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Abstract

By colliding heavy-ions accelerated close to the speed of light the building blocks of ordinary matter,

quarks and gluons, are not in their usual state by being confined inside hadrons. Instead they form

a hot and dense medium called the Quark-Gluon Plasma. This primordial medium is of fundamental

importance as it existed a few microseconds after the Big Bang. Up until now, proton-proton collisions

have been used as reference for lead-lead collisions, since it was not believed that small systems could

create the necessary conditions of a Quark-Gluon Plasma. However, recent experimental results in

high multiplicity proton-proton collisions resemble the ones that are usually attributed to the creation

of a Quark-Gluon Plasma in heavy-ion collisions. These observations led to the question whether the

underlying physical origin between these experimental results is the same across all collision systems.

This project measured the pT-differential corrected yield of prompt Λ+
c charmed baryons with the ALICE

detector at the Large Hadron Collider (LHC) in 1.5 billion proton-proton collisions at
√
s = 13 TeV at

midrapidity. Charm quarks are produced from initial hard scattering processes that can be calculated

by the theory of the strong interaction, Quantum Chromodynamics. Therefore, the charm quark can

test calculations made with one of the three pillars of the Standard Model of Particle Physics. The Λ+
c

is reconstructed in the hadronic decay mode Λ+
c → pK0

S . Due to its low production rate and hard to

reconstruct decay topology, a sophisticated machine learning technique has been used to extract a signal

from the dominating background. This study lays grounds to perform the measurement as function of

event activity, allowing to make a first step in shedding light whether a Quark-Gluon Plasma is also

created in collision between two partons.

The measured values of the pT-differential corrected yield of prompt Λ+
c baryons are presented and are in

agreement with other hadronic decay mode Λ+
c → pKπ of the same system and energy. The results are

compared with the expectations obtained from Monte Carlo event generators softqcd and hardqcd

which did not reproduce data. The measured values of the Λ+
c /D

0 ratio, which is sensitive to the c-quark

hadronisation mechanism, and in particular to the production of baryons, are presented and compared

with Monte Carlo tune mode2 which is in agreement with data.
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Chapter 1

Theory

The search for the question what our universe is made of and how its constituents interact with each other

has lead us to the Standard Model of Particle Physics. The Standard Model is a relativistic quantum

field theory which describes three of the four know fundamental forces (electromagnetic, weak and strong

force) in the universe, together with classifying the known elementary particles. The Standard Model

currently gives the best description about the building blocks of our universe, consequently scientists

never found significant deviation to it. Quantum Chromodynamics, the theory describing the strong

interaction in the Standard Model predicts a medium, which can be created under extreme conditions,

in which particles do not behave as they would in ordinary matter. This medium is known as the Quark-

Gluon Plasma. This chapter gives a theoretical background about this medium, why this medium is

interesting for the future of physics and why the study of heavy flavour particles such as the Λc baryon

in proton-proton collisions can contribute to this.

1.1 The Quark-Gluon Plasma

One of the fundamental questions that one could try to answer is what the states of matter are under

conditions of extreme density and temperature. Calculations using QCD on the lattice [2] predict that

at sufficiently high temperatures and energy densities a phase transition occurs to a new state of matter

in which the quarks and gluons are deconfined thus can move trough the medium without being bound

to their hadronic structure. This medium is called the Quark-Gluon Plasma (QGP).

One way to intuitively try to understand the states of Quantum chromodynamics (QCD) matter is by

looking at the phase diagram of QCD, an example of this is given in Figure 1.1. This figure shows the

QCD phases as a function of temperature and baryon chemical potential. The baryon chemical potential

measures the imbalance between baryons and antibaryons or in other words the energy that needs to

be spend to add a unit of baryon number in a system. At around the proton mass one encounters the

normal nuclear matter. Increasing the baryon density we get to the ultra-dense neutrons stars, which

are predicted to have a QGP in their core. On the other hand, systems with extremely low values of µB

but with large temperatures (T > 155 MeV) are also expected to consist of a Quark-Gluon Plasma. The

high temperature and low chemical potential can be probed experimentally using heavy-ion collision at

the Large Hadron Collider (LHC) and Relativistic Heavy Ion Collider (RHIC). One of the reasons that

makes the study of the QGP of fundamental importance is that a few microseconds after the Big Bang
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1.2. HEAVY-ION COLLISIONS AS A TOOL FOR THE QGP

Figure 1.1: Illustration of the QCD phase diagram calculated by lattice QCD calculations [1].

an extremely hot QGP is expected to have existed.

1.2 Heavy-ion collisions as a tool for the QGP

In order to investigate experimentally the strong phase transition and understand the properties of the

QGP, the necessary extreme conditions predicted by lattice QCD calculations need to be recreated in

the laboratory. At the LHC this is done by colliding lead ions at large energies. These ions that have

a high number of nucleons are accelerated close to the speed of light, consequently the usually round

objects are Lorentz contracted to flat discs. Eventually the lead ions collide into one another resulting

in a region with a very high energy density because of their speed and compact volume.

Describing the evolution of the collision and the QGP has been illustrated in Figure 1.2, and marks

the time of the collision as t = 0. The phase right after the collision is known as the pre-equilibrium

phase. In this phase partons with large momentum and mass (beauty and charm) are produced. On

the time scale of the full evolution this phase is smaller than the formation of the QGP (t < τ0), and

is in the order of less than 1.0 fm/c. The hot and dense matter consequently thermalizes at (t = τ0),

the point where the QGP is formed. Partons move through this dense and hot medium and lose energy

by emitting gluons or interacting with other partons. The temperature in the medium creates thermal

pressure, which causes the QGP to expand and boosts the particles in the medium. This effect, which

is felt collectively by all the constituents of the medium, is called radial flow. As a consequence of the

expansion the temperature drops rapidly, until it reaches a critical value indicated as TC after which

the chemical freeze-out will start. This happens approximately 10 fm/c after which the QGP starts to

hadronize.

After this moment, partons will be confined inside hadrons in a process characterized as hadronisation.

From that point quarks cannot move as quasi-free particles and must be bound with other quarks to form

a colour singlet state such as a two quarks system called mesons or three quarks system called baryons.

Eventually, when the chemical freeze-out temperature Tch has been reached the QGP has hadronized

into hadron gas. The hadrons are now confined and the only form of energy transfer is due to (in)ellastic

collisions. Lastly, the expansion of the hadron gas reaches the kinetic free out temperature Tfo and the

6



1.2. HEAVY-ION COLLISIONS AS A TOOL FOR THE QGP

Figure 1.2: Space-time evolution of the Quark-Gluon Plasma [3]. The c-quark is produced in the pre-

equilibrium phase (t < τ0) and experience the full evolution of the Quark-Gluon Plasma.

only method of energy transfer can be by decay. Eventually the particles or their decay products will be

measured by the experimental apparatus.

1.2.1 Collective effects

In the presence of a hot and dense deconfined medium that expands explosively, the momentum spectra

of the constituents are modified accordingly. In particular, the partons feel a boost which is characterised

by a common velocity field (usually called radial flow) which acts additively to their thermal motion.

The effect of radial flow causes the momentum distribution of a particle to become harder, shifted more

to higher momentum, as the relativistic momentum is defined by p = mγv. Since, the momentum is

proportional to the mass of the particle, particles with a higher mass get a harder momentum distribution.

The effect of this is clearly visible in Figure 1.3. It is seen that the spectra become becomes harder in

more central collision (lower percentages) as we expect a larger QGP droplet to be formed, as it has a

larger interaction zone. This effect is even more pronounced for heavy particles (protons) compared to

lighter ones (pions), due to their mass.

1.2.2 Heavy flavour probes

Quarks are a very good probe of the QGP since they hold color charge and can thus interact with the

constituents of the medium. Their production time is inverse proportional to the mass of the quarks.

This categorizes the resulting produced particles in two categories: ’light flavour’ and ’heavy flavour’

particles. Light flavour up, down and strange quarks predominantly give rise to light flavour hadrons

such as pions, kaons and lambda’s and can be formed during the QGP phase. These light flavour particles

measure global properties of the QGP by testing the hydrodynamic expansion of the medium based by

models that attempt to describe its evolution. On the other hand, ’heavy flavour’ beauty and charm

quarks form eventually heavy flavour hadrons such as the Λc-baryon and D0 meson and can only be

formed at the very early stages of a heavy-ion collision thus experience the full evolution of the medium,

see the heavy flavour c-quark in the illustration of Figure 1.2. The heavy c-quark is predominantly
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1.3. HEAVY FLAVOUR MEASUREMENTS IN PROTON-PROTON COLLISIONS
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Figure 1.3: Transverse momentum spectra of charged pions (left panel), kaons (middle panel), and

(anti)protons (right panel) measured in lead-lead and proton-proton collisions. The spectra have been

scaled by the factors listed in the legend for clarity [4].

produced in the pre-equilibrium phase, after which it passes through the entire medium interacting with

its constituents. Eventually it hadronizes into charm hadrons. One such case is the Λ+
c baryon, the main

focus of this project, of which the decay products can be detected.

The study of heavy flavour quarks measurement also provides unique insight into the hadronisation

process, which is believed to take place through two mechanism: recombination and fragmentation. This

is another effect next to radial flow that affects the momentum distribution of particles. How these two

mechanisms affect the transverse momentum (pT) spectrum can be seen in Figure 1.4. Fragmentation is

dominant for high momentum particles and occurs when partons fragment by breaking their energy in

smaller ’pieces’, consequently producing lower momentum particles. Recombination is thought to be the

dominant process of low to intermediate (e.g. between 2 and 8 GeV/c) momentum particles and usually

involves the combination of low momentum partons which leads to the formation of a higher momentum

meson and baryon consisting of a combination of two- and three-quarks, respectively.

Lastly, heavy flavour quarks can be used to test perturbative QCD calculation. Heavy flavour quarks

are produced mainly via hard parton scattering, a process occuring via strong interaction and involving

large momentum transfers compared to the QCD scale Q� ΛQCD.

1.3 Heavy flavour measurements in proton-proton collisions

The study of heavy flavour particles in proton-proton collisions has always been used a as reference to

test perturbative QCD calculations, as naively one does not expect a QGP to be formed in collisions of

such small systems. However in recent studies clues for similar QGP medium effects have been observed

in proton-proton collisions, which has a lower multiplicity (number of produced particles) compared to

lead-lead collisions [6].

A recent study examined the multiplicity dependent production of light flavour particles in proton-proton
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Figure 1.4: Illustration of effect of recombination and fragmentation on the transvere momentum distri-

bution (Illustrations from [5]).

collisions at
√
s = 7 TeV [7], and compared transverse momentum with spectra obtained in larger systems

such as proton-lead and lead-lead. First they examined the particle production as function of transverse

momentum for different multiplicities in the proton-proton systems for different baryons and mesons. In

all cases, a hardening of the transverse momentum is observed with increasing multiplicity. The same

study reported the multiplicity dependent comparison of the baryon-over-meson ratio versus transverse

momentum for the two lightest strange particles of its kind Λ/K0
S , see the top graph of Figure 1.5. The

ratio shows for all systems a depletion at low momentum and an enhancement at intermediate values.

The lower panels of Figure 1.5 shows the same Λ/K0
s ratio, but as a function of multiplicity. This ratio

is reported at three characteristic values of transverse momentum, low (left), intermediate (middle) and

high pT. The plots indicate that the ratio scales as a function of multiplicity in all three collision systems

which could hint at a common underlying physics mechanism.

The light flavour baryon-over-meson used to be an observable to illustrate the radial flow and recom-

bination effects in lead-lead collisions, but as qualitatively similar effects have been observed in high

multiplicity proton-proton, proton-lead and lead-lead collisions the question could be raised whether in

high multiplicity proton-proton collisions a QGP droplet is formed. Are the effects for the different

systems coming from the same underlying physics?

The momentum distribution of Λc as function of multiplicity in order to form the heavy flavour baryon-

over-meson ratio Λc/D
0 will allow us to test if the observed similarities in the light flavour baryon-over-

meson ration can be extended in the heavy flavour sector. This project makes a step forward in this

direction by focusing on the production of heavy flavour Λc baryon. Finally, the study of the heavy

flavour particles can be used to test perturbative QCD calculations.
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1.3. HEAVY FLAVOUR MEASUREMENTS IN PROTON-PROTON COLLISIONS

Figure 1.5: Top: Transverse momentum dependence of Λ/K0
S ratio in proton-proton, proton-lead and

lead-lead collisions for high- (red) and low-multiplicity (blue) classes. Bottom: Multiplicity dependence

of Λ/K0
S ratio in proton-proton, proton-lead and lead-lead collisions at low (left), intermediate (middle)

and high (right) transverse momentum. [7].
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Chapter 2

Experimental Setup

Theoretical particle physicists came up with admirable ideas how the nature of universe acted. These

theories remain merely ideas if they are not confronted with experimental measurements. In many cases

scientists need an experimental setup larger than any other man made structure ever built. This is why

in 1954 the Conseil Européen pour la Recherche Nucléaire (CERN) was founded as an international

organization that combines the intellectual power and resources to increase our scientific achievements

in particle physics. CERN helped to prove new physics with the use of collider experiments and have

made incredible discoveries thus far. CERN holds the Large Hadron Collider (LHC) which is the world’s

largest and most powerful particle collider and largest machine in the world.

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is a circular particle accelerator built in a 27 kilometers long tunnel

located 100 meters under the ground at the French-Swiss border. The circular ring contains two beam

pipes incased with super conducting magnets in order to keep the high energy particles in orbit. The

LHC will be able to reach a centre-of-mass energy of
√
s = 14 TeV for proton-proton collisions and

√
sNN = 5.5 TeV for lead-lead collisions in the upcoming runs that start in 2021 . The left of Figure 2.2

gives a schematic overview of the CERN complex and the LHC. For proton-proton collisions hydrogen

atoms are accelerated up to 50 MeV in a linear accelerator (LINAC2) and are injected in the Proton

Synchrotron Booster (PSB) which accelerates them to an energy of 1.5 GeV. Subsequently, the Proton

Synchrotron (PS) brings the energy up to 25 GeV. Finally the Super Proton Synchrotron (SPS) brings

it up to 450 GeV before being injected in the LHC. The LHC eventually accelerated the protons to an

energy of 13 TeV. The protons travel in bunches of 1.15× 1011 particles through the 27 kilometers long

tunnel separated by 25 nanoseconds from each other. The protons at last have four points where they

can collide, ATLAS and CMS, which mainly focus on research on the Higgs boson, LHCb, which does

measurements on CP-violation and ALICE, designed for heavy-ion collisions. This analysis used data

collected the ALICE collaboration, hence only this detector will be described.
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2.2. A LARGE ION COLLIDER EXPERIMENT

Figure 2.1: Schematic cross section of the ALICE detector [8].

2.2 A Large Ion Collider Experiment

A Large Ion Collider Experiment also known as ALICE is a 16 meters tall, 16 meters wide and 26 meters

long detector and weights approximately 10.000 tons. An schematic overview of the ALICE detector is

shown in Figure 2.1. The experiment consists of 18 detectors, each with its own technology to measure

trajectory, mass, charge, velocity and energy of the particles that transverse their sensitive areas. The

central part of ALICE detects hardrons, electrons, and photons while the forward part consists of a muon

spectrometer. By definition the beam is aligned with the z-axis. The particle kinametics are expressed

in terms of the transverse momentum pT, the magnitude of the projection of the three momentum ~p in

the xy-plane. The azimuthal angle φ lays in the xy-plane, and the polar angle θ perpendicular to this

in the yz-plane. The central part of the detector covers a polar region of θ = 45◦ to θ = 135◦. Particle

physicist rather talk about the pseudorapidity, which is defined as

η = − ln

(
tan

θ

2

)
=

1

2
ln

(
|~p|+ pL

|~p| − pL

)
, (2.1)

with pL the component of ~p along the beam z-axis. The ALICE detector consequently covers a pseudo-

rapidity range of |η| < 0.9. From the inside out, the detector consists of a Inner Tracking System (ITS),

a Time-Projection Chamber (TPC), Transition Radiation detectors (TRD), three particle identification

arrays of Time-of-Flight (TOF), Ring Imaging Cherenkov (HMPID) and two electromagnetic calorimeters

(PHOS and EMCal). Only HMPID, PHOS and EMCal do not cover the full azimthal angle. The ITS

consists of three subdetectors, the Silicon Pixel Detector (SPD), the Silicon Drift Detector (SDD) and the

Silicon Strip Detector (SSD). The forward part, which covers a small 2◦ (η = 4.0) to 9◦ (η = 2.5) angle

consists of absorbers, a large dipole magnet and fourteen planes of tracking and triggering chambers.

At low angles smaller detectors ZDC, PMD, FMD, T0 and VZERO are located. These detectors are

used for event triggering and characterization. A full report about the detector can be found in [9], this

section will only describe the most important detectors used for this analysis.
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Figure 2.2: Left: Schematic overview of the CERN complex and the LHC. Right: Schematic view of the

projection the inner part of the ALICE detector on the xy-plane. The units correspond to the begin and

end distrance of the corresponding detector from the beam axis in centimeters.

2.2.1 Inner Tracking System

The Inner Tracking System (ITS, Figure 2.2 right side), is the most central detector of ALICE. It is a six-

layer silicon detector positioned closest to the collision point. The main goal of the ITS is to determine

the primary collision point (primary vertex) and to reconstruct the trajectories of the particles (tracks).

The two most inner layers, the Silicon Pixel Detector (SPD), are positioned at 3.9 and 7.6 centimeters

around the beam and it contains 1200 readout chips. The SPD has a key role in determining the position

of the primary vertex Zvtx and measuring the impact parameter of the secondary tracks, the distance of

the particle to the primary vertex, originating from weak decays of strange, charm and beauty hadrons.

The SPD provides also the multiplicity of charged particles produced in the collision. One tracklet is

reconstructed by the two hits in the two SPD layers, together with the primary vertex [10]. The two

middle layers, the Silicon Drift Detectors (SDD), are positioned at 14.9 and 23.8 centimeters around the

beam. The SDD provides the energy loss information and give a excellent spatial resolution [11]. The two

outermost layers of the ITS, the Silicon Strip Detector (SSD), are positioned at 38 and 42 centimeters

respectively. The SSD is crucial for tracking the particles, and connecting the tracks from the Time

Projection Chamber (TPC) to the ITS. It also contributes to the particle identification by measuring

the energy loss of the particles [12].

2.2.2 Time Projection Chamber

The Time Projection Chamber (TPC, Figure 2.2 right side) is a 88 cubic meter cylinder filled with a gas

mixture of Ne-CO2 (90%:10%) covering the full azimuthal angle and pseudorapidity range of |η| < 0.9.

The TPC covers a detection radius of 84.1 up to 246.6 centimeters from the collision point and has a

length of 500 centimeters. Charged particles that transverse the TPC ionize the gas, this ionization causes

electrons to liberate from the gas. These liberated electrons drift towards the two end plates at which an

electric field is applied. The drift time combined with the location where the electron hits the end plate,
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at
√
sNN = 2.76 TeV. The lines show the parametrizations of the expected mean energy loss of the Bethe-

Bloch formula [15]. Right: Distribution of β = v/c as measured by the TOF detector as a function of

momentum for particles reaching the TOF in Pb-Pb interactions [15].

gives a three dimensional trajectory of the particle. The TPC provides next to track finding, momentum

measurements and particle identification (PID) at transverse momenta 0.1 < pT < 100 GeV/c [13]. As

ALICE probes observables using hadronic decay channels, determining the type of hadron of a track

enhances the signal. Fortunately, many observables are either mass or flavour dependent. In the TPC

particle identification is done by measuring the specific energy loss dE/dx of particles, see the left of

Figure 2.3. The Bethe-Bloch formula for different particles is fitted. The detector energy loss, the Bethe-

Bloch fit and the resolution of the detector give the commonly used definition of the number of sigma

for TPC, nσTPC, as the deviation of the measured energy loss to the expected energy loss of a certain

particle expressed in terms of the detector resolution [14].

2.2.3 Time-of-Flight

The Time-of-Flight detector (TOF) covers a detection radius of 370 up to 400 centimeters from the

central beam and has a a length of 741 cm. It consists of 18 sectors in the φ-direction which are divided

in five modules along beam direction. The modules contain a total of 1638 detector elements (MRPC

strips), covering an area of 160 m2. The MRPC is a stack of glass plates filled with tetra-fluoro-ethane

(C2H2F4). A charged particle transverse the strip ionizes the gas and an electric field amplifies the

ionization. This amplified signal is read out. The TOF measures the difference between time difference

with a resolution of 80 ps. The particle identification of the TOF detector relies on the comparison

between the time of the track from the primary vertex up to the TOF detector, the time in the TOF

detector, and the expected time under a given mass hypothesis of the particle. Therefore the TOF

detector relies on the tracking, mass hypothesis and momentum of the particle. The commonly nσTOF

is defined as the sum of these three times divided by the total uncertainty of all three [16]. The velocity

distribution β = v/c measured in TOF dectector as function of momentum p is shown on the right of

Figure 2.3. The background is due to TOF mismatched tracks, where the reconstructed TPC track has

been matched with an incorrect TOF hit.
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2.2. A LARGE ION COLLIDER EXPERIMENT

2.2.4 VZERO

The VZERO detector is compossed of two arrays, VZERO-A and VZERO-C, located at opposite sides

of the interaction point, which cover a pseudorapidity range of −3.7 < η < 1.7 and 2.8 < η < 5.1

respectively. VZERO-A is located 330 and VZERO-C 90 centimeters from the interaction point. Each

array is segmented into four rings, and each ring is divided in to eight segments. The segments are

made of a plastic scintillator, which radiate low-energy photons when transversing it. This radiations

is converted into current and amplified. The current is proportional to the number of charged particles

transversing the VZERO segment [17]. The VZERO is used for triggering and centrality and multiplicity

determination, as well as for event plane determination.
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Chapter 3

Analysis

In this chapter the details of Λc production in pp collisions at
√
s = 13 TeV will be presented. This data

sample is large enough to allow for the extraction of the yield of Λc particles as a function of the event

activity, reflected by the multiplicity. The Λc has two main hadronic decay channels, Λ+
c → pK−π+

with branching ratio of 6.28± 0.32% and Λ+
c → pK0

S with a branching ratio of 1.59± 0.08% [18], where

K0
S → π+π− has a branching ratio of 69.20± 0.05%. This project focuses on the later. In what follows,

the sample and the selection criteria at the event level will be described, followed by a discussion on how

one fully reconstructs the Λc baryon from its decay products. The chapter also discusses the innovative

technique used to select the Λc candidates using a boosted decision tree as well as the corrections that

need to be applied in order to get a fully corrected result.

3.1 Data and Monte Carlo Sample

The data used for this analysis consists of 1.5 billion events (collisions), collected during the LHC 2016,

2017 and 2018 run of proton-proton collisions at centre-of-mass energy of
√
s = 13 TeV, corresponding to

an integrated luminosity of 27.1± 1.4 nb−1. Data are divided into runs. A run is a period of a couple of

hours during which data is collected. In between runs the particle beam is dumped and the detector gets

recalibrated. An overview of the dataset is shown in Table 3.1. A subset of the data has also been used

to train the machine learning optimization model, more about this in Section 3.7. The chosen periods

for training were LHC16h, LHC16k, LHC17m and LHC18p. In this analysis we analyze minimum bias

events. These events require at least one hit in VZERO-A and VZERO-C. An offline event selection

protocol relying on the timing of fast detectors was applied to reject background events coming from

the interaction of particles with the beam pipe materials or beam-gas interactions. Only events within

interaction vertex of |Zvtx| < 10 cm were selected. A dedicated algorithm to detect multiple interaction

vertices based on the tracklets (i.e. pairs of reconstructed hits in the SPD) was used to reduce the pile-

up contribution. A pile-up occurs when multiple collisions are stored in the same event. Tracks of the

collision are rejected if their corresponding second interaction vertex is found with at least 5 tracklets.

To simulate the particle production event generators are used based on hadronisation models and elemen-

tary processes. These models depend on experimental results and are mainly based on the theoretical

knowledge about particle physics. There are different particle generators (models) who all accurately

try to model the underlying physics. For this analysis Monte Carlo productions are used generated by
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3.2. MULTIPLICITY CALIBRATION

Period(s) Type System
√
s (TeV) Nevents(×106) Used for Anchord to

LHC16 Data pp 13 422 Signal extraction

LHC17 Data pp 13 566 Signal extraction

LHC18 Data pp 13 494 Signal extraction

LHC16kh Data pp 13 184 Training BDT

LHC17m Data pp 13 89 Training BDT

LHC18p Data pp 13 57 Training BDT

LHC19h4c2 MC pp 13 16 Training BDT LHC16

LHC19h4b2 MC pp 13 27 Training BDT LHC17

LHC19h4a2 MC pp 13 27 Training BDT LHC18

LHC17h8a MC pp 13 48 Efficiencies LHC16deghjop

LHC18f4a MC pp 13 23 Efficiencies LHC16kl

LHC18l4a MC pp 13 99 Efficiencies LHC17

LHC18l4b MC pp 13 93 Efficiencies LHC18

Table 3.1: Overview of used data and Monte Carlo samples. The number of events Nevents is the amount

after the event selections. The ’Anchord to’ column refers to which data production the Monte Carlo

sample is linked. For the ’Used for’ column refers to the different sections: ’Signal extraction’ Section

3.8, ’Training BDT’ Section 3.7 and ’Efficiencies’ Section 3.9.

pythia [19].

The Monte Carlo productions are used for two types of purposes. First of all, a Λ+
c → K0

Sp dedicated

Monte Carlo is used to enhance the signal for our machine learning optimization model. This is needed

as the Λ+
c production is low in general purpose Monte Carlo, on average ∼ 1/2000 events. For this

reason, a simulation is used where they enhance Λ+
c production, on average approximately 1 per 2.3

events. Secondly, Monte Carlo simulations are used to calculate the detector and methodology efficiencies,

Section 3.9. A overview of the used Monte Carlo sample is shown in Table 3.1.

3.2 Multiplicity calibration

As stated before, the goal is to study the production of Λc as function of multiplicity in pp collisions at
√
s = 13 TeV. Multiplicity is the measurement of the number of particles that have been produced in

the collision. The multiplicity can be measured in different detectors in ALICE: SPD, VZERO-A and

VZERO-C that all cover different rapidity regions. In this analysis we took the number of SPD tracklets

in the interval |η| < 1, Ntracklets, as multiplicity estimator. An SPD tracklet is obtained by joining space

points on the two SPD layers, together with the primary vertex. This multiplicity estimator is the same

as used in previous studies performed for prompt D-meson production [20]. The uncorrected distribution

of the number of tracklets, Ntracklets, for the data periods LHC16h, LHC16k, LHC17m and LHC18p are

shown in Figure 3.1. For clarity only these periods are shown, but the subsequent calibration procedure

is applied on all data periods used in this analysis.

The mean number of tracklets, Ntracklets, as function of position of the interaction vertex along the

beam line, Zvtx, is shown on the right of Figure 3.1. The two graphs in the figure clearly show that the

SPD acceptance decreases over time and is dependent on the position of the vertex. At 40 tracklets the
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3.2. MULTIPLICITY CALIBRATION
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Figure 3.1: Left: Uncorrected number of tracklets from SPD for different data periods, the small figure

shows the same normalized to period LHC16h. Right: Mean number of uncorrected number of tracklets

from SPD as function of the postion of the interaction vertex for different data periods.
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Figure 3.2: Left: corrected number of tracklets from SPD for different data periods, the small figure

shows the same normalized to period LHC16h. Right: Mean number of corrected number of tracklets

from SPD as function of the position of the interaction vertex for different data periods.

difference in the number of counts between LHC16h and LHC18p is 25%, and at 60 tracklets already

50%. As Λ+
c production as function of multiplicity is to be analyzed, the multiplicities for different data

samples need to be corrected in order to compare them accordingly. The measured number of tracklets,

Nraw is corrected event-by-event to equalize the average number of tracklets among all the periods and

to correct for the Zvtx dependence. This was done according to the following formula,

Ncorr =
〈Nref〉

〈Nperiod(Zvtx)〉
Nraw, (3.1)

with Ncorr the corrected number of tracklets, 〈Nref〉 the mean number of tracklets in the reference Zvtx

point and 〈Nperiod(Zvtx)〉 the mean number of tracklets for events with vertex Zvtx for a given period.

In other words, 〈Nref〉 is a reference value taken from the mean number of tracklets of one of the periods,

this is the value to which all the periods will be calibrated. By a rule of thumb this is usually chosen

as the highest mean number of tracklets at a given Zvtx for all the periods, hence 〈Nref〉 = 12.25 at

Zvtx = 5.55 cm is chosen from LHC16h. In the correction procedure, the Poisson statistics is applied to
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3.3. RECONSTRUCTION
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Figure 3.3: Decay topology of Λ+
c . The distances are not to scale.

get an integer value for Ncorr.

The corrected distribution of the number of tracklets, Ncorr, is shown in Figure 3.2. The mean number of

tracklets, Ntracklets, as a function of position of the interaction vertex along the beam line, Zvtx, is shown

on the right. It is seen that up to 40 tracklets, all periods agree within 5%. Above 40, this difference seems

to increase with increasing multiplicity. To goal of this project was to analyze four different multiplicity

ranges: multiplicity integrated range, 1 ≤ Ntracklets ≤ 9, 10 ≤ Ntracklets ≤ 29, 30 ≤ Ntracklets ≤ 59, but

due to the lack of time only the multiplicity integrated range has been analyzed.

3.3 Reconstruction

The hadronic decay channel Λ+
c → pK0

S with branching ratio of 6.28± 0.32% was used for this analysis,

see Figure 3.3. The lifetime of the Λc is cτ = 60 µm and has a mass of 2286.46 ± 0.14 MeV [18]. The

reconstruction of the Λc is obtained in two phases. The first phase consists of the K0
S reconstruction via

its decay topology into two charged pions with branching ratio of 1.59 ± 0.08% [18]. This decay has a

distinctive V-shape because two particles of opposite charged arise from a (invisible) neutral track, see

Figure 3.3. Particles with this characteristic decay shape are called V0’s. Two other particles fall also

into this category, Λ → pπ−, and its anti-particle. The second phase is combining the reconstructed

proton (called bachelor) together with the K0
S , to form a Λc-candidate.

All the used reconstructed bachelor tracks must have been refitted in the ITS and TPC. The tracks must

have a minimum of 70 crossed rows in TPC with a minimum of ratio of 0.8 to the number findable clusters

and at least one hit in either of the two SPD layers. Only tracks are selected within a pseudorapidity

range of |η| < 0.8 with transverse momentum pT > 0.3 GeV/c. The kink-daughter tracks are rejected,

which are tracks where suddenly a slight ’kink’ appears in their trajectories without obvious reason.

The V0 (K0
S , Λ, Λ̄) candidates were identified by applying selections on the characteristics of their decay

tracks and of their weak decay topology. The candidate must have transverse momentum of pT > 0.3

GeV/c, a minimum transverse impact parameter to the primary vertex d0 of 0.05 cm and a maximum

distance of closest approach (DCA) to the secondary vertex between the two daughter tracks of 1.5 cm.

The V0 requires a minimum (maximum) transverse decay radius of 0.2 (100) cm and a minimum cosine

of the V0 pointing angle of 0.99 [21]. The V0 candidates reconstructed on-the-fly, i.e. during the tracking

of particles by the algorithm of the corresponding detector, were rejected. The ones reconstructed by the

so-called offline finder, that is invoked after the entire tracking iteration is finished, are the considered

candidates.
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3.4. CUT STRATEGIES

All the daughter tracks of the K0
S candidate must have been refitted in the TPC and require a minimum

of 70 crossed rows with a minimum of ratio of 0.8 to the number findable clusters in the TPC. Only

daughter tracks within a pseudorapidity range of |η| < 0.8 with a transverse momentum pT > 0.1 GeV/c

were selected.

Additionally, a fiducial acceptance cut on Λc candidates has been applied,

yfid(pT(Λc)) =

− 0.2
15 p

2
T(Λc) + 1.9

15 p
2
T(Λc) + 0.5, if pT(Λc) < 5GeV/c

0.8, if pT(Λc) ≥ 5GeV/c,
(3.2)

as the acceptance in rapidity for these Λc cuts drops to zero for |y| > 0.5 at low pT and |y| > 0.8 at

pT > 5 GeV/c, as described in [22].

3.4 Cut strategies

The now obtained bachelor tracks, K0
S candidates, pion daughter tracks, and Λc candidates are still

not refined enough. The signal of real Λc’s is neglible to the combinatorial background. This is due to

the low production per event and the short lifetime of the Λc. This background can be reduced using

dedicated cuts, such that they enhance the ’signal’. Previously, merely ’standard’ optimized topological

cuts were used to obtain this. With contemporary technique’s making use of machine learning algorithms

for classification improvements can be made in the signal over background ratio. The used technique

is in this analysis a Multivariate Analysis (MVA) [23], more about this in Section 3.5. A subgoal of

this analysis is to see if this MVA technique can make an improvement in the reconstruction of the Λc.

Therefore, three different analysis strategies have been setup. The first reference strategy (Standard,

1) uses standard optimized topological cuts together with optimized particle identification (PID), the

second (StandardMVA, 2) uses the same topological cut as particle identification as the first but as

addition makes use of a MVA, lastly the third (PrefilteringMVA, 3) uses loosened topological cuts and

loosened PID cuts together with a MVA, relying solely on the MVA. The motivation for this is to see

at first if a MVA can improve an already refined signal (Standard vs. StandardMVA); if not giving any

optimized cuts and only relying MVA already gives a considerable result (PrefilteringMVA).

3.4.1 Topological cuts

Two different topological cuts configurations have been applied. The 6 used pT(Λc) ranges are [1-2,

2-4, 4-6, 6-8, 8-12, 12-24] GeV/c, as these ranges are also used in the Λc → pKπ analysis. A full

overview of the topological cuts is shown in Table 3.2. The variables in this table are defined as follows:

pT(Λc) is the transverse momentum of the Λc, this variable is divided into six ranges; m(Λc → pK0
S) =

|m(K0
S , p) −m(ΛPDG

c )| is the invariant mass of Λc under the assumption that the V0 is a K0
S and the

bachelor a proton minus the Particle Data Group (PDG) mass of Λc; |m(K0
S) − m(K0,PDG

S )| is the

invariant mass of the V0 under the assumption that it is a K0
S minus the PDG mass; |m(Λ)−m(ΛPDG)|

is the invariant mass of the V0 under the assumption that it is a Λ minus the PDG mass; pT(p) is

the transverse momentum of the bachelor; pT(π+, π−) is the transverse momentum of the negative and

positive daughter of the V0; pT(V0) is the transverse momentum of the V0; DCA(V0,p) is the distance of

closest approach between the V0 and the bachelor track; DCA(π+, π−) is the distance of closest approach

of the positive and negative daughter of the V0; cos(PA) is the cosine of the pointing angle, defined as

the angle between the sum of the three momentum of the two daughters and the line between primary
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3.5. MACHINE LEARNING OPTIMIZATION

Cat. pT(Λc) m(Λc → pK0
S) m(K0

S) m(Λ) pT(p) pT(π+, π−) pT(V0)

GeV/c2 GeV/c2 GeV/c2 GeV/c2 GeV/c GeV/c GeV/c

1, 2 [1-2] < 0.25 < 0.008 0.005 < m < 0.05 > 0.4 > 0.25 > 0.4

[2-4] < 0.25 < 0.008 0.005 < m < 0.05 > 0.5 > 0.30 > 0.6

[4-6] < 0.25 < 0.012 0.005 < m < 0.05 > 0.7 > 0.30 > 1.2

[6-8] < 0.25 < 0.012 0.005 < m < 0.05 > 1.3 > 0.40 > 1.5

[8-12] < 0.25 < 0.015 0.005 < m < 0.05 > 2.0 > 0.40 > 1.9

[12-24] < 0.25 < 0.020 0.005 < m < 0.05 > 2.5 > 0.40 > 2.5

3 [1-2] < 0.20 < 0.030 m < 0.05 > 0.0 > 0.0 > 0.4

[2-4] < 0.20 < 0.030 m < 0.05 > 0.0 > 0.0 > 0.6

[4-6] < 0.20 < 0.030 m < 0.05 > 0.0 > 0.0 > 1.2

[6-8] < 0.20 < 0.030 m < 0.05 > 0.0 > 0.0 > 1.5

[8-12] < 0.20 < 0.030 m < 0.05 > 0.0 > 0.0 > 1.9

[12-24] < 0.20 < 0.030 m < 0.05 > 0.0 > 0.0 > 2.5

Cat. pT(Λc) DCA(V0,p) DCA(π+, π−) cos(PA) d0(p) d0(V0) m(V0→ ee)

GeV/c2 cm nσ cm cm GeV/c2

1, 2 [1-2] < 1000 < 1.5 > 0.99 < 0.04 < 999 > 0.1

[2-4] < 1000 < 1.5 > 0.99 < 0.06 < 999 > 0.1

[4-6] < 1000 < 1.5 > 0.99 < 0.08 < 999 > 0.1

[6-8] < 1000 < 1.5 > 0.99 < 0.09 < 999 > 0.1

[8-12] < 1000 < 1.5 > 0.99 < 0.10 < 999 > 0.1

[12-24] < 1000 < 1.5 > 0.99 < 0.20 < 999 > 0.1

3 [1-2] < 1000 < 0.8 > 0.997 < 3.00 < 1.5 > 0.0

[2-4] < 1000 < 0.8 > 0.997 < 3.00 < 1.5 > 0.0

[4-6] < 1000 < 0.8 > 0.997 < 3.00 < 1.5 > 0.0

[6-8] < 1000 < 0.8 > 0.997 < 3.00 < 1.5 > 0.0

[8-12] < 1000 < 0.8 > 0.997 < 3.00 < 1.5 > 0.0

[12-24] < 1000 < 0.8 > 0.997 < 3.00 < 1.5 > 0.0

Table 3.2: Topological cuts for the different cut strategies; Standard, 1; StandardMVA, 2; Prefiltering-

MVA, 3.

and secondary vertex; d0(p) is the impact parameter of the bachelor; d0(V0) is the impact parameter of

the V0; m(V0 → ee) the invariant mass of the V0 under the assumption that the two daughter are an

electron-positron pair.

3.4.2 Particle identification

Two different particle identification strategies are applied. The analysis reyling on the Standard(MVA)

makes use of the Bayesian PID method. This uses the individual PID response of each detector and

converts it into a probability that each particle is of a given species. The PrefilteringMVA has the most

loose PID, since it requires for the proton a 3σ cut in TPC if detected or 3σ cut in TOF if detected.

Protons that are not detected in the TPC and TOF therefore can also be accepted.

3.5 Machine learning optimization

A machine learning optimization is used the further enhance the signal. The used ROOT software comes

with the Multivariate Analysis (MVA) package. For this analysis the same classification machine learning

algorithm is chosen which was also used in the Higgs Boson Discovery, also known as a Boosted Decision

Tree (BDT). This section gives a brief theoretical overview about this algorithm. Before diving into the

algorithm the foundation on which it is based needs to be explained, the decision tree.
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3.6. DECISION TREE

# cos(PA) d0(V0) [cm] DCA [cm] S/B

1 0.998 0.09 0.13 S

2 0.995 0.40 0.20 B

3 0.997 0.13 0.21 S

4 0.994 0.21 0.16 S

5 0.994 0.21 0.40 B

6 0.993 0.26 0.15 B

7 0.999 0.11 0.30 S

8 0.992 0.12 0.16 B

Table 3.3: Eight Λc candidates either background

(B, combinatoric-Λc) or signal (S, real-Λc), with

their kinematic variables. cos(PA) is the cosine of

the pointing angle of the V0, d0(V0) is the impact

parameter of the V0 and DCA is the distance of

closest approach of the positive and negative daugh-

ter of the V0.

4 | 4
𝑝 = 0.5
𝐺 = 0.25

0 | 3
𝑝 = 1.00
𝐺 = 0.00

4 | 1
𝑝 = 0.20
𝐺 = 0.16

0

1

2
2 | 0

𝑝 = 0.00
𝐺 = 0.00

2 | 1
𝑝 = 0.33
𝐺 = 0.02

cos 𝑃𝐴 ≥ 0.995 cos 𝑃𝐴 < 0.995

𝐷𝐶𝐴 ≥ 0.17 𝐷𝐶𝐴 < 0.17

Figure 3.4: Simple decision tree for the candidates

in Table 3.3. The green values represent signal and

the red background candidates. This decision tree

has depth of Dmax = 2. The tree has three end

nodes.

3.6 Decision tree

A decision tree is a decision support tool with a flowchart-like structure that uses conditional control

statements to classify cases as either background or signal. The splits in each node are chosen in such

way that they maximize reduction of purity for that node. To explain this in more detail, we take as

example a tree which is trained on Λc candidates. Lets assume we have N Λc-candidates in our training

sample from which we know if they are background (combinatoric-Λc) or signal (real-Λc), see Table 3.3.

The goal is to make a decision tree which we can be used to determine an unidentified Λc candidate as

signal or background. A decision tree is ’grown’ in such way that it makes cuts which maximizes the

purity of the consecutive node. The purity at each node is defined as,

p =
NS

NS +NB
, (3.3)

where NS and NB denote the number of signal and background candidates in that node respectively. In

the first node, before making any cut, we have an purity of p = 0.5 for the candidates in Table 3.3. With

the purity the Gini-index of a node is computed,

G = p(1− p). (3.4)

The decision tree cuts the candidates on the variable which maximizes the reduction of purity,

argmax
x∈var

∆G(x) = G−
(
NL
N
GL +

NR
N

GR

)
, (3.5)

with G the purity in current node, NL and NR the number of candidates going the left and right

consecutive node respectively, GL and GR the corresponding Gini-index of those left and right nodes.

The cut which maximizes the impurity reduction is applied which creates two new nodes. This method

is repetitively applied until all nodes are purely background or signal (p = 1 or p = 0).

The problem with repetitively applying equation 3.5 until all nodes are pure is that the tree is overtrained

on the data. Hence parameters are introduced to the tree to prevent this from happening. One parameter
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3.6. DECISION TREE

is the maximum depth of the tree, Dmax, this prevents the tree from growing larger than a certain level.

Level 0 is the level of the starting node. Another parameter is the minimum node size, Smin, this is the

minimum size a node must have before allowed to split. Figure 3.4 shows a simple decision tree for the

candidates in Table 3.3. This tree can be used to classify if a new Λc candidate is either background or

signal. Consider a real Λc candidate which has cos(PA) = 0.994 for the V0 and DCA = 0.13 cm, this

candidate would then be classified as a background candidate using the decision tree in Figure 3.4. The

problem with a single decision tree is that it is sensitive to the training sample. Therefore a boosting

algorithm is applied to reduce this.

3.6.1 Boosted Decision Tree

The idea behind a Boosted Decision Tree (BDT) [23] is that for a given training set, a whole forest

of decision trees is generated, each trained on a subset of the complete training sample. The trees are

successively trained after each other, giving the misclassified candidates a higher weight. This final

forest of decision trees, also called the BDT, gives an average classification for the new Λc candidate.

The average of all results gives the ’BDT response’ of the BDT ȳBDT ∈ [−1,+1] and represents how

much the BDT classifies a unidentified Λc candidate as background or signal, with pure background at

ȳ = −1 and pure signal at ȳ = +1, e.g. if all of the trees in the forest classifies the candidate as signal

the BDT output is ȳBDT = 1.0.

3.6.2 Training the BDT

Let’s assume we want to train a BDT of NT trees. Firstly, all the candidates in the training sample

get the same weight wik=0 = 1/N , with N the number of candidates in the training sample, k the tree

number and i the candidate number. The first tree is grown on the training sample. Successively, all the

candidates that are incorrect classified provide the misclassification rate ek=1 of the first tree,

ek=1 =
Nmis

N
, (3.6)

where Nmis determines all the candidates in all the end-nodes that are misclassified. Next, the previous

weights of all the misidentified candidates are multiplied by their boost weight αk to obtain their new

Figure 3.5: Schematic overview of the forest created by Boosted Decision Tree algorithm.

h1(x)α1 h2(x)

...

α2 hk(x)αk

ln(α1)h1(x)

yBDT(x)
+ ++

ln(α2)h2(x) ln(αk)hk(x)

x
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3.7. BDT CONFIGURATION

weight,

wik+1 = wikαk = wik

(
1− ek
ek

)β
, (3.7)

with β the learning rate. This parameters determines how quickly the subsequent trees learn from their

mistakes. These rescaled weights are eventually renormalized to get the weights for the next tree. This

procedure is performed until the number of trees in the forest has been reached.

We define the result of an individual classifier (tree) as hk(x), with x the tuple of variables. hk(x) could

either be +1 for signal or −1 for background, as a single tree can only classify a candidate as signal or

background. The BDT output ȳBDT for the whole forest of trees is defined as,

ȳBDT(x) =
1

NT

NT∑
k=1

ln (αk)hk(x). (3.8)

A schematic overview of the BDT is shown in Figure 3.5. The now trained model (BDT) is ready for

classifying Λc candidates. The trained model is applied on a testing sample from which is known if the

candidates are signal or background in order to check the preciseness of our model. The quality of the

model is checked if the model is not overtrained on the training sample. The model that increases the

significance S = NS√
NS+NB

and seems not to be overtrained or biased is chosen as model to be applied on

the full data set of unidentified Λc candidates, to enhance real Λc’s.

3.7 BDT Configuration

The optimization was performed using a Boosted Decision Tree from the ROOT TMVA-Toolkit for

Multivariate Data Analysis [23]. In order to build the training sample, signal candidates were taken from

Monte Carlo simulation considering only prompt Λc candidates generated with pythia, full overview

see Table 3.1. A prompt Λc is a candidate that is directly formed in the pp collision originating from

the primary vertex. The opposite is a feed-down candidate coming from a Λb decaying into Λc and a

π, thus does not directly originate from the primary vertex. The background candidates were taken

from the 7-12σ side bands from data for each pT(Λc) (from now determined as pT) range. The σ for

each pT range is extracted from the invariant mass fit of solely Monte Carlo. The number of signal and

background candidates for each year are taken as there contribution to in real data, i.e. the runs in

2017 has the most number of events hence this has the highest number of signal and background events

in the training sample. In this way the model is trained on the same ratio of signal and background

events as represented in real data.

Table 3.4: Boosted Decision Tree configuration together with trained variables

Parameter Value Trained variables

Number of trees 850 m(K0
S) nσTOF(p)

Number of grid steps 20 d0(bach.) nσTPC(p)

Maximum depth 3 d0(V0) nσTPC(π)

Boosting Adaboost, β = 0.5 cτ(K0
S) nσTPC(K)

Minimum node size 5.0% cos(PA)

Normalization mode EqualNumEvents d′0
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The last transverse momentum interval 12 < pT < 24 GeV/c has a large width, hence the distribution

of variables could be different for candidates around 12 GeV/c compared to 24 GeV/c. Moreover, the

momentum spectrum decreases exponentially, so this interval would be more trained on the lower range

of it. For this reason, this interval in addition has been trained the interval 12 < pT < 16 GeV/c

and 16 < pT < 24 GeV/c, after which the results are eventually merged. The models are trained for

every MVA cut strategy per pT range integrated over multiplicity. The reasons for this are: firstly,

given the current Monte Carlo statisics available, it was not possible to perform an optimization in

bins of multiplicity. In addition, it is overall preferable to perform an unique selection as a function

of multiplicity in order to limit the effect of possible MC/data differences that can emerge in events at

higher multiplicities. The configuration of the BDT is summarized in Table 3.4, in case a parameter

is not explicitly mentioned, the default value was used. To be noted that most values reported in

Table 3.4 correspond to the default settings which should deliver, in recent TMVA versions, a very good

performance. Tests running the classifier with different settings were performed in previous analyses

without a significant gain in performance [24]. Around 70% of the sample is used for training, with a

maximum of 500.000 candidates, while the other 30% is used for testing.

The BDT has been trained on the set of 10 variables shown in Table 3.4. The variables are defined

as followed: m(K0
S) is the invariant mass of the V0 under the assumption that it is a K0

S ; d0(bach.)

is the impact parameter of the bachelor; d0(V0) is the impact parameter of the V0; cτ(K0
S) = lV0 ×

m(K0
S)/p(V0) is the proper decay length of the K0

S with lV0 the decay distance of the V0, m(K0
S) = 0.497

GeV/c2 the PDG mass of K0
S ; cos(PA) is the cosine of the pointing angle of the V0; d′0 is signed impact

parameter of the bachelor track with respect to the primary vertex; p(bach.) is the momentum of the

bachelor; nσTOF(p) is the number of sigma in the TOF assuming the bachelor is a proton; nσTPC(p) is

the number of sigma in the TPC assuming the bachelor is a proton; nσTOF(π) is the number of sigma

in the TPC assuming the bachelor is a pion; nσTPC(p) is the number of sigma in the TPC assuming the

bachelor is a kaon. These variables were selected because they already have been studied in a previous

analysis.

3.7.1 BDT Performance

The training variables and invariant mass distribution of Λc for 2 < pT < 4 GeV/c for background and

signal candidates are shown in Figure 3.6. Superimposed in green (brown) are shown the left (right)

background distributions. From the figure it directly can be seen that already a big improvement can be

made by cutting away the background of nσTPC(p). Sequentially, it is not surprisingly that this variable

came out as the most important variable in the MVA algorithm. The left and right background separation

does not show a discrepancy between each other, hence an one to one left and right background input

to reduce overtraining on either of one is not needed.

The top two graphs of Figure 3.7 shows first of all the correlations between the input variables, as mea-

sured by the TMVA package, separately for the signal and the background candidates for PrefilteringMVA

2 < pT < 4 GeV/c. The graphs shows that there is a high correlation between all the identifications

of the bachelor in the TPC. Nevertherless, in Λc Pb-Pb analysis is shown that this is in general not a

problem since it has been shown that the BDT analysis and performance is not affected by correlations

between input variables [24]. Secondly, the middle left graph of Figure 3.7 shows the comparison between

training and test sample distribution for both signal and background candidates. The test sample clearly

shows a similar result as the training sample for both background and signal, thus we can conclude that

our model has not been overtrained on the training sample. Lastly, the middle right graph of Figure
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Figure 3.6: BDT input variables and invariant mass distributions of Λc for 2 < pT < 4 GeV/c for

PrefilteringMVA strategy. The filled red denote the background sample, while the filled blue the signal

sample. Superimposed is the left (green markers) and right side band (brown markers) of the background

candidates. The y-axis shows the normalized counts for each distribution. Note that cos(PA) has a

logarithmic y-axis.

3.7 shows the performance of the model, the area under this ’ROC-curve’ (in this case 0.876) gives a

quantitative outcome of how good the model can classify signal from background candidates. In the ideal

case this area is equal to 1, and the curve shows a rectangular shape. This pT range shows an adequate

results, so this model has been accepted.
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Figure 3.7: Top left (right) shows the correlation between the signal (background) candidates for Pre-

filteringMVA 2 < pT < 4 GeV/c. Middle left shows a BDT response ȳBDT comparison between the

training and test sample distribution for signal and background for PrefilteringMVA 2 < pT < 4 GeV/c.

Middle right shows the corresponding ROC-curve and has an area of 0.876. Bottom left shows a BDT

response ȳBDT comparison between the training and test sample distribution for signal and background

for StandardMVA 2 < pT < 4 GeV/c. Bottom right shows the corresponding ROC-curve and has an

area of 0.723.
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The same performance results are shown in the bottom two graphs of Figure 3.7 for the StandardMVA

strategy for 2 < pT < 4 GeV/c. This model has an ROC-curve with an area of 0.723, and is therefore at

first sight compared to the PrefiltergMVA model worse in classifying background from signal. But as the

StandardMVA configuration has already a stricter set of cuts, this conclusion cannot been drawn. If one

want to make qualitative statements between cuts plus MVA strategies, we need to look at the output

of the invariant mass fits. This same procedure of training and classifying is done for all two MVA cut

strategies and pT ranges.

3.8 Signal extraction

The raw yield extraction of the Λc is usually done by fitting the invariant mass distributions of the

Λc-candidates. This still holds for the ’Standard’ analysis, but as the MVA analyses has stored the

BDT response together with the invariant mass of all the candidates, a dedicated selection on the BDT

response needs to be made in order extract the raw yield. For both the non-MVA as the MVA analyses

a fitting function has been chosen consisting of polynomial of the second for the background together

with a Gaussian describing the signal, whose width was fixed to the value obtained in the Monte Carlo.

3.8.1 Finding optimal BDT response

The MVA analyses currently did not have dedicated algorithm for determining the optimal BDT response,

ȳBDT. Therefore a tool is build which visualized what the outcome would be for different BDT responses,

this tool will briefly been explained, see Figure 3.8. First recall that ȳBDT shows quantitatively how much

the model classifies Λc-candidates as background (ȳBDT = −1) or signal (ȳBDT = +1). The goal is to find

a value for ȳBDT, which seems to have a stable fit, has a width compared to Monte Carlo and has a large

significance. In order to do so with small steps ∆ȳBDT = 0.0002 is iterated over the BDT response ȳBDT,

while for each step all the candidates that have ȳBDT greater or equal to that value are selected, after

which a fit is made through the invariant mass distribution. Please see graph 9 of Figure 3.8, this graph

shows the BDT response of all the Λc candidates valued by the model for StandardMVA 2 < pT < 4

GeV/c, together with the minimum (ȳBDT = −0.2) and maximum (ȳBDT = 0.1) BDT response between

which is iterated visualized by the red dotted lines. In order to prevent the tool from selecting statistical

fluctuation the fit results are grouped in sets of ten from which the mean output of their fit parameters

is computed. The result of their mean fit parameters are eventually shown by the tool, which can be

seen in panel 1-7.

First the best fit parameters (rebinning, fit ranges) have been chosen by running the tool for different

parameter settings. After the best fit parameters were found the tool is ran with sigma fixed to Monte

Carlo and with sigma unconstrained. The unconstrained sigma is used as reference for the fixed sigma.

We first look for an BDT response where the unconstrained sigma is in the region of Monte Carlo, in

case of the figure around BDT bin 5000 (ȳBDT = 0). Next we would like to maximize the significance,

avoiding the extreme BDT response cuts where too much signal is cut away, as this would decrease the

TMVA efficiency drastically. Usually a minimum TMVA Efficiency of 0.65 is accepted, which in this case

is around BDT bin 5100 (ȳBDT = 0.2). Lastly, the best fit is taken favoring lower BDT reponses over

higher. Successively, we found that the best and most stable fit was at BDT bin 4949 (ȳBDT = −0.0104),

see Figure 3.9. This same procedure is done for all MVA cut strategies and pT ranges.
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Figure 3.8: Visual output of the tool for determining the optimal BDT response ȳBDT for StandardMVA

2 < pT < 4 GeV/c fitted with sigma unconstrained. The x-axis of graph 1-7 is the BDT bin which is

one to one related to the BDT response, see graph 7, BDT bin 4000 (ȳBDT = −0.2) and BDT bin 5500

(ȳBDT = 0.1). Graph 1-2 show the mean and sigma from fit, superimposed the values from Monte Carlo

in red. Graph 3 shows the reduced chi-squared, graph 4 the significance S = NS√
NS+NB

within 3σ under

the Gaussian with NS and NB the number of signal and background candidates, graph 5 shows the

signal over background ratio NS/NB within 3σ under the Gaussian, graph 6 shows the raw yield within

3σ under the Gaussian, graph 7 shows the TMVA Efficiency defined as the by Monte Carlo classified real

Λc candidates selected by the BDT response divided by the total number of classified real Λc candidates,

graph 9 shows the BDT response distribution for all the Λc-candidates together with the minimum and

maximum BDT response between which is iterated. Each point represents the mean of 10 successive

BDT response steps in order to prevent statistical outliers.
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Figure 3.9: Invariant mass fit of Λc for the optimal BDT response for StandardMVA 2 < pT < 4

GeV/c. A optimal BDT response of ȳBDT ≥ −0.0104 has been chosen. The red (blue) lines represent the

background (plus signal) fit. The results of the Gaussian fit is reported, together with the significance

and the signal over background ratio. The number of signal and background candidates is obtained

within a 3σ range (grey dotted line) around the mean value of the Gaussian fit.

3.8.2 Fit results

Figure 3.10 shows the invariant-mass distributions together with the fit for different pT intervals of

the Standard, StandardMVA and PrefilteringMVA strategy. A total overview of the mean, sigma

(unconstrained), raw-yield, signal over background ratio and significance of all fits is shown Figure

3.10.

These results show that only in the StandardMVA analysis the highest pT interval could reach a signifi-

cance above three, even worse in the PrefilteringMVA analysis no fit could be made in this interval,

even though it has been trained separately in 12 < pT < 16 GeV/c and 16 < pT < 24 GeV/c.

On the other hand, PrefilteringMVA is the only strategy of which an unconstrained sigma does not

significantly deviates from Monte Carlo, as the other two strategies deviate more than three standard

deviations in 6 < pT < 8 GeV/c. The StandardMVA analysis improves compared to Standard in the

signal over background ratio drastically with factor 1.5 in low pT and 2.5 in intermediate/high pT. The

StandardMVA analysis improves compared to Standard in significance with factor 1.3 in low pT and 1.7

in intermediate/high pT. The significance increases in PrefilteringMVA compared to Standard in all pT

except the 2 < pT < 4 GeV/c range the significance.
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Figure 3.10: Invariant mass distributions of Λc candidates for 1 < pT < 2 GeV/c, 2 < pT < 4 GeV/c,

4 < pT < 6 GeV/c, 6 < pT < 8 GeV/c, 8 < pT < 12 GeV/c, 12 < pT < 24 GeV/c for Standard (top

six) and StandardMVA (middle six) and PrefilteringMVA (bottom six) strategy. The red (blue) lines

represent the background (plus signal) fit. The results of the Gaussian fit is reported, together with the

significance and the signal over background ratio. The number of signal and background candidates is

obtained within a 3σ range (grey dotted line) around the mean value of the Gaussian fit.
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Figure 3.11: Top three: Mean (left) and raw-yield (right) from fit with the width of the peak fixed to

Monte Carlo, as in Figure 3.10. The middle graph shows the sigma from fit if the width of the peak is

unconstrained. The pink dotted line shows the mean and sigma from Monte Carlo. Bottom four: Signal

over background ratio and significance of different strategies: Standard (black), StandardMVA (blue)

and PrefilteringMVA (red). The ratios are divided by the Standard analysis.
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3.9. CORRECTIONS AND EFFICIENCIES

3.9 Corrections and Efficiencies

The outcome of each strategy is dependent on the performance of ALICE and selection criteria that

were made. As the underlying physics is the same and as all the different analyses come from the same

data set, corrections need to adjust for this. This section will give a overview of all the corrections that

had to be considered in order to compute pT-differential corrected yield per event. The pT-differential

corrected yield per event for |y| < 0.5 of prompt Λ+
c was obtained using the following formula,

1

Nev

dNΛ+
c

dpT

∣∣∣∣
|y|<0.5

=
1

2∆pTc∆y

1

NevBR

NΛRaw
c (pT)|y<yfid · fprompt

(Acc× ε)(pT)
|y|<0.5
prompt

, (3.9)

where NΛRaw
c is the raw-yield (both particles and antiparticles) in a given pT interval with width ∆pT,

the factor 2 is to account for the fact that NΛRaw
c contains both particle and antiparticles, fprompt is the

fraction of the raw-yield from prompt Λc, (Acc × ε) is the product of the acceptance and efficiency of

prompt Λc in a given pT interval for |y| < 0.5, Nev is the number of analyzed events, BR = 0.0110 is the

branching ratio for the total decay mode and c∆y is the correction factor for the rapidity coverage.

The correction for the detector acceptance and reconstruction efficiency (Acc×ε) was obtained using the

Monte Carlo periods listed under ’Efficiencies’ in Table 3.1. The efficiencies are calculated in two steps,

the cut efficiency and the MVA efficiency. The cut efficiency is the number of reconstructed Λc baryons

after topological cuts and PID selection over the number of particle generated in the acceptance. The

MVA efficiency is computed by applying to the Monte Carlo sample the same cuts, PID, MVA model and

optimal BDT response for pT as used in extracting the raw-yield, from which the ratio of the number of

accepted prompt (feed-down) Λc’s over the total number of prompt (feed-down) Λc’s is computed. This

efficiency depends solely on the cut in the BDT response. The resulting total efficiency is the product

of the MVA and cut efficiency. The acceptance is the number of Λc baryons generated in the acceptance

over generated in the limited acceptance. Figure 3.12 shows the resulting product of acceptance and

efficiency for prompt and feed-down Λc’s. As observed, the product of acceptance and efficiency increases

with the transverse momentum, a few percentile at low pT going up to 40-60% at high pT. The relative

error for prompt (feed-down) varies from 1% (1%) at low pT up to 3% (2%) at high pT. The efficiencies of

StandardMVA are overal 10% less with a maximum of 20% at 2 < pT < 4 GeV/c compared to Standard.

The PrefilteringMVA efficiencies are overall 35% higher with an exception of 1% higher at 4 < pT < 6

GeV/c and 1% lower at 16 < pT < 24 GeV/c.

Figure 3.12: Product of acceptance and efficiency for Λc in pp collisions at
√
s = 13 TeV as function of

pT for Standard, StandardMVA and PrefilteringMVA. The solid red lines correspond to the prompt Λc,

while the dotted blue lines represent Λc baryons originating from beauty-hadron decays.
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Figure 3.13: Fraction of prompt Λc baryons with asymmetric systematic uncertainties.

As the efficiencies and raw-yield for all the different strategies have been computed, the correction in

Equation 3.9 can be applied to obtain the corrected yield of Λc for all strategies. All the strategies would

ideally show the same outcome, hence the most reliable strategy must be chosen to become the final

results of which also the systematics uncertainties will be calculated.

The strategy to continue with will be PrefilteringMVA, as this strategy this strategy only does not

significantly differs from Monte Carlo in 6 < pT < 8 GeV/c. A discrepancy would result in a large

systematic uncertainty in the raw-yield extraction. As this strategy could not be fitted in the highest

transverse momentum interval, it will be left out of the analysis. The reason that StandardMVA is not

chosen although has a higher signal over background ratio, significance and has a significant result in

12 < pT < 24 GeV/c is because this strategy might be statistically biased as it is based on optimized

topological cuts plus a MVA.

To obtain the factor fprompt, i.e. the fraction of prompt Λc in the raw-yield, the production cross section

of Λc from Λb decays was estimated using the beauty hadron pT shape from fonll calculation [25]. The

so called Nb method was used in order to compute the fraction of prompt Λc, using,

fprompt = 1− NΛc,feed-down

NΛc
= 1− (Acc× ε)feed-down c∆y ∆pT BR Lint

NΛc/2
×
(

d2σ

dpT dy

)FONLL

feed-down

, (3.10)

where NΛc/2 is the raw-yield with a of factor two for the particle and antiparticle correction, (Acc ×
ε)feed-down the product of acceptance and efficiency for feed-down Λc’s, Lint = Nev/σint the integrated

luminosity, this is the number of analyzed events (1.5 billion) divided by the total inelastic cross-section

measured as 57.8 ± 2.3 mb for LHC16, LHC17 and LHC18 pp
√
s = 13 TeV data. The last term the

differential cross-section for feed-down Λc from the fonll calculation. The result of fprompt is shown in

Figure 3.13.
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3.10. SYSTEMATIC UNCERTAINTIES

3.10 Systematic Uncertainties

The sources of systematic uncertainties considered in this analysis are the following: (1) yield extraction,

(2) cut variation, (3) particle identification, (4) Monte Carlo pT-shape of generated Λc, (5) feed-down

subtraction, (6) tracking efficiency. A summary of the systematic uncertainties is shown in Table 3.5

and in Figure 3.17.

3.10.1 Yield extraction

The systematic error on the raw-yield extraction was estimated in each pT interval by fitting the invariant-

mass distributions repetitively under different approaches. The following approaches were considered: (i)

the background function, either parabolic, linear or exponential, (ii) the lower and upper limit of the fit

range were varied, (iii) varying the width of the invariant-mass histogram, and (iv) counting the entries

within 2.5, 3, 3.5 times the width after subtracting the background. For all the possible combinations

the fit was performed under different assumptions on the Gaussian width of the Λc, namely: (a) fixing

the Gaussian width to the value obtained in Monte Carlo, (b) leaving the width as free parameter. Only

cases where the fit had a reduced chi-squared smaller than two, significance above three, and relative

error above 0.5 were considered. Cases with raw-yield far off the central value were in more depth

investigated, fits that did not represent the data were not considered. The final systematic uncertainty

was eventually estimated as the root-mean-square (RMS) of the signal yield from the obtained trials.
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Figure 3.14: Results of multi-trial yield extraction for multiplicity integrated 2 < pT < 4 GeV/c and

8 < pT < 12 GeV/c. The red line denotes the yield of the central point.

The results of this multi-trial yield extraction for 2 < pT < 4 GeV/c and 6 < pT < 8 GeV/c is shown

in Figure 3.14. The result for the 6 < pT < 8 GeV/c shows a clear fluctuation around the central value

and the bin counting is in agreement with the other trials, hence the outcome of the RMS is estimated

at 5%. In the case of the 2 < pT < 4 GeV/c interval the trials with the exponential function showed a
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3.10. SYSTEMATIC UNCERTAINTIES

clear discrepancy with the central value and the other trials. Consequently, these trials are removed and

the RMS is estimated at 7%.

Since the systematic error in raw-yield extraction is expected to be reasonably smooth as a function of

pT, additional smoothening of the systematic uncertainties is performed. The final results are shown in

Table 3.5 and Figure 3.17.

3.10.2 Cut variation

Systematic uncertainties on the selection on Λc can arise from certain imperfection between data and

simulation in the distributions and resolution of variables on which is cut. As we expect the Prefiltering-

MVA strategy to dependent mostly on the BDT response and not on the initial topological and PID cuts,

the cut variation systematic uncertainty can be estimated varying the BDT responses around the selected

BDT response for the central point. Two stricter points of ȳBDT,Central + 0.01 and ȳBDT,Central + 0.02

and two looser of ȳBDT,Central − 0.01 and ȳBDT,Central − 0.02 were chosen.

The raw-yield has been extracted using the same fit parameters as the central value, to limit fluctuations

due to fit performance. The ratio of the corrected yield with the central value is shown on the left of

Figure 3.15. Independently of each other the four different cuts fluctuate around 1, thus no pT is observed

in these cut variations. Though an asymmetry is observed, more points lay beneath the central point

then above, therefore an asymmetric systematic uncertainty is estimated of 4% above and 8% below.
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Figure 3.15: Left: Ratio of the corrected yield with central point varying the Λc selection cuts. Right:

Systematic uncertainty due to Monte Carlo pT-shape, ratio of prompt Λc efficiency for pythia and

fonll.

3.10.3 Particle identification

The effect of the particle identification is usually estimated doing the same analysis without using any

PID, as the Λc baryon is hard to reconstruct without any PID the other option is to vary the number of

sigma in TOF and TPC of which eventually corrected yield ratio with the central value is calculated. In
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3.10. SYSTEMATIC UNCERTAINTIES

this analysis there was not enough time to compute these ratios, therefore the results have been taken

from the other decay channel Λc → pKπ, which also required the reconstruction of the proton. The

analysis estimated a 5% systematic on the particle identification for all pT.

3.10.4 Monte Carlo transverse-momentum shape

The efficiencies computed with Monte Carlo are dependent on the generated pT distribution of the Λc

baryons in pythia. The effect of this shape from pythia was estimated from the relative variation in

the Monte Carlo efficiencies obtained after using pT shapes from fonll. The uncertainty due to these

selection was estimated by of ratio of the prompt Λc efficiency generated by pythia over generated by

fonll, the results can been seen on the right of Figure 3.15. The ratio lays within uncertainties for all

transverse momenta, except the first, hence only for the first interval a systematic uncertainty has been

estimated of 1%.

3.10.5 Feed-down subtraction

The contribution to the systematic uncertainties coming from the feed-down correction fprompt in

Equation 3.9 was calculated with the theoretical uncertainties of the fonll predictions of Λb → Λc.

The uncertainty in the fonll prediction of the Λb production arise by varying the b-quark mass, the

perturbative normalization scales or the factor of the fraction of beauty quarks decaying into a Λc baryon.

The resulting asymmetric errors on the value of fprompt are shown in Figure 3.13 and summarized in

Table 3.5.

3.10.6 Tracking efficiency

The systematic uncertainty on the track reconstruction efficiency arise from two different effects: the

quality of the tracks and the quality of propagation from TPC to ITS. These effects were estimated using

the following two tests: one is the effect of different track selections on the corrected yield of the Λc, the

other is the comparison of the TPC-ITS track matching efficiency in data and simulations.

The effect of the different track selections was estimated using the following set of cuts, for which all

the corrected yield is computed. Only one cut at a time was varied compared to the central value.

The following three track variations were tested: (i) additional cut on the number TPC crossed rows

> 120− (5/pT), (ii) number of TPC clusters > 0.65× number of TPC crossed rows, (iii) ratio of crossed

rows over finable clusters in TPC > 0.9.

The ratio of the corrected yield for the different track cuts with the central point is shown on the top of

Figure 3.16. Based on the variation of the distributions, a systematic uncertainty of 4% op to 8% was

estimated. This corresponds to a 1.3% - 2.7% uncertainty per track, as the Λc is reconstructed from a

three-body decay.

The second part of the tracking efficiency is the propagation from TPC to ITS matching efficiency. This

TPC-ITS track matching efficiency is defined as the fraction of track with clusters is both ITS and TPC

over the total number of track with clusters in the TPC. The three main reason for which a deviation

could arise is: (i) there is mismatch between a track in the TPC and the ITS, (ii) as we require at

least one hit in the SPD for the bachelor track, the track could still be present in the TPC and (iii) a

secondary which is not rejected and not reconstructed in the ITS, but is reconstructed in the TPC. The
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3.10. SYSTEMATIC UNCERTAINTIES

systematic uncertainty arises from discrepancies between data and MC, and is particle dependent. Since

the pion tracks of K0
S does not have ITS requirements, this not taken into consideration. A transverse

momentum dependent uncertainty varying from 1.8% - 3% for the proton was estimated, taken from the

other decay channel Λc → pKπ.

A Monte Carlo simulation was used to propagate the uncertainty at the track level to Λc baryon level,

accounting for the proton kinematic in the hadron pT range of our analysis, see figure 3.16. The mean

for each pT(Λc) is taken from the pT(p) versus pT(Λc) distribution adding the corresponding uncertainty

of the proton in quadrature to the uncertainty of the track quality computed above in order to get the

final systematic uncertainty for the track efficiency.
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3.10. SYSTEMATIC UNCERTAINTIES

3.10.7 Total systematic uncertainties

Table 3.5 and Figure 3.17 show the total systematic uncertainty discussed in this section. The various

contributions are added in quadrature. In addition to the discussed uncertainties a 5% is assigned due

to normalization and a 5.1% uncertainty for the the branching ratio.

pT (GeV/c) 1− 2 2− 4 4− 6 6− 8 8− 12

Yield extraction (%) 14 7 4 5 6

Cut variation (%) +4
−8

+4
−8

+4
−8

+4
−8

+4
−8

PID Efficiency (%) 5 5 5 5 5

MC pT shape (%) 1 neg. neg. neg. neg.

Feed-down (%) +1
−1

+1
−1

+2
−2

+3
−3

+4
−5

Tracking efficiency (%) 2 3 3 4 4

Total systematic uncertainty (%) +19
−20

+14
−16

+13
−15

+14
−16

+14
−16

Table 3.5: Systematic uncertainties (in percentages) evaluated for the Λc baryon.
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2 4 6 8 10 12
 (GeV/c)

T
 p

0.2−

0.15−

0.1−

0.05−

0

0.05

0.1

0.15

0.2

 R
el

at
iv

e 
S

ys
t. 

U
nc

.

Total (excl. norm. and BR)
 5.0%)±Normalization (
 5.1%)±Branching ratio(

Yield extraction
Tracking efficiency
Cut efficiency
PID efficiency

 shape
t

MC p
Feed-down from B

Systematic errors

Figure 3.17: Relative systematic uncertainty evaluated for the Λc baryon. The different contributions

are added in quadrature.
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Chapter 4

Results

The pT-differential corrected yield per event of prompt Λ+
c baryons integrated over multiplicity in |y| <

0.5 in pp collisions
√
s = 13 TeV as measured in the Λ+

c → pK0
S decay channel is shown in Figure 4.1.

In this and following figures the experimental results are represented by the black markers and is placed

at the centre of the pT inverval, the horizontal bars spans the width of the pT interval, the vertical error

bar is the statistical uncertainty, the blank box is the (asymmetric) systematic uncertainty and the filled

box is the asymmetric systematic uncertainty coming from beauty feed-down.
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Figure 4.1: pT-differential corrected yield per event of prompt Λ+
c baryons integrated over multiplicity

in |y| < 0.5 in pp collisions
√
s = 13 TeV as measured in the Λ+

c → pK0
S decay channel. The statistical

uncertainties are shown as error bars, the systematic uncertainties from data as blank boxes and the

systematic uncertainties from feed-down as filled boxes.
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Figure 4.2: pT-differential corrected yield per event of prompt Λ+
c baryons integrated over multiplicity in

|y| < 0.5 in pp collisions
√
s = 13 TeV as measured in the Λ+

c → pK0
S (black) and Λ+

c → pKπ (red) decay

channel, together with their ratio. The statistical uncertainties are shown as error bars, the systematic

uncertainties from data as blank boxes and the systematic uncertainties from feed-down as filled boxes.

In order to validate these results, the data points of Figure 4.1 are compared with the pT-differential

corrected yield per event of prompt Λ+
c baryons for the other decay channel Λ+

c → pKπ. The comparison

is shown in Figure 4.2 with the results from this analysis represented by the black markers and the

ones from the three-prong decay denoted as red circles. The ratio is defined as the pT-differential

corrected yield per event of Λ+
c → pK0

S over Λ+
c → pKπ, taking into account the correlation between

the statistical and systematic uncertainties. As not all uncertainties of the Λ+
c → pKπ decay channel

were separately available (only the statistical, systematic uncertainty without feed-down and feed-down

systematic uncertainty were provided) the following assumptions were made calculating the final un-

certainties: the statistical uncertainties is calculated as uncorrelated, because they are reconstructed

from (mostly) different tracks; the systematic uncertainty from feed-down is calculated as correlated, as

it has been computed using the same calculations for the beauty quark becoming the Λc baryon; the

systematic uncertainty of the others is calculated as uncorrelated as it dominated by the uncorrelated

yield extraction and cut variation systematic uncertainties.

All the points, except the first pT interval are systematically above the results for the other decay channel,

but are within systematic uncertainties. The results of this analysis are on average 9% higher than the

other decay channel. The measured pT-differential corrected yield per event is thus within uncertainties

with the other decay channel, however being systematically higher.

Figure 4.3 shows the result of the pT-differential corrected yield per event of prompt Λ+
c baryons in

|y| < 0.5 integrated over multiplicity in pp collisions
√
s = 13 TeV as measured in the Λ+

c → pK0
S decay

channel compared with different event generators.
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Figure 4.3: pT-differential corrected yield per event of prompt Λ+
c baryons integrated over multiplicity in

|y| < 0.5 in pp collisions
√
s = 13 TeV as measured in the decay channel Λ+

c → pK0
S . The measurements

are compared with different event generators (see text for details).

The data are compared with expectations from the pythia event generator, having two main processes:

what is called softqcd and hardqcd within the jargon of the model. Within the framework of

softqcd, pythia attempts to describe minimum bias physics and bulk observables through processes

that involve multi-parton interactions. The processes described are mainly relying on phenomenological

approaches that attempt to describe bulk observables in collisions between two protons. On the other

hand, within the hardqcd framework pythia describes the formation of jets and heavy flavour partons

through initial stage hard processes. In addition for each of this category of processes, we attempted

to see the influence of the mechanism of colour reconnection (CR) to the production of charm baryons.

The colour reconnection model in pythia is applied prior to the hadronisation, and takes leading order

colour strings and transforms a different colour based on three principles: (i) colour rules from QCD, (ii)

space-time causal contact between strings and (iii) a measurement if possible reconnection is actually

favoured. This addition should result into a baryon enhancement.

The ratio plots show the experimental corrected yield over the particular event generator, with and

without colour reconnection. The green line and green markers denote hardqcd without colour re-

connection, the red dashed line and red markers denote hardqcd with colour reconnection, the purple

dashed line and purple markers denote softqcd without colour reconnection, the yellow dashed line

and yellow markers denote softqcd with colour reconnection.

All curves underestimate the production of prompt Λc, hardqcd by two orders of magnitude, softqcd

by one. There is clearly no significant difference between the curves with and without colour reconnection.

Contrary to my initial expectation the models with softqcd are closer to data.
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tunes of pythia8: softqcd + cr [26], monash [26] and mode2 [27]. The statistical uncertainties

are shown as error bars, the systematic uncertainties from data as blank boxes and the systematic

uncertainties from feed-down as filled boxes.

Figure 4.4 shows the pT-differential Λ+
c /D

0 ratio in |y| < 0.5 in pp collisions
√
s = 13 TeV. The

D0 corrected yield has been reconstructed in the same system and energy integrated over multiplicity

with the decay channel D0 → K−π+ with branching ratio 3.89 ± 0.04%. The following assumption

were made calculating uncertainties: the statistical uncertainties are calculated as uncorrelated, as it

is reconstructed from different tracks; the uncorrelated systematic uncertainties are Monte Carlo pT-

shape, raw-yield, branching ratio and cut variation, as these uncertainties are dependent on the studied

particle type and used cuts; the correlated systematic uncertainties are particle identification, tracking

efficiency, as these are related to the detector efficiencies; again the systematic uncertainty from beauty

feed-down is correlated, as has been computed using the same calculations; the systematic uncertainties

from normalization cancels out.

The four different models in Figure 4.3 showed all within statistical uncertainties the same qualitative

trend as a function of pT for the Λc/D
0 ratio, hence only the result of pythia8, softqcd + cr is

shown. In addition to this, pythia tunes mode2 [26] and monash 2013 [27] are shown. As stated

in [26] mode2 is currently the best tune for colour reconnection. The enhanced colour reconnection

mechanism of mode2 increases the baryon-to-meson ratio in the charm sector and is in agreement with

data for all pT within the current level of the uncertainties. It is probably interesting to point out that

this agreement is on the lower side. Clearly the other two models do not reproduce the data, either in

magnitude or the pT trend. Furthermore, the colour reconnection in softqcd which should enhance

baryon-to-meson ratio does not show the expected effect.

The charm baryon-to-meson ratio in pp collisions shows significant enhancement with respect to electron-

positron calculation, which is flat at 0.12 [28, 29]. This suggest different underlying physics in hadronic
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collision compared to electron-positron annihilation. Colour reconnection and recombination are pro-

posed as possible explanations. A more in depth study on the multiplicity dependent charm baryon-to-

meson ratio can give more insight in the QGP like medium effects which were seen in the light flavour

baryon-to-meson ratios.
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Chapter 5

Conclusion and Outlook

The pT-differential corrected yield of prompt Λ+
c charmed baryons in the hadronic decay mode Λ+

c → pK0
S

is measured with the ALICE detector at the Large Hadron Collider (LHC) in minimum bias proton-

proton collisions at
√
s = 13 TeV at midrapidity in the transverse momentum range 1 < pT < 12

GeV/c. A machine learning optimization algorithm has been used in order to identify the signal of

the low produced Λc baryons which is covered under a dominating background. The machine learning

optimization algorithm showed improvement in the signal extraction, and is favoured in future analyses.

The results were in agreement with corrected yield of prompt Λ+
c charmed baryons in Λ+

c → pKπ,

though on average systematically higher. The prediction from softqcd and hardqcd event genera-

tors underestimated the measured prompt Λ+
c production, on average by 1 and 2 orders of magnitude

respectively. As my initial expectation expected hardqcd to be closer to data than softqcd, a more

in depth analysis on the different tunes of the generators is recommended.

We also measured pT-differential the baryon-to-meson ratio Λ+
c /D

0 and compared it to different pp event

generators. All tunes of pythia8 examined underestimate the ratio with the exception of mode2 that

is able to describe the data within the current level of uncertainties.

This project started with the plan to study more multiplicity ranges than only multiplicity integrated,

but due to the lack of time this could not be done. A study on the different multiplicity ranges, especially

the high and low multiplicity, will give us more insight in the multiplicity effect of the charmed baryon-

to-meson ratio and can validate and improve the already preliminary results in the other hadronic

decay channel. When continuing with the other multiplicities an improvement must be made in signal

extraction in the highest transverse momentum interval, which was left out in this analysis.

Recently the PWG-HF group started using machine learning techniques to improve the signal extraction.

Within the group multiple machine learning techniques were used, but none of them has done an extensive

study on their technique, and drawn conclusions about which technique is best for this purpose. I would

suggest to do an extensive study on the different machine learning techniques, and show qualitatively what

the leading technique is. Currently to many people are playing around with their own technique in which

they trust. The ALICE collaboration has to bundle the knowledge, spend some time in understanding

the known techniques and should come with a final plan which is clear for everyone in the collaboration.

It is 2020, machine learning is a technique of the future, in a couple of years no scientific field cannot

make use of it.
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