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Abstract

The two-spin components Bose-Einstein condensate in simulated in an anisotropic harmonic
potential. A reduced two-dimensional model for this system is developed. The ground state of
the model is shown. In order to check the validity of the simulation the size of the interface of
the condensate and the speed of sound in the condensate are calculated. The result show that
the simulation correctly predicts the behavior of the BEC. The time evolution of the two-spin
component Bose-Einstein condensate is investigated for a symmetrical and asymmetrical initial
conditions. The results show that the components do not mix and slide past each other. The
simulation predicts that the interface is turbulent during movement, but this might be due to the
absence of dampening by a thermal cloud in the simulation.
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1 Introduction

The Bose-Einstein condensate was predicted by Satyendra Bose and Albert Einstein in 1924. The idea
resulted from Satyendra Bose deriving a quantum-mechanical proof for Planck’s radiation law. This
derivation was translated by Einstein into German and latter he expanded the idea to include matter
as well. The Bose-Einstein condensate is formed by bosonic particles, particles that are allowed to be
in the same quantum-mechanical state. By cooling these particles it is possible to make them occupy
the lowest energy state of the system. If these particles are cooled enough, nearly all the particles
condense into the lowest energy state and at this point they form a new form of matter called a Bose-
Einstein condensate. The reason why Bose-Einstein condensates are interesting is because they form
a macroscopic quantum-mechanical object and their unusual properties such as superfluity. In this
thesis I will simulate a two-spin component Bose-Einstein condensate, where half of the particles in the
condensate are transfered to another hyperfine state. The single spin component simulation already
has theoretical framework [Weizhu Bao and Markowich(2003)] and a simulation of such a system has
been done before [Pratama(2011)]. A two-spin component simulation has not been performed. In
order to create the theoretical model for simulating a two spin component Bose-Einstein a model is
developed along the lines of the single component model. Then the validity of the model is checked
by comparing it with theoretical predictions for the speed of sound in the condensate and the width
of the interface.
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2 Theoretical model

2.1 Two-component Gross-Pitaevskii equations

The starting point of the numerical model used in the simulation are the generalized Gross-Pitaevskii
equations for two interacting species. These equations will be derived along the lines of reference
[Smith(2008)]. The first assumption made in the derivation of the Gross-Pitaevskii equations is that
the complete quantum mechanical wave-function of the BEC may be written as a product of single
particle wave-functions,

ψ(r1, ..., rN ) =

N∏
i

φ1(ri). (1)

Generalizing this assumption to two species we get: The complete wave-function may be written as a
product of two single-species wave-functions,

ψ(r1, ..., rN1 , r
′
1, ..., r

′
N2

) =

N1∏
i

φ1(ri)

N2∏
j

φ2(r′j). (2)

Both of the single particle states are normalized in the usual way,
∫
|φk(r)|dr = 1, with k ∈{1,2}.This

assumption is equivalent to a fully condensed state. Furthermore, the effective interaction between

two species is calculated in reference [Smith(2008)] to be U0δ(r − r′) with U0 = 4π~2a
m . In the

generalization the scattering length is dependent on the species in the interaction, so the coefficient
in the interaction becomes:

Uij =
4π~2aij
m

. (3)

At this point the Hamiltonian operator of the system may be written:

H =

N1∑
i

p2
i

2m1
+ V1(ri) +

N2∑
j

p2
j

2m2
+ V2(rj)

+

N1∑
i<k

U11δ(ri − rk) +

N2∑
j<k

U22δ(rj − rk) +

N1∑
i

N2∑
j

U12δ(ri − rj).

(4)

Now the energy of the system is:

E = 〈ψ|H |ψ〉

=

∫
dr

[
N1~2

2m1
|∇ψ1|2 +N1V1(r)|ψ1|2 +N2

~2

2m2
|∇ψ2|2 +N2V2(r)|ψ2|2

+
N1(N1 − 1)

2
U11|ψ1|4 +

N2(N2 − 1)

2
U22|ψ2|4 +N1N2U12|ψ1|2|ψ2|2

]
.

(5)

Since N1 and N2 are large the approximation N2(N2−1)
2 ≈ N2

2

2 holds. In order to simplify the equations,
the particle number of the species is chosen to be equal, N = N1 = N2. The total amount of particles in
the system becomes 2N . Furthermore, the mass of the species is chosen to be equal, m = m1 = m2.
The potential used is harmonic with a anisotropy in the y axis, V1 = V2 = 1

2mω
2
xx

2 + 1
2mω

2
yy

2 +
1
2mω

2
xz

2. Using all these assumptions the following equation for the energy is obtained from equation
(5):

E = N

∫
dr

[
~2

2m
(|∇φ1|2 + |∇φ2|2) + (

1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

xz
2)|(φ1|2 + |φ2|2)

+
1

2

4π~2Na11

m
|φ1|4 +

1

2

4π~2Na22

m
|φ2|4 +

4π~2Na12

m
|φ1|2|φ2|2

]
.

(6)
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2.2 Dimension reduction

In order to keep computation-time within practical limits it is necessary to reduce the final model to
two dimensions. This is done along the lines of reference [L. Salasnich and Reatto(2002)]. The main
idea in this technique is to choose a distribution in the dimensions you want to reduce. This distri-
bution is influenced by a width parameter η(x, y, t) that is itself dependent on the other dimensions
or in mathematical terms:

φ1(x, y, z, t) = f(z, t, η(x, y, t))φ′1(x, y, t), (7)

φ2(x, y, z, t) = f(z, t, η(x, y, t))φ′2(x, y, t), (8)

f(z, t, η(x, y, t)) =
e

−z2

2η2

π
1
4 η

1
2

. (9)

The choice for f(z, t, η(x, y, t)) is the ground state of the harmonic oscillator with a variable width
η(x, y, t). While the Gaussian distribution is not the only choice and a Thomas-Fermi profile might
be a better approximation, this is easier to work with mathematically and the Thomas-Fermi profile
is based on the absence of kinetic energy. Therefore it does not work in regimes where kinetic energy
is dominant. Furthermore, 1

π
1
4 η

1
2

is the normalizing constant to ensure:
∫∞
−∞ f2dz = 1 holds. For the

next step the equations (7) and (8) are inserted into the equation for the energy (6):

E = N

∫
dr

[
−~2

2m
(fφ′

∗
1∆(fφ′1) + fφ′

∗
2∆(fφ′2))

+

(
(
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

xz
2)(|φ′1|2 + |φ′2|2)

)
f2

+

(
1

2

4π~2Na11

m
|φ′1|4 +

1

2

4π~2Na22

m
|φ′2|4 +

4π~2Na12

m
|φ′1|2|φ′2|2

)
f4

]
.

(10)

The primes are left out for simplicity. The distribution f(z, t, η(x, y, t)) is most strongly dependent
in z. So

∆(fφi) ≈ φi
∂2f

∂z2
+ f∆⊥φi, (11)

where ∆⊥ = ∂2

∂x2 + ∂2

∂y2 . The integrals that appear in equation 10 can be evaluated:∫
dzf2 = 1, (12)∫
dzf2z2 =

η2

2
, (13)∫

dzf4 =
1√
2πη

, (14)∫
dzf

∂2f

∂z2
=
−1

2η2
. (15)

Thus the energy is obtained from equation (10):

E = N

∫
dxdy

[
−~2

2m
(φ∗1∆⊥φ1 + φ∗2∆⊥φ2 −

(φ1|2 + |φ2|2)

2η2
)

+(
1

2
mω2

xx
2 +

1

2
mω2

yy
2)(|φ1|2 + |φ2|2) +

mω2
xη

2(|φ1|2 + |φ2|2)

4

+

√
2π~2Na11

mη
|φ1|4 +

√
2π~2Na22

mη
|φ2|4 +

2
√

2π~2Na12

mη
|φ1|2|φ2|2

]
.

(16)
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To find solutions for φ1 and φ2 the energy, E, is minimized with respect to φ1, φ∗1, φ2, φ∗2 and η with
the restrictions

∫
|φ1|2dr = 1 and

∫
|φ2|2dr = 1. This is done by using Lagrange multipliers µ1 and

µ2 that are the chemical potential of species one and two. In mathematical terms this must be solved:

δE − µ1δN1 − µ2δN2 = 0. (17)

Here δ represents the functional derivative to either φ∗1, φ
∗
2 or η. The derivatives to φ1 and φ2 yield

the same equations as the derivatives to the conjugates, so are left out. Equation 17 yields:

Nµ1φ1 =
δE

δφ∗1
=

(
−~2

2m
(
∂2

∂x2
+

∂2

∂y2
) +

~2

4mη2
+

1

2
mω2

xx
2 +

1

2
mω2

yy
2

+
mω2

xη
2

4
+

2
√

2π~2Na11

mη
|φ1|2 +

2
√

2π~2Na12

mη
|φ2|2

)
φ1N,

(18)

Nµ2φ2 =
δE

δφ∗2
=

(
−~2

2m
(
∂2

∂x2
+

∂2

∂y2
) +

~2

4mη2
+

1

2
mω2

xx
2 +

1

2
mω2

yy
2

+
mω2

xη
2

4
+

2
√

2π~2Na22

mη
|φ2|2 +

2
√

2π~2Na12

mη
|φ1|2

)
φ2N,

(19)

0 =
δE

δη
= −~2(|φ1|2 + |φ2|2)

2mη3
+
mω2

xη(|φ1|2 + |φ2|2)

2

−
√

2π~2Na11

mη2
|φ1|4 −

√
2π~2Na22

mη2
|φ2|4 −

2
√

2π~2Na12

mη2
|φ1|2|φ2|2.

(20)

Equation (20) is used to solve for η. We assume that for the purpose of η the scattering lengths are
identical, a11 ≈ a12 ≈ a22. Using this some terms from equation (20) may be simplified to:

√
2π~2Na11

mη2
|φ1|4 +

√
2π~2Na22

mη2
|φ2|4 +

2
√

2π~2Na12

mη2
|φ1|2|φ2|2

=

√
2π~2Na11

mη2
(|φ1|2 + |φ2|2)2.

So the equation (20) reduces to:

0 = −~2(|φ1|2 + |φ2|2)

2mη3
+
mω2

xη(|φ1|2 + |φ2|2)

2
−
√

2π~2Na11

mη2
(|φ1|2 + |φ2|2)2, (21)

or
√

2π~2Na11

m
(|φ1|2 + |φ2|2) = − ~2

2mη
+
mω2

xη
3

2
. (22)

There exists a exact solution for equation (22). But this solution involves many roots and this is not
preferable for numerical simulations. Thus the solution is split into two regimes. In the first regime
kinetic energy is negligible, while in the second the density of the condensate is nearly zero. Thus
using this approximation the following solutions are obtained:

η3
1 =

2
√

2π~2Na11

m2ω2
x

(|φ1|2 + |φ2|2), (23)

η2 =

√
~

mωx
. (24)

In order to provide a smooth solution for η, η is chosen the square root of the sum of the squares of
both solutions,

η =
√
η2

1 + η2
2 . (25)
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The kinetic term ensures that η can not drop below the width of the ground state of the harmonic
oscillator. In order to obtain the time evolution equations, the time-dependent generalization of the
Schrödinger equation is used. So the final equations are:

i~
∂φ1

∂t
=

(
−~2

2m
(
∂2

∂x2
+

∂2

∂y2
) +

~2

4mη2
+

1

2
mω2

xx
2 +

1

2
mω2

yy
2

+(
mω2

xη
2

4
+

2
√

2π~2Na11

mη
|φ1|2 +

2
√

2π~2Na12

mη
|φ2|2

)
φ1,

(26)

i~
∂φ2

∂t
=

(
−~2

2m
(
∂2

∂x2
+

∂2

∂y2
) +

~2

4mη2
+

1

2
mω2

xx
2 +

1

2
mω2

yy
2

+
mω2

xη
2

4
+

2
√

2π~2Na22

mη
|φ2|2 +

2
√

2π~2Na12

mη
|φ1|2

)
φ2.

(27)

Equations (26) and (27) together with equation (25) are solved using numerical simulation.
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2.3 Scaling

Equations (26) and (27) may be scaled to make the inner workings of the simulation easier to under-
stand. The position x is scaled with the estimated length of the system xs. y is scaled with ωx

ωy
xs.

The time, t, is scaled with ωx. Furthermore, due to the scaling of x and y, φ1 and φ2 must be scaled
too in order for the integral

∫
|φ1|2dxdy = 1 to be preserved. So this will result in new dimensionless

quantities t′, x′, y′ , φ′1 and φ′2 defined by:

t′ = ωxt, (28)

x′ =
x

xs
, (29)

y′ =
ωy
ωx

y

xs
, (30)

φ′1 = φ1xs

√
ωx
ωy
, (31)

φ′2 = φ2xs

√
ωx
ωy
. (32)

Equations (26) and (27) are divided by ~ωx. A new dimensionless parameter η′ = η/xs is introduced.

Furthermore, we define A = ~
mx2

sωx
and κij =

2
√

2π~Naijωy
mx3

sω
2
x

. Using all the previous steps a new

formulation of equations (26) and (27) is obtained:

i
∂φ1

∂t
=

(
−A
2

(
∂2

∂x2
+
ω2
y

ω2
x

∂2

∂y2
) +

A

4η′2
+

1

2A
(x2 + y2) +

η′2

4A

+
κ11

η′
|φ′1|2 +

κ12

η′
|φ′2|2

)
φ′1,

(33)

i
∂φ2

∂t
=

(
−A
2

(
∂2

∂x2
+
ω2
y

ω2
x

∂2

∂y2
) +

A

4η′2
+

1

2A
(x2 + y2) +

η′2

4A

+
κ22

η′
|φ′2|2 +

κ12

η′
|φ′1|2

)
φ′2,

(34)

η′31 = κ11A(|φ′1|2 + |φ′2|2), (35)

η′22 = A, (36)

η′ =

√
η′21 +A . (37)

Due to the scaling, the energy and force are dimensionless. In order to compute the real energy from
the dimensionless energy it must be multiplied by ~ωx , E = ~ωxE′. To compute forces in the x
direction: Fy = F ′y

~ωx
xs

. And in the y direction: Fx = F ′x
~ωy
xs

.
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2.4 Time-splitting method

In order to make use of these equations for numerical simulation the time splitting method as described
in reference [Weizhu Bao and Markowich(2003)] is used. The idea of time splitting method is to look
at an equation of the form:

∂f(t)

∂t
= A(f(t)) +B(f(t)), (38)

with A and B operators. Then approximate the solution to equation (38) a time step ∆t further
with EA(EB(f(t))), where EA and EB are the operators that transform f(t) to the exact solution

f(t+ ∆t) for the equations ∂f(t)
∂t = A(f(t)) and ∂f(t)

∂t = B(f(t)).
In order to apply the same method to equations (33) and (34), we start with defining the operators
G1, G2 and K:

G1(x, y) =
A

4η2
+

1

2A
(x2 + y2) +

η2

4A
+
κ11

η
|φ1|2 +

κ12

η
|φ2|2, (39)

G2(x, y) =
A

4η2
+

1

2A
(x2 + y2) +

η2

4A
+
κ22

η
|φ2|2 +

κ12

η
|φ1|2, (40)

K(x, y) =
−A
2

(
∂2

∂x2
+
ω2
y

ω2
x

∂2

∂y2

)
. (41)

Note that with the operators equations (33) and (34) become

i
∂φ1

∂t
=
G1

2
φ1 +Kφ1 +

G1

2
φ1, (42)

i
∂φ2

∂t
=
G2

2
φ2 +Kφ2 +

G2

2
φ2. (43)

The time is discretized into intervals [tm, tm+1] with tm = m∆t. Now it is assumed the operators
G1, G2 and K are independent of time during each time step. This gives the exact solution to the
equations

i
∂φ1

∂t
=
G1(tm, x, y)

2
φ1, (44)

i
∂φ2

∂t
=
G2(tm, x, y)

2
φ2 (45)

to be:

φ1(tm+1, x, y) = e
−i∆tG1(tm,x,y)

2 φ1(tm, x, y) = EG1
(tm, x, y)φ1(tm, x, y), (46)

φ2(tm+1, x, y) = e
−i∆tG2(tm,x,y)

2 φ2(tm, x, y) = EG2
(tm, x, y)φ2(tm, x, y). (47)

Here the solution operators EG1
(tm, x, y) and EG2

(tm, x, y) are defined. To find the exact solution to

i
∂φi
∂t

= Kφi =
−A
2

(
∂2

∂x2
+
ω2
y

ω2
x

∂2

∂y2

)
φi, (48)

a Fourier-transform must be performed,

φ̂i(tm, kx, ky) = F(φi) =

∫ ∞
−∞

∫ ∞
−∞

φi(tm, x, y)e−i(kxx+kyy)dxdy. (49)

When the Fourier integration is performed on both sides of (48) one obtains:

F
(
i
∂φi
∂t

)
= i

∂φ̂i
∂t

= K̂φ̂i = F(Kφi), (50)
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where K̂ = A
2 (k2

x +
ω2
y

ω2
x
k2
y). Which has the solution

φ̂i(tm+1, kx, ky) = φ̂i(tm, kx, ky)e−i∆tK̂ = EK̂(tm, kx, ky)φ̂i(tm, kx, ky). (51)

So the solution to equation (48) is a Fourier-forward transform,F , then performing the kinetic solution
operator ,EK̂ , and then Fourier transforming back,F−1. By applying the solutions EG1

(tm, x, y), EG2
(tm, x, y)

and F−1 EK̂ F after each other the full procedure of a time step is obtained. In the real simulation
the space discretized versions of these operators are used.

2.5 Full procedure of a timestep

Given a mesh xn and yn with n ∈ [0 : xMesh × yMesh]. We introduce the notation EG1,n =
EG1

(tm, xn, yn), EG2,n = EG2
(tm, xn, yn) and EK̂,n = EK̂(tm, xn, yn). The full procedure of a time-

step done in the simulation is:

1: for all n: Compute η using formula (37).

2: for all n: φ◦1,n(tm) = EG1,nφ1,n(tm) and φ◦2,n(tm) = EG2,nφ2,n(tm).

3: Fourier transform: φ̂1 = F(φ◦1) and φ̂2 = F(φ◦2).

4: for all n : φ̂1,n(tm+1) = EK̂,nφ̂1,n(tm) and φ̂2,n(tm+1) = EK̂,nφ̂2,n(tm).

5: Fourier transform: φ◦1 = F−1(φ̂1) and φ◦2 = F−1(φ̂2).

6: Normalize φ◦1 and φ◦2

7: for all n: Compute η using formula (37).

8: for all n: φ1,n(tm+1) = EG1,nφ
◦
1,n(tm) and φ2,n(tm+1) = EG2,nφ

◦
2,n(tm).

9: Normalize φ1 and φ2.

In the actual simulation it suffices to keep two fields per species. One with the state of the wave
function in real space and one in Fourier-space. The renormalization is not necessary in real time
evolution, but it is in imaginary time evolution as explained in the next section.

2.6 Imaginary time evolution

In order to find the ground state of the system imaginary time evolution may be used. First it is
assumed that the wave function is in a linear superposition of states, ψk, with energy Ek. Then the
time t is substituted to −it such that in the time evolution the higher order parts decay exponentially.
Or in mathematical terms:

φ(t, x, y) =
∑
k

Ckψk(x, y)e−iEkt, (52)

where Ck ∈ C. So after substituting imaginary time:

φ(t, x, y) =
∑
k

Ckψk(x, y)e−Ekt. (53)

So the states with higher energy decay faster. Combined with the normalization imaginary time
evolution converges to the ground state. Yet there is an important note: this procedure amuses there
is a nonzero part of the ground state. So it is still important too choose the initial state wisely.
Typically the starting condition is a Gaussian profile centered in the origin.
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3 Results

3.1 Constants used

Unless noted otherwise the constants of the simulation are:

Constant Value Description

N 1.08× 109 particles The amount of particles

m 3.817 540 5× 10−26 kg The mass of a sodium atom

ωx/2π 104 Hz Trap frequency in x and z direction

ωy/2π 10 Hz trap frequency in y direction

a11 2.803 580 86× 10−9 m Scattering length species one

a12 2.803 580 86× 10−9 m Scattering length interaction

a22 2.704 248× 10−9 m Scattering length species two

xs 1× 10−6 m Scaling parameter

Furthermore, for the simulation there are settings that are used and quantities of the simulation.
The first column of the underlying table contains the constants in the scaled equation and the right
column contains their unscaled counterpart.

Scaled Value Variable Value comment

x′size 140 xsize 140 µm Size of system in x

y′size 140 ysize 1456 µm Size of system in y

∆t′ 3× 10−3 ∆t 4.6 µs Imaginary Time evolution

∆t′ 2× 10−4 ∆t 0.31 µs Real Time evolution

xMesh 375 dx 0.37 µm Distance between 2 grid points

yMesh 2025 dy 0.69 µm Distance between 2 grid points

The coherence length or healing in the system is the length scale at which a disturbance returns to
its bulk value. The coherence length in the center of the condensate under these conditions is given
by [Smith(2008)]:

ε =

√
1

8πna11
= 0.0973µm. (54)

The mesh-sizes are odd numbers, because in order to make the grid with a origin symmetric around
the origin a uneven number of point is necessary. The Fourier-transformations is written out explicitly
in multiples of small factors, therefore to make to simulation faster it is chosen as a multiple of these.

11



3.2 Imaginary time evolution

When showing results there are two different options. The computations use a two-dimensional wave
function as defined in equation (33). This method represents the data in density per squared meter
and the result is shown in figure 1. This is equivalent to what is observed in a experimental setup if
the absorption is measured with a single camera. The drawback is that this is not physical quantity.
The other way of showing the result is an intersection at a certain z-plane which is chosen to be the
z = 0 plane. This approach is shown in figure 2. Since both show approximately the same result, it
is chosen to only show the result of the intersection in the next sections. Furthermore, the real ratio
between the x an y coordinate is approximately 10, while the ratio shown in the results is 5.

In figure 1 it may be seen that the second particle sits in the center of the potential while the

Figure 1: The result of 10000 steps imaginary time evolution with M ′y = 0. With mesh size 375×2025
,µ′1 = 227.397±0.005 and µ′2 =224.859±0.006. How the chemical potential and its variation are
calculated is explained in section 3.3.

first particle occupies the space around it. The reason for this is: The second species has a lower
scattering-length, so its self-interaction is lower than that of the other particle. Due to the lower
self-interaction it is energetically favorable to occupy the center where the density is higher and it can
profit from the lower self-interaction compared to the first species.
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Figure 2: The same conditions as figure 1 except that here the density is shown at z = 0 plane

If a small spin dependent force is introduced by changing the potential to

V1(x, y) =
(x2 +M ′xx+M ′x

2
) + (y2 +M ′yy +M ′y

2
)

2A
, (55)

V2(x, y) =
(x2 −M ′xx+M ′x

2
) + (y2 −M ′yy +M ′y

2
)

2A
, (56)

the result completely changes the as is seen in figure 3. With the force in the y direction M ′y = 1.0
and the force in the x direction M ′x = 0. These are the default conditions for the rest of the thesis.
Surprisingly the chemical potential of the state without spin dependent force has a higher chemical
potential than the state with a spin dependent force. The first species has a chemical potential, µ′1,
of 227.397± 0.005 in the first state and 226.008± 0.002 in the second state. The second species has a
chemical potential, µ′2, of 224.859±0.006 in the first state and 223.250±0.002 in the second state. The
addition of the force did not lower the chemical potential by shifting zero level of the potential. Since
the equation (55) ensures that the minimum is above zero, so adding the spin dependent force did
not lower the chemical potential. How the chemical potential and its error are calculated is explained
in the next section.
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Figure 3: The result of 10000 steps imaginary time evolution with M ′y = 1.0. With mesh 375×2025 ,
µ′1 = 226.008±0.002 and µ′2 = 223.250±0.002.

3.3 Convergence and validity of imaginary time evolution

To show that figures 1 and 3 are indeed steady states, the chemical potential is computed at each
lattice site. By dividing equation (18) by Nφ1, µ1 is obtained on each lattice site. The result is shown
in figure 4. Using this method an average and a variation with the density at the site as a weight
is computed. This result is shown as a function of time in figures 5 and 6 , both the variation and
energy decay exponentially. The energy itself keeps converging until numerical noise kicks in. The
variation becomes constant earlier. The reason is the noise around the condensate. As seen in figure
4 the chemical potential is constant at the places where the density is large. But it is non constant
at places where the density is low. This effect does not disappear when the imaginary time evolution
runs longer. The cause of this behavior is not clear, but probably does not significantly affect the
simulation.
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Figure 4: Dimensionless chemical potential calculated at each lattice site for a steady state with spin
dependent force M ′y = 1.0.
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Figure 5: The average and variation in chemical potential as a function of imaginary time step, without
spin dependent force. The step function like behavior in the variation is because the imaginary time
steps are made smaller and the time steps after a lowering of ∆t give a large increase in accuracy.

Figure 6: The average and variation in chemical potential as a function of imaginary time step ,with
spin dependent force. The step function like behavior in the variation is because the imaginary time
steps are made smaller and the time steps after a lowering of ∆t give a large increase in accuracy.
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3.4 The interface

Between different components of the condensate an interface is formed. In the current situation of
the condensate the dominant forces are the self interaction and the potential field. Near the interface
kinetic energy becomes relevant. The interface is shown in good detail in figures 7, 8 and 9. The

Figure 7: The interface at (a11 − a22) =
0.0025 nm

Figure 8: The interface at (a11 − a22) =
0.0361 nm

Figure 9: The interface at (a11 − a22) =
0.16 nm

Figure 10: Intersection trough the center of
the condensate at with: (a11−a22) = 0.01 nm

results may be compared to that of theoretical models. The first prediction is that the shape of the
interface is an arctangent [Corver(2015)]. This is seen in figure 10 where the density at the interface
is fitted with an arctangent. Another theoretical prediction is that of the spin-healing length εs is
given by [Matuszewski(2010)]:

εs =

√
π√

2
3n(a11 − a22)

. (57)

The ground state is computed for many different scattering lengths ,(a11 − a22), and the intersection
through the center may be fitted with

P (x) = A arctan(
√

2π
(x− C)

B
). (58)

The results of this procedure are shown in figure 11. The uncertainty is estimated from the asymptotic
standard error of the fit.
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Figure 11: The results of of fitting formula 58 with A,B and C compared with the theoretical prediction
and scaled theoretical prediction.

The results of figure 11 do not agree with the theoretical prediction, but when the results of figure
11 are compared with a multiple of the theoretical result, the results agree within errorbars. So
the relation of equation (57) is satisfied. The factor that is used to scale the theoretical prediction
K = 0.179. The reason why this error is present might be due to having too little grid points for
the interface. This is seen in figure 12. This leads to two problems. The first is the fitting of the
arctangent itself. For example at a difference in scattering length of 0.12 nm the width is estimated by
the fitting to be 1 µm, while from figure 12 it may be seen that the interface starts at approximately
−50 µm and ends at −46 µm. The other half of the problem is that the simulation itself has too little
points to simulate the interface accurately.

18



Figure 12: Intersection through the center of the condensate at with: a11 − a22 = 0.12 nm

3.5 Sound waves in the condensate

In order to check if the real time evolution yields correct results a simple simulation is performed.
The simulation is done for one spin component. A potential barrier,

Vbarier(y) = αe
−y2

2σ2 , (59)

is added to the center of the condensate. In this simulation the constants are chosen as α = 10 and
σ = 5. The ground state of the system with the potential barrier is computed using imaginary time
evolution. Then the barrier is removed and time evolution is begun. The result of this is shown in
figure 13.
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Figure 13: The difference between the current state and the ground state at the line x = 0 and
z = 0. The y axis is the difference between the current state and the ground state and takes values
from −2× 1019 m−3 to 2× 1019 m−3. The x axis is the position from the origin and take values form
−500 µm to 500 µm. The sharp drop near the edges is due to the wave-function decaying exponentially
there.

The behavior seen in figure 13 is comparable to that seen in earlier simulations [Pratama(2011)].
The waves in figure 13 propagate to the end of the condensate at which they build up and later reflect
as a high density wave instead of a low density wave. The build up is explained by the theoretical
prediction for the speed of sound [Smith(2008)]:

cB =

√
nU0

m
. (60)

Because the sound speed is dependent on the density, n, it slows down at the edge of the condensate
where the density drops to near zero. This decrease in propagation speed causes the self-steepening of
the wave. The reflection with a low density wave may be explained as a reflection at a rigid surface.
The end of the condensate is rigid since the energy required to deform the condensate is on a different
order than the energy used to make the wave.
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Figure 14: The minimum in the simulation compared to the predicted speed of 0.0128 m s−1.

In order to compute the sound speed in the condensate, the position of the minimum is calculated
from data of the intersections. These are shown as a function of time in figure 14 combined with the
theoretical prediction for the speed of sound in the center of the condensate [Bogoliubov(1947)] :

cB =

√
µ

2m
= 0.0128 m s−1. (61)

µ = 181~ωx in this simulation. This prediction agrees with the result for a small time, but more is not
expected since: The falloff in speed after 20 ms is due to the decrease in density. While the first few
entry’s in figure 14 are zero since the two waves that originate from the center produce a minimum
in zero until they separate.

The ground state seen in figure 13 may be explained from a theoretical perspective. The Thomas-
Fermi approximation is used. V ′(x) is introduced as the potential of the disturbance and χ as the
disturbance in the wave-function. The assumption is made that the distribution of χ does not influence
the ground state of φ. This assumption is valid when |φ|2 � χ this is only true within the condensate.
Therefore, the space is restricted to the domain of the condensate in the Thomas-Fermi approximation.
Furthermore, the disturbance does not change the amount of particles so:

∫
χdx = 0. The energy of

the system is written out:

E = N

∫
dr(V (x) + V ′(x))(|φ|2 + χ) +

1

2

4π~2Na11

m
(|φ|4 + 2χ|φ|2 + χ2). (62)

Furthermore, by taking the functional derivative to χ with a Lagrange multiplier A ,that ensures
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∫
χdx = 0, of formula 62 a new equation is obtained:

A = V (x) + V ′(x) +
4π~2Na11

m
(|φ|2 + χ). (63)

Within the Thomas-Fermi approximation V (x) + 4π~2Na11

m |φ|2 is constant defined as µ,the chemical
potential of the ground state, using this the following is obtained:

A = µ+ V ′(x) +
4π~2Na11

m
χ, (64)

or

χ =
m

4π~2Na11
(A− µ− V ′(x)). (65)

A is found by using
∫
χdx = 0, which implies that∫

(A− µ− V ′(x)) dx = 0. This result explains the distribution of the ground state. In other words:
the reason why a small addition of particles in an area spreads homogeneously is because the effective
potential,the external potential and self interaction, is constant throughout the condensate.

In a different simulation with different constants α = 100 and σ = 1, strong non-linear behavior
is seen. Despite this the speed of sound remains in near perfect agreement to the theoretical result
as seen in figure 15. The drop after 10 ms is due to a larger minimum forming behind the initial
minimum. In this simulation more than one wave is generated. Once the first waves reach the end of
the condensate the simulation becomes chaotic and the chaos spreads trough the condensate.
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Figure 15: The minimum in the simulation compared to the predicted speed of 0.0128 ms for a much
larger deformation. The drop around 10ms is due to a larger minimum forming behind the original
minimum. The speed during the first 30 entries is 0.0132 ms, the speed in the 30 entries after the
drop 0.01180 ms.

23



Figure 16: The difference between the current state and the ground state at the line x = 0 and
z = 0. The y axis is the difference between the current state and the ground state and takes values
from −5× 1019 m−3 to 5× 1019 m−3. The x axis is the position from the origin and take values form
−500 µm to 500 µm. The sharp drop near the edges is due to the wave-function decaying exponentially
there.
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3.6 Time evolution

3.6.1 Symmetric time evolution

The main purpose of the research is to simulate spin-drag behavior of the condensate. In order to
do this the condensate is put into a ground state similar to what is seen in figure (3) when time
evolution begins. During the time evolution the spin dependent field is flipped in ten milliseconds.
Because the interface and healing length become larger as the density is smaller it is necessary to
decrease the amount of particles. The amount of particles is decreased to 107 particles per species.
The length and width of the condensate is adjusted accordingly to 60 µm and 624 µm. The healing
length now changes to ε = 0.27 µm. Combined with the decrease of the real length in the simulation
the difference between 2 mesh points becomes dy = 0.31 µm, just above the healing length. Once
the time simulation starts the outer part of the first species starts separating and travels up on the
sides of the other component. As can be seen in figure 18 the second species moves down around
the distortion caused by the first species. After 180 ms the two pieces come close to each other. At
approximately 206 ms they combine and a part of them separates and continues moving upward. The
pieces that recombined cut of the second species of the condensate so neither can move past each
other. At 220 ms the recombined part starts breaking up. At this point the symmetry of the system
starts breaking up. This can be seen more accurately in the flow figure 18. During the break up a
vortex is generated that travels next to the packet of the first species. The vortex is seen in figure 19.

Furthermore there are flows inside the entire condensate that alternate. In figure 18 there is a flow
through the condensate. The flow is mirrored in the other species. In other words there are waves
that increase the density in the center and then decrease the density at the center. This is probably
a density wave induced by the flipping of the spin dependent force. A very rough estimate gives the
frequency of this alternating flow to be 60 ms.

What may be concluded from this simulation is that the species avoid each other. In other words,
the condensates do not mix and the movement only happens by sliding the species past each other.
Furthermore, a vortex is formed in the condensate that is located on the interface of the two species.
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Figure 17: Results of the symmetric time evolution. The width is 60 µm. The height is 600 µm. For
clarity the color bar is reduced. The density goes up to 2× 1020 m−3
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Figure 18: The probability density flow. Blue is movement in the positive direction. Red in the
negative direction. So for X blue is movement to the right. Red is movement to the left. In the Y
direction blue is up and red is down. The intensity of the color indicates the size of the flow.
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Figure 19: The phase of both species. The phase tends to be random outside of the condensate,
because the density is low. In the second species a vortex is seen at approximately y = 70 µm at the
left side of the condensate. The packet of the first species is at the same location. A vortex is a point
where a complete phase is obtained when one moves around it.
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3.6.2 Asymmetric time evolution

In the previous section the condensate starts symmetrical and evolves symmetrically for a long time.
In a real experiment this is most likely not the case since small perturbations destroy the symmetry. In
order to break the symmetry the spin dependent force, M ′x, in the x direction is introduced. For this
simulation they are chosen as M ′y = 0.1 while M ′x = 0.02. In figure 20 the same process occurs as in the
symmetrical time evolution. A packet of the first species is formed and starts propagating upwards.
This packet reaches the end of the condensate at 160 ms around the same time as the symmetrical
case. Unlike the symmetrical case it is allowed to reach the end and stays there. After the packet
reaches the end of the condensate the area there becomes volatile. This volatility is probably caused
by the presence of free energy that the packet created by traveling up combined with the low density
that allows distortions to exist for a small energy cost. After 220 ms the interface at the left side of
the condensate shows volatile behavior. This behavior is likely caused by the absence of a thermal
cloud. Despite the volatility seen in the later part of the simulation the two species do not mix.
Furthermore, the first species remains on the outside of the second species.
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Figure 20: Results of the asymmetric time evolution. The width is 60 µm. The height is 600 µm. For
clarity the color bar is reduced. The density goes up to 2× 1020 m−3

30



4 Discussion

The choice for η to be a Gaussian distribution, as shown in equation 8, might have been made dif-
ferently. Since the condensate seen in this thesis is nearly perfectly described by a Thomas-Fermi
approximation. The reason why this is not chosen is because the Thomas-Fermi approximation com-
pletely discards kinetic energy. As seen in section 2.2 the kinetic energy enforces a lower limit on the
height of the condensate. But there is also justification for the current η. Since the x-axis and z-axis
are in principle identical, it should be expected that the distribution in the z-axis be approximately
the same size as that in the x-axis. As seen in figure 1, η is approximately 30 µm. Taking into account
that the distribution in the z-direction is Gaussian so 68% lies within 30 µm√

2
= 21 µm and 95% lies

within 60 µm√
2

= 42µm, which agrees with the size of the condensate in the x direction where it extends

to approximately 45 µm. So while η is not perfect, it is approximately the desired size and thus gives
the approximate distribution in the z direction.
In the calculation of to equation (22) for η it is chosen not to solve the full equation, but reduce it to
2 cases. In this step a significant error is made in the domain where neither the kinetic energy or self
interaction is dominant. As is seen in figure 1 the area where neither is dominant lies outside of the
condensate. Therefore this choice is justified for it avoids adding a large computation that must be
done on each lattice site for each time-step. The kinetic energy is not entirely left out since it only
contributes significantly in a domain where the condensate is not present. The reason why the kinetic
energy term is considered at all is that it ensures a lower bound for η. This is important, because in
the equations 26 and 27 there is a 1

η2 term. Leaving η unbounded produces a self reinforcing behavior
of removing particles from an area. The end result being all particles located at a single lattice site
in the center of the condensate.

The results of the interface do not agree with the theoretical predictions, but the simulation shows
the correct behavior for changes in scattering length. In order for this to agree the theoretical result
must be multiplied with a factor of K = 0.179. This shortfall is probably caused by a too small mesh
size combined with the presence of the spin dependent force. The spin dependent force has a large
effect on the boundary when the difference in scattering length is small and the interface is large.
When the scattering length difference becomes large the interface becomes smaller, the interface is
described with less than ten points. In this domain the fit with the arctan does not perfectly describe
the interface. By comparing the arctan result with a estimate by looking at the raw data itself a factor
of 1

4 is obtained between the two results. The remaining error is explained by error in the simulation
itself. Since the small amount of points create under-sampling. The problem with under-sampling is
that large frequency waves can not appear in the Fourier-space. This leads to kinetic energy being
smaller then expected.

Another point of discussion is the two dimensional nature of the simulation. The tree dimensional
case could not be performed, since it is a large computational task. Each of the dimensions gives extra
space to move around other objects. The forming of the interface and bouncing back in figure 17 might
not have happened in more dimensions. As seen in the simulation the species form a interface, but
when this interface is formed it provides a barrier to mutation of the other species. The other species
must pierce trough the interface in the entire z dimension in order to get past the other. If more
dimensions are present the interface may be pierced at a smaller surface, allowing more movement.

The last problem that is seen in the simulation is the absence of damping. By performing time
evolution on a system that is not in its ground state, it will obtain free energy as the simulation
progresses and the system comes closer to the new ground state. All this free energy eventually ends
up as solitons or small parts drifting in a domain dominated by the other species. In the a real
experiment the thermal cloud acts as a damping.
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5 Conclusion

The developed model and simulation are suitable to describe the behavior of a two component Bose-
Einstein condensate. This is concluded from the correct prediction of the sound speed in the con-
densate and correct relation for the width of the interface. The time evolution predicts that the
condensate do not mix and tend to slide past each other with a preference of the first species to
remain on the outside of the condensate. Furthermore the two species are capable of exerting force
on each other as may be seen by the bouncing of the condensate in the symmetrical time evolution.
The simulation predicts that the interface is volatile when forces are applied on the condensate, but
this effect might be caused by the absence of damping.

6 Outlook

An important addition to the simulation is to introduce dampening. The most obvious way of damp-
ening is to use imaginary time evolution as a dampener. but the problem with this approach is that
imaginary time evolution does not conserve particle number so renormalization is required. The effect
of the renormalization is that particles disappear in energetically high positions and appear in ener-
getically low positions. Effectually this compromises all of the dynamics of the system since the end
result is the renormalization being the main cause of transportation. A better approach might be to
simulate the interaction with the thermal cloud. A simpler addition is to run most of the simulation
on lower particle number. Since with lower density the healing length of the system becomes larger.
This allows a more accurate description of the interface. Furthermore, the sound measurement may
be repeated for a two species condensate. The influence of the interface might be interesting to study.
At last, it should be possible to create vortices in the simulation, either by imprinting a phase or by
”stirring” in the condensate.
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