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Abstract—Bone marrow lesion syndrome (BMLS) describes
the phenomenon of strong signal intensity changes in the bone
marrow in fluid-sensitive magnetic resonance imaging (MRI).
BMLs have taken up a central presence in many different diseases
affecting the musculoskeletal system, including the spine. As
the condition of the spine is of strong influence to the overall
body’s health, detection and characterization of BMLs could
help in preventing the progression of spine related diseases.
With the increased clinical availability of dual energy computed
tomography (DECT), an alternative method for imaging of
BMLS has presented itself through virtual non-calcium (VNCa)
techniques. In this paper we explore the current state of both
imaging modalities for (semi-)automatic segmentation of BMLs in
the spine, as well as a variety of approaches to the segmentation
of individual vertebrae that could be used to develop a fully
automated process for BML segmentation. We found that for
both MRI and DECT, automatic BML segmentation is still in
its infancy, with few studies attempting the task. Additionally,
manual segmentations of BMLs, which act as the ground truth
for evaluating automated approaches, generally show significant
inter- and intraobserver variability. However, with CT being
the modality of choice in the traumatic setting, its potential
for further developments in material decomposition and various
other advantages that DECT poses over MRI, DECT could
become the future modality of choice in both qualitative and
quantitative imaging of BMLS.

I. INTRODUCTION

THE structure of the spine and its individual vertebrae is
complicated and its condition is of strong influence to the

overall body’s health.[1] Correct identification of pathologies
affecting the vertebrae therefore not only helps in preventing
the progression of spine-related diseases, but also in providing
doctors with necessary information to better design a thera-
peutic schedule.[1] One such disease, affecting the structure
of bone marrow specifically, is known as bone marrow edema
(BME).

BME describes the phenomena of strong signal intensity
changes in fluid-sensitive magnetic resonance imaging (MRI)
acquisitions of bone marrow.[2] Regular bone marrow is filled
by adipocytes and therefore rich in lipid content. In BME,
immune cells and microvessels accumulate in the bone marrow
where they replace the adipocytes, leading to an increase in

water and reduction in fat content.[3] Since the introduction
of the term BME in 1988, further research has revealed a wide
range of edema-like signal changes that can be attributed to
other causes such as bone marrow necrosis, bone marrow fi-
brosis, and trabecular abnormalities.[4] As these abnormalities
are rather non-characteristic for any one cause, the overarching
term of bone marrow lesion (BML) has become preferred to
describe these signal intensity changes, and is widely used.[5]

BMLs have taken up a central presence in many different
diseases that affect the musculoskeletal system, in particular
being associated with many in- and noninflammatory rheuma-
tologic conditions.[6] The actual histopathological processes
behind BMLs, however, still remain largely unknown.[7]

Pain is the main symptom of BMLs, however, the large
variability in causes and underlying disease, as well as in
treatment and prognosis make the management of BMLs an
incredibly difficult and complex challenge.[8] On the whole,
studies on BML syndrome (BMLS) generally remain incon-
clusive, often not meeting the diagnostic accuracy needed to
properly diagnose BMLS.[8] Etiology based classifications of
BML related diseases have been proposed by Starr et al.
and Eriksen and Ringe. BMLS has also been categorized
by means of its underlying cause, into mechanical, reactive
and ischemic.[9][6][2][10][8] Another categorization one often
encounters in literature is that of traumatic (or acute) and non-
traumatic BMLs.[11][12] In posttraumatic settings, BMLs can
serve as a key indicator for non-displaced fractures that might
otherwise be missed in standard radiological images, as even
in the absence of fractures BMLs are often present.[11]

MRI has since the first descriptions of BMLS been the de-
facto standard in the detection of and research into BMLS.[13]
However, in everyday clinical practice, computed tomography
(CT) has always the modality of choice for inspecting and as-
sessing bony structures in the body.[14] Unlike in MR images,
conventional CT does not allow for the visualization of bone
marrow, as the trabecular structure surrounding bone marrow
can not be completely resolved.[15] Recent advancements in
the development and availability of dual-energy or spectral CT
(DECT) have seemed to turn the tides, as through the use of
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Figure 1: Two saggital MR images of the lumbar spine of
a twenty-six-year-old woman with spinal trauma after motor-
cycle accident. (a) is a turbo inversion recovery magnitude
(TIRM) series showing a BML in the upper two quadrants of
the L1 vertebrae (indicated by the arrow). (b) shows a spin-
echo (SE) T1-weighted image demonstrating two distinct acute
fracture lines that affect the anterior and upper (indicated by
arrowheads) cortical surfaces. The images illustrate a typical
case of BMLS developed along acute fracture lines, as well as
BMLs lack of sharp boundaries or anatomical edges. Images
from Cavallaro et al..[16]

DECT, images can be acquired that allow the bone marrow
to be resolved. This development has lead to a wide body of
research since, dedicated to the uses and potential of DECT
for imaging BMLS.

Both MRI and CT are widely available, adapted and es-
tablished modalities in both the clinical and research setting,
each offering their own strengths and weaknesses. This review
article will attempt to provide a relevant overview of some
available work on semi-automatic vertebrae segmentation and
the current state of (semi-)automatic BMLS detection for both
MRI and CT. Through these findings it will be discussed what
modalities and approaches might prove most fertile in realizing
a (semi-)automated method for segmenting vertebral BMLs in
the future.

II. SEGMENTATION OF THE VERTEBRAE

Proper identification of BMLs in the spine is only possible
with accurate and correct segmentation of the individual
vertebrae. As BMLs may appear even in the outer regions
of the bone marrow, accurate delineation of vertebra’s borders

is essential. Although manual segmentation by experts may
prove reliable and accurate, the complex shapes of individual
vertebrae and long length of the spine make manual slice-
for-slice segmentation of vertebrae an exceptionally labour-
intensive task. It is therefore clear that a reliable (semi-
)automated approach to segmentation is the only sustainable
option for processing larger numbers of patients for research
into BMLS of the spine.

Of course a good segmentation can only be performed
on well-acquired images. This means that although the data
may be acquired using different parameters or sequences, a
certain base level of spatial resolution, temporal resolution
and noise is required. A good segmentation approach would
ideally be able to identify and distinguish between individual
vertebrae. Additionally it is required for the method to function
adequately for both healthy vertebrae as well as those affected
by pathologies such as minor fractures, metastases or other
factors that may impact the vertebra’s morphology in the
image.

The segmentation quality of an approach is an important
factor in comparing different methods. A widely standardized
evaluation metric for segmentation quality is unfortunately
not in use, resulting in a large variety of metrics being used
across different studies.[17] This can complicate the process
of comparing study outcomes significantly. During this study
it was observed that one of the most widely used metrics
was the Sørensen–Dice coefficient (DICE). The DICE assumes
comparison between a binary (usually manually segmented)
ground truth and segmentation, being defined between 0 and
1 as two times the overlap divided by the cumulative amount
of voxels of the segmentation and ground truth. Additionally
the DICE can also be used as a measure of reproducibility of
manual segmentation by comparing between segmentations of
different experts.[17]

Another often calculated metric is the Hausdorff distance
(HD). The HD provides the smallest euclidean distance be-
tween a point on the ground truth and any point on the
performed segmentation. This measure can be an indication
of the severity of deviation between two sets and alert for
deviations that would be middled out when judging purely
on the DICE, or other metrics such as average absolute
distance (AAD), mean symmetric surface distance (MSSD) or
mean radial Euclidean distance (MRED). The HD is generally
susceptible to outliers.[17]

Sensitivity (or recall) and specificity may also be mentioned
throughout various articles. They respectively represent the
parts of positive and negative voxels in the ground truth
that are correctly identified as such by the segmentation.
The problem with this metric is that it doesn’t scale well to
larger segmentation sizes, which are often the case in three-
dimensional medical images.[17]

A. MRI

In the aim of minimizing the risk of cancer due to radiation
exposure in X-ray and CT, MRI has become a widely adapted
and indispensable pillar of clinical decision making. Although
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a wide range of different MRI sequences may be applied, it is
important for a segmentation approach to be able to function
adequately regardless of sequence, especially with the lack of
standardized measurement units in MRI.[18][19]

On both T1- and T2-weighted MRI sequences, bone struc-
tures emit similar signals, although these may be affected due
to various pathologies.[2] For the spine, intensity gradients
are concentrated on the edges of the vertebral bodies.[20] In
order to shorten acquisition times, MR images often feature
anisotropic voxels, amplifying partial volume effects.[21]

A 2002 study by Davatzikos et al. proposed a method
for spatial normalization and segmenting the spines using
a pre-constructed deformable model of the spine that was
subsequently transformed onto images.[21] The model was
based on the manual segmentation of the spine from a typical
T1-weighted image of a single patient. The pre-constructed
nature of this model generally prevents arbitrary deformations
of the segmentation, however unrealistic deformations due
to close-proximity edges of structure can pose a problem.
Additionally, the relative rigidity of the model allows less for
the accurate modeling of more subtle morphological defects
of the vertebrae. On a relatively small dataset of T1-weighted
images of 14 healthy individuals, a DICE of 0.815 with a
standard deviation (SD) of 0.036 was achieved. Davatzikos
et al. argued that the relatively large overlap error was due the
fact that for shapes as complex as the whole spine, even small
disagreements due to for example pixelation, can lead to low
overlap scoring.

A 2011 study by Štern et al. presented a similar approach
utilizing deformable shapes, but based in a more abstract
superquadric model. [20] The model requires an initial seed
point and is applied for individual vertebrae. The vertebral
bodies are modelled along 25 parameters for shape (represent-
ing hand-picked clinically meaningful transformations) and
6 parameters for pose. Through adjusting these parameters
an initially elliptical cylinder is displaced and oriented, after
which it is deformed and aligned to best fit the vertebrae
by maximization of a similarity measure. This approach was
applied on a set of 75 T2-weighted images of vertebrae, both
healthy and suffering from pathologies, in the thoracolumbar
part of the spine. To evaluate the performance of the approach
the MRED of the model was compared to 16 manually
placed ground truth points for each vertebra. An MRED was
measured of 1.85±0.47 mm. Processing times could be rather
lengthy ranging from 1 to 15 minutes per vertebrae, however,
in addition to computer processing speed improvements since,
the study also noted that the program design and code showed
room for optimization.

Gaonkar et al. in a 2017 study used a superpixel based
multi-parameter ensemble model trained on manually seg-
mented T2 images of the lumbar. [19] Although the algorithm
was only trained on 6 T2-weighted images, segmentations
were performed on both 48 T2- and 15 T1-weighted images
yielding a mean DICE of 0.83±0.06 for T2 and expected
lower results for T1-weighted images (mean DICE of 0.75).
The exact number of vertebrae was not specified. For the

small amount of training data used the results were found to
be quite satisfactory, showing potential of better performance
through more training data. The method was however rather
computationally expensive, taking between 12 to 14 hours to
train on a high-spec desktop computer.

An approach that coupled deformable models to convolu-
tional neural networks (CNN) was proposed in 2016 by Korez
et al..[22] On a set of 23 publicly available T2 weighted images
used for both training and testing a DICE of 0.934±0.017,
MSSD of 0.54±0.14 mm and HD of 3.83±1.04 mm were
achieved. No pathologies were noted to be present within the
data that consisted of the lumbar and part of the thoracic
vertebrae. Initial centroids for the vertebrae were coarsely
determined manually, suggesting that the replacement of this
by a fully automated method would not affect the outcome.

The very same set of T2-weighted images was tackled a
year earlier in 2015 by Chu et al..[23] Here the vertebrae
were localized using random forest regression, also resulting
in a probability map. This probability is used to perform a
random forest classification on the ROI’s and then combined
to calculate the borders of the vertebrae. This yielded a DICE
of 0.887±0.029 with a 3D HD of 6.4±1.2 mm and 3D AAD
1.5±0.2 mm. On a relatively high-end but still desktop-spec
computer, segmentation times were on average around 2.0
minutes with training times around 7.4 minutes.

B. CT

For inspecting and assessing bony structures in the body,
CT is the modality of choice.[14] Unlike in MR images
CT does not allow for the visualization of bone marrow, as
the trabecular structure surrounding bone marrow can not be
completely resolved.[15] DECT, although first envisioned and
put into scientific practice in the 1970s, has only recently
become a a clinically available tool.[24][25] In DECT, two
images of the same patient are acquired at different distinct
energy levels (ideally simultaneously, to minimize patient
movement). This allows for the images to be combined to
generate a variety of new data.

DECT is clinically mainly used for the ability to generate
virtual mono energetic (monoE) images, which simulate scan
data as if it were acquired at a single desired energy level.
Certain energy levels generate contrasts more suited for cer-
tain applications, such as optimal contrasts between lesions
and tissues in CTA (45-55 keV), soft-tissue evaluation (60-
75 keV) or the reduction of artefacts from metal implants (95-
140 keV).[25] This study revealed no available literature on
using any DECT specific methods for vertebrae segmentation,
however, the flexibility in imaging contrasts may potentially
improve the performance of already available (semi-)automatic
segmentation approaches.

In a 2013 study Huang et al. used an improved version
of the traditional level-set method by combining both region-
and edge-based level set methods, to succesfully segment
vertebrae in a set of 56 images showing intervertebral disc
protrusions. Due to the strong absorption of bone materials
in CT images, a relatively simple approach such as Otsu
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thresholding can be used to quickly generate an initial level set,
also affecting computational times beneficially. This approach
yielded a DICE of 0.94±0.02 and HD of 10.06±1.71 mm
over 293 segmented vertebrae. Compared to the widely known
local-binary-fitting model the approach compares favourably
by being less sensitive to initial contours as well as much
more computationally efficient. Processing times on a mid-
spec computer ranged between 0.8 and 28 seconds.

In a 2021 study, Cheng et al. employed a two-stage Dense-
U-Net for fully automated segmentation. The first stage uses
a 2D-Dense-U-Net to localise and label the vertabrae cen-
troids. Around the centroids an ROI is cropped and some
pre-processing is applied, after which in the second stage
a 3D-Dense-U-Net was trained and tested on. The method
was tested and evaluated on the datasets from the CSI 2014
Workshop challenge and the 2017 xVertSeg challenge which
also includes fractured vertebrae. This resulted in a DICE
of 0.953±0.014 with HD of 4.013±2.128 mm, and DICE of
0.877±0.035 with no given HD respectively.[1]

The 2015 approach by Chu et al. that was described earlier
for MRI images, was also evaluated for CT. Using a slightly
smaller set of 10 CT images for both training and testing,
yielding a DICE of 0.910 ± 0.070 along with a mean HD of
7.3±2.2 mm and AAD of 0.9±0.3 mm. Segmentations took
around 2.3 minutes per image on average and training 9.3
minutes.[23]

The 2011 superquadric model used by Štern et al. was
also applied on a set of 75 CT acquisitions of thoracolumbar
vertebrae from different institutes and machines, extracted
from both normal and pathological spines.[20] The measured
MRED between the final 3D models and the ground truth
points was determined at 1.17±0.33 mm. It was noted that
although the system is based on 25 parameters, it could be
expanded to more parameters to represent more deformations
that could occur and potentially increase fitting performance.

III. BME IDENTIFICATION AND QUANTIFICATION

Having achieved successful segmentations of the vertebrae,
the next step is to investigate the bone marrow for the presence
of BMLs. The spine is the largest store of bone marrow in the
body and its composition changes continually through aging
and different states of health. [27] Both red and yellow marrow
can be found, composed of different ratios of lipids, water and
proteins. Awareness of the various bone marrow changes in
the body is essential for radiologists and will avoid overrating
normal bone marrow patterns as pathologic states.[27]

A. MRI

BMLs show signals higher than muscle or disc on T1-
weighted images and a slightly higher signal on T2-weighted
images. On fat suppressed, short-tau inversion recovery (STIR)
and contrast enhanced sequences, BMLs show hyperintense
compared to regular bone marrow.[9] Due to lower cost and no
risk of a patient’s reaction to a contrast agent, STIR sequences
are generally advised.[28] T1, T2 and STIR sequences provide
gross morphological data. Non-routine MRI sequences such

as chemical-shift or diffusion-weighted imaging may improve
on MRI’s ability to distinguish between different types of
heterogeneities in the bone marrow. These have however not
been as widely explored.[27]

On MRI images the appearance of BMLs should be some-
what homogeneous but will also display a lack of sharp
boundaries or anatomical edges (see Figure 1).[6][9] Within
the manual assessment of lesion boundaries this is a cause
of substantial subjectivity and leads to high inter-observer
variability.[29]

Although MRI shows excellent diagnostic performance and
holds the position as standard for (qualitative) detection and
imaging of BMLS, there are several barriers to its application,
especially in the emergent setting. These can include the
associated cost of operation and installation, limited access,
rigorous screening requirements, relatively long examinations
and the incompatibility with certain pacemakers or other
implants.[13][30] Additionally, MRI signal is highly sensi-
tive to radiofrequency inhomogeneities and small positional
changes of the patient within the coil. This means that even
when performing an acquisition of the same patient twice
using the same parameters, a slightly different distribution of
gray scale values will turn out.[31]

Kucybała et al. performed a study in 2020 to create an
efficient tool for semi-automated detection of BMLs in the
sacroiliac joints of patients with axial spondyloarthritis.[32]
This approach attempts to automatically identify a reference
signal level that exists a user set distance from the segmenta-
tion’s border, after which various ROIs are defined (which are
again split into quadrants) to be searched for inflammatory
changes between T1-weighted and STIR images. 22 MR
images of sacroiliac joints of patients with confirmed axial
spondyloarthritis were included into the study. The pixel-
by-pixel comparison between manual and automated findings
yielded a Spearman’s correlation coefficient yielded 0.87 while
the per-quadrant comparison yielded 0.83. As the manual
segmentations were performed twice by different radiologists
their correlation was also determined, yielding 0.91 for the
pixel-by pixel and 0.88 for the quadrant-wise comparison.
This is indicative of the levels of inter-observer variability in
manual BML segmentations on MRI. Average computational
times were 0.64±0.30 s per slice with patient data ranging
between 18 and 24 slices.

A 2021 feasibility study by Rzecki et al. (also featuring
Kucybala as second author) investigated a fully automatic
BML detection method on MRI images of 30 patients also
suffering from axial spondyloarthritis (axSpA). Initial bone
segmentations were performed on T1 and STIR images us-
ing an deep learning approach, after which the ROIs (in
the subchondral bone and central part of the sacral bone)
were extracted.[29][32] Manual segmentations of BME in the
STIR images were made by three independent radiologists
and majority voted to create a ground truth. An U-net deep
learning based lesion classification was trained and applied
after which its performance was evaluated. As the amount
of available data was moderate, the U-net architecture was
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Table I: Summarized vertebrae segmentation results

Study Modality Method Results Data Computational time

Davatzikos et al.[21] MRI Deformable shape
model registration

DICE: 0.865±0.036 14 lumbar spines None specified

Štern et al.[20] MRI
CT

Superquadric
model

MRI:
MRED: 1.85±0.47 mm
CT:
MRED: 1.17±0.33 mm

75 thoracolumbar verte-
brae

1-15 minutes per vertebra

Gaonkar et al.[19] MRI Superpixel
multi-parameter
ensemble model

T2 DICE: 0.83±0.06
T1 DICE: 0.75

6 T2 lumbar training im-
ages
48 T2 lumbar images
15 T1 lumbar images

12-14 hours training

Korez et al.[22] MRI CNN coupled 3D
deformable model

DICE: 0.934±0.017
MSSD: 0.54±0.14 mm
HD: 3.83±1.04 mm

161 thoracic and lumbar
vertebrae

None specified

Chu et al.[23] MRI
CT

Random forests MRI:
DICE: 0.887±0.029
3D HD: 6.4±1.2 mm
3D AAD 1.5±0.2 mm
CT:
DICE: 0.91±0.07
3D HD:7.3±2.2 mm
AAD: 0.9±0.3 mm

MRI:
161 thoracic and lumbar
vertebrae
CT:
50 thoracic and lumbar
vertebrae

MRI:
7.4 minutes training
2.0 minutes per image
CT:
9.3 minutes training
2.3 minutes per image

Huang et al.[26] CT Region and edge
based level-set

DICE 0.94±0.02
HD: 10.06±1.71 mm

293 lumbar vertebrae 0.8-28 seconds per vertebra

Cheng et al.[1] CT Two stage U-net CSI 2014:
DICE:0.953±0.014
HD: 4.013±2.128
xVertSeg 2017:
DICE:0.877±0.035

CSI 2014 Workshop data
xVertSeg challenge data

10 hours training
50 seconds per image

AAD: Average Absolute Distance; MSSD: Mean Symetric Surface Distance; MRED: Mean Radial Euclidian Distance; HD:
Hausdorff Distance; DICE: Sørensen–Dice coefficient

selected a priori and not specifically optimized for the data.
It was observed that some regions clearly showing increased
STIR signal were still denoted as negative in the majority
voting. It was therefore suspected that some positive regions
had been missed during manual segmentation, leading to the
false positive regions identified by the deep learning network
being reviewed. This significantly increased the evaluated
specificity and sensitivity (0.96 and 0.95 respectively) of the
deep learning approach, however, it again is strongly indicative
of the inter- and intraobserver variability in BML detection.
The Spearman’s coefficient of correlation between automated
and manual measurements was determined at 0.866 (95% CI
from 0.735 to 0.934).

A 2017 study by Aizenberg et al. explored the possibilities
for a fully automated quantitative approach by examining
the carpal bone in the wrists of 485 early arthritis patients
for BMLs. Using atlas based image registration, the carpel
bones were located and segmented on T1-weighted frequency-
selective fat saturation images(T1 − Gd). The presence of
BMLS was quantified through intensity based fuzzy C-means
clustering, where two clusters are assumed (BMLs and normal
bone marrow). This results in two probability maps, in which
each voxel corresponds to the probability of that voxel belong-
ing to the respective cluster. Using an optimized threshold, the
total fraction between 0 and 1 of the segmented voxels deter-
mined to exhibit BMLS represent the quantitative BML score.

A Pearson correlation score between the sum of visual BML
scores across all carpal bones and the sum of the quantitative
method across all carpal bones was determined at 0.83. As the
correlation scoring here only takes into account a cumulative
grading it doesn’t provide insight on the performance of the
approach on actual BML segmentation quality.

B. DECT

The effectiveness of DECT for qualitative assessment of
BMLs has been widely studied and proven. A meta-analysis
by Suh et al. pooled together 12 different studies, evaluating
DECT performance in detecting BMLS over 1091 BMLs
in 450 patients. A pooled a specificity of 0.85 (95% CI,
0.78-0.90) and sensitivity of 0.97 (95% CI, 0.92-0.98) was
determined. 7 studies included the detection of BMLs in
the spine where a pooled sensitivity for detecting BMLs of
0.84 (95% CI, 0.72–0.92) and specificity of 0.98 (95% CI,
0.95–0.99) were found. All studies included in the meta-
analysis use the technique of virtual non-calcium (VNCa)
whereby present calcium can be subtracted from anatomical
structures, allowing for the visibility of features or patholog-
ical conditions that might be obscured on standard CT.[35]
Using this technique to observe within the bone marrow, the
presence of BML is detectable and directly visualised, as bone
marrow attenuation increases when its fatty content is replaced
by edema and micro-hemorrhages.[35][36] Use of CT then
poses several advantages over the application of MRI such as
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shorter investigation times, higher spatial resolution and lower
cost.[36]

Analysis indicated that the image plane number, slice thick-
ness and evaluation method were all sources of heterogeneity
between studies. The pooled sensitivity was shown to be
higher in studies with two or more image planes, thinner than
1 mm slice thickness, and those applying a binary evaluation
method. Decrease in slice thickness however did lead to
decreases in specificity, most likely related to increases in
noise. As such the use of slices thinner than 0.5mm is not
recommended.[34]

Another, more recent, meta-analysis by BÄCKER et al.
collected studies specifically looking at detection of BMLs
(and disc edema) in patients with spine fractures. 13 studies
(showing some overlap with the 2018 Suh et al. study)
spanning 515 patients, 3335 vertebrae, and 926 acute fractures
defined by MRI were included. The overall sensitivity was
found to be 86.2% with a specificity of 91.2% and accuracy
of 89.3%. Heterogeneity between the studies was found to
be rather considerable, additionally, significant inter observer
differences were again reported.

Bone sclerosis may locally increase the measured HU values
and as such lead to false positive identification of BMLs.
Additionally, excessive subtraction processes may hinder BML
detection.[11] In most studies, color maps overlayed on top of
the regular images are generated based on the DECT’s three
material decomposition, where after VNCa, differences among
voxels mainly reflect water and fat content in the marrow (see
Figure 2). This allows for both easier visual/qualitative assess-
ment as well as quantization in ROIs expressed in Hounsfield
units (HU).[35][37] The presence of the standardized HU in
DECT is an advantage in areas of less obvious BML, however,
thresholds can depend on many factors such as anatomical area
being evaluated, age of the patient or the imaging parameters
used, resulting in a wide range of values found from research
to research.[11] In differentiating between regular marrow and
BMLs, Cavallaro et al. found an effective cutoff around -
0.43HU, Petritsch et al. of -47HU, -80HU for Wang et al.
and Bierry et al. discerned between thoracic at 35 HU and
6.5HU for lumbar vertebrae.[16][36][38][15]

A 2016 study by Biondi et al. investigated a variation on
the VNCa approach through performing a virtual non-cortical
bone (VNCB) technique. On a set of both MR and DECT
images of 8 patients, VNCa and VNCB were applied on the
same ROIs corresponding to regular bone marrow. Threshold
values were individually determined per image. Agreement
between the color mapped DECT and MR image of the entire
acquisition volume was scored by two radiologists on a grad-
ing scale ranging from 1 (completely disagree) to 5 (complete
agreement). It was found that on all images the agreement
scores obtained between MRI and VNCB were significantly
higher than for the VNCa approach (4.12±0.83 compared
to 2.25±0.46 respectively)[37] Although the study has some
severe limitations such as its small sample size, it is indicative
of the versatility and possibility for further methodological
improvements in using DECT for BML imaging.

Figure 2: Saggital images of osteoporotic compression frac-
tures in a 97-year-old man with back pain. (a) shows a
nonenhanced CT image of the lumbar spine with compressions
of the superior endplate of T12 (indicated by the yellow arrow)
and L4 (indicated by the white arrow) vertebrae, and a nearly
occult fracture of the superior endplate of L3 (indicated by the
red arrow). (b) shows a VNCa overlay made with DECT, the
attenuation within the bone marrow is displayed by a color
map in purple reflects the presence of fat, and higher HU
values are displayed in green. The color map indicates the
presence of BMLs in the L4 and L3 vertebra, however not the
T12. Images from Gosangi et al..[13]

With the clinical availability of DECT scanner being rather
recent, ongoing developments on the manufacturer’s side of
DECT scanners (the current offering is the third generation)
promise even better acquisitions in the future. Research by
Petritsch et al. comparing the quality of second generation
to third generation DECT for quantitative analysis confirmed
significant increases in sensitivity and specificity.[36]

IV. DISCUSSION

Both for MRI and CT, a wide range of vertebral body seg-
mentation methods are available that all produce good to ex-
cellent results. The more homogeneous nature and inherently
high signal of bone material might suggest CT images to be
more suitable for ”traditional” segmentation approaches such
as level-sets than MRI images. The Huang et al. study using
level-sets presents one of the higher DICE scores, however, a
high mean HD suggests susceptibility of the method to outliers
or unrealistic deformations.

Segmentation methods that were applied and evaluated for
both CT and MRI showed slightly better performance on
CT, however, observed differences were minor.[23][20] Ad-
ditionally, direct comparison between CT and MRI outcomes
in the Chu et al. study is difficult, as training set size was
significantly smaller for CT. Recent research on deep learning
based segmentation for both MRI and CT, Korez et al. and
Cheng et al. respectively, have yielded even better results
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that only promise more robustness and reliability with more
training data. Segmentation of individual vertebrae on both CT
and MRI seems yield the best results, although computation-
ally expensive, through using deep learning approaches. With
prospective of computational power only becoming cheaper as
time goes on, this however does not seem to pose a limitation
for deep learning approaches.

A 2021 study by Cavallaro et al. directly compared the
diagnostic performance of a third generation DECT to a 3.0
T MRI scanner in assessment of acute vertebral fractures. 88
patients were taken up in the study and imaged with both
modalities within a maximum interval of a week. This resulted
in 730 included vertebral bodies of the thoracic or lumbar
spine. As expected, mean acquisition times were significantly
shorter for DECT than MRI at 21 s (range, 18–32 s) compared
to 1103 s (range, 902–1306 s) respectively.

Reference standard assessments were made by two highly
experienced radiologists where, in consensus reading sessions,
the presence of traumatic BMLs and fracture lines was rated
on a 4-point scale. Additionally the vertebrae were split up
into quadrants each representing 25% of the total volume,
and received a scoring of the extent of BML based on the
number of quadrants containing BMLs (ranging between 1
to 4). Afterwards, evaluations were performed on all images
(both DECT and MRI) by 5 different radiologists using the
same rating system along with assessments of image quality,
image noise, and diagnostic confidence on a 5-point Likert
scale (1 = unacceptable to 5 = excellent).

The study found for both DECT and MRI to provide
similar levels of diagnostic confidence, image noise and image
quality in assessment of acute vertebral fractures. It was also
found that DECT yielded high overall diagnostic accuracy in
depicting the presence of BMLs through application of colored
VNCa overlays compared to MRI. These findings are directly
in line with that of other studies and meta-analyses on the
diagnostic potential of DECT for BMLS, such as Foti et al.,
Suh et al. and BÄCKER et al..

Quantitative MRI measurements with segmentation of
BMLs have attracted relatively little interest in addition to
being difficult due to the lack of physical units in MRI.[31][33]
Manual approaches generally do not attempt direct quantifica-
tion of bone lesion volume but instead grade MRI images slice
by slice based on the extent lesion within a this slice making
these methods more semi-quantitative.[29]

Attempts at automating the segmentation of BML in MR
images have been met with mixed results. Aizenberg et al.
demonstrated that the resulting probability maps lead to grad-
ing that showed good correlation to manual/visual grading.
Although the method outputs probability maps that in the-
ory describe lesions on a pixel-by-pixel basis, no manual
segmentations were performed to evaluate this aspect of the
performance. Kucybała et al. showed similair pixel based
quantification of BMLS to be comparable in reliability to man-
ual assessment, however, was only assessed in the Sacroiliac
joint an not in vertebrae. Additionally, the statistical approach
used to achieve these results is on a per-pixel basis, meaning

that it holds no regard for the anatomical shape of the lesions.
This leads to the segmentation as scattered pixels rather than
as a map of connected regions. Rzecki et al. showed that the
automated segmentation of BMLs through deep learning in
MRI is possible, however, noted the small volume of lesions
compared to the bone region as a serious difficulty in training
the system. As the U-net employed was not optimized for the
data (the available data set was deemed too small to optimize
the U-net architecture) there is significant potential to further
improve on the study results, both through optimization of the
U-net architecture as well as by supplying more training data.

The inherent use of the standardized HU in CT images
poses an advantage in performing quantitative analysis with
DECT over MRI. The construction of color-coded maps for
visual analysis has been widely used in many studies, however,
this research revealed no studies that truly make an attempt
at further automating the analysis process in the vertebrae.
Standardized HU cutoffs could be an easy approach to auto-
matically identifying (at least on an individual pixel basis)
BMLs, but the high heterogeneity seen in effective cutoff
values (ranging from 35 to -80 HU) suggests further research
is necessary to establish some form of reference standard. This
variability might be explained by the variation in bone marrow
composition in different vertebrae and age groups.

DECT’s unique abilities in performing material decomposi-
tion might be used to further expand on its performance and
uses, such as through use of the Biondi et al. VNCB approach.
Another possibility might be in distinguishing between differ-
ent types of BMLs through characteristic HU levels.

V. CONCLUSION

Both on MRI and DECT it seems that automatic BML
segmentation (in the vertebrae) is still in its infancy. In
order to fully automate the process from imaged vertebrae to
segmented BML a robust segmentation approach for both is
required. A wide array of vertebrae segmentation approaches
have been developed and tested for both modalities. Current
deep learning approaches seemingly yield the best results,
assuming enough accurate training data is available. Attempts
at automatic segmentation of BMLs on MRI images has
so far been met with mixed results, showing that although
feasible, much further work is necessary. Additionaly, manual
segmentations of BMLs seem to show significant interobserver
variability. The standardized HU in CT suggests an easy
means to segmentation through utilizing HU cutoffs, however,
a large heterogeneity in found cutoff values for different
studies underlines the need for further research into a refer-
ence standard. Additionally, meta-studies into the application
of DECT for BMLs found studies showed significant inter
observer differences. Although literature still supports the use
of MRI as the gold standard, the widely studied and accepted
effectiveness of current generation DECT for assessing BMLs
can not be ignored, showing similar levels of diagnostic
confidence and image quality. With an increased adaptation of
DECT in the future, inter- and intraobserver agreement will
probably improve. With CT being the modality of choice in
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the traumatic setting, its potential for further developments in
material decomposition and various other advantages of DECT
over MRI, DECT could become the future modality of choice
in both qualitative and quantitative imaging of BMLS.
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APPENDIX A
LAYMAN SUMMARY (DUTCH)

Magnetic Resonance Imaging (MRI) en Computed To-
mography (CT) zijn beide veelgebruikte modaliteiten om
non-invasief onderzoek in het menselijk lichaam te ver-
richten. Bone Marrow Lesion Syndrome (BMLS) beschrijft
het fenomeen van verandering in signaal op vloeistofgevoelige
MRI afbeeldingen in het beenmerg, en kan het gevolg zijn van
een groot scala aan verschillende onderliggende aandoeningen
of acute trauma. BMLS kan ook plaatsvinden in de individuele
wervels in de ruggengraat. De staat van de ruggengraat en
haar individuele wervels is van grote invloed op de algehele
gezondheid van een patient, waardoor de juiste identificatie
en characterisatie van BMLS in de wervelkolom belangrijk is.
Voorheen was het nooit mogelijk om deze veranderingen in
het beenmerg te observeren met CT technieken, maar door de
recente opkomst van Dual Energy CT (DECT) systemen is
het mogelijk ook met een andere modaliteit dan MRI, BMLS
in kaart te brengen. Dit onderzoek maakt een uiteenzetting
van verscheidene segmentatiemethoden voor de ruggenwervels
en vervolgens individuele beenmerglaesies voor MRI en CT,
om te kijken naar de mogelijkheden om het proces van de
identificatie van beenmerglaesies te automatiseren.

MRI en CT verschillen fundamenteel waardoor afhankelijk
van de toepassing het ene systeem een voordeel kan hebben
tegenover de andere. Zo duren acquisities met MRI meestal
aanzienlijk langer en zijn deze vaak van lagere resolutie.
Daartegenover staat dan weer dat bij CT het contrast tussen
zachte weefsels meestal lager is en er gebruik gemaakt wordt
van ioniserende straling, wat de kans op de ontwikkeling van
kanker verhoogt. Doordat met DECT, door het combineren van
twee acquisities op verschillende energieniveau’s, een virtuele
subtractie van calcium uitgevoerd kan worden, is het mogelijk
om ook met CT de structuur van het beenmerg te inspecteren.
Laesies in het beenmerg kenmerken zich op afbeeldingen door
een relatief homogeen signaal maar een gebrek aan anatomis-
che eigenschappen of scherp gedefinieerde randen. Deze
eigenschappen vermoelijken zowel het proces van manuele als
geautomatiseerde segmentatie van de laesies. Bij de manuele
segmentatie van de laesies is op zowel DECT als MRI
dan ook sprake van significante variabiliteit, zowel onderling
tussen artsen, als tussen verschillende sessies door dezelfde
arts. Variabiliteit in de manuele segmentaties bemoeilijkt ook
de ontwikkeling van geautomatiseerde methoden, aangezien
manuele segmentaties als gouden standaard gebruikt worden
om de kwaliteit te beoordelen, en ook gebruikt worden om
neurale netwerken initieel te trainen.

Concluderend is gevonden dat voor de segmentatie van de
ruggenwervels, neurale netwerken de meest veelbelovende re-
sultaten leverden, met vergelijkbare kwaliteit op zowel DECT
als MRI. De techniek voor segmentatie van individuele laesies
(zowel automatisch als manueel) in het beenmerg staat nog
in de kinderschoenen, maar door de voordelen die DECT
mogelijk biedt tegenover MRI zou het niet onrealistisch zijn
dat in de toekomst DECT de voorkeur zal genieten in zowel
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kwalitatief als kwantitatief onderzoek naar BMLS.
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