UTRECHT UNIVERSITY
BACHELOR KUNSTMATIGE INTELLIGENTIE

A forward chaining theorem prover for the
extended Lambek calculus

Author: Supervisor:
Emmelie Slotboom Prof. dr. Michael Moortgat
5654394 Second evaluator:

Dr. Benjamin Rin

15 ECTS
November 19, 2019

Abstract

Natural Language Processing is one of the main branches of Artificial Intelligence,
in which Lambek calculus is used to make deductive proofs about properties of
language structures, which are presented as symbols. It can be done automatically
with the implementation of an algorithm. This thesis constructs such an algorithm
and presents a usable Python program that follows this algorithm to form proofs
with the deductive rules of Lambek calculus. The construction of the algorithm
was based on an extended form of Lambek calculus, in which the range of provable
theorems more closely represents natural language than the system without any
extensions. Forward chaining was used, so the tree structure of a linguistic input is
formed automatically as well. It is not yet verified whether this algorithm can form
every possible proof, so a formal analysis and proof concerning this is recommended
as further research.

Contents

Introduction 1
1 Typelogical grammars 3
1.1 Lambek Calculus 3
1.1.1 Syntactic types and type computations 4

1.1.2 Sequent calculus 5

1.2 Extended Lambek calculus 7
1.2.1 Control modalities 7

1.2.2 Controlled structural rules 8

1.2.3 Exampleso 8

1.3 Focused display calculus 9
1.3.1 Focusingo 9

1.3.2 Display calculus oo 9

1.4 Semantics 11

2 The parsing procedure 15
2.1 Parsing procedures 15
2.1.1 Backward chaining oL 16

2.1.2 Forward chaining L. 16

2.2 Implementation 17
2.2.1 Partial proof trees 17

2.2.2 Breadth First Search 19
Conclusion & further research 22
References 24
A Examples 25

B Theorem Prover 41

Introduction

The aim of Artificial Intelligence is to imitate human behavior. Something that
is typically human is the ability to use language, so Natural Language Processing
(NLP) is one of the main branches of Artificial Intelligence. Within NLP there is
the symbolic approach, in which symbols are used to represent linguistic informa-
tion, and the non-symbolic machine learning approach. In this thesis the symbolic
approach is used, so NLP is presented as a reasoning problem. This combines the
field of linguistics with logic: another important branch of Artificial Intelligence.

A deductive system that lends itself well for this purpose is Lambek calculus,
in which a string of words is translated to types and given a tree structure and goal
type. By using the deductive rules of the calculus it is decided whether the words
together are of the goal type. With additional linguistic information, the semantic
interpretation of the words can be calculated as well. The construction of proofs
in Lambek calculus is a decision procedure, so an algorithm can be constructed
that automatically forms every possible proof for a given string of words and goal
type.

This thesis consists of two components: the textual part, in which the theo-
retical background and parsing procedure are described, and the code, with which
the algorithm can be run. In the first chapter of the textual part Lambek calculus
is introduced and extended with control modalities and structural rules, so proofs
can be made for a wide enough range of language structures. The proof system
is also converted to its focused display variant with the purpose of making the
proof procedure more restrictive, yet simpler to compute. In the last section the
translation to a semantic interpretation is given. The second chapter focuses on
the parsing procedure, in which a method is created that allows an unstructured
string of words to be structured and proven simultaneously by using both forward
and backward chaining. The program will apply the method of chapter 2 to cre-
ate every proof for a given theorem. It also gives a semantic interpretation and
generates a KIEX file that formats the proof or proofs that belong to the given
sequent.

The construction of forward chaining theorem provers for typelogical grammars
has been done before (Jumelet, 2017, Moot, 2016). However, an extended Lambek

Introduction

calculus prover had not been written in Python yet and a theorem prover is often
not the most straightforward to use. This thesis will provide a prover with code
that is easy to understand and use. It was done in Python, because of its NLP
applications. This way it will be easy to integrate the prover with existing NLP
tools, like the NLTK toolkit. Python is also a well-known programming language
and code written in it is often very clear to follow.

Chapter 1

Typelogical grammars

This chapter is an overview of the theoretical background of the typelogical sys-
tems that will be used in this thesis. It starts with Lambek’s original syntactic
calculus and its sequent presentation, which is the basis for decidable proof search.
Expressive limitations of the original calculus will be addressed, and the extended
Lambek systems are introduced, which will be the subject of the implementation
efforts. In the extended Lambek systems unary operations are added, with which it
is possible to formulate restricted methods to reorder and restructure grammatical
material. They can be used to block unwanted cases of overgeneration as well.

Sequent calculus by itself is not very efficient for proof search. To obtain a
presentation of the type logic with good computational properties, sequent calculus
will be reformulated in display format. A focusing method will be introduced as
well to eliminate spurious ambiguity, which means that it will no longer be possible
for a theorem to have multiple proofs that only differ in irrelevant rule orderings.

At the end of the chapter it is shown how a syntactic derivation can be as-
sociated with a term of the linear lambda calculus. These terms can be seen as
programs with which the meaning of a phrase can be computed, given the meanings
of the words that it is composed of.

1.1 Lambek Calculus

Lambek calculus was introduced in 1958 and revisited in 1961 by Joachim Lambek.
He explains the goals for his writings as follows:

“The aim of this paper is to obtain an effective rule (or algorithm) for
distinguishing sentences from nonsentences, which works not only for
the formal languages of interest to the mathematical logician, but also
for natural languages such as English, or at least for fragments of such
languages.” —~Lambek, 1958

Chapter 1. Typelogical grammars Lambek Calculus

1.1.1 Syntactic types and type computations

In the Lambek calculus, the familiar categories (noun, verb, adjective, adverb, and
so on) are replaced by types. Starting from a set of atomic types p (where s will
be used for sentences, n for simple nouns and np for noun phrases) the full type
language is presented by grammar 1.1.

AB == p | A/B | B\A | A®B (1.1)

A product type A ® B describes a phrase that consists of a phrase of type
A followed by a phrase of type B. The types A/B (read A over B) and B\A
(read B under A) are used for incomplete phrases: an expression of type A/B
combines with an expression of type B to its right to form an expression of type
A. Similarly, an expression of type B\ A combined with an expression of type B
to its left produces an expression of type A.

With this interpretation the operations /, ®, \ are a residuated triple. From this
the rules in 1.2, 1.3 and 1.4 are obtained, in which 1.2 is identity, 1.3 transitivity
and 1.4 residuation.

A— A (1.2)
if A= Band B — C then A - C (1.3)
A—-C/B it A B—C iff B— A\C (1.4)

Together, they form the non-associative calculus NL (Lambek, 1961). Adding
the associativity laws from 1.5 results in the associative calculus L (Lambek, 1958).

AR (BRC)+ (A®B)®C (1.5)

The difference between L and NL is that in the former types are assigned to
strings, whereas in the latter types are assigned to bracketed strings, or, more
formally, phrase structure trees.

From the residuation laws, identity and transitivity, type combination schemata
like the so-called application rules in 1.6 can be derived. In these rules the explicit
product operation is omitted.

B(B\A) = A (A/B)B — A (1.6)

Because this works recursively longer sentences like “John never works” or
“John works and Jane rests” can be formed. To be able to assign types to these
sentences in NL they need to be given a tree structure, so it is clear how the types

Chapter 1. Typelogical grammars Lambek Calculus

are grouped. Tree structures are shown with parentheses as in examples 1.7 and
1.8.

John (never works)
np (((np\s)/(np\s)) (np\s)) — s (1.7)
(John works) (and (Jane rests)) 18)

(np - (np\s)) (((s\s)/s) (np (np\s)) — s
Note that there may be multiple ways to form sentence structures and types.
For example if the sentence “John works and Jane rests” was structured as “((John
works) and) (Jane rests)” the word “and” would have needed to be of the type
s\(s/s).
The type combination schemata in 1.6 reduce the type complexity, but there
are also type transitions that increase complexity. An instance of this is 1.9, in
which the lifting rules are presented.

A= BJ(A\B) A— (B/A\B (1.9)

Because of transitivity and complexity increasing type transitions, Lambek’s
goal of obtaining an effective procedure for distinguishing sentences from non-
sentences is a non-trivial task. In the next section it will be shown how Lambek
reformulated the residuation based presentation to an equivalent sequent calculus,
for which a decision procedure can be given.

1.1.2 Sequent calculus

A sequent is a statement X = A where X is called the antecedent, which should
be a non-empty structure and A the consequent: a type formula (Moortgat, 2014).
A structure X or Y is formed as in 1.10, where A is a type formula. The structural
connective - ® - is a structure building operation corresponding to the connective
®, as the rules will show. The notation X[Y] will be used for a structure X that
contains a distinguished substructure Y.

XY == A | X-®'Y (1.10)

The rules for the deductive systems NL and L are presented in Figure 1.1.
The L and R rules are are inference rules that introduce a connective on the
left (L) or on the right (R) side of the arrow. The cut rule is a staple in many
deduction systems. It is admissible in sequent calculus as well, but no additional
language structures can be derived with it, and thus it will not be used in this
thesis. Lambek only included the global associativity rules in his 1958 writings

Chapter 1. Typelogical grammars Lambek Calculus

and not the ones from 1961, because a problem with the global associativity rules
being included as they are is that they make the system overgenerate. This means
that some ungrammatical sentences like “The mother of and John thinks that Bill
left” can be derived (Moot, 2015). To avoid this, for now the non-associative rule
system NL will be used.

X=A Y[A =B

t
A4 YiX]= B
Y=B XAl =C B -X=A
[A] \L © X=4,p,
XY -®-(B\A)]=C X = B\A
X[A=C Y=208B . X-®-B:A/R
X[(A/B)-®-Y]=C X = A/B
X[A-®-B=C
oL X=A Y=2B R
X[A® B]=C X-®Y=A®B

WX -®Y) @ -Zl=A
WX -®-(Y-®-2)=A

as

Figure 1.1: Rules of the sequent calculus L. The rules labeled as can be omitted
to obtain the non-associative variant NL.

An example derivation for the sentence “John never works” can be found in
Figure A.1. Every atomic formula is provided with an index so it can be easily
followed throughout the derivation tree.

Applying rules to a sequent with the system NL is a decision procedure, be-
cause the amount of cut-free derivations that can be attempted for a sequent is
finite and a sequent is deducible if and only if at least one of the attempted deriva-
tions is successful (Lambek, 1958).

Even though sequent calculus is a great starting point for a deductive system
for natural language, it is not very reliable when searching for derivations for
grammatical language structures only. In the following sections the system will be
modified so it is more usable for natural language structures.

Chapter 1. Typelogical grammars Extended Lambek calculus

1.2 Extended Lambek calculus

A shortcoming of sequent calculus with global associativity is that it is only able to
generate context-free languages (Pentus, 1997), and natural languages go beyond
that (Shieber, 1985). However, including global associativity causes the deductive
system to overgenerate. In this section the calculus will be expanded to allow
properties like associativity to be controlled.

1.2.1 Control modalities

The system presented so far uses atomic (s, n, np, ...) and binary (A/B, B\A, A®
B) formulas. In this section new rules will be included that use unary connectives.
This is done to influence the proof system in two ways: to allow a controlled form
of properties like associativity and commutativity to be included in the system,
but also to disallow otherwise provable derivations for ungrammatical language
structures. For both of these features a new set of connectives will be introduced:
¢ and [to enable more derivations, and ¢ and B to block ungrammatical ones.

The connectives ¢ and [J are added and a type formula A or B with atomic
type p is redefined as in definition 1.11.

AB == p | A/B | B\A | A®B |
GA | OA | #A | mA

The redefinition of a structure can be found in definition 1.12, in which - <{-
and - 4- are introduced as structural counterparts to <) and ¢ respectively.

(1.11)

XY == A | XY | -0 X | -¢-X (1.12)
The rules presented in Figure 1.2 are added, which use the new type formulas
and structures (Moortgat, 1996).

XA X[$-A]= B

$-X =34 SR X[$A] = B 5L
¢ X[A]l = B
$X:A#R [A] 4L
X = #A X[-$-#A = B

Figure 1.2: Rules with the diamond and box operators, where $ and # are either
& and I or ¢ and M respectively

Chapter 1. Typelogical grammars Extended Lambek calculus

1.2.2 Controlled structural rules

The modalities allow reintroduction of associativity, because it can now be con-
trolled so it does not overgenerate. A similar property, commutativity, will be
introduced as well. Two sets of rules are now included: rules 1.13 are to be used
in the Dutch language, rules 1.14 in the English language.

VI(-0-W)-® - X)-® Y]=Z
VIO W)@ (X-0-Y)=2"

(1.13)
VIX - @-((-0-W)-®-Y)]=Z |
VI(O-W)-® (X-@ Y)]=Z
VIWee (Xe- (07
V(W -®-X) @ (0-Y)] =2

(1.14)

VIW-®- (&) ®-X] = Z
VIW-@ X) @ (-0-Y)] =2

en

1.2.3 Examples

An example where unary connectives are needed, but not associativity or commu-
tativity is with the word “without” as in the sentence “Alice left without closing
the window”, which is initially translated to pre-sequent 1.15. This type assign-
ment produces the desired derivation in Figure A.3, but it also allows a derivation
for the ungrammatical “window that Alice left without closing”, as can be seen
in Figure A.4. To block this, the the type of “without” will be changed as in
pre-sequent 1.16, with which the derivation in A.5 can be formed.

Alice left without closing the window

np np\s ((np\s)\(np\s))/gp gp/np np/n n ~ (1.15)

np,np\s, (- & - W((np\s)\(np\s)))/gp, gp/np, np/n,n ~~ s (1.16)

An example where additional structural rules are used can be found in Figure
A.6.

As was illustrated with these examples, the deductive system has been made
more precise in what can and cannot be derived. Before more theorems are proven,
the system will be improved once more by limiting the amount of derivations to
one per meaning, which will be done in the next section.

8

Chapter 1. Typelogical grammars Focused display calculus

1.3 Focused display calculus

With the expansion of the proof system there are two more alterations left to apply
to it. First the system will be restricted to disallow excessive derivations. After
this the system will be converted to its display variant.

1.3.1 Focusing

In a proof system that forms derivations for a language structure it is convenient if
every derivation corresponds to one meaning and vice versa. Ambiguous structures
would thus be the only ones that have multiple derivations. This is not yet the
case, as can be seen with the sentence “Alice bakes the cake” which has the two
derivations in Figure A.2a, but only one meaning. To solve this focused proof
search is introduced.

In focused proof search rules can only be applied if the relevant formulas are
of the correct polarity. Formulas of the form A ® B and {A are of a positive
polarity, formulas of the form A/B, B\ A and [JA are negative. Atomic formulas
are assigned an arbitrary polarity. Structures can never be focused. A neutral
sequent is a sequent without a focused formula. A focused formula A is presented
as (Bastenhof, 2011, Moortgat and Moot, 2011). An example derivation will
be given using the display representation of sequent calculus, as shown in the next
section.

1.3.2 Display calculus

The system presented so far will be used to prove theorems with. However, as
it uses substructures it may sometimes be difficult for a machine to decide which
formulas are substructures and which are not. To avoid this problem the sequent
calculus and its extensions will be translated to an equivalent display calculus.

In such a display calculus substructures can be isolated because of the display
property. The display property implies that a substructure in a sequent can be
rewritten (or displayed) as the entire antecedent or consequent, but not both (Cia-
battoni, Ramanayake, and Wansing, 2014). Every other structure is moved to the
other side of the sequent.

Sequent calculus and its extensions can be systematically transformed to a
display calculus, as described by Ciabattoni et al. (2014). Because any calculus
has inference rules a template can be followed to change a rule to its display
variant. This change involves the introduction of new connectives: a structural
counterpart for every formula connective. Some of these connectives were already
used in the grammar for a structure, which can be found again in 1.17, where A
is a type formula.

Chapter 1. Typelogical grammars Focused display calculus

XY == A | XY | - $O-X | -¢-X (1.17)

Because structures with these connectives always appear as antecedents in the
rules, they will be referred to as input structures. The other structural connectives
are introduced as output structures P in definition 1.18, and will only appear as
consequents. In this definition, A is a type formula again, and Y an input structure.

P = A| P /.Y | Y\-P | -OP | RP (1.18)

Besides the axiom and cut rules, the central idea behind the construction of a
display calculus is once again residuation. This takes shape in the rules labeled
rp and rc in Figure 1.4. The remaining rules in this figure are rewrite rules: one
for every connective. An overview of all of the display rules with focusing can
be found in Figures 1.3, 1.4 and 1.5 (Moortgat and Moot, 2011). Because the
concept of substructures is not used anymore, the controlled structural rules are
now presented as in 1.19 and 1.20. Figure A.2 shows how the sentence “Alice bakes
the cake” is derived in both the previous and current proof system variants. The
derivations for example 1.21 can be found in Figure A.6. Throughout the thesis
np and n will be given a positive polarity and s a negative polarity unless stated
otherwise.

The current system will be used for the parsing and proving procedure. It was
extended with modalities and structural rules, so a decent range of derivations
can be produced. Focused proof search was applied to the system; as a result
redundant proofs can not be derived anymore. The system was also presented as a
display calculus to ease its use in the parsing procedure. The meaning of language
structure was mentioned before as well, but only intuitively. In the next section it
will be explained more extensively.

A X = |A] A=Y
X T N —_—— ~

A=[A] X=A Al =Y

CoAx ; X=4

[A]= A A=Y X =[A]

Figure 1.3: (Co)axioms and (de)focusing rules for display sequent calculus. To
apply a rule in the first row the focused formula must be positive, in the second
row it must be negative.

10

Chapter 1. Typelogical grammars

Semantics

X=2-/Y
rp
X-®-Y:>Zr $-X=Y

P —rC
Y=X-\-Z X = -#-Y

X= -#-A $ A=Y

ST Typ 22T g

X = #A $A=Y
X=A-/-B A-®-B=Y X=B-\-A
- L -
X = A/B AoB=y ° X = B\A

\R

Figure 1.4: Structural and rewrite rules for display sequent calculus, where $ and

are either b and (0 or ¢ and M respectively

(-o-W)®-X)®-Y=>2Z |
(.Q.W).@.(X.@.Y):}Zn

Xeg (oW e)=2
(.Q.W).@.(X.@.Y)@Zn

W~®-(X~®-(-<>-Y)):>Z
(W.@.X).@.(.Q.Y):}Ze

n

(W-e-(0V) e X2
W@ X)® (O-V)=2Z

lakei (die (Alice plaagt))
lackey (who (Alice teases))
lackey whom Alice teases
lackey who teases Alice

1.4 Semantics

(1.19)

(1.20)

(1.21)

The final linguistic property that can be extracted from a derivation is a meaning
of the language structure. The fact that a sentence like “Everybody admires
someone” has more than one meaning can be shown with the proof system. This

11

Chapter 1. Typelogical grammars Semantics

X = A] Al =Y

——— $R

#L
$-X =[$A] :-#-Y
:>X Y:>/L Y:> :>X\L

A/Bl=X./-Y B\A| =V -\-X

X =|[A] Y=|B] B
®
¥ ovolios)

Figure 1.5: Rules with focused formulas for display sequent calculus, where $ €

{O, ¢} and # € {0, W}

is done by translating a derivation, which shows how the proof term is built up
rule by rule. One such term represents one meaning. If the separate proof terms
of each of the words are given, they can be inserted into the derivation term. The
term can then be shortened using [-reduction.

Figure 1.6 visualizes the theoretical procedures behind the translation. Figures
1.7, 1.8 and 1.9 show the rules with their corresponding proof term manipulations
(Bastenhof, 2011, Moortgat and Moot, 2011). In Figure A.7 the first derivation
from Figure A.6 is shown, where the sequents are substituted by their proof term
and residuation rules are omitted. The second derivation has a very similar proof
term, as the only difference is that the parts [Alice] and z3 are switched in the
tuple ([Alice], (z3, aq)), which results in (z3, ([Alice], a4)) instead.

rn .
SYN iLLg +
T+ ch ch
AiLL

Figure 1.6: The translations between a syntactical derivation SYN, the semantic
derivation iLLg 1 and the proof term Aj . The notation [-T represent a trans-
lation in continutation passing style. The letters ch stand for the Curry-Howard
correspondence.

12

Chapter 1. Typelogical grammars Semantics

M M
A X =[A] x:A:>Yﬁ
JJ:Ai * X=a:A :>Y
x (a M) Az. M
M M
CoA :>y X:>oz:Aﬁ
—— CoAx _—
ia:A r: A=Y X = [4]
« (x M) Aa. M

Figure 1.7: (Co)axioms and (de)focusing rules for display sequent calculus with
their interpretation. To apply a rule in the first row the focused formula must be
positive, in the second row it must be negative.

X=>2Z-/Y
rp
X~®-Y:>er 3 X=Y
L
Y=X-\-Z X= -#Y

C

M M
X= #.a:A S A=Y

4R T .
X = (B :#A y:$A=Y

case [of (a).M case y of (z).M

M M
X=a:A-/-2:B . X=z:B-\-a:A
X=p:A/B X =p:B\A
case [of (a,x).M case [of (r,a).M

M
r:A-®-y:B=Y

2 AR B=Y
case z of (x,y).M

®L

Figure 1.8: Structural and rewrite rules for display sequent calculus with their
interpretation, where $ and # are either <> and (0 or ¢ and B respectively

13

Chapter 1. Typelogical grammars Semantics

M M
X =|[A] . A=Y L
—— = SR
sxofa " ey
(M) (M)
M N M N
Al= 7z Y:>/L Y = |B] :>Z\L
A/Bl= 7]y B\A|l=Y -\ 2
(M, N) (M, N)
M N
X =|A] Y=[B] B
®
P
(M, N)

Figure 1.9: Rules with focused formulas for display sequent calculus with their
interpretation, where $ € {<, 4} and $ € {OJ, B}

14

Chapter 2

The parsing procedure

Instead of deciding the tree structure(s) of an expression by hand, it is preferable
that the prover forms it by itself. This means that the correct method for pars-
ing expressions must be chosen. In this chapter two parsing procedures will be
explored: backward and forward chaining. After this the usable characteristics of
both parsing methods will be taken to form an algorithm for the theorem prover.
The steps of the algorithm will be described and examples will be given.

2.1 Parsing procedures
A description of parsing is as follows:

“Parsing can be viewed as a deductive process that seeks to prove
claims about the grammatical status of a string from assumptions de-
scribing the grammatical properties of the string’s elements and the
linear order between them.” —Shieber, Schabes, and Pereira, 1994

Applied to the aims of this thesis, this means that parsing can be used to form
the deductions and tree structure for a string of words and its goal type as in 2.1,
where every w is a word and A, a type formula.

w1 Wy ... Wy ~ An+1 (21)

The words are translated to type formulas, after which the pre-sequent 2.2 is
formed.

Al,AQ,...,An ~ An+1 (22)

Pre-sequent 2.2 is the input for the parsing procedure. There are multiple ways
to parse such a pre-sequent, so it is important to choose the correct ones to use

15

Chapter 2. The parsing procedure Parsing procedures

with the deductive system. In this section the strengths and weaknesses of two
popular parsing procedures will be discussed.

2.1.1 Backward chaining

Also known as the top-down or goal-driven procedure, backward chaining in de-
ductive systems like extended Lambek calculus starts at the root of the derivation
tree and seeks goals in which every leaf is an axiom or a co-axiom. A problem
arises when the tree structure of the expression is not given and global associativity
is not included in the system. In this situation following a pure backward chain-
ing algorithm would involve attempting a proof for every possible tree structure
for the expression. This is very inefficient, because the amount of tree structures
in a sequence of n words is the nth Catalan number!. Thus a simple expression
with only five type formulas like “John works and Jane rests” has 42 different
tree structures and with an expression that consists of six formulas this number
increases to 132.

Even though a pure backward chaining algorithm is not an option, it may be
useful when parsing (sub)structures of length one or two.

2.1.2 Forward chaining

The procedure of forward chaining, also referred to as bottom-up or data-driven,
takes the opposite approach to backward chaining. In a deductive system it starts
at the leafs of a derivation tree and seek goals in which the conclusion of the tree
is the structured goal sequent. It is not necessary that a tree structure is given,
which is exactly what is needed. However, pure forward chaining would in this case
be undesirable. This will be illustrated with the example sentence “John works
and Jane rests”, which translates to pre-sequent 2.3.

np07np1\527 (53\84)/85, npﬁynp7\38 ~> 89 (2-3)

A derivation tree is formed from its leafs, so the first step is to create the
axioms. To avoid forming impossible axioms, the input and output properties will
be utilized first. Based on these properties, it can already be determined which
formulas will be an antecedent of an axiom and which ones will be a consequent;
this is done as follows. Let every type formula in the antecedent of a sequent be an
input and the type formula in the consequent an output. Which atoms are inputs
and which are outputs can be deduced from Table 2.1. In example 2.3 the type

IThis is the case in a system without control modalities. If they are included the amount of
possible tree structures is even higher.

16

Chapter 2. The parsing procedure Implementation

formulas npg, s, s4, npg and sg are input atoms and npy, s3, s5, np; and sg are
output atoms.

Input (}) | p* AY/BT BNAY Alg B+ $AY OAY
Output (1) | pt A'/B¥ BWAT AT BT AT OAT

Table 2.1: Positions in formulas

Because input atoms can only form an axiom with output atoms and vice versa,
and the antecedent and consequent of an axiom must be of the same type, there are
two combinations for axioms with np and six for co-axioms with s possible, result-
ing in twelve combinations of axioms. Increasing the amount of atomic formulas
in the theorem will make the algorithm significantly worse at finding a solution
quickly.

In the next sections these problems will be minimized by incorporating back-
ward chaining into the forward chaining algorithm.

2.2 Implementation

To optimize the process of constructing a proof for a given theorem, an algorithm
will be described that uses forward and backward chaining by going through the
following steps. Partial derivations are made for the type formulas in an input
pre-sequent that takes the form of 2.2. Together they will be combined into the
final derivation(s) by applying structural rules and connecting their premises and
conclusions. This will be done with the use of Breadth First Search.

Throughout the chapter the algorithm will be explained using the example
“lakei die Alice plaagt”, which is translated to pre-sequent 2.4.

no, (n1\n2)/((G0np3)\s4), nps, npe\ (np7\ss) ~ ng (2.4)

2.2.1 Partial proof trees

In this section backward chaining will be used to form parts of the desired deriva-
tion(s) for a pre-sequent. Therefore these partial proofs are formed from the con-
clusion towards the premises.

A smaller proof for every lexical item of the antecedent and for the consequent
of the sequent can be constructed and will be part of any of its goal proofs (Joshi
and Kulick, 1997). Such a smaller proof is made with a sequent as the conclusion
where the type formula is one side (the antecedent or consequent) and an incom-
plete structure on the other. Such an incomplete structure will be referred to as
unknown, which is described in Definition 2.2.1. A smaller proof will be called a

17

Chapter 2. The parsing procedure Implementation

partial proof tree; see Definition 2.2.2. PPT's in this thesis are similar to the PPTs
described by Joshi and Kulick (1997).

Definition 2.2.1. An unknown atom is an atom p-, where p is an atomic type.
An unknown structure is a structure where not every substructure is shown, but
instead denoted with a variable.

Definition 2.2.2. A partial proof tree (PPT) is a sub tree of a derivation in
extended Lambek calculus, where some structures may be unknown.

At least one PPT is constructed for every type formula A in pre-sequent 2.5.
This results in set 2.6, where every function ppts(A4;) results in a set of PPTs
that is unfolded from its corresponding type formula A;.

Al,Ag,...,An ~ An+1 (25)

ppts(A;) Uppts(Ay) U...Uppts(A,) Uppts(A,;1) (2.6)

The root (or conclusion) of a PPT that is unfolded from a type formula A is
a sequent where A is changed to the form A = X if A is an input formula and
X = Aif A is an output formula, and X is an unknown structure. A PPT ¢t is
unfolded by attempting the following extensions:

1. t is extended with a non-structural rule application for every leaf in which
the antecedent or consequent is a type formula A. The rule that is applied is
the one in which the type formula in the conclusion of the rule matches the
position (input or output), connective and focusing of A. Any new structural
connectives are added if present in the rule.

2. A new PPT is constructed for every non-atomic structure A$ B or $ A in
the leaf(s), where A and B are type formulas and $ a structural connective.

Any new or changed PPT is unfolded, so the algorithm keeps extending and
creating PPTs until no more extensions or additions are possible. The PPTs
corresponding to example sequent 2.4 can be found in Figure A.8, where a non-
atomic unknown structure is presented as X;cy.

When all PPTs are constructed for a pre-sequent, they will be connected using
structural rules in order to find the final derivation(s). This will be discussed in
the next section.

18

Chapter 2. The parsing procedure Implementation

2.2.2 Breadth First Search

Because backward chaining was used as much as possible with the PPTs, the
attention will be shifted to the forward chaining procedure. For this method it is
necessary to start from the axioms, so the algorithm will operate on a PPT that
contains only axioms as leafs. This PPT will be called the main proof S. If there
are multiple possibilities for S, any of those can be chosen arbitrarily. The process
of combining S with other PPTs is described using the concept of compatibility,
which is introduced in Definitions 2.2.3 and 2.2.4.

Definition 2.2.3. Two structures X and 'Y are compatible if and only if
- X orY is unknown, not an atom p, and does not have any connectives, or

X is an atom p,, andY is an atom p, where m =n orm =7 orn =7, or

X is of the form $W and Y is of the form # Z where $ and # are unary
connectives, and $ = #, and W is compatible with Z, or

X is of the form U SV andY is of the form W # Z where $ and # are binary
connectives, and $ = #, and U is compatible with W and V is compatible
with Z.

Definition 2.2.4. Two sequents X =Y and W = Z are compatible if and only
of

- one of the sequents is neutral and the other is either neutral or an axiom,
and

- X 1s compatible with W, and

- Y s compatible with Z.

The main proof S can be transformed in the following ways:

1. an axiom p; = p,, or p,, = p7 in S is completed by combining S with a PPT
that consists only of a sequent p, = X or X = p,, given that the axiom
and sequent are compatible, or

2. a structural rule is applied to the root of .S, or

3. S is combined with another PPT R, given that the root of S is compatible
with a leaf of R.

19

Chapter 2. The parsing procedure Implementation

The transformations can be recorded in a search tree, where every transforma-
tion is an edge and the set of PPTs a node. To ensure that every solution is found
the transformations are applied Breadth First, which means that every node at a
given depth is expanded before any deeper nodes. To avoid unnecessary branches
in the search tree, any node that is a duplicate of another node that was explored
before will not be expanded, and neither will one that contains a PPT in which
the same sequent appears two or more times.

Because only the main proof S can be transformed, it is important that it is
a PPT where all of its leafs are axioms. This way it is not possible that S could
have been combined with another PPT R if R was transformed first. This means
that a new main proof is chosen whenever S is transformed to contain at least one
leaf that is not an axiom?. A node is a solution when it only contains S and its
root is the structured goal sequent. The algorithm is done when the search tree
can not be expanded anymore.

The search tree corresponding to the example sequent consists of hundreds of
nodes, so the complete derivation tree will not be shown. To give an example for
how the BFS algorithm works, the first few steps will be explained. As can be seen
in Figure A.8, there are seven PPTs for the example sequent 2.4, and PPTs (c) and
(g) contain only axioms as leafs. Before starting the BFS procedure, one of those
is chosen as the main proof. It does not matter which one; in this explanation
(g) is arbitrarily selected as the main proof. Now the search tree in Figure A.9
can be built, which has the seven PPTs in Figure A.8 as the root. This node
has three descendants: (g) can be combined with (b) in two ways, resulting in
the PPTs (bgl) and (bg2), and a structural rule can be applied to (g), creating
the PPT (gl). Now all of the descendants in the next depth are expanded. The
nodes with PPTs (bgl) and (bg2) both have one extension through structural
rule application, which results in the PPTs (bgl.1) and (bg2.1) respectively. Five
transformations are possible for (gl): three structural rules can be applied and
(gl) can be combined with (b) via two axioms again. However, the node has only
two descendants, because one structural rule application would have resulted in
a PPT that contains sequent 2.7 twice, and if (gl) was combined with (b) both
of the resulting nodes would have been duplicates of the nodes that contain the
PPTs (bgl.1) or (bg2.1).

npe\(np7r\nps) = np2 - \ - (npz - \ - 52) (2.7)

The order of node expansion is: the node with the main proof (g), (bgl), (bg2),
(gl), (bgl.1), (bg2.1), (g1.1) and (g1.2) followed by the direct descendants of the
nodes with the latter four main proofs.

2An example where this occurs is with the sequent p/q = p/q when p has a positive and q a
negative polarity.

20

Chapter 2. The parsing procedure Implementation

With the theoretical background in these chapters a Python program was writ-
ten that proves theorems in extended Lambek calculus and uses forward chaining
and PPTs. The code for this program can be found in the appendix.

21

Conclusion & further research

A theorem prover was made with Python code that follows the parsing procedure
described in this thesis. Given an unstructured sequent, the polarities of its atomic
types and its focusing, this procedure uses backward and forward chaining to
efficiently find every possible proof in extended Lambek calculus and translates it
to its semantic interpretation.

To give insight into the systems and processes that were used in the prover,
the textual part was written, which was divided into two parts. First, Lambek
calculus was introduced. The initial deductive rules had problematic properties
and thus the calculus was extended and modified to fit its purposes better. In the
second part a parsing procedure was given that uses the extended Lambek calculus
to parse and prove the before mentioned theorems.

A prover like the one in this thesis has been written before. However, this
prover is the first one that is written in Python: a popular programming language,
that allows the use of many Natural Language Processing tools.

The theorem prover is useful in the fields of linguistics, logic and Artificial In-
telligence, as it systematizes language by calculating properties of linguistic struc-
tures, with the use of extended Lambek calculus in combination with a parsing
procedure.

Even though the written program works as desired, there are still a couple
of points of improvement. Firstly, it is not very efficient when solving relatively
long or complex inputs. The algorithm could therefore be improved to limit the
expansion of the search tree by finding nodes that will not lead to a solution
earlier in the process. A second point of improvement concerns a data structure
that was used in the program. After the proof procedure, the found solution(s) are
converted to strings that can be compiled to IXTEX. This process is made easier
by changing the data structure of the solution to a recursive definition of a tree.
It may be beneficial if a tree is represented as this recursive one from the start of
the algorithm. To do this, part of the code needs to be rewritten.

Besides adjusting the efficiency of the program, there are still more features
that can be added. Five recommendations will be mentioned. First off, more
structural rules can be used with the program by writing them in code. However,

22

Conclusion & further research

with the systematic nature of the deductive rules it is possible to write the form of
the rules in a text format. Therefore functions could be implemented that read and
convert these rules to a usable format for the program, similar to how the lexicon is
compiled. The program could also profit off of a User Interface instead of needing
to run the code through queries. Furthermore, a limitation of the program is
that currently the lexicon assign a unique type to every word, even though some
words have multiple types. It could therefore benefit from a modification where
multiple types can be assigned to a single word. Another welcome addition is the
before mentioned feature where a proof term can be simplified using S-reduction
when proof terms for words are given. The last suggested feature is about the
generative power of the proof system. Even though the extended Lambek calculus
that is currently used handles a lot of language properties well, it still is not able
to derive every grammatical language structure. More extensions could be added
to the system, like the connectives that were introduced with the Lambek-Grishin
calculus (Moortgat and Moot, 2011).

A last point of discussion is about what further research can be done considering
the algorithm. The program seems to be able to derive all of the desired proofs.
However, even though the theoretic background was studied and the code was
tested thoroughly, a formal analysis and proof are needed to verify this.

23

References

Bastenhof, A. (2011). Polarized Montagovian Semantics for the Lambek-Grishin
calculus. CoRR, abs/1101.5757.

Ciabattoni, A., Ramanayake, R., & Wansing, H. (2014). Hypersequent and Display
Calculi - a Unified Perspective. Studia Logica: An International Journal for
Symbolic Logic, 102(6), 1245-1294.

Joshi, A. K. & Kulick, S. (1997). Partial Proof Trees as Building Blocks for a
Categorial Grammar. Linguistics and Philosophy, 20(6), 637-667.

Jumelet, J. (2017). Bottom-up parsing for the extended typelogical grammars.

Lambek, J. (1958). The Mathematics of Sentence Structure. The American Math-
ematical Monthly, 65, 154-170.

Lambek, J. (1961). On the calculus of syntactic types. Structure of Language and
Its Mathematical Aspects, 12, 166—178.

Moortgat, M. (1996). Multimodal Linguistic Inference. Journal of Logic, Language
and Information, 5(3), 349-385.

Moortgat, M. (2014). Typelogical Grammar. In E. N. Zalta (Ed.), The Stanford
Encyclopedia of Philosophy (Spring 2014). Metaphysics Research Lab, Stan-
ford University.

Moortgat, M. & Moot, R. (2011). Proof nets for the Lambek-Grishin calculus.
CoRR, abs/1112.6384.

Moot, R. (2015). Comparing and evaluating extended Lambek calculi. CoRR,
abs/1506.05561.

Moot, R. (2016). The Grail theorem prover: Type theory for syntax and semantics.
CoRR, abs/1602.00812.

Pentus, M. (1997). Product-Free Lambek Calculus and Context-Free Grammars.
Journal of Symbolic Logic, 62, 648-660.

Shieber, S. M. (1985). Evidence against the context-freeness of natural language.
Linguistics and Philosophy, 8(3), 333-343.

Shieber, S. M., Schabes, Y., & Pereira, F. C. N. (1994). Principles and Implemen-
tation of Deductive Parsing. CoRR, abs/cmp-lg/9404008.

24

Appendix A

Examples

In this appendix the examples from chapters 1 and 2 can be found, as well as the
outputs from the queries in the file examples.py.

nps = Nps Ax S¢ = S4 Ax

x \L

npy = np; Ax S9 = Sy A nps - ® - (nps\se) = s4 \R

npo - & - (np1\s2) = s7 nps\se¢ = np3\ss
npo - @ - (((np1\s2)/(nps\sa)) - @ - (nps\se)) = s7

Figure A.1: Derivation for the sentence “John never works”

25

Appendix A. Examples

npy = np; Ax So = S7 Ax nps = nps Ax ne = ns Az
npo - @ - (np1\s2) = s7 (npa/ns) - @ - ng = nps //L
npo - @ - (((np1\s2)/np3) - @ - ((npa/ns) - @ - ng)) = s7
npy = np; AX So = S7 AX

npo - Q - (np1\s2) = s7 npy = nps Al);

npo - @ - (((np1\s2)/nps) - ® - npy = s7 ng = Ns Ax

npo - @ - (((np1\s2)/nps) - @ - ((npa/ns) - @ - ne)) = s7

(a) The regular sequent calculus NL

CoAx

np0:> Eé&\
L —— A
np1\sz| = npo - \ - s7 np4:> *
/L

(np1\s2)/nps|= (npo -\ - s7) - /- npy

pA—

(np1\s2)/nps = (npo - \ - s7) - /- nps D
((np1\s2)/np3) - @ - npy = npo - \ - 57 r
npy = ((np1\s2)/np3) - \ - (npo - \ - s7)

e = (npr\s2)/nps) - (g \-s1) | mg = ’;L
npa/ns | = (((npi\s2)/nps) -\ - (npo - \ - s7)) - / - ne B
nps/ns = (((np1\sz2)/nps) - \ - (npo - \ - s7)) - / - ng o
(npa/ns) - @ - ng = ((np1\s2)/nps) - \ - (npo - \ - 57) rp
((np1\s2)/np3) - @ - ((npa/ns) - @ - ng) = npo - \ - 57 rp

npo - @ - ((np1\s2)/nps) - ® - (nps/ns) - @ - ng)) = s7 _
npo - ® - (((np1\s2)/nps) - @ - ((npa/ns) - @ - ng)) = | s7]

(b) Focused display calculus

Figure A.2: Derivations for the sentence “Alice bakes the cake”, with the polarities
np, n: + and s: -

26

Appendix A. Examples

GT'T Juenbos-o1d 10] UOIYRALIS(] 'Y OINSIq

b5 = (P @ - (1)) - @ - (bdu/5d6)) - @ - (5 (95\)\ (7s\dw)))) - @ - (35\ 1)) - @ - O

M/w 1y, « 2y y fls < (((Oldu - @ - (6du/3db)) - @ - (LdB/((9\Sdu)\(¥s\8du)))) - @ - (25\1du)) - @ - 0du
g MO s (5 & (B ((\)\ (5\) - (1) - & - i
Xy Ldb < 8db 7 s < (((9s\4du)\(vs\&du)) - ® - (¢5\du)) - ® - 0du
7 tls < (9s\4du) - ® - 0du i\ s\ tdu <« s\ du
VoD e v . 7\ MAAHH NM,mm/ﬁ:W&.ﬁ@WmW%:
Xyo) = — 7 xy —— — 7%

27

Appendix A. Examples

U «~ SUISO[D INOYIIM 1J9] 9OI[Y IR} MOPUIM, I0J UOIJRALIS(] 'y oINS

Slu < (((((Mdu/E1db) - @ - (e1db/((M1s\01du)\(6s\8dw)))) - @ - (45\%du)) - @ - “du) - ® - (((*dupH)/*s)/ (Fu\) - @ - Ou

NN.\M\\ AvQE_H_Avv\mw = Aﬁﬂﬁgﬁ\m:&mv C® - ANH&Q\AA:m,/oﬁmwﬁv/ﬁmw/w&ﬁvvvv C® - Ahm,/w&ﬁvv - ® - Sdu \N/ STy «— Ami/ﬁtv -® -0
76 g < (vdud) - @ - ((((idu/€1db) - ® - (etdb /((T1s\0Tdu)\ (65\8du)))) - @ - Tm/@&sv - ® - 9du) Xy STy <« %u Xy Tu < Oy
¢ < (Ydug- &) - @ - ((((Vdu/e1db) - @ - (S1dB/((Vs\01du)\(6s\Bdu)))) - ® - (45\%du)) - © - “du)
H ¢ < (("dug- $-) - ® - (((Mdu/e1db) - ® - (21d6/((M1s\0ldu)\(6s\8du)))) - ® - (45\%du))) - © - “du
¢ < (("dug- &) - @ - ((du/e1db) - @ - (S1dB/((11s\01du)\(6s\8du))))) - @ - (+5\%du)) - ©
qcmw ¢ <= (("dug- &) - @ - (Mdu/e1db)) - @ - (21d6/((11s\0Tdu)\(6s\8du)))) - @ - (45\9%du)) - @ - “du
€5 «— AAQ&Q C® - AEQW\:\QQWQVV C® - ANHQWQ\QHHw/oH&ﬁv/Am%/wQQVVVV -® - Anw/oaw\:vv -® -9
M/w Yidu <« vdu €s <« ((€1d6 - @ - (¢1dB /((TTs\0Tdu)\ (6s\8dw)))) - @ - (48\9du)) - @ - Sdu
Nd\\ eldb <« €1db € «— AAA:m,/oH&ﬁv/Amm,/w&ﬁvv C® - Auw/w&ﬁvv - ® - Sdu
7\ g5 < (118\0ldu) - @ - Sdu 65\ 8du < L5\ 9du
x<MW € « llg Xy 0Tdu <« Sdu \WN// 65 < (Ls\9du) - ® - 8du
Xy0)) Os =15 Xy 9du = Sdu

28

Appendix A. Examples

91°T yuonbos-oxd 10j uOIIRALIO(] Gy ©INSI

7/ s < (- @ - (Mu/0ldu)) - @ - (6du/%db)) - @ - (4db/(((%s*du)\("s\ du))m - ¢) - @ - (*s\'du)) - @ - du
xy U= 7/ fls < (((*ldu - @ - (6du/%db)) - @ - (4dB/(((%s\du)\(*s*du))m - ¢))) - @ - (¢s\1du)) - ® - 0du
xy Jdu <= Otdu 7/ fls <= ((%db - @ - (+db/(((%s\du)\(*s*du))m - ¢ -))) - ® - (%s\'du)) - @ - °du
g MO =S5 = ((((05\)\ (5\) m ¢ © - 5\) - & - W
= (CATN) @ - 5\ dw) - o
tls < (95\%u) - ® - 0du s\ Edu <= s\ tdu
X<MW €lg «= 9¢ Xy Sdu <« odu M&// Ve « Amm/ﬂzv -® - edu
Y09 Ve & Cg Xy Tdu < tdu

29

Appendix A. Examples

Ax CoAx

=[] [
A L
s =ome] - [opdss] =\ s

npe\(np7\sg) | = nps -\ - (np3 -\ - 54)

\L

npe\(np7\ss) = nps - \ - (np3 -\ - 54) ;

nps - @ - (npe\(npr\ss)) = nps - \ - 54
np3 - @ - (nps - @ - (npe\(np7\ss))) = s4 .
nps = s4- /- (nps - @ - (npe\(np7\ss)))
= 84/ (nps - @ - (npe\(np7\ss)))
=0 (sa-/+ (nps - ®- (nps\(np7\ss))))
Onpg = -0 (sa- /- (nps - @ - (nps\(np7\ss)))) .
& - Onps = s4- /- (nps - @ - (npe\(npr\ss)))
O0nps = sa- /- (nps - @ - (npe\(np7\ss))) i

<~

tr

L

Ax
mp=] D@ (s ® - (npe\(wpr\ss)) < e
A 2 ~ " nps - @ - (npe\(npr\ss)) = OG0nps - \ - 54
no = = N9 Y’ nps - @ - (npe\(npr\sg)) = GOnps\s4
=g\ g nps - @ - (npo\(np7\ss)) = /
L
[(n1\n2)/(O0nps\sa) |= (no -\ - no) - / - (nps - @ - (npg\ (npr\ss))

(n1\n2)/(O0nps\s1) = (ng -\ -ng) - / - (nps - @ - (npe\(np7\ss))) i
((n1\n2)/(GOnp3\s4)) - @ - (nps - @ - (npe\(np7\ss))) = no - \ - ng i
no - ® - (((n1\n2)/(OG0np3\s4)) - @ - (nps - @ - (npe\(np7\ss)))) = ng

Figure A.6: Derivation for “lakei die Alice plaagt” ~» n, with the polarities np, n:
+ and s: -, which translates to “lackey who teases Alice”

30

Appendix A. Examples

CoAx

A
nps = [npr] . [s8] = 54
— A
nps = [npe]| " [npr\ss | = nps -\ -5

npe\(np7\ss) |= npz - \ - (nps - \ - 54)

\L

\L

npe\(npr\ss) = np3 - \ - (nps - \ - 54) i
np3 - @ - (npe\(np7\ss)) = nps - \ - s4 i
np3 = (nps -\ - s4) - / - (npe\(np7\ss))
= (nps -\ - 54) - / - (npe\(np7\ss))
= -0 ((nps -\ - s4) - / - (nps\(np7\ss)))
Onps = -0 ((nps -\ - s4) - / - (nps\(np7\ss)))
0 Onpy = (s -\ -50) -/ - (s (7\s)
(+<¢ - Onps) - @ - (npe\(np7\ss)) = nps5 - \ - 84
nps - @« ((- & - Hnpz) - @ - (npe\(npr\ss))) = s4
(- -Onps) - @ - (nps - @ - (nps\(np7\ss))) = s4 r:
& -Onpg = 84+ /- (nps - @ - (npe\(np7\ss)))
OUnps = 54+ /- (nps - ® - (npe\(np7\ss))) i

~—

ar

4L

rp

ny = ix OOnps - @ - (nps - @ - (npe\(np7\s8))) = 54 o
Ax n2=ny nps - @ - (npe\(npr\ss)) = GOnps -\ - 54
no = = N9 \L nps - @ - (npe\ (np7\ss)) = GLnps\s4 _
= ng -\ - ng nps - @ - (npe\ (np7\ss)) = e

| (n1\n2)/(O0nps\sa) | = (no - \ - ng) - / - (nps - @ - (npg\(np7\55))) B
(n1\n2)/(O0np3\ss) = (no -\ - ny) - / - (nps - ® - (npe\ (np7\s3))) "
((n1\n2)/(O0Inps\s4)) - @ - (nps - ® - (nps\(np7\ss))) = mo -\ -no

no - ® - (((n1\n2)/(G0np3\s4)) - @ - (nps - @ - (nps\(np7\ss)))) = no

Figure A.6: Derivation for “lakei die Alice plaagt” ~~ n, with the polarities np, n:
+ and s: -, which translates to “lackey whom Alice teases”

31

Appendix A. Examples

U «~ J8ee(d 901y OIp o3[, 10J UL} JooId o) JO UOI)RULIO :)Y 9INSIq

((((({(ro “€x) “[ony |) +[18eeyd|)-Exy) i) (i) go i ssed (Vv ‘Tfi) go Og esed 0y ((¢x 6v)twy ‘|[1ove|])) +[a1p])

{
(({({{ro*€x) [0y]) +[28eeid])2y) 1) (Vi) o @i eseo(Fv‘Th) go Of esed0gy ‘((2x 60)Txy [1ovel)))
(((((7o ‘ex) “[a01y|) +|38eeid])€xy) 1) (M) go &fi eses (Vo ‘efi) go Og esedsOgy ((2x 60)-Twy ‘| 19ve]])

A 7\
((({((vo‘€x) ‘(2011]) +[1Beejd])€xy) Mi)(1fi) go i eseo (Vo ‘%fi) yo 0g eseo (¢x 60)Cwy |19ye|]

i\ (((vo) [soy]) +[13eeid])Ea) 1) (1) 30 o oseo _ (o)
w0 ({0 ta) [soy]) - [13eerd]) ey} 1) w

(0 52) 9oy} ; [39eerd]) Fay)

((vo‘ex) ‘(o011]) +[18eerd]) Exy

({0 52) 521y} 7 [19eeid))

((vo ‘ex) < |01y)

(o ex) [0

Yo Sx

1/

A

gjn

R

7\
T\

32

Appendix A. Examples

Ax
ne =
ng = Xo nps = Xs Ny = Ng -
(a) (b) (c)
Ax Ng = Xl X2 = (<>an3) . \ -S4
ne = = X, \z Xo = (OOnps)\s4
nl\ng = N9 - \ . X1 X2 = (<>an3)\84 /
L
(n1\n2)/((O0nps)\sa) | = (n2 -\ - X1) - /- X
(mi\n2)/((CUnps)\ss) = (n2 -\ - X1) - /- X
(d)
nps = X4
- X,
0L
'Q'an3=>X3<>L :>'D'X4;

SOnps = X5 Onps = -0 - Xy
(e) ()

CoAx
\L

A
npe = [npr] - [5s]= 0
— A
np7:> § np7\ss|= nps - \ - s

‘"PG\(”P7\58) ‘ = npy -\ - (npr -\ - s7)

pA—

\L

npe\(np7\ss) = np2 -\ - (np2 - \ - s7)

(2)

Figure A.8: PPTs for pre-sequent 2.4, where PPT (a) is unfolded from the type
formula ng, (b) from nps, (c) from ng, (d), (e) and (f) from (ny\n2)/((OG0nps3)\s4)
and (g) from npg\(np7\ss)

33

Appendix A. Examples

“I0]0D B HIM PIJRIIPUL ST 9pOU © Ul Jooid urewr oy], 'y oIS ul sT,JJ oY) juosordal
(8) pue (3) ‘() ‘(p) ‘(2) ‘(q) ‘() s10330[oY, F'g Iuenbes-oxd 10} 8a1) yYoIeas ay) Jo syydep moJ ISIT 6y oINSL]

(z°19)

s = (((Sdu\Ldu

\9du) - @ - idu) - @ - idu

(1'18)

)i\ - ddu) <= idu

di

d

((8du\2du
' (19)

@) () (p) () (@) (¥)

1 <= ((8du\Ldu)\%du) - @ - “du
(23q)

(3) (@) (P) () (®)

di

s\ - Sdu <= (

(1'189)

\8du)\9du) - @ - idu

(18q)

(3) (@) (P) () (®)

(18)

s\ - idu = ((Sdu\ddu)\9du) - @ - idu
()

di

3 () (P) () (a) (®)

(28q)

34

Appendix A. Examples

CoAx
npy = :> 51 \
L
npa\sz | = npo - \ - 1

np2\53 = Nnpo - \ - S
npo - ® - (np2\ss) = s1 ;
npo = s1- /- (np2\ss)

npo = s1/(np2\s3)
case [y of (a1, vo)-(yo (o, 1))

Figure A.10: Program output for the query get_derivations(’types’, None,
'np’, ’s/(np\s)’, {’np’: ’+’, ’s’: ’-’}, 0, True)

CoAx

np0:> E:>53\

npi\S2 |= npo - \ - S3

pa—

npi\s2 = npo -\ - 83
npo - ® - (np1\s2) = s3
npo- @ - (np1\ss) = [55]
Aas. (Yo (2o, as))

Figure A.11: Program output for the query get_derivations(’types’, None,
)np, (np\s)’,)S)’ {anz: ;+;, rg7 ;_;}, ’I", True)

=[]
o npoj

- - npy = <>np1
npo = - (<>np1)
npo = L(Onpy)

= O(0np)
Azg.case [of (Bo).(Bo (o))

rc

Figure A.12: Program output for the query get_derivations(’types’, None,
;an’ ;::(<>np);, {)np): ;+)}’ ;1)’ True)

35

Appendix A. Examples

— A
npo = [mpr]

npo = NP1

(] = np1
[Gom] =0y

A

UL

Cnpg = -0 - npy
- - (Onpo) = nps

O(Onpg) = npy
case y1 of (yo).-(Yo (Awo.(a1 20)))

rc

Figure A.13: Program output for the query get_derivations(’types’, None,

’<>(::np)’, ’np’, {’np’: ’+’}, 0, True)
— Ax
o= 1]
ng = N5 -
I
Ng | = Ns Nng = | N
/L
no/ny|=ns- /- ng
4
ng/ny = ns- /- ny o
(ng/n1) - ® - ng = ns -

N ngy = (no/nl) '\‘715
- Ax —
ny =[] (] = (no/n1) -\ - ns \L

nz\ny|=ng -\ - ((no/n1) -\ - n5)

pAa—

na\nq = ng - \ - ((no/m1) - \ - ns) ;
ng - @ - (ng\n4) = (ng/ny) -\ - ns
(no/n1) - ® - (ng - ® - (ng\na)) = ns
(Y1 (2, Awa. (Yo (Amo.(a5 20), 74))))

Figure A.14: Program output for the query get_derivations(’types’, None,
r’(n/n), n, (@\n)’, ’n’, {’n’: ’+’}, 0, True) (1/2)

36

Appendix A. Examples

na = 15

ng = Nj

Ax
=) [l =

n3\ng| = ng -\ - ns

A

TL3\TL4 = N - \ * Ny

P
Ng - & - (ng\n4) = N5 ;

no = ns- /- (n3g\ng)
—
:>n5-/~(n3\n4) n2:>

no/ni|= (ns- /- (ns\na)) - /- na

/s = (/- (m\n)) ma
(no/n1) - ®-ng = ns -/ - (nz\na)

((no/n1) - @ - na) - @ - (ng\na) = ns
(Yo (Azo.(y1 (0, Aza.(05 x4))), T2))

Ax
/L

Figure A.14: Program output for the query get_derivations(’types’, None,
r’(n/n), n, (@\n)’, ’n’, {’n’: ’+’}, 0, True) (2/2)

37

Appendix A. Examples

CoA

x ——— Ax
(85| = 2 np1:>\
L

nps\Ss | = npy -\ - 2

nps\Ss = np1 -\ - S2 \;
nps\Ss = npp\Se -
= 53 Cohx nps\Ss = [np1\se
/L
so/(npi\s2) |= s3- /- (nps\ss) B
so/(npi\s2) = 83+ /- (nps\ss)
so/(np1\s2) = s3/(npa\ss)
CoAx 7
= 57 so/ (np1\s2) = | s3/(npa\ss) \L
(s3/(npa\s5))\s6 | = (s0/(np1\s2)) - \ - s7 B

(s3/(npa\s5))\s6 = (so/(np1\s2)) -\ - s7 -
(s0/(np1\s2)) - ® - ((s3/(npa\s5))\ss) = s7 _
(so/(np1\s2)) - @ - ((s3/(nps\s5))\s6) =

Figure A.15: Program output for the query get_derivations(’types’, None,
;(S/(np\s))’ ((s/(np\s))\s)’, ,S), {;np;: 7+;’ rg0 - 7_;}’ 7r;’
True) (1/2)

38

Appendix A. Examples

CoAx ——

[85] = s3 np1:>

nps\Ss | = np1 -\ - 3

Ax
\L

4

nps\Ss = np1 - \ - S3

npy - ® - (npg\Ss) = 3)
npy = s3- /- (nps\ss) IR

np1 = s3/(nps\ss)
CoAx -
= So np1 = | s3/(nps\ss)
\L

(s3/(nps\s5))\s6 | = np1 -\ - s2

P

(s3/(nps\s5))\s6 = np1 -\ - 52

Con (s3/(nps\s5))\se = np1\s2 _
Gol=sr (53/(npa\ss))\s6 = [npr\s:

so/(np1\s2) |= s7- /- ((s3/(nps\s5))\ss)

P

so/(npi\s2) = s7- /- ((s3/(nps\s5))\s6) p
(so/(np1\s2)) - @ - ((s3/(nps\s5))\ss) = s7

) ®
(so/(np1\s2)) - @ - ((s3/(npa\s5))\ss) = -

\R

/L

Figure A.15: Program output for the query get_derivations(’types’, None,
’(s/(np\s)), ((s/(np\s))\s)’, ’S), {)np): :+)’ g7 :_;}, ’I",
True) (2/2)

39

Appendix A. Examples

——— Ax CoAx
nps = = 53
\L —— Ax
=>ﬂp5'\'53 Tlp4:>
/L
(npe\s7)/nps |= (nps -\ - 83) - / - npa
(npe\s7)/nps = (nps -\ - s3) - / - npa rp
((npe\s7)/nps) - @ - nps = nps -\ - 53 r
nps = ((npe\s7)/nps) - \ - (nps -\ - s3)
= ((nps\s7)/nps) - \ - (nps -\ - s3)
0L
= -0 (((nps\s7)/nps) - \ - (nps - \ - 53))

Onps = -0 (((nps\s7)/nps) - \ - (nps -\ - s3)) .
- - (Bnpa) = ((npe\s7)/nps) - \ - (nps - \ - s3))
((npe\s7)/nps) - @ - (- & - (Onps)) = nps -\ - s3 "
nps - ® - (((npe\s7)/nps) - @ - (- & - (Onpa))) = s3
(nps - @ - ((npe\s7)/nps)) - @ - (- & - (Onps)) = s3
- - (Onps) = (nps - @ - ((nps\s7)/nps)) - \ - s3
Ax O(Onps) = (nps - @ - ((nps\s7)/nps)) - \ - s3)
me= (o] s -@ - (pe\sr)/nps)) - @ - (O(Onpa)) = 55
n2 = N nps - ® - ((npe\s7)/nps) = s3 - / - (G(Onpa))

—

Ax
no = R nps - ® - ((npe\s7)/nps) = 53/(O(Cnpa))

en

r

= ng -\ - no nps - ® - ((npe\s7)/nps) = | s3/(G(0npy))
/L
[(n1\n2)/(s3/(O(Onpa))) | = (n0 -\ - ng) - / - (nps - @~ ((npe\s7) /mps))

()
(n1\n2)/(s3/(¢(Onpa))) = (no -\ - ng) - /- (nps - @ - ((npe\s7)/nps)) o
((n1\n2)/(s3/(&(Enpa)))) - @ - (nps - @ - ((npe\s7)/nps)) = no - \ - ng i

no - ® - (((n1\n2)/(s3/(O(Onpa)))) - @ - (nps - @ - ((nps\s7)/nps))) = ng
(y3 (w0, A2.(ag 72)), ABo.case fo of (a3,y2).case y2 of (y1).(y1 (Av4.(yo ((¥5,0a3),74))))))

Figure A.16: Program output for the query get derivations(’words’
’English’, ’book that alice read’, ’n’, {’np’: ’+2 0 n’: 0+
’s’: ’=’}, 0, True)

40

Appendix B

Theorem Prover

This appendix contains a copy of the written code. The usable code files can be found here.

README.txt

This project was made as part of a Bachelor thesis titled ”A forward
chaining theorem prover for the extended Lambek calculus”. It was
written by Emmelie Slotboom under supervision of prof. dr. Michael
Moortgat at Utrecht University.

The current version of the program is 1911.03—-01.

COMMENTS OF NOTE

It is recommended that the thesis is read before using the program to
familiarize oneself with the theoretic background of Lambek calculus
and theorem proving.

DESCRIPTION

The code in this project automatically parses and proves a given
theorem in extended Lambek calculus. It generates every possible
derivation and proof term as a LaTeX and PDF file.

INSTALLATION

This project was made using Python 3.6.1. It can be installed here:
https://www.python.org/downloads /. After the installation is
complete, it should be possible to open and use IDLE, which is all
that is required to run the program.

41

https://1drv.ms/u/s!AmnceLaGZjRL11IaHirdPcG_uVcz?e=21uCyG

Appendix B. Theorem Prover README.txt

USAGE

How to run an example input

Open IDLE,

click File > Open... > main.py,

in main.py click Run > Run Module,

in IDLE click File > Open... > examples.py,

copy and paste an example input from examples.py in IDLE,
press enter to run the example.

U = W N~

How to run a non—example input

For the process of opening and setting up IDLE, see ’'How to run an
example input’. A theorem is proven using the function ’
get_derivations ', which takes 7 arguments. An overview of what these
arguments should look like can be found below. Each argument is
presented with an example value.

input_method = ’'types’

whether the input antecedent consists of types or words

)

should be ’types’ or ’'words’

language = 'English’
the languge in which the input antecedent should be interpreted
this argument is also used to decide which lexicon to use
for more explanation of the lexicons, see ’How to add a word in a
lexicon 7.

should be ’Dutch’, ’"English’ or None
may only be None if ’input_method’ is ’types’ and the input does
not make use of controlled associaticty or commutativity

antecedent = r7n,((n\n)/(s/(<>(:mp)))) ,np, ((np\s) /up)”
the combination of antecedent types or words in the theorem

if ’input_method’ is ’types ’:
should consist of one or more formulas where

formulas should be separated by commas,

42

Appendix B. Theorem Prover README.txt

atoms should be of the form ’p’ and

complex formulas should be of the form ’(#A)’ or ’(A$B)’ where
A’ and ’B’ are formulas,
TH#is <>, <>, i or :.:’ and
'$ is /7, 7\ or Uk’

if there is only one complex formula in the antecedent or
consequent the outer parentheses may be omitted

if ’input_method’ is ’words’:

should consist of a subset of the words in the lexion with the
language ’language’

may not be empty

consequent = r”’n”
the goal type for the antecedent

the requirements of ’antecedent’ apply, except
should always be one formula
may not be a word

polarities = {'np’: ’+’, 'n’: 47, ’'s’: "=’}
the polarities of the atomic types in the antecedent and consequent

should be a dictionary that contains every atomic type in ’
antecedent ’ and ’consequent’ in string form as keys
every type should be given polarity 74”7’ or ="’ as the value

focus = 0
whether the antecedent, consequent or neither is focused

if ’antecedent’ is focused:
should be 717’

if ’consequent’ is focused:
should be 717’

if neither is focused:
should be ’0°

show_indices = True

whether the indices of the atomic types in the antecedent and
consequent should be shown in the derivation(s)

if the indices of the atomic types should be shown in the

derivation(s):
should be ’True’

43

Appendix B. Theorem Prover dutch_lexicon.txt

else:
should be ’'False’

How to add a word in a lexicon

A lexicon is a .txt file that lists the words that may be used in an
input , combined with their types. It is very important to preserve
the syntax of the lexicon, otherwise the code may not be able to
compile it. See dutch_lexicon.txt and english_lexicon.txt for
examples.

A word—type combination in a lexicon is presented on one line with the
word first , immediately followed by a colon and space, and ending in
the type. A type should not contain any outer parentheses, but
every other complex formula must be enclosed in parentheses. A type
should not contain any spaces.

Every new word—type combination should be on a new line. Additional
newlines may be used between word—type combinations to structure
word groups; this has no effect on how the lexicon is compiled.

SUPPORT

For any questions or comments, send an e—mail to emmelieslotboom@live.
nl.

PROJECT STATUS
The original author of the project does not actively maintain it. This
means that it may not run properly on newer python versions.

dutch lexicon.txt

alice: np

bob: np

de: np/n
het: np/n
dit: np/n

dat: (n\n)/((
/

(::np))\s)
die: (n\n) :np)) \s

<>
((<>(

44

Appendix B. Theorem Prover

english_lexicon.txt

slimme: n/n
lakei: n

resultaat: n
student: n

plaagt: np\(np\s)
rekent: pp\(np\s)

niet: (np\s)/(np\s)

er: pp/(pp/np)
op: pp/np

waar: (n\n) /((<>(::(pp/(pp/np))))\s)

english_lexicon.txt

alice: np
bob: np

anyone: s/(np\s)
everyone: s/(np\s)
nobody: (s/np)\s
nothing: (s/np)\s
someone: s/(np\s)

himself: ((np\s)/np)\(np\s)

the: np/n

a: np/n
some: np/n

delicious: n/n
smart: n/n

book: n
cake: n
student: n
window: n

left: np\s

Appendix B. Theorem Prover

Lexicon.py

likes: (np\s)/np
read: (np\s)/np

never: (np\s)/(np\s)
closing: gp/np

that: (n\n)/(s/(<>(::np)))

without: (:.:((np\s)\(np\s)))/gp

Lexicon.py

99999

This module contains a function
the lexicon.

NN

from Exception import InputErro

def lexicon (language):
777 Returns a dictionary of
requested language.
Parameters
language : str

Returns

dict of {str : str}

The existing lexicon that belongs to the requested language

Raises

InputError

If no language is given
LanguageError

If a requested language

N NN

that gives the type for every word in

r, LanguageError

the existing lexicon that belongs to the

is not implemented

if language = ’'English’:
lex_txt = open(’english_lexicon.txt’, 'r’).read()
elif language = ’Dutch’:

46

29

30

31

1

Appendix B. Theorem Prover Formula.py

lex_txt = open(’dutch_lexicon.txt’, ’r’).read()
elif not language:

raise InputError(”Please._.provide_a.language.in._the_input.”)
else:

raise LanguageError(language)

lex = {}

lex_list = lex_txt.split(’\n")
for word_with_type in lex_list:
if word_with_type: # ignore excessive newlines in the text
file
key_with_value = word_with_type.split(’:.")
if key_with_value[1l].isalpha(): # the type is atomic

lex [key_with_value [0]] = key_with_value [1]
else: # the type is complex
lex [key_with_value [0]] = f’({key_with_value[1]})’ #

put the type between parantheses
return lex

Formula.py

from Exception import FormulaTypeError

from sys import maxsize

class Formula:

N NN

This class represents a formula.
Attributes

type : str or list
Atom types are strings, complex formula types are a list of the
form [A, $, B] or [#, A], where $§ and # are
strings representing connectives and A and B are Formulas.
polarity : str
Formulas can have either a positive or mnegative polarity,
represented as '+’ or '—'.

index : list of int
All indices of the atoms that appear within the Formula
position : str

47

20

21

22

23

24

26

27

28

29

30

31

35

36

37

39

40

41

42

43

44

Appendix B. Theorem Prover Formula.py

The Formula should be either an ’input’ or an ’'output ’.

Methods

__eq-_(other) : bool

Whether two Formulas are identical
__hash__() : int

The hash value of the Formula
__repr__() : str

An understandable representation of the Formula
__str__ () : str

A readable representation of the Formula
is_atom () : bool

Whether the Formula is an atom
is_complex () : bool

Whether the Formula is complex
is_unary () : bool

Whether the Formula is unary
is_binary () : bool

Whether the Formula is binary
is_incomplete () : bool

Whether the Formula contains unknown indices
def __init__(self, type, polarity, index, position):

self . type = type

self.polarity = polarity

self.index = index

self.position = position

def __eq-_(self, other):

777 Returns whether the attributes of two Formulas are equal.

Overrides the default method.
Parameters

other : Formula
The Formula that is being compared to self

Returns

bool
Whether the two Formulas are identical

48

64

65

66

67

68

69

70

76

88

89

90

91

92

93

94

95

96

98

Appendix B. Theorem Prover Formula.py

Raises

NotImplemented
If the parameter is not a Formula
if isinstance (other, Formula):
if self.index == other.index:
if self.is_unary () and other.is_unary(): # the
Formulas are of the forms #A and $B

return (self.type[0] = other.type[0] and #
whether the connectives match
self .type[l] == other.type[l]) # whether

Formulas A and B match
elif self.is_binary () and other.is_binary (): # the
Formulas are of the forms A#B and CS$D

return (self.type[0] = other.type[0] and #
whether Formulas A and C match
self .type[l] = other.type[l] and #
whether the connectives match
self.type[2] = other.type[2]) # whether

Formulas B and D match
elif self.is_atom () and other.is_atom ():
return self.type = other.type

return False
else:
return NotImplemented

def __hash__(self):
777 Returns the hash of the Formula.

Overrides the default method.
Returns
int

The hash of the Formula

return hash(str(self))

def __repr__(self):
777 Returns an understandable representation of the Formula.

49

Appendix B. Theorem Prover Formula.py

99

100 This function returns the necessary information needed for
debugging. Overrides the default method.
101
102 Returns
103
104 str
105 An understandable representation of the Formula
106 nrn
107 return f”Formula({self.type!r}, {self.polarity},.{self.index},.
{self.position})”
108
109 def __StI‘__(SGlf)Z
110 777 Returns a readable representation of the Formula.
111
112 Overrides the default method.
113
114 Returns
115
116 str
117 A readable representation of the Formula
118
119 Raises
120
121 FormulaTypeError
122 If the type of the Formula is not of the form a, [#, A] or
[A, §, B]
123
124 Examples
125 —
126 >>> s = Formula(’s’, =7, [0], ’input’)
127 >>> np = Formula(’np’, '+’, [1], ’input’)
128 >>> str(Formula([s, ’/’, np|], =7, [0, 1], ’input’))
120 "(s0/npl)”’
130 nr
131 if self.is_atom():
132 if self.index == [maxsize]:
133 summary = self.type + 7’ # an unknown Formula’s index
is represented as ’7’ (instead of 2147483647)
134 else:
135 summary = self.type + str(self.index[0])
136 elif self.is_unary():
137 a = str(self.type[l])

20

139

140

141

142

143

144

145

146

147

148

149

150

159

160

161

162

163

164

Appendix B. Theorem Prover Formula.py

summary = {7 ({self.type[0]}{a})”
elif self.is_binary():

a = str(self.type[0])

b = str(self.type[2])

1 summary = 7 ({a}{self.type[1]}{b})”

raise FormulaTypeError(self)
return summary

def is_atom (self):
77”7 Returns whether the Formula is atomic.

A Formula is atomic if its type is a string. Note that this
function also returns True when the type is ’7°.
This is intentional.

Returns

bool
Whether the Formula is atomic

N NN

return isinstance (self.type, str)

def is_complex(self):
777 Returns whether the Formula is complex.

A Formula is complex if its type is a list.
Returns

bool
Whether the Formula is complex

return isinstance (self.type, list)

def is_unary (self):
777 Returns whether the Formula is unary.

A Formula is unary if its type is a list of length 2.

Returns

o1

180

181

182

183

184

185

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

207

Appendix B. Theorem Prover Sequent.py
bool
Whether the Formula is unary
return isinstance (self.type, list) and len(self.type) = 2

def is_binary (self):
777 Returns whether the Formula is binary.

A Formula is binary if its type is a list of length 3.

Returns

bool

Whether the Formula is binary

NN

return

isinstance (self.type,

def is_incomplete(self):
777 Returns whether the Formula contains any indices

not

An unfilled

Returns

bool

filled yet.

list) and len(self.type) = 3

index has the value maxsize: 2147483647.

that are

Whether the formula contains any indices that are not

NN

filled yet

return maxsize in self.index

Sequent.py

class Sequent:

NN

This class
Attributes
antecedent

A list
consequent

represents a sequent.

list of Formula or None
of formulas in the antecedent, optional

Formula or None

The formula in the consequent, optional

52

19

20

21

22

23

24

25

26

27

28

29

30

38

39

40

41

42

__eq__(other) : bool

Whether two Sequents are identical
__hash__() : int

The hash value of the Sequent
__repr__() : str

An understandable represenation of the Sequent
_-str__() : str

A readable representation of the Sequent

N NN

def __init__(self, antecedent=None, consequent=None
?7):
self.antecedent = antecedent
self.consequent = consequent
self.focus = focus
self.term = term

def __eq-_(self, other):
777 Returns whether the attributes of the antece

Appendix B. Theorem Prover Sequent.py
focus : int or str
A neutral Sequent has focus 0, a Sequent with a focused
antecedent has focus 71”7, and a Sequent with a focused
consequent has focus "r”, optional
Methods

, focus=0, term=

dents and

consequents as well as the focus of two Sequents are

equal .
Overrides the default method.
Parameters

other : Sequent
The Sequent that is being compared to self

Returns

bool
Whether the two Sequents are identical

Raises

NotImplemented

23

60

61

62

63

64

88

89

90

Appendix B. Theorem Prover Sequent.py

def

def

def

If the parameter is not a Sequent

M NN

if isinstance (other, Sequent):

return (self.antecedent == other.antecedent and
self.consequent = other.consequent and
self.focus = other.focus)
else:

return NotImplemented

__hash__(self):
777 Returns the hash of the Sequent.

Overrides the default method.
Returns

int
The hash of the Sequent

9999 99

return hash ((self.antecedent, self.consequent, self.focus))

__repr__(self):
777 Returns an understandable representation of the Sequent.

This function returns the necessary information needed for
debugging. Overrides the default method.

Returns

str
An understandable representation of the Sequent

9999 99

return f”Sequent ({self.antecedent!r},_{self.consequent!r},_{
self.focus})”

__str__(self):
777 Returns a readable representation of the Sequent.

Formats the antecedent and consequent as in the class Formula.
If a side is focused, it is put between square

brackets. Overrides the default method.

Returns

o4

Appendix B. Theorem Prover Tree.py

91

92 str

03 A readable representation of the Sequent

94

95 See Also

96

o7 Formula. __str__() : A readable representation of a Formula

98

99 Examples

100

101 >>> from Formula import Formula

102 >>> antecedent = Formula(’np’, ’+’, [0], ’input’)

103 >>> consequent = Formula(’'np’, ’+’, [1], ’output’)

104 >>> str(Sequent (antecedent , consequent, 'r’))

105 ‘'np0 => [npl]’

106 o

107 antecedent = self.antecedent

108 if isinstance (antecedent, list): # the antecedent consists of
multiple Formulas

109 ant = 77

110 for formula in antecedent:

111 ant += f”{str(formula)},”

112 ant = ant[: —1] # remove the last comma

113 else:

114 ant = str(antecedent)

115 con = str(self.consequent)

116

117 if self.focus = ’1":

118 ant = {7 [{ant}]”

119 elif self.focus = ’'r’:

120 con = {7 [{con}]”

121

122 return f”{ant}.=>_{con}”

Tree.py

1 from Sequent import Sequent

1+ class Tree:

7NN

6 This class represents a tree.

95

35

36

37

39

40

41

Appendix B. Theorem Prover Tree.py

Attributes

nodes : list of Sequent

The nodes in the Tree, optional

edges : list of Edge

The Edges in the Tree, optional

combined_sequents : list of tuple of (Sequent, int)

The overlapping node and its location in the nodes if the Tree
was merged from two Trees.

Methods

__repr__() : str

An understandable represenation of the Sequent

__str__() : str

A readable representation of the Sequent

add _node (nodes, top_.down=False) : None

Adds a node to the existing Tree

add_edge (premise, conclusion, rule, top_.down=False) : None

Adds an Edge to the existing Tree

root () : Sequent

Returns the root of the Tree

leafs () : list of Sequent

Returns the leafs of the Tree

axioms () : list of Sequent

Returns the axioms in the Tree

contains_loop () : bool

N NN

def

def

Whether the Tree contains a loop

__init__(self , nodes=None, edges=None, combined_sequents=None):
if nodes is None:
nodes = []
if edges is None:
edges = []
if combined_sequents is None:
combined_sequents = |[]

self .nodes = nodes
self.edges = edges
self.combined_sequents = combined_sequents

__repr__(self):
777 Returns an understandable representation of the Tree.

26

Appendix B. Theorem Prover Tree.py

51 Overrides the default method.

53 Returns

54

55 str

56 An understandable representation of the Tree
57 nrn

58 nodes = 77

59 for node in self.nodes:
60 nodes += f”{node}\n”

62 edges = "7

63 for edge in self.edges:

64 edges += f”{edge.rule}\n{edge.premise}\n{edge.conclusion}\n
65

66 combined_sequents = "7

67 for sequent in self.combined_sequents:

68 combined_sequents += f”{sequent[0]} _{sequent[1]}\n”

70 return f”{nodes}\n{edges}\n{combined_sequents}”

72 def __str__(self):
73 777 Returns a readable representation of the Tree.

75 Overrides the default method.

77 Returns

79 str

80 A readable representation of the Tree

81

82 if not self.edges:

83 return f”{self.nodes[0]}\n”

84 else:

85 edges = "7

86 for edge in self.edges:

87 edges += f”{edge.rule}\n{edge.premise}\n{edge.
conclusion }\n”

88 return edges

89

90 def add_node(self, node, top_down=False):

o7

91

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

114

116

117

118

119

120

121

122

123

130

Appendix B. Theorem Prover

Tree.py

777 Adds a node to the existing Tree.

Parameters

node : Sequent
top_down : bool
Whether the new node should be at the beginning or end of
the list of nodes

N NN

if top_down:

self .nodes.insert (0, node)

else:

self .nodes.append (node)

def add_edge(self, premise, conclusion, rule, top.down=False):
777 Adds an Edge to the existing Tree.

Automatically adds the nodes of the Edge to

are not in 1it.

Parameters

premise : Sequent

conclusion
rule : str

Sequent

top_down : bool
Whether the Edge should be at the beginning or end of the
list of Edges

NN

if top_down:

for node in [conclusion, premise]:
if node not in self.nodes:

self.add_node(node, top_-down=True)

self .nodes

if they

self.edges.insert (0, Edge(premise, conclusion, rule))

else:

for node in [premise, conclusion |:
if node not in self.nodes:

self .edges.append (Edge(premise, conclusion ,

def root(self):

self.add_node(node)

28

rule))

131

132

133

134

138

139

140

141

143

144

145

146

147

148

149

160

161

162

163

164

165

166

167

Appendix B. Theorem Prover

Tree.py

def

def

777 Returns the root
The root of a Tree
Returns

Sequent
The root of the

N NN

premises = []

of the Tree.

is a node without premises.

Tree

for edge in self.edges:

premises.append

(edge . premise)

for node in self.nodes:
if node not in premises:

return node

leafs (self):

777 Returns the leafs of the Tree.

A leaf of a Tree is a node without premises.

Returns

list of Sequent

The leafs of the Tree

N NN

conclusions = []

leafs = []

for edge in self.edges:

conclusions .append (edge.conclusion)

for node in self.nodes:
if node not in conclusions:
leafs .append(node)

return leafs

axioms (self):

777 Returns the axioms in the Tree.

An axiom of a Tree

is a leaf where

29

its

antecedent and

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

209

210

211

212

213

Appendix B. Theorem Prover Tree.py

def

consequent are of the same type.

Returns

list of Sequent

The axioms in the Tree
NN N
axioms = []
premises = []
conclusions = []

if not self.edges:
leaf = self.nodes[0]
if leaf.antecedent.type = leaf.consequent.type:
axioms.append (leaf)
else:
for edge in self.edges:
premises.append (edge. premise)
conclusions .append(edge.conclusion)

for premise in premises:

if premise not in conclusions and premise.antecedent.

type = premise.consequent.type:
axioms.append (premise)

return axioms

contains_loop (self):
777 Returns whether the Tree contains a loop.

A Tree contains a loop if it does not have a root or a node
appears more than once in self.nodes.

Returns

bool
Whether the Tree contains a loop
root = self.root ()
if not root:
return True
else:
other_nodes = self.nodes|[:]

60

243

244

245

246

247

Appendix B. Theorem Prover

Tree.py

other_nodes.remove(root)
if root in other_nodes:

return True

return False

class IncompleteTree:

7NN

This class represents an incomplete tree.

represent PPTs.
Attributes

conclusion: Sequent

N NN

def __init__(self, conclusion):
self.conclusion = conclusion

class NullaryTree:

N NN

This can be used to

This class represents a tree without any premises.

Attributes

rule: str

conclusion: Sequent

def __init__(self, rule,
self.rule = rule

self.conclusion = conclusion

class UnaryTree:

99999

conclusion):

This class represents a tree with one premise.

Attributes

rule: str
conclusion: Sequent

premise: NullaryTree or UnaryTree or BinaryTree

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

Appendix B. Theorem Prover

Tree.py

99999

def __init__(self, rule, conclusion, premise):

self.rule = rule

self.conclusion = conclusion

self.premise = premise

class BinaryTree:

def

7NN

This class represents a tree with two premises.

Attributes

rule: str
conclusion: Sequent

left _premise: NullaryTree or UnaryTree or BinaryTree
right_premise: NullaryTree or UnaryTree or BinaryTree

N NN

def __init__(self, rule, conclusion,

self.rule = rule

self.conclusion = conclusion

self.left _premise = left_premise
self.right_premise = right_premise

to_x_ary_tree(root, tree):

N NN

Parameters

root : Sequent
tree : Tree

Returns

Converts a tree in Tree form

to a tree

NullaryTree or UnaryTree or BinaryTree

The tree in XaryTree form

NN

if root in tree.axioms():
if root.focus = ’'r’:
rule = "Ax’
else:

rule = ’CoAx’

62

left _premise, right_premise):

in XaryTree form.

Appendix B. Theorem Prover Rules.py

299 return NullaryTree(rule, root)

300 elif root in tree.leafs():

301 return IncompleteTree(root)

302 else:

303 (rules, premises) = tuple(zip (*[(edge.rule, edge.premise) for
edge in tree.edges if edge.conclusion = root]))

304 if len(premises) =— 1:

305 return UnaryTree(rules[0], root, to_x_ary_tree(premises[0],

tree))

306 elif len(premises) = 2:

307 return BinaryTree(rules[0], root,

308 to_x_ary_tree(premises[1], tree),

309 to_x_ary_tree(premises [0], tree))

310
311

s12 class Edge:

313 777 This class represents an edge in a Tree.
314

315 Attributes

316

317 premise : Sequent

318 The node closest to a leaf in the Tree
319 conclusion : Sequent

320 The node closest to the root of the Tree
321 rule : str

322 The rule that was applied

323 o

324 def __init__(self, premise, conclusion, rule):
325 self.premise = premise

326 self.conclusion = conclusion

327 self.rule = rule

Rules.py

7N

> This module contains functions related to the application of rules.

1+ Methods

6 correct_connective (formula, connective) : bool

7 Whether a given Formula has the requested connective
s apply_structural_rule(rule, sequent) : Sequent or None

9 Applies the requested structural rule to the given Sequent.

63

Appendix B. Theorem Prover Rules.py

apply_rule(rule, formula, other_formula) : list of Sequent
Applies the requested structural rule to the given couple of
Formulas.
from Exception import RuleError
from Formula import Formula
from Sequent import Sequent

from copy import deepcopy

basic_structural_rules = [”/RP”, "«RP/”, ”"«RP\\”, "\RP”, "RG>”, "RC<.>
", "RC::”, "RC:.:”]

dutch_rules = ["NL1”, "NL2”]

english_rules = [7EN1”, "EN2” |

rule_name_as_latex_code = { # a dictionary that translates the rule
names to what they should be when typeset in LaTeX
7 /RP” : kM \W{rp}77 ,
7 *RP/” . R \W{rp}” ,
b *RP\\”: ” \W{rp}”
7 \RP”: 2 \W{rp}” ,
77RC<>77: 7 \W{rc}77 ,
"RC<.>": "\Wre}”
77RC::77: 77\\A7{r(:}777
"RC:.:7: "\W{rc}”

2 NLl” : 2 \W{ n1}77 ,
kb NLQ” . b \W{ nl } b ,
7 ENl” : b \W{en}77 ,
77EN277 . b \W{en}77 ,

"fL” . 7\leftharpoonup”,
"fR”: 7\\rightharpoonup”,
"dfL”: 7\leftharpoondown” ,
7dfR”: ”\\rightharpoondown” ,

"CoAx” : 7 \W{CoAx}" |
b2 AX” . 9 \W{AX}” ,

’7/L77 . 77/L77 ,
7 /R77 . ” /R?? ,
"«L”: ”\otimes._.L",
"«R”: 7\otimes.R",

64

Appendix B. Theorem Prover Rules.py

50 ” \R” 27 \\bS_R” y
"\L”: "\\bs.L"
"L 7\ fdia . L”
53 "<>R7 7 \\fdia_R” R

"<>L7: "\\fdiaf _L”
"< >R7: "\\fdiaf_R”

56 7L 7\ gbox L”

57 7::R”: 7”\gbox.R”,

58 7oL ?\\gboxfl L,
59 7 R7: 7\ \gboxf_R”

60 }

62 # a dictionary that translates the connective representations to what
they should be when typeset in LaTeX

63 connective_as_latex_code = {
64 "o/ T\ strs

65 ’.\\.7: ’\strbs’,

66 "ok, J\strtens’,

67 > ’\strdia’,

68 <> P\ strdiaf’,

69 “Liio 7 P\strbox’,

70 “Lroio 7 P\ strboxf’,

79 7/7: 7/7’
\\7: \\bs’,

74 * "\otimes ’,

75 <> ’\\fdia’,

76 <> ’\\fdiaf’,

77 Ti: 7 \gbox 7,

78 Tior 7 7\ \gboxf’

o}

80

81

s2 def correct_connective (formula, connective):
83 777 Returns whether a given Formula has the requested connective.
84

85 Parameters

87 formula : Formula

88 connective : str

89

90 Returns

91

65

93

94

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

132

Appendix B. Theorem Prover Rules.py

def

bool
Whether a given Formula has the requested connective

99999

if formula.is_unary () and formula.type[0] = connective:
return True

elif formula.is_binary () and formula.type[l] == connective:
return True

else:

return False

apply_structural_rule(rule, sequent):
777 Applies the requested structural rule to the given Sequent.

Parameters

rule : str
The rule to be applied
sequent : Sequent
The sequent to which te requested rule should be applied

Returns

Sequent or None
The resulting Sequent if the rule is applicable, None otherwise

Raises

RuleError
If the requested rule does not exist

Examples
The rule "«RP/” applied to a Sequent with summary (np0.%.sl) => s2
returns a Sequent with summary np0 => (s2./.s1).

99999

new_sequent = deepcopy (sequent)
if sequent.focus = 0:
if rule = 7 /RP”:
if correct_connective (sequent.consequent, './.’): # X = 7
)Y
new_sequent .antecedent.type = [sequent.antecedent , ’.x.

66

159

160

161

162

163

164

Appendix B. Theorem Prover Rules.py
', sequent.consequent.type[2]]
new_sequent .antecedent . polarity = None
new_sequent .antecedent .index = sequent.antecedent.index

+ sequent.consequent.type [2].index

new_sequent .consequent

= sequent .consequent .type[0]

return new_sequent # X.x.Y => Z

elif rule = ”"«RP/”:
if correct_connective (sequent.antecedent, ’'.x.’): # X.x.Y
= 7

new_sequent .antecedent

new_sequent.consequent
)

new_sequent.consequent
new_sequent .consequent

= sequent .antecedent.type[0]

.type = [sequent.consequent, ’./.
, sequent.antecedent.type [2]]

.polarity = None

.index = sequent.consequent.index

+ sequent.antecedent.type [2].index

return new_sequent # X => Z./.Y

elif rule = 7«RP\\":

if correct_connective(sequent.antecedent ,

= 7
new_sequent .antecedent

new_sequent .consequent
[0], 7.\.’, sequent

[0].index + sequent

Tk 7) s # Xk Y

= sequent.antecedent.type [2]

.type = [sequent.antecedent.type
.consequent |

new_sequent .consequent .
new._sequent.consequent.

polarity = None
index = sequent.antecedent.type

.consequent .index

return new_sequent # Y => X.\.Z

elif rule = ”"\RP”:
if correct_connective(sequent.consequent, '.\.’): # Y = X
A/
new_sequent .antecedent.type = [sequent.consequent.type
[0], 7.%.’, sequent.antecedent]
new_sequent .antecedent . polarity = None
new_sequent .antecedent .index = sequent.consequent.type

[0].index + sequent

new_sequent .consequent

67

.antecedent .index

= sequent.consequent.type [2]

188

189

190

191

192

193

194

195

196

197

198

199

Appendix B. Theorem Prover Rules.py

return new_sequent # X.x.Y => 7

elif rule = "RG7:
if correct_connective(sequent.antecedent, '.<>.7): # .<>X
=Y
new_sequent.antecedent = sequent.antecedent.type [1]
new_sequent.consequent.type = [’.::. ", sequent.
consequent |
new_sequent .consequent . polarity = None
return new_sequent # X => .::.Y
elif rule = "RC<.>7:
if correct_connective(sequent.antecedent, '.<.>.7): #
<> X =Y
new_sequent.antecedent = sequent.antecedent.type[1]
new_sequent.consequent.type = [’ .:.:. 7 sequent.
consequent |
new_sequent .consequent . polarity = None
return new_sequent # X => .:.:.Y
elif rule = "RC::”:
if correct_connective(sequent.consequent, '.::.’): # X =>
Y
new_sequent .antecedent.type = [’.<>.", sequent.
antecedent]
new_sequent .antecedent . polarity = None
new_sequent.consequent = sequent.consequent.type [1]

return new_sequent # .<>.X =>Y

elif rule = ”"RC:.:”7:
if correct_connective(sequent.consequent, '.:.:.7): # X =>
..... Y
new_sequent.antecedent.type = [’.<.>.’, sequent.
antecedent |
new_sequent.antecedent. polarity = None
new_sequent.consequent = sequent.consequent.type[1]

return new_sequent # .<.>X =>Y
elif rule == "NL1”7:
the antecedent must be of the form ((.<>.A).%.B).x.C

68

200

201

202

203

204

205

207

208

209

210

Appendix B. Theorem Prover Rules.py

antecedent = sequent.antecedent
if correct_connective (antecedent ,
a_b = antecedent.type[0]
if correct_connective (a_b,
a = a_b.type[0]
if correct_connective(a, '.<>."):
b = a_b.type[2]
¢ = antecedent.type[2]

)

9

kL)

b_¢c = Formula([b, ’.%.’, c¢], None, b.index + c.
index, ’input’)

new_sequent .antecedent.type = [a, ’.%.’, b_c]
((<>.A).x.(B.x.0)

new_sequent .consequent = sequent.consequent F#

use the original consequent, not a deepcopy

return new_sequent
elif rule = ”"NL2":
the antecedent must be of the form B.x.((.<>.A).x.C)
antecedent = sequent.antecedent
if correct_connective (antecedent, ’.x.’):
a_c = antecedent.type[2]
if correct_connective(a-c, ’.x.’):
a = a_c.type[0]
if correct_connective(a, '.<>."):
b = antecedent.type[0]
c = a_c.type[2]
b_¢c = Formula([b, ’.x.’, ¢|, None, b.index + c.

index, ’input’)

new_sequent.antecedent.type = [a, .x.’, b_c]
((<>.A).x.(B.x.0)

new_sequent.consequent = sequent.consequent #

use the original consequent, not a deepcopy

return new_sequent
elif rule = "EN17:

the antecedent must be of the form A.x.(B.x.(.<>.0))
antecedent = sequent.antecedent
if correct_connective(antecedent, ’.x.’):

b_c = antecedent.type[2]

if correct_connective(b_c, ’.%.7):

¢ = b_c.type[2]

69

259

Appendix B. Theorem Prover Rules.py

if correct_connective(c, '.<>.7):

a = antecedent.type[0]

b = b_c.type[0]

a_b = Formula([a, ’.%.’, b], None, a.index + b.
index, ’input’)

new_sequent.antecedent.type = [a_b, ".x.’, c]
(A.x.B).x.(.<>.0)

new_sequent.consequent = sequent.consequent #

use the original consequent, not a deepcopy

return new_sequent
elif rule = "EN27:
the antecedent must be of the form (A.x.(.<>.C)).x.B
antecedent = sequent.antecedent
if correct_connective (antecedent ,
a_c = antecedent.type[0]
if correct_connective(a_c,
¢ = a_c.type[2]
if correct_connective(c, .<>.7):
a = a_c.type[0]

)

D
R

9

b = antecedent.type[2]

a_b = Formula([a, ’.x.’, b], None, a.index + b.
index, ’input’)

new_sequent.antecedent.type = [a_b, '.x.’, c]
(A.x.B).x.(.<>.0)

new_sequent.consequent = sequent.consequent #

use the original consequent, not a deepcopy
return new_sequent
else:
raise RuleError(rule)
return None
def apply_rule(rule, formula, other_formula):
777 Applies the requested rule to the given couple of Formulas.

Parameters

rule : str

70

Appendix B. Theorem Prover Rules.py

274 The rule to be applied

275 formula : Formula

276 The known Formula

277 other_formula : Formula

278 The ncomplete Formula

279

280 Returns

281

282 list of Sequent

283 The resulting Sequent(s)

284

285 Raises

286

287 RuleError

288 If the requested rule does not exist

289

290 Examples

291 -

292 The rule ”/L” applied to formula with summary (s0/npl) and
other_formula with summary (?77./.77) returns a list

293 containing elements with summaries [s0] => s? and np? => [npl]. The

summary of other_formula is now (s?7./.np?7).

99999
294

295 applied = H

296

297 if rule = 7fL”:

208 applied .append(Sequent (formula, other_formula, ”717))

299 elif rule =— 7"fR”:

300 applied .append(Sequent (other_formula , formula, ”"r”))

301 elif rule — 7dfL”:

302 applied .append (Sequent (formula, other_formula))

303 elif rule — 7dfR”:

304 applied .append(Sequent (other_formula, formula))

305 elif rule =— "<>L”:

306 antecedent = Formula ([”.<>.”, formula.type[1]], None, formula.
index , ’input’)

307 applied .append(Sequent (antecedent , other_formula))

308 elif rule = "< >L":

300 antecedent = Formula ([”.<.>.”, formula.type[1l]], None, formula.
index, ’input’)

310 applied .append(Sequent (antecedent , other_formula))

311 elif rule = 7 ::R”:

312 consequent = Formula ([” .::.”, formula.type[1]], None, formula.

71

¢

Appendix B. Theorem Prover

ConvertInput.py

index , ’output’)
applied .append(Sequent (other_formula, consequent))
elif rule = 7 :.:R”:

2

consequent = Formula ([” .:.:.”, formula.type[1l]], None,

index , ’output’)
applied .append(Sequent (other_formula, consequent))
elif rule = 7 /R”:

consequent = Formula ([formula.type[0], ”./.”, formula.

None, formula.index, ’output’)
applied .append(Sequent (other_formula, consequent))
elif rule = 7xL”:

2 b

antecedent = Formula ([formula.type[0], ”.%.”, formula.

None, formula.index, ’input’)
applied .append(Sequent (antecedent , other_formula))
elif rule = "\R”:

consequent = Formula ([formula.type[0], 7.\.”, formula.
None, formula.index, ’output’)
applied .append(Sequent (other_formula, consequent))
elif rule in (7::L”, 7:.:L"):

applied .append (Sequent (formula.type[l], other_formula.

"17))

elif rule in ("<R’, ":<.>R"):

applied .append(Sequent (other_formula.type[l], formula.

77r77))
elif rule = 7/L”:

applied .append(Sequent (formula.type[0], other_formula.

1))

applied .append(Sequent (other_formula.type[2], formula.

1))

elif rule = "«R”:

applied .append (Sequent (other_formula.type[0], formula.

r7))

applied .append(Sequent (other_formula.type[2], formula.

’71_77))
elif rule = "\L”:

applied .append(Sequent (formula.type[2], other_formula.

"17))

applied .append (Sequent (other_formula.type[0], formula.

771.77))
else:
raise RuleError(rule)

return applied

72

formula .

type[2]],

type[2]],

type[2]],

type[1],

type[1],

type[0],

type[2],

type[0],

type[2],

type[2],

type[0],

23

24

25

26

27

28

29

30

Appendix B. Theorem Prover ConvertInput.py

ConvertInput.py

7NN

This module contains functions related to converting an input string to
a Sequent .

Methods

str_to_list (s) : list

Transforms the given antecedent or consequent from a string into a

list .
get_positions (formula, position) : tuple of (str, str)
Gets the positions of sub formulas A and B in [A, $, B].
convert_formula (formula, polarities , index, position) : tuple of (

Formula, int)
Transforms the given formula from a list or string into a Formula.
sequent (antecedent , consequent, polarities , input_-method, language,
focus=0): Sequent
Transforms the given antecedent and consequent from strings to a
Sequent .
29
from Exception import InputError
from Formula import Formula
from Lexicon import lexicon
from Rules import connective_as_latex_code
from Sequent import Sequent

from ast import literal_eval

from re import findall , sub

def str_to_list(s):
777 Transforms the given antecedent or consequent from a string into

a list.
Parameters
s : str

The formula in string form
Returns

list

73

36

37

69

Appendix B. Theorem Prover

ConvertInput.py

The formula in list form. Atoms are

strings , complex formulas

are lists of the form [A, $§, B] or [#, A],

where $§ and # are strings
are atoms or complex formulas.

Examples

>>> str_to_list (" ((np\s)/np)”)

[['np’, "N\, "s’], /7, "np’]

7N
if not s.isalpha(): # s is not an
convert all formula characters to
them from the surrounding string

atom

representing connectives and A and B

string form and separate
with commas

s = s.replace(’(’, ’[’).replace(’)’, "]7)
s = s.replace(’/7, 7,.7/7,.7)

s = s.replace(’\\ 7, 7,."\\\\",-")

s = s.replace(’x7, 7, .7%7 ")

s = s.replace(’'<>’, 7"<>",.7)

s = s.replace(’<.>7, ""<.>7,.7)

s = s.replace(’::7, 777 L)

s = s.replace(7:.:7, 7727 L7)

convert all letters to string form

types = set(findall (’\w’, s))

for w in types:

sub(w, f’\"{w}\”’, s)

atom type strings that are more than one character long
contain too many quotation marks;

ones
s = s.replace (7”7,

s = f7[{s}]”

S =

remove excessive

")

try:
s = literal_eval(s)
except (SyntaxError, ValueError):
list (connective_as_latex_code.keys())[7:]
raise InputError(’There_may_be_a_problem_with_the.

connectives.in.the_types._Please_make_sure_.that_you.are.
?

connectives =

f’only_using._the_connectives_{str(
connectives)[1: —1]}.")

return the string as a list

74

83

84

85

86

87

88

89

90

91

92

93

94

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

Appendix B. Theorem Prover ConvertInput.py

def

return s
get_positions (formula, position):
777 Gets the positions of sub formulas A and B in [A, §, B]J.
Parameters
formula : list
A formula of the form [A, $, B]
position : str
Formulas should be either an ’input’ or an ’output’ Formula.

Returns

tuple of (str, str)
The positions of A and B

Raises

InputError
If the connective of the Formula or the position is incorrect

Examples

>>> get_positions ([’np’, ’\’, ’'s’], ’input’)

(’output’, ’input’)

if (formula[l] = ’/’ and position = ’input’ or # A/B = C

formula[1] = ’\\’ and position == ’output’): # C => A\B

pos_a = ’input’
pos_b = ’output’

elif (formula[l] = ’/’ and position = ’output’ or # C => A/B

formula[1] = ’\\’ and position = ’input’): # A\B = C

pos_a = ’output’
pos_b = ’input’

elif formula[l] = ’%’ and position = ’input’: # AxB = C
pos_a = ’input’
pos_b = ’input’

elif formula[l] = ’%’ and position = ’output’: # C => AxB
pos_a = ’output’
pos_b = ’output’

else

5

116

117

118

119

120

121

122

123

124

125

126

127

128

129

131

132

133

134

136

137

138

139

140

141

142

143

144

146

147

148

149

Appendix B. Theorem Prover ConvertInput.py

def

raise InputError(f”Binary._connective_{formula[l]}_is_not_’/", _

"\\’.or.’«’_or_position_{position}._is_not.”
f” 7input ’_or.’output ’.”)

return pos_a, pos_b

convert_formula (formula, polarities , index, position):
777 Transforms the given formula from a list or string into a
Formula.

Parameters

formula: str or list
A formula as returned by str_to_list
polarities : dict of {str : str}
The polarities of the atoms
index: int
The index of the next atom
position : str
Formulas must be either an ’input’ or an ’output’ Formula.

Returns

tuple of (Formula, int)
The converted Formula, the index of the next atom

Raises

InputError
I[f something in the given input is incorrect , for example:
a Formula is not given a polarity , or
the connective of a Formula is incorrect , or
a Formula is not of the correct form

Examples

>>> convert_formula ([’np’, ’\7, ’s’], {'np’: '+, ’s’: ="}, 0, '
input)

(Formula ([Formula(np, 4+ , [0], output), ’\\’, Formula(s, — , [1],
input)]a] [Oa l]a iHPUt)a 2)

if isinstance (formula, str): # the formula is an atom

76

159

160

161

162

164

165

166

167

168

169

186

Appendix B. Theorem Prover ConvertInput.py

if formula in polarities:

converted_formula = Formula(formula, polarities[formula], |
index |, position)
new_index = index + 1

elif formula in connective_as_latex_code.keys():
raise InputError(” There_may_be_a_problem._with_the.
bracketing._.of_some_of_the_types._.Please_make_sure_that.”
"every._complex._formula_is _put_between.
parentheses.”)
else:
raise InputError(f”The_.polarity_of.’{formula}’_is_missing.
in.{polarities }._.Please_add.it -to_.the_dictionary.”

"’ polarities ’.7)
elif isinstance (formula, list): # the formula is complex
if len(formula) = 2: # the formula is unary

a = convert_formula (formula[l], polarities , index, position
)

formula[1] = a[0] # replace the formula in string form
with the Formula

new_index = a[l]

if formula[0] in ('<>7, '<>7):
polarity = '+’

elif formula[O] in (7::7, 7:.:7):
polarity = =’

else:

raise InputError (f”The_connective.’{formula[0]} ' _is._not
~unary ..Please_make_sure_that_every_unary.”
"connective.is.either.' <>, .7<.>" .

‘il lore Tian L)

converted_formula = Formula(formula, polarity , list (range(

index , new_index)), position)
elif len(formula) = 3: # the formula is binary

positions = get_positions (formula, position)

pos_a = positions [0]

pos_b = positions [1]

a = convert_formula (formula[0], polarities, index, pos.a)

formula [0] = a[0] # replace the left formula in string
form with the left Formula

new_index = a[l]

b = convert_formula (formula[2], polarities, new_index,

7

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

207

208

209

210

216

217

218

219

Appendix B. Theorem Prover ConvertInput.py

def

pos_b)

formula [2] = b[0] # replace the right formula in string
form with the right Formula

new_index = b[1]

if formula[l] = ’x’

polarity = 4’
elif formula[l] in {’/7, "\\'}:

raise InputError(f”The_connective.’{formula[1l]} ’_is_.not
_~binary._Please._make_sure_that_every_.binary.”
r”connective_is_either.’«’,_7/ _or.
N\
converted_formula = Formula(formula, polarity , list (range(
index , new_index)), position)
else:
raise InputError (f”Complex_formula_{formula}_is._not._of_form
[#, A coro[A, L8, _B].7)
else:
raise InputError(f”Formula_{formula}_is._.not_of_form.a, [#,.A]._
or_[A,.$,.B].”)

return converted_formula, new_index

sequent (antecedent , consequent, polarities , input_-method, language,

focus=0):

777 Transforms the given antecedent and consequent from strings to a
Sequent .

Parameters

antecedent : str
The antecedent in string form

consequent : str

The consequent in string form
polarities : dict of {str : str}
The polarities of the atoms
input_method : str
The antecedent can be either a combination of types or a
combination of words. Which one must be specified.
language : str

78

Appendix B. Theorem Prover ConvertInput.py

220 If the antecedent is a combination of words, the language must
be specified.

221 focus : str or int, optional

222 The focusing must be 0 if the sequent is neutral, "1’ if the

9)

antecedent is focused or ’'r’ if the consequent is
223 focused .

224

225 Returns

226

227 Sequent

228

229 Raises

230

231 InputError

232 If the consequent consists of multiple formulas

233

234 Examples

235

236 >>> sequent ('np,(<>(::(np\s)))’, ’s’, {’'np’: '+, ’s’: ="}, ’types
", None)

237 Sequent ([Formula(np, +, [0], input),

238 Formula([’<>", Formula(

239 [7::7, Formula(

240 [Formula(np, +, [1], output), ’\\’,

Formula(s, —, [2], input)],

241 —, [1, 2], input)],

242 —, [1, 2], 1nput)],

243 +, [1, 2], input)],

244 [Formula(s, —, [3], output)],

245 0)

246 >>> sequent (’bob likes alice’, ’s’, {’'np’: '4+7, ’s’: ="}, "words’,
"English 7, ’r’)

247 Sequent ([Formula(np, +, [0], input),

248 Formula ([Formula (

249 [Formula(np, +, [1], output), ’\\’, Formula(s,

R [2]7 iHPUt)]a

250 -, [1, 2], input) ,

251 '

252 Formula(np, +, [3], output)],

253 —, [1, 2, 3], input) ,

254 Formula (np, +, [4], input)],

255 sh

256 r)

79

260

261

262

263

264

265

Appendix B. Theorem Prover ConvertInput.py

99999

if input_method = ”words”:
words_to_types = """

lex = lexicon (language)
words_not_in_lex = []
for word in antecedent.split(”.”):
try:
get the type of the word from the lexicon , separate
the types with commas
words_to_types += lex[word.lower ()] + 7,”
except KeyError:
words_not_in_lex .append (word)
if words_not_in_lex:
if len(words_not_in_lex) = 1:
raise InputError(f”The_lexicon_with_language.’{language
}’_does_not_contain._the_word.”
7 {str(words_not_in_lex [0]) } ’. _Please_add._it .
to_the_lexicon._or_use_another_word.”)
else:
raise InputError(f”The_lexicon._with.language.’{language
}’_.does.not_contain_the_words.”
f7{str (words_not_in_lex)[1l: —1]}._Please_add.
them._to._the_lexicon._or._use_other_words.”)
ant = str_to_list (words_to_types[:—1]) # Ignore the last comma
elif input_method = "types”:
ant = str_to_list (antecedent)
else:
raise InputError(f”Please_specify._the_input._method_as.’words’.
or.’types’_instead_of_’{input_method}’.”)
con = str_to_list (consequent)

if not (isinstance(con, str) or
con[0] in (<7, '<>7, 77, i) or
(len(con) == 3 and con[1l] in (’/7, "\\’', 'x’))):
raise InputError(f”The.consequent.’{str(con)}’_.consists_of_{len
(con)}._formulas._Please_make_sure_that._it”
f” consists_of_only_one_formula.”)

else:
an input of the form a, #a or a$b (where a and b are atoms)
may be given as 7a”, "#a” or "a$b” instead of
77(a>‘/77 77(#a)77 OI’ 77(a$b)77

to be able to do this, the formula needs to be put in a list

80

292

293

294

296

297

298

299

300

301

302

303

304

305

306

Appendix B. Theorem Prover

PartialProofTree.py

to match the other forms of input
if (isinstance(ant, str) or

Applies (de)focusing rules.

fill_structure (formula, other_formula)

NN

from
from
from
from
from

from
from

Fills in parts of other_formula based on formula.
ppt (formula , sequent=None, proof=None, focus=0)
Constructs PPTs for the given Formula.

Exception import FormulaTypeError, PositionError
Formula import Formula

Rules import apply_rule

Sequent import Sequent

Tree import Tree

copy import deepcopy
sys import maxsize

list of Tree

ant [0] in ('<>7, ‘<>’ T, 7o) or
(len(ant) = 3 and ant[1] in (7/7, "\\’, '%7)))
ant = [ant|
index = 0
ant_formulas = []
for formula in ant:
data = convert_formula (formula, polarities, index, ’input’)
ant_formulas.append(data[0])
index = data[1]
con_formula = convert_formula(con, polarities, index, ’output’)
[0]
return Sequent (ant_formulas, con_formula, focus)
PartialProofTree.py
This module contains functions related to the construction of PPTs.
Methods
change _focus (formula, other_formula, sequent, proof, rule) Sequent

def change_focus(formula, other_formula, sequent, proof, rule):

81

Appendix B. Theorem Prover PartialProofTree.py

24 777 Applies (de)focusing rules.

25

26 Parameters

27

28 formula : Formula

29 The known Formula

30 other_formula : Formula

31 The possibly incomplete Formula

32 sequent : Sequent

33 The Sequent consisting of formula and other_formula
34 proof : Tree

35 The PPT

36 rule : str

37 The rule to be applied

38

39 Returns

40

41 Sequent

42 The resulting Sequent

43 R

a4 new_sequent = apply_rule(rule, formula, other_formula) [0]
45 proof.add_edge(new_sequent , sequent, rule, top_-down=True)
46

a7 return new_sequent

so def fill_structure (formula, other_formula):

51 7?7 Fills in parts of other_formula based on formula.

52

53 In the process of constructing a PPT unknown properties of Formulas
can sometimes be filled in. This function

54 fills other_formula based on the properties of formula. This
function should only be called when the Sequent with

55 formula and other_formula is focused.

56

57 Parameters

58

59 formula : Formula

60 The known Formula

61 other_formula : Formula

62 The incomplete Formula

63

64 Raises

82

Appendix B. Theorem Prover PartialProofTree.py

66 FormulaTypeError
67 If the type of formula is not of the correct form

NN

69 empty_formula = deepcopy(other_formula)

70

71 if formula.is_atom(): # the Sequent is an axiom, so formula and
other_formula must have the same type and polarity

72 other_formula.type = formula.type

73 other_formula . polarity = formula.polarity

74 elif formula.is_unary():

75 # the Sequent can only form a PPT if the connective of
other_formula is the structural counterpart of the

76 # connective of formula

77 connective = f” . {formula.type[0]}.”

78 other_formula.type = [connective, empty_formula]

79 elif formula.is_binary():

80 # the Sequent can only form a PPT if the connective of
other_formula is the structural counterpart of the

81 # connective of formula

82 connective = f”.{formula.type[1]}.”

83 empty_formula2 = deepcopy (empty_formula)

84 if formula.type[l] = 7/":

85 if other_formula.position = ’input’:

86 empty_formula2. position = ’output’

87 else:

88 empty_formula2.position = ’input’

89 elif formula.type[l] = "\\":

90 if other_formula.position =— ’input ’:

91 empty_formula. position = ’output’

92 else:

93 empty_formula. position = ’input’

94 other_formula.type = [empty_formula, connective, empty_formula2
]

95 other_formula.index = empty_formula.index + empty_formula2.
index

96 else:

o7 raise FormulaTypeError(formula)

98

99

wo def ppt(formula, sequent=None, proof=None, focus=0):
101 777 Constructs PPTs for the given Formula.

102

83

Appendix B. Theorem Prover PartialProofTree.py

103 Part of a proof is deterministic: a certain form of Sequent has
exactly one possible rule that can be applied in a

104 top down fashion. This function constructs this deterministic part.

105

106 Parameters

107

108 formula : Formula

109 The base Formula for the PPT

110 sequent : Sequent

111 The Sequent containing formula, optional

112 proof : Tree

13 The PPT that has formula as a leaf, optional

114 focus : str or int

15 The focus of sequent, optional

116

117 Returns

118

119 list of Tree

120 the PPTs for the given Formula

121

122 Raises

123

124 InputError

125 If the position of the Formula is not ’input’ or ’output’

126 FormulaTypeError

127 If the type of the Formula is not of the form a, [#, A] or [A,
$, B]

128 o

129 if proof is None:

130 pI"OOf = Tree()

131 ppts = [proof]

132

133 rule =77

134 if formula.is_complex():

135 rule = formula.type[len (formula.type) — 2] # the rule to be

applied includes the connective

136

137 if formula.position = ’input’:

138 rule 4= ”"L” # the rule to be applied includes the side of the
focused Formula

139 if sequent is None:

140 other_formula = Formula(’?’, ’?’, [maxsize|, ’output’)

141 sequent = Sequent (formula, other_formula, focus)

84

145

146

147

148

149

150

159

160

161

162

164

165

166

167

168

169

170

Appendix B. Theorem Prover PartialProofTree.py

else:
other_formula = sequent.consequent
if formula.polarity = 7-":
if sequent.focus = 0:
sequent = change_focus (formula, other_formula, sequent,
proof , 7fL")

formula = sequent.antecedent

fill _structure (formula, other_formula)
elif formula.polarity = "+
if sequent.focus = "17:
sequent = change_focus(formula, other_formula, sequent,
proof , 7dfL”)
formula = sequent.antecedent
elif formula.position =— ’output ’:
rule 4= ”"R” # the rule to be applied includes the side of the
focused Formula
if sequent is None:
other_formula = Formula(’?’, ’'?’, [maxsize], ’input’)
sequent = Sequent (other_formula, formula, focus)
else:
other_formula = sequent.antecedent

if formula.polarity = 74" :
if sequent.focus = 0:
sequent = change_focus(formula, other_formula, sequent,
proof, 7fR”)
formula = sequent.consequent

fill_structure (formula, other_formula)
elif formula.polarity = 7-":
if sequent.focus = "r”:
sequent = change_focus(formula, other_formula, sequent,
proof , ”7dfR”)
formula = sequent.consequent
else:
raise PositionError (formula.position)

if len(rule) > 1: # the rule consists of both a connective and a
side
applied = apply_rule(rule, formula, other_formula)
for new_sequent in applied:

85

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

Appendix B. Theorem Prover CombinePPTs.py

proof.add_edge (new_sequent , sequent, rule, top.down=True)

if rule
for

in (7/L”, "\L”, 7.:L”, 7:.:L”, "xR”, "<R”, "<>R”):

new_sequent in applied:

if new_sequent.focus =— "17:
root_formula = new_sequent.antecedent

elif new_sequent.focus — "r”:
root_formula = new_sequent.consequent

else: # this should never happen as all of the rules
above shift the focus to the sub Formulas
continue

extend the PPT with PPTs for the leafs

ppts = ppt(root_formula, new_sequent, proof)

elif formula.is_complex():
if formula.is_unary():

construct PPTs for the sub Formulas in the leaf
additional _ppts = ppt(formula.type[1l])

elif formula.is_binary():

construct PPTs for the sub Formulas in the leafs
additional _ppts = ppt(formula.type[0]) + ppt(formula.

type [2])

else:

for

raise FormulaTypeError(formula)
tree in additional_ppts:
root = tree.root ()

if a PPT consists of exactly one node, only append it
to ppts if it is an axiom
if len(tree.nodes) > 1 or root.antecedent.type = root.

consequent .type:
ppts.append(tree)

elif sequent not in proof.nodes:
proof.add_node(sequent , top_down=True)

return ppts

CombinePPTs.py

7N

This module contains functions related to the merging of two Trees.

Methods

compatible (root_

formula , leaf formula) : bool

86

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

35

36

37

38

39

40

41

Appendix B. Theorem Prover CombinePPTs.py

Returns whether two Formulas can be merged into one.
combine_sequents (root, leaf) : Sequent or None
If compatible, merges two Sequents into one.
update_formula_index (formula)
Checks and corrects the index property of a Formula.
update_indices (ppt)
Checks and corrects the index property of all Formulas in a Tree.
replace_formula_with (formula, new_formula)
Replaces the unknown properties "type” and ”polarity” of a Formula
with the known ones of another Formula.
fill_.in_blanks (node, new_node)
Replaces the unknown properties in the sides of a Sequent with the
known ones of another Sequent.
combine_ppts(root_proof, leaf_proof, leaf, combined) : Tree
Merges two Trees.
29
from Formula import Formula
from Sequent import Sequent
from Tree import Tree

from copy import deepcopy

from sys import maxsize

def compatible(root_formula, leaf_formula):
777 Returns whether two Formulas can be merged into one.

Parameters
root_formula : Formula

A Formula in the root proof
leaf_formula : Formula

A Formula in the leaf proof
Returns

bool
Whether two Formulas can be merged

Examples

A Formula with summary npO\sl is compatible with np?\?? but not np2
\s? or (mnpO\sl)/np?.

87

60

61

Appendix B. Theorem Prover CombinePPTs.py

def

99999

if root_formula.type = ’?7’ or leaf_formula.type = ’7":
return True

if (root_formula.is_unary () and leaf_formula.is_unary () and
root_formula.type[0] = leaf_formula.type[0]): # check if
the connectives match
return compatible(root_formula.type[l], leaf_formula.type[l])
elif (root_-formula.is_binary () and leaf_formula.is_binary () and
root_formula.type[l] = leaf_formula.type[l]): # check if
the connectives match
return (compatible(root_formula.type[0], leaf_formula.type[0])
and
compatible (root_formula.type[2], leaf_formula.type[2]))
else:
return root_formula.type = leaf_formula.type and (root_formula
.index == leaf_formula.index or
root_formula
.index =
[maxsize
| or
leaf_formula
.index =
[maxsize

1)

combine_sequents (root , leaf):
777 1f compatible, merges two Sequents into one.

Parameters

root : Sequent
The root of the root proof
leaf : Sequent

A leaf of the leaf proof
Returns

Sequent or None
The merged Sequent if compatible, None otherwise

Examples

88

88

89

90

96

97

98

99

100

101

102

103

104

105

106

107

108

Appendix B. Theorem Prover CombinePPTs.py

A Sequent with summary npO\sl => np?\?? is compatible with np?\?7?
=> np2\s3 but not np0/sl => np2\s3.
if ((leaf.antecedent.is_incomplete() or
root.consequent.is_incomplete () and not leaf.consequent.
is_incomplete () or
not root.antecedent.is_incomplete () and not leaf.consequent
.is_incomplete ()) and
(root.focus = leaf.focus or
two sequents with a different focus can still combine
when one sequent is an axiom and the other an
atomic formula on one side and an empty formula on the
other
root.antecedent.is_atom () and leaf.consequent.is_atom ()
and
(root.consequent.type = 7’ or leaf.antecedent.type — ’7
"))
antecedent = root.antecedent
consequent = leaf.consequent
elif ((leaf.consequent.is_incomplete () or
root.antecedent.is_incomplete () and not leaf.antecedent.
is_incomplete () or
not leaf.antecedent.is_incomplete () and not root.consequent.
is_incomplete ()) and
(root.focus = leaf.focus or
two sequents with a different focus can still combine when
one sequent is an axiom and the other an
atomic formula on one side and an empty formula on the

other
leaf.antecedent .is_atom () and root.consequent.is_atom () and
(leaf.consequent.type = ’7’ or root.antecedent.type = ’7")
)):
antecedent = leaf.antecedent
consequent = root.consequent

else:
return None

if (not (antecedent.is_atom () and consequent.is_atom () and
antecedent.type != consequent.type) and
compatible (root.antecedent , leaf.antecedent) and compatible
(root.consequent , leaf.consequent)):
the focus of the combined sequent should be equivalent to the

89

Appendix B. Theorem Prover CombinePPTs.py

focus of the root unless it is neutral and the

109 # leaf is not

110 # it can never be the case that the neither the root nor the
leaf is mneutral but both have different focusing:;

111 # when sequents with different focusing are allowed to be
combined, one of them will always be neutral

112 focus = root.focus

113 if leaf.focus != 0:

114 focus = leaf.focus

115 return Sequent (antecedent , consequent, focus)
116 else:

117 return None
118
119

120 def update_formula_index (formula):

121 777 Checks and corrects the index property of a Formula.
122

123 Parameters

124

125 formula : Formula

126 R

127 if formula.is_unary():

128 update_formula_index (formula.type[1])

129 formula.index = formula.type[1l].index

130 elif formula.is_binary():

131 update_formula_index (formula.type[0])

132 update_formula_index (formula.type[2])

133 formula.index = formula.type[0].index + formula.type[2].index

134
135

56 def update_indices (ppt):

137 777 Checks and corrects the index property of all Formulas in a Tree
138

139 Parameters

140 -

141 ppt : Tree

142 nr

143 for node in ppt.nodes:

144 update_formula_index (node.antecedent)

145 update_formula_index (node.consequent)

146

147

90

148

149

150

151

159

160

161

162

163

164

165

166

167

168

169

170

178

179

180

Appendix B. Theorem Prover CombinePPTs.py

def replace_formula_with (formula, new_formula):
777 Replaces the unknown properties ”"type” and ”polarity” of a
Formula with the known ones of another Formula.

Parameters

formula : Formula

The Formula of which the properties get replaced
new_formula : Formula

The Formula that contains the known properties
if formula.is_incomplete ():

formula.index = new_formula.index

if formula.is_atom():

formula.type = new_formula.type
formula. polarity = new_formula.polarity
elif formula.is_unary():
replace_formula_with (formula.type[1l], new_formula.type[1l])

elif formula.is_binary():
replace_formula_with (formula.type[0], new_formula.type[0])
replace_formula_with (formula.type[2], new_formula.type[2])

def fill_in_blanks (node, new_node):
777 Replaces the unknown properties in the sides of a Sequent with
the known ones of another Sequent.

Parameters

node : Sequent

The Sequent of which the properties get replaced
new_node : Sequent

The Sequent that contains the known properties
node. focus = new_node. focus
replace_formula_with (node.antecedent , new_node.antecedent)
replace_formula_with (node.consequent , new_node.consequent)

def combine_ppts(root_proof, leaf_proof, leaf, combined):
777 Merges two Trees. Two nodes, one of each Tree, that can be
combined into one must be given.

91

188

189

190

191

192

193

194

195

196

197

198

199

200

201

203

204

205

206

207

208

209

210

214

215

216

217

218

219

220

Appendix B. Theorem Prover

CombinePPTs.py

Parameters

root_proof : Tree

The Tree of which the root can be combined

leaf_proof : Tree

The Tree of which a leaf can be combined

leaf : Sequent
The leaf to be combined
combined : Sequent

The Sequent that contains the properties that will be filled

in the root of the root proof
Returns

Tree
The combination of the two Trees
if not root_proof.edges:
combined_ppt = deepcopy(leaf_proof)

for current_leaf in combined_ppt.leafs ():

if current_leaf = leaf:

fill_in_blanks (current_leaf , combined)

else:
combined_ppt = deepcopy(root_proof)
leaf_proof_copy = deepcopy(leaf_proof)
root = combined_ppt.root ()

amount_of nodes = len (combined_ppt.nodes)

if not leaf_proof.edges:
fill_in_blanks (root, combined)
else:
root . focus = combined. focus
if the leaf proof keeps track of
previously combined

Sequents that were

add the Sequents to combined_proof
for sequent_and_location in leaf_proof_copy.

combined_sequents:

leaf_location = leaf_proof.nodes.index(leaf)
if sequent_and_location[1l] >= leaf_location:

sequent_and_location [1] 4=
else:
sequent_and_location [1] +=

92

amount_of_nodes — 1

amount_of_nodes

in

229

230

231

232

233

234

239

240

Appendix B. Theorem Prover Prove.py

combined_ppt.combined_sequents.append (
sequent_and_location)

put the edges of the leaf proof in combined_proof (nodes
will be added automatically)
for edge in leaf_proof_copy.edges:
leave out the leaf and add an edge from the root to
the conclusion of the leaf instead

if edge.premise =— leaf:
combined _ppt.combined_sequents.insert (0, [edge.
premise, amount_of_nodes — 1])

fill_in_blanks (edge.premise, combined)
combined_ppt.add_edge(root, edge.conclusion, edge.

rule)
else:
combined_ppt.add_edge (edge.premise, edge.conclusion
, edge.rule)

to get the correct indices throughout the combined Tree a list of
Sequents is kept up and updated after every new

combination of Trees

for sequent_and_location in combined_ppt.combined_sequents:

current_sequent = combined_ppt.nodes|[sequent_and_location [1]]
correct_sequent = sequent_and_location [0]
if current_sequent != correct_sequent:

fill_in_blanks (current_sequent , correct_sequent)
update_indices (combined_ppt)
return combined_ppt

Prove.py

9999 9

This module contains functions related to finding the derivation for a
given sequent.

Methods

descendants (proof, other_proofs, structural_rules) : list of tuple of (
Tree, list of Tree)
Forms all possible combinations between proof and every Tree in
other_proofs, as well as all possible Trees

93

18

19

20

21

22

Appendix B. Theorem Prover Prove.py

resulting from the application of structural rules to proof.
check _for_axiom (seq, focus) : list of Tree
If seq is an axiom: returns a Tree containing only the axiom.
get_start_proof(ppts) : Tree
Returns the first proof in ppts of which all leafs are axioms.
nodes_in(ppts) : set of Sequent
Returns all unique nodes in ppts.
bfs(start_proof, ppts, goal, structural_rules) : list of Tree
Derives all possible proofs for the combination of start_proof and
ppts in a Breath First Search fashion.
prove (antecedent , consequent, polarities , input_-method, language, focus
=0) : list of Tree
Constructs all proofs that can be derived.
7NN
from CombinePPTs import combine_sequents, combine_ppts
from ConvertInput import sequent
from Exception import =
from Rules import basic_structural_rules , dutch_rules, english_rules,
apply_structural_rule
from Sequent import Sequent
from PartialProofTree import ppt
from ToLaTeX import to_latex
from Tree import Tree

from copy import deepcopy
import sys

def descendants(proof, other_proofs, structural_rules):
77?7 Forms all possible combinations between proof and every Tree in
other_proofs, as well as all possible Trees
resulting from the application of structural rules to proof.

Parameters

proof : Tree

other_proofs : list of Tree
structural_rules : list of str
Returns

list of tuple of (Tree, list of Tree)
The main proof, the proofs that still need to be combined with

94

Appendix B. Theorem Prover Prove.py

the main proof
desc = |[]

for other_proof in other_proofs:
for leaf in proof.leafs():
combined = combine_sequents (other_proof.root (), leaf)
if combined:

new_proof = combine_ppts(other_proof, proof, leaf,
combined)
new_other_proofs = other_proofs [:]

new_other_proofs.remove(other_proof)
desc.append ((new_proof, new_other_proofs))

for leaf in other_proof.leafs():

combined = combine_sequents(proof.root (), leaf)
if combined:
new_proof = combine_ppts(proof, other_proof, leaf,
combined)
new_other_proofs = other_proofs [:]

new_other_proofs.remove(other_proof)
desc.append ((new_proof, new_other_proofs))

for rule in structural_rules:
proof_copy = deepcopy (proof)
root = proof_copy.root ()
new._root = apply_structural_rule(rule, root)
if new_root:
proof_copy.add_edge(root, new_root, rule)
desc.append ((proof_copy, other_proofs|[:]))

return desc

def check_for_axiom (seq, focus):

7?7 1f seq is an axiom: returns a Tree containing only the axiom.

Parameters

seq : Sequent
focus : str

Returns

95

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

118

119

120

121

122

123

129

Appendix B. Theorem Prover Prove.py

def

def

list of Tree
If seq is an axiom: a Tree containing the axiom

NN

if len(seq.antecedent) = 1:
antecedent = seq.antecedent [0]
consequent = seq.consequent
if antecedent.type = consequent.type:
return [Tree ([Sequent (antecedent , consequent, focus)])]

return []

get_start_proof (ppts):
777 Returns the first proof in ppts of which all leafs are axioms.

Parameters
ppts : list of Tree

Returns

Tree
A proof of which all leafs are axioms

99999

for tree in ppts:
if tree.leafs () = tree.axioms():
return tree

nodes_in (ppts):

7?7 Returns all unique nodes in ppts.
Parameters

m‘c of Tree

Returns

set of Sequent
All unique nodes

NN

all_nodes = set ()

96

Appendix B. Theorem Prover Prove.py

130 for tree in ppts:

131 for node in tree.nodes:
132 all_nodes .add(node)
133

134 return all_nodes

135

w7 def bfs(start_proof, ppts, goal, structural_rules):

138 777 Derives all possible proofs for the combination of start_proof
and ppts in a Breath First Search fashion.

139

140 The start proof should be a Tree of which all leafs are axioms.
Through merging with Trees in ppts and

141 applying structural rules this proof should form into derivations.
The function returns the derivations that are

142 actual proofs.

143

144 Parameters

145

146 start_proof : Tree

147 A proof where all of its leafs are axioms

148 ppts : list of Tree

149 goal : tuple of (list of int, list of int, int or str)

150 The integers in the antecedent and consequent and the focus of
the root of the desired proof

151 structural_rules : list of str

152 The names of the rules that can be applied to start_proof

153

154 Returns

155

156 list of Tree

157 All possible proofs for the combination of start_proof and ppts

158 R

159 to_explore = [(start_proof, ppts)]

160 discovered = []

161 solutions = []

162

163 while to_explore:

164 combination = to_explore.pop(0)

165 main_proof = combination [0]

166 other_proofs = combination [1]

167

168 all_nodes = nodes_in ([main_proof] + other_proofs)

97

Appendix B. Theorem Prover Prove.py

169 if not (all_-nodes in discovered or main_proof.contains_loop()):
170 discovered .append(all_nodes)
171
172 if not other_proofs:
173 root = main_proof.root ()
174 if (root.antecedent.index, root.consequent.index, root.
focus) = goal:
175 solutions .append(main_proof)
176 elif main_proof.leafs () != main_proof.axioms(): # one or
more leafs in main_proof is not an axiom anymore
177 new_main_proof = get_start_proof(other_proofs)
178 if new_main_proof:
179 other_proofs.remove(new_main_proof)
180 other_proofs.append(main_proof)
181 to_explore += descendants(new_main_proof
other_proofs, structural_rules)
182 else:
183 to_explore += descendants(main_proof, other_proofs,
structural_rules)
184
185 return solutions

186

s def prove(input_method, language, antecedent, consequent, polarities,

focus=0):

189 777 Constructs all proofs that can be derived.

190

191 Parameters

192

193 input_method : str

194 Whether the antecedent consists of words or types

195 language : str

196 The languge in which the antecedent should be interpreted

197 antecedent : str

198 The antecedent as either words or types

199 consequent : str

200 The goal type for the antecedent

201 polarities : dict of { str : str }

202 The polarities of the atomic types in the antecedent and
consequent

203 focus : str

204 Whether the antecedent, consequent or neither is focused

205

98

206

207

208

209

210

231

Appendix B. Theorem Prover Prove.py

Returns

list of Tree

All proofs that can be derived
ppts = []
antecedent_indices = []

structural_rules = basic_structural_rules
if language:
language = language.capitalize ()
if language = ”Dutch”:
structural_rules += dutch_rules
elif language = " English”:

structural_rules += english_rules

seq = sequent (antecedent , consequent, polarities , input_method,
language , focus)

for formula in seq.antecedent:

if focus = '17:
if len(seq.antecedent) =— 1:
antecedent = seq.antecedent [0]

y 9,

if antecedent.is_atom () and antecedent.polarity = ’'—
there are two possibilities in this situation:
1. seq is an axiom and should return a proof with
just seq as a node
2. the root of the derivation can not be
defocused (top down) an thus no proofs are

possible
return check_for_axiom (seq, focus)
else:
ppts += ppt(formula, focus=’1")
else: # no proofs are possible

return []
else:
ppts += ppt(formula)

antecedent_indices += formula.index

consequent = seq.consequent
if focus = ’'r’:
if consequent.is_atom () and consequent.polarity = ’'+7:

99

247

261

262

263

264

265

Appendix B. Theorem Prover Prove.py

there are two possibilities in this situation:
1. seq is an axiom and should return a proof with just
seq as a node
2. the root of the derivation can not be defocused (top
down) an thus no proofs are possible
return check_for_axiom (seq, focus)
else:
ppts += ppt(consequent, focus=focus)
else:
ppts += ppt(consequent)

goal = (antecedent_indices, consequent.index, focus)

start_proof = get_start_proof(ppts)

if start_proof:
ppts.remove(start_proof)

else: # no proofs are possible
return []

return bfs(start_proof, ppts, goal, structural_rules)
def get_derivations(input-method, language, antecedent, consequent ,
polarities , focus, show_indices=False):
777 Constructs LaTeX and PDF files for all proofs that can be
derived

Parameters

input_method : str
Whether the input antecedent consists of types or words

language : str

The languge in which the input antecedent should be interpreted
antecedent : str

The combination of antecedent types or words in the theorem
consequent : str

The goal type for the antecedent
polarities : dict of {str: str}
The polarities of the atomic types in the antecedent and
consequent
focus : str
Whether the antecedent, consequent or neither is focused
show_indices : bool

100

Appendix B. Theorem Prover ToTerm.py

283 Whether the indices of the atomic types in the antecedent and
consequent should be shown in the derivation(s)

N NN

285 try:
286 sequent_proofs = prove(input_-method, language, antecedent,
consequent , polarities , focus)
287 except (FormulaTypeError, InputError, LanguageError, RuleError,
KeyError) as error:
288 print (error)
289 sys.exit ()
290 else:
291 if len(sequent_proofs) =— 1:
292 s = 7
293 else:
294 s = 's’
295 print (f’{len(sequent_proofs)}_solution{s}_found!"”)
206 if sequent_proofs:
297 print (f”You.can_find _the_solution{s}_in_the_file . proof.pdf
"_in_the_same_directory_as_the_python_files._If_”
208 "you_have_opened._the_file ,_please_make_sure_that_it.
is.closed _before_you_run_the_prover._again , .”
209 "otherwise._it .may_not._update_properly.\n”)
300
301 to_latex (sequent_proofs, show_indices)

ToTerm.py

MM

> This module contains functions related to calculating the proof term
corresponding to a derivation.

1+ Methods
6 to_term(tree): str
7 Calculates the proof term of a tree.

99999

0 from Exception import PositionError, RuleError

11 from Formula import Formula

2 from Rules import basic_structural_rules , dutch_rules, english_rules
13 from Tree import IncompleteTree, NullaryTree, UnaryTree, BinaryTree

15 terms = {} # to keep track of Formulas that are assigned a proof term

101

Appendix B. Theorem Prover ToTerm.py

def

def

already

get_formula_term (formula, input_index , output_index):
777 Returns the proof term of a Formula.

Parameters

formula : Formula
input_index : int

The index of the next input term
output_index : int

The index of the next output term

Returns

str
The proof term of the Formula
79N
try:
return terms|[formula], input_index, output_index # if the
Formula was assigned a proof term already
except KeyError: +# the Formula is not assigned a proof term yet

if formula.position = ’input ’:

terms [formula] = f’y_{{{input_index}}}’

return terms|[formula], input_index + 1, output_index
elif formula.position = ’output’:

terms [formula] = f’\\beta_{{{output_index}}}’

return terms|[formula], input_index, output_index + 1
else:

raise PositionError (formula. position)

to_term (tree, input_index=0, output_-index=0):
777 Calculates the proof term of a tree.

Parameters
tree : NullaryTree or UnaryTree or BinaryTree
input_index : int

The index of the next input term
output_index : int

The index of the next output term

102

60

83

84

88

89

90

91

Appendix B. Theorem Prover ToTerm.py

Returns

str
The proof term of the tree

NN

if isinstance(tree, (NullaryTree, UnaryTree, BinaryTree)):

rule = tree.rule
antecedent = tree.conclusion.antecedent
consequent = tree.conclusion.consequent
if isinstance(tree, NullaryTree):
terms [antecedent] = f’x_{{{antecedent.index[0]}}}’
terms [consequent] = f’\\alpha_{{{consequent.index[0]}}}"’
if rule = 7"Ax”:
parts_of _term = (terms[antecedent],)
elif rule == "CoAx”:
parts_of_term = (terms[consequent],)
else:

raise RuleError(rule)
elif isinstance(tree, UnaryTree):

calculate the proof term of the premise first and update
the indices of the next input and output terms

term_and_indices = to_term (tree.premise, input_index,
output_index)

premise_term = term_and_indices [0]

input_index = term_and_indices [1]

output_index = term_and_indices [2]

structure what the proof term will look like using a
tuple

any element in the tuple that is not a string will be
converted to its proof term later

if rule in basic_structural_rules + dutch_rules +
english_rules:

parts_of_term = (premise_term ,)
elif rule = 7fL”:
parts_of_term = (’(’, antecedent, ’\\.’, premise_term,
"))
elif rule = 7fR”:
parts_of_term = (’(’, consequent, ’\\.’, premise_term,
"))
elif rule = 7dfL”:
parts_of_term = (’\lambda.’, antecedent, ’.’,

premise_term)

103

92

93

94

96

98

99

100

101

102

103

104

105

106

107

108

110

Appendix B. Theorem Prover ToTerm.py

elif rule =— 7dfR”:
parts_of_term = (’\lambda.’, consequent, ’.’,
premise_term)
elif rule in (”::R”, 7:.:R”):

parts_of_term = ((’\\texttt{{case}}\.’, consequent, ’\._

\\texttt {{of }}_’
"\Zip{{’, consequent.type[l], ’}}.7,
premise_term))
elif rule in ("<>L7, "<.>L7):
parts_of_term = ((’\\texttt{{case}}\.’, antecedent, ’\.
\\texttt {{of}}\.’
"\Zip{{’, antecedent.typel[l], "}}.’,
premise_term))
elif rule in ("/R’, "\R”):
parts_of_term = ((’\\texttt{{case}}\.’, consequent, ’\._
\\texttt {{of}}\.~
"\Zip{{’, comnsequent.type[0], 7,
consequent.type[2], "}}.7,
premise_term))
elif rule = 7xL”:
parts_of_term = ((’\\texttt{{case}}\.’, antecedent, ’\.

\\texttt {{of}}\."

"\Zip{{’, antecedent.type[0], 7,7,

antecedent .type[2], ’}}.7,
premise_term))
elif rule in ("<R”, "<>R”, 7::L”, 7:.:17):
parts_of_term = (’\Zip{{’, premise_term, ’}}’)

else:
raise RuleError(rule)
elif isinstance (tree, BinaryTree):
if rule in (7/L”, ?\L”, "x«R"):
parts_of_term = (’\Zip{{’, tree.left_premise, ’,’, tree
.right_premise, ’}}7)
else:
raise RuleError(rule)
else:
return NotImplemented
term = ’
for part_of_term in parts_of_term:
calculate the proof term of the Formula or tree and
update the indices of the next input and output terms
if isinstance(part_of_term , (Formula, NullaryTree,
UnaryTree, BinaryTree)):

104

Appendix B. Theorem Prover ToLaTeX.py

121 if isinstance(part_of_term , Formula):

122 term_and_indices = get_formula_term (part_of_term ,
input_index , output-index)

123 else:

124 term_and_indices = to_term (part_of_term ,
input_index , output_index)

125 part_of_term = term_and_indices[0]

126 input_index = term_and_indices [1]

127 output_index = term_and_indices [2]

128 term 4= part_of_term # build the proof term

129 return term, input_index, output_index

130 elif isinstance (tree, IncompleteTree):

131 return ’’, input_index, output_index

132 else:

133 return NotImplemented

ToLaTeX.py

M NN

> This module contains functions related to creating LaTeX and pdf files
to present the given proofs in the most readable
3 way .

5 Methods

7 to_tree(node, tree) : NullaryTree or UnaryTree or BinaryTree

8 Converts a tree in Tree form to a tree in XPremiseTree form.

o formula_as_latex_code (formula, show_indices) : str

10 Formats a Formula in a way that is can be compiled as a proof in
LaTeX.

11 sequent_as_latex_code (sequent, show_indices) : str

12 Formats a Sequent in a way that it can be compiled as a proof in
LaTeX.

15 format _proof(root, edges, show_indices) : str

14 Formats a Tree in a way that it can be compiled as a proof in LaTeX

15 to_latex (proofs, show_indices=False)

16 Creates LaTeX and pdf files to present the given proofs in the most
readable way.

15 from Rules import connective_as_latex_code, rule_name_as_latex_code

19 from Sequent import Sequent

20 from ToTerm import to_term

105

21

Appendix B. Theorem Prover

ToLaTeX.py

from Tree import Tree,

UnaryTree, BinaryTree

import os
import subprocess

from sys import maxsize

to_x_ary_tree ,

IncompleteTree, NullaryTree,

def formula_as_latex_code (formula, show_indices):

777 Formats a Formula in a way that

LaTeX.
Parameters
formula : Formula
show_indices : bool

Whether the

Returns

is can be compiled as a proof in

indices of the atoms should be shown

The formula that can be compiled in LaTeX

99999

formatted_formula =

20

to_format = [formula]
while to_format:
part_of_formula = to_format .pop()
if isinstance(part_of_formula, str):
if part_of_formula in ('(’, 7)7):

formatted_formula 4= part_of_formula

else:

formatted_formula += f’{connective_as_latex_code]|

part_of_formula]}.’

elif part_of_formula.is_atom():

formatted _formula += part_of_formula.type

if show_indices:

if part_of_formula.index[0]

if not part_of_formula.type = ’7":
formatted_formula += *_7’

else:

formatted_formula += f’_{{{part_of_formula.index

(0133}

106

— maxsize:

Appendix B. Theorem Prover ToLaTeX.py

60 elif part_of_formula.is_complex ():

61 # because the function append() adds an element to the end
of a list , the parts of the complex formula

62 # should be added in reversed order

63 to_format .append(’))
64 for part_of_type in part_of_formula.type[:: —1]:
65 to_format .append(part_of_type)

66 to_format .append(’ (")

68 return formatted_formula

71 def sequent_as_latex_code(sequent, show_indices):

72 777 Formats a Sequent in a way that it can be compiled as a proof in
LaTeX.

73

74 Parameters

76 sequent : Sequent

77 show_indices : bool

78 Whether the indices of the atoms should be shown

79

80 Returns

81 -

82 str

83 The sequent that can be compiled in LaTeX

84 o

85 antecedent = formula_as_latex_code (sequent.antecedent , show_indices
)

86 consequent = formula_as_latex_code (sequent.consequent, show_indices

)

88 # remove unnecessary outer brackets from complex formulas
89 if not sequent.antecedent.is_atom():

90 antecedent = antecedent[1:—1]

91 if not sequent.consequent.is_atom():

92 consequent = consequent[1:—1]

93

94 if sequent.focus = ’17:

95 antecedent = f’\\focus{{{antecedent}}}’

96 elif sequent.focus = ’'r’:

o7 consequent = f’\\focus{{{consequent}}}’

98

107

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

129

130

131

132

133

Appendix B. Theorem Prover ToLaTeX.py

return f’\seq{{{antecedent}}}{{{consequent}}}’

def tree_as_latex_code(tree, show_indices):
777 Formats a tree in a way that it can be compiled as a proof in
LaTeX.

Parameters
tree : NullaryTree or UnaryTree or BinaryTree
show_indices : bool

Whether the indices of the atoms should be shown

Returns
str
The tree that can be compiled in LaTeX
if isinstance(tree, IncompleteTree):
return f’{sequent_as_latex_code (tree.conclusion ,_.show_indices)}
\n’
elif isinstance (tree, NullaryTree):
return f’\infer [{rule_.name_as_latex_code[tree.rule]}]’ \
f'{{{sequent_as_latex_code(tree.conclusion ,_.show_indices
JHH{H o\
elif isinstance (tree, UnaryTree):
return (f’\infer [{rule.name_as_latex_code[tree.rule]}]
f’{{{sequent_as_latex_code(tree.conclusion ,.
show_indices) }} }{{-\n’
f’{tree_as_latex_code (tree.premise,_show_indices)}}}’)
elif isinstance(tree, BinaryTree):
return (f’\infer [{rule_name_as_latex_code[tree.rule]}]
f'{{{sequent_as_latex_code(tree.conclusion ,.
show_indices) }}}{{-\n’
f’{tree_as_latex_code (tree.left_premise ,_.show_indices)}
&o\n’
f’{tree_as_latex_code (tree.right_premise ,_.show_indices)

)

)

I

def to_latex (proofs, show_indices=False):
777 Creates LaTeX and pdf files to present the given proofs in the
most readable way.

108

Appendix B. Theorem Prover ToLaTeX.py

135 Template taken from http://baptisteravina.com/blog/python—to—latex/

137 Parameters

138

139 proofs : list of Tree

140 show_indices : bool

141 Whether the indices of the atoms should be shown
142 nn

143 doc_class = ’\documentclass{article }\n’

144 packages = (’\\usepackage [pdftex ,_active ,_tightpage]{preview}\n’
145 "\\usepackage {amsmath}\n’

146 "\\usepackage{amssymb}\n"’
147 "\\usepackage{proof}\n’)
148 commands = (’\\newcommand{\seq }[2]{#1\Rightarrow _#2}\n’

149 ’\\I;e}vx\/co,mmand{\\focus FITT{\\ fbox{$#1\\rule{Opt }{6pt}$
150 "\ \newcommand{\\ bs }{\\ backslash}\n’

151 "\\newcommand{\ Zip } [1]{\ langle .#1_\\rangle}’

152 "\ \newcommand{\\ fdia } {\ diamondsuit }\n’

153 "\ \newcommand {\\ fdiaf }{\\ blacklozenge }\n’

154 "\ \newcommand{\ ghox } {\Box}\n"’

155 "\ \newcommand{\ gboxf}{\\ blacksquare }\n’

156 "\\newcommand {\W} [1]{\\ textsf{#1}}\n’
157 "\ \newcommand{\ strs }{\cdot./__\cdot}\n’

158 "\\newcommand{\strbs }{\cdot_\\bs_\cdot }\n’

159 "\ \newcommand{\ strtens }{\cdot._\otimes._\cdot}\n’

160 "\ \newcommand{\ strdia }{\cdot.\,_\\fdia_\cdot}\n’

161 "\\newcommand{\ strdiaf }{\cdot_\,_\\fdiaf_.\cdot}\n’
162 "\ \newcommand{\ strbox }{\ cdot._\,_.\gbox_\cdot }\n’

163 "\ \newcommand{\ strboxf}{\cdot._\,_\\gboxf_.\cdot}\n")

164 setup = (’\pagestyle{empty}\n’
165 ’\n’

166 "\\ begin{document }\n"’

167 ’\n’

168 "\\addtolength{\inferLineSkip }{1pt}\n’
169 "\ setlength{\PreviewBorder }{.5in}\n")

170 proofs_as_latex_code = ’’

171 for proof in proofs:

172 tree = to_x_ary_tree(proof.root(), proof)

173 proofs_as_latex_code += (’\\begin{preview }\n’

174 f’$\deduce{{{to_term (tree)[0]}}}\n’
175 f’{{{tree_as_latex_code (tree ,.

109

Appendix B. Theorem Prover Exception.py

show_indices)}}}$’
176 "\end{preview }\n")

177 end = ’\end{document}’

178

179 content = 7’

180 for part in (doc_class, packages, commands, setup,
proofs_as_latex_code , end):

181 content += f’{part}\n’

182

183 with open(’proof.tex’, 'w’) as file: # create and open the file
proof.tex

184 file.write(content) # write the LaTeX code to proof.tex

185 file.close ()

186

187 command_line = subprocess.Popen ([’'pdflatex’, ’proof.tex’]) #
create the pdf file

188 command_line.communicate () # show the process in the terminal

189 # we don’t need the files below: delete them

190 os.unlink ("proof.aux’)

191 os.unlink ("proof.log’)

main.py

1 from Prove import get_derivations

. def main () :
pass
s main ()

Exception.py

. class Error(Exception):
2 777 Base class for exceptions in this module”””
3 pass

¢ class FormulaTypeError(Error):
7 777 Exception raised for errors in the type of a Formula

9 Attributes

110

10

11

13

14

35

36

37

39

40

41

42

43

Appendix B. Theorem Prover Exception.py

formula : Formula
the Formula with an incorrect form

N NN

def __init__(self, formula):
self .formula = formula

def __str__(self):
777 Returns a readable representation of the Error.

Overrides the default method.
Returns

str
A readable representation of the Error

NNN

return f”Formula_type.’{self.formula.type}’_is_not_of_form.’a’,

J[#,.A] cor_[A,.$,.B].”

class InputError(Error):
777 Exception raised for errors in a user’s input

Attributes

message : str
explanation of the error

N NN

def __init__(self, message):
self . message = message

def __str__(self):
777 Returns a readable representation of the Error.

Overrides the default method.
Returns
str

A readable representation of the Error

N NN

return self.message

111

Appendix B. Theorem Prover Exception.py

51 class LanguageError (Error):
777 Exception raised when a requested language is not implemented

57 Attributes

58

59 language : str

60 nry

61 def __init__(self, language):

62 self.language = language

63

64 def __str__(self):

65 777 Returns a readable representation of the Error.

66

67 Overrides the default method.

68

69 Returns

70

71 str

72 A readable representation of the Error

73

74 return (f”The.requested._language.’{self.language}’_is._not.
available_in_the_lexicon._Please_.use_an_available.”

75 f’language_or_create._a_lexicon_for.’{self.language}’.”)

s class PositionError (Error):

79 777 Exception raised when a Formula’s position is not ’'input’ or
output’

80

81 Attributes

82

83 position : str

84 nry

85 def __init__(self, position):

86 self.position = position

87

88 def __str__(self):

89 777 Returns a readable representation of the Error.

90

91 Overrides the default method.

92

112

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

Appendix B. Theorem Prover examples.py

Returns

str
A readable representation of the Error

N NN

return f”Position.’{self.position}’_is_not.’input’_or.’output ’.

7

class RuleError(Error):
777 Exception raised when a requested rule does not exist

Attributes
rule : str
def __init__(self, rule):
self.rule = rule
def __str__(self):
777 Returns a readable representation of the Error.
Overrides the default method.
Returns
str
A readable representation of the Error
return f”Requested_rule_’{self.rule}’_does_.not_exist.”
examples.py

9999 9

This module contains example inputs to give when running the main
module .

7NN

from main import get_derivations

use these examples after following the instructions in the README. txt
file

get_derivations(’types’, None, ’'np’, ’s/(np\s)’, {'np’: '+’, ’'s’: "=},

113

10

11

Appendix B. Theorem Prover

examples.py

0, True)
get_derivations (’types
+, 'r’, True)
get_derivations (’types
)
get_derivations (’types
get_derivations (’types
True)
get_derivations (’types
7+7 , ’S 9 . 1 , 7r

)

get_derivations (

7+7’ 7n7: 7+7, 7S7:
get_derivations (

7+7’ 7n7: 7_"_

)

)

None, ’np,u(np\s)’, 7S,, {7np7: >+7’ ,S, s
None, ’'np’, ’'u:(<>np)’, {’'np’: '+’}, ’17, True
None, ’<>(:np)’, ’np’, {’'np’: '+’}, 0, True)
None, r’(n/n),.n,.(n\n)’, 'n’, {'n’: +’}, 0,
None, "(s/(np\s)),-((s/(np\s))\s)", ’s’, {’np’
, True)

"Dutch’, ’lakei.die.alice.plaagt’, 'n’, {’'np’:
‘=74, 0, True)

"English’, ’'book.that_.alice.read’, 'n’, {’'np’:
‘=74, 0, True)

114

	Introduction
	Typelogical grammars
	Lambek Calculus
	Syntactic types and type computations
	Sequent calculus

	Extended Lambek calculus
	Control modalities
	Controlled structural rules
	Examples

	Focused display calculus
	Focusing
	Display calculus

	Semantics

	The parsing procedure
	Parsing procedures
	Backward chaining
	Forward chaining

	Implementation
	Partial proof trees
	Breadth First Search

	Conclusion & further research
	References
	Examples
	Theorem Prover

