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Abstract

In this thesis we discuss spin transport after ultra-fast demagnetization. First
we review the microscopic 3 temperature model (M3TM) which describes the local
changes of magnetization after exciting a metal with a laser pulse, which heats up
the electrons. After this review we study some simple spin currents from ferromag-
netic to non-magnetic materials. In particular we solve one stationary solution,
and one time-dependent solution. We finish with description of demagnetization
which combines the local effects with spins currents (global effects). We find that
including the spin transport speeds up the demagnetization effect.
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1 Introduction

In this thesis we are going to discuss spin transport after ultra-fast demagnetization.
Ultra-fast demagnetization is a phenomenon discovered in 1996 by Beaurepaire et al.[1].
Beaurepaire experimented with shooting laser pulses on nickle and observed remarkable
fast demagnetization. Ultra-fast demagnetization is demagnetization occurring after a
laser pulse, with typical time scales from sub-100 fs up to approximately 200 ps, depending
on the material. A phenomenological description was readily given by the discoverer
himself and is known as the 3 temperature model (3TM). It took however more then
10 years before a good microscopic description was given by B. Koopmans et al. in
2009 by the name microscopic 3TM. [2] The M3TM model is however too simple, and in
particular does not account for spin transport phenomena. Therefore the model has to
be extended to properly explain more elaborate experiments. In this thesis we present
such an extension, based on work by Koopmans.[3]

The thesis is organized as follows: first we discuss the M3TM model, which explains
the results found by Beaurepaire. Then we are going to discuss spin transport, which
is a crucial part of the extension proposed by Koopmans. After discussing the general
framework of spin transport we do some numerical calculations on simple spin transport
problems, namely a stationary solution and a simple time dependent solution. We finish
with a combination of the M3TM and spin transport, which was proposed by Koopmans.

2 M3TM

In the 3 temperature model we associate a temperature and heat capacity with the
spin (Ts, Cs), the electron (Te, Ce) and the phonon system (Tp, Cp). Heat flows from the
systems of high temperature to the systems of low temperature, and the magnitude of
the heat current is proportional to the difference of the temperature of two systems. The
change of temperature of a system is inversely proportional to the heat capacity of the
system. We assume Ce, Cp � Cs, therefore we can neglect the heat flow to the spin
system and assume that Te = Ts. We also assume that the heat flow from the phonon to
the spin system is much smaller then from the electron to the spin system. Therefore we
neglect the heat flow from the phonon to the spin system. The assumption we make by
assigning a temperature to each subsystem is that the internal equilibration of a system
is much faster than the heat flows between the systems. Temperature is namely only
properly defined in equilibrium.
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Figure 1: a. The heat exchange between the systems is indicated with double arrows and
angular momentum exchange with the dashed arrow. b. The temperature of the electron
(red) and phonon (blue) system together with the magnetization (green) as function of
time. c. The exchange of angular momentum from electrons to phonons. Picture taken
from [2].

The microscopic model consists of a microscopic description of the electron, phonon
and spin system and their interactions. The electron system is modeled by non-interacting
electrons, the phonon system is described by the Debye model, and the spin system by the
Weiss model. The interactions are described by a Hamiltonian which takes into account
the electron-phonon scattering without spin flips, and another Hamiltonian which takes
into account the electron phonon scattering with spin flips. The scattering probabilities
are calculated by using Fermi’s Golden Rule for these scattering Hamiltonians. See figure
1a for a schematic depiction of the interactions. Combining these implies

Ce[Te]
dTe
dt

= ∇z(k∇zTe) + gep(Tp − Te); (1)

Cp[Tp]
dTp
dt

= gep(Te − Tp); (2)

dm

dt
= Rm

Tp
TC

(
1−m coth

(
mTC
Te

))
, (3)

with

R =
8asfT

2
Cgep

kBT 2
DDs

. (4)
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Here, κ is the thermal conductivity, gep the electron-phonon interaction constant, m the
magnetization, asf the spin-flip probability (the chance a spin flips when a phonon and
an electron interact), TC the Curie temperature, kB the Boltzmann constant, TD the
temperature associated with the cut-off energy of the Debye model and Ds is the average
spin density per atom.1[2][4]

There are some interesting remarks to make about this set of differential equations.
Equation 1 shows the change in time of the electron temperature. This change is slower
when Ce is higher, and the change is faster when the difference between Te and Tp is
larger. This corresponds with our usual ideas about temperatures. The temperature
of the spin system has a negligible effect on the electron temperature, this is due to
Ce � Cs while Cp is much closer to Ce. Diffusion is also affecting the change in time of
Te. Which is larger when the spatial variation of Te is larger. The behaviour of the phonon
temperature which is described by equation 2 is similar. There is however no diffusion
term, the diffusion of phonons is namely very small compared to the demagnetization
processes. Finally, equation 3 can be interpreted as follows: The typical time evolution
of this process is depicted in figure 1b. When the laser pulse arrives around t = 0, the
electrons (red line) start to heat up. When electrons are excited to higher energy levels
the spin is conserved due to the optical selection rules, heat will start to flow from the
electron system to the lattice and spin systems. Adding energy to a ferromagnetic spin
system implies demagnetization, since magnetic interaction favours alignment of spins
while thermal fluctuations destroy this alignment. Since Ce � Cs, Ts changes very fast
but barely effects Te. Cp is however comparable to Ce, therefore the thermalization
will proceed much slower. Hence Te = Ts much earlier then Te = Ts = Tp. When the
temperature is equal in all systems, the heat is spread most and the temperature for every
system will be lowest. Therefore Te = Ts 6= Tp is associated with a lower magnetization
then Te = Ts = Tp. This is exactly what we observe in figure 1b.[2]

For many phenomena the M3TM is too simple. One of its flaws is the lack of spin
transport terms. Take for example the following experiment performed by Malonowski [5]:
if one shoots a femto second laser pulse on a magnetic bi-layer one observes a difference
in demagnetization of the parallel and anti parallel configuration, see figure 2. This is due
to electrons traveling up and down after excitation, which exchanges angular momentum
between layers. In the parallel layers this does not cause change in magnetization, but
in the anti-parallel layers it does. This induces extra demagnetization which is not taken
into account in the M3TM, which is only a local theory. To describe this experiment,
and many others, including spin transport is essential. Therefore we need to extend the
M3TM.

We will proceed by starting with a phenomenological description of electron and spin
transport. This description will be applied to two simple systems, namely a stationary
one dimensional system and a one dimensional system with a step function of chemical
potential as initial condition. Hereafter we start studying a differential equation proposed
by Koopmans, which combines the M3TM with spin transport.

1For a more elaborate description see chapter 5 of the thesis ’Manipulating Spins’ by S. Schellekens
[4].
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Figure 2: In this experiment a laser pulse is fired on a piece of metal, like the experiment of
Beaurepaire. Unlike the experiment of Beaurepaire however, the piece of metal consists of
a non magnetic layer sandwiched between magnetic layers. When the Magnetic layers are
anti-parallel one observes a stronger demagnetization than the parallel configuration.[5]

3 Spin Transport

First we start with a phenomenological description of the electron currents in ferromag-
netic metals (FM) and non magnetic metals (NM). The electrons are the spin carriers,
so taking into account the electron movement is essential. The resistance of electrons
in FM is namely dependent on the magnetization. [6] The current is therefore by linear
approximation given by the following expression:

j± = −σ±∇µ±/e. (5)

With j+ and j− the current of the spin up and down electrons respectively, σ+ and σ−
the conductivity of spin up en down respectively, and µ+ and µ− the chemical potential
of spin up and down respectively. Since σ+ and σ− are constants, we can write σ+ = ασ
and σ− = (1 − α)σ with σ the total conductivity and α ∈ [0, 1]. Due to the lack of
magnetization in NM α = 0.5, thus σ+ = σ−. For the total current we define je ≡
j+ + j− and for the spin current js ≡ j+ − j−. For the chemical potential we define
µe ≡ (µ+ + µ−)/2 and µs ≡ µ+ − µ−. As a result of conservation of charge the following
relation holds:

∂ρe
∂t

+∇ · je = 0, (6)

with ρe the current density. For spin current we have the following continuity relation
[6]:

∂ρs
∂t

+∇ · js = −Γµs, (7)

with ρs the spin density and Γ the spin decay rate. Contrary to conservation of charge,
the spin density is not conserved. This caused by spin relaxation that are for example
mediated by Elliott-Yafet-like processes.[1]
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3.1 Stationary solution

To describe an interesting physical system we first model a simple system. After finding
a good model for the simple system we elaborate it, such that we finally get a good
description of the experiment we are interested in. The system we start with is a piece
FM and a piece of NM. The FM reaches from x = −∞ till x = 0 and the NM from x = 0
till x =∞. We ignore the dependence of the y and z components. We will first solve this
system for the time independent case. Hence:

∂ρe
∂t

=
∂ρs
∂t

= 0. (8)

This implies for NM (so σ+ = σ−) that

∇2µe = 0 (9)

and

∇2µs =
1

l2s
µs, (10)

with ls =
√
σ/Γe.

For FM this implies
σ+

e
∇2(µs + 2µe) = Γµs (11)

and
σ−
e
∇2(µs − 2µe) = Γµs. (12)

To solve these expressions with respect to x, we first need to impose boundary con-
ditions. The first condition we impose is the existence of a current. We choose je[x] = c.
The choice of x doesn’t matter, we arbitrarily pick x = 0. The choice of c has to be
physically realistic for quantitative predictions, but we are interested in the qualitative
behavior. Accordingly we choose again arbitrarily c = 20s−1m−2.

We also state that the current is not discontinuous on the NM/FM interface, so
jeNM [0] = jeFM [0]. This is equivalent with stating that electrons don’t appear or dis-
appear at the boundary. We also assume that the spin current is not discontinuous,
so jsNM [0] = jsFM [0]. This implies that there is no arbitrarily fast temporary spin flip
increase located at the boundary.

We also impose that µeNM [0] = µeFM [0] and µsNM [0] = µsFM [0], which means no
boundary resistance. We solved the differential equations with the appropriate boundary
conditions in Mathematica. For the plots of the solutions see figure 3 and 4.

For the stationary solutions of the electric current, figure 3, we find the currents to
be constant. This has to be the case. To understand this, assume there is a varying
current distribution. This will cause accumulations of charge which will cause an aggre-
gate electrons to accelerate more in a particular direction, and therefore the current to
accelerate. The solution is then not anymore stationary per definition. Since the current
is proportional with the gradient of the chemical potential and the conductivity, and the
conductivity is a constant for each material (see equation 5). We expect therefore the
chemical potential to be a constant slope for x < 0 and x > 0. This is exactly what we
observe in our calculation.
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Figure 3: The chemical potential µe as a function of x.

For µs we expect other behaviour. This is due to the fact that the accumulation of
µs is not associated with higher energy. µs accumulates because j+ 6= j− for x < 0, but
j+ = j− for x > 0. Since je is the same for every x, this implies that there are two
possible cases. Namely j+ has to speed up and j− has to slow down when passing x=0,
or vice versa. When considering a volume element around x = 0 you will find a difference
from j+/− entering from the left compared to j+/− leaving from the right. Therefore there
is accumulation. The accumulation will however not continue forever. One can see in
equation 7 that spin relaxation is proportional to µs. When µs is big enough the spin
relaxation will therefore balance the accumulation. Hence there are steady state solutions
possible. See for one of those solutions figure 4.
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Figure 4: The spin current for x < 0 and x > 0 differ. Therefore spin currents accumulate
around x = 0.

3.2 Time dependent solution

To take into account the time dependent behavior, we have to take into account the time
derivatives in equation 6 and 7. It is convenient to rewrite the derivative the following
way:

∂ρ

∂t
=

∂ρ

∂µ±

∂µ±

∂t
(13)

and

ρ =

∫
dεnF (ε)ν(ε), (14)

with nF the Fermi-Dirac distribution and ν(ε) the density of states. Since we stay well
below the Fermi temperature in the experiment, we can approximate nF (ε) ≈ Θ(εF − ε)
with Θ the Heaviside step-function. Taking the the derivative of ρ with respect to µ± we
obtain

∂ρ

∂µ±
=

∫
dε
∂nF (ε)

∂µ±
ν(ε). (15)

Because ν(ε) is independent of µ± and ∂nF (ε)/∂µ± = δ(εF − ε), this implies

ν(µ±) =
∂ρ

∂µ±
, (16)

with ν the density of states. For NM the following relation holds for the density of states:
ν(µ+) = ν(µ−) = ν(εF ) with εF the Fermi energy. Combined with (5),(6) and (7) we
obtain

ν(εF )
∂µ+

∂t
− σ∇2µ+ = −Γ

2
(µ+ − µ−); (17)

ν(εF )
∂µ−

∂t
− σ∇2µ− =

Γ

2
(µ+ − µ−). (18)
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These equations cannot be solved analytically. It is however solvable when the spatial part
is discretized. So µ±(x, t) � µ±,i(t) and ∇2µ±(x, t) � (µ±,i+1(t) +µ±,i−1(t)−2µ±,i(t))/ε

2,
with ε the distance between i and i+ 1 for every i.

For the numerical calculation we also want to make equation (17) and (18) dimen-
sionless. Therefore we re-scale t � t̃ with a constant in the following fashion:

t̃ =
Γ

eν(εF )
t. (19)

This changes (17) and (18) in

∂µ±,i

∂t̃
= η(µ±,i+1 + µ±,i−1 − 2µ±,i)∓

1

2
(µ+,i − µ−,i), (20)

with η = σ/eΓε2.
Now we are going to derive the equations for FM. The total conductivity for NM and

FM are not the same in general. Therefore kσ = σFM , with σ the conductivity of NM,
σFM the conductivity of FM and k ∈ [0,∞]. For FM the density of states in equilibrium
is also in general not equal for spin up and down, so ν(µ+) 6= ν(µ−) and σ+ 6= σ−. With
the same procedure we obtain the following expressions for FM:

∂µ+,i

∂t̃
= αk

ν(εF )

νF (µ+)
η(µ+,i+1 + µ+,i−1 − 2µ+,i)−

ν(εF )

2νF (µ+)
(µ+,i − µ−,i); (21)

∂µ−,i

∂t̃
= (1− α)k

ν(εF )

νF (µ−)
η(µ−,i+1 + µ−,i−1 − 2µ−,i) +

ν(εF )

2νF (µ−)
(µ+,i − µ−,i). (22)

We solved for µ−,i and µ+,i with respect to t for i = 1 till i = 20 and subsequently plotted
µs,i(t)/µs,i(0) = (µ+,i − µ−,i)/µs,i(0). As a starting condition for µs,i(0) we used a step
function which is a greater than zero constant for i < 11 and 0 for i > 10. The results
are shown in figure 5.

Figure 5: The increase in time is in the order red, orange, light blue, blue, purple. As
a function of time one observes µs diffusing from high to low values. Beside this effect
there is also a relaxation term, which reduces the total µs as time passes.
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We clearly see both diffusion and spin relaxation playing a part in the time evolution
of µs. Diffusion is due to the first terms of the RHS of equation 21 and 22. It causes µs

to spread out to the NM. It however does not cause µs to decrease to zero.This behaviour
is namely induced by the spin relaxation terms, which is the last term of equation 21
and 22. Without the spin relaxation µs would become a non zero constant, which is not
observed in the plot.

We elaborate the system to obtain a more general description by choosing different
Γ for NM and FM. Hereby we choose Γ � ΓNM for NM and Γ � ΓFM for FM. Because
ΓNM and ΓFM are constants, we can write

ΓFM = ΓNM + δΓ. (23)

For this more general system we redefine t̃ as

t̃ =
ΓNM

eν(εF )
t, (24)

and redefine η as

η =
σ

eΓNMε
. (25)

The discretized equations (20) for NM stay the same. The equations for FM change in:

∂µ+,i

∂t̃
= αk

ν(εF )

νF (µ+)
η(µ+,i+1 + µ+,i−1 − 2µ+,i)−

ν(εF )

2νF (µ+)
(1 + ΓR)(µ+,i − µ−,i), (26)

∂µ−,i

∂t̃
= (1−α)k

ν(εF )

νF (µ−)
η(µ−,i+1 + µ−,i−1− 2µ−,i) +

ν(εF )

2νF (µ−)
(1 + ΓR)(µ+,i− µ−,i), (27)

with ΓR ≡ δΓ/ΓNM . This enables us to consider a few interesting limits.
When ΓFM � ΓNM and η is normal2, the FM will demagnetize quickly due to spin

relaxation. Yet a small amount of magnetization will flow to the NM, since η is nonzero.
ΓFM however is very big, therefore there is such a fast decrease of magnetization in FM
that it will go faster to 0 than the bit of magnetization that went to NM. This causes a
gradient to go from NM to FM. Therefore at some point in time there is a little bit of
magnetization around the interface. See for this phenomenon figure 6

2When talking about big, small, and normal in this section, we mean compared to figure 5
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Figure 6: The increase in time is in the order red, orange, light blue, blue, purple. Very
high spin relaxation ΓFM , with ΓFM � ΓNM , and diffusion comparable to figure 5.

In figure 7 you can see the limit of ΓFM = 0 and η is normal. Since we picked η the
same as in figure 5 the diffusion is comparable. There is however no spin relaxation in
the FM part, only in the NM part. Therefore it takes longer to demagnetize completely.
This is precisely what we observe.

Figure 7: The increase in time is in the order red, orange, light blue, blue, purple.
ΓFM = 0 and normal diffusion.

When η is small and the relaxation times are normal, you would expect the magneti-
zation to decrease as a function of time while the magnetization is barely flowing. This
is exactly what we observe in figure 8.
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Figure 8: The increase in time is in the order red, orange, light blue, blue, purple. For
very small diffusion compared to figure 5 and ΓFM = ΓNM comparable to it.

4 Combining M3TM with spin transport

For combining M3TM with spin transport, Koopmans proposed the following differential
equation[3]:

d∆m

dt
=
Vat
e2
∇σ∇

(
∆m

νf

)
+
dm

dt

∣∣∣
M3TM

− dmeq(Te)

dt
, (28)

with ∆m = m − meq, Vat the volume of a unit cell, dm/dt|M3TM the local change of
demagnetization given by expression 3, and dmeq(Te)/dt the magnetization is equilibrium,
thus dm/dt|M3TM = 0. To justify this formula, consider

d∆m

dt
=
dm

dt
− dmeq

dt
. (29)

The change in magnetization can be caused by local changes in magnetization and trans-
port of magnetization. The former we have already described with the M3TM. The
latter is given by non local changes, thus through spin transport. Therefore the following
relation holds

dm

dt
=
dm

dt

∣∣∣
Spintransport

+
dm

dt

∣∣∣
M3TM

, (30)

where
dm

dt

∣∣∣
Spintransport

=
Vat
e2
∇σ∇

(
∆m

νf

)
. (31)

To be able to easily find numerical solutions we linearize the M3TM, thus

dm

dt

∣∣∣
M3TM

= −1

τ
∆m, (32)
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with

τ =

(
Rmeq

Tp
Tc

d

dm

(
1−m coth

(
mTc
Te

))∣∣∣∣
∆m=0

)−1

. (33)

Thus

τ =

(
Rmeq

Tp
Tc

(
meqTc
Te

(
coth2

(
meqTc
Te

)
− 1

)
− coth

(
meqTc
Te

)))−1

. (34)

We also write
dmeq

dt
=
dmeq

dTe

dTe
dt
, (35)

this implies
d∆m

dt
=
Vat
e2
∇σ∇

(
∆m

νf

)
− 1

τ
∆m− dmeq

dTe

dTe
dt
. (36)

5 Conclusion

In this thesis we reviewed the M3TM and its shortcomings. We found that one important
shortcoming is the lack of spin transport. The M3TM is only a local theory. Realizing
this we started reviewing spin transport and considered a few examples. We finished
with a theory proposed by Koopmans which combines the M3TM with spin transport.[3]
For further research it would be interesting to reproduce the experiment of Malinowski
in a simulation grounded on the new theory. Moreover, since the experiments are typ-
ically far from equilibrium, investigation into effects beyond linear response need to be
incorporated.
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