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Abstract 
Information eXperience (IX) is hypothesized to be a complex function of the user’s perceived com-
plexity, comprehensibility, and interest. This study links these appraisals to eye behavior of 28 
subjects. Eye behavior was operationalized by parameters of the eye’s fixations, saccades, and 
blinks, providing a pattern space.  This pattern space was used to develop and validate several 
models. Random forests, support vector machines, k-nearest neighbors, neural networks, and re-
gression models were used to generate these models. These models predict complexity, compre-
hensibility and interest, respectively 96.87%, 97.65%, and 90.63% of the cases; but, in parallel, 
indicate that the relation between the three appraisals is complex. Nevertheless, this research 
can serve as an initial step towards the foundation of a next-generation wearables that enable 
true IX, personalized information filtering, access, and retrieval. 

  



 

Acknowledgements 
I have gained many memorable experiences and knowledge during this thesis project. Egon, I am 
particularly grateful to you for your immense guidance, help, dedication and patience during this 
project. Frans, I am also very grateful to you for providing me the dataset from you PhD disserta-
tion and for all you help during this project. Moreover, I am extremely grateful to my parents for 
always being there for me, for supporting me in any possible way and pushing to be better. Lastly, 
I would like to thank my friends for supporting and inspiring. 

  



 

Table of Contents 
Do our eyes mirror our information experience?  ........................................................... 1 

Abstract ............................................................................................................................................ 2 

Acknowledgements.......................................................................................................................... 3 

Part I. Research introduction ........................................................................................................... 5 

1) Introduction ............................................................................................................................. 5 

Part II. Modeling / signal processing ................................................................................................ 7 

2) Data .......................................................................................................................................... 7 

3) Process pipeline ....................................................................................................................... 9 

4) Preprocessing ......................................................................................................................... 12 

a) Feature extraction.............................................................................................................. 12 

b) Parameter selection ........................................................................................................... 14 

c) Outlier removal .................................................................................................................. 14 

d) Normalization..................................................................................................................... 15 

e) Imbalanced Data ................................................................................................................ 15 

5) Classifiers ............................................................................................................................... 22 

a) Regression .......................................................................................................................... 23 

b) Classification ...................................................................................................................... 24 

a) Single Label .................................................................................................................... 25 

i. Multi-Label ..................................................................................................................... 28 

III. Closing ....................................................................................................................................... 31 

6) Discussion............................................................................................................................... 31 

References ..................................................................................................................................... 37 

Appendices ..................................................................................................................................... 41 

Appendix A ..................................................................................................................................... 41 

Appendix B ..................................................................................................................................... 42 

Appendix C ..................................................................................................................................... 43 

 



 

Part I. Research introduction 

1) Introduction 
 When reading an article, people are not only attracted by the subject and context. 

Although unconsciously, they seek a balance between interest, comprehensibility and 

complexity (van der Sluis, van den Broek, Glassey, van Dijk, & de Jong, 2014). When people find 

such an optimal balance, they arrive at their “sweet spot of interest” (Silvia, 2006; van der Sluis, 

2013). However, this sweet spot is highly context dependent, relying on the information at 

hand, its modality, the reader, his emotions and mood, and the environment he is in, to mention 

a few. Hence, ideally, continuous, real-time adaptation, even stronger than mere 

personalization, is needed to arrive at the sweet spot (Janssen, van den Broek, & Westerink, 

2009), more often than simple coincidence. 

Here, we propose to explore eye-tracking as a means to achieve such real-time 

adaptation. Paulo Coelho wrote in Manuscript Found in Accra, “The eyes are the mirror of the 

soul and reflect everything that seems to be hidden; and like a mirror, they also reflect the 

person looking into them”. Information processing is not limited to reading articles (or books), it 

is what humans do constantly throughout various modalities. Most noteworthy is our daily 

behavior when browsing the internet. Via various strategies (e.g., cookies; Mor, Riva, Nath, & 

Kubiatowicz, 2015), the information presented to us is already personalized. However, as it is 

done now, it frames our information via an information bubble (Pariser, 2011). And, although, 

on the one hand, personalized; on the other hand, it simply provides us more of the same (Van 

der Sluis, 2013). Also, actual personalization is undermined, as the PageRank algorithm 

(Franceschet, 2011) and its derivatives provide more information that the majority likes, which 

is not necessarily the same as what you like. 



 

Based on user’s personal interests, filtering and recommendation systems can be 

improved, beyond their content-, collaborative-, or property-based algorithms (Garcin, Faltings, 

Donatsch, Alazzawi, Bruttin, & Huber, 2014). Students and scholars can get reading materials 

that are both educational and linked to their interests (Hidi & Renninger, 2006). Similarly, 

newspapers can be personalized (Kleinnijenhuis, 1991). Serious Games can be put into practice 

much more efficiently, when personalized (Deterding et al., 2011; Romero et al., 2015). 

With the steep rise of low budget wearables (e.g., Arduino toolkits), also low budget, 

consumer ready mobile eye trackers have emerged. Moreover, eye-tracking is envisioned to be 

integrated in various near future electronic devices such as smart phones and smart glasses 

(e.g., Google glass). Consequently, eye-tracking data can be conveniently linked to other data 

sources and used to understand the user’s reading experience and help to reach reader’s sweet 

spot (Reichle et al., 2010; Bai et al., 2008; Doherty et al., 2010; Bulling & Gellersen, 2010; Jones 

et al., 2008;). 

Eye-trackers are used to define “areas of interest”, over specific segments of 

information and explore the fixations, saccades and blinks that occur at those parts (Jacob and 

Karn, 2003). As such, eye-tracking features have been used to give an outlook on how people 

make decisions and reason (Balatsoukas & Ruthven, 2012). To predict syntactic processing 

complexity, Demberg and Keller used eye-tracking data from 10 participants reading 51,000 

words of newspaper text. Rayner (2006) showed that eye movements are sensitive to difficult 

text passages, as processing times and the number of fixations increased, when text is difficult. 

As discussed by Liversedge et al.’s (2011), eye movements have been investigated to 

study sentence processing since 1967. Cameras were used to examine what part(s) of a 

sentence the readers fixated. Later in 1982, more advanced hardware was introduced, that 

could register fixation duration and position. That lead to studies for parsing and sentence 



 

investigation. So, initial studies were focused on separate and specific sentences that were used 

to test certain theoretical hypotheses. In more recent years (2005), there is a switch to 

gathering data from eye movements, during the time people read texts. This lead to a less 

experimental controlled environment, but this way is more normal to comprehend sentences. 

Eye trackers are being used to create eye-based human-computer interactive systems, 

using gaze as a pointing method and to test the dynamic of interfaces, by exploring the areas 

where users look at in the screen. In virtual reality gaze selection is used over hand pointing 

(Duchowski, 2007). 

Research eye tracking studies for reading and processing, used fixations and gazes as 

indicators for learning (Mason et al., 2013). Also, an eye tracker was used to examine visual 

attention while students were solving multiple-choice science questions, in order to identify 

which parts of the problem, the students paid the most or the least attention (Tsai et al., 2012).  

This thesis continues with Section 2 in which we describe the acquired data. Next, we 

present our methodology and processing pipeline. Section 4 and 5 describe respectively the 

data and feature preprocessing and the classifiers used, alongside with the results. We end with 

Section 6 that presents the discussion, including a concise conclusion. 

Part II. Modeling / signal processing 

2) Data 
This thesis uses a set of available eye-tracking data (Van der Sluis et al., 2014). It was 

recorded using the SMI BeGaze 2.41. The data set includes data from 30 participants (22 males 

and 8 female), with a mean age of 28.60 (SD = 6.06). All participants had BA or MA degree or 

                                                           
1 http://www.smivision.com/en/gaze-and-eye-tracking-systems/products/begaze-analysis-software.html 



 

were persuing it. None of them were native English speakers; but, they rated their reading liter-

acy as high (M = 4.63, SD = .62, range 1-5, 5 highest). At the beginning of the experiment, the 

participants answered a demographics and background questionnaire, which addressed the fol-

lowing items: gender, age, nationality, educational background, prior knowledge, personality 

traits, English reading proficiency, and visual acuity. These questions were included to verify 

whether or not there is a correlation between this information and the eye tracking data gath-

ered. The participants read 18 articles in a randomized order and immediately after each article, 

they answered an experience questionnaire. This questionnaire included nine questions, three 

questions for each of the three constructs appraised complexity, appraised comprehensibility, 

and interest (again, see: Van der Sluis et al., 2014). For appraised complexity, two seven-point 

scales, were used, complex-simple, and easy to read-difficult to read. For appraised comprehen-

sibility, the appraised comprehensibility scale (Silvia, 2008a) was used. For interest, two 7-point 

differentials were used, interesting-uninteresting and boring-exciting. The 18 articles were se-

lected from articles from The Guardian2, which were truncated after 1,200 characters and the 

layout was stripped. The cutoff point was placed before the end of the word at position 1,200, 

and three dots were added to indicate the story normally would continue. The articles were di-

vided into three levels of complexity (which are: low, medium, and high) and all concerned dif-

ferent topics. The final 18 articles were preselected from the lower, middle and upper part of 

the distribution of textual complexity and then selected based on suitability. Textual complexity 

is linked to processing difficulty, meaning, the level of difficulty experienced when processing 

new information. In order to calculate the textual complexity of the texts, four approaches were 

used, traditional (regarding word length), familiarity (word frequency), priming (information 

                                                           
2 http://www.theguardian.com/ 



 

density measure, for characters and words), and dependency locality (the cost of processing 

time based on dependences) (Van der Sluis, et al., 2014). 

During this experiment, the aforementioned eye-tracking device was used for all the 

participants. The eye-tracker has a build in fixation, saccade, and blink detector. The detector 

uses a dispersion based algorithm (Blignaut, 2009), first detects fixations, with a minimum dura-

tion of 80 ms (Goldberg, 2000). Humans typically alternate between saccadic eye movements 

and fixations. A blink is captured by SMI BeGaze as a unique type of fixation, where the horizon-

tal and vertical gaze position equals to zero. The data extracted with SMI BeGaze contains the 

following events (or features): 

 fixations: eye-movements that are identified as a pause, a visual gaze at 

a location of interest; 

 saccades: Rapid (fast) eye-movements between fixations; and 

 blinks. 

From the completed questionnaires, for each article of each participant, we calculated 

the average scores for interest, complexity, and comprehensibility. 

3) Process pipeline 
As a first phase of the analysis, we performed a statistical analysis (Appendix A). The 

field of pattern recognition, is being researched for at least 60 years and can be divided into four 

approaches (Jain, 2000; Bishop, 2006): 

1) Template matching, regarding samples, pixels and curves, which are 

recognized using correlations and distance measures, using the criterion classification 

error. 



 

2) Statistical, that utilizes features, using discriminant functions and as a 

criterion the classification error. 

3) Structural, using primitives (basic patterns), that recognizes rules and 

grammars and uses as criteria an acceptance error. 

4) Neural networks, using samples, features and pixels that recognize 

using network functions and as a criterion the mean square error. 

This having said, this division of approaches can be debated. Neural networks, like feed-

forward networks, and multi-layer perceptron (MLP) networks can be considered as part of sta-

tistical pattern recognition (Bridle, 1990). Syntactic pattern recognition can be separated from 

statistical pattern recognition, because a lot of times structural information, cannot always be 

transferred to a feature vector (Albus et al., 2012). 

Moreover, machine learning can be divided to two categories: 

1. Supervised learning,  

Where the aim is to learn a model from the input (training) data, including a target vari-

able. The target variable, is the label that is used to classify each data point. 

2. Unsupervised learning 

In this case, the input data does not include a target variable (Alpaydin, 2014; Blum, 

1997). In other words, there is no class variable. Instead, the variables of each data point help to 

identify cluster(s) of data points (Bishop, 2006). Unsupervised learning is also referred to as data 

clustering, where groups (clusters) of data points are detected (Jain, 2010). 



 

In this study, we will apply statistical pattern recognition and neural networks, using su-

pervised learning. For supervised learning problems, when the goal is to assign each instance to 

a category, where the number of categories (classes) is finite and discrete, then it is a classifica-

tion problem. On the other hand, when at least one of the target variables is a continuous num-

ber, then it is a regression problem. 

Its process is outlined in Figure 1. First, we have the signals, which we accumulated from 

the eye tracking device. Each signal is going to be filtered, and will go through the process of 

outlier removal. Moreover, according to the signal, one or all of the process: quantization, sam-

pling rate, and baseline, will be used. The features and parameters outlined in the third and 

fourth step will be calculated. Then, we will select the appropriate parameters, apply machine 

learning algorithms, and select the best performing ones. In the next section, these phases will 

be discussed in more depth. 



 

 

Figure 1: Processing Pipeline 

4) Preprocessing 
Both the questionnaires and the eye tracking data (i.e., fixations, saccades, and blinks) 

need to be preprocessed, before it can be used for machine learning. This preprocessing consists 

of six phases discussed next: i) feature extraction, ii) parameter extraction, iii) parameter selec-

tion (or reduction), iv) outlier removal, v) normalization, and vi) data balancing. 

a) Feature extraction 
On average fixations have a duration of 250 msec. (Ajanki, 2009), ranging from 150 to 

300 msec. (Kliegl & Engbert 2005). In line with their suggestions, to detect fixations, the lower 



 

and upper threshold was set on respectively 100 and 300 msec. Additionally, several other fixa-

tion features have been proposed, such as fixation duration (i.e., the duration of the first for-

ward fixation on a target word) and gaze duration (i.e., the aggregated duration of all fixations 

on a target word, when initially encountered) (Cole et al., 2010). However, these features link to 

specific words, which is a focus the current research does not have. Therefore, these features 

are not included. For entire passages, Rayner et al. (2006) considered average fixation time, 

number of fixations, and total reading time. This triplet of features is included. For distinct lines, 

Inhoff and Rayner measured fixation duration and Ziefle et al. measured the number of fixations 

(Ziefle et al., 1998; Inhoff et al., 1986). The latter two features have not been included in the 

current research, because in this paper, the goal is to understand how users perceive different 

texts as a whole and not unique sentences. Saccades are on average 7–9 characters in size and 

last 30 msec. (range: 10-100 msec.) (Liversedge & Findlay 2000; Balatsoukas & Ruthven 2012). 

Saccade duration is one of the three saccade features, complemented with: total time spent in 

saccades and the number of saccades made (Wiley & Rayner, 2000). 

While at rest, people produce 12 and 19 blinks per minute, with a duration between 100 

and 400 ms. (Bulling, 2009). An increase in blink frequency, indicates light fatigue. An increase in 

blink duration, accompanies severe sleepiness. 

Pupil size has been used to indicate information processing (Partala & Surakka, 2003). 

The average pupil size, was measured during text processing and showed that when processing 

difficult words, pupil dilation is higher (Hyönä et al., 1995). 

Of each of these features four parameters are extracted, namely: mean, standard devia-

tion, variance, and median. 



 

b) Parameter selection 
To enable efficient classification of eye behavior, the total of features will be assessed 

on their value in spanning up a pattern space. For this purpose, we apply the linear transform: 

Linear Discriminant Analysis (LDA) (Jain et al., 2000; Bishop, 2006). Table 1 shows the features 

selected after the transformations. For each one of the features in Table 1, the four aforemen-

tioned parameters were applied. 

Table 1: Selected features. 

Events Features 

Fixations Duration of each 
fixation. 

Number of fixations. Total duration of 
fixations. 

Saccades Duration of each 
saccade. 

Number of saccades 
and regressions. 

Total duration of 
saccades. 

Blinks Duration of each 
blink. 

Number of blinks. Total duration of 
blinks. 

Pupil average pupil size 
(x- axis) 

c) Outlier removal 
To remove unwanted anomalies in the data, we tested several outlier removal tech-

niques, namely: 

o Removal of data +/- x standard deviations from the mean, with 

the values 2, 2.5, and 3 taken for x 

o Removal of data outside a quantile window, with the quantile 

set on 10%, 20%, and 30% of the head and tail of the data distribution. 

In order to decide which outlier removal approach was best suitable, we applied a linear 

regression model, for each approach. Considering the summary output values Multiple R-

squared and p-value, they showed that the removal of data with values: (𝑚𝑒𝑎𝑛 +/ − 2.5𝑆𝐷) 

was most efficient (van Den Broek & Westerink, 2009). 



 

Moreover, data for one article of medium textual difficulty were completely removed, 

because it was detected from van der Sluis (2014) to be an outlier. So seventeen articles were 

used for the rest of the research. 

d) Normalization 
Since people show significant interpersonal variation on behavioral data (van den Broek, 

2011), data normalization is required at a participant level. Since the data set we have is ex-

tracted from multiple and unique humans reading multiple articles, we are going to apply nor-

malization techniques, for each person separately. The reasoning for this choice is, that each 

person has different eye-movement regularities. However, normalization is not applied for each 

article separately, since the goal of this research is to have a robust model, not dependent on a 

kind of text. 

In order to normalize the features among the participants we used this technique: 

log(𝑓𝑒𝑎𝑡𝑢𝑟𝑒) − (𝑚𝑒𝑎𝑛 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)/(𝑆𝑡𝑎𝑑𝑎𝑛𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)  (van Den Broek, 2009). 

Where the 𝑚𝑒𝑎𝑛 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑚𝑒𝑎𝑛(log (𝑓𝑒𝑎𝑡𝑢𝑟𝑒)) and 𝑆𝐷 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(log(𝑓𝑒𝑎𝑡𝑢𝑟𝑒)). The baselines were calculated based on the eye move-

ments: fixation, saccade, blink and pupil size, during the demographics and background ques-

tionnaires for each participant. Also for each participant we used the normalization approach 

described. 

e) Imbalanced Data  
The data set we acquired to use in this research is based on 28 humans and 

each of them has a different appreciation of the 18 articles they read. So, although the 

articles were equally separated to three categories of textual complexity, the three ap-

praised dimensions (complexity, comprehensibility and interest), were not equally dis-

tributed. Therefore, in order to have approximately the same number of instances for 



 

each class of the three dimensions, we considered using a hybrid algorithm to generate 

instances.  

From the figures below (Figure 2 – Figure 13), it is clear that the classes are un-

balanced, therefore it is necessary to apply a balancing technique, so that the classifiers 

can be trained for all the classes equally.  Thus, a technique to acquire a more balanced 

number of instances for each class was required. Further down in this thesis in Section 

5, the balancing technique that was applied is described in detail. This is crucial as the 

original dataset was already small, with only 459 instances. 

 

Figure 2: Distribution of 2 classes for the dimension Complexity. 

 



 

 

Figure 3: Distribution of 2 classes for the dimension Comprehensibility. 

 

Figure 4: Distribution of 2 classes for the dimension Interest. 

 



 

 

Figure 5: Distribution of 3 classes for the dimension Complexity. 

 

Figure 6: Distribution of 3 classes for the dimension Comprehensibility. 



 

 

Figure 7: Distribution of 3 classes for the dimension Interest. 

 

Figure 8: Distribution of 4 classes for the dimension Complexity. 



 

 

Figure 9: Distribution of 4 classes for the dimension Comprehensibility. 

 

Figure 10: Distribution of 4 classes for the dimension Interest. 

 



 

 

Figure 11: Distribution of 3 classes for the dimension Interest. 

 

Figure 12: Distribution of 3 classes for the dimension Interest. 



 

 

Figure 13: Distribution of 3 classes for the dimension Interest. 

5) Classifiers 
Utilizing the eye-tracking features we explored, we are going to try to classify the three 

labels complexity, comprehensibility and interest. We are going to investigate our hypothesis by 

applying two techniques for prediction, regression and classification. We used R Studio3 for this 

section. 

                                                           
3 https://www.rstudio.com/ 



 

 

Figure 14: Classification flow diagram. 

a) Regression 
We initially considered regression to predict the three dimensions, complexity, compre-

hensibility and interest. But unfortunately, utilizing regression models, resulted to very low pre-

diction rates (< 20%). This is due to the big range of scores for the three labels, which are be-

tween [1, 7]. Later on, the scores are divided to classes, in order to avoid this problem and have 

a more fix classification problem. 

 



 

Figure 15: Distributions of the scores [1-7] for complexity. 

 

Figure 16: Distributions of the scores [1-7] for comprehensibility. 

 

Figure 17: Distributions of the scores [1-7] for interest. 

b) Classification 
Using a 1-7 scale, the participants judged the texts they read on three dimen-

sions: simple – complex, comprehensible – incomprehensible, and interesting – uninter-

esting. Their judgements provided the required labels for the classification process. 

These judgements were grouped into 2, 3, 4, and 5 classes for both single-label and 

multi-label classification. Figure 14 illustrates the classification flow diagram regarding 

the rest of this section. 



 

a) Single Label 

1. k-NN 
Given a feature vector x from the test set, the k-NN algorithm finds the k feature vec-

tors in the training set that have the smallest Euclidean distance to x. The class that is repre-

sented the most among these k feature vectors will be assigned to x. In case of a tie, a random 

class is selected from the top most represented classes. In case that there a several feature vec-

tors available for the kth nearest neighbor, all of those vectors will be considered in the decision 

process (Bishop, 2006). We have run the k-NN classification for k = 1,2, …,50. For each run, we 

have calculated the relative prediction accuracy. 

2. Support Vector Machines 
 

Support Vector Machines (SVM) try to maximize the distance from the decision bound-

ary to the data points (Bishop, 2006). The kernel function is used to predict the test (not trained) 

data. We used 3 different kernels that are available from the SVM classifier (Meyer, 2003). 

These kernels are: radial, sigmoid and polynomial. We used the values 1 and 100 for the param-

eter cost and the parameter setting: type = C- classification. We used the library e1071 and the 

function SVM. 

3. Multi-Layer Perceptron 

A multi-layer perceptron is consisted of multiple layers of nodes and each layer is 

connected to each other. Besides the input nodes(features), each node is a neuron. (Kruse et al. 

2013). The backpropagation error function, uses the next layer to define the error of the 

previous layer. We used the R library RSNNS, to use the feed-forward network, multi-layer 

perceptron, trained by error backpropagation. 

4. Neural Networks 
Here, we will test the algorithm based on neural networks (NNET). We use the nnet 

function from the nnet package of R to train a neural network. The nnet function calculates the 



 

most suitable weights for the neural network and returns the fitted values of the data we use to 

train our model. The number of hidden layers is defined by the parameter size. By increasing the 

number of hidden layers, the network becomes more complicated. The relevant parameters are: 

package of R to train a neural network. The nnet function calculates the most suitable weights 

for the neural network and returns the fitted values of the data we use to train our model. The 

number of hidden layers is defined by the parameter size. By increasing the number of hidden 

layers, the network becomes more complicated. In order for our model to converge, a large 

number of iterations is needed. The number of iterations needed depends on the model, the 

number of hidden layers, and the decay. The seed was set at 54321. The parameters that we 

changed were size and decay, and we always used the following values for the other parame-

ters: skip = T, softmax = T, maxit = 20000. The different values we tried for size were 2, 8, 10, 

and 12, and for decay we tried 0.0001, 0.001, and 0.01. 

5. Random Forests 
A random forest is a special type of tree for regression or classification, it is a big 

collection of (not correlated) decision trees.  That instead of using the best split func-

tion, for all the features, it selects a subset of the features at random and then proceeds 

with the split (Liaw, 2002; Segal, 2004). The library randomForest was used, and the 

number of trees was set to 1000 and the parameter type to classification. 

For all classifiers, the procedure cross-validation (CV) was used, which is used to prevent 

over-fitting. Here, we used a 5-fold CV method, where the data was split into four subsets and 

each time three subsets were used for training and one for testing. Meaning that four different 

test sets were investigated (Bishop, 2006).  

The table below, shows the prediction scores for each label and classifier. It is visible 

that ‘Comprehensibility’ has the highest accuracy among the three labels. Also, by increasing the 



 

number of classes, the accuracy declines. When using neural networks and having to predict 

multiple classes, there is the negative factor that individual neurons are trained based on a 

certain class or classes. This can lead to “ambiguity and/or uncovered feature space regions” 

(Ou, & Murphey 2007). This explains the very low prediction rates when using neural networks 

and multiple classes (Table 2). 

  



 

Table 2: Prediction rates for the three labels (average scores), predicted by each classifier. 
 Classifiers 

Labels/Classes 
  

Random 
Forest. 

Multi-layer 
perceptron. 

 

Neural net-
works. 

Support 
Vector Ma-
chines. 

k- Nearest 
Neighbors. 

Multinomial 
logistic re-
gression. 

Complexity/2, 
Complexity/3, 
Complexity/4, 
Complexity/5 

2c: 64.04%, 
3c: 35.95%, 
4c: 26.97%, 
5c: 22.47% 

2c: 47.19%, 
3c: 28.09%, 
4c: 26.97%, 
5c: 24.72% 

2c: 66.29%, 
3c: 49.44%, 
4c: 13.48%, 
5c: 15.73% 

2c: 60.67%, 
3c: 44.94%, 
4c: 29.21%, 
5c: 30.34% 

2c: 60.67%, 
3c: 48.31%, 
4c: 28.09%, 
5c: 33.71% 

2c: 60.67%, 
3c: 37.08%, 
4c: 28.09%, 
5c: 30.34% 

Comprehensibility/2, 
Comprehensibility/3, 
Comprehensibility/4, 
Comprehensibility/5 

2c: 88.76%, 
3c: 42.67%, 
4c: 49.44%, 
5c: 46.07% 

2c: 64.04%, 
3c: 41.57%, 
4c: 32.58%, 
5c: 31.46% 

2c: 88.76%, 
3c: 59.55%, 
4c: 8.99%, 
5c: 5.62% 

2c: 84.27%, 
3c: 46.07%, 
4c: 44.94%, 
5c: 37.08% 

2c: 88.76%, 
3c: 56.18%, 
4c: 55.06%, 
5c: 38.20% 

2c: 89.89%, 
3c: 53.93%, 
4c: 49.44%, 
5c: 43.82% 

Interest/2, 
Interest/3, 
Interest/4, 
Interest/5 

2c: 60.67%, 
3c: 42.67%, 
4c: 41.57%, 
5c: 38.20% 

2c: 44.94%, 
3c: 35.95%, 
4c: 29.21%, 
5c: 21.35% 

2c: 74.16%, 
3c: 40.45%, 
4c: 10.11%, 
5c: 14.61% 

2c: 59.55%, 
3c: 40.45%, 
4c: 39.33%, 
5c: 26.97% 

2c: 76.40%, 
3c: 42.67%, 
4c: 23.60%, 
5c: 22.47% 

2c: 68.54%, 
3c: 39.32%, 
4c: 37.08%, 
5c: 33.71% 

 

i. Multi-Label 
In machine learning, multi-label classification is a problem of multi-output classi-

fication, where multiple target labels can be assigned to each instance. Multi-label 

learning can be phrased as the problem of finding a model that maps inputs x to binary 

vectors y, rather than to scalar outputs as in the ordinary classification problem. In order 

to implement a multi-label classification, we used the package rFerns (Ozuysal et al., 

2010), modified supporting multi-label classification. 

For the multi-label classification, we use as labels the three average scores com-

plexity, comprehensibility and interest. The aforementioned scores are from 1 to 7, so 

we divided the scores in two classes 0 and 1, where class 0 concerns the scores [1, 4) 

and class 1 concerns the scores [4, 7]. We conducted four different multi-label classifica-

tion approaches. First, by applying all 3 labels and further 2 labels at a time, exploring 

the possible combinations. 



 

Opposed to the previous one-label classification approaches, the joint dimen-

sions’ complexity and interest have the highest prediction rates. The prediction rates for 

8 binary classes for the joint three dimensions were lower than 10%. Further, the pre-

diction rate for 4 binary classes, for complexity and comprehensibility was 31.64%, for 

complexity and interest 24.05% and comprehensibility and interest 11.40% (Appendix 

B). 

We used the SMOTE: Synthetic Minority Over-sampling Technique, to balance the data, 

by over-sampling the minority class and under-sampling the majority class (Chawla, 2002). The 

reasoning for that decision is that the original dataset was already not big enough, only 459 in-

stances. SMOTE is a hybrid algorithm that generates instances in order to create balanced class 

distributions. Here, SMOTE is applied for the purpose of optimizing the classification process. 

We used the R library DMWR, which has an implementation of the algorithm SMOTE to balance 

the 3 classes. For each class, different parameters were used, since each label and class had a 

different number of instances. The table 4 below, demonstrates the prediction rates, using the 

classifier, Support Vector Machines, and the sigmoid which achieved the best predictions. The 

train and test set were split to 80 and 20 percent respectively, and divided in such way that each 

class had even number of instances in the tests sets. 

Table 4: Prediction rates for the three labels (average scores), predicted by SVM classifier. 

 Complexity Comprehensibility Interest 

2 Classes  Score_1_2c: 96. 87% (svm) Score_2_2c:  97.66% 125/128 
(svm) 

Score_3_2c:  90.62% (svm) 

3 Classes Score_1_3c:  84.37% (svm) Score_2_3c:  85.16% (svm) Score_3_3c:  82.81% (svm) 

4 Classes Score_1_4c:   74.22% (svm) Score_2_4c:   75.78% (svm) Score_3_4c:  72.66% (svm) 

 



 

Using the new data sets created with the SMOTE algorithm mentioned above. The 

multi-label classification process for the new data sets, cannot be done one on one for each in-

stance and label. The reason for that is that SMOTE was used for each dimension separately, 

therefore the new hybrid data were different for each dimension. Thus, each instance of each 

dimension was compared to each other, using the Euclidean distance. Below, Figure 18, shows 

the distribution for 8 binary classes and Figures 19, 20 and 21 for 4 binary classes. 

 

Figure 18: Histogram of 8 classes for complexity, comprehensibility and interest. 

 

Figure 19: Histogram of 4 classes for complexity and comprehensibility. 



 

 

Figure 20: Histogram of 4 classes for complexity and interest. 

 

Figure 21: Histogram of 4 classes for comprehensibility and interest. 

The prediction rate for four binary classes (complexity - comprehensibility), is 64.84%, 

for (complexity - interest) the prediction rate is 38.28% and for (comprehensibility – interest) 

the prediction rate is 43.75 % (Appendix C). 

III. Closing 

6) Discussion 
This research explored whether or not the human eye (Jacob & Karn 2003) can serve as 

a channel to predict reader’s text appreciation. For this aim, an available eye tracking data set 

from Van der Sluis (2013) was used. 



 

Initially, we united the three appraisals complexity, comprehensibility and interest that 

make up reader’s text appreciation, which resulted in three binary classes, making 8 classes to 

discriminate between. However, three of these classes suffered from a lack of data that made it 

impossible to build models upon. Therefore, the 8 classes were reduced to 5 classes, which data 

was predicted correctly in 37.14% of the cases. 

With only 62.5% of the three dimensions filled with data, the three suggested 

dimensions for text appreciation (Van der Sluis et al., 2014) can be questioned. Therefore, we 

investigated how much of the data variance could be explained using the combinations of two 

dimensions. First, we explored the combination complexity and comprehensibility, which 

enabled 64.84% correct classification. The case where a text is considered as simple and 

incomprehensible occurred too little which deteriorated the classification rate for this class (i.e., 

10%). When the labels complexity and interest were combined, the prediction rate was 38.28% 

and when comprehensibility and interest were combined, the classification results were the 

even lower. It is visible that complexity and comprehensibility have a higher correlation, than 

complexity with interest. According to section 5 (Figures 10, 11, 12), the combination of the 

dimensions’ complexity and comprehensibility, indicates that these two dimensions 

demonstrate many similarities.  Therefore, we suggest to combine the dimensions’ complexity 

and comprehensibility. 

Although the results for 2x2 models were better than those of the 2x2x2 models, they 

still can be considered as moderate at best. Consequently, we also explored the three 

dimensions separately, resulting in the following prediction rates: complexity: 96.87%, 84.38%, 

and 74.22%; comprehensibility: 97.65%, 85.16%, and 75.78%; and interest: 90.63%, 82.81%, and 

72.66%, all with respectively 2, 3, and 4 classes. These results are good and seem to indicate 

that the relation between the three dimensions, as proposed in Van der Sluis et al. (2014) needs 



 

further investigation. At least, a simple, linear relation between these three dimensions seems 

unlikely. 

The aforementioned results were achieved with the use of the classification algorithm, 

Support Vector Machines (SVM) and the Sigmoid kernel. When tested against the other 

classifiers mentioned in Part II, for the balanced (after the use of SMOTE) SVM algorithm 

outperformed the other classifiers. The reason for that is the SVM can handle overfitting. It has 

been reported (Tang et al., 2009), that SVM together with rebalancing algorithms perform 

better and that imbalanced data can really hinder the performance of SVM. 

The analyses and the model featured in this research were conducted with the use of a 

small and imbalanced dataset. To overcome this problem, with all analysis, the SMOTE 

algorithm was applied, which generates synthetic samples for the minority class, using k nearest 

neighbors of the instances in the minority class (Chawla et al., 2002). Also, it under-samples the 

majority class. Together, SMOTE realizes a larger and balanced dataset. However, its downside it 

that the synthetic samples may overlay among classes (He et al., 2008). 

Future research could use an improved version of the SMOTE algorithm: the 

SMOTEBoost (Synthetic Minority Over-Sampling in Boosting) algorithm, which improves 

performances on minority classes (He et al., 2010). It would also be interesting to explore 

alternative algorithms for SMOTE, such as ADASYN: ADAptive SYNthetic sampling approach, 

which is claimed to outperform SMOTE (He et al., 2008). Another alternative for SMOTE is 

Cluster Based Synthetic Oversampling (CBSO), which prevents to create synthetic sample that 

are falsely classified (Barua, Islam & Murase, 2011). 

As an alternative to generating new artificial data, the original dataset could also be 

extended with new data. Nielsen (2010) stated that 20 participants suit the needs for a 



 

quantitative eye tracking studies. With a data set composed of data of 28 participants, Nielsen’s 

requirement is met. However, the number of data points obtained from each participant is very 

small; in particular, given the data set’s imbalance. The most obvious remedy for this problem is 

not to apply alternatives for SMOTE; but, to harvest more eye tracking data. Preferably from the 

same 28 participants. However, in practice, this can be problematic. Alternatively, eye tracking 

data from other, new participants has to be gathered. On the one hand, the interpersonal 

variance that will be introduced consequently may play a significant role in the process, which 

could deteriorate the results. On the other hand, this can also be considered as an ultimate test 

for the system’s robustness. 

Considering multi-label classification, in real-world implementations, similarly to the 

case of this thesis, labels can be depended to each other and some may be missing. A 

probabilistic model was build which can consequently learn and take advantage of multi-label 

dependencies and manipulates data with missing labels (Bi & Kwok, 2014). This model handles 

label dependencies by transforming the labels in the original label space, with the probabilistic 

model. When missing labels occurred, Bi and Kwok (2014), calculated values from the observed 

labels. Another solution for limited amount of data that is labeled, is the algorithm iMLCU 

(inductive Multi-Label Classification with Unlabeled data), that showed good results for labeled 

and unlabeled multi-label data. This algorithm optimizes semi-supervised learning, a strategy 

that exploits unlabeled data in the learning procedure, together with labeled data (Wu & Zhang, 

2013). 

In the future, other classification algorithms that perform better or are more suitable for 

this problem, can be used. Recently, the classification algorithm deep learning is successfully 

being used for large data sets (LeCun, Bengio & Hinton, 2015). Although, the data set in hand is 



 

not large and deep learning cannot benefit this data model, in the future a different eye tracking 

data set, might benefit from this data model. 

The data set used in this thesis was collected with, meanwhile outdated software and 

hardware tools. For future studies improved eye tracking methods should be included. For 

example, recently, promising software and hardware has been released, including the Pupil 

headset, a real-time eye tracker (Kassner et al., 2014). Its algorithms for pupil detection even 

works with users wearing eyeglasses or contact lenses and, hence, unconstrained use is 

possible. Moreover, this platform is “inexpensive and extensible” (Kassner et al., 2014). 

Additionally, in contrast to the SMI BeGaze 2.4 software, the Pupil software is open source, 

which makes it par excellence suitable for research purposes (West, Salter, Vanhaverbeke & 

Chesbrough 2014). 

As future work, research for the raw data from the aforementioned eye tracking 

experiment can be conducted for feature mining. Therefore, features that have not been 

considered in this research, but have been validated to significant, may lead to a more efficient 

model. 

As noted earlier in this discussion, the dimensions that define text appraisal, adopted in 

this paper require further investigation. One of the possible problems may have its origin in 

untangling often ill-defined psychological constructs. Eye tracking studies are also often claimed 

to unveil people’s workload and attention (Tsai et al., 2007). But, how to know what construct is 

assessed, remains problematic. Nevertheless, some interesting studies have been conducted in 

cognitive sciences, which could be related to the current study and, subsequently, investigated 

further. For example, McDaniel (2000) discovered that stories that are interesting need less 

attention resources from users and Smith (2001) showed that workload rises when the 



 

complexity of a task increases. These amongst many other studies illustrate that the definition 

of text appraisal as used in this study is not unlikely. However, in parallel, it illustrates the 

complexity of such constructs. 

If anything, this study illustrates how strikingly complex it is to grasp reader’s text 

appreciation, using eye tracking solely. It also identified limitations of eye tracking studies. 

Nevertheless, promising eye tracking induced models have been introduced that can unveil and 

even untangle reader’s text appreciation. Further research is encouraged to further explore and 

strengthen the findings of the present study. This research can be considered as a first, 

significant step toward a better understanding of the relation between reader’s eyes and their 

text appreciation. As such it can serve as a foundation of a next-generation wearable that 

enables true personalized information filtering, access, and retrieval. 
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Appendices 

Appendix A 
Initially, before preprocessing the data set, we did a statistical analysis. A within-subjects Multi-
variate ANalysis Of Variance (MANOVA) was conducted to test for an effect, within the 18 texts, 
of the textual complexity and the average scores of the appraised complexity, comprehensibil-
ity, and interest and the eye features. 
There was a statistically difference in eye movements and the appraisals based on textual com-
plexity, F (52, 58) = 2.22, p = .002; Wilk's Λ = 0.111, partial η2  = .666. 

There was a statistically difference in eye movements and appraisals based on the different 18 
texts, F (442,6256) = 1.283, p < .0005; Wilk's Λ = 0.290, partial η2  = 0.07. 

From the MANOVA analysis above, the not positive, because there is not significant difference in 
variance, therefore we will do some additional preprocessing and use different algorithms to im-
prove our model. 

  



 

Appendix B 
Table 1 below, shows the classification performance of the test set, for eight(binary) classes, re-
garding all three dimensions. The diagonal of the table (grey cells), displays the correctly classi-
fied instances. 

Table 1: Prediction rates for 8 (binary) classes, with each triplet, (blue, red

, green) representing the dimensions’ complexity, comprehensibility and interes

t. 

 Predictions 

Targets 0,0,0 0,1,0 0,0,1 0,1,1 1,1,0 1,1,1 1,0,1 1,0,0 
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Table 2 below, shows the classification performance of the test set, for four (binary) classes, re-
garding complexity and comprehensibility. The diagonal of the table (grey cells), displays the 
correctly classified instances. 

Table 2: Prediction rates for 4 (binary) classes, with each doublet, (blue and 

red) representing the dimensions’ complexity, comprehensibility. 
 

 Predictions 

Targets 0,0 0,1 1,0 1,1 
0,0 19 17 2  17  

0,1  1    

1,0 9 5  10 

1,1 3 1   5 

 

The table 3 below, shows the classification performance of the test set, for four (binary) classes, 
regarding complexity and interest. The diagonal of the table (grey cells), displays the correctly 
classified instances. 

Table 3: Prediction rates for 8 (binary) classes, with each doublet, (blue, red

, green) representing the dimensions’ complexity, complexity and interest. 

 Predictions 

Targets 0,0 0,1 1,0 1,1 
0,0 8 21 2 10 

0,1 4 5  2  4  

1,0 4 8 3 10  



 

1,1 2 3  3 

 
 

Table 4 below, shows the classification performance of the test set, for four (binary) classes, re-
garding comprehensibility and interest. The diagonal of the table (grey cells), displays the cor-
rectly classified instances. 

Table 4: Prediction rates for 4 (binary) classes, with each doublet, (red and gr

een) representing the dimensions’ comprehensibility and interest. 

 Predictions 

Targets 0,0 0,1 1,0 1,1 
0,0 1  21 15 22 

0,1 1 8  6 5  

1,0 1 2 1 3 

1,1 1   1  1  

Appendix C 
Multi-label Balanced (SMOTE-data) 

The following tables (5-8), show results regarding multi-label classification after the use 
of the SMOTE algorithm. 

22 = 4 classes (complexity - comprehensibility) 

Table 5 below shows the predictions for the combination of the labels complexity and compre-
hensibility. Where 1: Simple- Comprehensible, 2: Simple- Incomprehensible, 3: Complex- Com-
prehensible, 4: Complex- Incomprehensible. 

Table 5: Prediction rates for 4 classes, representing the dimensions’ complexity and comprehensibility. 

 Predictions 

Targets 1 2 3 4 

1 46  4 1 3 

2 9 1 0 0 

3 6 1 16 9 

4 2 0 10 20  

 

22 = 4 classes (complexity - interest) 

Table 6 below shows the predictions for the combination of the labels complexity and compre-
hensibility. Where 1: Simple- Interesting, 2: Simple- Uninteresting, 3: Complex- Interesting, 4: 
Complex- Uninteresting. 

Table 6: Prediction rates for 4 (binary) classes, representing the dimensions’ complexity and interest. 

 Predictions 

Targets 1 2 3 4 

1 21  14 2 4 

2 13 6 2 2 

3 7 1 19 16 



 

4 4 1 14 3  

 

22 = 4 classes (comprehensibility - interest) 

Table 7 below shows the predictions for the combination of the labels complexity and compre-
hensibility. Where 1: Comprehensible - Interesting, 2: Comprehensible - Uninteresting, 3: Incom-
prehensible - Interesting, 4: Incomprehensible - Uninteresting. 

Table 7: Prediction rates for 4 classes, representing the dimensions’ comprehensibility and interest. 

 Predictions 

Targets 1 2 3 4 

1 25 13 4 1 

2 13 5 1 2 

3 3 3 10 21 

4 2 1 8 16  

 

23 = 8 classes (complexity - comprehensibility - interest) 

Simple-complex, comprehensibility-incomprehensibility, interest-uninteresting 

Table 7 below shows the predictions for the combination of the labels complexity and compre-

hensibility. Where 1: Simple-Comprehensible-Interesting, 2: Simple-Comprehensible-Uninterest-

ing, 3: Simple-Incomprehensible - Interesting, 4: Simple-Incomprehensible-Uninteresting, 5: 

Complex -Comprehensible - Interesting, 6: Complex-Comprehensible-Uninteresting, 7: Complex-

Incomprehensible-Interesting, 8: Complex-Incomprehensible-Uninteresting. 

 
     Table 8: Prediction rates for 8 (binary) classes, representing the dimensions’ complexity and interest. 

 Predictions (40/105) 

Targets 1 2 3 4 5 6 7 8 

1 15 7 6 1 0 1 0 2 

2 9 10 3 0 1 1 0 2 

3 2 3 1 0 0 0 0 1 

4 1 3 0 1 0 1 0 0 

5 2 2 0 0 2 5 2 6 

6 0 2 0 1 1 2 0 4 

7 1 2 0 0 1 1 2 3 

8 2 0 0 0 1 4 1 10 

 

 


