 0.306 5.332 <0.001* 

Onbep_nwg_dz 0.140 0.068 0.175 0.552 2.856 0.005* 

Conn_temp_dz 0.102 0.067 00113 0.040 1.010 0.315 

Conn_reeks_zin_dz 0.068 0.036 0.076 0.035 1.010 0.315 

Conn_contr_dz 0.068 0.031 0.089 0.029 3.581 0.001* 

Conn_caus_dz 0.126 0.057 0.163 0.046 3.647 <0.001* 

Ww_tt_p 82.894 13.785 87.597 12.812 1.767 0.080 

Vd_vrij_dz 0.126 0.050 0.129 0.045 0.356 0.723 

Inhwrd_d 473.256 25.508 478.914 16.421 1.319 0.190 

Pv_Frog_d 127.776 10.326 128.257 11.363 0.222 0.825 

Ontk_tot_d 25.289 8.987 22.266 7.202 1.856 0.066 
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Pers_vnw1_d 92.599 16.349 85.637 13.264 2.338 0.021* 

Pers_vnw3_d 8.544 5.429 7.701 4.280 0.863 0.390 

Bvnw_d 88.291 15.487 93.219 15.320 1.599 0.113 

Vg_d 73.245 14.300 77.388 11.802 1.580 0.117 

Vnw_d 192.313 16.013 193.234 11.552 0.330 0.742 

Lidw_d 45.889 12.137 50.795 8.546 2.337 0.021* 

Tuss_d 58.354 26.856 33.404 13.236 5.892 <0.001* 

Int_bvnw_d 18.998 8.550 20.405 9.154 0.795 0.429 

Alg_bijw_d 114.466 23.403 116.462 20.048 0.458 0.648 

Spec_bijw_d 26.488 8.635 27.778 6.943 0.823 0.412 

M stands for mean, SD for standard deviation. Scores for independent t-test where 

equal variances for patient group and control group are assumed are reported under 

t-score. Degrees of freedom is 98 for each entry. P-values smaller than 0.05 are 

highlighted. 

 

Significant differences between groups are found for D_level, Al_gem, Onbep_nwg_dz, 

Conn_contr_dz, Conn_caus_dz, Lidw_d, and Tuss_d.   

  The  D_level  feature measures syntactic complexity and is the second most important 

feature in the classification process of an SVM with linear kernel. From our literature review, we 

expected schizophrenia patients to utter syntactically less complex sentences. Our findings are 

in accordance with this expectation, as D_level is significantly lower for the patient group (M = 

1.825, SD = 0.819) than for the control group (M = 2.577, SD = 0.747; t(98) = 4.736, p < 0.001), 

indicating that psychotic patients use less complex sentence structures.  

The density of articles, measured by Lidw_d, is the most important classification feature 

for an SVM with linear kernel. Density of articles is significantly lower for the patient group (M 

= 0.970, SD = 0.317) than for the control group (M = 1.302, SD = 0.306; t(98) = 5.332, p < 0.001). 

We also expected differences in the use of other parts of speech, namely decreased use 

of determiner pronouns, especially first-person, nouns and adjectives. Although psychotic 

patients use significantly more personal pronouns (M = 92.599, SD = 16.349) than controls (M = 

85.637, SD = 13.264; t(38) = 2.338, p = 0.021), no significant difference is found for third-person 

pronouns (t(38) = 0.863, p = 0.390). Patients use significantly more interjections (M = 58.354, SD 

= 26.856) than controls (M = 33.404, SD = 13.236; t(98) = 5.892, p < 0.001). 

Lastly, Al_gem is significantly lower for psychotic speech (M = 0.970, SD = 0.317) than 

for normal speech (M = 1.302, SD = 0.306; t(98) = 5.332, p < 0.001). As Al_gem measures the 
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distance between to clauses that are dependent of each other, this implies that psychotic 

patients utter sentences of a simpler structure, which is conform the view that psychotic speech 

is syntactically less complex.   

4.5.2 – Semantics 

Table 4.11 contains the results of independent t-tests conducted on the selected Word2Vec 

features.  

Table 4.11 

Results of independent t-tests on Word2Vec data for patients and control group 

Variable name Patients group Control group  

 M SD M SD t-score p-value 

max_simple_17 0.771 0.0280 0.769 0.0219 -0.456 0.649 

max_simple_18 0.764 0.0210 0.771 0.0280 -0.785 0.435 

max_summary_10 0.768 0.0271 0.764 0.0210 1.31 0.194 

max_summary_12  0.968 0.0060 0.768 0.0271 1.40 0.166 

max_summary_17 0.966 0.0091 0.968 0.0060 1.13 0.263 

mean_summary_2 0.971 0.0055 0.966 0.0091 -1.76 0.081 

mean_summary_14 0.969 0.0096 0.971 0.0055 0.313 0.755 

min_simple_3 0.975 0.0046 0.969 0.0096 -1.27 0.208 

min_simple_8 0.973 0.0063 0.975 0.0046 -3.02 0.003* 

min_simple_20  0.696 0.0094 0.973 0.0063 -2.27 0.025* 

min_summary_9 0.700 0.0108 0.696 0.0094 -0.444 0.658 

min_summary_17 0.930 0.0040 0.700 0.0108 -0.299 0.766 

min_summary_20 0.930 0.0049 0.930 0.0040 -1.01 0.317 

var_simple_5 0.489 0.0203 0.930 0.0049 -3.67 <0.001* 

var_simple_9 0.494 0.0223 0.489 0.0203 -3.77 <0.001* 

var_simple_10 0.361 0.0181 0.494 0.0223 -4.04 <0.001* 

var_simple_14 0.375 0.0264 0.361 0.0181 -3.70 <0.001* 

var_simple_17 0.313 0.0226 0.375 0.0264 -3.52 0.001* 

var_simple_19 0.325 0.0311 0.313 0.0226 -3.55 0.001* 

var_summary_5 0.786 0.0247 0.325 0.0311 -0.581 0.562 

M stands for mean, SD for standard deviation. Scores for independent t-test where 

equal variances for patient group and control group are assumed are reported under 

t-score. Degrees of freedom is 98 for each entry. P-values smaller than 0.05 are 

highlighted. 
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   Min_simple_8 is significantly lower for the patient group (M = 0.976, SD = 0.006) 

than for the control group (M = 0.975, SD = 0.005; t(98) = -3.02, p = 0.003), as is the case for  

min_simple_20 (Mpatients = 0.696, SDpatients = 0.009; Mcontrols = 0.973, SDcontrols= 0.006; t(98) = -2.27, 

p = 0.025). However, no significant differences were found for maximum or mean simple 

coherence measures. As min_sample_8 and min_sample_20 are measures for the lowest 

coherence for an individual’s speech within a window of respectively 8 and 20 words, these 

findings suggest that speech from subjects with a diagnosis in the psychosis spectrum contains 

at least some utterances with lower coherence than can be found in normal speech.  

4.5.3 – OpenSMILE 

Table 4.12 contains the results of the independent t-tests for the selected openSMILE features.  

Table 4.12 

Results of independent t-tests on OpenSMILE data for patients and control group 

Variable name 
Patient group Control group  

M SD M SD T-score P-value 

mfcc_sma[9]_stddev 5.77 0.904 5.78 0.600 0.025 0.980 

mfcc_sma[9]_kurtosis 3.43 0.373 3.44 0.351 0.218 0.828 

mfcc_sma[12]_linregc1 6.65x10-5 1.40x10-4 1.95x10-5 5.53x10-5 2.12 0.037 

pcm_fftMag_melspec_sma[6]_iqr1-3 1.14x104 1.54x104 1.64x104 1.84x104 1.48 0.142 

pcm_fftMag_melspec_sma[15]_iqr1-3 1.42x104 2.57 x104 1.56x104 1.54x104 0.332 0.740 

pcm_fftMag_melspec_sma[19]_qregc3 1.87x104 2.50 x104 3.23x104 6.87x104 1.32 0.191 

pcm_fftMag_melspec_sma[24]_nzqmean 2.46x109 7.43x109 8.73x1010 6.01x1011 0.998 0.321 

F0env_sma_qregc3 355 63.7 350 45.5 -0.444 0.658 

pcm_fftMag_fband0-650_sma_variance 1.53x10-4 5.23x10-4 2.87x10-4 8.44x10-4 0.955 0.342 

pcm_fftMag_spectralFlux_sma_amean 0.0149 0.0184 0.0359 0.117 1.25 0.213 

pcm_fftMag_spectralCentroid_sma_ame

an 

7.05x103 2.55x103 5.66x103 1.32x103 -3.41 0.001 

mfcc_sma_de[4]_variance 2.12 0.532 2.54 0.630 3.60 0.001 

pcm_fftMag_melspec_sma_de[4]_perce

ntile95.0 

6.03x103 6.74x103 9.03x103 8.23x103 1.99 0.049 

pcm_fftMag_melspec_sma_de[17]_varia

nce 

1.04x108 3.39x108 1.07x108 2.47 x108 0.048 0.962 

pcm_fftMag_spectralRollOff50.0_sma_d

e_peakMean 

2.03x103 489 1.88x103 185 -1.93 0.057 

mfcc_sma_de_de[2]_peakMean 0.631 0.058 0.678 0.0421 4.63 <0.001* 

pcm_fftMag_melspec_sma_de_de[6]_qr

egerrA 

4.69 x107 7.71x107 8.84x107 9.41 x107 2.41 0.018 
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pcm_fftMag_melspec_sma_de_de[12]_i

qr1-2 

120 245 161 190 0.939 0.350 

pcm_fftMag_melspec_sma_de_de[14]_

maxPos 

2.73x104 2.03x104 2.70x104 1.97x104 -0.055 0.956 

pcm_fftMag_spectralCentroid_sma_de_

de_iqr2-3 

94.6 29.9 95.3 19.9 0.137 0.891 

M stands for mean, SD for standard deviation. Scores for independent t-test where equal variances for 

patient group and control group are assumed are reported under t-score. Degrees of freedom is 98 for 

each entry. P-values smaller than 0.05 are highlighted 

 

Mfcc_sma[12]_linregc1 is higher for the patient group (M = 6.65x10-5, SD = 1.40x10-4) 

than for the control group (M = 1.95x10-5, SD = 5.53x10-5; t(98) = 2.12, p = 0.037), as is the case 

for mfcc_sma_de_de[2]_peakMean (Mpatient = 0.631, SDpatiens = 0.058; Mcontrols = 0.0421, SDcontrols 

= 4.63; t(98) = 4.63, p < 0.001). Mfcc_sma_de[4]_variance is lower for the patients group (M= 

2.12, SD = 0.532) than for the control group (M = 2.54, SD = 0.630; t(98) = 3.60, p = 0.001). Mfcc 

is a measure for Mel-Frequency-Cepstral Coefficients and is a representation of the short-term 

power spectrum of a sound (Eyben, Wöllmer, & Schuller, 2010). In sound analysis, mfcc is often 

used to describe timbre, a feature that is observed trough the presence and absence of many 

different properties of sound  and cannot be linked directly to one physical dimension (Cosi, De 

Goli, & Prandoni, 1994). These results suggest that the timbre of speech of psychosis patients 

differs from controls.  

Pcm_fftMag_spectralCentroid_sma_amean is higher for the patient group (M = 

7.05x103, SD = 2.55x103) than for the control group (M = 5.66x103, SD = -3.41; t(98) = -3.41, p = 

0.001), pcm_fftMag_melspec_sma_de[4]_percentile95.0 is lower for the patient group (M = 

6.03x103, SD = 6.74x103) than for the control group (M = 9.03x103, SD = 8.23x103; t(98) = 1.99, p 

= 0.049), as is the case for pcm_fftMag_melspec_sma_de_de[6]_qregerrA (Moatients =  4.69 x107, 

SDpatients = 7.71x107; Mcontrols = 8.84x107, SDcontrols = 9.41 x107; t(98) = 2.41, p = 0.018). Pcm stands 

for pulse code modulation and is a conversion of speech waves into coded pulses (Eyben, 

Wöllmer, & Schuller, 2010).  
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Chapter 5 

Discussion 

We demonstrate the possibility of distinguishing psychotic patients from healthy controls using 

automatic speech-based techniques on different domains of speech. The findings show that by 

using syntactic, semantic or phonological information about a person’s speech, reasonably high 

accuracy scores for classifying psychosis can be achieved. Furthermore, all three domains of 

speech contain markers that can be used in the classification process. Our findings suggest that 

psychotic speech is syntactically less complex and is characterized by lower article density, a 

higher use of personal pronouns and interjections, lower coherence between clauses and 

deviations in the timbre and wave forms of the sound of speech.    

It is striking that deviancies in article use for schizophrenia patients were not found in 

the studies examining the relationship of syntax and schizophrenia that were included in our 

literature review. However, participants of these studies spoke either English (Çokal, et al., 2019; 

Covington, et al., 2005; Deutsch-Link, 2016; Kuperberg, 2010; Stanislawski, 2019) or Polish 

(Obrebska & Obrebski, 2007). These languages have different grammatical structures and rules 

than the Dutch language. Besides, not all studies examined the same domain of language; 

information was extracted from written essays (Deutsch-Link, 2016) and from speech generated 

during a sentence-picture matching task  (Cokal, Zimmerer, Varley, Watson, & Hinzen, 2019) or 

during open ended interviews (Stanislawski, 2019). The underlying grammatical structure of 

written and spoken texts is different (O'Donnell, 1974). 

From our literature review, we expected psychosis to also be characterized by talk about 

voices and sounds (Rezaii, Walker, & Wolff, 2019). However, the output generated by Word2Vec 

did not contain information of this sort. We expect classification to benefit from incorporation 

of content analysis. For future research, it is recommended to supplement the semantic analysis 

by performing latent content analysis.  

Interpreting the results from the OpenSMILE data set proved to be challenging. Besides 

performance, interpretability of a classifier is very important. We would suggest training the 

classifiers on a subset of OpenSMILE features that are highly explicable, for example the low-

level descriptors in combination with none or one functional applied to those.    

 Our results show that some subjects are misclassified by more classifiers than others. 

Due to time limitations, we have not been able to identify possible similarities for subjects for 

whom this is the case. We suggest researching the correlation between often misclassified 
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subjects to Positive and Negative Syndrome Scale (PANSS) scores, which provide a rating for the 

symptoms of schizophrenia (Kay, Fiszbein, & Opler, 1987).  

To our knowledge, this is the first study to examine syntactic, as well as semantic and 

phonologic features of speech as predictors of psychosis on a single data set. The use of 5 

different classification algorithms on these domains of speech makes this research a 

comprehensive one. Taken together, our findings strongly suggest that speech features can 

serve as an objective classifier for psychosis. The ability to use spontaneous speech that is 

collected during an interview suggests that clinicians may be able to employ speech‐based 

analyses to aid in the diagnostic process.  

There were a number of limitations in this study. First of all, we have conducted internal 

cross-validation on several levels within the classification process. For the Word2Vec and 

OpenSMILE data set, a Random Forest classifier was used for feature selection. Performance 

scores are thus based on the classification of data points that at some point have already been 

involved in the training of the model. To guarantee generalizability, performance of the final 

classification model should be evaluated using a test set that consists of never-before seen data. 

In the case of a larger sample size, a subset of the data set can be held back for this purpose. In 

future research, a larger sample size is also desirable in order to investigate more of the features 

that the automated speech analysis tools make available. The size of our data set led us to select 

only a small subset of features from the available variables to be used in the classification 

process, with the result that several markers for psychosis were most likely discarded. 

Performance of the classification models benefits from incorporation of more variables into the 

design (Jain & Chandrasekaran, 1982). Also, variance can be expected to decrease given a larger 

training set (Brain & Webb, 1999). 

There are numerous methods for feature selection. Which method is chosen greatly 

impacts the performance of a classification model. For this study, the RF classifier was used to 

create a subset of 20 features for the Word2Vec data and 19 features for the OpenSMILE data. 

It is possible that other methods, and consequently other data subsets, would have resulted in 

better performance of the classifiers. For future research, we recommend implementing the 

filter or wrapper methods for feature selection. In filter methods, features are selected on the 

basis of their scores in various statistical tests for their outcome variable. Wrapper methods try 

to use a subset of features and train a model using that subset. Based on previous models, 

features are chosen to be added or removed to the subset (Chandrashekar & Sahin, 2014). 
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Binary classification was used to predict psychosis. A data point was either classified as 

psychotic or healthy. However, this view of psychotic symptoms either being present or 

completely absent does not correspond to the disease profile. Symptom severity varies within 

the patient group, which leads to a large variance. Besides, some psychotic symptoms can to 

some extent also be present in healthy controls. As a result of these factors, speech of a 

psychotic patient that shows less severe symptoms could be more similar to that of a participant 

in the control group than that of another patient. Thus, the perfect dichotomy of participants in 

psychotic of healthy is not expected to perfectly represent the heterogeneous distribution. We 

expect that the classification of psychosis benefits from incorporating symptom severity into the 

classes of the model, or datasets with a clearer division, even if these would be less generalizable 

across populations. 

We are hesitant to state with certainty that we developed a model that only predicts 

psychosis. As stated before, many psychiatric illnesses are characterized by disturbances in 

thought and language. Some symptoms of psychotic speech are also markers for other mental 

disorders. For instance, both PTSD and depression are characterized by slower, more 

monotonous speech (Marmar et al, 2019; Alpert, Pouget & Silva, 2001). While healthy controls 

were screened for former or current mental illnesses, the presence of symptoms of depression 

within the patient group was not ruled out; indeed, depression is one of the components of the 

PANSS symptom score (Leucht, et al., 2005). For the purpose of creating a device or procedure 

that can be used to guide diagnosis of mental diseases, future research should focus on 

incorporating various mental disorders in the classification process, thus using features of 

speech to give a probability measure for various mental diagnoses based on a speech sample. 

The use of binary classification could be the reason that performance of the classifiers did not 

improve significantly by combining syntactic, semantic and phonological features. It is possible 

that the division of the participants into the two classes prevents better classification, because 

the underlying division is not binary.  

Keeping these limitations in mind, we believe that our findings demonstrate the usability 

of automated speech-based techniques in predicting psychosis. We have shown that all 

examined domains of speech contain markers for psychosis. This study contributes to our 

understanding of the exact ways that speech is deviant in schizophrenia patients. Our results 

can be used to guide feature selection in similar studies in the future.  
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Appendices 
 

This thesis comes with python scripts for implementation of the machine learning models, that 

are written by myself for this research. These scripts are not included here because of their size.  
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Appendix 4.A.A 

Accuracy (acc), precision (prec) and recall (rec) scores for each fold in the leave-two-out cross-

validation process of all classifiers on the T-Scan data set.  

  
Logistic 

Regression 
Naive Bayes Random Forest 

Stochastic 
Gradient Descent 

Support Vector 
Machine 

Fold Acc Prec Rec Acc Prec Rec Acc Prec Rec Acc Prec Rec Acc Prec Rec 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 1 1 0.5 0.5 1 1 1 1 

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

4 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 1 1 1 0.5 0.5 1 

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

6 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0.5 1 0.5 0 0 

7 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 

8 1 1 1 1 1 1 0.5 0 0 1 1 1 1 1 1 

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

10 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 

11 0.5 0.5 1 0 0 0 0.5 0 0 0.5 0.5 1 0.5 0.5 1 

12 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 

13 1 1 1 1 1 1 0.5 0.5 1 1 1 1 1 1 1 

14 0.5 0.5 1 0 0 0 1 1 1 0 0 0 0 0 0 

15 1 1 1 0.5 0 0 0.5 0 0 0.5 0 0 1 1 1 

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

17 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 

18 0.5 0.5 1 0.5 0.5 1 1 1 1 1 1 1 0.5 0.5 1 

19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

21 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 

22 0 0 0 0.5 0 0 0.5 0 0 0.5 0.5 1 0.5 0 0 

23 0.5 0 0 1 1 1 1 1 1 0.5 0 0 0.5 0 0 

24 1 1 1 0.5 0 0 0.5 0 0 1 1 1 1 1 1 

25 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 

26 1 1 1 1 1 1 0.5 0.5 1 1 1 1 1 1 1 

27 1 1 1 0.5 0.5 1 1 1 1 0.5 0.5 1 1 1 1 

28 1 1 1 0.5 0 0 0.5 0 0 1 1 1 1 1 1 

29 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

30 0.5 0 0 0 0 0 0.5 0.5 1 1 1 1 0.5 0 0 

31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

32 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 

33 0.5 0.5 1 0.5 0.5 1 1 1 1 0.5 0.5 1 0.5 0.5 1 

34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

35 1 1 1 0.5 0 0 0.5 0 0 0.5 0 0 1 1 1 

36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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38 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 

39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

40 0.5 0 0 1 1 1 1 1 1 0.5 0 0 1 1 1 

41 0.5 0 0 1 1 1 1 1 1 1 1 1 0.5 0 0 

42 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 

43 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 

44 1 1 1 1 1 1 0.5 0.5 1 1 1 1 1 1 1 

45 1 1 1 1 1 1 0.5 0.5 1 1 1 1 1 1 1 

46 1 1 1 1 1 1 1 1 1 1 1 1 0.5 0 0 

47 0.5 0 0 0.5 0 0 1 1 1 1 1 1 0.5 0 0 

48 0.5 0.5 1 0.5 0.5 1 1 1 1 1 1 1 1 1 1 

49 0.5 0 0 0.5 0 0 1 1 1 0.5 0 0 0.5 0 0 

50 0.5 0.5 1 0.5 0.5 1 1 1 1 0.5 0.5 1 0.5 0.5 1 
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Appendix 4.A.B 

Accuracy (acc), precision (prec) and recall (rec) scores for each fold in the leave-two-out cross-

validation process of all classifiers on the Word2Vec data set. 

  
Logistic 

Regression 
Naive Bayes Random Forest 

Stochastic 
Gradient Descent 

Support Vector 
Machine 

Fold acc prec rec acc prec rec acc prec rec acc prec rec acc prec rec 

1 0.5 0 0 0.5 0 0 1 1 1 0.5 0.5 1 0.5 0 0 

2 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

4 1 1 1 0.5 0 0 0.5 0 0 1 1 1 1 1 1 

5 0.5 0 0 1 1 1 1 1 1 0.5 0 0 1 1 1 

6 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

8 0.5 0 0 1 1 1 1 1 1 0.5 0 0 0.5 0 0 

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

10 0.5 0.5 1 0 0 0 0.5 0 0 0 0 0 0 0 0 

11 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0.5 1 0.5 0 0 

12 1 1 1 1 1 1 1 1 1 0.5 0 0 1 1 1 

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

14 0.5 0.5 1 0 0 0 0 0 0 0.5 0.5 1 0.5 0.5 1 

15 0.5 0 0 0.5 0 0 0.5 0 0 1 1 1 0.5 0 0 

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

17 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 

18 0.5 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

20 1 1 1 1 1 1 1 1 1 0.5 0 0 1 1 1 

21 0.5 0 0 1 1 1 0.5 0 0 0.5 0 0 0.5 0 0 

22 1 1 1 1 1 1 1 1 1 0.5 0 0 1 1 1 

23 1 1 1 0.5 0.5 1 0.5 0.5 1 1 1 1 1 1 1 

24 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 

25 0 0 0 0.5 0 0 0.5 0 0 0 0 0 0.5 0 0 

26 1 1 1 1 1 1 0.5 0.5 1 1 1 1 1 1 1 

27 0.5 0.5 1 1 1 1 1 1 1 0.5 0 0 1 1 1 

28 0 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 

29 0.5 0.5 1 1 1 1 0.5 0.5 1 1 1 1 0.5 0.5 1 

30 1 1 1 1 1 1 1 1 1 0.5 0 0 1 1 1 

31 1 1 1 1 1 1 1 1 1 0.5 0 0 1 1 1 

32 0.5 0 0 1 1 1 1 1 1 0.5 0.5 1 0.5 0 0 

33 1 1 1 0.5 0 0 0.5 0 0 1 1 1 1 1 1 

34 0.5 0.5 1 1 1 1 1 1 1 0.5 0.5 1 1 1 1 

35 0.5 0 0 0.5 0 0 1 1 1 0.5 0 0 0.5 0 0 

36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

37 0.5 0.5 1 0 0 0 0.5 0 0 0.5 0.5 1 0.5 0.5 1 

38 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 
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39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

40 0 0 0 0.5 0.5 1 0 0 0 0.5 0 0 0 0 0 

41 1 1 1 0.5 0 0 0 0 0 0.5 0 0 0.5 0 0 

42 0.5 0.5 1 0.5 0 0 1 1 1 0.5 0 0 0.5 0 0 

43 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 

44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

45 1 1 1 0.5 0 0 0.5 0 0 1 1 1 1 1 1 

46 1 1 1 1 1 1 1 1 1 0.5 0.5 1 1 1 1 

47 1 1 1 0.5 0 0 1 1 1 0.5 0.5 1 1 1 1 

48 1 1 1 0.5 0.5 1 0.5 0.5 1 1 1 1 1 1 1 

49 0.5 0.5 1 0.5 0 0 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 

50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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Appendix 4.A.C 

Accuracy (acc), precision (prec) and recall (rec) scores for each fold in the leave-two-out cross-

validation process of all classifiers on the OpenSMILE data set. 

 
Logistic 

Regression 
Naive Bayes Random Forest 

Stochastic 
Gradient Descent 

Support Vector 
Machine 

Fold Acc Prec Rec Acc Prec Rec Acc Prec Rec Acc Prec Rec Acc Prec Rec 

1 0.5 0.5 1 0.5 0.5 1 1 1 1 0.5 0.5 1 0.5 0.5 1 

2 1 1 1 0.5 0.5 1 0.5 0.5 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

6 0.5 0.5 1 1 1 1 1 1 1 1 1 1 0.5 0.5 1 

7 1 1 1 1 1 1 1 1 1 0.5 0.5 1 1 1 1 

8 1 1 1 0.5 0.5 1 1 1 1 1 1 1 1 1 1 

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

10 0.5 0 0 1 1 1 0.5 0 0 0.5 0 0 0.5 0 0 

11 0 0 0 0.5 0.5 1 0 0 0 0 0 0 0 0 0 

12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

14 1 1 1 0 0 0 1 1 1 0.5 0 0 0.5 0 0 

15 1 1 1 1 1 1 0.5 0 0 0.5 0 0 0.5 0 0 

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

17 1 1 1 1 1 1 1 1 1 0.5 0 0 1 1 1 

18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

19 0.5 0 0 1 1 1 0.5 0 0 0.5 0.5 1 0.5 0 0 

20 1 1 1 1 1 1 0.5 0 0 1 1 1 1 1 1 

21 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 

22 0.5 0 0 1 1 1 0.5 0 0 0.5 0 0 1 1 1 

23 1 1 1 0.5 0 0 0.5 0 0 0.5 0 0 1 1 1 

24 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 

25 0 0 0 0.5 0 0 1 1 1 0.5 0 0 0.5 0 0 

26 1 1 1 1 1 1 1 1 1 0.5 0.5 1 1 1 1 

27 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 

28 0.5 0 0 0.5 0.5 1 0 0 0 0.5 0 0 0.5 0 0 

29 0.5 0 0 1 1 1 1 1 1 0.5 0.5 1 0.5 0 0 

30 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0.5 1 0.5 0 0 

31 1 1 1 1 1 1 1 1 1 0.5 0.5 1 1 1 1 

32 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 

33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

34 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 

35 0.5 0.5 1 0.5 0.5 1 1 1 1 0.5 0.5 1 0.5 0.5 1 

36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

37 0.5 0 0 0.5 0.5 1 0.5 0 0 1 1 1 0.5 0 0 

38 0.5 0 0 0.5 0.5 1 1 1 1 0.5 0.5 1 0.5 0 0 



51 
 

39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

40 0.5 0 0 0.5 0.5 1 0.5 0.5 1 0.5 0 0 0.5 0 0 

41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

42 0.5 0 0 0 0 0 0.5 0 0 0.5 0.5 1 0.5 0 0 

43 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

44 1 1 1 0.5 0.5 1 1 1 1 1 1 1 1 1 1 

45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

46 0.5 0.5 1 0.5 0.5 1 1 1 1 1 1 1 0.5 0.5 1 

47 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 

48 1 1 1 0.5 0.5 1 1 1 1 1 1 1 1 1 1 

49 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 1 1 1 

50 1 1 1 0.5 0.5 1 0.5 0.5 1 1 1 1 1 1 1 
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Appendix 4.B 

Predicted labels for each combination of classifier and data set, modus and percentage of 

correctly classified labels for each data point. 

 T-Scan Word2Vec OpenSmile 
M % 

fold point LR NB RF SGD SVM LR NB RF SGD SVM LR NB RF SGD SVM 

1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0.800 
 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0.667 

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.000 
 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 0 1 0.467 

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.000 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.000 

4 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0.867 
 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0.733 

5 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0.867 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.000 

6 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0.400 
 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0.800 

7 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0.667 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0.933 

8 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0.800 
 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0.867 

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.000 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.000 

10 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0.200 
 0 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0.533 

11 1 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0.333 
 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1 0.333 

12 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0.933 
 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0.667 

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.000 
 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.933 

14 1 1 0 1 0 0 1 0 0 1 1 1 0 1 0 0 0 0.467 
 0 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 0.333 

15 1 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0.333 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.000 

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.000 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.000 

17 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0.267 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.000 

18 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0.933 
 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.800 

19 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0.800 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0.933 

20 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0.867 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.000 

21 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0.067 
 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0.733 

22 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 0.467 
 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0.867 

23 1 0 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 0.600 
 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0.867 

24 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1 1 0 0.467 
 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.933 

25 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0.067 
 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0.800 

26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.000 
 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0.800 

27 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0.933 
 0 0 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 0.467 
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28 1 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0.267 
 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0.800 

29 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0.867 
 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0.733 

30 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 0.467 
 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0.800 

31 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0.933 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0.933 

32 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0.200 
 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.933 

33 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0.867 
 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0.733 

34 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0.933 
 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0.800 

35 1 1 0 0 0 1 0 0 1 0 0 1 1 1 1 1 1 0.533 
 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0.733 

36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.000 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.000 

37 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 0.733 
 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0.600 

38 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0.400 
 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0.667 

39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.000 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.000 

40 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 0 0 0.467 
 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0.667 

41 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 0.600 
 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0.933 

42 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0.200 
 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0.800 

43 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0.333 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.000 

44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.000 
 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0.867 

45 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0.867 
 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.933 

46 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0.933 
 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0.733 

47 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0.733 
 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0.600 

48 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.000 
 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0.667 

49 1 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0.667 
 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0.467 

50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.000 
 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0.600 

LR: Logistic Regression; NB: Naïve Bayes; RF: Random Forest; SGD: Stochastic Gradient Descent; SVM: Support 
Vector Machine; M: modus; %: percentage of classifiers that correctly labeled a data point. Green labels are 
correctly classified, red labels are misclassified. This table shows predicted labels for the classifiers trained with 
optimal parameter settings.   

 

 


