
Understanding Deep Learning Decisions:

the Explanatory Vector Decomposition (EVD)

method

Master Thesis by Winfried van den Dool
Supervisors:

Dr. Sjoerd Dirksen (Utrecht University)
Pieter-Jan van Kessel (PwC)

Second Reader:
Dr. Tristan van Leeuwen (Utrecht University)

February 4, 2020

Abstract

Although successful in terms of prediction accuracy, the Artificial Neural
Network has a notable drawback, namely the lack of explainability of its
outcomes.
We propose a mathematical definition for the concept of an explanation in
the context of understanding deep learning decisions. We put forward the
Explanatory Vector Decomposition (EVD) method for computing such
explanations, based on optimizing explanation strength. This is defined as
the difference in model output probability caused by a movement in input
space, divided by the vector length of this movement.
We also propose a technique for quantitatively comparing existing ex-
plainability methods that compute feature importance, using this newly
found definition of explanation strength.
Implementation of this technique on LIME and RDE points to a higher
average explanation strength achieved by the latter method, while the
EVD method outperforms both according to this measure.

2

Contents

1 Introduction 5
1.1 Structure of this work . 6

2 Artificial Neural Networks 7
2.1 Supervised Machine Learning . 7

2.1.1 Cost functions and Stochastic Gradient Descent 8
2.1.2 Over-fitting and test data 9
2.1.3 Hyper-parameters and Cross-validation 10

2.2 The Neural Network . 11
2.2.1 Mathematical Structure 11
2.2.2 Neuron interpretation . 12
2.2.3 Theoretical Background 15
2.2.4 More Complicated Layers 18

2.3 Training Neural Networks . 24
2.3.1 The Cross-entropy loss function 24
2.3.2 Back-Propagation . 25
2.3.3 Parameter initialization 28

2.4 Methods to prevent neural networks from overfitting 30
2.4.1 Ensemble of networks . 30
2.4.2 Dropout . 32

2.5 Optimizers . 34
2.5.1 AdaGrad . 34
2.5.2 RMSProp . 36
2.5.3 Adam . 36

3 Explainability in Machine Learning 39
3.1 Black Box models . 39

3.1.1 The need for Explainable AI 41
3.1.2 Holistic view of existing methods 41
3.1.3 What is an explanation? 43

3.2 Bayesian Neural Networks . 44
3.2.1 Mean-field Variational Bayesian inference 45
3.2.2 The Bayesian network format 47
3.2.3 Training . 49
3.2.4 Implementation of Bayesian and Standard Neural Networks 51

3.3 LIME . 58
3.3.1 Introducing the method 58
3.3.2 Implementation and results 61

3.4 RDE . 64
3.4.1 Introducing the method 64
3.4.2 Implementation and results 67

3

4 Explanatory Vector Decomposition 69
4.1 Data Preparation . 69
4.2 Introducing the method . 71

4.2.1 Defining an Explanation 71
4.2.2 Selecting a neutral point 77
4.2.3 The EVD-method . 79
4.2.4 Interpretability regularization 80

4.3 Implementation and Results . 81
4.3.1 Preparing the data . 82
4.3.2 Finding the neutral point 84
4.3.3 Results . 85

4.4 Discussion and concluding remarks 89
4.4.1 Discussion on the EVD method performance 89
4.4.2 Variety of explainability options 91
4.4.3 Model selection and the use of a Bayesian neural network 92
4.4.4 Possible Improvements . 94

5 Numerical Experiments:
Comparing explainability methods 96
5.1 Introducing the method . 96

5.1.1 Transforming the problem to apply LIME and RDE . . . 97
5.1.2 From feature importance to explanation vector 98

5.2 Implementation and results . 100
5.3 Discussion and concluding remarks 103

6 Conclusion 104

Appendices 105

A l2 regularization 105

B KL divergence between gaussians 105

C Decorrelation of the training data 106

D Pseudocode of the EVD optimization 107

4

1 Introduction

Ever since the development of the first modern computers people have fantasised
about Artificial Intelligence. With the increasing availability of large amounts of
data, as well as more efficient methods to store and process it, Machine Learn-
ing became a major research field that brought previously unreachable AI ideas
to life. It tackles one of the fundamental goals of AI, namely the ability to
autonomously learn from outside environments.
More specifically, machine learning is defined as the study of algorithms that
automatically learn and improve from experience without being explicitly pro-
grammed. In practice this study focuses on the development of computer pro-
grams that use data to independently learn prediction or classification functions.
Although the first machine learning algorithms were little more than statistical
methods, developments in computing power contributed to increasingly creative
model ideas. Encouraged by the original ambition of using computers to mimic
intelligence, a new model has been developed inspired by the biological brain:
the Artificial Neural Network (ANN) [FC54].
The ANN is based on a layered collection of connected units or nodes called arti-
ficial neurons, which loosely model the neurons of the brain. When a large num-
ber of layers is used, the technique is also referred to as deep learning [GBC16].
While originally intended to solve problems in the same way as the human brain
would, over time attention moved to performing specific tasks. The largely em-
pirical research on performance optimization of the (artificial) neural network
on these tasks lead to deviations from biology.

Over the last decades, neural networks have steadily achieved higher prediction
accuracies, making them attractive in an increasingly broad field of applica-
tions. As a result, the interest in deep learning has spread from academic and
distinct technological environments to the broader business sector and society
as a whole.[Sch14] This has lead to new requirements and preferences for using
machine learning models, exposing an important obstacle: although the neural
network is very successful as a prediction model, it does not give any explana-
tion as to why a certain label is outputted. In fact, the architecture of large
neural networks can be so complex that understanding the model’s behavior is
practically impossible.
The “black box” nature of machine learning models limits their applications.
This has incited a new wave of research, focusing on explaining the outputs of
these models - a topic that largely lagged behind the efforts to maximize pre-
diction accuracy. Consequently many of the latest developments in the ANN
research field are related to so-called explainability methods, that aim to make
the models and their decision-making process understandable.[AB18]

The literature on machine learning explainability as well as the practical ex-
perience with explaining model outputs shows an important caveat: a formal
mathematical definition for an “explanation” in this context is missing. The

5

many different existing explainability methods in effect do not directly return
explanations, but rather give diverse proxy measures related to feature impor-
tance or input sensitivity.
Although these methods are often successful in their prime objective of “opening
the black box” by delivering greater understanding of model decision-making,
we note that comparing the explanatory effectiveness among methods is highly
subjective due to the different approaches. Also, the outputted proxy measures
may score high on the goals set by the explanatory methods themselves, but
may not be useful at all when it comes to forming an actual explanation.
A notable example of this is the LIME method [RSG16] applied to neural net-
work classification of hand-written digit images. We show that in some cases
the method, designed to return a form of feature (pixel) importance, simply
highlights the pixels that together form the digit. While these pixels are indeed
important (removing them would remove the entire digit) they do not explain
why a digit image is labeled the way it is.

In this thesis we introduce a new method, the Explanatory Vector Decompo-
sition method, for generating explanations of neural network outputs. The
purpose of the newly developed technique is two-fold. Firstly, whereas most
explainability methods aim for an interpretable outcome directly, we separate
the concepts of explainability and interpretability and define the notion of “ex-
planation strength”. This measure enables us to compare other explainability
methods, by first translating feature importance maps to explanations and then
comparing average explanation strength.
Secondly, by optimizing explanation strength we arrive at a new explainabil-
ity method, that can be regularized for interpretability to become a practical
method by itself.
Hopefully, this thesis will open further avenues of research into this important
and interesting topic.

1.1 Structure of this work

In this thesis we first thoroughly explain the mathematical background of deep
learning (Chapter 2), before investigating the more recent research on explain-
ability methods (Chapter 3). Three topics from this latter field, namely the
Bayesian Neural Network (Section 3.2) as well as the LIME and RDE explain-
ability methods (Sections 3.3 and 3.4) receive extra attention: We implement a
Bayesian neural network image classifier on the MNIST dataset of hand-written
digits and apply the LIME and RDE methods to retrieve explanations of the
model’s outputs.
In Chapter 4 we implement the EVD method on a Bayesian neural network
trained on the MNIST data-set, so that we can compare the three explainabil-
ity methods (EVD, LIME and RDE) in Chapter 5. We find that EVD method
achieves the highest explanation strength, followed by RDE and finally LIME,
supporting our initial observations of the outputs of these methods.

6

2 Artificial Neural Networks

In this section we give general background information on (artificial) neural
networks, introducing the notations that will be used throughout the rest of
this text. Although much more theory exists on this topic, we only present the
what is required for understanding the subsequent chapters, and only mention
the specific techniques that are used in our implementation.
In the first subsection we treat neural networks only globally, in the more general
context of supervised machine learning. Most of what is discussed in this section
also applies to other machine learning techniques. When this is the case we
nonetheless treat these topics from a neural network perspective: the purpose
is to give a light top-down introduction into neural networks, only gradually
diving deeper into the mathematical structure and techniques.

2.1 Supervised Machine Learning

Let d,N ∈ N, N ≥ 2. Let X ⊆ Rd be a given feature space, and Y ⊆ RN a
label space. Under the assumption that there is some, possibly probabilistic,
unknown model g : X → Y , the general goal of machine learning algorithms
is to produce a function f that mimics g, i.e., it takes elements x ∈ X and
outputs the correct1 label y ∈ Y given by the unknown model. For this task a
data set S ⊂ X × Y of correctly labeled data points is collected, in the sense
that y = g(x) for (x, y) ∈ S, or y is the result of a random draw of g(x) if g
is probabilistic. We write SX when referring to the set of data points without
their labels. Both subsets of X and subsets of X × Y are sometimes referred to
as data, depending on whether data points include labels or not.
Of course, fitting a function f to a data set S for prediction purposes is a very
general concept. Distinguishing machine learning from ordinary statistical or
econometric methods can be complicated due to a large gray area in this field of
research. However, it might help to observe that in machine learning, as opposed
to other methods, the function that is to be fitted to the data is so complicated
that the optimal parameters cannot be found analytically. An iterative training
procedure is used, slightly improving parameters of the function step by step.
The fact that these function parameters are not determined or computed by
the programmer beforehand, is the reason why this technique is called machine
learning, as the algorithm itself learns from data that the programmer sup-
plies. The popularity of machine learning, compared to other methods of fitting
functions, then largely arises from the freedom of functional forms that can be
chosen, as it is no longer necessary to be able to find the parameters analytically
or by some simple statistical method.2

1In case of a probabilistic model g, the notion of a “correct” label can in practice be
interpreted in different ways, e.g. the correct label can be interpreted as being reasonably
close to either E[g(x)|x] or arg max{P(g(x) = y|x) : y ∈ Y }.

2Simple models, on data with only a few features, can often easily be fitted using a small
number of parameters. However, if we want to formulate a function labeling image data as
either cats or dogs, for example, where images are represented by the different pixel intensities,
a much more complex functional form is required.

7

We denote the function that is to be fitted to the data by f = f(x; p), where
x ∈ X is a data point, and p ∈ P represent the function parameters, with the
parameter space P depending on the specific form of f . We describe this pa-
rameter space in detail in Section 2.2.1. We occasionally omit the dependency
on x or p depending on whether we want to explicitly show f is a function
of x or p. Based on the information obtained from observing S, the machine
learning algorithm now tries to find the best suitable function parameters p, i.e.,
those leading to the highest percentage of accurately predicted labels by f(p)
on (some subset of) SX .
The approach described above is called Supervised machine learning, because
the data set contains elements x ∈ X as well as their corresponding labels y ∈ Y .
Sometimes there are no such labels available, and the goal is not to train a la-
beling function (which would be impossible) but rather to train a function that
recognizes some pattern or different categories or clusters in the data. Different
elements can be found to belong to different categories based on some distinct
features in X, without knowing what such a category really represents (there is
no label set Y). This type of learning is called unsupervised machine learning.
We will not treat such learning here, and always assume our training data set
S also contains proper labels.

2.1.1 Cost functions and Stochastic Gradient Descent

Simple trial and error to find good parameters p, i.e., aiming for high accuracy
on (some subset of) the data set S, is inefficient when the dimensionality of the
input space is large. Instead, for neural networks, a technique called stochastic
gradient descent is used. For this technique a proxy measure of the parameter
quality is required: given a data set S, the performance of the algorithm on
this set is monitored by computing the cost function C(S, f(p)), or C(S, p).
This function has a general behavior of returning a larger value when the labels
outputted by f(p) on SX deviates more (frequently) from the correct labels
observed in S. It is additive in S in the sense that C(S, p) =

∑
s∈S C(s, p). We

slightly abuse notation and write C(s, p) rather than C({s}, p) when it is clear
one datum from S is taken, rather than a subset.
A well-known example of a cost function is the least squares cost function,

C(S, p) =
∑

(x,y)∈S

||f(x; p)− y||2,

often used in regression analysis.
The cost function must be a smooth function in parameter space, so that deriva-
tives ∂C

∂p can be taken. (When working with derivatives we use the notation
∂C
∂p = ∇pC in the coming sections.) These derivatives are then used to move
through parameter space, guiding the algorithm towards better parameters, i.e.,
towards lower values of the function C(S, p).

8

More precisely, let the data elements be represented by st for t = 1, . . . , |S| and
let p1 ∈ P be some (random) initialization of the parameters. The training
procedure is an iterative process, given by

pt+1 = pt − λ
∂C(xt, pt)

∂p
, for t = 1, . . . , |S|, (1)

where λ > 0 represents the learning rate.
Note that on each iteration instead of computing the true gradient, i.e., the gra-

dient with respect to the full data set: ∂C(S,p)
∂p , which would be computationally

inefficient, only the derivative for one “random” element st is used. For this
reason this procedure is called stochastic gradient descent (SGD). It is common
that the input (training) data S is shuffled before use, i.e., st is randomly sam-
pled from S without replacement. A compromise between computing the true
gradient and the gradient for only a single sampled element st is to compute
the gradient against a “mini-batch” B ⊂ S at each step. This mini-batch is
again selected uniformly at random, justifying the name mini-batch stochastic
gradient descent.

2.1.2 Over-fitting and test data

Even when the data S is assumed to be a reasonable representation of the “true”
data {(x, y) ∈ X × Y : y = g(x)}, care must still be taken on how to train on
it. Perfectly fitting this data, having found parameters that lead to a global
minimum of the cost function, is often suboptimal. This is referred to as over-
fitting, and is easiest explained visually (Figure 1).

Figure 1: A binary classification task. The green line represents an over-fitted
model, while the black line shows a good fit on the underlying pattern. Even
though the green line fits the training data better (perfect), it is more likely to
lead to higher errors when confronted with unseen new data points.

9

Usually it is not so clearly visible when over-fitting occurs, especially in high
dimensional data sets, with complicated cost functions for which it is difficult
to find a global minimum.
Actually, after having used all the training data to optimize the parameters,
there is no way of telling how good the model really is when confronted with
new unseen data points. The performance on the training data can be a bad
measure for the algorithms quality, because we have specifically trained it to
perform well on this data, hence training data cannot be assumed to be unbiased
data any more.
For this purpose the available data is divided into a training and a test data
set. The training procedure uses only a part of the data, say 90% of what is
actually available, so that the remaining 10% can give an unbiased measure of
the performance. The difference between the error on the unseen testing set
and the (smaller) error on the training set is called the generalization error.

2.1.3 Hyper-parameters and Cross-validation

Apart from the regular parameters p ∈ P that need to be optimized, there are
also hyper-parameters. Hyper-parameters determine structural choices about
the algorithm or the training procedure. These choices often influence what
other parameters there are to optimize, and the optimization itself (e.g. the
learning rate λ or the form of cost function used). Because of this we cannot
train the hyper-parameters and normal parameters at the same time, as there is
no well-defined (let alone differentiable) cost function that combines all of these
parameters. This is why validation data is used. Having already removed part
of the data (which will later be used as test data) we separate yet another part
of it that will be used to rate and compare different hyper-parameters. The
approach is the following:

1. For a series of possible configurations of hyper-parameters, use training
data to optimize the (normal) parameters.

2. For each of the possible configurations of hyper-parameters, together with
the optimized parameters, test the algorithm on the validation data.

3. Having found what hyper-parameters lead to the best algorithm, the val-
idation data is no longer needed. It can be merged with the rest of the
training data, and the algorithm with the optimal hyper-parameters can
be further trained on this set.

4. Finally the algorithm is tested on the test set, which has not been used
up until now.

The procedure of partitioning data into complementary subsets, performing
some analysis on one subset (the training set) and validating the analysis on
the other (the validation set) is called cross-validation.
Obviously, a lot depends on how we actually partition into training and valida-
tion sets. If we shuffle our data set so that all elements are in a different order,

10

the training set and validation set will be different, and the resulting algorithm
and performance as well. One way to reduce this unwanted variability is to use
k-fold cross validation: The original data (excluding test data) is randomly par-
titioned into k equal sized sub-samples. One round of cross-validation is then
performed, each time using a different sub-sample as validation set, and the rest
as training set. In the end the validation results are combined (e.g. averaged)
over the k rounds to give a more robust estimate of the algorithm’s performance
for each selection of hyper-parameters.

2.2 The Neural Network

Although artificial neural network ideas exist since the early 1950s, with the first
successful implementations published in the 1960s [Iva70], only recent develop-
ments in computing power have led to the current frequent use of this type of
machine learning algorithm [Sch14]. For high dimensional data involving many
non-linear complex patterns, a neural network’s high accuracy now makes it the
algorithm of choice. Given sufficient training data, the number of parameters
can be increased almost arbitrarily compared to previous decades, making this
technique beat other algorithms. Neural networks have achieved tremendous
success in image and sound recognition, as well as text and time series analy-
sis[Kai+17].
In this section the neural network as a specific machine learning method is de-
scribed in detail. We start out by describing the functional form of a neural
network and the intuitive interpretation from which the name “neural network”
originates. After that we give more formal mathematical definitions of the net-
work as we go into the theoretical background that tries to explain its empirical
success. However, in light of what is to come, the most important topic of this
chapter is the description of the network architecture as a series of consecutive
layers of different types.
Although neural networks are also suitable for regression problems, here we
specifically treat the neural network as a classification function, and define the
output space accordingly.

2.2.1 Mathematical Structure

We again let the input space be X ⊆ Rd, with d ∈ N the dimension of the
input data.3 Let Y be the output space. For a classifier the output is usually
given as a score for each of the possible labels (e.g. “cat”,“dog”,“lizard” etc). If
there are N labels we would have Y ⊆ [0, 1]N . Although we may at first restate
this mathematical set-up whenever it is relevant, we will gradually leave these
chosen notations implicit in subsequent chapters.

3This can be very high for some learning tasks. Take for example the case of image
recognition. The input data might consist of pictures of size 100 by 200 pixels, with pixel
color given by a further separation into red, green and blue intensity. In that case we have
d = 100× 200× 3 = 60000.

11

A neural network of L ∈ N layers, with respective sizes dn ∈ N for n ∈ [L] and
d0 = d, dL = N , is a function f : X → Y of the form

f(x) = lL ◦ lL−1 ◦ · · · ◦ l1(x), where

ln : Rdn−1 → Rdn for n ∈ [L].

The layer functions ln are parameterized by weight matricesWn ∈ Rdn×dn−1 and
bias vectors bn ∈ Rdn . Given a nonlinear, coordinate-wise acting 4 activation
function σn, their form is given by

ln(a) = σn(Wna+ bn) for a ∈ Rdn−1 . (2)

The parameter space of layer n ∈ [L] can thus be given by Rdn×dn−1 × Rdn , so
that the total number of parameters is given by

P :=
∑
n∈[L]

dn(dn−1 + 1),

and the parameter space can be represented as P ⊂ RP . In many of the sections
that follow, we refer to the neural network only as a function f : X → Y , with
parameters p = (pj)j∈[P] or p ∈ P. Thus in its shortest form the neural network
is written f = f(x, p), as any other function.
As the last layer of the network is in fact the only layer of which the output is
seen, the other layers are usually referred to as hidden layers. It is common to
also refer to a network of L layers as a network of L− 1 hidden layers.
Sometimes the input of the first layer is referred to as the input layer. This
can be helpful for understanding and visualising the network, even though the
input layer is merely a place-holder, and does not have the same mathematical
functionality as the other layers.

2.2.2 Neuron interpretation

The first artificial neural network research was inspired by the human brain,
which is where the algorithm derives its name from. In the human brain infor-
mation is passed from one neuron to the other based on electrical and chemical
signals. Depending on the strength of incoming signal a neuron can become
“activated” and fire a signal to the next neurons in line. This concept is math-
ematically simulated by an activation function. Let z ∈ R be some incoming
signal reaching a neuron. A simple form of activation function can be given by

σ(z) =

{
1 if z > 0

0 otherwise.
(3)

In a network, as in the brain, the incoming signal z can actually originate from
a large number of different previous neurons connected to the neuron under
consideration.

4When we refer to coordinate-wise functions σ acting on vectors of varying dimensions,
we slightly abuse notation, implicitly assuming to have defined σ̃ : R → R, and σ(x) =
(σ̃(x1), . . . , σ̃(xn))T , where n is the dimension of x.

12

Let there be m ∈ N prior neurons with their combined outputs summarized by
a ∈ Rm. Some of the prior neurons may be more strongly connected to the
neuron under consideration than others. This can be represented by weights
w ∈ Rm, so that the dot product w · a is the full incoming signal.
Activation of the neuron under consideration occurs when a certain threshold is
exceeded. This threshold need not be 0, as in (3), but can be shifted up or down
by adding some bias b ∈ R, to the incoming signal: z = w · a + b. Eventually,
this signal then passes through an activation function like (3), and forms the
“activated” value a′, that can subsequently become (part of) the input of other
neurons. Thus, summarizing the above,

a′ = σ(z) = σ(w · a+ b). (4)

Figure 2: The figure on the left shows 5 neurons connected to one other neuron,
showing different connection strengths by the thickness of the arrows. On the
right are 2 layers of neurons stacked one after the other, with the 5 neurons of
the previous layer each contributing to all 3 neurons of the next layer.

We now imagine the neurons as stacked in layers, depicted in Figure 2, and
focus on two adjacent layers, say layer “0” consisting of m neurons and layer
“1” consisting of n neurons. We can write an equation like (4) for each of
the output neurons separately. Let a0 ∈ Rm be the outgoing signals of the
neurons of the prior layer, and let the respective connections to the neurons of
the next layer (weights) and thresholds (biases) be given by wi ∈ Rm and bi ∈ R,
respectively, for i ∈ [n]. The full incoming signal of neuron i is then given by
z1
i = wi ·a0 + bi. This signal passes through some activation function σ, to form

the input signal of the following layer,

a1
i = σ(z1

i) = σ(wi · a0 + bi), (5)

13

and so on. The above equations can be written in matrix notation, by letting
W ∈ Rn×m be the weight matrix with wi on the i−th row for i ∈ [n]. In
the following notation we let σ be a coordinate-wise acting vector function,
evaluating and outputting the value for each coordinate separately. Describing
all signals moving from layer 0 to layer 1 we then get

a1 = σ(Wa0 + b), (6)

which generalizes to (2) for a deep learning network, i.e., a network consisting
of many layers.
In order to use stochastic gradient descent, the cost function C(p) = C(S, f(p))
must have nonzero derivatives with respect to p almost everywhere on P, and
consequently, by the chain rule, the same holds for the network function f(p)
itself. Hence the activation function σ used in practice is different from equation
3. An intuitive example is to use sigmoidal functions, like the logistic function,

σ(z) =
1

1 + e−z
z ∈ R,

with the common S-shaped graph depicted in Figure 3.

Figure 3: Logistic function

However, in what is known as the “saturated regime” of such an activation
function, i.e., for very large |z|, the line is flat and the derivative gets close
to zero. Small derivatives lead to small steps in the gradient descent iterative
process (1), slowing down the learning process. If the derivatives are too small,
the algorithm will get stuck in this saturated regime. This is known as the
vanishing gradient problem. One way to prevent this is to experiment with
different activation functions. Due to its empirical success, the most common
activation function currently used is the rectified linear unit, or ReLU, activation
function

σ(z) = max{z, 0}. (7)

14

2.2.3 Theoretical Background

Most of the research on neural networks has been empirical, focusing on getting
high accuracies on real datasets and finding new interesting applications. In
contrast, viewing the neural network as a family of functions, its underlying
mathematical properties have been researched significantly less.
We briefly mention the most important theoretical results. These are mainly
on the subject of approximation: a reasonable objection for a certain method in
machine learning to be used, is if the family of functions that it can approximate
is too small, therefore likely not containing the underlying unknown model that
the researcher is interested in. A simple linear regression will never be able to
recognize and label images of cats and dogs. However, as the theorems below
show, no matter how difficult the pattern or function in the data, a neural
network can be designed that fits it up to an arbitrarily small error.
In this section we define the neural network more formally, giving two definitions
that will be used for further reference. We state without proof two important
approximation properties of neural networks that support their popularity and
give a partial explanation for how successful deep learning is in many prediction
tasks.

Definition 2.1 Let n,m ∈ N, W ∈ Rn×m, b ∈ Rn, p = (W, b) and σ a real
coordinate-wise function. A layer L(m,n,p,σ) is a function L : Rm → Rn given
by

L(x) = σ(Wx+ b). (8)

We refer to n as the size of the layer, and σ as its activation function.

Definition 2.2 Let d,N, l ∈ N, X ⊆ Rd and Y ⊆ RN . Furthermore, for
1 ≤ i ≤ l, let Li = L(ni−1,ni,pi,σi) be a layer of the form (8). A neural
network f(X,Y,L) is a function f : X → Y given by

f(x) = Ll ◦ Ll−1 ◦ · · · ◦ L1(x). (9)

The function domain and range imply n0 = d and nL = N . We call p := (pi)i∈[l]

the parameters of the network, l its depth, and maxi∈[l](ni) its width.

For s, t ∈ N we define a function class F(X,Y,L(s,t)) consisting of all neural
networks with depth ≤ s and width ≤ t.

Theorem 2.3 [Cyb89] [Hor91] Let d ∈ N. Let σ be a non-constant, bounded,
and continuous real function. Then F(X,Y,L(2,∞)) is dense in C(Rd) with respect
to the supremum norm.
In other words, for any ε > 0 and any function g ∈ C(Rd), there is a t ∈ N and
a neural network f ∈ F(Rd,R,L(2,t)) such that

|f(x)− g(x)| < ε, ∀x ∈ Rd.

15

Theorem 2.4 [Lu+17] Let n ∈ N. For any Lebesgue-integrable function g :
Rn → R and any ε > 0, there is a maximum depth s = s(n, g, ε) ∈ N such that
there exists some neural network f ∈ F(Rn,R,L(s,n+4)) for which∫

Rn
|f(x)− g(x)|dx < ε.

This result holds even if the layer activation functions are ReLU functions.

These theorems can be further extended to hold for output spaces of arbitrary
dimensions by adding independent networks on top of each other, i.e., multi-
plying the width with the dimension of the output space. Even for this naive
way of stacking neural networks, the results are the same: almost any high-
dimensional function on a high-dimensional output space can be approximated
by a neural network in one of two ways. Either by setting some restriction on
the network width, and allowing arbitrary depth, or restricting the depth, and
allowing arbitrary width. Even though a good approximations exists, there is
no guarantee that a particular training method will find a neural network that
is a good approximation.
From the popularity of deep (as opposed to shallow) learning, i.e., networks
using many layers, and the results of previous theorems, a natural question
arises: is depth or width more important? Empirical work largely indicates
preferences for going deeper, see for instance [He+15a]. However, despite the
practical success, like on the subject of neural networks in general, there is only
little theoretical foundation concerning the role of depth. We briefly discuss two
of the most important approaches in this field.

In [Tel16] and [Lu+17], the main concern is the analysis of depth efficiency and
width efficiency, respectively. This comes roughly down to asking how big an
increase (i.e., exponential, polynomial) in the total number of nodes is needed
after reducing and fixing the width (or depth) of the network, in order to have
the same representation power as the original network.
Telgarsky [Tel16] has proved the existence of deep neural networks that cannot
be approximated arbitrarily close by any shallow network whose size is expo-
nentially larger: for every positive integer k, there exist neural networks with
Θ(k3) layers, Θ(1) nodes per layer, which can not be approximated by networks
with O(k) layers and o(2k) nodes. This might indicate a stronger representa-
tional power of depth over width. However, as Lu et al. [Lu+17] point out,
this is not necessarily the case if the same result can be proven the other way
around, i.e., if there are also shallow networks that cannot be realized by deep
networks whose size is exponentially larger. Lu et al. show that there exist
networks such that reducing width requires an increase of the depth that is at
least polynomial. Note that this is still not satisfactory for concluding that
depth plays the more important role, as the actual necessary increase of depth
might still be exponential, rather than polynomial. Proving the importance of
depth versus width using this measure of efficiency is posed as a formal open

16

problem.[Lu+17] Either an exponential lower bound can be found for width
efficiency, not indicating any of the two is more important than the other, or
a polynomial upper bound is found for width efficiency. The latter case would
mean, more concretely, that every wide network can be approximated by a nar-
row network whose size increase is no more than a polynomial.

Whereas the above theory focused on (mutual) approximation qualities of dif-
ferent neural networks, a different measure of a neural network’s strength comes
from the number of linear response regions that the input can be separated in.5

As compositions and sums of linear functions are equally linear, in this sense
any deep neural net based on piece-wise linear activation functions can itself be
considered a piece-wise linear function. One way to measure its complexity is
then by counting the number of linear regions.

It is shown[PMB13; Mon+14] that in the asymptotic limit of many layers, deep
networks with ReLU activations are able to separate their input space into expo-
nentially more linear response regions than their shallow counterparts, despite
using the same number of computational units. By viewing single neurons as a
way of mapping different input spaces into the same output space, they show
that activation functions can exploit similar patterns across different input space
hyperplanes in the function that is to be fitted.

This last idea is crucial for the current generally accepted explanation as to why
deep networks are so successful. In short, adding layers gives the neural network
the opportunity to exploit patterns across different subsets of the input space
simultaneously, i.e., without the need of extra parameters for each subspace of
the input space. As simpler patterns are accumulated to form more complex
patterns in deeper layers, this hierarchical structure can be seen to use the same
exploitation trick iteratively, and as such deep learning is especially efficient be-
cause it makes more efficient use of each parameter.

Consider as a simple example a uni-variate function, symmetric with respect to
the origin. Assuming n parameters are required for some model (say a neural
net with one hidden layer) to reasonably fit the function for values of x > 0,
a naive way (not recognizing the symmetry) of fitting the full function would
require 2n parameters. This can be seen as equivalent to doubling the width
of the network. However, symmetry can be exploited by adding an extra layer
after the input with only two nodes, noting that |x| = ReLU(x) + ReLU(−x).
Rather than finding parameters to fit input values both larger than and smaller
than zero, only one side of the y-axis needs to be fitted, which can then be
mirrored to the other side.

5A linear response region is a region where changes to the input linearly affect the output.
For example, the ReLu activation function contains two linear regions for input z: z ≥ 0 and
z < 0.

17

This reasoning obviously applies to complex hyperplanes and different types of
(compositions of) activation functions as well. Prior to training it is not known
where any symmetry resides, but the algorithm is allowed to find and exploit
this by itself. The intuition is thus that using multiple layers allows the network
to summarize complex patterns (often more complex than mere symmetry) in
fewer parameters than a non-hierarchical single layer network would need.

Figure 4: Space folding of 2-D space in a non-trivial way. Note how the folding
can potentially identify symmetries in the boundary that it needs to learn. Only
the line on the rightmost figure needs to be properly described by parameters.
The entire input space on the left can then be fitted using only a few parameters
for the folding of 2-D space. (Picture taken from [Mon+14].)

In 2017, Serra et al.[STR17] have further investigated the complexity of deep
neural networks, improving both upper and lower bounds on the number of
linear regions that a piecewise linear function represented by a deep neural net
can attain.
Although results on the number of linear regions do give an indication of the
power of deep learning, these results do not immediately explain why deep learn-
ing performs so well in practice. The training procedure, although empirically
optimized, has been insufficiently studied to give a true theoretical basis for the
conjectured strength of this learning method. The consensus that deep learning
is one of the best methods in machine learning currently available is largely due
to overwhelming empirical evidence.

2.2.4 More Complicated Layers

In most literature, the layers such as defined in (2.1) are referred to as fully
connected or dense layers, as each neuron of a layer is connected (allowed to
contribute) to each neuron of the next layer, as visualised in Figure 2. However,
as neural networks became more widely used, people have started experiment-
ing with more creative architectures. We discuss two types of layers, namely
pooling and convolutional layers, and show how these can in fact be rewritten
as special cases of regular (fully connected) layers.
Before giving mathematical definitions of the layers, we give more informal intu-
itive descriptions. The main characteristic of convolutional and pooling layers
is the fact that they are used in problems where input data elements can be
attributed a location, e.g. pixels of an image, values in a time series, words in

18

a text paragraph, and that the local patterns or correlations in the input can
be exploited. For convolutional layers the main advantage comes from sharing
parameters for recognizing patterns across different locations in the input, thus
reducing computation time. Note that ordinary fully connected layers do not
actually use this information. As each node is connected to each node of the
next layer, due to this symmetric build-up the nodes of any layer (even the in-
put layer, i.e., the place-holder for input data elements) might have just as well
been shuffled prior to training, with no effect on the algorithm’s performance.

In cases where the relative locations of input elements are exploited, it becomes
practical to change the way layers are depicted. Although a layer is theoretically
equivalent to a vector, it is in these cases more insightful to depict it as a grid of
nodes, rather than as a simple column. Take the example of a neural net train-
ing on square images of 30 by 30 pixels. Rather than simply depicting the first
layer (i.e., the input layer) as a column of 900 pixel values, it can be depicted as
a grid of 30× 30 pixel values, where subsequent matrix multiplications or other
operations can implicitly treat this grid as a vector in R900.
Sticking to this 2-D notation of layers, pooling and convolutional layers can be
seen as sliding a pooling or convolutional window over this grid, and computing
a function on the inputs falling in this window. For example, a common type
of pooling, known as average-pooling, takes a window of size, say, 2 × 2, and
reproduces a new layer consisting of all the average values found in squares of
size 2× 2 of the original grid. For a layer shaped as a 30× 30 grid, this results
in a next layer of shape 15×15, where each element of the next layer represents
a local average found in the previous grid. Similarly, max-pooling layers return
maximum values rather than average values of the elements in each window.
Both types of pooling are depicted in Figure 5.

Figure 5: Max-pooling and average-pooling layer examples. The pooling layers
have 4 nodes, and are fed input data from a previous layer of 16 nodes. In this
case the pooling windows are 2× 2 squares, laid over the four corner regions of
the previous layer. Each corner of the output layer corresponds to a corner of
the input layer.

19

Note that in contrast to regular layers, pooling layers have no parameters. The
computation (taking the average or maximum value) as well as the structure
(the size of the window and how it shifts through the grid) is the same before
and after training, independent of the data fed to the algorithm. Pooling layers
learn nothing new from the data, but just conveniently summarize information.
This is different for convolutional layers. Here too a window shifts through the
grid, but this time the function applied on input values falling in that window
can be compared to taking a weighted average, where the weights are layer
parameters. More generally, the function that is locally applied is actually rep-
resented by taking the inner product between window values, the kernel, and
the underlying grid values (layer inputs). The resulting value is stored in a node
of the next layer. An example is given in Figure 6.

Figure 6: An example of one computation in a convolutional layer. The same
3 × 3 convolutional filter is used for computing every grid point of the layer.
This convolutional filter is also called a kernel. The precise values of the kernel
change during training: these values are parameters that can be optimized.

The intuition behind convolutional layers is that the convolutional window re-
turns information about whether or not a certain pattern has been discovered
at a certain location. For instance, in the example of Figure 6, the kernel is
specialized in recognizing horizontal contrast: a high value in the destination
pixel is associated with high values to the right and low values to the left of the
source pixel. On the other hand, if there is no horizontal contrast, the outcome
on the destination pixel is 0. Rather than fixing what type of pattern the layer
should recognize, e.g. horizontal contrast, vertical lines, dog snouts, and so on,
that choice has been left for the algorithm to figure out, by letting the kernel
be given by parameters that can change during training.

20

Similar to normal layers, convolutional layers usually also have an activation
function and a bias which are applied after the dot product with the kernel is
taken.
Finally, it is often the case that a single convolutional layer is used to search
for multiple distinct patterns simultaneously. For example, an entire image is
scanned for vertical lines as well as horizontal and diagonal lines in one layer. In
this case not just one kernel is used, but a large number of say, K independent
kernels each move through the entire grid with the same convolutional window,
but different kernel values and biases. The outcome is then depicted as a 3-d
grid: each location on the 2-d grid gets a column of K outcome values, rep-
resenting the extent in which each of the K patterns have been found on that
specific location. To make matters even more complex, searching for a single
pattern in this new “3 dimensional” layer by means of another convolutional
layer, now requires a 3-d convolutional window, i.e., a convolutional bar. This
convolutional bar moves through the input in the original 2 dimensions of the
first 2-d grid, but overlaps (i.e., takes the inner product) with the input in 3
dimensions.6

It can happen that the input grid of the pooling or convolutional layers cannot
be evenly divided into the given fixed shapes of the pooling or convolutional
windows. For example, a 5× 5 grid cannot be split into separate 2× 2 pooling
windows. There are two concepts for dealing with these issues. The first is called
stride, which determines if pooling or convolutional windows should overlap,
and by how many grid points. It is common for pooling windows to have no
overlap, whereas convolutional windows always overlap. The second concept is
called padding. This refers to the practice of adding dummy zeros around the
borders of the grid in order to always have a full convolutional window with
which a dot product with the kernel can be taken.

We now give formal definitions of pooling and convolutional layers. These defi-
nitions are more general then what was just discussed in order to include pos-
sible padding and stride decisions. Although the definitions may thus allow
very exotic and illogical pooling/convolutional windows to be built, it is mostly
important that the above described layers are indeed cases of the following def-
initions.

Definition 2.5 Let n,m ∈ N, n ≤ m. Let the indices of the pooling window
at location j ∈ [n] be given by Ij ⊂ [m]. An average pooling layer is a
function πavg : Rm → Rn given by

πavg(x)j =

∑
i∈Ij xi

|Ij |
for x ∈ Rm.

We refer to n as the size of the layer and maxj |Ij | as the size of the pooling
window.

6A popular coding package for implementing neural networks in Python is called Tensor-
flow. This name is inspired by the fact that layers can be interpreted as 3-d grids of nodes,
i.e., tensors, and the signal of these tensors flows through a network of multiple layers.

21

Definition 2.6 Let n,m, s,K ∈ N. Let the indices of the convolutional window
corresponding to the target location j ∈ [n] be given by Ij ⊂ [m] with |Ij | ≤ s.
Let kernels be given by weights wk ∈ Rs and biases bk ∈ R, for all k ∈ [K].
Let the indices of the window corresponding to location j ∈ [n] be matched to
the kernel (weight) indices by the injective mapping gj : Ij → [s]. Summarize
the parameters by stacking the weight vectors as rows, w = (wk)k∈[K], and
write p = (w, b). A convolutional layer with activation function σ, window
I = (Ij)j∈[n] and K kernels of size s, is a function c(p,I,σ) : Rm → Rn×K given
by

c(x)jk = σ(
∑
i∈Ij

wkgj(i)xi + bk), ∀j ∈ [n], k ∈ [K], x ∈ Rm.

The choice of I is fixed, but the layer parameters p can change during training.
For the purpose of representing the layer consistently as a single column vector,
rather than a matrix or grid, any bijection h : [n] × [K] → [nK] can be used,
and the definition can be changed accordingly:

c(x)h(j,k) = σ(
∑
i∈I(j)

wkgj(i)xi + bk), ∀j ∈ [n], k ∈ [K].

Starting from these definitions, we now prove that average-pooling and convo-
lutional layers are special cases of regular layers as defined in 2.1.

Theorem 2.7 Any average-pooling layer following definition 2.5 can be written
as a layer following definition 2.1.

Proof 2.7.1 We give a proof by construction. Let πavg : Rm → Rn be an
average pooling layer with pooling windows Ij for all j ∈ [n]. Let W ∈ Rn×m,b =
0 ∈ Rn and σ be the identity function. Let Wji = 1i∈Ij1/|Ij |. Let p = (W, b).
Then the layer L = L(m,n,p,σ) is identical to the average pooling layer πavg:

L(x)j = (σ(Wx+ b))j

= (Wx)j

=
∑
i

Wjixi

=
∑
i

1i∈Ijxi/|Ij |

=
∑
i∈Ij

xi
|Ij |

= πavg(x)j .

22

Theorem 2.8 Any convolutional layer according to definition 2.6 can be writ-
ten as a layer following definition 2.1.

Proof 2.8.1 We give a proof by construction. Let c(p,I) : Rm → RnK be
a convolutional layer of K kernels with parameters p = (w, b) and windows
Ij for j ∈ [n], with window indices mapped to kernel weight indices using
gj, in accordance with definition 2.6. Let h : [n] × [K] → [nK] be a bijec-
tion. Let W ∈ RnK×m, B ∈ RnK and P = (W,B). Let Bh(j,k) = bk and
Wh(j,k)i = 1i∈I(j)wkgj(i) for all k ∈ [K], j ∈ [n] and i ∈ [m]. Then the layer
L = L(m,nK,P,σ) is identical to the convolutional layer c(p,I,σ). We show this by
letting k ∈ [K] and j ∈ [n], and let l = h(j, k). As h is a bijection, and k and j
have been chosen arbitrarily, it suffices to show that the layers are identical for
l:

L(x)l = σ((Wx)l +Bl))

= σ(
∑
i

Wlixi +Bl)

= σ(
∑
i

Wh(j,k)ixi +Bh(j,k))

= σ(
∑
i

1i∈I(j)wkgj(i)xi + bk)

= σ(
∑
i∈I(j)

wkgj(i)xi + bk)

= c(x)h(j,k)

= c(x)l.

We summarize the importance of theorems 2.7 and 2.8 in the following corollary.

Corollary 2.8.1 Any neural network consisting of a combination of fully con-
nected, average pooling and convolutional layers can be remodeled as an identical
neural network of only fully connected layers, in accordance with definition 2.2.
This is true for the network when all parameters are set. However, during the
training procedure, some parameters of the fully connected layers that mimic
pooling and convolutional layers should be coupled or held constant for the iden-
tical properties to hold.

23

2.3 Training Neural Networks

When creating the network f = f(x, p), it is common for the parameters p to be
randomly initialized, and the model clearly is a bad predictor or fit of the un-
derlying function. As discussed in Section 2.1.1, a differentiable proxy measure
of the parameter quality, i.e., the cost function, is used together with stochastic
gradient descent to change the parameters. In this section we derive the proper
form of the cost function and describe the optimal techniques and issues arising
during training. We assume a classification task of N labels and apply one-hot
encoding to our data labels. This means that the labels are represented by stan-
dard basis vectors of RN , rather than ordinary numbers.7 Let EN := {ei}i∈[N]

be the standard basis vectors of RN , then it holds for all (x, y) ∈ S that x ∈ Rd

and y ∈ EN .
Although the outputs of the unknown labeling function g are restricted to EN ,
the same does not hold for the neural network function f : X → Y . Note that
f is differentiable almost everywhere by design, and it should be, as stochastic
gradient descent requires the cost function C(S, f(p)) to have existing deriva-
tives almost everywhere.
As a result of these properties of f , there is never a simple binary result stating
whether f(x) is a good fit or a bad fit of the true label y. Rather, some fits
seem better than others, e.g. f(x) = (0.03, 0.02, 0.89) seems a better fit than
f(x) = (0.45, 0.69, 0.91) for the true label y = (0, 0, 1). The challenge of putting
an actual value on the quality of the fit is dealt with by finding a proper cost
function C(S, f(p)).

2.3.1 The Cross-entropy loss function

As the research field of neural networks is for a big part empirical, there are
many different cost functions used in practice, each fine-tuned to get the best
prediction results. However, we focus on only one specific cost function, called
the cross-entropy loss function, because it has a solid mathematical foundation
in statistical inference.
One particularly convenient way to make sense of values f(x) ∈ Y \EN is to
choose to interpret f(x) as a categorical distribution on EN . For this purpose
we choose the last layer’s activation function, σL, in such a way that a proper
probability vector is outputted, thus arranging that

∑
i∈[N] fi(x) = 1. A com-

mon way to do this is to use the softmax function

(σ(z))i =
ezi∑
j e
zj
, z ∈ RN . (10)

We can then interpret f by letting fi(x, p) = P(ei|x, p) for all i ∈ [N].

7The reason for this is to overcome some treacherous situations, i.e., if the labels for ‘cat’,
‘dog’, and ‘lizard’ are 0, 1 and 2 for instance, it might happen that some unclear image
resembling both a cat and a lizard is labeled as a dog (the label 1 being the average of 0 and
2). Representing labels as independent basis vectors prevents such peculiar and meaningless
relations.

24

Interpreting f(x, p) as a distribution on EN now allows us to use maximum
likelihood estimation to find the best parameters p∗: the optimal parameters
are those corresponding to the highest probability of exactly reproducing the
labels SY when performing the random independent experiment of selecting a
label y ∼ f(x, p) for all x ∈ SX .
In other words, if the labels SY were in fact generated by a categorical distri-
bution of the form f(x, p) for x ∈ SX , then the the probability of observing SY
is highest for the parameters

p∗ = argmaxpP[SY |SX , f(p)]

= argmaxp
∏

(x,y)∈S

P[y|x, p]

= argmaxp
∏

(x,y)∈S

∏
i∈[N]

fi(x, p)
yi

= argmaxp log(
∏

(x,y)∈S

∏
i∈[N]

fi(x, p)
yi)

= argmaxp
∑

(x,y)∈S

∑
i∈[N]

log(fi(x, p)
yi)

= argmaxp
∑

(x,y)∈S

∑
i∈[N]

yi log(fi(x, p)).

Finding the exact maximum of the above expression is practically impossible,
hence we define a cost function as follows:

C(S, f(p)) := −
∑

(x,y)∈S

∑
i∈[N]

yi log(fi(x, p)), (11)

and use batch stochastic gradient descent to find its minimum. This cost func-
tion is called the cross-entropy cost function. We conclude with the summarized
approach for batch stochastic gradient descent using this cost function.
Starting with some random initial p1 ∈ P, a learning rate λ ∈ R>0 and a partion
of the training data set SX into M batches Bt ⊂ SX , for t ∈ [M], we search for
the optimal parameters by the iterative process

pt+1 = pt − λ
1

|Bt|
∂C(Bt, f(pt))

∂p
, for t ∈ [M]. (12)

2.3.2 Back-Propagation

Taking the derivative of equation 11 requires finding the derivative of f(x, p)
with respect to p, which is a tedious task. At every iteration t the derivative
needs to be computed again for new p and Bt. Training a deep network can thus
take a long time, especially if there is a lot of data. Therefore it is important to
efficiently compute the derivatives at each step, using a minimal number of com-
putations. The method developed for this purpose is called back-propagation.

25

Let, in accordance with definition 2.2 a neural net of L layers be given by

f(x) = lL ◦ · · · ◦ l1(x)

ln(a) = σ(Wna+ bn) for a ∈ Rdn−1 ,

where we now use superscripts denoting the layer number, so as not to confuse
with individual matrix or bias elements. We also omit the layer dependencies
of the activation functions for clarity, assuming if you will that all activation
functions are of the same type σ. We now use introduce some new notation.
Let

an(x) := ln ◦ · · · ◦ l1(x)

be the (intermediate) output of the n-th layer of the network for n ∈ [L], with
a0 = x. We also refer to an as the activations of layer n. Furthermore let

zn(x) := Wnan−1(x) + bn (13)

be the value of the n-th layer before it passes through the activation function
σ, thus having

an(x) = σ(zn(x)). (14)

Let pn be all parameters of the n-th layer. Since we need all parameters
p = (pn)n∈[L], we need the following derivative for each n ∈ [L], omitting the
dependence on x for clarity8:

∂C

∂pn
=

∂C

∂f

∂f

∂pn

=
∂C

∂f

∂f

∂an
∂an

∂pn

=
∂C

∂aL
∂aL

∂an
∂an

∂zn
∂zn

∂pn

=
∂C

∂aL
∂aL

∂aL−1

∂aL−1

∂aL−2
. . .

∂an+1

∂an
∂an

∂zn
∂zn

∂pn
.

After memorizing a single forward pass through the network, i.e., inputting x
and computing all an(x) sequentially, each derivative can then be obtained in

O(1) time, and computing ∂aL

∂an requires O(L) computations. To get all deriva-
tives for all parameters p = (pn)n∈[L] then seems to require O(L2) computations.
However, using a simple memorization trick, the computational time can be re-
duced significantly. Rather than computing each derivative independently, we
save the intermediate value

δn(x) =
∂C

∂zn
(x),

8For differentiating functions of multiple variables in multiple dimensions, i.e., f : Rn →
Rm, we use the following convention: (∂f/∂x)ij = ∂fi/∂xj . Using this convention means
that if g : Rm → Rk and h(x) = g(f(x)) we can simply write ∂h/∂x = ∂g/∂f · ∂f/∂x as we
would in one dimension. Note that matrix multiplication is implicit.

26

and apply the following recursion:

δn =
∂C

∂zn+1

∂zn+1

∂zn

= δn+1 ∂z
n+1

∂an
∂an

∂zn

= (δn+1Wn+1)� σ′(zn), (15)

where we used 13 and 14 to compute the derivatives. We use the notation �
to represent the hadamard product (pointwise multiplication of matrices). The
recursion starts with

δL =
∂C

∂zL

=
∂C

∂f

∂aL

∂zL

=
∂C

∂f
� σ′(zL). (16)

Finding the remaining δn for n = L−1, . . . , 1 requires O(L) steps. This method
is called back-propagation, because the recursion starts at the end of the net-
work, and moves backwards, at each step back-propagating the sensitivity of
the cost function with respect to a certain layer.
From δn we can now easily retrieve the derivatives with respect to the actual
parameters, as

∂C

∂pn
=

∂C

∂zn
∂zn

∂pn

= δn
∂zn

∂pn
.

Using once more equation 13 produces the following elegant equations:

∂C

∂bni
= ∂C

∂zn
∂zn

∂bni
= δni ,

∂C

∂Wn
ij

= ∂C
∂zn

∂zn

∂Wn
ij

= an−1
j δni .

We conclude with the pseudo-code for the backpropagation algorithm:

Input x, i.e., set the corresponding activation a0 = x for the input layer.

for n = 1, . . . , L do
zn = Wnan−1 + bn

an = σ(zn)
end for

27

Compute δL = ∂C
∂f � σ

′(zL)

for n = L− 1, . . . , 1 do
δn = (δn+1Wn+1)� σ′(zn)

end for

The gradient of the cost function is given by
∂C
∂bni

= δni and ∂C
∂Wn

ij
= an−1

j δni .

2.3.3 Parameter initialization

Prior to starting the stochastic gradient descent algorithm, an initial value for
the parameters must be selected. If initial values are chosen identical per layer,
from the back-propagation and gradient descent algorithms we can see that
these parameters remain identical: the neural net does not perform symmetry-
breaking. Hence already in the initialization of parameters some predetermined
variation is required.
The current accepted approach is to let the biases have initial value of zero, and
break the symmetry by randomly initialize the weights with mean 0. The chosen
variance of the initial weights distribution, by determining the average size of
the parameters, then heavily influences the course of the training procedure.
To understand why the average size of the parameters is relevant, we note that
the gradients of the cost function with respect to parameters of layer n are
proportional in size to δn, and focus on the recursion of the back-propagation
algorithm:

δn = (δn+1Wn+1)� σ′(zn). (17)

If δn is on average slightly smaller or larger than δn+1 for all n, this difference
builds up as the back-propagation recursion moves deeper towards the beginning
of the network. The gradients with respect to the parameters of the first layers
of the network might then be either very small or very large, which is known
as the vanishing or exploding gradient problem, respectively. As can be seen
in equation 17 the choice of activation function σ has some influence on this.
However, a proper initialisation of the weights is equally important to keep the
gradients at practical levels.
Assume that the weights in Wn (i.e., each element Wn

ij) are initialized i.i.d.

with mean zero and variance v2
n. Note that from equation 17 it follows that

E[δn] = 0. As a proper measure of the size we therefore look at E[(δnj)2], for
some j ∈ [dn] (Remember that the number of nodes in layer n is given by dn,

28

so that also δn ∈ Rdn .) We now find that:

E[(δnj)2] = E[(

dn+1∑
i=1

δn+1
i Wn+1

ij)2(σ′(znj))2]

= E[

dn+1∑
i,k=1

δn+1
i δn+1

k Wn+1
ij Wn+1

kj (σ′(znj))2]

= E[

dn+1∑
i=1

(δn+1
i)2(Wn+1

ij)2(σ′(znj))2]

=

dn+1∑
i=1

E[(δn+1
i)2]v2

n+1E[(σ′(znj))2]

= dn+1E[(δn+1
j)2]v2

n+1E[(σ′(znj))2].

In the last steps we assumed independence among δn+1, Wn+1 and σ′(zn).
Even if this is true after initialization, it is of course not guaranteed to remain
this way during training. However, assuming the covariance terms will at least
remain relatively small, there is some insight to be gained from this derivation,
as has also been shown empirically[GB10]. To stabilize the gradients we now
use the result

E[(δnj)2]

E[(δn+1
j)2]

= dn+1v
2
n+1E[(σ′(znj))2]. (18)

More explicitly put, to make sure the gradients for all parameters are similar
in size, the right-hand side of the above equation should remain close to 1.
As mentioned, choosing a convenient activation function, like the ReLU, who’s
derivative is either 1 or 0, already helps. Note that sigmoid type activation
functions have close to zero derivatives in their saturated regimes, which form
the majority of their domain.
We thus take σ to be the ReLU function. From equation 13, and the initiali-
sation of bn as zero and Wn with mean zero, we find that znj has a symmetric
distribution. The probability for this value falling in the flat or in the linear
domain of σ are then equal, so that E[(σ′(znj))2] = 1

2 . Filling in this value in
equation 18 leads to proposing the initialisation variance

v2
n =

2

dn
.

Although exact results on how these equations remain valid during training
are lacking, the derivation does shed some light on the standard approach and
empirical success of initialising parameters such that bn = 0 and Var[Wn

ij] =
2/dn for every layer n in a ReLU network. [GB10] [He+15b]

29

2.4 Methods to prevent neural networks from overfitting

Overfitting was briefly explained in Section 2.1.2. We list a few examples of
approaches that help against over-fitting.

• Using an ensemble of networks can give a smoother result than a single,
possibly better trained, network.

• Dropout is the procedure of temporarily removing individual nodes of the
network during each training step with some probability.

• Regularization refers to adding another term to the cost function, pe-
nalizing the complexity of the model by regulating for the size of the
parameters. A common type of regularization is L2 regularization, refer-
ring to the type of norm used. The new cost function C ′ is then given by
C ′ = C +α

∑
i p

2
i for some constant α > 0 determining the regularization

strength. It can be shown that this is equivalent to assuming a normal
prior distribution with mean 0 on the parameters, and applying maximum
likelihood estimation. (See appendix A.)

• Expansion of training data can help a network reducing over-fitting by
making the training data itself more general.

• Early stopping is one of the simplest methods to prevent over-fitting. This
usually involves careful monitoring of algorithm performance as a function
of training iterations.

As most of these methods are self-explanatory or relatively simple, we only
elaborate further on the first two topics: dropout and network ensembles.

2.4.1 Ensemble of networks

Instead of spending all the capacity (time and/or computing power) on training
one network, it can be helpful to split the attention towards training multiple
networks, and combining these for a better result. This is known as an ensemble
method in machine learning, as an ensemble of learned models is used instead of
just one model. The two main ways to do this are called boosting and bagging.
Boosting trains a number of constrained (e.g. limited in complexity) or weaker
models in sequence, where each model learns from the mistakes of the one before
it. All weak learners are then combined into a single strong learner. On the
other hand, bagging uses complex models and trains them separetely, combining
the stronger models in parallel. While boosting uses simple models and tries to
“boost” their aggregate complexity, bagging uses complex models and tries to
smoothen out their predictions. Especially the latter method is commonly used
to prevent overfitting. We use some elementary statistics to show how.
For neural networks one type of the bagging approach can for example be
achieved by training multiple networks on random different, preferably disjunct,
subsets of the training data S, or by using different initial parameters. Having
trained M networks, say, we then get a series fm, m ∈ [M].

30

For the final result we average those networks such that

f(x) =
1

M

M∑
m=1

fm(x). (19)

To understand how this helps against over-fitting, we need to understand where
the error in a model can come from.9 Let g(x) be the unknown true model
generating the labels y. If g(x) is probabilistic, assume that g(x) − E[g(x)|x]
is independent of x. Note that there is randomness in the observation of a
new data point x as well as in the subsequent labeling g(x). Given a model
f , the expected size of the error of this model takes into account both sources
of randomness. The mean squared error (MSE) of the actual model f is then
given by

E[(f(x)− g(x))2] = E[(f(x)− E[g(x)|x] + E[g(x)|x]− g(x))2]

= E[(f(x)− E[g(x)|x])2] + E[(g(x)|x]− g(x))2]

+2E[(f(x)− E[g(x)|x])(E[g(x)|x]− g(x))]

= E[(f(x)− E[g(x)|x])2] + E[(g(x)|x]− g(x))2],

where the last equality follows from the assumption that g(x) − E[g(x)|x] is
independent of x and the fact that this expression has expectation zero. We refer
to the first term as the reducible error, and the second term as the irreducible
error. Note that indeed the second term is independent of the model f(x), and
only represents noise of the labeling function.
We now let the reducible error of a network f be given by ε(x) := f(x) −
E[g(x)|x], and let εm be similarly defined for networks fm of the ensemble.
Assume that the networks are unbiased independent estimators, i.e., E[εm(x)] =
0 and E[εm(x)εn(x)] = E[εm(x)]E[εn(x)] = 0. In that case we see that the
reducible error of the ensemble average network f (Equation 19) is given by

E[ε(x)2] =
1

M2
E[(

M∑
m=1

εm(x))2]

=
1

M2
E[

M∑
m=1

N∑
n=1

εm(x)εn(x)]

=
1

M2

M∑
m=1

N∑
n=1

E[εm(x)εn(x)]

=
1

M2

M∑
m=1

E[εm(x)2]

=
1

M
E[ε1(x)2].

9Although many assumptions are made in the following derivation, and there are more
complete ways of decomposing errors (more generally taking bias and variance into account)
we do not go into too many details and just show the general principle at work. A more
appropriate discussion into MSE and Bias-Variance decomposition can be found in [Zav17].

31

Hence by using an ensemble of size M , the reducible part of the MSE is reduced
by a factor 1/M . Technically reducing the MSE is not necessarily the same as
reducing over-fitting, as there are many reasons why the model might have a
high MSE. However, if over-fitting is the cause of some (unbiased) error, then
the ensemble method can be seen to “smoothen” the result, thereby reducing
the MSE. Intuitively, if the separate models are unbiased estimators, then the
different ways in which multiple models are over-fitting cancel each-other out
when averaging.

2.4.2 Dropout

In dropout, on every iteration of the training procedure, i.e., in determining
every parameter update during a batch gradient descent step, a random selec-
tion of nodes is removed from the network, to be added back again in the next
step. The random selection is realized by removing every node with a certain
probability α. Input neurons are sometimes exempted from this procedure, as
this would just remove information. After the removal of some of the nodes, the
parameters that remain are altered, while the parameters of nodes that were
removed are remembered for when they are placed back in, but do not influence
the output of the network.
After restoring the dropout nodes, the process is repeated, selecting a new ran-
dom subset of nodes to delete. By repeating this processs, the network will
learn a set of parameters, say p′, that have been learned under conditions in
which a fraction of α of the nodes have been dropped out. However, at the end
of the training procedure, all nodes are used to form the finished model. This
means that there will be more nodes active than in the situation for which the
parameters were optimized for. To correct for this an extra scaling factor is
needed: all weights are multiplied by 1− α.
To see why this is appropriate, and to better understand why dropout is suc-
cessful, we appropriately redefine the input of a certain node of the network
during training. Let for n ∈ [L], i ∈ [dn], the input of node i in the n-th layer
be given by

z′ni =

dn−1∑
j=1

W ′nij a
′n−1
j Dj + b′ni , (20)

where Dj is a random Bernoulli variable which has the value 0 with probability
α, and 1 with probability 1− α. We use the notation W ′ and b′ for parameters
that have been optimized for a network with node inputs given by equation 20,
as opposed to the original equation 13. The different parameters in turn lead
to different corresponding node inputs and activations z′ and a′.
Let fα = fα(x, p′) be a network based on equation 20, with a dropout probability
of α and corresponding optimized parameters p′ = p′α.
The idea now is to find the optimal parameters p to use for the full (i.e., with no
nodes removed) network, using the parameters p′ that are found during training.
More explicitly, it turns out that the final network f(x, p) can be considered as

32

the expected value of a network of the form fα(x, p′). Considering that taking
the expected value is the theoretical equivalent of averaging a large sample of
networks, the dropout method can in fact be seen as an ensemble method,
revealing why it works well against over-fitting.
To show that this is the case, let the parameters p indeed be chosen such that

f(x, p) = E[fα(x, p′)], (21)

where the expectation is taken with respect to the dropout random Bernoulli
variables D that are embedded in the network fα.
Using again the notations as introduced in the back-propagation algorithm, we
see that equation 21 is equivalent to

aL = E[a′L],

omitting the dependency on x for clarity. Choosing p to comply with this, we
work by induction. Note first that the input layer activations remain constant:
a0 = a′0 = E[a′0] = x. Now assume an−1 = E[a′n−1]. We choose the parameters
pn such that zni = E[z′ni], thus∑

j

Wn
ija

n−1
j + bni = E[

∑
j

W ′nij a
′n−1
j Dj + b′ni]

=
∑
j

W ′nij E[a′n−1
j]E[Dj] + b′ni

=
∑
j

W ′nij a
n−1
j (1− α) + b′ni

This holds if we let bn = b′n and Wn = W ′n(1−α). If this is sufficient, the only
necessary change to the parameters will be to scale the weights found in the
dropout procedure by (1 − α). However, to finish the induction argument, we
still have to arrange that an = E[a′n], having only reached the conclusion that
zn = E[z′n]. In case σ is not a linear function (which usually is not the case)
the latter does not simply implicate the first statement. This issue is treated
extensively in [BS13] for linear, logistic and softmax activation functions σ, with
extensions to (among others) ReLU functions in [BS14]. By carefully inspecting
the expected value over all possible sub-networks, it is found that the so-called
“dropout approximation” E[a′n] ≈ σ(E[z′n]) is negligible. In that case we see
that

E[a′n] ≈ σ(E[z′n])

= σ(zn)

= an,

concluding the proof of the induction step.
In other words, choosing weights p derived from weights p′ by Wn = W ′n(1−α)
for all layers n ∈ [L], leads to a network f(x, p) given by

f(x, p) = E[fα(x, p′)|x],

showing that dropout is in fact an ensemble method.

33

2.5 Optimizers

Given M training data batches Bt ⊂ SX , for t ∈ [M], and some initial p1 ∈ P,
the classical training procedure uses equation 12,

pt+1 = pt − λ
1

|Bt|
∂C(Bt, f(pt))

∂p
, for t ∈ [M],

with some learning rate λ > 0. Note that this procedure is nothing more
than a method of finding the minimum of C(SX , p). There are in fact many
more of such iterative optimization techniques for finding the minima of (cost)
functions, also called optimizers when more specifically referring to the bundled
lines of programming code written for implementing these techniques. Although
their main purpose in the current context is the training of neural networks,
such optimizers will be used more generally, which is why we have dedicated a
separate chapter to these techniques.
The main optimizer in use, which we shall also stick to for our implementations,
is called Adam, and is described in section 2.5.3. We explain it by first going
over to other (older) optimizers, namely AdaGrad and RMSProp, as they form
the inspiration and building blocks from which Adam originated.

2.5.1 AdaGrad

Recall that the hyper-parameter λ determines the learning rate, reflecting the
step-size we allow parameters to move with in the direction of the (negative)
gradient. If λ is set too small, the parameter update will be very slow and
it will take a large number of iterations to achieve small cost C. However, if
it is set too large, the parameters might move all over the space P and never
lead to acceptable values of C at all. Setting λ just right has a large impact
on the success of the optimization procedure. However, the high-dimensional
non-convex nature of C can lead to different sensitivities in different dimensions
of the parameter space P . The learning rate can be too small in some dimension
and too large in another dimension.
One obvious way to mitigate this problem is to explicitly choose different learn-
ing rate parameters for each dimension, i.e., different λj for each j ∈ [P]. How-
ever, this quickly leads to an infeasibly large number of hyper-parameters10,
requiring different solutions to be found.
One of the first optimizers incorporating different learning rates for different di-
mensions of the parameter space is called AdaGrad, short for adaptive gradient
algorithm [DHS11]. We briefly describe how the method works, without going
into the details of the theory behind it.

10Recall that the hyper-parameters are fixed during training and are optimized by measuring
their success on validation data sets. Optimizing hyper-parameters is a tedious procedure,
requiring large amounts of data and many independent training runs. As the number of
hyper-parameters increases, the number of possible combinations of hyper-parameter values
increases exponentially.

34

Let for t ≥ 1 the gradient of the cost function be given by

gt :=
1

|Bt|
∂C(Bt, f(pt))

∂p
, (22)

and let the matrix Gt be the sum of the outer products of the gradients up and
until time-step t,

Gt =

t∑
τ=1

gτg
T
τ .

Adagrad is now based on the iteration

pt+1 = pt −
λ√
Gt
gt, (23)

where we slightly abuse notation by leaving matrix diagonalization and inver-
sion implicit and directly write square roots and division as if working with
scalars. We do this more frequently throughout the coming sections, with vec-
tor operations also being implicitly computed component-wise.
In practice a small quantity εI, where I is the identity matrix and ε ∈ R>0, is
added to prevent dividing by zero. Also, because computing the square root
of a high-dimensional matrix is costly, the square root of diag(Gt) is used as a
reasonable approximation instead[DHS11]:

pt+1 = pt −
λ√

εI + diag(Gt)
gt. (24)

For one element p
(i)
t+1, i ∈ [P], the parameter update is now given by

p
(i)
t+1 = p

(i)
t −

λ√
ε+G

(ii)
t

g
(i)
t . (25)

Note that the effective learning rate is thus different for each parameter i, as it
is scaled with respect to the accumulated squared gradient at each iteration,

G
(ii)
t =

t∑
τ=1

(g(i)
τ)2.

If G is not approximated by its diagonal matrix, we are in fact also taking into
account interactions between parameters when determining the influence of a
change in one parameter. In fact G is often used as an approximation of the
Hessian matrix of the cost function [Nil+19].
Either way, this accumulation of squared gradients acts as a decay mechanism,
slowing decreasing the effective learning rate over time, settling the learning
in a good place avoiding oscillations. The decay is made parameter-dependent
by dampening more in the direction of dimensions that have on average larger
(squared) gradients throughout the optimization procedure.

35

2.5.2 RMSProp

Over the course of training steps get smaller and smaller in the Adagrad al-
gorithm, because the sum of squared gradients gets larger. In convex opti-
mization this resulting decay mechanism makes sense, because when minima
are approached we want to slow down. However, in non-convex cases it can
lead to problems, slowing down too much and getting stuck on saddle points.
The RMSProp optimizer, standing for root mean square propagation [TH12],
therefore uses a moving average of the squared gradients, rather than the full
accumulated value.
Because storing and updating a large window of parameter gradients is costly,
especially when the number of parameters is in the order of millions, a single
decay factor is used. Given gt as in equation 22 and a decay constant (hyper-
parameter) γ ∈ [0, 1], let G0 = 0 and let Gt now be given by

Gt = γGt−1 + (1− γ)(gt � gt) for t ≥ 1. (26)

The update is again given by equation 25, noting however that G is now defined
differently:

p
(i)
t+1 = p

(i)
t −

λ√
ε+G

(i)
t

g
(i)
t . (27)

2.5.3 Adam

Note that RMSProp uses an estimate of the (moving) mean of the squared
gradients, i.e., Gt as given in equation 26. The method is thus based on the
second-order raw moment of the gradients, using estimates for that value to
create distinct learning rates. More explicitly, the assumption is that

Gt ≈ E[gt � gt].

The most popular optimizer currently used, called Adam[KB14], further exploits
moment estimates of gradients. Its name is derived from “adaptive moments
estimation”. In particular, the first-order and second-order moments of gradi-
ents are used, representing the mean and the uncentered variance. Let F 0 = 0,
γ1 ∈ [0, 1] a hyper-parameter representing a decay factor, and

Ft = γ1Ft−1 + (1− γ1)(gt) for t ≥ 1. (28)

Thus Ft represents the moving average estimator of the gradient mean. Similarly
we have Gt defined as in equation 26, i.e.,

Gt = γ2Gt−1 + (1− γ2)(gt � gt) for t ≥ 1,

with G0 = 0 and γ2 ∈ [0, 1] representing the decay factor for the moving average
estimator of the second-order moment.

36

Because F0 and G0 are initialized as 0, the estimators have a bias towards 0 in
the initial steps of the iteration, especially noticeable when the decay rates are
small. We show how to get rid of this bias in Ft ≈ E[gt], noting that a similar
derivation yields the result for Gt. As F0 = 0, we find (from recursion 28) that

Ft = (1− γ1)

t∑
τ=1

γt−τ1 gτ .

Taking the expected value on both sides yields

E[Ft] = (1− γ1)

t∑
τ=1

γt−τ1 E[gτ]

= (1− γ1)

t∑
τ=1

γt−τ1 E[gτ − gt + gt]

= E[gt](1− γ1)

t∑
τ=1

γt−τ1 + (1− γ1)

t∑
τ=1

γt−τ1 E[gτ − gt]

≈ E[gt](1− γ1)

t∑
τ=1

γt−τ1

The approximation is caused by ignoring the residual value on the right-hand
side of the third equality. This term is small when gτ is approximately station-
ary, or when the exponential decay rate is chosen sufficiently large enough that
the moving average assigns small weights to gradients far in the past. Continu-
ing from this approximated value, some concluding algebra leads to

E[Ft] ≈ E[gt](1− γ1)
1− γt1
1− γ1

= E[gt](1− γt1).

We thus find that a slightly better estimate of E[gt] is given by

F̂t :=
Ft

1− γt1
,

and similarly

Ĝt :=
Gt

1− γt2
.

Using these unbiased moments, the parameter updates for the Adam optimizer
are given by:

p
(i)
t+1 = p

(i)
t −

λ√
ε+ Ĝ

(i)
t

F̂
(i)
t . (29)

37

Note that apart from replacing G by the better estimate Ĝ, the most striking
difference between Adam and RMSProp comes from using an estimator F̂ for
the gradient gt, rather than its true value. This estimator takes into account
previous values of gt, causing the update direction to be influenced by some
memory of prior gradients. This behavior is also called momentum in the content
of optimizers, alluding to the physical process of letting a ball roll on the slope
of some “optimization landscape”. Momentum prevents the ball from getting
stuck in a small hole on the slope, similar to how the optimization iteration
here is prevented from getting stuck in a local minimum of the cost function.
Momentum also speeds up the learning process, in the same sense that a ball
speeding down a slope does not immediately slow down or change direction
when it encounters small bumps.

38

3 Explainability in Machine Learning

In this chapter we deal with an important drawback of deep learning, namely
the lack of explainability. We specifically describe what we mean by this in the
following introduction, before treating several different approaches that aim to
resolve this issue. We describe and implement a Bayesian neural network, and
compare it to a regular neural network to show the improved model behavior.
We implement the LIME and RDE explanation methods for this Bayesian neural
network and show the computed feature importance underlying the model’s
decisions for some examples.

3.1 Black Box models

Aided by new implementation techniques and better computers, neural net-
works have become increasingly successful in a quickly expanding research field
of possible implementations. However, the dominant interest in high accuracy
has skewed the research towards improving predictive powers of deep learning
algorithms, at the cost of the explainability and interpretability of these predic-
tions. The lack of fundamental understanding as to how deep learning exactly
works, results in the current general view that a trained neural network is prac-
tically a black box algorithm. Our goal is to “open the black box”, and find
explanations for neural network decisions.

The term “Black Box” is often arguably unjustly used, namely when it refers to
a person’s lack of understanding of algorithms that are in fact not intrinsically
impossible to understand, but just require background knowledge of mathemat-
ics and computer science. In fact, most machine learning algorithms can readily
produce the reasoning behind their predictions. Decision trees and random
forests rely on input feature importance by design, whereas statistical methods
like generalised linear models and principal component analysis deliver inter-
pretable general outcomes rather than just a set of labeled data elements.

For deep learning this is fundamentally different. A trained deep neural network
is an extremely complicated function by design. State of the art neural networks
can have tens of billions of parameters, see for instance [Sha+17; TGR15], using
137 and 160 billion parameters, respectively. In fact, since the introduction of
hidden units, artificial neural networks have doubled in size roughly every 2.4
years [GBC16], see for instance Figure 7.
With such large numbers of neurons, layered to form increasingly complex be-
haviour of a high-dimensional function, it becomes nearly impossible to under-
stand how these models work.

39

Figure 7: Increasing neural network size over time.[GBC16] Different break-
throughs are shown, numbered chronologically from 1958 until 2014. Note that
the number of neurons is not the number of parameters, which form the con-
nections between neurons. The natural brain equivalent of these connections
would be synapses, of which there are over 100 trillion.

More explicitly put, given a new data point x and a trained network f , there is
no easy way to understand why a label f(x) is assigned. The trained function
might be very successful on the test dataset, achieving a high accuracy and thus
proving to be a good predictor on unseen data points. However, the user of the
model is empty-handed when asked for an explanation of the outcome. With
the benefit of being able to fit increasingly complicated functions to data, comes
the problem of not being able to explain the outcomes of these functions.

Figure 8: The machine learning methods that achieve a higher accuracy in more
difficult tasks are commonly less explainable, and vice versa.

40

3.1.1 The need for Explainable AI

The most common areas where deep learning is currently used are settings with
high-dimensional data containing complex patterns, where explainability is not
required, and only the predictive performance counts: as long as the algorithm
predicts well, there is in principle no urgency to explain how some sentence has
been translated, or a why a face has been recognized. Errors in such applications
usually have no dramatic consequences: there are no ethical, accountability, or
large financial complications.
However, as neural networks are increasingly stealing the show as the best al-
gorithms in terms of accuracy, new applications are being discovered in a quick
pace. In some of these new fields, like medicine and finance, explainability be-
comes important, as doctors and CEO’s are involved with decisions that require
clear reasons and justifications.
Also, in some cases simply knowing the outcome of an algorithm is insufficient
to act upon it. In the detection of financial crime, like money laundering, flag-
ging data points as suspicious is more efficient if a clear reason for this suspicion
accompanies the model’s outcome.

When algorithms become more involved in society and people’s personal lives,
ethical arguments further increase the call for more explainability. If fed with
the wrong data, models might discriminate or unknowingly evolve other kind
of unwanted behavior. Whereas human decision making may implicitly contain
ethical considerations, algorithms only train for accuracy.
Finally, as machine learning methods become more intelligent, there are possi-
bilities for us to learn form them, rather than simply use them blindly. Neural
networks can increasingly be used in scientific fields where data is abundant,
such as economics, biomedical sciences and astronomy. For enduring scientific
progress it is necessary to understand the building blocks leading towards the
next discoveries and theories, rather than getting plain results without context.

3.1.2 Holistic view of existing methods

In light of what has just been discussed, specifically noting the use of billions of
parameters, one might opt to achieve explainability of neural network decisions
by reducing the complexity of the network in the first place.
Although some work has been done on this topic, using specific architecture
restrictions like connecting smaller sub networks or enforcing sparse weight ma-
trices, the trend within the deep learning field is similar to the general trend
in machine learning, depicted in Figure 8: reducing an algorithm’s complexity
might lead to some explainability, but at the cost of accuracy.[AB18; YZS19]
The networks achieving the highest accuracies are often the least explainable.

41

An alternative approach to explainability in machine learning is to leave the
black box intact, and rather use separate techniques to investigate the model,
giving post-hoc explanations. Most research on explainable AI belongs to this
post-hoc class, and we describe two of these methods in detail in the coming
chapters: LIME [RSG16] in Chapter 3.3 and RDE [Mac+19] in Chapter 3.4.
Explainability methods can be model-agnostic or model-specific, referring to
whether they can be applied to any model, or whether they are specifically
defined for one machine learning technique. The larger part of explainability
research applies to model-agnostic methods.
Yet another possible distinction to be made is between local and global explain-
ability. Global explainability methods aim at understanding the whole logic
of a model, following the entire reasoning leading to all the different possible
outcomes. On the other hand, local explainability seeks to explain the rules for
a single prediction or decision. The distinct attempts at AI explainability are
summarized in Figure 9.

Figure 9: A pseudo ontology of explainable AI methods taxonomy, from [AB18].

The methods that we implement in the coming chapters are post-hoc, local ex-
plainability methods. Both LIME and the newly developed EVD method are
model-agnostic, whereas RDE as well as the material in Chapter 3.2 rely on the
unique architecture of the neural network. Note that while a model-agnostic
method can be applied to every model, the implementation of the method can
often still be largely dependent on the specific model architecture.
In the field of post-hoc model-agnostic local explainability methods, the act of
further distinguishing or developing new methods is complicated by a striking
issue: what is an explanation?
Most notably missing in explainable machine learning research is a clear defi-
nition or consensus of what an explanation is, let alone a measure of success in
achieving this explanation. [Lip16]

42

3.1.3 What is an explanation?

There are many different ways in which the explainability challenge is described.
The literature is filled with terminology: opening the black box, interpreting
model outcomes, explaining underlying reasons, visualising decisions, and so on.
While the scope of this research field can be narrowed down to model-agnostic,
local explainability and post-hoc methods, in essence these methods still vary
as to what they are trying to achieve. Given an input element x ∈ X ⊂ Rd,
a neural network f : X → [0, 1]N and an output y = f(x), we distinguish the
following (possibly overlapping) approaches:

1. Feature importance: which features were most important for the decision
and which features were least important? How much has each of the d
features in x contributed to the final outcome y?

2. Sensitivity analysis: how much does the output y change, or how likely is
it to change, for each of the d features, when x is slightly changed along
the dimension of that feature? Along which of the d dimensions is this
sensitivity largest?

3. Comparing to examples: which similarly labeled elements x′ ∈ SX does x
resemble, hinting at similar reasons for the outcome label y?

4. Inspecting interpretable components: which components of x that are
easy to understand do we recognize, and can we valuate their respective
importance? Or, taking a more model-specific approach: can we decom-
pose the model into a simple, possibly even linear, combination of several
explainable sub-models representing such components?

5. Inspecting model behavior: if we perturb x (in more creative ways than
when simply computing input sensitivity) or change intermediate com-
puted activations within the network, how does that affect the information
flow through the network and what can we learn from this?

A wide range of methods can roughly be found to belong to one or more of
these categories. As regards the methods that we implement, we mention that
LIME can be found to belong to the first and fourth category of the above list,
whereas the RDE method belongs to the first category. To further substantiate
the above defined categorization of methods, we go over some more examples
for each category.
For methods applying sensitivity analysis we refer to [WFL15] and [SVZ13],
where saliency maps of image data are created to indicate what pixels the model
is most sensitive to, also suggesting where it is focusing on. Methods based on
example comparisons are for instance [Mik+13] and [Car+99], where nearest
neighbor elements from the training data are used. Decomposing a model into
several interpretable sub-models is done in [YZS19], whereas more specifically
inspecting network behavior is done in [LMJ16] after removing nodes or con-
nections and in [MOT15] after changing the input to enhance specific node
activations.

43

We find that in trying to achieve explainability, most methods only briefly, if
at all, treat the notion of what an “explanation” exactly is. More commonly
these methods only aim at proxy measures that shed light on the black box,
but that are not necessarily meant to be explanations themselves. By focusing
foremost on the ultimate goal of explaining neural network decisions to users,
the intermediate goal of mathematically formulating an explanation is arguably
undervalued or overlooked.
While the results of all of these methods are striking, in that they successfully
make networks and their decisions more insightful in one way or another, we
believe that there is still a lot to gain in more formally defining explanations.
We propose a two-step approach of first finding a mathematical definition for an
explanation, which should be applicable to different learning tasks and models,
and secondly trying to interpret this explanation. The interpretation problem
can be tuned to the specific learning task under consideration, while the expla-
nation, once properly defined, can be found by a mathematical (optimization)
procedure, independent of human understanding and in a model-agnostic way.
Note that as such it can be possible that an explanation is found that is difficult
to interpret, but is a (or the) correct explanation nonetheless.11 We elaborate
more on this topic in Section 4.2.1. Our proposed mathematical definition of
an explanation in that section, as well as the discussion heralding it, helps for-
malizing and intuitively validating the above discussed ideas and perspective.

3.2 Bayesian Neural Networks

A common issue with neural networks is that the output is a point estimate: no
uncertainty bounds are given. What’s more, because outputs are forced to rep-
resent probabilities, due to the soft-max activation function in the last layer (see
Section 2.3.1), this point estimate can appear overly confident when confronted
with input elements that are unlike anything seen previously in the training
dataset. For instance, when a classifier has been trained on recognizing cat and
dog images, and an image of a lizard is fed as input, unintended behavior in the
network might result in all sorts of values accumulating in the last layer. Unless
these values are close to each-other, the soft-max function likely squishes one
class output probability score and maximizes the other, leading to an overcon-
fident decision for one class.
To overcome this issue, and to be able to generate a measure of uncertainty in
the neural network prediction, the Bayesian neural network (BNN) has been
developed [Bis97]. While not strictly a pure explainability method, it tries to
tackle some of the same issues arising when using standard “black box” neural
networks. Also, in some applications a proper confidence bound reduces the
need for an explanation.

11This partly solves the paradoxical problem arising from the impossibility of explaining AI
models that are more “intelligent” than humans, and owe their black box nature simply to
the bounds of human understanding.

44

In this chapter we first discuss the theory behind the Bayesian neural network,
as well as the structural differences compared to regular neural networks. We
then go over the training procedure for these types of networks and explain
the Flipout method that is used to improve results. We end the chapter with
implementation results on the MNIST dataset of digits.

3.2.1 Mean-field Variational Bayesian inference

Recall that the standard training procedure for a neural network via optimiza-
tion is (from a probabilistic perspective) equivalent to maximum likelihood es-
timation (MLE) for the weights, see also Section 2.3.1. More explicitly for a
network f(p) and a dataset S we derived the cross-entropy cost function from

C(S, p) = − log(P(S|p)).

Minimizing this cost function comes down to maximizing the probability of the
data being generated from the categorical distribution f(p). From a proba-
bilistic perspective this methods lacks theoretical justification, partly because
it ignores uncertainty that we may have in deciding on the proper parameter
values. From a practical perspective this method is problematic because it can
lead to overfitting.
Of course overfitting can be reduced by adding a regularization term. As we
show in appendix A, using l2 regularization with some regularization parameter
α > 0, so that the new cost function becomes

C ′(S, p) = C(S, p) + α
∑
i

p2
i , (30)

in fact comes down to inducing a prior distribution on the weights, namely

pi ∼ N
(

0,
1

2α

)
. (31)

This approach is already better in practice, as it helps against overfitting. In
theory it comes down to maximum a posteriori estimation, which is similar to
maximum likelihood estimation but is enhanced with the use of a prior dis-
tribution on the data. Note however, that the theoretical justification is still
lacking, and we also still get a point estimate from this training procedure, with
no uncertainty bounds on a given output.
Preferably we would have a parameter distribution that is actually based on
some analysis of the data, which can then be used to generate uncertainty
bounds. More specifically, if the parameters are actually found to follow some
distribution p ∼ Q, we can use this distribution to generate an infinite ensemble
of networks by drawing parameters independently from Q. In other words, we
can thus use a predictor of the form

fBNN(x) := Ep∼Q[f(x, p)].

45

Not only does this method have more solid theoretical justification, as the un-
certainty in the parameter selection is properly taken into account using the
actual training data, we also have access to a distribution for a given network
output of fBNN(x), rather than a point estimate. This distribution follows di-
rectly from the output’s dependence on the parameters p, which follow a known
distribution.
We are free to decide how large an ensemble of networks is used, and note that
these networks do not need to be separately trained, as would be the case for
a naive ensemble method (see Section 2.4.1). A simple draw p ∼ Q is sufficient
to generate a whole new network.

But how do we infer a distribution on the parameters from the data? Using
Bayes rule for the conditional density P (p|S) we may write that

P (p|S) =
P (p, S)

P (S)
=
P (S|p)P (p)

P (S)
∝ P (S|p)P (p),

where P (S), P (p) are the densities of S and p, and P (S|p), P (p, S) correspond-
ing conditional and joint densities. However, we are now interested in actually
finding P (p|S) as a function of p, instead of simply maximizing it with respect
to p. Unfortunately, for most neural networks this density function cannot be
calculated analytically, neither is there a way to efficiently sample from it.
In what is known as mean-field variational Bayesian inference, a suggested
workaround for this problem is to approximate P (p|S) with a more tractable
density function Qβ(p), choosing function parameters β that minimize the dis-
crepancy. [PBJ12; Gra11]
For this purpose the Kullback-Leibler divergence is used, which is a measure of
how one probability distribution is different from a second, reference, proba-
bility distribution [KL51]. For continuous density functions Q and P the KL-
divergence is given by

DKL(Q ‖ P) =

∫
Q(x) log

(
Q(x)

P (x)

)
dx,

which can be interpreted as the expected difference of the logarithms of (ele-
ments drawn from) Q and P , where expectation is taken with respect to Q.
Note the asymmetry in this definition: we more specifically refer to DKL(Q||P)
as the KL divergence of Q from P .
In the current case, the KL-divergence of Q = Qβ(p) from P = P (p|S) is thus
given by

DKL(Qβ(p) ‖ P (p|S)) =

∫
Qβ(p) log

(
Qβ(p)

P (p|S)

)
dp,

46

and the optimal β∗ is to be found by:

β∗ = arg min
β

∫
Qβ(p) log

(
Qβ(p)

P (p|S)

)
dp

= arg min
β

∫
Qβ(p) log

(
Qβ(p)P (S)

P (S|p)P (p)

)
dp

= arg min
β

∫
Qβ(p) log

(
Qβ(p)

P (p)

)
dp−

∫
Qβ(p) log(P (S|p))dp

= arg min
β

DKL(Qβ(p) ‖ P (p))− Ep∼Qβ [log(P (S|p))]

As we will further elaborate on in Section 3.2.3, this resulting expression, also
called the variational free energy, is the cost function we want to minimize when
training a Bayesian neural net. We shall from now on denote it as:

F(S, β) := DKL(Qβ(p) ‖ P (p))− Ep∼Qβ [log(P (S|p))]. (32)

This cost function embodies a trade-off between letting the parameters have
values as if drawn from a prior P (p), while simultaneously accounting for the
extra information received from observing the data S. Indeed, the first term
in the above expression aims to reduce the divergence between the estimated
distribution of the parameters and its prior, while the second term, when mini-
mized, maximizes the expected log-likelihood of the data.

As was the case for the cost function in standard neural network training, this
cost function too cannot be exactly minimized. The gradient descent optimiza-
tion procedure will be addressed in Section 3.2.3.

3.2.2 The Bayesian network format

Before digging deeper into the mathematical derivations and procedures of the
training process, let us pause and get an understanding of what a Bayesian neu-
ral network actually looks like.

The architecture of the network can be the exact same as that of a standard
neural network, although each parameter is now replaced with distribution, see
Figure 10.

47

Figure 10: Visualization of standard neural network (left) and Bayesian neural
network (right) architectures. The regular neural network is depicted as having
fixed weights and biases (here the bias is represented by an extra node on the
right), while the Bayesian neural network has the same connections, but variable
parameters represented by some probability distribution. The picture is taken
and adapted from [Blu+15].

With the original architecture’s parameters replaced by random variables, a
Bayesian neural network’s parameters are in fact those that define the distribu-
tions of these random variables. More explicitly, we let p ∼ Qβ represent the
parameters of the standard network f(x, p). The Bayesian neural network is
now the function given by

fBNN (x, β) = Ep∼Qβ [f(x, p)].

In practice the expectation is not computed analytically, and we often implicitly
use the Bayesian network in its approximate form

fBNN (x, β, n) :=
1

n

n∑
i=1

f(x, p(i)), with p(i) ∼ Qβ for all i ∈ [n]. (33)

The number of parameters of a Bayesian neural network need not be significantly
higher than the number of parameters of a regular neural network with the
same architecture. If, for example, every single parameter pj for j ∈ [P] is
independently normally distributed, the actual number of parameters in β is
twice the original number P of parameters: a mean and a variance for each
parameter pj is needed.

48

3.2.3 Training

We now go over the training algorithm for Bayesian neural networks. We eventu-
ally show that the back-propagation algorithm in Section 2.3.2 is needed again,
but the steps leading up towards it are different. The technique comes from
the paper by Kingma and Welling [KW13], further generalized and improved in
[Blu+15].

We start by repeating the cost function, equation 32, that is used for training:

F(S, β) = DKL(Qβ(p) ‖ P (p))− Ep∼Qβ [log(P (S|p))].

Now recall from Section 2.3.1 that the original cost function was computed as
the negative log-likelihood of the data, i.e.,

C(S, p) = − logP (S|p),

so that we can thus write

F(S, β) = DKL(Qβ(p) ‖ P (p)) + Ep∼Qβ [C(S, p)].

To make things more concrete, we show the derivations for the specific form
of the posterior Qβ and prior P(p) that we use in our implementation (Section
3.2.4), namely diagonal Gaussian distributions.12 For this case the first term of
the cost function can be analytically integrated. Let Qβ(p) be a diagonal Gaus-
sian density function with mean µ and diagonal covariance matrix represented
by the vector σ ∈ RP , thus β = (µ, σ), and let the prior distribution of p, P (p),
be given by N (0, I). Then we find (in appendix B) that

DKL(Qβ(p) ‖ P (p)) =
1

2

P∑
j=1

(µ2
j + σ2

j − log(σ2
j)− 1) (34)

The remaining part of the cost function, or more importantly its gradient, can
often not be found analytically. Note that we are dealing with the cross-entropy
cost function defined by equation 11, thus involving the full complexity of the
neural network. To find the gradient of this expression a monte-carlo sampling
technique is used. A first attempt at this is to write

∂

∂β
Ep∼Qβ [C(S, p)] =

∂

∂β

∫
Qβ(p)C(S, p)dp

=

∫
Qβ(p)

∂ logQβ(p)

∂β
C(S, p)dp

= Ep∼Qβ

[
∂ logQβ(p)

∂β
C(S, p)

]
,

12Although a mixture of two Gaussians for Qβ is shown in [Blu+15] to achieve the highest
test accuracies, this requires more parameters for only a slight improvement in accuracy.
However, for our purpose of investigating explainability our priority is not to achieve the
highest test set accuracy.

49

and estimate this expression by sampling p ∼ Qβ . However, it is found that
this approach leads to a high estimation variance. Although a sample of size
m decreases this variance by 1

m , still an impractically large sample size is nec-
essary to bring this variance at the desired level for approximation.[PBJ12] To
overcome this issue a reparameterization trick is proposed.[KW13] The idea is
that p is first reparameterized using a random variable ε ∼ N (0, I) as

p = µ+ σ � ε, (35)

so that by sampling ε we get samples for p that are used to approximate the
expectation. Sampling ε rather than sampling p directly now allows computation
of the derivatives with respect to µ and σ.
More explicitly, letting q(ε) be the density function of ε, we first observe from
the respective gaussian density functions and equation 35 that, slightly abusing
notation, Qβ(p)dp = q(ε)dε, which means we can indeed take expectations with
respect to ε instead of p. It then follows that

Ep∼Qβ [C(S, p)] = Eε[C(S, p(µ, σ, ε))]

≈ 1

m

m∑
i=1

C(S, p(µ, σ, ε(i))) (36)

with ε(i) ∼ N (0, I) for all i ∈ [m].

Combining equations 34 and 36 we conclude that the full cost function can be
approximated by

F(S, β) ≈ 1

2

P∑
j=1

(µ2
j + σ2

j − log(σ2
j)− 1) +

1

m

m∑
i=1

C(S, p(β, ε(i)))

with ε(i) ∼ N (0, I) for all i ∈ [m].

In practice batch gradient descent is used to find the minimum of this function.
However, the first part of the cost-function is independent of the data, and does
not scale with it. Repeating it for each batch would have the effect of placing
too much weight on this term in the training procedure as a whole. In order to
use batch gradient descent we thus first divide the cost function into separate
parts. Let Bt ⊂ S be data batches for t ∈ [M]. Now let

Ft(β) :=
1

2M

P∑
j=1

(µ2
j + σ2

j − log(σ2
j)− 1) +

1

m

m∑
i=1

C(Bt, p(β, ε
(i))),

so as to divide the first part of the cost-function equally among the batches. In
[Blu+15] it is noted that different distributions of this part over the batches are
possible, if one only takes care that the entire portion is accounted for just once
per epoch.

50

For some learning rate λ > 1 and a β1 chosen in accordance with the prior
distribution13 the gradient descent iteration is now given by

βt+1 = βt − λ
∂Ft(βt)
∂β

for t ∈ [M].

Note that for the derivative of the regular cost function the back-propagation
algorithm of Section 2.3.2 will again be used. Of course for the training pro-
cedure of Bayesian neural networks the same optimization techniques discussed
in Section 2.5 apply, and here too the common choice is the Adam optimizer.

To even further decrease the variance of the estimation technique in (36), Wen
et al.[Wen+18] propose a method called Flipout. They point out that for each
draw of ε ∼ N (0, I), all training examples in (some batch of) the data S share
this same random perturbation in the computation of the gradient of C(S, p(ε)).
This induces correlations between gradients of the cost function C, implying that
this variance cannot be eliminated by averaging. They propose, given a random
draw of “weight perturbations” ε, to multiply each coordinate of ε randomly by
−1 with probability 0.5, for every single datum x ∈ S.
They note that although this does not make the weight perturbations inde-
pendent, it does decorrelate them while not changing the original (symmetric!)
distribution from which they are sampled. Consequently, flipout yields an unbi-
ased estimator for the loss gradients that has a lower variance when averaging
over a mini-batch.
Wen et al. further show that just explicitly sampling different ε for each datum
x would come at a much greater computational cost than their flipout method,
which can be applied relatively easily by writing computations on an entire
mini-batch in terms of matrix multiplications using random sign matrices (i.e.,
matrices with entries ±1).

3.2.4 Implementation of Bayesian and Standard Neural Networks

In this section we implement and compare a regular neural network as described
in Chapter 2.2 to a Bayesian neural network. As a dataset we use the MNIST
[LCB13] dataset of handwritten digits, consisting of 28 × 28 pixel black and
white images. The training set consists of 60000 elements, roughly equally di-
vided among the digit classes 0 till 9, and we test on 10000 images.
We write the code in Python, mainly aided by the packages TensorFlow and
TensorFlow Probability. As our purpose is not achieving the highest accuracy,
we simply run on a normal (16G RAM) laptop, training for roughly 15 minutes.

13The common choice here is a mean zero and identity variance prior distribution for the
parameters, as we described earlier on. However the theory of Section 2.3.3 on weight ini-
tialization is applicable here as well. Recently this theory has been further developed for
Bayesian neural networks in [RMF18]. We will not go into those details here and assume
standard normal priors.

51

Implemented Architectures

The standard neural network architecture starts (as seen from the input layer)
with 2 convolutional layers of 100 and 80 kernels, respectively, each followed by
an average pooling layer. The convolutional windows have sizes 5 × 5. After
these layers we add two fully connected layers of 240 and 120 nodes. This stan-
dard network has 1173850 parameters.
For the Bayesian neural network we use a similar architecture, only now with 90
and 50 kernels in the convolutional layers, and 180, 120 nodes in the subsequent
fully connected layers. This Bayesian network has 1157550 parameters.
We deliberately aimed for the number of parameters as well as the training
times to be approximately equal between the two networks in order to get a
fair comparison. Roughly following this restriction, the hyper-parameters for
each network have further been tuned using k-fold cross-validation (see Section
2.1.3) on the training data set, with k = 12.
For both networks we furthermore used dropout (see Section 2.4.2) on the sec-
ond convolutional layer and the second fully connected layer, with a fraction of
0.5 and 0.25 nodes removed, respectively.

Bayesian network implementation details

To create the Bayesian neural network we used flipout layers in the implemen-
tation, that apply the flipout method, described at the end of the previous sec-
tion, during training. Each forward pass of input data through an implemented
Bayesian neural network layer is intrinsically random, due to the random draw-
ing of parameters from the layer parameter distribution. However, when an
entire batch of data elements is passed simultaneously through a flipout layer,
only a single draw ε ∼ N (0, I) is used as random perturbation, and the param-
eters are decorrelated by random multiplication of their perturbations by ±1.
For truly independent parameter draws the elements should thus be passed in
different batches.
When inputting a single element to the Bayesian neural network using (33) with
n network samples, in practice we first create n identical copies of the element,
and divide these copies into batches to be fed as input to the model. Creating
one big batch of size n to be passed through the network as a whole has speed
advantages, although the weights are not truly independent in this set-up, due
to the design of the flip-out layers. On the other hand, for truly independent
weights n batches of size 1 would have to be passed through the network, but
then the computational time reduction trick of the flipout layers is no longer
exploited.

52

Training results

We used the Adam optimizer with learning rate λ = 0.001 and decay parameters
γ1 = 0.9 and γ2 = 0.999 (see Section 2.5). In coming sections, when referring to
the Adam optimizer, these are the default parameter values we use whenever we
do not explicitly mention either the learning rate or the decay parameters. We
divide the training data in batches of size 256. The accuracy of the standard
neural network on the test data is given by 0.9742. For the accuracy of the
Bayesian neural network we note that this depends on the sample size used, see
(33). Roughly taking our preferences for accuracy and low output variance as
well as computation time into account, we settle for a sample size of 50 (divided
into 10 batches of size 5) for most purposes, unless mentioned otherwise. This
leads to an accuracy of 0.9675.

Comparing results on different test cases

We now show some results for specific image examples. We created bar plots
showing the probabilities assigned to each digit class by both regular and Bayesian
neural networks on some problematic examples, i.e., images for which both net-
works fail to predict the correct digit. As the Bayesian neural network is in fact
an ensemble, given by (33), we also show the standard deviation computed from
the sample of 50 networks used in that case. It is represented as an error bar,
where the bottom part is truncated so as not to fall below 0. The length of the
error bars give an indication of the (expected) deviation from the sample mean
experienced for each single draw of the parameters, it does not represent the
standard deviation of the mean itself. Assuming 50 fully independent draws,
the latter would be given by dividing the error bar lengths by

√
50.

In Figures 11 and 12 we see the standard neural network being overly confident
about a wrong decision. The Bayesian neural network does make the same mis-
takes, but shows more correctly to be uncertain about these predictions.

These images represent a behavior we recognize more generally. For a sample of
1000 test images we find that on average the Bayesian network assigns a prob-
ability of 0.55 to the maximum probability class when incorrectly predicting a
label, compared to 0.74 for the regular network. Of course one might object that
the Bayesian neural network perhaps generally assigns lower maximum proba-
bility in the first place. However, we find the difference on correctly predicted
labels to be smaller: when correctly predicting a label, the maximum proba-
bility class is assigned 0.93 by the Bayesian network and 0.97 by the regular
network, on average.

53

Figure 11: Incorrect prediction of a Bayesian neural network (using 50 samples)
and a regular neural network on an element of the test set. The correct digit
class is 6 but both networks predict a 5.

Figure 12: Incorrect prediction of a Bayesian neural network (using 50 samples)
and a regular neural network on an element of the test set. The correct digit
class is 7 but both networks predict a 2.

54

Another striking difference is the behavior of these networks on input elements
that are very different from the training data. We show the behavior on random
noise, the average of the training data, and a randomly created image from a
normal distribution with mean and covariance estimated from the training data.
In the latter case the values above 1 and below 0 are set at 1 and 0, to stay within
the bounds of pixel intensities used for other input images. In each case we find
the Bayesian neural network to behave more trustworthy, in the sense that it
acknowledges that no single digit class should be assigned a large probability.

Figure 13: Images to be presented to the networks that is unlike any training
data seen before. Top left: Mean of the training data. Top right: Noise that
is independently generated between 0 and 1. Bottom left: Uniform value of
0.5. Bottom right: Random element generated from a normal distribution
using average and covariance estimated from the training data.

55

Figure 14: Regular neural network responses to the data inputs of figure 13.

56

Figure 15: Bayesian neural network responses to the data inputs of Figure 13.
Note that in comparison with the regular network outputs, as depicted in Figure
14, we see probability scores that are more spread out. Although the “Noise”
and “Uniform” inputs do not result in a uniform distribution among the classes,
it is an improvement compared to the regular neural network’s behavior. Also
on the “Mean” and “Random element” inputs we find a behavior that is more
in agreement with our general intuition when seeing these input images.

57

We find that although the Bayesian neural network does not achieve an equally
high accuracy as the regular neural network, it does exhibit more preferred be-
havior when encountering entirely new data or unclear situations. This suggests
it has a better intrinsic understanding of the data in general, making it better
suited for explainability tasks. We get back to this point in Section 4.4.3, after
having applied a new explainability method on a Bayesian neural network.
For now we note that a proper comparison between different explainability meth-
ods requires using the same model, which is why in the coming sections we will
apply LIME and RDE to a Bayesian, rather than a regular, neural network.
However, the results of this chapter alone may be sufficient reason to stick with
the Bayesian neural network anyway, when working on explainability problems.

3.3 LIME

Currently one of the most popular approaches to achieve explainability of black
box models is the LIME algorithm, short for Local Interpretable Model-Agnostic
Explanations[RSG16]. As the name suggests this method is suitable for any
model, and delivers local explainability, i.e., explaining the reason for f(x) given
an input element x.
The method is based on approximating the true (black box) model f by some
interpretable model g in the vicinity of the input x for which an explanation is
required. This is done by minimizing the weighted difference between f and g
with added complexity constraints on g, where weights are determined by the
distance from x: the closer to x, the more important the difference becomes.
We give a more detailed description of how the method works in the following
introductory section. Although the authors first briefly present their method
generally, i.e., they acknowledge that different families of functions can be chosen
to supply the approximator g, and that the difference between f and g can be
defined in different ways, we present the LIME method by following the same
implementation decisions as in the paper. After describing the method we go
over the implementation and results, discussing the quality and usefulness of
the explanations offered as well as the drawbacks of this method.

3.3.1 Introducing the method

We again let f : X → Y be a neural network as defined in Section 2.2 and let
x ∈ X ⊂ Rd be an element for which we wish to explain its outcome f(x) ∈
Y . An essential characteristic of the LIME method is the reduction of the
feature space Rd to an interpretable representation space Rd̃ with d̃ < d. The
authors justify this by stating that the explanation needs to be understandable
for humans, thus a less complex model is necessary to begin with. In other
words: explaining a model based on a too large number of actual (sometimes
by itself incomprehensible) features is destined to fail from the start. The idea

is thus to create a model g : Rd̃ → Y that outputs values that are close to the
true outputs given by f in the neighborhood of x. To properly fit g to f , their
difference on a set of sampled elements in the vicinity of x is taken.

58

As our implementation will again be based on the MNIST data set, we describe
the LIME method for image recognition. Here the interpretable representation
space is defined by dividing x into predetermined contiguous patches of pixels,
i.e., super-pixels, see Figure 16. By optionally graying out some of these super-
pixels, elements of the representation space are given as binary vectors indicating
the presence or absence of a super-pixel. To divide the input image x into
super-pixels, the Quickshift algorithm [VS08] is used, but many different image
segmentation algorithms exist for this task, and we do not go into the details of
these algorithms.

Figure 16: A treefrog image seperated into super-pixels.

With d̃ the chosen number of super-pixels recognized in the image x, we now

let x̃ ∈ {0, 1}d̃ represent an element of the interpretable representation space.
Here 1 indicates the presence of an original super-pixel and 0 indicates a grayed
out super-pixel, so that x itself would correspond to a full vector of ones in this
interpretable representation space.
Using this representation we generate a dataset of perturbed samples based on
x, denoted by S̃ = S̃(x), that will be used to fit g to f on. Elements z̃ of
S̃ are generated by randomly choosing a number of indices i ∈ [d̃] for which
we set z̃i = 1, with the rest getting value 0. Here both the random selection of
indices as well as the number of indices is chosen uniformly at random. As such,
elements of S̃ are derived from the true image x, but have randomly grayed out
super-pixels, as can be seen in Figure 17.

Figure 17: A selection of elements of S̃(x), where x refers to the image of the
treefrog in Figure 16.

59

To replace removed super-pixels any other color than gray can also be used,
considering what approach is most reasonable in the context. The super-pixel
can also be replaced by the average value among all pixels in it. We use the
black background color observed in the MNIST data set to replace super-pixels
that are removed. Colors are commonly implemented as 3-dimensional vectors
of integer elements between 0 and 255, possibly normalized. Black, being rep-
resented as 03, is then a natural choice to represent the absence of input signal.

We now define a function gβ : {0, 1}d̃ → R to represent an interpretable model.

With β ∈ Rd̃, and β0 ∈ R an intercept we let

gβ(z̃) := β0 + β · z̃.

The goal is to choose parameters β that make g closely fit the true (inexplicable)
model f in the neighborhood of x. The intercept β0 will also be fitted, but we
leave this implicit in this analysis as our interest lies mainly in the coefficients of
the super-pixel variables. (One can from now on also consider β to have an extra
dimension indexed by 0.) We assume the case of a classifier f : X → [0, 1]N ,
and focus only on the output of f that represents the discovered class of x. For
the example of the treefrog in Figures 16 and 17 this means we only care to
approximate g to the output coordinate of f corresponding to the probability
of a treefrog. We denote this coordinate by ix := arg maxi(fi(x)).

Let for a given z̃ ∈ {0, 1}d̃ its representation in the original feature space be
denoted by z. To fit g to f we use the locally weighted square loss, with the
weights determined by a gaussian with width σ, i.e.,

β∗(x) = arg min
β

∑
z̃∈S̃(x)

(fix(z)− gβ(z̃))2e−
D(x,z)2

σ , (37)

where we use as distance metric D the cosine distance

D(x, z) = 1− 〈x, y〉
||x|| · ||z||

.

The above expression can then be directly solved using weighted least squares.
However, in the source code of the method the parameters β are slightly reg-
ularized, and the expression is actually solved using weighted ridge regression,
see [Hol73], with regularization constant 1.
The actual explanation can now be derived from β∗. For super-pixel j ∈ [d̃] the
definition of g shows that removing it from the picture would contribute −β∗j
to the (highest) outputted probability of label ix. In this sense we observe a
type of feature importance from β∗, based on features that make up the inter-

pretable representation space Rd̃. Simply put, if a certain super-pixel’s presence
is important for the model’s outcome, it has a high corresponding value in β∗.
Negative values may also occur, signaling that the super-pixel actually has a
negative effect on the outputted probability of the label under consideration:
the label has been outputted despite the presence of that super-pixel.

60

3.3.2 Implementation and results

We implement the Bayesian neural network as described in Section 3.2.4 on
the MNIST data set, using a sample size of 50 networks for the actual model.
We use the Quickshift algorithm to divide the input images into super-pixels
14 creating approximately d̃ ≈ 13± 2 super-pixels in a given image, the precise
number depending on the image. The regression weights in equation 37 are
determined by letting σ = 0.25, following the default settings of the method.
Finally we let |S̃| = 500, in other words we generate 500 samples that are used
to fit the linear interpretable model. Using these settings it takes a few minutes
to generate an explanation for a given image.
We end this section with a selection of results of the LIME method on MNIST
images, and briefly discuss their effectiveness on explainability.

Figure 18: Results of the LIME method on (arbitrarily chosen) digit labels 2-5.
Original images are depicted on the left, LIME explanations on the right. The
super-pixels are shown as areas of similar color, where the color represents the
feature importance according to the mapping shown on the right of the image.

14The settings used are a kernel size of 1, maximum distance set to 4 and ratio to 0.1.
(See [VS08] for details on the algorithm and these settings.) We decided on these settings
manually, by observing results for different images and taking computation time into account.

61

We notice that the LIME method is excellent in finding the relevant information
used in the 28 × 28 grid, namely the actual digit. This might seem redundant
at first, as the explanation looks almost identical to the original input, but it is
important to realize that the algorithm receives 784 abstract input dimensions,
and LIME is able to filter out a small important subset of those, assigning rel-
evant importance.
Of course the MNIST data-set with its black uninformative background does
not reveal all the benefits of the method. In a widely known example of the
importance of AI explainability methods, LIME is shown to detect a husky
wrongly being labeled as a wolf because the algorithm is focusing on the snowy
background.

Figure 19: LIME algorithm showing how a false classification of a husky as a
wolf is caused by the snowy background, thus detecting a flaw in how the trained
model operates.

Looking back at the results of Figure 18, clearly LIME is successful in detecting
the important features that contribute most to the output. However, we believe
that simply highlighting these features, although useful in practice, does leave
part of the actual “explanation” to the imagination.
The proxy measure of feature importance is different from a clearly defined ex-
planation, in the sense that the reason for an image to be labeled as it is, does
not become directly clear. We can see what pixels are part of a specific digit, or
a husky or a wolf (if the model is correctly trained), but have no understanding
as to how these pixels lead to that label. The more pronounced super-pixels
do indicate that their removal would have a larger local effect, but even if the
super-pixels making up the digit would be more detailed and more conveniently
placed (more on this later) this does not produce an actual explanation.
A reasonable objection to the above approach is that the background color
(black) is identical to the color used for removing super-pixels in the original
image. Although these are the standard settings of the algorithm, which is un-
derstandable for image data, this does result in a lack of importance measuring
of black parts of the input images for the MNIST data set. For this reason
we did decide to experiment with coloring removed super-pixels gray instead of

62

black, which effectively allows the possibility of attributing importance to the
absence of input signal at certain locations, rather than solely focusing on the
importance of non-zero input signal pixels. However, the method turns out be
arguably less effective for these settings, as can be seen in Figure 20.

Figure 20: Results of the LIME method on digit labels 1, 2 and 6. From left
to right: original images, LIME explanations using erase color black, LIME
explanations using erase color gray.

The effectiveness of the method clearly depends on the specific configuration
of super-pixels. After some experimentation, we conclude that it is difficult
to consistently achieve a good configuration. Of course one can decide on the
super-pixels manually, prior to running the LIME method. Although we ac-
knowledge that this could give better results, we have chosen not to follow
through with this approach. This is because we believe we must be careful not
to use too much prior knowledge on what a good explanation resembles. For
instance, we may assume the absence of light pixels in the upper-right part of
the digit 6 distinguishes it from an 8, but selecting super-pixels to specifically
show this to be true is an approach more related to hypothesis-testing than to
truly explaining outputs.
Perhaps more importantly, real situations where model explainability is re-
quired might not present themselves with clear strategies on how to fine-tune
the method’s parameters specifically for each input element. The point is that
we do not yet fully understand this input element prior to running the explain-
ability method! This further motivates us to be careful and not optimize too
much for creating the best possible images.

63

3.4 RDE

We now turn our attention to a more recent method for explaining neural net-
work decisions, called RDE (Rate Distortion Explanation) [Mac+19]. In con-
trast with LIME, this method is not model-agnostic, as the algebra is specifically
derived and optimized for the neural network case. However, it is also a local
method, thus explaining f(x) for a given x.
The main idea of the method is to measure feature relevance based on the pre-
dictor’s diminished performance when replacing selected features with noise. If,
for a given input element x, some features xi, for i ∈ [d], can safely be replaced
by noisy input (i.e., without affecting the model’s ability to predict the correct
label) these features can be considered less relevant.
The authors first formulate the binary problem of dividing features into two
sets: relevant and irrelevant. They show that the computational complexity
of finding such sets of relevant features makes the method infeasible in prac-
tice, and thus propose a continuous problem relaxation with a heuristic solution
strategy.

In the next section we describe their approach for the continuous problem of
assigning relevance scores to features. In the sections after that we treat the
implementation and discuss the results.

3.4.1 Introducing the method

Let f : X → Y be the neural network defined as usual with X ⊂ Rd and
Y ⊂ [0, 1]N . Let for a given x ∈ X the relevance score for its d features be
encoded by a vector s ∈ [0, 1]d, with higher values representing more relevant
features. Let n be some noise vector, randomly distributed according to a
gaussian distribution based on mean and covariance estimated from the training
data. Now define

a(x, n, s) := x� s+ n� (1− s),

where, ideally, the least important features, based on their score s, are replaced
most by noise n, whereas important features with coordinates of s close to 1 are
barely changed. To measure the correctness of a given choice of s we define the
expected distortion as

Dj(s) := En[
1

2
(fj(x)− fj(a(x, n, s)))2], (38)

where j is the class of interest, which can optionally be given by arg maxi fi(x),
i.e., the relevant index based on the maximal probability label of x.
If the feature importance is indeed in line with the elements of s, we would
expect a low distortion. Of course there is the trivial case of D(1) = 0, where
we have assigned every feature an importance score of 1. However, the challenge
becomes to simultaneously find a small vector s and a small distortion D(s).

64

Using a regularization parameter λ for the size of s, the problem is now formu-
lated as finding

s∗ = arg min
s∈[0,1]d

Dj(s) + λ||s||1. (39)

To efficiently approximate the above expression we first write the expected dis-
tortion’s composition into bias and variance as

Dj(s) = Ea

[
1

2
(fj(x)− Ea[fj(a)] + Ea[fj(a)]− fj(a))2

]
=

1

2
(fj(x)− Ea[fj(a)])2 +

1

2
Va[fj(a)]. (40)

We now focus on the unknowns of the above expression, namely Ea[f(a)] and
Va[f(a)], discarding from now on the dependence on the j-th index. To find
these unknowns the layered structure of f is used to propagate the distribution
of neuron activations through the network. Note that from here on this method
becomes model-specific, whereas the theory until (39) can be more generally
applied.

To propagate the distribution of activations through the network we use an ap-
proximate method, called assumed density filtering. At each layer we assume a
Gaussian distribution for the input, transform it according to the layer’s func-
tional form and project the output back to the nearest Gaussian distribution
using KL-divergence. It is shown in [Min01] that for a fully connected layer
with ReLU activation function, it suffices to match the first two moments of the
distribution. In other words, assuming that the layer inputs (i.e., the activations
of the previous layer or the inputs of the network) are normally distributed, we
only need to compute the mean and variance of the layer outputs. The closest
gaussian distribution, based on KL-divergence, can then simply be defined using
this mean and variance.

For a given input distribution N (µl, vl) of the l-th layer, the task is now to find
the output distribution’s mean and variance: µl+1 and vl+1. These will be used
to define the closest Gaussian to the output distribution, and so on, until the
first two moments of f(a) are found, which can be plugged into (40). The first
and second moments of the input layer’s distribution are readily given:

µ1 := E[a] = x� s+ E[n]� (1− s) (41)

v1 := V[a] = diag(1− s)V[n]diag(1− s).

65

We use corollary 2.8.1 to redefine the network as a set of fully connected layers
and for simplicity we assume that the network activations within each layer are
uncorrelated.15 This means we can focus on the diagonal terms of covariance
matrices only. For some given input a, a weight matrix W , bias b and a ReLU
activation function σ, we first note that

E[Wa+ b] = WE[a] + b, and (42)

V[Wa+ b] = WV[a]WT

Focusing only on the diagonal, using the notation Vdiag for the vector of diagonal
terms of a covariance matrix, we further find that

Vdiag[Wa+ b] = (W �W)Vdiag[a]. (43)

To deal with the ReLU activation we use the following result, shown in [FH99]:

Lemma 3.1 Let z be distributed normally with mean µ and variance v. Then
for a ReLU activation function σ the mean and variance of σ(z) are given by

µrelu(µ, v) = µΦ(µ/
√
v) +

√
vφ(µ/

√
v),

vrelu(µ, v) = (µ+ v)Φ(µ/v) + µ
√
vφ(µ/

√
v)− µ2

relu(µ, v),

where Φ and φ are the standard normal cumulative distribution function and
normal density function, respectively.

We can apply the lemma to the results of equation 42 and 43, noting that the
activations are still normally distributed after the affine layer transformation.
We slightly abuse notation, firstly by letting vl refer to the vector of diagonal
terms of the variance of the l-th layer input, rather than the full covariance
matrix (as it is assumed diagonal anyways), and secondly by implicitly letting
square root, division, and normal distribution functions be applied element-wise.
For clarity we omit some of the layer dependency and let W = Wl and b = bl in
the following. We find that we can propagate the moments of the distribution
by the following iteration:

µl+1 = (Wµl + b)Φ

(
Wµl + b√
W �Wvl

)
+
√
W �Wvlφ

(
Wµl + b√
W �Wvl

)
,

vl+1 = (Wµl + b+W �Wvl)Φ

(
Wµl + b√
W �Wvl

)
+(Wµl + b)

√
W �Wvlφ

(
Wµl + b√
W �Wvl

)
− µ2

l+1.

15This assumption is not based on the premise that this is indeed approximately the case,
as it is highly likely that correlation occurs in the network activations. However, a better
approximation technique used by the authors leads to comparable results when it comes
down to explainability and successfully determining feature relevance. Therefore we chose the
computationally simpler approach of only looking at the diagonal terms of the propagated
distributions, which comes down to assuming uncorrelated activations.

66

Starting with (the diagonal elements of) (41), this iteration eventually gives the
unknown last layer moments required in (40).
Having found the proper differentiable functional form of the distortion it is
now possible to use gradient descent optimizers to tackle equation (39).

3.4.2 Implementation and results

We implement the RDE method on the MNIST dataset using a Bayesian neural
network by replacing the layer parameters of the previous paragraph by stochas-
tic variables. These are drawn from distributions that are in turn based on the
Bayesian neural network distribution parameters. For computational efficiency
we only take one draw in each step of the gradient descent, in effect thus using a
Bayesian network with sample size 1 (as defined in (33)). The actual parameter
randomness obtained from using a Bayesian network rather than a normal net-
work is then accounted for by the many steps of the optimization procedure, as
each step uses a different network. Note that this approach works similarly to
stochastic gradient descent for training neural networks, where every step of the
iteration is based on different data elements. Also, optimization using different
parameters in each iteration is applied similarly in the training of the Bayesian
neural network itself.

For the actual stochastic gradient descent optimization in this case we use the
Adam optimizer with learning rate λ = 0.01, and decay parameters as before.
We use projected gradient descent, meaning that the variable s is projected onto
[0, 1]d after each update, as it is restricted by this subset.
We set the regularization parameter to λ = 0.3 and start the optimization with
s = 0.2 · 1d, following the approach of [Mac+19]. We show a single example on
each of the 10 digits, depicting the resulting s∗ from (39) for each case.

67

Figure 21: Resulting importance vector s after optimization, shown for a single
case of each digit class. The original images are on the left of the pairs.

The images clearly show feature importance in a more intuitive way than in the
LIME method results. Rather than simply showing the pixels that are part of
the digit, we more generally see the importance attributed to different parts of
the input images. In contrast with the LIME method, there is also no need to
divide the input into (understandable) super-pixels prior to running.
Although the results are arguably more interesting, we are still only witnessing
feature importance. More explicitly the images show which pixels are most
sensitive to replacement by noise. The concept of what an actual explanation
is will be a point of discussion in the next chapter.

68

4 Explanatory Vector Decomposition

We propose the EVD-method, short for Explanatory Vector Decomposition. As
briefly hinted in Section 3.1.3, the method originates from the discussion on
what an actual explanation is and the ambition to find a simple mathematical
definition for this concept. In short we define an explanation as a movement in
input space, for which we compute its explanation strength as impact (difference
in output probability) divided by vector length. After deciding on a “neutral”
base point in the input space, we aim to decompose the vector from this base
point towards the input element under consideration into an explanatory part
and a general part.

4.1 Data Preparation

It is always good practice in machine learning to prepare data before supplying
it to the algorithm. The MNIST data set has for instance been arranged to only
have features in [0, 1], and does not contain any (relative) outliers. Of course,
further preparations like centering and scaling the data are in principle unnec-
essary, as the first layer of a neural network can also take care of this. Indeed,
we have shown that the current form of the MNIST data set is good enough for
the training of high-accuracy (Bayesian) neural nets, as well as the application
of the LIME and RDE explainability methods.
However, the EVD-method will make such significant use of the input space of
the model that we decide to more explicitly propose a proper data preparation
procedure to optimize its performance. As we will see, the proposed data prepa-
rations in this section substantiate and justify the use of some definitions in the
next sections. Given a training data set SX ⊂ Rd we put forward the following
step-wise procedure.

1. First, any features that are constant for the full training data set are
removed. Although this may be unnecessary with regards to algorithmic
behavior, not using these features, and explicitly acknowledging this, does
make the explanation method more honest.

2. Although this already has been taken care of in the MNIST data set,
for completeness we do mention how we would deal with outliers in the
data. For each dimension separately we bring the extreme values back
to a high percentile value of the data in that dimension, e.g., the 99.9th
percentile, by straightforward cutting off of values, or possibly by applying
log-scaling, or both. This ensures that the extreme values are still noticed,
but do not disrupt the mean and other statistics computed on the data.

3. The next step is to normalize the data. We compute the mean of the
training data SX and subtract this value from each element. For further
reference we denote this mean as xmean.

69

4. If the variance of some input feature is very low, we generally expect little
movement along this dimension. This not only holds for elements x ∈ SX
themselves, but preferably also for any type of vectors and movements in
input space that we encounter in the EVD-method.
A first option for controlling this is to divide each dimension by its es-
timated standard deviation. However, the more general approach, also
known as principal component analysis, includes covariances between fea-
tures in the procedure. The full transformation we use, derived in ap-
pendix C, is for each x ∈ SX to apply

x→ T (x− xmean) = D−
1
2PT (x− xmean). (44)

where P is the matrix with columns given by orthonormal eigenvectors
of the covariance matrix estimated from SX , and D the diagonal matrix
with the corresponding eigenvalues.

5. Although dividing by (estimated) standard deviations is a simple way to
normalize a (centered) normally distributed variable, the features of x, or
Tx when changing systems, need not be normally distributed. In fact, we
are more inclined to believe the “true” distribution has fat tails, assuming
that more extreme values than those that have been observed in SX are
likely to occur when experimenting with diverse movements in the input
space X.
If the estimated variance for a dimension i is very small, with Dii ≈ 0,
the transformation becomes extremely sensitive to changes in this i-th
dimension. In practice we can for example think of the pixels at the edge
of the images, which may have values close to 0 for the entire data set.
While we do deliberately choose T to be more sensitive to changes in
these pixels, it becomes impractical when the division by values close to 0
for some dimensions suddenly leads to extreme values, overruling all the
information in other dimensions.
However, noting that the data has been normalized, if a dimension i has an
impractically small variance Dii, it must be the case that PT (x− xmean)
is always close to 0 in this i-th dimension. Assuming that this value
is so close to zero that the model f cannot possibly rely on it for its
classification, we can safely remove the dimension altogether, and change
D and P accordingly.

In what follows we will use the notation x ∈ XT ⊂ RdT when referring to an
element of the input space SX that has been transformed by subtracting xmean

and applying (44), possibly with dT < d. We also write v ∈ XT for more general
vectors v that are represented in the basis formed by the dT columns of P , and
scaled by inverse standard deviations.
When visualizing vectors v ∈ XT , we must first apply the inverse transformation
T−1, thus actually depicting T−1v. To similarly invert the procedure when
visualizing static points x ∈ XT , we also add xmean back for interpretability.
Assuming the dimensionality reduction causes negligible information loss, we
can safely apply the transformation T−1Tx = x to all data before training.

70

4.2 Introducing the method

As discussed in Section 3.1.3, many methods for explaining neural network deci-
sions do not produce an explanation directly, but rather return proxy measures
as tools that aid the user in coming up with the actual explanation by him or
herself. Comparing different methods in this field of research is notoriously dif-
ficult, as a method’s quality is not directly based on its output, but on the more
subjective notion of how effectively this output can be used to form intuitive
explanations.
In the LIME and the RDE method a type of feature importance is returned,
from which the user can conclude what the reason, the actual explanation, for
an output might have likely been.
In some cases, like in the LIME-method for image recognition applied on the
MNIST data-set, results may not be useful. Signalling which pixels from the
input image form the actual digit that is classified does not give any insight into
why it was classified as a certain label. Improving results by manually dividing
the input into interpretable components also has the disadvantage that prior
understanding of the input (image) is necessary, which in practice might not
always be available.
In the RDE method the results are considerably more interesting for formulat-
ing explanations. Knowledge on which parts of input images can, or can not, be
safely replaced by noise without affecting the algorithm output is shown to be
a useful measure of feature importance: one can intuitively form explanations
based on the method’s output. However, this method too does not directly pro-
duce an explanation, but relies on the anticipation that the feature importance
returned is sufficiently insightful that an explanation can be formed afterwards
that is subjectively based on it.
We propose to firstly search for an actual explanation, which we seek to define
more precisely in the next section, before achieving practical use by potentially
adding interpretation constraints.

4.2.1 Defining an Explanation

Rather than plainly stating the definition first, we start this section by going
over the thought process that led to its final form. Specific implementation de-
tails are discussed in the sections after this one, making the definition proposed
here a general starting point for further ideas and research.
Let XT ⊂ RdT , Y ⊂ [0, 1]N be the transformed input space and the output
space, and let a classifier be given by f : XT → Y . In the implementation we
use a Bayesian neural net for f , but the method is model-agnostic, so in princi-
ple any classifier can be used. We discuss the reason for using a Bayesian neural
network and more generally the impact of model selection in Section 4.4.3.
Given an input element x ∈ XT , let i = arg maxj fj(x) be the class with the
highest output, i.e., the predicted label. We state that the explainability goal
first comes down to explaining why fi(x) is significantly higher than 1/N . (Sec-
tion 4.4.2 treats other approaches and more creative applications.)

71

To explain fi(x) we take the network as given, and seek for a reason solely in its
input x. For the concept of explainability we require some form a causality.16

We achieve this by viewing x not as a static point in input space, but rather
as the result of a movement through input space, so that we can attribute the
cause of f(x) to this movement.
Under this perspective, we need to carefully define where it is that x has moved
from. In other words, interpreting x explicitly as a vector requires some intu-
itively chosen origin, not necessarily equal to the standard origin 0dT in RdT .
We denote this artificial origin as x̄. The interpretation of this point is that
it must represent some “neutral” location in XT . It must firstly be neutral in
the sense that it lies relatively centered in the training data set. Preferably, x̄
is also neutral in the sense that f(x̄) has a low value in each dimension, not
clearly favoring any of the output labels. We will for now omit discussions on
how to exactly interpret these desired attributes of x̄, and how to achieve them,
getting back to this topic in Section 4.2.2.

Viewing the model input x now as a displacement rather than as a static point,
i.e., x = x̄+ (x− x̄), we start by proposing the following:

Definition 4.1 An explanation is a movement in input space. We denote the
explanation for class i on input x by ei[x]. It can be interpreted after representing
it in the original space X by T−1ei[x].

In this sense we might initially state that the reason for fi(x) is that the neutral
input x̄ has been shifted by (x − x̄). Although arguably true, this of course is
no practical find, as can be seen in Figure 22.
The vector x − x̄ is not interesting in its entirety: decomposing it into smaller
vectors we find that parts of it might be general, not implying any label in
specific, whereas other parts may be highly relevant and unique for the label i.
We thus propose to separate x − x̄ into three consecutive vectors. First we
extract a general vector gi[x] ∈ XT , contributing little information or conclu-
sive evidence towards fi(x). From the point x̄ + gi[x] in XT we now add the
explanatory part ei[x], which contains the actual reason behind the high value
fi(x). Finally di[x] adds the details to arrive at x. We thus have

x = x̄+ gi[x] + ei[x] + di[x], (45)

which is also depicted in Figure 23.

16In other explainability methods that output proxy measures like feature importance, it
is exactly this causality that is subtly missing, left for the user to manually define: feature
importance only leads to explainability when one postulates on the absence of the most im-
portant features. Sensitivity analysis leads to explainability only through imagining changing
the most sensitive inputs. Although these steps are sometimes minor, they are manual and
possibly subjective. We want the causality to be embedded as much as possible in the method
itself, requiring no extra reasoning from the user.

72

Figure 22: We can for example choose the mean as a neutral point. (This comes
down to letting x̄ = 0dT , as the training data in XT is normalized.) We show
the trivial explanation vector ei[x] = (x − x̄) for two elements x ∈ XT of the
training data. We transform all vectors back to the original space, and also add
the original data mean back to x and x̄ for a clearer image. More explicitly, the
Figure represents [T−1x + xmean] = [T−1x̄ + xmean] + [T−1ei[x]]. The coloring
is as before, with blue representing negative values and red positive values, all
within [−1, 1].

Figure 23: Two-dimensional representation of a decomposition of the vector
x− x̄ into three components: a general component followed by an explanatory
component and lastly the addition of details.

73

Note that the information in gi[x] may be general, but is not necessarily unim-
portant altogether. In fact due to the highly non-linear nature of the model,
the remaining information ei[x] + di[x] could be meaningless by itself: neither
fi(x̄+ ei[x] + di[x]) nor fi(ei[x] + di[x]) is meant to be significantly larger than
1/N . Practically speaking it is important to distinguish vectors representing
specific movements from vectors representing static points in input space. The
movement ei[x] only has meaningful value as an explanatory vector when placed
after a given general part x̄ + gi[x]. We therefore speak of the conditional ex-
planation ei[x], to emphasis the dependency of this vector’s usefulness on the
prior vectors x̄ and gi[x].

To achieve a sensible decomposition as described above, we need a way to dis-
tinguish explanatory and general movements. For this purpose we propose the
concept of explanation strength of a vector: it is the vector impact, i.e., the dif-
ference in model output probability before and after adding the vector, divided
by its length.

Definition 4.2 Let f : XT → [0, 1]N and i ∈ [N] a chosen label class of in-
terest. Let a, b ∈ XT and let v be the displacement b − a. The explanation
strength of v for the class i is given by

S(v) := S(a, b) :=
fi(b)− fi(a)

||b− a||
. (46)

We aim for the explanation strength of ei[x] to be as high as possible, attribut-
ing a large amount of information to a small movement in input space. It is
this concept of maximizing explanation strength that ensures we do not simply
conclude that x − x̄ is the explanation for fi(x): although the impact is high,
so too is the vector length, leading to a rather weak explanation.

Of course this reasoning depends on the specific metric that is chosen for com-
puting the distance between a and b, and the use of the standard Euclidean
norm might seem arbitrary. However, it is here that the data preparation dis-
cussed in Section 4.1 plays an important role. Because of the transformation T
in equation 44, we can actually represent the explanation length as

‖b− a‖ = ‖TT−1(b− a))‖ = ‖D− 1
2PTT−1(b− a)‖. (47)

This means that the explanation length in fact takes into account how similar
T−1ei[x] is to elements x ∈ X. Movements along dimensions of X for which
a low variance was estimated, will contribute relatively more to the computed
vector length, with the opposite being true for high estimated variances. Or if
two features are highly correlated in X, nearly always being equal, it will have
a relatively large impact on the explanation vector length if T−1ei[x] attributes
very different values to these features.

74

By aiming for an explanation vector with a small length, this definition then di-
rects an explanation to make intuitive sense: it is peculiar to explain a labeling
of x using arguments that require very rare extreme movements in input space.
Note that even though extreme movements in x may seem interesting, it is not
a given that the model agrees with this. Of course when such movements have
large impact on the output we do want to include them, but this is taken care
of by the numerator in the explanation strength. If equal impact on the model
output is achieved by a less extreme movement along some other dimension, we
would prefer to include that movement in the explanation. This generates a
more intuitive explanation as it prioritizes behavior that we observe and under-
stand from the training data.
We can also reason the other way around: with no data preparation and a
regular Euclidean distance metric the explanation strength is more heavily in-
fluenced by the input features that have a naturally larger variance, while being
relatively unaffected by changes in input features with small variances. Ideally,
as no prior information on the input feature’s importance is assumed, each in-
put feature is equally relevant when computing vector length and consequently
explanation strength. This can be corrected for by using the transformation T
before computing (Euclidean) distance.

Before summarizing the ideas discussed in this section in a formal definition, we
explain one more important restriction on the vectors gi[x] and ei[x]. We first
present an auxiliary concept.

Definition 4.3 Let a, b ∈ Rd. We say that a is contained in b if a = γ � b
for some γ ∈ [0, 1]d. Put differently, a is confined to the parallelotope defined
around the diagonal formed by b and the origin 0d.

To understand the restrictions we apply on the decomposition of x − x̄, we
change our perspective and observe the movements defined in (45) again in
the original space X = [0, 1]d, by applying the inverse operation T−1. The
restrictions are now firstly that T−1gi[x] should be contained in T−1(x − x̄),
and secondly that T−1ei[x] should be contained in T−1(x − (x̄ + gi[x])). If we
for simplicity interpret Figure 23 as being represented in the original space X,
the dashed boxes can be viewed as the restrictions.
The reason for these restrictions, and simultaneously part of the reason for
actually having the neutral point x̄, is intuitive: the conditional explanation
would not make sense if its general part exceeds the actual vector T−1(x−x̄) ∈ X
towards more extreme or unusual values, only to retract back from there and
call that retraction its “explanation”. More generally, any movement along
some dimension in the input space X moving further away from the neutral
point than the original element x itself, should not be considered attributable
to x in any way. The restriction on ei[x] follows from the same reasoning, but
now viewing x̄+ gi[x] as a starting point.

We now propose the definition for achieving input explainability in its most
general form, assuming a properly chosen neutral point x̄.

75

Definition 4.4 Let f : XT → [0, 1]N be a classification function, and let x ∈
XT be a given input element. Let x̄ be a fixed neutral point in XT . The set
{gi[x], ei[x], di[x]} is an explanatory decomposition of x for i ∈ [N], if

x = x̄+ gi[x] + ei[x] + di[x], (48)

and, for some α, β ∈ [0, 1]d,

T−1gi[x] = α� T−1(x− x̄) (49)

T−1ei[x] = β � T−1(x− (x̄+ gi[x])).

The vector ei[x] is the conditional explanation for the value of fi(x). Its expla-
nation strength, associated with the above decomposition, is given by

S(ei[x]; x̄, g[x]) :=
fi(x̄+ gi[x] + ei[x])− fi(x̄+ gi[x])

||ei[x]||
. (50)

Note that after deciding on a neutral point x̄, the entire decomposition, and thus
its explanation strength, depends only on the variables α and β. This leads to
the following more intuitive perspective.

Corollary 4.4.1 Selecting an explanatory decomposition that maximizes the
explanation strength of ei[x] is equivalent to selecting two points a and b in the
parallelotope defined between the far corners T−1(x) and T−1x̄, such that b− a
is contained by T−1(x− x̄) and the explanation strength S(a, b) is maximal.

Proof 4.4.1 The second problem stated in the corollary can be rephrased as
maximizing S(a, b) under the restrictions

a = T−1x̄+ α� T−1(x− x̄)

b = T−1x̄+ γ � T−1(x− x̄)

α, γ ∈ [0, 1]d

α ≤ γ,

where the inequality symbol is understood component-wise. The original prob-
lem of selecting an explanatory decomposition according to Definition 4.4 that
maximizes ei[x], can be rewritten in this format by letting

a = T−1x̄+ T−1gi[x]

b = T−1x̄+ T−1(gi[x] + ei[x]).

This makes α identical in both problem statements, and lets γ follow from

b− T−1(x̄) = T−1(gi[x] + ei[x])

= (α+ β � (1− α))� T−1(x− x̄), thus

γ = (α+ β � (1− α))

Given α, the restrictions on β allow choosing γ freely in the interval [α, 1]. But
this is equivalent to the constraints γ ≤ 1 and α ≤ γ.

76

4.2.2 Selecting a neutral point

In the previous paragraph we have skipped details on what neutral point is
to be used when defining explanation strength. This is firstly because we ac-
knowledge that this choice can be dependent on the data set of the machine
learning problem under consideration. For a decent comparison between differ-
ent explainability methods, it is only necessary that the same point x̄ is used.
Acknowledging that in theory very exotic points can be selected and fine-tuned
to make almost any explainability method perform well in terms of explanation
strength, we do assume that the choices are made fairly, making intuitive sense
and that they are substantiated by logical arguments.

Although the selection of x̄ is thus partly up to the user of the method, we
nonetheless propose a default approach that can be used as a starting point for
most machine learning problems. We first go over the features we look for in
the neutral point, which will lead in a straight-forward manner to our proposed
algorithmic procedure for finding a good x̄.
The usefulness of the neutral point x̄ is very much dependent on the size of the
potential impact 1 − fj(x̄) for possible label classes j ∈ [N]. The higher fj(x̄)
for some j, the less extra probability can be attributed to an explanation vector
in the decomposition. If we are interested in explaining labels from the set J , a
first idea would be to compute

x̄ = arg min
x∈RdT

max
j∈J

fj(x). (51)

Although this set-up would potentially increase explanation strengths by en-
abling larger impacts, the interpretative quality of the explanation is not guar-
anteed. For example, if one would choose a point x̄ that lies far away from all
data points x ∈ XT , the vectors x− x̄ will point in reasonably similar directions
regardless of the class that x represents. Although uninformative similarities
between the vectors should ideally be taken care of by being placed in the gen-
eral part of the decomposition, there may also be configurations where this is
not possible (i.e., when x̄ lies on the extension of a line spanned by two data
points).17 We therefore conclude that an extra point of attention in choosing
x̄ is that it should preferably lie between input space regions representing high
probability for different classes of interest. (This observation makes the mean
of the training data, used in Figure 22 as a first example, indeed an interesting
starting point.)

17In the original data space X, an example of this problem in practice would be to pick
the empty (white) image as a neutral point. Any explanation vector can then only consist of
positive values. The absence of input signal, which might for example distinguish a label 6
from a label 8 by inspecting the top-right corner of the digit, can not be used in an explanation.

77

We propose to enforce this by focusing directly on the angle between vectors
x− x̄ for different data elements x ∈ XT , suggesting18

x̄ = arg max
x∈XT

∑
s<t∈ST

arccos

(
〈x− s, x− t〉
||x− s|| · ||x− t||

)
, (52)

for some subset ST of the transformed training data, possibly filtered to contain
only classes that we are interested in explaining.

The two objectives can be combined using a tuning parameter λ ∈ [0, 1], sug-
gesting that we can find some kind of optimal x̄ by

x̄ = arg min
x∈XT

λmax
j∈J

fj(x)− 1− λ
M(|SJT |)

∑
s<t∈SJT

arccos

(
〈x− s, x− t〉
||x− s|| · ||x− t||

) , (53)

where SJT represents a data-set possibly filtered to contain only training elements
belonging to classes of interest j ∈ J , and M(|S|) is a normalization constant
for properly computing the average angle between elements of S. It is given by

M(|S|) =
|S|2 − |S|

2
.

The minimization can be realized using stochastic gradient descent, using a sin-
gle draw from the Bayesian network on every step for fj(x). Also, rather than
computing the average angle based on all elements in SJT , different batches of
the data-set can be used in every step of the SGD iteration.

Although this procedure is a convenient way to select x̄ in an abstract data-set
with little prior information or sense of important directions, it may very well
be the case that the user of this method already has a neutral point x̄ in mind.
For anomaly detection one might select x̄ to lie at the centre of elements from
the normal class. If there are multiple different normal classes, clustering can
be used to find the respective centres of these classes, and x̄ can be selected
based on the relevant centre for the element x under consideration. We do note
that these tricks are in principle taken care of by the method itself.19 However,
if possible, it is nonetheless good to consider using any known information prior
to the method, thus potentially selecting or altering x̄ manually.
In fact, x̄ can also be interpreted more freely, in order to create general problem
statements of the form: “Given that an element used to be (/is ordinarily) given
by T−1x̄, but is now observed as T−1x, what specifically caused the model out-
put to now be given by the label arg maxj fj(x)?”.

18With a slight abuse of notation by writing s < t, assuming the data elements are ordered.
19selecting J to only contain the anomaly class will automatically steer x̄ towards the centre

of the normal classes to maximize potential impact (due to the second term of equation 53).
Also, in the case of multiple clusters of normal regions, the general part of the decomposition
can take care of the movement towards a cluster centre, from where the explanation can begin.

78

4.2.3 The EVD-method

The Explanatory Vector-Decomposition method follows in a straight-forward
manner from the definitions in Section 4.2.1. Having mathematically stated
what an explanation actually is and how to measure its strength, the obvious
objective is to find the explanation with the highest explanation strength for a
given input x. This comes down to optimizing (50), where gradient descent is
used to update the variables α and β.
In principle this method is model-agnostic, as the actual form of f(x) has not
been specified nor used up until equation 50. However, finding the optimal α
and β using gradient descent would require f to be differentiable. We propose
the method specifically for explaining deep learning models, thus relying on the
back-propagation algorithm for efficient computation of gradients.
To apply EVD to a Bayesian neural network, we take a single random draw of
the parameters from the posterior distribution in each step of the optimization
procedure. In this sense we use a form of stochastic gradient descent, where the
stochasticity follows from the parameter selection rather than the data selection.
This is similar to how we implemented the RDE method on a Bayesian neural
network. Moreover, selecting new random parameters in each iteration is an
approach also used in the training of the Bayesian neural network itself.
We summarize the newly defined concepts and subsequent exploration in a step-
wise description of the method. For the pseudo-code we refer to Appendix D.

1. Normalize and decorrelate the training data, using T as in (44) as a map
to the new data space XT ⊂ RdT

2. Find a neutral point x̄ ∈ XT using batch SGD to solve (53). Depen-
dent on prior information about the data and relevant preferences for the
explanation, x̄ can also be chosen or fine-tuned manually.

3. Maximize the explanation strength in (50) using stochastic gradient de-
scent. With a Bayesian neural network a single draw of the parameters is
selected in each step of the optimization procedure.

4. Given the general direction gi[x] in which x is moved relative to x̄, propose
ei[x] as an explanation for the (significantly large) value of fi(x).

5. Translate ei[x] back to the more interpretable original training data space,
thus returning T−1ei[x] as the actual explanation.

Although the denominator in the explanation strength definition implicitly relies
on an elaborate prior data preparation, hence justifying the use of the Euclidean
metric as a way of creating more intuitive explanation vectors, the numerator
of this equation may seem quite arbitrarily chosen. One might believe more
interesting measures for vector impact exist than the difference between two
probabilities. Or some normalization could be applied, to correct for the number
of classes. However, it is precisely this simple and clear definition of explanation
strength that gives the returned vector ei[x] its useful interpretable properties.

79

More specifically, using the definition of impact

I(ei[x]) := fi(x̄+ gi[x] + ei[x])− fi(x̄+ gi[x])

for the numerator, we can now say that: given x̄ + gi[x], we find that ei[x] is
the reason for an increase in probability of I(ei[x]) in the model’s assessment of
the label i.
In this sense we accomplished an earlier discussed goal: developing an explain-
ability method that returns an actual explanation, rather than a proxy measure.
Another desired quality of the method was that it could be used as a robust
measure to quantitatively compare explanations generated in different machine
learning problems. For this purpose we re-define explanation strength as

S(ei[x]) :=
fi(x̄+ gi[x] + ei[x])− fi(x̄+ gi[x])

||ei[x]||/µ(x̄)
, (54)

were we normalize the explanation vector length using

µ(x̄) :=
1

|ST |
∑
x∈ST

||x− x̄||. (55)

By doing so, we prevent the number of dimensions of having a substantial impact
on the explanation strengths, making it a more stable measure.20

4.2.4 Interpretability regularization

Up to now we have focused on maximizing explanation strength as the main goal.
As such, there is no guarantee that the output of the optimization described
in the previous section leads to a useful result in practice. Of course, we have
deliberately separated interpretation constraints from the explanation strength
definition, in order to make it a more objective measure. However, we will now
consider altering the optimization procedure to allow for the implementation of
specific output preferences.
From a mathematical perspective, an obvious risk is that the optimization tries
to minimize the explanation vector length to near-zero, indeed creating large
explanation strengths, assuming the explanation impact is still sufficiently high.
This might seem a problem of the method itself, but we in fact do want to allow
this behavior more generally: one might still be interested in the (relatively
large) impact of extremely small changes. However, we also want to enable
restrictions on the explanation length, and thus introduce a parameter λ > 0
and let the loss function for optimization be given by

L(α, β) := −fi(x̄+ gi[x] + ei[x])− fi(x̄+ gi[x])

max(||ei[x]||/µ(x̄), λ)
(56)

20Note that because of the data transformation, the restrictions used in equation 49, or
corollary 4.4.1, do not necessarily imply ||x − x̄|| is the maximal length of the explanation
vector ei[x]. However, we nonetheless assume it is a relevant vector for comparing lengths.

80

The parameter λ can be interpreted as the minimal explanation vector length,
normalized by µ(x̄) from (55). The idea is that when the length falls below λ,
the optimization procedure will no longer take length into account and switch
to only maximizing explanation impact. Under the assumption that this will
increase the explanation vector length, we eventually end up with a length that
cannot be far below λ.21

A second option to add interpretability and flexibility to the method is to re-
strain the impact from becoming too low. We add two other parameters, δ > 0,
representing the desired minimal impact, and γ > 0 representing how much
weight this restriction will receive in the cost function. Writing I[x] for the
impact, and lλ[x] for the denominator of (56), we now define the loss function
as

Lλ,γ,δ(α, β) := − I[x]

lλ[x]
+ γ · (ReLU(δ − I[x]))2 (57)

The ReLU function assures that the constraint kicks in only when the impact
falls below δ, and we square the difference to allow for a smoother behavior,
restricting only a little bit when δ ≈ I[x]. Of course this is a matter of taste, if
it is extremely important that I[x] > δ, one may want to remove the square on
top of making γ very large.

4.3 Implementation and Results

In this section we implement the EVD method using a Bayesian neural network
on the MNIST data set of digit images. As we will also use the network imple-
mented here in the numerical experiments of Chapter 5, and we currently only
have a laptop with 8GB RAM, we change the architecture of the BNN slightly.
The implementation largely follows the description of Section 3.2.4; the only
difference is that we now use 64 and 32 kernels (instead of 90, 50) in the first
two convolutional layers. This brings the parameter total to 716246. Training
this Bayesian network takes approximately 5 minutes, achieving a test accuracy
of 0.952.

Before going into the specifics of how the EVD method’s optimization itself
is implemented, we first go over the data preparation and describe how we
picked a neutral point. We then explain how the optimization procedure is
implemented and show the results by mapping the vectors in XT back to their
original representations. In this sense we follow the step-wise description of the
method as described in the previous section.

21If it is really essential that the explanation length is larger than λ, we can always pro-
portionally increase ||ei[x]|| in XT (and appropriately decrease gi[x] and di[x]) to meet this
requirement. We expect that only a very minor change is needed.

81

4.3.1 Preparing the data

The method has been described in the most general way, and can be applied to
many different models. However, the convolutional (Bayesian) neural network is
a special case when it comes to the data preparation, as the use of convolutional
(as well as pooling) layers is heavily dependent on (local) input correlation.
Still requiring a proper transformed space XT to work with explanation vectors,
their lengths, and the neutral point x̄, we solve this issue by simply redefining
the model. We first train f on normalized elements T−1T (x − xmean) in X,
applying T−1T to assure we really are working with a transformed data set22,
but then change the architecture of the network by placing T−1 before the first
layer. This ensures that indeed f : XT → [0, 1]N , as required, while still be-
ing able to use convolutional and pooling layers to benefit from data correlations.

It now only remains to decide how many dimensions are removed from the im-
age based on PCA. Recall that any removal of dimensions is entirely reversible
if the information loss has been negligible.
Of course one could observe for each dT how the performance of the model
improves or deteriorates, using k-fold cross validation. Depending on the pref-
erence, weighing model performance against potential stability on new inputs
that differ from regular data, an optimal dT would be selected. Also, going a
step further, one could argue that we are in fact not interested in model accu-
racy, but rather in the EVD method’s performance. This suggests computing
the average explanation strength that the EVD method achieves when testing
it on a large sample of input elements, for set-ups based on different dT .

Although this may be interesting research, it is very time-consuming, requiring
retraining the model, as well as running the EVD method, many times. We
also note that the original purpose of removing dimensions never was to try to
optimize the model or the EVD method: it was simply to remove the smallest
(near-zero) standard deviations to prevent them from disturbing the method’s
basic functionality. We therefore skip this time-consuming investigation, decid-
ing on dT = 600 based on two quick observations:

• We shortly take note of all the standard deviations (Figure 25), to see how
many dimensions in specific have relatively small standard deviations.

• We inspect the visible information loss by applying the T−1Tx “identity”
transformation23, when lowering dT , see Figure 24.
Even though the exact impact of small dT on the model and the EVD
method might be uncertain, as our research mainly concerns explainability
we do not want to sacrifice clarity of the images in X.

22By doing so we take the possible information loss of the map T : X → XT into account.
23Originally this transformation is given by T−1T (x− xmean) + xmean. However, to assure

we really are working with a transformed data set in every respect, we also redefine xmean by
setting it equal to T−1Txmean making these transformations equivalent.

82

Figure 24: An element from the train data set is transformed using T−1Tx for
different dimensions dT . (An interesting observation: the model still achieves
an accuracy of 0.945 for dT = 50.)

Figure 25: Standard deviations of dimensions in the decorrelated space. The
dimensions have been labeled from 0 to 783, sorted by decreasing standard devi-
ations. On the bottom image we selected only the second half of the dimensions,
to more clearly show the flattening tail of the barplot.

83

4.3.2 Finding the neutral point

We first show a reasonable attempt at picking a neutral point x̄ manually, and
investigate the choice of using the data mean, continuing the example of Figure
22. As the data was normalized, this point is represented by 0dT in XT .

With regards to the desired property of x̄ being centered in the data, this
is a good choice. Using M = 300 independent draws of train data elements
xm ∈ XT , taking care to create a perfectly balanced data-set over the 10 digit
classes, we compute the average angle

A(x̄) =
2

M2 +M

∑
s,t∈[M],s<t

arccos

(
〈x̄− xs, x̄− xt〉
||x̄− xs|| · ||x̄− xt||

)
,

finding A(0dT) = 0.499π. This comes as no surprise, pointing out how the ex-
pression within the inverse cosine resembles correlation between xs and xt. As
the data set is decorrelated we expect this value to be close to 0, and the inverse
cosine is linear in this region.

However, the mean of the data is a less ideal candidate when it comes to the
potential explanation vector impact, which is bounded by 1 − fj(x̄) for each
class of interest j. We observe this by plotting the outputs of f(x̄), which can
be seen in Figure 26.

Figure 26: Bayesian neural network output on mean of the data. Most notably
the digit 8 will be more difficult to explain using this neutral point, due to a
lower possible impact.

Not being completely satisfied by this first attempt, we decide to compute the
neutral point x̄ using (53) with batch stochastic gradient descent. Starting with
0dT ∈ XT , using λ = 0.7 and balanced batches of size 30 each, the optimization
process24 returns the x̄ pictured in Figure 27. We compute an average angle of
A(x̄) = 0.498π, and its output f(x̄) shows high potential impacts for each digit.
The optimization takes less than a minute to converge.

24We use Adam with the standard parameters as before.

84

Figure 27: Resulting neutral point x̄ from running the optimization procedure
in (53). We also depict the outputs of f(x̄), showing a more equally divided
probability over the labels.

4.3.3 Results

Having eventually finalized our set-up, consisting of a data preparation ap-
proach, a Bayesian neural network and a neutral point x̄, we can now start the
actual optimization procedure. We again use an Adam optimizer with the de-
fault settings to solve the loss function, as given in Section 4.2.4, with stochastic
gradient descent. We initialize using α = 0 and β = 1, so that ei[x] = x− x̄ at
the start of the iteration.
We first show some results for the set-up where γ = λ = 0, thus applying no
interpretability constraints and purely focusing on explanation strength. Each
run, using 1500 optimization steps, takes less than two minutes. An arbitrary
selection of images is shown in Figure 28.

We notice that the EVD method has, at least in the case of applying this BNN
on the MNIST dataset, a natural preference for selecting smaller explanation
vectors. Running on a balanced set of 50 images we indeed find an average
explanation length of 0.019± 0.006. However, the average impact of 0.31± 0.05
arguably makes the results interesting nonetheless, as this shows that these very
small movements in input space have been discovered with relatively large im-
pacts on output probability. Indeed, we find an average explanation strength of
17± 4. This can be interpreted by stating that moving a distance of only 1% of
the average vector length measured in the data set (i.e., µ(x̄), (55)) along these
explanation vectors, causes an increase in output probability of approximately
17%.
We acknowledge that depending on the problem at hand, one may not be in-
terested in finding such small explanation vectors with relatively high impacts.
We therefore turn our attention to the interpretability constraints. Noting how
we specifically had very short explanation vectors, we now experiment with
λ = 0.1. Recall from Section 4.2.4 that this makes the loss function in the opti-
mization indifferent to lengths smaller than 0.1µ(x̄). Results using these setting
are shown in Figure 29.

85

Figure 28: Results of the EVD method on each of the digit classes, using no
interpretability constraints. For clarity we depict only the explanation vec-
tors with their impact (i.e., the difference in classification probability that they
caused) in the image titles.

86

Figure 29: Results of the EVD method on each of the digit classes, using λ = 0.1.
Taking the averages on a balanced set of 50 images, we find the length restriction
to be very effective, leading to an average explanation length of 0.100 ± 0.003.
These settings lead to an average impact of 0.83 ± 0.08 and an explanation
strength of 8.5± 1.0.

87

Of course there are more results to show than just the explanation vector, and
we can in fact depict the full explanatory decomposition. However, as it consists
of a large set of pictures for each image, we just treat one example in Figure
30, only aimed to improve the general understanding of the method and its
potential use.

Figure 30: The full explanatory decomposition returned by the EVD method on
an arbitrary digit, using λ = 0.1. Inspecting first the general part, we see that
the model does not attribute much importance to the lower part of this digit
0. Indeed, we can imagine any of the digits 3, 5, 6, 8 or 9 being formed using
the same lower curve and empty region. However, as the explanation vector
shows, the fact that the top part of the centre is also empty creates the decisive
case for the digit 0. Observe also how the small irregularity in the top right of
the original figure is placed under the detailed part, having minimal influence
on the decision: in the middle column its presence is visible only in the details
vector, while notably missing from the general and explanation vectors.

88

4.4 Discussion and concluding remarks

Having shown what the EVD-method is capable of for a Bayesian neural net-
work trained on the MNIST data-set, we briefly discuss its success, making a
qualitative comparison to earlier methods. We then go a step further and con-
template a wider variety of uses, that have not been investigated here. We also
consider the impact what model is used on the EVD method’s performance,
and investigate the specific case of using a regular (non-probabilistic) neural
network.
We conclude this chapter after hypothesizing about possible disadvantages and
improvements, concerning ourselves with both the underlying theory as well as
the implementation of the method.

4.4.1 Discussion on the EVD method performance

We first note that we are not explaining the digits themselves, but rather how
the model perceives those digits. One may look at some pictures of the previous
section and have comments on the outputted images. Although not all of these
results look equally intuitive, and some may not follow the expectations of what
we believe are the appropriate classifications, the model in fact does attribute
a large impact to the shown explanation vectors.

We now briefly point out some qualitative observations. First, note that the
method is equally successful as LIME and RDE in generally detecting what the
relevant part of the image is, and similarly shows a distinction between more
and less important regions of the input here.
We also see the effect of minimizing the explanation vector length in XT . Re-
call from Section 4.2.1, specifically the discussion after (47), that we deliberately
choose to minimize in this transformed coordinate system to aim for an intuitive
vector ei[x], that would resemble vectors in X. The effect is most clear when
comparing to the more grainy images of the general or details vectors, which
have not been optimized for this purpose.
Although these latter two have no smooth appearance, they can still contain
useful extra information, showing which parts of the image are considered too
generic or too detailed to contribute significantly to the output.

As a more general remark, we note that most explainability methods, especially
those concerning feature importance, assess each feature (or a selected sub-set
of features, as in LIME) as an individual input for which some quantity of inter-
est is computed, whereas we deliberately switch to a different system XT were
the combined effects of input features can be taken into account more truth-
fully. This is especially appropriate when dealing with highly non-linear models
such as neural networks. Although tempting to keep the features separated for
interpretability purposes, we have structurally separated explainability and in-
terpretability, allowing a more directed search for the “true” explanation, which

89

eventually is translated back to an interpretative representation.

We end this discussion of the method by noting that the full advantage of this
method might not be completely grasped by looking at images alone. For image
data, knowing the precise difference in the shade of a pixel that influenced the
model’s eventual decision may not be very interesting. Being able to (literally)
view the bigger picture is often more valuable. However, for many other data
sets, the decomposition of feature values into three distinct categories could be
a more noticeable strength of the EVD method.

We speculate, for example, about a model trained for detecting financial crime.
If we were to ask why the model classifies a certain party as suspicious, basic
feature importance explainability methods would only point out the features
that contributed to the decision. More sophisticated methods would have the
benefit of quantifying how important those features have exactly been compared
to other features, but the EVD method goes a step further. Rather than showing
relative importances among features, it dives more into the details of the features
itself, by extracting the truly explanatory part.
Say some person has been labeled as suspicious based on feature n, representing
a certain transaction value of 10, 000. The EVD method would not only point
out this feature, but also separate it into 3 parts, using an intuitive reasoning
like:

1. Normally the model does not expect this transaction at all, i.e., x̄n = 0.

2. Given that the transaction is present, then in this case there generally
would be no reason for concern if it stays below approximately gi[x]n =
300.

3. The biggest impact for the model’s decision is due to the fact that the
transaction is not just 300, but in fact an extra e[x]n = 700 higher.

4. Having already been labeled as suspicious, the remaining d[x]n = 9000
might make the situation even more extreme, but has not contributed to
the decision.

Not only do we expect the method to recognize the feature as important, we
also expect that it would point out that the threshold that most influenced the
decision lies in the area 300− 700. One can understand that such an elaborate
breakdown of (important) features could be arguably more valuable for other
data sets than the MNIST digits data set, where it is not that compelling to
locate the most influential shade-threshold of pixels.

90

4.4.2 Variety of explainability options

We have implemented and shown the results of the EVD method for only a
very specific goal: given x, correctly predicted to belong to class i, why do we
observe fi(x)? However, the framework allows a much larger variety of possible
questions and investigations. We can in one question simultaneously ask for
the reason why x has relatively high probability on a set of classes I, and a
relatively low probability on a set of classes J . This can simply be achieved by
altering the numerator in (50), using instead∑
i∈I

fi(x̄+ gi[x] + ei[x])− fi(x̄+ gi[x]) +
∑
j∈J

(fj(x̄+ gj [x])− fj(x̄+ gj [x] + ej [x]))

as the numerator when defining explanation strength. Note that the more classes
are added to I or J , the more questions e[x] tries to answer simultaneously. For
a large number |I|+ |J | this may likely cause the result to be less insightful.

As briefly mentioned in Section 4.2.2, preferences on which classes we wish to
explain can also be taken into account when computing the neutral point, as
well as from what perspective we wish to explain these classes. By having the
freedom to place x̄ in any high probability region or cluster centre correspond-
ing to a certain label i, we can ask the most general question: “If x would have
originally been more like x̄, why is it that now, taken that it no longer resembles
x̄, the output fi(x) for i ∈ I is high while fj(x) for j ∈ J is low?

To conclude this discussion we give a few more conceptual examples of the
advantages of the suggested flexibility.

• If f(x) returns a wrong label, i.e., j instead of the correct i, we can ask:
“Why not i?”, or even “Why j and not i?”.

• If f(x) does not return a clear answer, but shows doubt between two
classes i and j, we can ask the combined question “Why i and j?”. If
we are in need of making a choice between i and j nonetheless, we can
investigate further by asking “Why j and not i?”, and vice versa, to see
if we are swayed by the explanations.

• If we are interested in the relative similarities or differences between classes,
we can take a large number of elements from class j, and ask “Why (not)
i?”. Repeating this for different i and j may give general (global) insights
of the model’s behavior across the entire input space. The averages of
the explanation strengths computed allow giving quantitative conclusions
rather than having to settle for subjective comparisons.

91

• In anomaly detection we may place x̄ in the centre of the normal class, or in
any cluster centre deemed relevant if multiple clusters of normal elements
can first be discovered in the data set. We can then ask specifically: given
that x is relatively similar to the normal cluster centre x̄, why does f
believe x to be an anomality?

• Note that in the above examples we may have casually wrote “i and j”
while in the truest sense the optimization interprets the altered numerator
as “i or j”. However, we can use both these logical options, by defining
the numerator using max or min functions.

As a final remark we note that although the decomposition has been defined
by splitting x − x̄ into three parts, it is possible to experiment with a 2-part
decomposition by setting α = 0 in (49). Returning briefly to the discussion
at the end of the previous section, the unnecessarily elaborate investigation
into precise pixel-shades caused by a three-part decomposition may even have
a negative influence on the interpretability of the outcome in the current case.
For image recognition a two-part decomposition can actually be more insightful.

Using the two-part decomposition, aiming to simply extract explanatory move-
ment directly from the starting point, we can also take a more general approach:
allowing x to be a variable itself, we can search for the most explanatory move-
ment starting from any chosen x̄ towards (or away from) any desired goal(s).
One can even move through the input space in steps by iteratively applying the
method using the newly discovered point x as a starting location, fixing the step
size using the regulatory parameter λ.

Clearly the method’s flexibility allows it to be fine-tuned to many possible prob-
lems encountered in practice. Investigating these, and potential other uses, can
be an interesting topic for further research.

4.4.3 Model selection and the use of a Bayesian neural network

As the role of the neutral point x̄ is significant, a valid consideration is whether
such a point can actually be found for any model f . The results in 3.2.4, most
notably Figure 14, suggest this may be problematic for some models. More gen-
erally, if we recall the comparison between Bayesian and regular neural networks
in that section, an important conclusion was that the regular neural network
was more likely to show illogical behavior on data points that are unlike the
training elements x ∈ SX . This causes a concern: perhaps some models are too
erratic to properly apply the EVD method in the first place, as it heavily relies
on the model’s behavior between data points.

92

We put this idea to the test for a regular neural network, by setting all param-
eter variances equal to zero in our Bayesian neural network. This still gives a
decent regular neural network, achieving a test accuracy of 0.951. More impor-
tantly, we can still find a neutral point, relatively similar to the one used in the
implementation of EVD for the Bayesian neural network. We also discover that
the method still produces similar images on a couple of test runs.
When running on the same inputs used as in Section 4.3.3, setting λ = 0.1, we
even find a slightly higher average explanation strength of 9.2± 0.3. This may
be due to the optimization being able to target the minimum (or minima) of
the cost function more precisely, now that the deterministic nature of the model
fixes the location of this minimum in the input space.

Although this deterministic neural network on the MNIST data set may thus
still allow use of the EVD method, we acknowledge that this does not remove
all concern. In practice regular convolutional neural networks have often been
shown to behave erratically on their input spaces[Sze+13], see for instance Fig-
ure 31. This illogical and unpredictable behavior might cause the optimization
for explanation strength to get stuck in local minima, finding a very strong
explanation vector that may not represent an intuitive explanation. This may
even be more likely the case when one is experimenting with the alternative
application ideas suggested in the previous section.

Figure 31: A convolutional neural network is shown to be easily influenced by
a specific perturbation, figure from [Sze+13].

However, we suggest two reasons for why the EVD method is still appropriate.
Firstly, if the method indeed gets stuck in a local minimum, it may be the
case that it does not deliver the explanation that the user was hoping for, but
it gives valuable information nonetheless. Note that the resulting explanation
vector, no matter how strange and illogical it is, always shows true behavior of
the model, which cannot be said of all other explainability methods.

93

This brings us to the second point. If a model can indeed be easily influenced,
making a school bus look like an ostrich as in Figure 31, and if this behavior
takes such an extreme form that the EVD method does not show any insightful
results, perhaps we should not even trust an explanation method at all for this
model: imagine a method being able to explain flawlessly and intuitively why
a certain black box model predicts the image on the left of Figure 31 to be a
school bus. What would you make of this explanation when learning that the
model classifies the image on the right as an ostrich?
We can go a step further and argue that it is a fallacy of that explainability
method to not discover and point out how easily the image could be perturbed
into something else, giving a false sense of trust in the model’s understanding
of the data.
Of course, the above discussion is hypothetical, as we have not further exper-
imented with other, possibly more erratic, models and different data sets. Al-
though it has originally been intended as an explainability method for (Bayesian)
deep learning, applying the EVD method using different models can be an in-
teresting topic for further research.

4.4.4 Possible Improvements

We divide this section into two perspectives, discussing both ideas on the method’s
underlying theory as well as our implementation of it.
With respect to the theory, we take a moment to acknowledge the deeper
thought process underlying the final choice of the numerator in the explana-
tion strength definition. Firstly, when explaining fi(x) one may want to include
the probabilities of other classes j 6= i in the definition. Intuitively an explana-
tory output change of fi(x) = 0.3 towards fi(x) = 0.5 may seem less revealing
for class i, if during that change the distribution of outputs for other classes
changed from being a uniformly divided 0.7/(N − 1) towards having one other
class j also receiving a probability of fj(x) = 0.5.
However, we chose to stick to focusing on fi(x) alone, noting that the just
described intuition may be a little treacherous: mathematically speaking the
actual model’s certainty about label i strictly depends on fi(x) alone, and not
on how the remaining probability 1− fi(x) has been distributed.

Given that we thus embrace a more binary intuition of a probability fi(x) for i
and a probability for “the rest” given by 1−fi(x), we could still value particular
changes in the interval [0, 1] differently. The change in probability from 0.4 to
0.6 might be far more decisive than the change from 0.8 to 1.0. On the other
hand, exactly how to value such changes, even deciding whether to use a convex,
concave or sigmoid shaped function for the valuation of probability on [0, 1], is
unclear, because it can vary depending on the application at hand. In some
cases probabilities of 0.4 or 0.6 are both relatively meaningless, if the problem
deals with such delicate or important decisions that it generally requires a min-
imal accuracy of, say, 0.975.

94

The EVD method as currently presented is flexible enough to (be adapted to)
deal with such situations, but loses part of this flexibility if we would impose
prior ideas on how to valuate probability changes. And of course, a more general
reason for keeping the numerator simple is that it leads to a more interpretative
method, which is arguably more important in the current context of explain-
ability research. However, we do not exclude the possibility that more practical
and equally insightful approaches can be proposed.

We now turn our attention to the restrictions posed on the specific parts of the
explanatory decomposition. Specifically that they should be contained in the
“box” defined by T−1x̄ and T−1x. Our main concern with these restrictions is
that although they make intuitive sense, we also care about our original inten-
tion of separating explainability and interpretability, with the first encapsulating
a truly mathematical definition and only the latter taking care of its interpre-
tation. The restrictions may have crossed this line, influencing the definition of
explanation strength based on reasons from an interpretation perspective.
A first small idea is to simply be less restrictive. For instance allowing the details
part di[x] to retract back to T−1x, or to more generally allow the restrictions to
be less strictly enforced, using instead regularization in the loss function. These
ideas open up a whole new world of possibilities, which we have not further
investigated.
A more fundamental point of interest is that we defined these restrictions in
the original data space X, as we argued that explaining by “retracting back”
towards T−1x is unsensible, but it may in fact be more accurate to use the
space XT when defining these restrictions. This may lead to an explanation
exiting the restrictions box (Figure 23) in X, but any negative consequences
on the interpretation of this outcome would, and should, then be handled by
interpretation regularization.

Concerning the implementation, a general point of attention is that we have
proposed many new definitions and optimization techniques simultaneously, and
a proper experimental investigation, taking into account possible interactions
between choices made, is still needed to fine-tune parameters for optimal use.
More generally speaking, the results of the method have been far from optimized
in this research, and the main focus has been on developing the underlying
theory.
As discussed we have tried to separate explainability and interpretability in this
theory. We acknowledge that the emphasis in our research, both in theory and
implementation, has mainly been towards defining and obtaining explanations,
leaving many ideas for interpretability, and better implementations of current
ideas, for further research.

95

5 Numerical Experiments:
Comparing explainability methods

Having described and implemented three different explainability methods, namely
LIME, RDE and EVD, we now compare their performances on the MNIST
dataset. We use the newly developed definitions of the EVD method to make
this comparison, focusing on the average explanation strength achieved when
explaining elements from a validation data set.

As the RDE and LIME methods do not return explicit explanations, we propose
FITEV, short for Feature Importance To Explanation Vector. This is a method
to change the outputted feature importances of (for example) RDE and LIME
into similar explanation vector decompositions as those that the EVD method is
based on. As we will see, FITEV not only allows comparisons between different
methods, but it can also be applied to add new insights to explainability methods
that would usually only return feature importances.

5.1 Introducing the method

The FITEV method is applied in the same framework as the EVD method, i.e.,
the same data preparation steps are required, see Section 4.1. In this chapter
we assume this has been properly taken care of. In other words, we have trained
a Bayesian neural network f : XT → [0, 1]N , where XT ⊂ RdT .

We first go over the implementation of LIME and RDE, explaining how we can
obtain feature importances in X in this new setting. We then introduce the
FITEV method.

The essence of the FITEV method comes from first assuming that the more
important a feature is, the bigger the part of it that belongs to the explanation
vector in the vector decomposition. Although this may be a strong assumption,
it is almost inevitable as a first step, considering the information available.
Note also that for every pixel we only have 1 piece of information, namely its
feature importance, whereas an explanatory vector decomposition in X requires
two variables for each pixel (α and β in definition 4.4). We thus need to add
variables to the problem, and shall allow optimization of these variables with
respect to explanation strength.

96

5.1.1 Transforming the problem to apply LIME and RDE

To apply LIME and RDE we cannot trivially use the data in XT as inputs to
return a feature importance in X.
For LIME this is because it is specifically designed to use super-pixels, or more
generally interpretable components, of x ∈ X. In the specific case of image clas-
sification, the method does not allow negative inputs, with the “lowest” color
in the image being black.
The RDE method can be changed to use inputs in XT , but will however also
return a feature importance in XT when doing so. Changing the feature im-
portance by itself from XT to X is a nontrivial task, as the feature importance
does not simply represent a regular vector in XT that can be transformed.
Realizing the above complications, one approach would be to try and change
the methods themselves, finding a way to efficiently use transformed data and
transform feature importances back from XT to X. However, it is not our in-
tention to further investigate and experiment with LIME and RDE, we simply
care about their original results.

We thus choose a different approach, and rather work with the untransformed
data X when applying LIME and RDE. However, for generality we assume that
the model f in fact does use transformed data.25 This means we need to make
a few small model adjustments before being able to apply LIME and RDE.
For RDE we redefine the model by

fRDE(x) := f(Tx) for x ∈ X, (58)

thus allowing us to effectively explain fRDE : X → [0, 1]N , rather than the
original model f : XT → [0, 1]N itself.
Similarly, for LIME we redefine a separate model by

fLIME(x) := f(T (x− xmean)) for x ∈ X, (59)

also taking care of inverting the data normalization in this case.
Because both these models have inputs in X, the resulting feature transforma-
tion is necessarily an element of X as well. Having shown that, for an initial
model f : XT → [0, 1]N , feature importances can eventually be outputted in X,
we will from now on write F (x) ∈ X to represent a feature importance result,
regardless of whether x ∈ XT or x ∈ X.

25Recall that the Bayesian neural network has been trained on normalized data (see Section
4.3.1) after which its architecture has been changed by placing T−1 before the first layer.

97

5.1.2 From feature importance to explanation vector

Apart from the data preparation being similar to that of the EVD method, and
the model preparation discussed for LIME and RDE above, to apply the FITEV
method we also again need a neutral point x̄ ∈ XT . This point can be found
following the same procedure as described in Section 4.2.2.
Having finalized our set-up, the first insight towards creating explanation vectors
comes from using F (x) to divide each coordinate of (T−1(x− x̄)) ∈ [0, 1]d into
two quantities, one representing the fraction of this direction that is important,
and the other representing the rest. We assume the explanation to be the
important part, and let

T−1ei[x] = F (x)� (T−1(x− x̄)). (60)

This defines the orientation of the explanation vector that is properly contained
in T−1(x − x̄). However, we still need to find the general part from which the
explanation vector originates.
Of course we could select the remaining quantity 1d −F (x) to fill this gap, but
the most general approach would be to also take the details di[x] into account.
We therefore divide the remainder (of T−1(x− x̄)) over di[x] and gi[x], using a
variable ζ ∈ [0, 1]d, by setting

T−1gi[x] = ζ � (1− F (x))� T−1(x− x̄), (61)

or, equivalently, as the totals must sum up,

T−1di[x] = (1− ζ)� (1− F (x))� T−1(x− x̄). (62)

The idea is now to find ζ by optimizing for explanation strength of ei[x]. Of
course allowing optimization of ζ for explanation strength is only fair, as the
notion of a general and detailed part in the decomposition is not incorporated
in the (more binary) concept of feature importance.
However, although ζ allows vector translation of ei[x] towards a different support
point, it does not allow rotations or scaling. This causes the explanation length
to be fixed. We thus propose to take the idea of making FITEV fairer (and
more flexible) a step further, by adding another degree of freedom. We define
a variable ω ∈ [−w,w], for some parameter w ∈ [0, 1] that the user is free
to decide, by which the original feature importance F (x) can be changed, i.e.,
letting the effective feature importance be given by

Fω(x) = max(min(F (x) + ω, 1), 0). (63)

The parameter w can be interpreted as the allowed error margin in the original
discovered F (x). Of course we do not mean to imply the feature importances
returned by RDE and LIME are intrinsically wrong, but if we hypothesise that
the intent was to find the elements of the explanation T−1ei[x] we do allow for
some discrepancy, which is simply caused by the methods not being optimally
suited for that task.

98

Assuming a neutral point x̄ has been found, we can now create an explanatory
decomposition according to definition 4.4, with reasonably allowed flexibility.
Summarizing all the above steps, we now define the FITEV method as follows.

1. Normalize and transform the data using T , to create a new data space XT ,
following the approach of Section 4.1. Train a model f : XT → [0, 1]N on
this transformed data.

2. If a feature importance has not yet been obtained, compute the feature
importance F (x) of an input element x ∈ XT , possibly using an altered
model that is based on f but has its domain in X.

3. Compute a neutral point x̄ in XT , using batch stochastic gradient descent
to solve (53). Compute also the average distance of training elements to
this point, µ(x̄).

4. Define an explanatory decomposition as follows. Choose a w ∈ [0, 1] and
let ω ∈ [−w,w]d. Let the effective feature importance be given by

Fω(x) = max(min(F (x) + ω, 1), 0), (64)

and let ζ ∈ [0, 1]d. Following definition 4.4, let

T−1ei[x] = Fω(x)� T−1(x− x̄), (65)

T−1gi[x] = ζ � (1− Fω(x))� T−1(x− x̄), (66)

from which we see that consequently

T−1di[x] = (1− ζ)� (1− Fω(x))� T−1(x− x̄). (67)

5. Optimize the decomposition by maximizing explanation strength, as de-
fined in (50), only now with respect to the parameters ω and ζ.
Note that selecting a small w allows very little freedom, while selecting
w = 1 makes FITEV identical to EVD.

99

5.2 Implementation and results

Using a data set of 30 images we run the LIME, RDE and EVD methods. For
the LIME and RDE methods we apply FITEV with a window size of w = 0.1 to
generate explanations. The optimization takes less than half a minute to con-
verge. Both in the FITEV and the EVD optimization for explanation strength
we select λ = 0.1, although it is unlikely that the constraint is necessary when
applying FITEV, where the explanation vector length is more likely restricted
by the variable ω ∈ [−0.1, 0.1]. A selection of the resulting images, i.e., feature
importances as well as the corresponding explanation vectors obtained using
FITEV, is shown in Figures 32 and 33.

By computing averages on the data set we obtain the following results.

• The LIME method achieves the lowest explanation strength of 2.3 ± 0.9.
In agreement with our intuition, this is likely caused by the large and
widely varying explanation lengths of 0.3 ± 0.3. Impacts are relatively
more stable at 0.5± 0.2.
However, the method runs fast, taking less than 2 minutes per input ele-
ment, which includes the computation of both the feature importance and
the explanation vector.

• The RDE method achieves a slightly higher explanation strength of 3.2±
1.3. It is caused by both a lower explanation length of 0.21 ± 0.11 and a
higher impact of 0.6 ± 0.2. However, computing the feature importances
takes about 4 minutes per element.

• For proper reference, we also mention that the EVD method achieves an
average explanation strength of 8.1±0.7 on this data set. Admittedly this
high value is for the main part caused by the low explanation length of
0.100± 0.001, although the impact is also higher: 0.81± 0.07.

100

Figure 32: Feature importance results of RDE and LIME, their corresponding
explanation vectors computed using FITEV, and the directly computed expla-
nation vector of EVD are depicted.

101

Figure 33: Feature importance results of RDE and LIME, their corresponding
explanation vectors computed using FITEV, and the directly computed expla-
nation vector of EVD are depicted.

102

5.3 Discussion and concluding remarks

Having already compared RDE and LIME qualitatively, we can now point out
that the results discovered by the FITEV comparison support our earlier find-
ings. The LIME method indeed seems less effective than the RDE method in
explaining images of the MNIST data set. What’s more, our intuition as to why
that was the case, namely because LIME is too much inclined to simply present
the entire digit as an explanation, is also supported by FITEV, through the
definition of explanation strength: the images of the LIME method had larger
explanation vector lengths, causing relatively low average explanation strength.
The EVD method is shown to outperform both LIME and RDE, although the
comparison is arguably unfair, because it has been specifically designed to max-
imize explanation strength, and has the most freedom to do so.
Going over our precise implementation of FITEV, we do acknowledge possible
improvements as well as reasons to restrain ourselves from drawing too direct
conclusions from these results.

Firstly we may not have compared the best possible implementations of LIME
and RDE, and implementation changes could lead to very different results. We
therefore mainly want to point out that the results hold for these specific im-
plementations, and that FITEV is indeed successful in comparing two different
methods. Continuing this line of thought, a method like FITEV, when prop-
erly adapted and perfected, could even be used to train and optimize hyper-
parameters of other explainability methods.
The definition of explanation strength need not only be used to compare, but
can also be used to improve other explainability methods, that may not have
explanation strength as their prime goal, but would nonetheless aspire higher
strengths.

On a more technical note on the method itself, we could opt for making the
window size w different in each dimension, an idea we have not further investi-
gated to keep the method relatively straight-forward.
We also realize that the choice of w = 0.1 has been rather arbitrary. Indeed, the
best comparison would follow from computing the average explanation strengths
for a wide range of choices of w, and comparing the resulting graphs. Perhaps
one method can been aided a lot (in maximizing explanation strength) by a
relatively small window w = 0.1, while another method’s results only signifi-
cantly improve in a higher regime of w ∈ [0.2, 0.3]. However, given that FITEV
relatively quickly starts to resemble EVD as w gets higher, the region of interest
can be assumed to be small and close to 0.

103

6 Conclusion

In this thesis we have thoroughly explained the neural network and the Bayesian
neural network. We have implemented both, and demonstrated the latter’s abil-
ity to more intuitively cope with uncertainties.
Diving deeper into the research field of explainability methods in machine learn-
ing, describing, implementing and comparing two such methods (LIME and
RDE), we noticed the lack of a proper defininition for an explanation in this
context.

This has led us to come up with such a definition of our own, as well as the
concept of explanation strength. To compute explanations and optimize their
strength, we put forward the Explanatory Vector Decomposition method.
Not only does the method produce explanations for neural network decisions in
a flexible way, with the added benefit of giving quantitative results, the newly
defined concepts also enable objective comparisons between other explainability
methods.

For this purpose we have proposed the FITEV (Feature Importance To Expla-
nation Vector) method. We have compared the three implemented methods,
i.e., LIME, RDE and EVD, based on achieved explanation strengths. We find
that the objective results of FITEV in this comparison support our earlier sub-
jective insights obtained when qualitatively comparing RDE and LIME.
Naturally, as it has been designed specifically for the optimization of explana-
tion strength, the EVD method outperforms both RDE and LIME according to
this measure.

104

Appendices

A l2 regularization

We show that using L2 regularization with a regularization parameter α > 0
is in fact equivalent to inducing a prior distribution on the model parameters.
Specifically, with the new cost function given by

C ′(S, p) = C(S, p) + α
∑
i

p2
i , (68)

the prior distribution on the parameters is implicitly given by

pi ∼ N
(

0,
1

2α

)
. (69)

To realize this, note that from this distribution we find that

P(pi) ∝ e−αp
2
i ,

and thus for the full set of (by assumption independent) parameters we have

P(p) ∝ e−α
∑
i p

2
i ,

log(P(p)) ∝ −α
∑
i

p2
i .

We conclude that we get the cost function stated in (68) from

arg max
p

P(S|p)P(p) = arg max
p

e−C(S,p)e−α
∑
i p

2
i

= arg max
p

−C(S, p)− α
∑
i

p2
i

= arg min
p

C(S, p) + α
∑
i

p2
i

= arg min
p

C ′(S, p).

B KL divergence between gaussians

Let Qβ(p) be a Gaussian distribution with mean µ ∈ RP and variance σ � σI
for σ ∈ RP , and P(p) be given by N (0, I). Then∫

Qβ(p) log(P(p))dp =

∫
N (p;µ, σ � σI) logN (p; 0P , I)dp

= −P
2

log(2π)− 1

2

P∑
j=1

(µ2
j + σ2

j).

105

Also we have∫
Qβ(p) log(Qβ(p))dp =

∫
N (p;µ, σ � σI) log(N (p;µ, σ � σI))dp

= −P
2

log(2π)− 1

2

P∑
j=1

(1 + log(σ2
j).

Combining the two, we find that

DKL(Qβ(p) ‖ P(p)) =

∫
Qβ(p)(log(Qβ(p))− log(P(p)))dp

=
1

2

P∑
j=1

(µ2
j + σ2

j − log(σ2
j)− 1).

C Decorrelation of the training data

Let the (normalized) training set SX have an estimated covariance of Cov(x) =
C. We seek a coordinate transformation matrix T such that Cov(Tx) = I.
Let C be diagonalized as C = PDP−1 with P a matrix with columns equal to
orthonormal eigenvectors26 of C, and D the corresponding eigenvalues. Then

Cov(D−
1
2P−1x) = D−

1
2P−1Cov(x)(P−1)T (D−

1
2)T

= D−
1
2P−1C(P−1)T (D−

1
2)T

= D−
1
2P−1PDP−1(PT)−1(D−

1
2)T

= D−
1
2D(PTP)−1(D−

1
2)T

= I,

using in the last step that PTP = I, as the eigenvectors are orthonormal. We
thus conlude that T = D−

1
2P−1 does the job. Noting that the columns of P

are orthonormal eigenvectors of C, and P is thus an orthogonal matrix, we can
also write the transformation as

T = D−
1
2PT , (70)

which is more intuitive, as PT now is the matrix with row vectors represented
by the orthonormal eigenvectors of C. This shows that applying Tx comes down
to first projecting x to each dimension of the new space, before dividing that
dimension by its corresponding standard deviation.
Reducing the dimensionality of the new space XT , e.g. from d to dT , comes

26The eigenvalues need to be different for arbitrarily computed eigenvectors to be truly
orthogonal, but it is unlikely for a large estimated covariance matrix that this is not the case.
Either way the same steps as in principle component analysis (without reducing dimensions)
can be used to find orthogonal eigenvectors.

106

down to removing d − dT selected columns from P as well as removing the
corresponding rows and columns from D. Note that the inverse,

T−1 = PD
1
2 , (71)

still maps RdT to Rd, as it should.

D Pseudocode of the EVD optimization
Input: data transformation matrix T , transformed data point x ∈ XT , neutral
point x̄ ∈ XT , label i ∈ [N] and number of optimization steps n.
Set α = 0 · 1dT
Set β = 1dT
Set gi[x](α) = Tα� T−1(x− x̄)
Set ei[x](α, β) = Tβ � T−1(x− (x̄− gi[x](α)))

Set initial loss L(α, β) = − fi(x̄+gi[x]+ei[x])−fi(x̄+gi[x])
||ei[x]||

for step = 1, . . . , n do
Update α, β simultaneously using the Adam optimization step and the
derivative ∇α,βL(α, β).
Project both α and β back to the interval [0, 1]dT .

end for
Return gi[x](α) and ei[x](α, β).

References
[KL51] S. Kullback and R. A. Leibler. “On Information and Sufficiency”.

In: The Annals of Mathematical Statistics 22.1 (1951), pp. 79–86.
issn: 00034851. url: http://www.jstor.org/stable/2236703.

[FC54] B. Farley and W. Clark. “Simulation of self-organizing systems by
digital computer”. In: Transactions of the IRE Professional Group
on Information Theory 4.4 (Sept. 1954), pp. 76–84. issn: 2168-2704.
doi: 10.1109/TIT.1954.1057468.

[Iva70] AG Ivakhnenko. “Heuristic self-organization in problems of engi-
neering cybernetics”. In: Automatica 6.2 (1970), pp. 207–219.

[Hol73] Paul W Holland. “Weighted Ridge Regression: Combining Ridge
and Robust Regression Methods”. In: Working Paper Series 11
(Sept. 1973). doi: 10.3386/w0011. url: http://www.nber.org/
papers/w0011.

[Cyb89] G. Cybenko. “Approximation by superpositions of a sigmoidal func-
tion”. In: Mathematics of Control, Signals, and Systems (MCSS)
2.4 (1989), pp. 303–314. url: http://dx.doi.org/10.1007/

BF02551274.
[Hor91] Kurt Hornik. “Approximation capabilities of multilayer feedforward

networks”. In: Neural Networks 4.2 (1991), pp. 251–257. issn: 0893-
6080. url: http://www.sciencedirect.com/science/article/
pii/089360809190009T.

107

http://www.jstor.org/stable/2236703
https://doi.org/10.1109/TIT.1954.1057468
https://doi.org/10.3386/w0011
http://www.nber.org/papers/w0011
http://www.nber.org/papers/w0011
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1007/BF02551274
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://www.sciencedirect.com/science/article/pii/089360809190009T

[Bis97] Christopher M. Bishop. “Bayesian Neural Networks”. en. In: Jour-
nal of the Brazilian Computer Society 4 (July 1997). issn: 0104-
6500. url: http://www.scielo.br/scielo.php?script=sci_
arttext&pid=S0104-65001997000200006&nrm=iso.

[Car+99] Rich Caruana et al. “Case-based explanation of non-case-based learn-
ing methods”. In: Proceedings / AMIA Annual Symposium. AMIA
Symposium (Feb. 1999), pp. 212–5.

[FH99] Brendan Frey and Geoffrey Hinton. “Variational Learning in Non-
linear Gaussian Belief Networks”. In: Neural computation 11 (Feb.
1999), pp. 193–213. doi: 10.1162/089976699300016872.

[Min01] Thomas P. Minka. “A Family of Algorithms for Approximate Bayesian
Inference”. In: (2001). AAI0803033.

[VS08] Andrea Vedaldi and Stefano Soatto. Quick Shift and Kernel Meth-
ods for Mode Seeking. 2008.

[GB10] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of
training deep feedforward neural networks”. In: Proceedings of the
Thirteenth International Conference on Artificial Intelligence and
Statistics. Ed. by Yee Whye Teh and Mike Titterington. Vol. 9.
Proceedings of Machine Learning Research. Chia Laguna Resort,
Sardinia, Italy: PMLR, 13–15 May 2010, pp. 249–256. url: http:
//proceedings.mlr.press/v9/glorot10a.html.

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient
Methods for Online Learning and Stochastic Optimization”. In: J.
Mach. Learn. Res. 12 (July 2011), pp. 2121–2159. issn: 1532-4435.
url: http://dl.acm.org/citation.cfm?id=1953048.2021068.

[Gra11] Alex Graves. “Practical Variational Inference for Neural Networks”.
In: (2011). Ed. by J. Shawe-Taylor et al., pp. 2348–2356. url: http:
/ / papers . nips . cc / paper / 4329 - practical - variational -

inference-for-neural-networks.pdf.
[PBJ12] John Paisley, David Blei, and Michael Jordan. “Variational Bayesian

Inference with Stochastic Search”. In: (2012). arXiv: 1206.6430

[cs.LG].
[TH12] Tijmen Tieleman and Geoffrey Hinton. “Divide the gradient by a

running average of its recent magnitude”. In: Coursera: Neural Net-
works for Machine Learning (2012).

[BS13] Pierre Baldi and Peter J Sadowski. “Understanding dropout”. In:
(2013), pp. 2814–2822.

[KW13] Diederik P Kingma and Max Welling. “Auto-Encoding Variational
Bayes”. In: (2013). arXiv: 1312.6114 [stat.ML].

[LCB13] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. “MNIST
handwritten digit database”. In: (2013). url: http://yann.lecun.
com/exdb/mnist/.

[Mik+13] Tomas Mikolov et al. “Distributed Representations of Words and
Phrases and Their Compositionality”. In: NIPS’13 (2013), pp. 3111–
3119. url: http://dl.acm.org/citation.cfm?id=2999792.

2999959.

108

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65001997000200006&nrm=iso
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65001997000200006&nrm=iso
https://doi.org/10.1162/089976699300016872
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://papers.nips.cc/paper/4329-practical-variational-inference-for-neural-networks.pdf
http://papers.nips.cc/paper/4329-practical-variational-inference-for-neural-networks.pdf
http://papers.nips.cc/paper/4329-practical-variational-inference-for-neural-networks.pdf
https://arxiv.org/abs/1206.6430
https://arxiv.org/abs/1206.6430
https://arxiv.org/abs/1312.6114
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959

[PMB13] Razvan Pascanu, Guido Montufar, and Yoshua Bengio. On the num-
ber of response regions of deep feed forward networks with piece-wise
linear activations. 2013. arXiv: 1312.6098 [cs.LG].

[SVZ13] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep
Inside Convolutional Networks: Visualising Image Classification Mod-
els and Saliency Maps”. In: (2013). arXiv: 1312.6034 [cs.CV].

[Sze+13] Christian Szegedy et al. “Intriguing properties of neural networks”.
In: (2013). arXiv: 1312.6199 [cs.CV].

[BS14] Pierre Baldi and Peter J. Sadowski. “The dropout learning algo-
rithm”. In: Artificial intelligence 210 (2014), pp. 78–122.

[KB14] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochas-
tic Optimization”. In: (2014). arXiv: 1412.6980 [cs.LG].

[Mon+14] Guido F Montufar et al. “On the Number of Linear Regions of Deep
Neural Networks”. In: Advances in Neural Information Processing
Systems 27 (2014). Ed. by Z. Ghahramani et al., pp. 2924–2932.
url: http://papers.nips.cc/paper/5422-on-the-number-of-
linear-regions-of-deep-neural-networks.pdf.

[Sch14] Jürgen Schmidhuber. “Deep Learning in Neural Networks: An Overview”.
In: CoRR abs/1404.7828 (2014). arXiv: 1404.7828. url: http:

//arxiv.org/abs/1404.7828.
[Blu+15] Charles Blundell et al. “Weight Uncertainty in Neural Networks”.

In: (2015). arXiv: 1505.05424 [stat.ML].
[He+15a] Kaiming He et al. “Deep Residual Learning for Image Recognition”.

In: CoRR abs/1512.03385 (2015). arXiv: 1512.03385. url: http:
//arxiv.org/abs/1512.03385.

[He+15b] Kaiming He et al. “Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification”. In: CoRR abs/1502.01852
(2015). arXiv: 1502.01852. url: http://arxiv.org/abs/1502.
01852.

[MOT15] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. “In-
ceptionism: Going Deeper into Neural Networks”. In: (2015). url:
https://research.googleblog.com/2015/06/inceptionism-

going-deeper-into-neural.html.
[TGR15] Andrew Trask, David Gilmore, and Matthew Russell. “Modeling

Order in Neural Word Embeddings at Scale”. In: CoRR abs/1506.02338
(2015). arXiv: 1506.02338. url: http://arxiv.org/abs/1506.
02338.

[WFL15] Ziyu Wang, Nando de Freitas, and Marc Lanctot. “Dueling Net-
work Architectures for Deep Reinforcement Learning”. In: CoRR
abs/1511.06581 (2015). arXiv: 1511.06581. url: http://arxiv.
org/abs/1511.06581.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learn-
ing. http://www.deeplearningbook.org. MIT Press, 2016.

[LMJ16] Jiwei Li, Will Monroe, and Dan Jurafsky. “Understanding Neural
Networks through Representation Erasure”. In: CoRR abs/1612.08220

109

https://arxiv.org/abs/1312.6098
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1412.6980
http://papers.nips.cc/paper/5422-on-the-number-of-linear-regions-of-deep-neural-networks.pdf
http://papers.nips.cc/paper/5422-on-the-number-of-linear-regions-of-deep-neural-networks.pdf
https://arxiv.org/abs/1404.7828
http://arxiv.org/abs/1404.7828
http://arxiv.org/abs/1404.7828
https://arxiv.org/abs/1505.05424
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://arxiv.org/abs/1506.02338
http://arxiv.org/abs/1506.02338
http://arxiv.org/abs/1506.02338
https://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1511.06581
http://www.deeplearningbook.org

(2016). arXiv: 1612.08220. url: http://arxiv.org/abs/1612.
08220.

[Lip16] Zachary Chase Lipton. “The Mythos of Model Interpretability”.
In: CoRR abs/1606.03490 (2016). arXiv: 1606.03490. url: http:
//arxiv.org/abs/1606.03490.

[RSG16] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. “”Why
Should I Trust You?”: Explaining the Predictions of Any Classifier”.
In: CoRR abs/1602.04938 (2016). arXiv: 1602.04938. url: http:
//arxiv.org/abs/1602.04938.

[Tel16] Matus Telgarsky. “Benefits of depth in neural networks”. In: CoRR
abs/1602.04485 (2016). arXiv: 1602.04485. url: http://arxiv.
org/abs/1602.04485.

[Kai+17] Lukasz Kaiser et al. “One Model To Learn Them All”. In: CoRR
abs/1706.05137 (2017). arXiv: 1706.05137. url: http://arxiv.
org/abs/1706.05137.

[Lu+17] Zhou Lu et al. “The Expressive Power of Neural Networks: A View
from the Width”. In: Advances in Neural Information Processing
Systems 30 (2017). Ed. by I. Guyon et al., pp. 6231–6239. url:
http://papers.nips.cc/paper/7203-the-expressive-power-

of-neural-networks-a-view-from-the-width.pdf.
[STR17] Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam.

Bounding and Counting Linear Regions of Deep Neural Networks.
2017. arXiv: 1711.02114 [cs.LG].

[Sha+17] Noam Shazeer et al. “Outrageously Large Neural Networks: The
Sparsely-Gated Mixture-of-Experts Layer”. In: CoRR abs/1701.06538
(2017). arXiv: 1701.06538. url: http://arxiv.org/abs/1701.
06538.

[Zav17] Maksym Zavershynskyi. “MSE and Bias-Variance Decomposition”.
In: (2017). url: https://towardsdatascience.com/mse-and-
bias-variance-decomposition-77449dd2ff55.

[AB18] A. Adadi and M. Berrada. “Peeking Inside the Black-Box: A Survey
on Explainable Artificial Intelligence (XAI)”. In: IEEE Access 6
(2018), pp. 52138–52160. doi: 10.1109/ACCESS.2018.2870052.

[RMF18] Simone Rossi, Pietro Michiardi, and Maurizio Filippone. Good Ini-
tializations of Variational Bayes for Deep Models. 2018. arXiv: 1810.
08083 [stat.ML].

[Wen+18] Yeming Wen et al. “Flipout: Efficient Pseudo-Independent Weight
Perturbations on Mini-Batches”. In: CoRR abs/1803.04386 (2018).
arXiv: 1803.04386. url: http://arxiv.org/abs/1803.04386.

[Mac+19] Jan MacDonald et al. “A Rate-Distortion Framework for Explain-
ing Neural Network Decisions”. In: CoRR abs/1905.11092 (2019).
arXiv: 1905.11092. url: http://arxiv.org/abs/1905.11092.

[Nil+19] Geir K. Nilsen et al. “Efficient Computation of Hessian Matrices in
TensorFlow”. In: (2019). arXiv: 1905.05559 [cs.LG].

110

https://arxiv.org/abs/1612.08220
http://arxiv.org/abs/1612.08220
http://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1606.03490
https://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1602.04485
http://arxiv.org/abs/1602.04485
http://arxiv.org/abs/1602.04485
https://arxiv.org/abs/1706.05137
http://arxiv.org/abs/1706.05137
http://arxiv.org/abs/1706.05137
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
https://arxiv.org/abs/1711.02114
https://arxiv.org/abs/1701.06538
http://arxiv.org/abs/1701.06538
http://arxiv.org/abs/1701.06538
https://towardsdatascience.com/mse-and-bias-variance-decomposition-77449dd2ff55
https://towardsdatascience.com/mse-and-bias-variance-decomposition-77449dd2ff55
https://doi.org/10.1109/ACCESS.2018.2870052
https://arxiv.org/abs/1810.08083
https://arxiv.org/abs/1810.08083
https://arxiv.org/abs/1803.04386
http://arxiv.org/abs/1803.04386
https://arxiv.org/abs/1905.11092
http://arxiv.org/abs/1905.11092
https://arxiv.org/abs/1905.05559

[YZS19] Zebin Yang, Aijun Zhang, and Agus Sudjianto. “Enhancing Ex-
plainability of Neural Networks through Architecture Constraints”.
In: (2019). arXiv: 1901.03838 [stat.ML].

111

https://arxiv.org/abs/1901.03838

	Introduction
	Structure of this work

	Artificial Neural Networks
	Supervised Machine Learning
	Cost functions and Stochastic Gradient Descent
	Over-fitting and test data
	Hyper-parameters and Cross-validation

	The Neural Network
	Mathematical Structure
	Neuron interpretation
	Theoretical Background
	More Complicated Layers

	Training Neural Networks
	The Cross-entropy loss function
	Back-Propagation
	Parameter initialization

	Methods to prevent neural networks from overfitting
	Ensemble of networks
	Dropout

	Optimizers
	AdaGrad
	RMSProp
	Adam

	Explainability in Machine Learning
	Black Box models
	The need for Explainable AI
	Holistic view of existing methods
	What is an explanation?

	Bayesian Neural Networks
	Mean-field Variational Bayesian inference
	The Bayesian network format
	Training
	Implementation of Bayesian and Standard Neural Networks

	LIME
	Introducing the method
	Implementation and results

	RDE
	Introducing the method
	Implementation and results

	Explanatory Vector Decomposition
	Data Preparation
	Introducing the method
	Defining an Explanation
	Selecting a neutral point
	The EVD-method
	Interpretability regularization

	Implementation and Results
	Preparing the data
	Finding the neutral point
	Results

	Discussion and concluding remarks
	Discussion on the EVD method performance
	Variety of explainability options
	Model selection and the use of a Bayesian neural network
	Possible Improvements

	Numerical Experiments: Comparing explainability methods
	Introducing the method
	Transforming the problem to apply LIME and RDE
	From feature importance to explanation vector

	Implementation and results
	Discussion and concluding remarks

	Conclusion
	Appendices
	l2 regularization
	KL divergence between gaussians
	Decorrelation of the training data
	Pseudocode of the EVD optimization

