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Abstract

Community detection algorithms from the field of network theory have been used to divide
a fluid domain into clusters that are sparsely connected with each other and to identify
barriers to transport, for example in the context of larval dispersal. Communities detected
by the community detection algorithm Infomap have barriers that have been shown to
often coincide with well-known oceanographic features. Thus far, this method has only
been applied to closed domains such as the Mediterranean. We apply this method to the
surface of the Arctic and subarctic oceans and show that it can be applied to open domains.
First, we construct a Lagrangian flow network by simulating the exchange of Lagrangian
particles between different bins in an icosahedral-hexagonal grid. Then, Infomap is applied
to identify groups of well-connected bins. The resolved transport barriers include naturally
occurring structures, such as the major currents. As expected, clusters in the Arctic
are affected by seasonal and decadal variations in sea-ice concentration. We also discuss
several caveats of this method. Firstly, there is no single definition of what makes a
cluster, since this is dependent on a preferred balance of internally high connectivity,
sparse connectivity between clusters, and the spatial scale of investigation. Secondly, many
different divisions into clusters may qualify as good solutions and it may thus be misleading
to only consider the solution that optimizes a certain quality parameter the most. Finally,
while certain cluster boundaries lie consistently at the same location between different
good solutions, other boundary locations vary significantly, making it difficult to assess the
physical meaning of a single solution. Particularly in the context of practical applications
like planning Marine Protected Areas, it is important to consider an ensemble of qualifying
solutions to find persistent boundaries.
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Layman’s summary

Currents and eddies in the surface of the Arctic Ocean move water and particles between
different regions of the Arctic and thus determine the connectivity different regions. To
assess which regions are connected to one another, we try to divide the Arctic into differ-
ent regions. To do so, we first simulate the movement of particles in the ocean surface,
incorporating observations of the ocean and the equations that drive ocean flow. Then,
we divide the ocean into boxes and investigate the exchange of particles between different
boxes. We use the computer algorithm Infomap to find groups of boxes that exchange
relatively many particles among each other and relatively few particles with other boxes.
Knowledge about which regions in the Arctic Ocean are connected to one another is im-
portant for planning areas of conservation, such that marine species can travel between
different areas of conservation.

It is important to be careful with the interpretation of regions identified by Infomap,
since the division into regions can differ each time that Infomap is run. Each division
is good in principle, since particles tend to stay within each region and the exchange of
particles between regions is low. However, since the boundaries between regions can differ,
it is important to run Infomap multiple times and see which boundaries occur persistently.
Infomap does not use the ocean flow directly to find connected regions, but instead uses a
simplified mathematical representation of the flow. It is important to take this into account
when interpreting a division into connected regions.

We find that the boundaries between different connected regions often coincide with
ocean currents, meaning that the presence of an ocean current can hinder the exchange
of particles between two regions. We also find that the division into connected regions is
affected by sea ice. Since the amount of sea ice in the Arctic differs across seasons and since
it is decreasing over the years due to climate change, the division into connected regions
also changes seasonally and over multiple years.
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Comment with respect to thesis requirements

This thesis serves to fulfill the graduation requirements for the master’s program Climate
Physics at Utrecht University, as well as the requirements for the Complex Systems profile.
It does so by combining aspects from oceanography, network theory and information theory.
Mainly related to oceanography are the simulation of Lagrangian particles, the assessment
of the quality of hydrodynamic provinces in terms of coherence and mixing, the application
to the Arctic domain, the assessment of transport barriers, connections to surface velocities
and sea ice, and the investigation of trends. Aspects that mainly pertain to network and
information theory are the construction of Lagrangian flow networks, a description of how
Infomap works, experiments related to Infomap’s configuration, and the assessment and
discussion of degeneracy. However, this research is interdisciplinary and the different topics
treated in this thesis are inherently intertwined.
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1 | Introduction

Different regions of the global ocean are connected by flowing currents and eddies. Look-
ing through the Lagrangian lens, these currents and eddies facilitate the exchange of fluid
parcels, that move along chaotic trajectories which change through space and time. The
ocean pathways of many objects suspended in fluid can be studied using Lagrangian ana-
lysis [70], including the larvae of marine species [32, 60]. With knowledge of how particles
travel through different geographical areas of a fluid domain, we can investigate the ex-
change of particles between different areas, in order to assess spatial connectivity.

Connectivity is a widely-used term in marine ecology and marine spatial planning,
where it is used in the context of the exchange of individuals of a species between dif-
ferent, geographically separated sub-populations [11, 60]. In this context, connectivity is
important for safeguarding the genetic exchange and productivity of marine species [55].
Therefore, connectivity between regions is taken into account when planning marine pro-
tected areas (MPAs) [55, 9]. The exchange between sub-populations is determined by
many factors, such as spawning behavior, larval dispersal, predator-prey survival, habitat
availability and larval conditions. Larval dispersal is the dominant process contributing to
the spatial aspect of population connectivity [11]. Larval dispersal may be a largely pass-
ive process for some species, while other species are capable of orienting and navigating
their movements through directed horizontal swimming [11]. Larval traits such as spawn-
ing time, swimming behavior and survival are incorporated in some connectivity modeling
studies [32, 7], while other studies simply model larvae as passive particles [1], in certain
cases also neglecting vertical effects by modeling them as buoyant particles [60].

If we simplify larval dispersal as a completely passive process, the definition of con-
nectivity in the context of marine ecology becomes generalized as the exchange of any
passive particle between geographical regions. Through this generalization, any quanti-
fication of connectivity thus becomes applicable for any object that can be modeled as a
Lagrangian particle, such as marine debris [43], phytoplankton [5], or fluid parcels them-
selves. Globally, this definition of connectivity of the ocean surface has been investigated
using the Lagrangian approach in the context of identifying basins of attraction [22].

Several modeling studies have aimed to quantify connectivity between existing MPAs
or localized population sites in order to cluster sets of regions that have an internally high
connectivity [32, 1, 75]. Rossi et al. [60] generalized this approach by not just clustering
spatially separated regions, but instead considering an entire fluid domain. To do so, they
describe flow in the Mediterranean Sea as a Lagrangian flow network and use clustering
methods from network theory to divide the network into groups of boxes that are sparsely
connected with one another. These groups are referred to as hydrodynamic provinces.
This approach was first presented in the context of MPAs, since the boundaries between
hydrodynamic provinces can be understood as barriers to larval transport, thus hindering
the connectivity between MPAs. In certain cases, these boundaries have been shown to
coincide with well-known oceanographic features [60]. Since Rossi et al. modeled larvae
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as passive Lagrangian particles, the retrieved hydrodynamic provinces bear relevance not
only to larvae, but to Lagrangian particles in general, and boundaries between clusters can
be interpreted as barriers to flow itself [71].

We note that hydrodynamic provinces differ from Lagrangian coherent structures. Much
work has been put into the detection of Lagrangian coherent structures, which are delin-
eated by material lines that are linearly stable or unstable for longer times than surrounding
regions [28]. For a comparison between Lagrangian coherent structure detection methods,
see Hadjighasem et al. [27]. While Lagrangian coherent structures may move in space
with the mean flow, by identifying hydrodynamic provinces we instead aim to partition an
entire domain into time-invariant localized coherent regions [71]. Moreover, hydrodynam-
ical provinces are not only characterized by small fluid exchange across their boundaries,
but also by high internal mixing. Both properties are particularly useful in the context of
planning networks of MPAs, where one seeks to maintain connectivity between fixed areas
in space [60, 71].

This thesis aims to investigate surface connectivity in the Arctic and subarctic oceans
through identification of hydrodynamic provinces using the Lagrangian flow network ap-
proach. Studying the Arctic through this approach is interesting for multiple reasons.
Firstly, community detection has only been applied to Lagrangian flow networks in the
Mediterranean, which can be approximated as a closed domain, while the Arctic and sub-
arctic Oceans comprise a domain that is open at the southern boundary. We therefore
investigate whether this approach is successful at identifying meaningful communities in
open domains. Secondly, the Arctic ocean experiences strong seasonal variations in the
strength and location of ocean currents, as well as seasonal variations in the sea ice extent,
with sea-ice affecting surface flow [24]. These variations in domain topology and hydro-
dynamics will therefore influence the location of barrier to flow. We compare connectivity
between different seasons and years, in order to see which physical mechanisms are govern-
ing barriers to transport. Thirdly, the average Arctic sea ice extent has been decreasing
over the past couple decades and is very likely to decrease in the future [10, 76]. Since
this decrease will cause a potentially irreversible shift into a new climatic state [56], it is
insightful to see whether these developments are reflected back in the topology of hydro-
dynamic provinces. Lastly, while efforts for planning networks of marine protected areas
in the Arctic ocean are currently underway [57], this study provides the first assessment of
the connectivity of the surface ocean in the Arctic.

We also aim to describe important considerations when using this approach and to
raise caveats that have not been previously discussed. This includes a discussion of what
should make a good community, as well as what should be the physical interpretation
of communities found by the community detection algorithm Infomap [61]. Moreover,
community detection algorithms in complex networks have been shown to be sensitive to
degenerate solutions, meaning that many good solutions may exist, while their topology
may significantly differ [23, 6]. We therefore assess which structures are persistently found
between different solutions.

With these aims in mind, this thesis is structured as follows. First, we provide a
theoretical description of Lagrangian flow networks, community detection using Infomap
and hydrodynamic provinces in chapter 2. This theoretical breakdown closely follows
Rossi et al. [60] and Ser-Giacomi et al. [71], who first presented this approach to studying
geophysical fluids. We elucidate step-by-step how Infomap functions, including important
tuning mechanisms, and relate these to the underlying flow when possible. Then, we give
a brief overview of oceanographic structures in the Arctic Ocean and hypothesize how
these may influence community structures. With this theoretical basis in mind, chapter 3

Assessing Ocean Surface Connectivity in the Arctic 2



describes our methodology for assessing Arctic ocean surface connectivity, expanding on
the methodology from Rossi et al. [60] and Ser-Giacomi et al. [71]. We provide a detailed
description of our data, parameters and method for assessing the quality of communities
returned by Infomap. Next, different experiments related to Infomap’s configuration and
connections to the ocean surface and sea ice are presented and their results are reported
in chapter 4. These are discussed in chapter 5, where we also present several important
considerations and caveats of using community detection for assessing connectivity. The
thesis is concluded in chapter 6.

Annotated code for running the experiments in this thesis is available on https://
github.com/daanreijnders/arctic-connectivity.
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2 | Theory

The characterization of a fluid as a network constructed from Lagrangian trajectories was
first introduced by Rossi et al. [60] and later described from a more technical perspective
by Ser-Giacomi et al. [71]. By mapping flow onto a network, the dynamics of the fluid
system are captured by the topology of the network [46]. This enables us to analyze these
dynamics using the vast toolkit of network science that has become available in the past
couple of decades. This toolbox is rich due to the fact that many problems throughout
different disciplines can be approached by representing systems as networks, enabling an
interdisciplinary cross-pollination of problem-solving methods [52]. Examples of such sys-
tems, specifically in which a quantity flows between the components of a system, include the
flow of passengers between airports [26], transactions between banks [73], and the spread
of innovations between individuals [47]. A frequently recurring problem is the division of
a network into communities of nodes that are well connected among each other, with only
sparse connections between distinct communities [51] and many approaches have been put
forward for tackling this problem. For comparisons, see Danon et al. [13] and Fortunato
[20]. In the context of a flow network, ideally such a division yields barriers to fluid trans-
port, with fluid being unlikely to cross these barriers. Simultaneously, high connectivity
within a network community should correspond to the fluid within one community being
well-mixed.

2.1 Lagrangian Flow Networks

A network representation of a system comprises a graph G = (V,E), consisting of a set
of nodes, V , and a set of edges, E, where an edge (i, j) ∈ E forms a connection between
nodes i, j ∈ V . Additionally, these edges may be directed, so that an edge from node i
to node j is distinct from an edge from j to i. Moreover, edges may take on weights wij ,
which may correspond to the importance of a connection. For example, they can represent
quantities like the flow of passengers between airports in an airport network or the number
of citations in a citation network. In our practical application, V and E are finite sets.

When mapping fluid flow as a network, the fluid domain needs to be discretized in
order to represent the continuous flow by the finite sets V and E. We can divide the flow
domain into a set of NB bins, B = {Bi, i = 1, . . . , NB}, and consider the flow between
different bins. These bins then form the nodes of the network, while the flow between bins
is captured by the edges between nodes. Since the flow between bins is directional and
may differ in magnitude, edges should be weighted and directed.

Fluid flow in our ocean is subject to chaos and many external forcings, some of which
are seasonal. The flow between bins is therefore dependent on the initial state of the fluid
at time t0 and the time interval τ in which the flow is considered. In Lagrangian flow
networks, we establish a connection between node i and node j if there is exchange of fluid
(or equivalently, Lagrangian particles) from the corresponding bin Bi to bin Bj in the time

Assessing Ocean Surface Connectivity in the Arctic 4



2.2. FINDING HYDRODYNAMIC PROVINCES THROUGH COMMUNITY DETECTION

interval [t0, t0 + τ ]. The weight of edge (i, j) will then be proportional to the amount of
fluid that is transported from Bi to Bj .

From a Lagrangian perspective, the fluid transport can be determined from the initial
and final positions in the trajectories of ideal fluid particles. These trajectories can be
determined through integration of the equations of motion of particles. Final particle
positions X(t0 + τ) are then given by

X(t0 + τ) = X(t0) +

∫ t0+τ

t0

v(x(t), t)dt, (2.1)

where v(x, t) is the time-dependent Eulerian velocity field [70]. Then, the right-hand side
of (2.1) defines the flow map Φτ

t0 , which maps the initial location x of a fluid particle to
its final location.

Given m(Bi) Lagrangian particles initially being distributed in bin Bi ∈ B, we can
approximate the flow probability between bins by considering the fraction of particles
traveling from bin Bi to bin Bj in time window [t0, t0 + τ ] by

P(t0, τ)ij =
#{x : x ∈ Bi and Φτ

t0(x) ∈ Bj}
m(Bi)

, (2.2)

which allows us to construct a transition matrix P(t0, τ) [22, 60, 71]. Therefore, P(t0, τ)
defines the approximation of our flow as a Markov chain. As long as fluid parcels, or
equivalently, particle trajectories are conserved, P(t0, τ) is row-stochastic, such that for
each bin Bi,

∑NB
j=1P(t0, τ)ij = 1 and each element is non-negative. Note that the definition

of our transition matrix (2.2) only considers the initial and final location of the particles,
and thus contains no information about fluid exchange between bins at intermediate times.

The transition matrix P(t0, τ) can be used as an adjacency matrix to generate a graph
Gτt0 , which is our network representation of the flow. Each row and column index corres-
ponds to a node, and the weight of an edge w(i, j) is given by the entry P(t0, τ)ij . In the
network representation of the fluid, edge weights thus correspond to the probability that a
particle travels between bins and the row-stochastic property of P(t0, τ) ensures that the
sum of the weights of outgoing edges for any given node is 1.

2.2 Finding Hydrodynamic Provinces through Community
Detection

Having obtained a discrete description of our time-dependent flow, we can now look for
coherent regions. Hydrodynamic provinces obtained by applying community detection to
Lagrangian flow networks should only be sparsely connected with one another. Simultan-
eously, we require high connectivity within a hydrodynamic province, meaning that the
interior of each province should be well-mixed, such that we optimize for fluid from one
location in the hydrodynamic province to be exchanged evenly to other locations in the
province. Put differently, the corresponding region in the graph should be well connected
[71]. This is the goal of community detection in network theory, and many approaches have
been proposed to divide a network into distinct communities satisfying this requirement
[20, 52].

There is no single definition of what constitutes a community. Given our objective of
finding communities that have few edges running to their neighbors and that have many
edges in their interior, both requirements may easily be satisfied for certain graphs (see
figure 2.1). However, other graphs may have structures in which we cannot easily infer a
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2.2. FINDING HYDRODYNAMIC PROVINCES THROUGH COMMUNITY DETECTION

(a) A graph in which a community structure
(orange versus turquoise) can readily be in-
ferred.

(b) A graph without an obvious community
structure.

Figure 2.1: Communities may or may not naturally occur in networks.

division into communities (see figure 2.1b). In the second case, one may wonder whether
we should be looking for such a division at all, since it is unclear whether we may find
a balance of our requirements that still yields a meaningful community division. Before
applying a community detection strategy, it is therefore important to first investigate the
characteristics of the network at hand and, if community detection should be applied, think
about how high internal connectivity and sparse external connectivity can be balanced
in a meaningful manner. Moreover, it is important to determine a scale at which the
investigation of communities can lead to meaningful results, since communities may exhibit
a nested, multilevel structure [37]. Different aims for community detection have lead to
the development of different approaches. The definition of what constitutes a community
implicitly depends on the underlying detection strategy, causing different algorithms to
detect community structures of different nature [64].

Previous work on partitioning transition matrices in order to find almost-invariant sets
[21] actually draw on classical spectral partitioning methods methods from network theory
[52]. While these methods satisfy the criterion of minimal fluid exchange along structure
boundaries, they do not impose the criterion of strong mixing [71]. Furthermore, this
method identifies structures of similar sizes, while communities in flow networks may well
exhibit many different sizes [71].

One popular measure for detecting communities is the modularity maximization method
[51, 52]. This method relies on the comparison of a given network with a random network
or other null model, in order to determine which regions of the network exhibit more con-
nections than would be expected in a random network. Modularity maximization has a
couple of limitations. Although there exist implementations of modularity maximization
that take the direction of edges into account, most methods neglect directionality of edges
[38]. Moreover, the null models used by modularity maximization carry no obvious mean-
ing with respect to flow networks, such that this method lacks a physical interpretation
[71]. Lastly, these methods suffer from a resolution limit, preventing us from detecting com-
munities smaller than a specific scale that is determined by the size of the total network
[19].

With these limitations in mind, Rossi et al. [60] and Ser-Giacomi [71] instead propose
using the Infomap [61] community detection method for our purposes. Infomap uses an
information-theoretic approach to identify communities based on the flow within a network.
This approach was first introduced by Rosvall and Bergstrom [62] and was expanded on
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2.2. FINDING HYDRODYNAMIC PROVINCES THROUGH COMMUNITY DETECTION

and presented as a software package by Rosvall et al. [61].
Infomap is a community detection algorithm that takes edge directionality and weights

into account and its solutions are less likely to be impacted by a resolution limit than other
methods [35]. In addition, it can find communities that may differ in size. Infomap also
allows the study of community structures at different scales, either through identifying
nested communities [17], or through a tuning parameter that affects community sizes [37].
The information-theoretic approach used by Infomap does not have a direct physical mean-
ing, but connections between this approach and our criteria for hydrodynamic provinces
are explained in the next section.

2.2.1 How does Infomap work?

Infomap aims to identify communities by considering the dynamics that are governed
by the edge structure of a network. Specifically, it aims to partition the network into
communities such that it minimizes the average length of encoded trajectories of random
walkers, which traverse the network with probabilities corresponding to the local import-
ance of edges. For our flow network, edge weights directly correspond to the transition
probabilities of Lagrangian particles. The transition probabilities of Lagrangian particles
will thus be used by Infomap to drive the movement of the random walkers. While many
community detection methods, like modularity maximization, focus on the topology of a
network compared to a null model, the random walkers used by Infomap simulate flow on
a network. The following account of how Infomap works closely follows Rosvall et al. [61]
and subsequent extensions [39, 37]

Infomap capitalizes on the fact that trajectories of random walkers can be encoded
using Huffman codes [31], which constitute an optimally efficient encoding. The trajectory
of a random walker consists of the sequence of nodes that it traverses. Visiting a node
can be regarded as an event in the trajectory, and each possible event can be encoded by
assigning it a unique string of bits. Correspondingly, each node in the network is given
its unique codeword. Huffman codes are optimally efficient by assigning short codewords
to common events and long codewords to rare ones, with no codeword being the prefix
of another. This implies that short codewords are assigned to nodes that are visited
frequently, while longer codes are assigned to nodes with a low ergodic visiting frequency.
Through this method, we can communicate a node-to-node trajectory of a random walker
using a concatenated sequence of codes, which we refer to as a path description. The
average length of a codeword will grow in size as the number of nodes in the network
increases, as more bits are needed to describe a node using a unique codeword. This in
turn leads to longer path descriptions.

Rather than describing a network only in terms of nodes and edges, we can consider
the nodes in a network to be divided among communities. When a network is made up
of communities that are characterized by few edges between communities and many edges
within a community, a random walker is likely to spend a long time within a community
before moving to another. This allows the construction of a two-level encoding system,
where we have a separate encoding for the events of entering each community and for the
movement of a random walker within a community, such that each community has its own
encoding. Since nodes in different communities may then be assigned the same codewords,
codewords are shorter. If a random walker does not switch between communities often
such that the corresponding codewords are not used often, path descriptions can in turn
become shorter on average. This is visualized in figure 2.2. Finding a good division into
communities will then yield shorter path descriptions. This implies a minimization strategy
for finding good communities, namely to find a partition that minimizes the average length
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2.2. FINDING HYDRODYNAMIC PROVINCES THROUGH COMMUNITY DETECTION

of codewords used in a random walk.
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Figure 2.2: Finding a good community division can reduce the length of the path description of
a random walker traversing a network (adapted from Rosvall and Bergstrom [62] with permission
from the authors). (a) Flow within a network is simulated using a random walker that moves
from node to node. The orange line shows one sample trajectory. An optimally efficient encoding
is given by the codewords depicted in (b), with codeword lengths varying from 4 to 7 bits. The
trajectory of the random walker is encoded in 314 bits, starting with 1111100 for the first node
in the random walk in the top left, 1100 for the second node, etc. Codewords are separated by
spaces for visualization purposes, but in principle they can be sent concatenated. In (c), the
same trajectory is encoded, now using a two-level description. The codewords used for movement
between communities are indicated using colored arrows (entering a community on the left, exiting
a community on the right). The lengths of codewords for movement within a community range
between 2 and 4 bits. The walk from (a) can now be encoded in 243 bits. The first three bits 111
indicate the walk begins in the red community, followed by 0000 indicating the starting node, 11
indicating the second node, and so forth.

Rather than explicitly determining the most efficient encoding for a given community
division, Infomap instead takes advantage of concepts from information theory to find the
theoretical lower bound of the average codeword length. Given a partition P that divides
the n nodes in V into c communities α = 1, 2, . . . , c, this lower bound is denoted by L(P).
To find an expression for this lower bound, Shannon’s source coding theorem is used [72],
which implies that the average length of a codeword is bounded from below by the entropy
of the random variable X, the n states of which are described by n distinct codewords.
With pi denoting the frequency of occurrence of a state, the Shannon entropy is then given
by

H(X) = −
n∑
i=1

pi log2(pi). (2.3)

The information-theoretical lower bound on the average length of a codeword describing a
step of the random walk is then found through a weighted average of the entropy associated
to the length of the codewords describing entering a new community and the entropies
corresponding to the codewords describing steps in each community. This is captured in
the map equation:

L(P) = qyH(Q) +

c∑
α=1

pα�H(Pα). (2.4)
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Here H(Q) is the frequency-weighted average codelength corresponding to the codewords
that signal entering a new community, while H(Pα) is the frequency-weighted average
codeword length describing steps within a community α. These entropy terms are respect-
ively weighted by the probability that a random walker exits a community, qy, and the
probability of using the codes corresponding to steps in community α, denoted by pα�. If
qαy denotes the probability of exiting community α, the probability to leave any com-
munity is qy =

∑c
α=1 qαy. Then, the entropy associated to encoding switches between

communities is

H(Q) = −
c∑

α=1

qαy
qy

log2

(
qαy
qy

)
. (2.5)

An expression for the entropy related to encoding movements within a community, includ-
ing a signal to exit the community, qαy, is

H(Pα) = −
∑
i∈α

πi
pi�

log2

(
πi
pα�

)
− qαy

pα�
log2

(
qαy
pα�

)
. (2.6)

Here, πi is the ergodic frequency of a random walker visiting node i. The probability of
using the codes corresponding to movements within community α are then pα� = qαy +∑

i∈α πi.
In the case of our directed network, the ergodic visiting frequency of a node cannot be

readily determined from the adjacency matrix P(t0, τ), since the corresponding Markov
chain is not necessarily irreducible. Put differently, the corresponding network is not ne-
cessarily strongly connected, meaning that from any given node, it may be impossible to
reach all other nodes by following directed edges. In a Lagrangian flow network, this can
be due to the fact that surface velocities are not divergence-free since the actual flow is
three-dimensional. Having only knowledge about the surface, Lagrangian particles may be
attracted to regions exhibiting convergence, corresponding to downwelling, while they are
repelled from regions exhibiting divergence, corresponding to upwelling. Nodes correspond-
ing to upwelling regions may thus have no incoming edges. Even when a divergence-free
field is considered, disconnected regions in a basin or insufficient Lagrangian trajectories
may also cause the flow network not to be strongly connected.

In order to still find a steady-state visiting frequency, a small probability σ that the ran-
dom walker will teleport to any other node at random is introduced into the Markov chain.
Doing so, each node can now be reached from any other node, making the corresponding
modified Markov chain irreducible and aperiodic. Then, according to the Perron-Frobenius
theory, there exists one unique steady state for the visiting frequencies π [61], which we
need for evaluating equation (2.6). We reduce the dependency of π on σ by making the
probability of teleporting to a node proportional to the total weight of the edges pointing
to that node. The node visiting frequencies π can then be computed iteratively through

pi;k+1 = (1− σ)
∑
j

P(t0, τ)ijpj;k + σ

∑
j P(t0, τ)ji∑
i,j P(t0, τ)ji

, (2.7)

until p converges to π. The first term on the right-hand side of (2.7) corresponds to
reaching a node by arriving to it from its neighbors, while the second term corresponds to
visiting the node by teleportation. The procedure of calculating the steady state visiting
frequencies is in fact equal to calculating the PageRank of each node [4].

Even though introducing teleportation is essential to be able to find the ergodic visit-
ing frequency π, it comes with a major drawback, namely that this approach introduces
artificial links between nodes in different communities. To circumvent this, the iterative
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calculation of p can be adjusted by only recording the steps of random walkers along links,
without recording teleportation steps. This is the unrecorded teleportation scheme [39],
which comprises a system of three iterative equations [3]:

p∗i;k+1 = (1− σ)
∑
j

P(t0, τ)ijpj;k + σ

∑
j P(t0, τ)ij∑
i,j P(t0, τ)ji

, (2.8a)

q(j,i);k+1 = p∗j;k+1P(t0, τ)ji, (2.8b)

pi;k+1 =
∑
j

qj,i;k+1. (2.8c)

Equation (2.8a) corresponds to equation (2.7), but the probability of teleportation to a
node is now weighted proportional to its outgoing nodes. Then we use the node visiting
frequencies (2.8a) in (2.8b) to compute the frequency of visiting an edge, denoted by
q(j,i). These edge visiting frequencies are consequently used again in (2.8c) to compute
node visiting frequencies, by now just summing up the edge visiting probabilities of all
incoming edges to a node i, thus not taking teleportation into account. This way, the
visiting frequency of a node is only calculated iteratively through the visiting frequency of
its neighbors.

With an expression for the ergodic visiting frequency of each node, we can compute
the probability of exiting community α by using the elements of P(t0, τ):

qαy = σ

(
1−

∑
i∈α

∑
j P(t0, τ)ij∑
i,j P(t0, τ)ji

)∑
i∈α

πi + (1− σ)
∑
i∈α

∑
j /∈α

πiP(t0, τ)ij . (2.9)

The first term corresponds to the probability of teleporting to any node outside the current
community, which is adjusted for the probability of teleporting into the current community.
The second term corresponds to the probability of leaving the current community by fol-
lowing outgoing edges.

Through equations (2.5), (2.6) and (2.9) and using the ergodic visiting frequency of our
nodes as found through equation (2.8), we can evaluate the map equation (2.4) without
actually simulating the trajectories of any random walker. Instead, all we need are the
steady state visiting frequencies and a transition matrix. The first can be calculated
efficiently using a power iteration approach, while the second is provided. Therefore,
L(P) can be calculated efficiently for any given partition P, and L(P) can subsequently be
minimized to find a good partition.

Infomap uses a stochastic and recursive heuristic algorithm to minimize the map equa-
tion. Its core algorithm roughly follows the following steps. Initially, each node is assigned
its own community. Then, in random order, each node is moved to the neighboring com-
munity that would reduce L the most, unless no move reduces L, in which case the node
remains in its original community. It then applies this iteration recursively until no move
results in a reduction of L. After that, Infomap is recursively applied on the resulting
partition, now using the communities as nodes, until L can be no longer reduced.

Multiple improvements have been added to this core algorithm of Infomap [61], includ-
ing the detection of nested structures [63], overlapping communities [77], and notably, a
method that introduces a tuning parameter to investigate community structures at differ-
ent scales [67, 68, 37], referred to as the Markov-time. Remaining mindful of Lagrangian
flow networks, we note that investigating the flow using nested community structures comes
with a difficulty in interpretation, since it is not clear which nested communities should
be expanded and which one should remain collapsed. Moreover, since we wish to use
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Infomap to find well-defined barriers to transport, we will not consider the case of over-
lapping communities, since their boundaries are difficult to interpret in terms of barriers
to transport. However, it is useful to have the possibility of tuning Infomap as to choose
the spatial scale at which we investigate community structures in the network. This would
allow us to choose a scale at which we can examine connectivity at a scale that is useful
for investigating oceanographic structures.

The spatial scale of communities can be adjusted by changing the time it takes for a
random walker to transition to another state. By default, a random walker changes states
(or follows a self-loop to its current state) at each discrete timestep. Instead, the random
walk can be considered through a continuous-time analogue, where the event that a random
walker takes a step follows a Poisson distribution with the average time for transitioning
denoted by tm [37]. This Poisson process can be parameterized in discrete time by using
an adjusted transition matrix

P̃(t0, τ) =

{
(1− tm)I + tmP(t0, τ) tm < 1

tmP(t0, τ) tm ≥ 1.
(2.10)

In essence, P̃(t0, τ) represents the lower probability of random walkers having not yet
transitioned after a discrete timestep by adding self-edges. Conversely, a higher prob-
ability of taking a step is represented through higher transition probabilities. In the map
equation (2.4), the Markov-time tm does not influence the steady state node visit frequency,
since the steady state visiting rates are independent of how often a state is sampled [37].
However, the Markov-time linearly scales the rate at which a random walker exits or enters
a community, qαy, such that

qαy(tm) ≡ tmqαy. (2.11)

Therefore, instead of actually using P̃(t0, τ), the Markov-time parameter can instead be
introduced into the map equation by only considering equation (2.11) and the original
transition matrix.

The effect of the Markov-time on community sizes can be interpreted as follows. When
tm is smaller than 1, random walkers are less likely to transition to a different node in one
timestep. Going back to Huffman codes, this can be interpreted as a higher likelihood of
the same node being encoded multiple times in the path description. Transitions between
communities are therefore less likely, so the number of communities in the optimal encoding
may be higher. Conversely, when the Markov-time parameter is larger than 1, a random
walker may traverse multiple nodes before its position is encoded. If an optimal encoding
should not include many transitions between communities, it should therefore allow for
less communities in this case [37].

Throughout our description of Infomap, it is tempting to draw parallels between the
fictional random walkers considered by Infomap and our ‘physical’ particles that traveled
along the trajectories that gave rise to our transition matrix P(t0, τ)). However, there
are important differences [71]. For instance, the random walker keeps traversing nodes
with probabilities that arise from the initial and final locations of our particles determined
by the flow in our time window. While transition matrices have previously been used as
a computationally inexpensive way to model the spread of tracer [36, 69], these studies
use a succession of different transition matrices to capture the temporal variation of the
flow field. Actual particles may follow different trajectories since the flow field is highly
unsteady and transition probabilities are different when considering different values of t0
and τ . Using transition matrices to simulate flow also introduces artificial dispersion [44].
Furthermore, the connection to physical flow is further impaired by letting random walkers
teleport.
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With these remarks in mind, we have now given a description of how Infomap can be
used to demarcate hydrodynamic provinces, corresponding to communities in the graph
description of the flow. To efficiently find good solutions, Infomap works heuristically
and stochastically: it yields a solution that has a short average code description length
by using an optimization strategy in which the random order in which nodes are moved
influences the topology of the resulting communities. This allows the algorithm to find
different local minima of L. The use of a heuristic and stochastic approach has important
implications. Due to the random moving of nodes in its core algorithm, different passes of
Infomap may yield different locally optimal solutions. The algorithm may be run multiple
times such that the partition P that yields the lowest value of L(P) can be picked as a final
solution. However, many degenerate solutions may exist, which all have similar values of L
while they may exhibit considerable topological differences [23, 6]. The transition matrices
used by Infomap are by themselves already approximations of the real surface flow. This
means that when one solution Pa has a slightly lower value of L than another solution
Pb while exhibiting a significantly different topology, there is no reason to assume that
solution Pa carries more physical meaning than Pb. Investigating the structure of only one
solution might be misleading, especially when a community structure is weak [6]. While
some communities are consistently found across different good solutions, others may not.
Different solutions may be merged to find a consensus solution [74, 40], but in doing so,
information on which community boundaries are weak may be lost. Instead, it is insightful
to compare multiple solutions to see on which structures solutions agree and to figure out
in which regions of the network the community structures are weaker [6].

2.2.2 Quality of Hydrodynamic Provinces

Infomap’s sole criterion for finding a good partition P is minimizing L(P). The general
criterion for community detection in network theory, namely finding groups that have few
edges between each other while having many edges in the interior, can be translated into
two criteria for hydrodynamic provinces. First, the ratio between Lagrangian particles
leaving and staying in a hydrodynamic province within time τ should be low. This cri-
terion interprets hydrodynamic provinces as almost-invariant areas of fluid, such that flow
within a region A is nearly mapped onto itself after time τ : Φτ

t0(A) ≈ A [71]. Second,
hydrodynamic provinces should have strong internal mixing, making sure that different
areas of each hydrodynamic province exchange fluid.

Ser-Giacomi et al. propose two quality parameters to assess the extent to which these
criteria are met [71]. The first criterion is assessed through the coherence ratio, ρτt0(α),
measuring the ratio between particles that leave and stay within a community α within
time step τ .

ρτt0(α) =

∑
i,j∈αm(Bi)P(t0, τ)ij∑

i∈αm(Bi)
. (2.12)

For a partition P that divides the domain into c communities α = 1, . . . , c, the global
coherence ratio is the average of the coherence ratio of each community:

ρτt0(P) =
1

NB

c∑
α=1

#{Bi|i ∈ α}ρτt0(α). (2.13)

Unlike in Ser-Giacomi et al. [71], here the global coherence ratio is weighted by the amount
of bins in a community, such that we minimize the effect of small communities produced
by noise in the data. The coherence ratio is determined only through P(t0, τ)ij , which is
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constructed from only the initial and final particle locations, meaning that particles may
temporarily leave a community within the interval [t0, t0 + τ ].

The second criterion is assessed using a measure of mixing proposed by Ser-Giacomi et
al [71]. The mixing parameter indicates how strongly fluid within a community is mixed.
To do so, only flow occurring within a community α is considered, which we can represent
through a reduced transition matrix

R(t0, τ |α)ij =
P(t0, τ)ij∑
k∈αP(t0, τ)ik

, i, j ∈ α. (2.14)

The mixing parameter for a community M τ
t0(α) is given by the normalized sum of the

Shannon entropy associated to the transition probabilities between each pair of bins:

M τ
t0(α) =

−
∑

i,j∈αR(t0, τ |α)ij logR(t0, τ |α)ij

Qα logQα
, (2.15)

with Qα = #{Bi|i ∈ α}. The mixing parameter reaches its maximum value of 1 when
particles within a bin Bi, i ∈ α are dispersed uniformly to all other boxes in α (Rij =
1
Qα
∀i, j ∈ α). The global mixing parameter is then the weighted average of the mixing

parameter

M τ
t0(P) =

1

NB

c∑
α=1

QαM
τ
t0(α). (2.16)

For practical applications such as investigating barriers to transport when planning
MPAs, a third, qualitative, criterion may be added, namely that the communities found
by Infomap take on spatial scales that are useful for identifying these barriers. The Markov-
time parameter in Infomap allows us to change the spatial scale for investigation, and may
thus be used to fulfill this criterion. This parameter is not considered by Ser-Giacomi et
al. [71].

2.3 Oceanic structures in the Arctic domain

Lagrangian particles at the surface passively follow surface flow. In certain regions, this
flow is dominated by persisting surface currents. Since the transport between two regions
may be hindered by the presence of these currents, it is thus useful to provide a short
description of the major currents in the Arctic ocean. Major seas in the Arctic are shown
together with the bathymetry in figure S1, while an overview of Arctic surface currents is
shown in figure S2.

On the side of Atlantic Ocean, inflow of warm and saline water is provided by the North
Atlantic Current. The North Atlantic Current branches off into the Norwegian Current and
the Irminger Current. The Norwegian Current, located west of Norway, closely follows the
local topography due to the conservation of potential vorticity [66] and exhibits baroclinic
instability [49]. It eventually splits into the West Spitsbergen Current and the North Cape
Current, flowing into the Barents Sea. The Irminger Current flows along the western slope
of Reykjanes Ridge separating the Irminger Basin from the Icelandic basin. It splits into
two branches. The westward branch merges with the East Greenland Current, while the
other branch forms the North Icelandic Irminger Current, flowing northward and later
eastward around the coast of Iceland [41]. Inflow from the Pacific Ocean passes through
the Bering Strait, which is both shallow (∼ 50 m) and narrow (∼ 85 km).

The main current through which water leaves the Arctic Ocean is through the East
Greenland Current. The East Greenland Current is constrained to the Greenland Contin-
ental Margin due its low density water originating from sea ice and due to the conservation
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of potential vorticity [30]. Another region of outflow is the Canadian archipelago and the
Davis Strait.

Surface velocities are also influenced by the presence of sea ice, which dampens the
effect of wind stress exerted on the sea surface. When sea ice protrudes into the upper
layer, it also provides a lateral barrier to flow. Within regions that contain sea ice, surface
flow and sea ice drift patterns are dominated by the Beaufort Gyre, located in the Beaufort
Sea, and the Transpolar Drift, which flows from the Laptev Sea and the East Siberian Sea
to the Fram Strait. Sea ice drift and surface flow in the Beaufort Gyre exhibit anticyclonic
motion, forced by the Beaufort Sea High atmospheric pressure system [58].
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Our methods for finding hydrodynamic provinces from a Lagrangian flow network closely
follow the approach by Rossi et al. [60] and Ser-Giacomi et al. [71] as described in the
previous chapter. This chapter describes the data, methods and configurations used in
our experiments. First, we present the flow field data that is used, including an exact
description of our domain. Then we illustrate how we discretize the domain and describe
the implementation we used for determining Lagrangian particle trajectories. Finally, we
report on our configuration of Infomap.

3.1 Hydrodynamical data

The connectivity between different geographical regions in the ocean is determined by the
underlying hydrodynamics. So, in order to obtain a realistic description of connectivity, we
need an accurate description of the hydrodynamics. The best available description is given
by reanalysis data, in which fields of state variables are reconstructed through a synthesis
of observations constrained by the physical governing equations [12].

Here, we use of the Global Ocean Physical Reanalysis product1 [18], made available by
the Copernicus Marine Environment Monitoring Service (CMEMS). This product provides
reanalysis data for the global ocean at a resolution of 1/12◦, corresponding to a latitudinal
length of 9.3 km per grid cell. Data is provided for 50 vertical levels. The dataset contains
daily mean fields over the period 1993-2018, for which ocean surface altimetry data and
satellite sea ice data are available. The product includes fields describing fluid dynamics
(horizontal velocities), thermodynamics (salinity and temperature) and sea ice features
(concentration, thickness and horizontal velocities). These quantities are retrieved by as-
similating model output from the NEMO 3.1 ocean model [50] and the LIM2 EVP sea ice
model [25] with observational data. While values in NEMO an LIM2 are computed on a
tripolar Arakawa C-grid, final fields are interpolated on a regular Arakawa A-grid. Atmo-
spheric forcings are provided with 3-hourly and 24-hourly frequencies by the ERA-interim
dataset [14] provided by the European Centre for Medium-Range Weather Forecasts.

For assessing ocean surface connectivity, we are specifically interested in surface ve-
locities. To describe the ocean surface, we only use the uppermost layer of the dataset,
which is situated at a depth of 0.49 m. The velocity field is not divergence-free due to
vertical motions, but as discussed, since we use teleportation dynamics as in PageRank,
this causes no issue for computing the steady-state visiting frequency of each node in the
corresponding network. In order to investigate the effect of sea ice on the topology of hy-
drodynamic provinces, we also use the sea ice concentration fields that are provided in the
dataset. The sea ice concentration in each grid cell is defined as the ratio of the cell’s area
that is covered in sea ice. Sea ice thickness and sea ice velocities are not considered, since

1GLOBAL_REANALYSIS_PHY_001_030
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the presence of sea ice in our upper layer is implicitly incorporated in our velocity fields.
The daily resolution and multidecadal timespan of the dataset enables us to investigate
how seasonality and decadal trends influence the topology, coherence and mixing of hydro-
dynamic provinces. Moreover, the temporal resolution and extent allows us to investigate
the persistence of features over time.

An extensive assessment of the quality of the dataset can be found in [16]. In summary,
the main ocean currents and sea ice extent variability are reproduced well. However, winter
sea ice extent maxima are overestimated. Spring and summer are marked by an excess of ice
melting, while in winter, the spread of ice extent is reduced when compared to observations.
Root mean square differences and biases compared to observations are stable over the entire
period of dataset.

An intercomparison study of different reanalyses, including a coarser predecessor of our
dataset (GLORYS2V4 at 1/4◦), shows an inter-reanalysis agreement on sea ice concentra-
tion, which can be expected since different reanalysis experience the same constraints in
surface temperature from atmospheric forcing, and from direct assimilation of sea ice con-
centration observations [8]. We therefore conclude that our dataset is the best available
approximation for sea ice concentrations.

A limitation of the dataset is that while it is eddy-permitting, it is not necessarily eddy-
resolving. A meridional resolution of 1/12◦ corresponds to an effective resolution of 9.3 km.
However, the first baroclinic Rossby radius of deformation, which is the natural scale of
baroclinic boundary currents, eddies and fronts takes values between 1 and 16 km in the
Arctic ocean, sometimes even assuming values below 1 km in shallow seas like the Barents
Sea [53]. Therefore, the reanalysis data does not resolve eddies, fronts and boundary
currents of these scales in certain regions of the Arctic. Instead, it resolves larger-scale or
aggregate structures larger than our grid size. Moreover, we should be careful with our
interpretation of the zonal resolution increasing northward due to convergence of meridians
at the poles. Since values calculated on a tripolar C-grid are interpolated onto an A-
grid, a resolution increase on the interpolated A-grid does not correspond to smaller scale
structures being resolved any better. In fact, closer to the pole, many grid cell values may
be interpolated from just a few cells on the C-grid.

3.2 Spatial domain

Although the coverage of our hydrodynamical data is global, we limit ourselves to studying
the Arctic domain. We define it as the area above 60◦N and only load hydrodynamical
data within this domain. The domain is indicated in figure 3.1. An inherent effect of
having a domain with an open boundary is a loss of connectivity information. There is a
possibility that at a timescale τ , two geographic regions within our domain may exchange
fluid parcels through currents or eddies that (partially) fall outside of the domain. The
loss of information is dependent on the timescale τ at which the trajectories of a fluid
parcels are investigated, and therefore on the distance from the boundary of our domain:
the further a parcel is from the boundary, the less probable it is to reach the boundary
within our integration time τ , so information is lost less likely.

In particular, our domain choice causes the Denmark Strait and Davis Strait to be
disconnected, since the southernmost tip of Greenland lies outside the domain, which can
be seen in figure 3.1. The East Greenland Current flows around this tip at Cape Farewell
where it transitions into the weaker West Greenland Current (see figure S2). This is a
clear example of a location where information loss occurs: trajectories between the east
and west of Greenland cannot be resolved, so although these areas may be connected by
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Figure 3.1: Map of our spatial domain, which lies north of 60◦N (solid line). The map includes a
snapshot of mean surface speeds at January 1st, 2018. In our experiments, velocity fields are only
loaded above 60◦N, while here they are also shown below 60◦N. Currents and eddies may advect
particles outside of the domain.

flow, this is not be visible in our Lagrangian flow network.
In section 4.3, we try to assess how the loss of information due to our open domain

boundaries influences the communities that Infomap finds. This information loss can be
prevented by including hydrodynamical data south of our domain, which we could easily
do since our dataset has global coverage. However, this would come with an increase in
computational cost in case we wish to study the ocean surface at the same resolution.
Trivially, loading velocity fields of the global ocean takes much more time than loading
just the velocity fields around the Arctic. One could suggest to load only a small portion
of data outside our domain which may allow particles to return. However, how large this
portion should be cannot be determined a priori. Generally, if we keep following Lagrangian
particles outside of the domain, they may spend a lot of time there without ever returning.
Computing trajectories outside of our domain may thus be computationally wasteful and
we avoid doing so.

3.3 Domain discretization

The domain needs a discrete description in order for the hydrodynamics to be mapped onto
a network. The domain is discretized by dividing it into bins, which will correspond to the
network’s nodes. In principle, a regular grid would provide a straightforward rectangular
binning, but it comes with a problem. Due to the convergence of meridians at the poles,
these bins would get smaller with increasing latitude. Especially in the polar regions, this
would cause bins to have drastically varying areas. Ideally, our course-grained description
of the flow considers exchange between regions of comparable size and shape. This way,
transition probabilities between different areas can be compared straightforwardly, without
accounting for bin sizes. If we would use regular grids, probabilities to reach individual
bins would become smaller as bin areas become smaller closer to the pole.

To circumvent curvature-related issues, we make use of a icosahedral-hexagonal grid.
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This class of grids is composed of a tessellation of hexagons and 12 pentagons, which are all
of similar size and shape. This allows for easier comparison of particle exchange between
boxes. This grid has been used in several geophysical fluid modeling studies due to its
desirable isotropy [65, 78].

There exist multiple implementations of icosahedral-hexagonal grids that are different
in construction. We use a widely-used construction method that goes as follows. First,
we map the vertices of an icosahedron onto a sphere. Then, we bisect each triangular face
into four new triangles. We do this recursively until a specific level of refinement has been
reached. The number of recursive bisections is referred to as the grid level. This icosahedral
grid with triangular faces is constructed using the Stripy Python package (version 1.0.2)
[48]. Then, we make use of the Voronoi diagram of this grid. A Voronoi diagram partitions
a metric space X containing a collection of k generating points S into k separate regions
R, such that each region is defined as the set of points for which the distance of point x to
generating point Si, d(x, Si), is not greater than the distance to any other generating point
Sj 6=i. Expressed mathematically: Ri = {x ∈ X|d(x, Si) ≤ d(x, Sj) ∀j 6= i}. The Voronoi
diagram of a tessellation of equilateral triangles corresponds to a tessellation of regular
hexagons. The Voronoi diagram of an icosahedral grid corresponds to the icosahedral-
hexagonal grid, with each Voronoi region providing us with hexagonal (or pentagonal)
bins. This grid construction procedure is visualized in figure 3.2.

grid level 0 grid level 1 grid level 4

project onto sphere

icosahedron

recursive bisectionbisect faces

icosahedral grid

(a) An icosahedron is mapped onto a sphere to create an icosahedral grid, which is then bisected
recursively.

grid level 4 icosahedral-hexagonal grid

Voronoi diagram

(b) The Voronoi diagram of this triangular tessellation provides an icosahedral-hexagonal grid.

Figure 3.2: Procedure for constructing an icosahedral-hexagonal grid.

Although the icosahedron that we used to generate this grid consists of equilateral
faces, it is impossible to bisect the projected faces on the sphere into equilateral spherical
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triangles [78]. As a consequence, our icosahedral-hexagonal grid is not made up of perfect
spherical hexagons. However, the maximum ratio in distances between neighboring grid
points is bounded, and so is the ratio of largest and smallest areas of hexagons in the
Voronoi diagram [78]. For grid level 7, this ratio is 1.36. At this refinement level, the
average area of a hexagonal bin in the Voronoi diagram is 3113 km2, while the average
distance between adjacent bin centers is 60.16 km (0.54◦).

Using an icosahedral-hexagonal grid for our domain discretization has two advantages.
Firstly, bins mostly have a comparable area. While we could also construct equal-area
bins for example by using a sinusoidal projection [60], this causes bins to become stretched
out as we approach the poles. Instead, our grid contains bins of similar shapes. Secondly,
while rectangular bins in regular grids have diagonal neighbors that share no edge with each
other, adjacent bins in the icosahedral-hexagonal grid always share an edge. Therefore,
particles leaving a bin always spend some time in directly neighboring bins.

3.4 Particle simulation

Particle simulations are carried out using the Parcels Lagrangian framework (version 2.1.2)
[15]. The Parcels framework provides an accessible Python interface to Lagrangian ocean
analysis. It takes advantage of C-compiled code to efficiently integrate particle trajectories
on user-provided velocity fields. Parcels includes field interpolation schemes to interpolate
particle velocities in space and time. We set it to use a fourth-order Runge-Kutta integ-
ration scheme for determining particle trajectories. We note that Parcels interpolates the
hydrodynamical data supplied on a regular A-grid. The icosahedral-hexagonal grid is not
used for the particle simulations, but only for subsequent binning.

Even though we consider passive buoyant particles, Parcels allows us to specify particle
behavior, which is useful for setting the boundary conditions at our open boundary and
at the coast. At the open boundary, we freeze particles that reach latitudes below 60◦N.
Therefore, in our transition matrix, transport to regions outside the domain is represented
through the bins that lie at the boundary. This is useful to determine the connectivity of
the regions of exit with respect to the rest of the domain.

Particles may also get stuck as they get pushed towards cells where their speed becomes
zero. This can be the case at land cells, where the meridional and zonal velocity fields be-
come zero. Particles can reach these cells since the velocity fields do not have impermeable
boundary conditions at the coast. Although we could specify a boundary condition where
particles reaching the coast are sent back into the ocean domain, methods to do so are am-
biguous. Rossi et al. [60] and Ser-Giacomi et al. [71] remove these stuck particles. Instead,
we keep these stuck particles in P(t0, τ), and interpret this as the beaching of buoyant
particles.

In representing flow through a transition matrix by using particle simulations, several
factors need to be balanced. For instance, the domain needs to be discretized into bins
with high enough resolution to resolve physical structures while providing a statistical
description of the flow. To this end, we should also initialize a large enough number of
particles per bin to capture the flow statistically. These factors both influence the total
number of particles that needs to be simulated, which determines the simulation time.
Two other factors that influence the simulation time are the total advection time τ and
the advection timestep ∆t.

We choose a domain discretization using an icosahedral-hexagonal grid at grid level 7
and initialize our particles on the vertices of the triangles of the icosahedral grid at grid
level 11. Particles that lie on land are removed. Bins that contain no land therefore initially

Assessing Ocean Surface Connectivity in the Arctic 19



3.5. MATRIX AND GRAPH CONSTRUCTION

contain between 253 and 258 particles, the slight variation being due to irregularities in
the grid. The number of initial particles in bins that contain land may be much lower.
Figure 3.3 shows the initial distribution of particles per bin that is used throughout our
experiments. In total, 1450665 particles are initialized.

Figure 3.3: Initial distribution of particles when initializing particles on the vertices of the
icosahedral grid at grid level 7, counted in bins on the icosahedral-hexagonal grid at grid level 7.

To investigate connectivity at different timescales, we simulate particle trajectories for
an advection time of 90 days. Particle locations are stored daily, such that connectivity at
intermediate timescales can also be assessed. Specifically, we look at τ = 30 and 90 days.

We choose an advection timestep ∆t of 20 minutes. When comparing the locations
of particles released at the same location, but advected with a timestep of 1 minute,
the average euclidean distance after 30 days is of the order 3 km. Therefore, we assume
that using this advection timestep, we are able to resolve trajectories to a high degree of
accuracy.

Particle simulations are carried out on a Dell PowerEdge R730 machine, equipped
with 2 16-core Intel Xeon CPU E5-2683 v4 processors running at 2.10 GHz with hyper-
threading enabled to support 64 threads. Each simulation has access to 23.242 GB of
virtual memory. The machine runs Scientific Linux V7.3. With this configuration, typical
particle simulation (wall clock) times for 1450665 particles advected for τ = 90 days with
a timestep of ∆t = 20 minutes are 3.5 to 5.5 hours.

We release particles at March 1st and September 1st, such that seasonal conditions
correspond to high and low sea ice extent respectively. We carry out these simulations for
each year between the period 1993 and 2018, which allows us to find trends and patterns
of connectivity that persist over years. For the year 2017, we carry out simulations at the
start of each month, in order to investigate seasonal effects.

3.5 Matrix and graph construction

The initial and final locations of the simulated particles are used to construct transition
matrices P(t0, t0 + τ) and their corresponding network description, as described in section
2.1. While the bin sizes and number of initialized particles in our domain discretization
vary, these variations are normalized when constructing the transition matrix.

Using the icosahedral-hexagonal grid for a discretization into bins, the domain contains
6614 bins that (partially) contain fluid, such that P(t0, t0 + τ) is a square matrix with
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dimensions 6614× 6614.
We can efficiently determine the initial and final bin of a particle trajectory by con-

sidering which generating point Si in the icosahedral grid is nearest. By definition this
point corresponds to the containing Voronoi bin Ri. We efficiently determine the nearest
generating point by using a k-d tree lookup. A k-d tree is a data structure that for a
given coordinate allows us to efficiently look up the nearest point in a predefined set of
points. We construct a k-d tree using the points generating the Voronoi tessellation. For
this, we use SciPy ’s [33] spatial.cKDTree implementation of the algorithm described by
Maneewongvatana and Mount [42]. This way, we can compute the containing bins of all
particles in the order of a few seconds. This then allows us to determine P(t0, τ) using
equation (2.2).

3.6 Community detection using Infomap

Finally, we obtain a division of our network into clusters by using Infomap (version
1.0.0-beta.51). We configure Infomap to take into account the characteristics of our
flow network.

To start with, we specify that the network should be interpreted as a directed network.
In order for the steady-state visiting frequencies to be determined, we use the standard
value for the teleportation probability of σ = 0.15. By making use of the unrecorded
teleportation scheme, solutions are robust in the regime σ ∈ (0.05, 0.95) [39]. For lower
values, the steady state visiting frequency π becomes unstable, while for higher values, the
steady state approaches the weights of each link.

In addition, we make sure that self-edges, which point from a node i to itself, are in-
cluded. In fact, P(t0, τ) often has values on the diagonal, meaning that particles stay within
a bin after timestep τ , making self-edges an indispensable part of our flow description.

Furthermore, we only consider a two-level community description, meaning that we do
not consider nested communities. As discussed, in a nested description, it can be difficult
to assess which communities should be expanded, making it hard to compare structures.
Instead, we let Infomap only return one layer of communities, which are partitioned as to
minimize the map equation.

Lastly, different experiments are carried out to determine a Markov-time parameter
tm that produces communities of a convenient spatial scale. This scale should be large
enough to allow for comparison of solutions between different seasons and such that we
may attempt retrieve oceanographically relevant structures.

In all experiments, we run Infomap 20 times, after which the partition P with min-
imum L(P) is saved. This ensures that partitions are at a high quality, while keeping
computation times reasonable. Contrary to what Ser-Giacomi et al. [71] report for the
Mediterranean, solutions do not converge by running Infomap more often. Instead, the
value for L convergences only in the coarse- and fine-tuning steps that Infomap executes
in one run. The corresponding solution does depend on a random order in which nodes are
moved by the algorithm, such that different runs do not produce the same result. A higher
quality partition may be found by running Infomap more often, which may sometimes
yield a better value of L(P), but we later show that further improvements in L(P) have
only small influences on the global coherence ratio and global mixing parameter.

Infomap is run on a MacBook Pro (late 2013), equipped with one Dual-Core Intel Core
i5 processor running at 2.4 GHz, with hyper-threading enabled to support 4 threads. The
machine has a memory of 8 GB and runs MacOS 10.15. With this configuration, one outer
loop of Infomap, which is run 20 times, takes approximately 1.5 s. In all experiments, the
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same set of random seeds is used (using option -s 314159), except when we explicitly aim
to compare differences in solutions due to Infomap’s stochastic nature (varying the seed
between 1 and 100).

In general, solutions are compared from multiple perspectives. First, the topology is
assessed with respect to oceanographic features as well as the persistence of boundaries
among different solutions corresponding to different time intervals. Furthermore, we assess
whether our criteria for coherence and mixing are met, as defined in section 2.2.2. Lastly,
we compare values of L(P) through the map equation (2.4). This way, solutions are assessed
from an oceanographic and information theoretical perspective, and the connection between
these two perspectives is evaluated.
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Due to the large temporal extent of our dataset and the various possible configurations
possible with Infomap, there are many dimensions through which we can study connectivity
in the Arctic through the methods explained in chapter 3. For example, to investigate the
system at different temporal and spatial scales, we can carry out analyses for a range of
values of τ and Markov-times. Also, since 26 years of data are available, in principle we can
run Infomap over many different transition matrices. However, while aiming to provide a
comprehensive overview of the different features that govern the topology of hydrodynamic
provinces, we wish to avoid a lengthy and excessive treatment of each variable that could
potentially be at play. This motivates the following structure for this chapter: first, we
compare solutions for one transition matrix obtained with different Markov-times and
we choose one value to carry out all other analyses with. Then, we aim to assess to
what extent solution degeneracy introduces variations in community topology and our
quality parameters among different solutions for four transition matrices, corresponding to
March and September 2018 and different time scales. Subsequently, we assess the effect of
having an open boundary in our domain. Having assessed these effects, we investigate the
persistence of community boundaries over time. Lastly, we examine connections between
community structures, sea surface velocities and sea ice and investigate temporal trends
and seasonal cycles. Throughout each section, topologies are discussed in the context of
physical structures.

Throughout this chapter, maps with hydrodynamic provinces returned by Infomap are
colored with arbitrary colors in such a way that two neighboring communities never share
the same color. However, since Infomap does not have any information on how the network
is embedded in space, communities may exhibit enclaves, meaning that different parts of
the same community may not be connected in space. Due to limitations in visualization,
these enclaves are not explicitly indicated in the figures in this chapter.

4.1 Varying Markov-time

As discussed, we can investigate hydrodynamic provinces at different spatial scales by
tuning the Markov-time parameter tm. However, it is a priori not clear what spatial scale
should be used. For the sake of consistency, we wish to continue further analyses with
just one value of tm. This value should yield solutions with communities at a spatial scale
that is convenient for analysis for different values of τ . A specific definition of a good
spatial scale depends on the specific application. We only set two broad criteria. On the
one hand, solutions should contain communities that are not too small or thin, such that
we can later easily assess the persistence of bins that border on other communities. If
communities are only a few bins wide, many bins will be marked as boundary bins, and
it will be difficult to assess the persistence of community boundaries. On the other hand,
communities should not be too large such that they span tens of latitudes or longitudes,
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containing many features that are known to function as physical barriers to transport,
since this would be at odds with our aim of finding communities with boundaries that
correspond to barriers to transport themselves. Both criteria should hold for the range of
time intervals τ = 30 to 90 days.

(a) τ = 30 days, tm = 1.0 (b) τ = 30 days, tm = 2.0 (c) τ = 30 days, tm = 3.0

(d) τ = 90 days, tm = 1.0 (e) τ = 90 days, tm = 2.0 (f) τ = 90 days, tm = 3.0

Figure 4.1: Comparison of solutions returned by Infomap for different values tm for τ = 30, 90
days. Particles are initialized on t0 = 2018-03-01. White contours indicate average the sea ice
extent in March 2018, defined as the contour line corresponding to a sea ice concentration of 15%.

Figure 4.1 shows a comparison of solutions returned by Infomap for different values of
tm and τ . All solutions exhibit a circular configuration of hydrodynamic provinces around
the Beaufort Gyre. For τ = 30 days, solutions contain filamental structures around the
East Greenland Current.

Community sizes increase with an increase in τ or tm. This is to be expected, since
an increase in τ allows Lagrangian particles to travel farther, thus connecting more bins.
Moreover, due to the chaotic nature of ocean flow, particles originating from the same
bin may over time follow different currents and eddies, such that when longer time spans
are considered, the spread in particle distributions becomes larger. From a network per-
spective, this decreases the average distance between nodes and a random walker on the
network can therefore traverse larger distances, connecting bins that are separated by lar-
ger distances too. For increasing tm, random walkers may also traverse more nodes before
having their position recorded. Therefore, it makes sense that Infomap draws community
boundaries at larger distances as either τ or tm increases.

For τ = 30 days and tm = 1.0, the solution consists of many small communities that
have sizes that are too small to assess boundary persistence. For this tm and both values
of τ , communities are especially small in the presence of sea ice. This makes sense, as the
surface velocities in these areas are drastically lower. In these areas, some communities also
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consist of many spatially disconnected bins. Communities are largest for τ = 90 days and
tm = 3.0. For this solution, one hydrodynamic province spans from the edge of the domain
at 60◦ between Iceland and Norway all the way to the sea ice boundary and protrudes
far into the sea ice. We deem the value tm = 3.0 too high, since surface velocities at the
sea ice boundary drop drastically and it should therefore provide a natural boundary in
the system. We choose to continue with tm = 2.0, since the solutions for both values of τ
exhibit a community scale that fits both of our criteria.

4.2 Individual solutions and solution degeneracy

As discussed in chapter 2, Infomap is a stochastic and heuristic algorithm suffering from
solution degeneracy, meaning that Infomap returns locally optimal solutions, which each
might exhibit different topologies. In order to use Infomap to study oceanographic struc-
tures, the persistence of boundaries, and temporal trends, we must first evaluate the role
that solution degeneracy plays. We do this by running Infomap on the same transition
matrix with the exact same parameters, only varying the random seed. We compare results
for 100 different seeds in terms of codelength, global coherence, global mixing and boundary
persistence. Differences in results must then be due to the degeneracy of Infomap.

For 100 solutions obtained for P(t0 = 2018-03-01, τ = 90 days), the average codelength
is L(P) = 6.694, while the associated standard deviation is 0.011 (from now on reported in
parentheses). The average global coherence ratio is ρτt0(P) = 0.7843 (±0.0067), while the
average global mixing parameter is M τ

t0(P) = 0.3392 (±0.0023).

(a) L(P) = 6.6947, ρτt0(P) = 0.7831, Mτ
t0(P) =

0.3401.
(b) L(P) = 6.6948, ρτt0(P) = 0.7934, Mτ

t0(P) =
0.3346.

Figure 4.2: Two solutions found for P(t0 = 2018-03-01, τ = 90 days). White contours indicate
average sea ice extent in March 2018.

Figure 4.2 shows the two solutions that have their codelengths closest to the average
value. Both solutions are good solutions since they have been obtained by running In-
fomap for a different seed 20 times and picking the partition with lowest codelength. The
codelengths of the two solutions differ by 0.0001. Both solutions exhibit similar topologies
in the Davis Strait, the Beaufort Gyre, and the Chukchi Sea. However, for certain areas,
topologies are very different. This can clearly be seen in the Norwegian Sea. The solution
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in figure 4.2a separates the Norwegian Sea from the Greenland Sea, while the solution in
4.2b clusters these seas together.

Coherence ratios and mixing parameters exhibit spatial patterns. This can be seen
in figure 4.3, which shows the coherence ratio and mixing parameter associated to each
community of the partition depicted in figure 4.2a. Communities that lie close to the
boundary of the domain can exhibit low coherence ratio since particles may exit the domain
from these communities. Bins where particles exit the domain are often clustered as single
communities. In contrast, the community at the center of the Beaufort Gyre shows a
coherence ratio close to 1, meaning this community retains almost all particles that were
released there.

Mixing parameters are generally higher for communities in ice-free regions, likely due
to higher velocities and the presence of eddies that can stir Lagrangian particles across a
community. Values are especially high in the Norwegian sea, which contains the Norwe-
gian Current which exhibits baroclinic instability [49]. This area is characterized by high
mesoscale activity [29]. The solution depicted in figure 4.2b exhibits similar patterns in
coherence and mixing. This can be seen in figure S3.

(a) Coherence ratio (b) Mixing parameter

Figure 4.3: The coherence ratio and mixing parameter associated to each community in the
partition depicted in 4.2a, for P(t0 = 2018-03-01, τ = 90 days).

Ser-Giacomi et al. investigate the persistence of community boundaries across years
[71]. We follow a similar procedure to assess the persistence at which Infomap draws
boundary locations. We flag the bins that lie at the interface between two communities as
a boundary bin and assess the frequency at which each bin is marked as such among our
100 solutions. This is shown in figure 4.4 for March and September 2018, with τ = 30 and
90 days.

In certain regions, Infomap is able to draw boundaries persistently. This is mainly the
case in areas containing sea ice. The circular structure around the anticyclonic Beaufort
Gyre can clearly be seen. Boundaries are also often found separating the Irminger Basin
and Iceland Basin from each other and the rest of the domain. These basins are physically
separated by the Irminger Current, coinciding with the Reykjanes Ridge. A boundary also
persists at the edge of the continental shelf east of Greenland, where the East Greenland
Current is located. For τ = 30 days, small communities persist in the Norwegian sea,
but locations differ between March and September. Especially for t0 = September 1st,
boundary-free regions can clearly be seen. For τ = 30 days, the Norwegian sea contains
ring-like boundaries. For τ = 90 days Infomap is less persistent in drawing boundaries in
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(a) P(t0 = 2018-03-01, τ = 30 days) (b) P(t0 = 2018-03-01, τ = 90 days)

(c) P(t0 = 2018-09-01, τ = 30 days) (d) P(t0 = 2018-09-01, τ = 90 days)

Figure 4.4: Persistence of community boundaries in a set of 100 solutions found for different
transition matrices. White contours indicate average sea ice extent in March and September 2018
respectively.

and between the Norwegian Sea and Greenland Sea. For this τ , a frontier is visible running
from the coast of the Scandinavian peninsula to Novaya Zemlya, isolating the White Sea
and its outflow.

Plotting the persistence of boundaries yields information on where Infomap is consistent
in assigning neighboring nodes to different communities. Instead of investigating a single
solution to identify barriers to transport, an ensemble of solutions can effectively extract
these barriers from the given flow field.

Flagging boundaries does not necessarily show in which regions Infomap is inconsist-
ent in assigning nodes to the same communities. For a given region, low values for the
occurrence of a boundary in a specific bin can be due to no boundary being drawn at all
in this region across different solutions, but it may also be due to boundaries being drawn
at different locations in each partition. In the latter case, this means that two points in
a region may be disconnected across solutions, but we would not be able to readily infer
this from looking at the boundary persistence in figure 4.4.

Multiple methods exist to quantify the similarity between two community partitions
[13, 45, 34]. These methods generally compare the global similarity of solutions, taking into
account the topology of all communities. Instead, to assess how persistent the topology of
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Figure 4.5: Average Jaccard index among solution pairs per bin as given by equation (4.2).
Solutions correspond to P(t0 = 2018-03-01, τ = 90 days). White contours indicate average the sea
ice extent in March 2018.

a single community is across solutions, we can investigate local differences by assessing for
a given bin how often it is clustered together with the same group of bins. One method to
compare similarity in node assignment is by considering the Jaccard index, also referred to
as Jaccard distance. The Jaccard index of two sets A and B is the size of their intersection
over the size of their union:

J(A,B) =
#{A ∩B}
#{A ∪B}

. (4.1)

When investigating degeneracy, Calatayud et al. [6] advocate to investigate the solution
landscape by grouping similar solutions. Their algorithm to do so is based on finding
minimum Jaccard distances between different communities. Since individual solutions
may each differ from one another in a different area, we refrain from clustering complete
partitions in terms of similarity. However, we can still make use of the Jaccard index to
assess the persistence in node assignment. For each node, we can for each of the

(
100
2

)
pairs of solutions determine the Jaccard distance between the communities that a node
is clustered in. Let κ denote a set of K different of partitions, κ = {Pa|a = 1, . . . ,K}.
Let αai indicate the community that bin i falls under in solution Pa. Then for each node,
the persistence of being assigned to similar communities in an ensemble of solutions is the
average Jaccard index among solution pairs, Ai, as given by

Ai(κ) =
2

K(K − 1)

K−1∑
a=1

K∑
b=a+1

#{Bj |j ∈ αai ∧ j ∈ αbi}
#{Bj |j ∈ αai ∨ j ∈ αbi}

. (4.2)

In regions where Ai is high, Infomap is consistent in the topology of communities, while in
regions where Ai is low, Infomap is inconsistent in assigning a node to the same community.

Figure 4.5 shows the average Jaccard distance for P(t0 = 2018-03-01, τ = 90 days) as
defined by Ai in equation (4.2) for our set of 100 solutions. Here we see that community
assignment is particularly persistent on the northeast of Greenland, the Kara Sea, the
Baltic Sea and the center of the Beaufort Gyre. In other regions, assignments are less
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consistent, such that it is important to always look at more than one solution when assessing
connectivity in those regions.

4.3 Sensitivity to domain boundary

As discussed in section 3.2, having a domain with an open boundary may entail losing
information about connectivity between bins. Since particle trajectories are frozen as
soon as a particle exits the domain, the choice of the domain boundary is of influence
on the transition probability of a particle. We attempt to assess the extent to which
our community boundaries are influenced by the latitude at which we define our domain.
The codelength of a partition yielded by Infomap depends on the transition probabilities
between bin pairs. Changes in transition probabilities due to shifting the domain boundary
should be localized to bins that lie close to the boundary. Therefore, we expect the influence
of our domain choice on the locations of boundaries locations to be localized to the domain
boundary.

We investigate the influence of the location of the domain boundary by comparing the
boundary persistence for different domains, but with simulations obtained for the same
values of t0 and τ . We choose t0 = 2018-09-01 and τ = 90 days, such that communities
are large enough for the boundary persistence not to be too noisy and to reduce the effect
of sea ice. Ideally, we would compare to the case where we do not have an open domain
at all, which can be achieved by expanding the domain to the global ocean. However, as
discussed in section 3.2, this would come with increased computational costs, partly due
to loading significantly more hydrodynamical data and also due to the extra computation
of trajectories of particles below 60◦N. Instead, we compare our normal domain bounded
at 60◦N, for which the boundary persistence is found in figure 4.4d, to a smaller domain
bounded at 70◦N. Since particle trajectories are obtained deterministically by using equa-
tion (2.1), trajectories of particles that do not reach latitudes lower than 70◦N are the same
as when considering a domain bounded by 60◦N. Large parts of the resulting transition
matrix should thus be equal to that of 60◦N. We apply Infomap 100 times on the transition
matrix obtained for the simulation in the modified domain, which for 67% of originating
bins (columns in the transition matrix) is completely equal to the transition matrix in the
original domain. The persistence of boundaries in these 100 new solutions is shown in
figure 4.6.

Infomap may either draw community boundaries in the two domains at different loca-
tions due to the underlying transition matrices being different, or it may do so due to its
heuristic and stochastic nature. Figure 4.7 shows the difference in persistence of solutions
obtained from the 60◦N and 70◦N domains. Here, bins are left white if this difference is
lower than the standard deviation associated to flagging a bin as a community boundary
across the 100 solutions obtained using the 70◦N domain. This allows us to see where
differences in community boundaries are likely due to solution degeneracy and where they
may be due to the different domain choice. Note that the differences in boundaries are
significant mostly near the domain boundary. A notable exception is in the Greenland
Sea, where this difference comprises a large portion of bins. However, differences in the
persistence of community boundaries between the two domains become smaller closer to
the interior of the domain. We theorize that when comparing communities in the 60◦N
domain to communities obtained from transition matrices for the global ocean, differences
in boundary persistence should similarly be localized to our current domain boundary at
60◦N. We thus assume that boundary persistences as found in figure 4.4 are mostly the
same as when instead we would have considered the global ocean.

Assessing Ocean Surface Connectivity in the Arctic 29



4.4. BARRIERS TO TRANSPORT

Figure 4.6: Persistence of community bound-
aries for 100 solutions obtained for P(t0 =
2018-09-01, τ = 90 days), with the redefined
domain being bounded by 70◦N. White con-
tours indicate average sea ice extent in Septem-
ber 2018.

Figure 4.7: Difference in community bound-
ary persistence, obtained by subtracting the
persistence in the 70◦N domain in figure 4.6
from the persistence in the 60◦N domain in
figure 4.4d. Differences are only shown when
they exceed the standard deviation associated
to flagging a bin as a boundary across the 100
solutions obtained using the 70◦N domain (cal-
culated for each bin).

4.4 Barriers to transport

Having assessed the solution degeneracy and the effect of using an open boundary, it is
insightful to assess the persistence of boundaries between hydrodynamic provinces over
different years. Like Rossi et al. [60] and Ser-Giacomi et al. [71], we take the average of
the community boundaries of solutions obtained from transition matrices corresponding to
different years and seasons. One difference is that here we take solution degeneracy into
account by including 100 solutions for each transition matrix.

Figure 4.8 shows the persistence of boundaries averaged over the years 2009-2018 for
March and September 2018, with τ = 30 and 90 days. Each subfigure is thus composed
using 10 transition matrices, corresponding to each year, and for each transition matrix,
100 solutions are obtained using Infomap. This way, boundaries that are due to degeneracy
or natural variability are filtered out.

Across all solutions, we again observe a circular structure around the Beaufort Gyre.
For particles released in September, the East Greenland Current is also persistently vis-
ible. The North Atlantic Current, including the Norwegian Current and West Spitsbergen
Current are prominently visible for particles initialized in September with τ = 30 days,
and to a lesser extent for the solutions with τ = 90 days. The Irminger Current persists
across solutions. For τ = 90 days, the solutions for particles initialized in March show a
boundary at the north-eastern coast of Iceland, while such a boundary is not visible for
particles initialized in September. This may be due to the seasonality in the strength of
the North Icelandic Irminger Current [41]. For τ = 30 days, boundaries occur more often
in the Norwegian Sea and Greenland sea than for τ = 90 days, illustrating that different
physical structures provide boundaries to transport at different time scales.
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(a) P(t0 = March 1st, τ = 30 days)
.

(b) P(t0 = March 1st, τ = 90 days)
.

(c) P(t0 = September 1st, τ = 30 days)
.

(d) P(t0 = September 1st, τ = 90 days)
.

Figure 4.8: Persistence of community boundaries between 2009 and 2018. For each transition
matrix, 100 different solutions are obtained using Infomap.

4.5 Connections to sea surface velocities and sea ice concen-
trations

To better understand how Infomap is affected by the physics that give rise to our trans-
ition matrices, we investigate and attempt to explain correlations between codelengths,
community boundaries, coherence, mixing, surface velocities and sea ice concentrations.
Of these quantities, codelengths and community boundaries pertain to the graph descrip-
tion of our physical system, while surface velocities and sea ice concentrations are inherent
to the physical fields that govern the dynamics of Lagrangian particles. Coherence and
mixing are dependent on both the community division found by Infomap, as well as the
physical trajectories of Lagrangian particles, thus bridging the physical- and graph descrip-
tions of our system. We note that sea ice concentrations are not explicitly used to determine
particle trajectories, but the presence of sea ice does influence the surface velocity field and
therefore implicitly affects the system.

To investigate the correlation between codelengths, global coherence ratios and global
mixing parameters, we use a set of 1000 solutions, which comprises of 100 solutions for
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10 transition matrices obtained through simulations between 2009 and 2018 with t0 =
September 1st and τ = 90 days. For these global quantities, we find that the codelength
and global mixing parameter have a negative Pearson correlation coefficient of r = −0.093,
with an associated p-value of p = 3.1× 10−3. Simultaneously, we find a positive correlation
between codelength and global coherence, with r = 0.18 and an associated p-value of p =
1.4× 10−8. This means that as Infomap finds better partitions with smaller codelengths,
this will on average slightly increase the global mixing, while it will on average slightly
decrease the global coherence.

(a) Mean speed in Sep-Oct-Nov 2009-2018, in-
terpolated on our icosahedral-hexagonal grid.

(b) Mean sea ice concentration in Sep-Oct-
Nov 2009-2018, interpolated on our icosahedral-
hexagonal grid.

(c) Average coherence ratio per bin. (d) Average mixing parameter per bin.

Figure 4.9: Average speed, sea ice concentration, coherence ratio and mixing parameter for each
bin. Coherence ratio and mixing parameter correspond to average values of the communities a bin
is partitioned with in each of the 1000 solutions for P(t0 = September 1st, τ = 30 days) between
2009-2018.

To locally assess correlations between the velocity, sea ice, coherence, mixing, and
boundary persistence of each bin, we make use of the same 1000 solutions for the trans-
ition matrices P(t0 = September 1st, τ = 90 days) between 2009-2018. We use transition
matrices with particles released in September, since a larger portion of the domain is ice-
free. The corresponding boundary persistence can be found in figure 4.8, while the other
quantities can be found in figure 4.9.

Meridional and zonal velocities are averaged per grid cell over September, October and
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November 2018, interpolated onto the icosahedral-hexagonal grid, and converted into mean
speed. Sea ice concentrations are similarly averaged and interpolated.

We find a positive correlation between mean speed and boundary persistence, with a
Pearson correlation coefficient of r = 0.38 and p = 0 (below machine precision) in regions
where the sea ice concentration is less than 0.15. If we include all bins, this statistically
significant correlation vanishes. This indicates that in ice-free regions, currents correlate to
community boundaries and thus provide barriers to transport. This correlation disappears
in the presence of sea ice, meaning that in the sea ice regime, other factors govern the
existence of boundaries.

When comparing correlations with sea ice, we find a positive correlation between coher-
ence ratio and sea ice concentration of r = 0.21 and p = 6.3× 10−69. On visual inspection
of the average coherence ratio in figure 4.9c, it is difficult to see a direct relation to sea ice.
The correlation between sea ice and coherence ratio may be biased due to the low coher-
ence ratio of some communities at the edges of the domain, where particles may escape to
communities containing only a few bins.

The mixing parameter and sea ice concentration are negatively correlated with r =
−0.24 and p = 2.6× 10−88. From figure 4.9d we can observe that mixing is generally
higher in ice-free regions. However, the mixing parameter is also low around the East
Greenland Current. This makes sense, since this current flows south, such that within
communities in this region, it is only possible for particles to spread to bins that lie south.
In contrast, mixing is strong in the Norwegian Sea and Barents Sea. The high mesoscale
activity in the Norwegian Sea may provide relatively efficient mixing in the communities
located there.

4.6 Trends and Seasonality

Since the sea ice extent in the Arctic experiences a strong seasonal variation with implic-
ations for ocean surface flow, we expect the quality of solutions to be affected by this.
Furthermore, the decrease in summer sea ice extent that has been observed in the past
few decades is also of influence on surface flow, thus it also affects solutions found by In-
fomap. It is insightful to assess these effects by looking at the monthly and yearly temporal
evolution of solution quality.

Figure 4.10 shows the evolution of sea ice, codelength, global coherence ratio and global
mixing parameter calculated from 100 degenerate solutions obtained for τ = 90 days and
t0 = September 1st for each year between 1993 and 2018. Linear trend regressions are
included. For codelengths, the standard deviation associated to the solution degeneracy
is much smaller than the differences in average codelengths between different years, and
is thus hardly visible. This indicates that most differences among solutions cannot be
attributed to solution degeneracy, but are instead due to differences in the underlying flow,
mirrored in the transition matrices. The global mixing parameter also exhibits standard
deviations that are smaller than the variation of mean values between years. In contrast,
for the global coherence ratio, the standard deviations due to solution degeneracy are of
the order of the variation of mean values between years.

We find a negative correlation between sea ice area and codelength, with r = −0.44
and p = 0.023. The correlation between sea ice and the global mixing parameter is also
negative, with r = −0.75 and p = 9.4× 10−6. We do not find a significant correlation
between sea ice and the global coherence ratio.

While the sea ice area exhibits a clear downward trend, the codelength and global
mixing parameter show positive trends. The coherence ratio shows a slight downward
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(d) Global mixing parameter.

Figure 4.10: Evolution of sea ice, codelength, global coherence ratio and global mixing parameter
in September between 1993 and 2018. 100 solutions have been obtained for each year by initializing
particles on the first day of September 1st. τ = 90 days. Trend regression is indicated in orange,
including associated correlation coefficient r, p-value and standard error. Standard deviations
related to solution degeneracy are indicated using error bars, except for sea ice area.

trend, although with a higher p-value than the codelength, sea ice area and mixing.
To supplement the inspection of solution quality in different years, figure 4.11 shows

average values of the coherence ratio and mixing parameter for 100 solutions in 1993-2002
for particles initialized at t0 = September 1st in the respective years, with τ = 90 days. We
can compare this to the average coherence ratio and mixing parameter between 2009-2018,
as shown in figures 4.9c and 4.9d. These time spans correspond to the first and last ten
years of our dataset. No clear topological changes can be seen for the average coherence
ratios. In contrast, we see that for the mixing parameter, the region in the middle of the
domain that exhibits low values is shrinking. We theorize this to be due to the decreasing
summer sea ice extent, such that the ocean surface may exhibit larger velocities and provide
more efficient mixing.

Seasonal development of the sea ice area, codelength, global coherence ratio and global
mixing parameter are assessed by comparing 100 solutions for 12 transition matrices, for
which t0 equals the first day of each month in 2017, while τ = 90 days. Figure 4.12 shows
the monthly evolution of these parameters. For the codelength and mixing parameter, a
clear seasonal cycle can be observed, with maxima in summer and minima in winter, which
coincides with the seasonal cycle in sea ice area. Indeed, we find a negative correlation
between sea ice area and codelength of r = −0.85 with p = 4.0× 10−4 and a negative
correlation between sea ice area and the global mixing parameter of r = −0.85 and p =
5.4× 10−4. A seasonal cycle is absent for the global coherence ratio and we do not find a

Assessing Ocean Surface Connectivity in the Arctic 34



4.6. TRENDS AND SEASONALITY

(a) Coherence ratio for 1993-2002. (b) Mixing parameter for 1993-2002.

Figure 4.11: Average coherence ratio and mixing parameter for each bin from 1000 solutions for
P(t0 = September 1st, τ = 30 days) between 1993-2002, similar to figure 4.9c and 4.9d.

correlation between sea ice and coherence ratio here.
Since sea ice coverage is minimal in summer, the seasonal cycle of the codelength agrees

with the yearly trend of increasing codelength as sea ice declines. This also corresponds
to what can be observed for the mixing parameter, which is lower in areas with sea ice
and which globally increases over time, as sea ice cover decreases. This can be interpreted
as follows: as the sea ice extent declines, surface velocities increase. Therefore, particles
can travel larger distances, which increases the connectivity between bins. This in turn
reduces the distance between edges in the network. This allows a random walker to tra-
verse the network more easily. Nodes that were previously visited infrequently, increase in
steady-state visiting frequency, making the distribution of π more balanced. This causes
the average codelength to increase, as infrequently visited nodes that are assigned larger
codewords are visited relatively more frequently. Simultaneously, in areas covered by ice,
mixing is lower than average. As sea ice disappears and velocities increase, these regions
become more mixed.

Assessing Ocean Surface Connectivity in the Arctic 35



01
-01

-20
17

01
-02

-20
17

01
-03

-20
17

01
-04

-20
17

01
-05

-20
17

01
-06

-20
17

01
-07

-20
17

01
-08

-20
17

01
-09

-20
17

01
-10

-20
17

01
-11

-20
17

01
-12

-20
17

t

0.8

0.9

1.0

1.1

1.2

1.3

1.4

se
a 

ice
 a

re
a 

[k
m

2 ]

1e7

(a) Mean sea ice area.

01
-01

-20
17

01
-02

-20
17

01
-03

-20
17

01
-04

-20
17

01
-05

-20
17

01
-06

-20
17

01
-07

-20
17

01
-08

-20
17

01
-09

-20
17

01
-10

-20
17

01
-11

-20
17

01
-12

-20
17

t0

6.4

6.6

6.8

7.0

7.2

7.4

7.6

co
de

le
ng

th

(b) Codelength. Standard deviations are on
average 0.010, making error bars invisible.

01
-01

-20
17

01
-02

-20
17

01
-03

-20
17

01
-04

-20
17

01
-05

-20
17

01
-06

-20
17

01
-07

-20
17

01
-08

-20
17

01
-09

-20
17

01
-10

-20
17

01
-11

-20
17

01
-12

-20
17

t0

0.775

0.780

0.785

0.790

0.795

0.800

0.805

gl
ob

al
 c

oh
er

en
ce

 ra
tio

(c) Global coherence ratio.

01
-01

-20
17

01
-02

-20
17

01
-03

-20
17

01
-04

-20
17

01
-05

-20
17

01
-06

-20
17

01
-07

-20
17

01
-08

-20
17

01
-09

-20
17

01
-10

-20
17

01
-11

-20
17

01
-12

-20
17

t0

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.41

gl
ob

al
 m

ix
in

g 
pa

ra
m

et
er
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Figure 4.12: Monthly evolution of the sea ice area, codelength, coherence ratio and mixing in
2017. 100 solutions have been obtained for each month by initializing particles on the first day of
each month. τ = 90 days. Error bars indicate the standard deviation due to solution degeneracy.



5 | Discussion

In this chapter, we discuss to what extent Infomap is successful at identifying clear bound-
aries to transport. We also present several limitations to our methods and experiments,
related to the data and simulations, as well as limitations that are inherent to Infomap’s
community detection strategy. Additionally, we raise different caveats that should be
heeded when applying Infomap to Lagrangian flow networks in practical settings, such
as planning Marine Protected Areas. Lastly, we point out differences of this study with
respect to earlier work and provide suggestions for future work.

5.1 Resolving physical structures from Lagrangian flow net-
works

In the context of hydrodynamic provinces, each individual community partition returned by
Infomap corresponds to a local minimum of the map equation. The standard deviation of
the codelength due to solution degeneracy is low compared to the differences in codelength
due to seasonal and yearly variations in flow. Therefore, each individual solution is good in
the sense that it corresponds to a low average codelength and the corresponding community
partition should have boundaries to transport such that the transitions between different
communities are locally minimized. When investigating individual degenerate solutions,
such as in figure 4.2, different communities in the sea ice free domain can be seen to
correspond to different seas. Boundaries have been shown to correlate with velocities,
meaning that currents provide effective barriers to cross-community particle exchange.
However, different partitions may each resolve different physically relevant boundaries. To
obtain a more complete picture, it is thus useful to consider an ensemble of solutions, such
as is done in figure 4.4. We note that these solutions only arise from a single transition
matrix. Seasonal pictures can be obtained by considering ensembles over different years
[71].

The boundaries in regions with sea ice seem to arise from the flow slowly moving in a
anticyclonic fashion around the Beaufort Gyre, coinciding with the flow of sea ice. Particles
thus move in concert, and hydrodynamic provinces in this area do not satisfy the criterion
of high internal mixing well. Sea ice cover is shown to be anticorrelated with codelength
and global mixing, both seasonally and yearly.

For individual partitions, we note that it is always important to consider the mixing
parameter and coherence ratio of the corresponding communities. By only looking at the
topology of a community, it may be tempting to think that any two bins that fall under the
same community exchange particles with one another. In contrast, in certain communities,
the underlying flow may have one clear direction, such that the corresponding nodes in
the network are not strongly connected. This is the case for example in communities that
coincide with strong currents, such as the East Greenland Current. In these communities,
particles generally only travel south, following the flow. This manifests itself in a relatively
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low mixing, making the inspection of the mixing parameter an important step of the
analysis.

Infomap may provide a useful lens to investigate connectivity and barriers to transport
in a large domain. Nonetheless, different mechanisms may give rise to each community and
their barriers. Different experiments may be necessary to better understand the nature of
each community and community barrier.

5.2 Limitations and caveats

The representation of true flow in terms of Lagrangian flow networks is limited by several
factors. First, the hydrodynamic data and domain discretization suffer from a finite res-
olution. This has the consequence that mesoscale structures are not fully resolved in the
flow field in certain regions of the domain. Additionally, where mesoscale structures are
resolved in the flow, they are only represented statistically in the graph description of the
flow. The representation can thus be improved by using a higher resolution flow field that
is eddy resolving and by increasing the resolution of the domain discretization.

Additionally, since there is a limited amount of trajectories originating from each bin,
representation can be improved by increasing the number of Lagrangian particles that
is simulated. However, this bears extra computational costs, especially when the grid
resolution is increased.

Furthermore, the representation of the flow is influenced by having an open boundary.
When choosing an open domain, it is important to assess to which extent this influences
community topologies. For our domain, this effect seems to be localized to the domain
boundary, and Infomap is still able to find barriers to transport that carry physical signi-
ficance. Nevertheless, this limitation can only be fully overcome by considering flow in the
global ocean.

Our results are also sensitive to multiple parameters. Naturally, the communities re-
turned by Infomap are dependent on t0 and τ , since these parameters govern the time
and timescale at which the flow is recorded into a transition matrix. In addition, results
are sensitive to the choice of the Markov-time parameter. Here we choose one specific
Markov-time parameter to tune Infomap in such a way that it provides a convenient spa-
tial scale for our analyses. For more specific applications, it may be difficult to assess
which Markov-time should be considered, since it is impossible to know a priori which
Markov-time corresponds to each specific spatial scale at which the flow can be considered.

When using community detection in practical contexts, such as planning Marine Pro-
tected Areas, it is important to take the aforementioned limitations in mind. Here we con-
sidered the community detection algorithm Infomap due to successful previous applications
and since its underlying algorithm optimizes a balance between high internal connectivity
and good coherence, while emphasizing the flow description of a network. However, the
way in which Infomap balances coherence and mixing cannot be set explicitly.

Furthermore, the degeneracy of solutions makes the interpretation of a single solutions
misleading. If the optimal solution with the minimum average codelength could be found,
it should in principle yield a partition which optimizes our criteria for strong internal
mixing and good community coherence. However, this solution would have been obtained
through cumulative approximations of the flow, for example arising from uncertainties in
the observed flow fields, limited spatial and temporal resolutions, a limited amount of
modeled Lagrangian trajectories, and a freedom in parameter choice. Therefore, there is
no reason to assume that the optimal solution corresponds to a division in communities
that carries the most physical meaning. This gives further motivation to always consider
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an ensemble of solutions. It is useful to assess the uncertainty in node assignment by using
equation (4.2). Even when an ensemble of solutions is considered, community detection can
be useful, but should be interpreted with caution due to the propagation of uncertainties,
approximations and errors.

Specifically in the context of planning Marine Protected Areas, it would be erroneous
to solely base MPA locations on the basis of single solutions, and it is particularly useful
to consider ensembles of solutions. Hydrodynamic provinces can then provide a useful
supplement in the framework of parameters that are taken into account when planning
MPAs. However, in an ensemble of solutions, it may still be difficult to assess which
locations are often connected to one another. When an assessment of connectivity between
existing MPAs or specific potential MPA sites is desired, it may therefore be useful to also
directly consider the exchange of particles between specific regions, as is done in Coleman
et al. [9]. Moreover, when clustering existing MPAs based on their connectivity, it is useful
to also consider possible degeneracy.

5.3 Comparison to existing literature and implications for
future research

In many respects, this thesis extends on the method for identifying hydrodynamic provinces
through community detection in Lagrangian flow networks as proposed by Rossi et al. [60]
and Ser-Giacomi et al. [71]. Foremost, we assessed the importance that solution degeneracy
plays in yielding different partitions and stress the importance of considering ensemble
solutions. Other key differences are the consideration of the Markov-time parameter, the
application to a larger, open domain, an assessment of the evolution of global quality
metrics in a seasonal and yearly context, and the establishment of correlations between
hydrodynamic province boundaries, flow speed and sea ice.

Still, many improvements can be made to the accuracy of hydrodynamic provinces.
First, improvements can be made to the modeling of particle trajectories. Accuracy can
be improved by considering larger particle ensembles. Moreover, the artificial diffusion
introduced by using transition matrix can be assessed and may be supplemented. This can
be parameterized in Lagrangian modeling by adding a stochastic diffusion term related to
the local eddy diffusivity [59]. Additionally, wave-driven Stokes drift influences particle
trajectories at the surface and may be included in simulations [54].

Besides, a logical extension of this research would be the consideration of a larger, or
perhaps global, domain. This goes hand in hand with longer computation times, but com-
putational efficiency may be further improved. For example, a larger advection timestep ∆t
may be used, although this comes with a decrease in accuracy of the particle trajectories.

Moreover, the information-theoretical approach used by Infomap only indirectly op-
timizes for the coherence of and mixing in communities. Here, the general criteria for
community detection in graph theory are translated into specific criteria that are relevant
for oceanography. The construction of an algorithm that directly optimizes these criteria
would prove useful for our applications.

Furthermore, community divisions may be further fine-tuned to increase the relevance
for marine spatial planning. For example, when connectivity of specific marine species is
considered, individual particle behavior may be modified to mimic species behavior [32, 7],
instead of considering passive buoyant particles, to yield a community description of the
domain relevant to an individual species.

Lastly, since the Arctic domain is largely subject to climatic changes, it is interesting
to investigate future connectivity of the Arctic ocean by using velocity field output from
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coupled global climate models. This can reveal how changes in the climate may affect
barriers to transport. In turn, this may help policymakers design Marine Protected Areas
such that their future connectivity is more resilient to climate change.
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6 | Conclusion

In this thesis, we have applied the Infomap algorithm to detect hydrodynamic provinces
in the Arctic ocean surface by using a network description of the flow.

We have given a comprehensive account of how Infomap finds community partitions
and how the underlying algorithm relates to our Lagrangian flow networks. Similarities and
differences between the Lagrangian particles that give rise to the transition matrix and the
random walkers considered by Infomap have been discussed. The Markov-time parameter
is a useful way to tune the community sizes and allows connectivity to be assessed at
different spatial scales.

Since Infomap yields degenerate solutions, care must be taken with the interpretation
of single partitions. Instead, ensembles of solutions may be investigated to determine the
persistence of community borders. We also present a method to assess in which regions
node assignment is consistent, supplementing the identification of persistent border nodes.
It is useful to assess the standard deviation in global quality parameters associated to
solution degeneracy, in order to assess the significance of temporal trends.

We have shown that Lagrangian flow networks may be used for assessing connectivity
in open domains. The effect of using an open domain remains largely limited to the vicinity
of the domain boundary.

Although in certain regions the resolution of our data and domain discretization is too
coarse to resolve structures at the Rossby radius of deformation or smaller, Infomap is still
able to resolve important oceanographic structures in the Arctic ocean, such as different
currents, seas and the Beaufort Gyre. We find correlations between codelength, the global
mixing parameter and the global coherence ratio, verifying that Infomap indirectly optim-
izes for coherence and mixing. We also find a correlation between the presence of boundary
nodes and mean surface speed in ice-free regions, indicating that currents provide barriers
to transport. In regions with sea ice, coherence is large, but mixing is small, since particles
move slowly and in concert. We also find that the decrease in Arctic summer sea ice cover
is mirrored in increasing codelength and mixing. The seasonal cycle, dominated by changes
in sea ice cover, is also mirrored in codelength and global mixing.
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A | Supplementary Figures

Figure S1: Seas and straits in the Arctic. Colors indicate bathymetry.
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Figure S2: Surface currents in the Arctic. Reproduced from the Arctic Monitoring and Assess-
ment Programme [2].

(a) Coherence ratio (b) mixing parameter

Figure S3: The coherence ratio and mixing parameter associated to each community in the
partition depicted in 4.2b, for P(t0 = March 1st, 2018, τ = 90 days).
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