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Abstract

Weather forecasts provided by numerical weather prediction (NWP) models typically give a
deterministic forecast. However, there is a certain amount of uncertainty in these forecasts. The
aim of statistical post-processing is to give a probabilistic forecast instead. Current statistical
post-processing methods for providing a probabilistic forecast are not capable of using full spatial
patterns from the NWP model. Recent developments in deep learning (notably convolutional neural
networks) have made it possible to use large gridded input data sets. This could potentially be useful
in statistical postprocessing, since it allows us to use more spatial information. In this research
we consider wind speed forecasts for 48 hours ahead, as provided by KNMI’s Harmonie-Arome
model. Convolutional neural networks, fully connected neural networks and quantile regression
forests are used to obtain probabilistic wind speed forecasts. Comparing these methods shows that
Convolutional neural networks are more skillful than the other methods, especially for medium to
higher wind speeds.
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1 Introduction

Accurate and reliable weather forecasts are important in many branches of society. Decision making
in, for example, agriculture, aviation and renewable energy production are all dependent on weather
forecasts. Furthermore, extreme weather can be dangerous and it is therefore important to give reliable
warnings when dangerous weather can be expected.

Forecasts are generally determined by numerical weather prediction (NWP) models, such as, for ex-
ample, KNMI’s HarmonieArome[5]. These are large dynamical models based on a physical model of
the atmosphere. Such models are initialized based on measurements and past forecasts. Due to a lack
of measurements a perfect initialization is not possible. Furthermore, simplifying assumptions have to
be made, to make computation feasible. Together these effects lead to errors in both the initialization
and the forecast of the model. Besides, a single model run only provides a single deterministic forecast.
The atmosphere is however a famously chaotic system [28] and every forecast is therefore inherently
uncertain. A single forecast given by a NWP model does not provide an estimate of this uncertainty,
even though it is important for decision makers to have such an estimate. Furthermore, due to the
simplifying assumptions made, there is in general a bias in the predictions.

The uncertainty is usually estimated by creating an ensemble of NWP model output of which the
members are initialized differently and use slightly different physical parametrizations. This, however,
is computationally expensive and the results are often still biased and underdispersed[14].

In statistical postprocessing the aim is to give better estimates of the bias and uncertainty in the model,
based on past observations. The Popular framework for this is model output statistics (MOS)[12]. In
MOS the forecast as provided by the NWP model is compared to corresponding measurements. In this
way we can correct the bias and estimate the uncertainty for the NWP model, based on the output of
the model itself and potentially some extra variables, such as, for example, the time of the year. We
need a dataset containing both measurements and forecasts to apply MOS to a new model. This dataset
is obtained by letting the model forecast the weather for days in the past, for which measurements are
already available, this is called a reforecast. Obtaining such a dataset is computationally expensive,
large datasets are therefore often not available.

The version of MOS that is currently the most popular is ensemble model output statistics or EMOS
[14]. In EMOS one tries to fit a parametric distribution based on the statistics of the ensemble forecasts
and corresponding measurements. EMOS has been applied to wind speed forecasts in [38],[42],[4],where
they used truncated normal and log normal distributions. Furthermore in [26] a mixture of truncated
normal and the generalised extreme value distribution was used with success.

EMOS has been compared to quantile regression forests (QRF)[31], a non parametric technique based
on random forests, for both wind speed and temperature forecasts in [41], where QRF was found to
be more skilful. QRF was also used in [43] for postprocessing of precipitation forecasts. Furthermore
in[34] neural networks are used, which unlike EMOS are capable of modelling non-linear effects, for the
statistical postprocessing of temperature forecasts. EMOS, QRF and neural networks are all however,
not well suited to analyse high-dimensional structured spatial data. Weather forecasts are spatial in
nature, it could therefore potentially be beneficial to use postprocessing methods that are capable of
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dealing with this spatial information.

Recent developments in artificial neural networks have made them the state of the art technique
in a number of different tasks, such as image classification, time series analysis and even image
generation[25][24]. Many of these methods can potentially be of great benefit in geosciences[35] and
have been applied in a few papers already. In [27] for example, convolutional neural networks where
used to detect extreme weather events in climate datasets and in [39] a mix between a convolutional
and a recurrent network was used for now-casting of precipitation. Convolutional neural networks were
also used in [37] to estimate the uncertainty in weather forecasts based on the state of the atmosphere
in the initialization of the NWP model.

Convolutional neural networks have not been used in statistical postprocessing yet to my knowledge.
They, however, could potentially be a beneficial addition because of their capability to analyze spatial
information of weather forecasts. In this study we apply convolutional neural networks for the post-
processing of 48h windspeed forecasts in the Netherlands. We compare a number of different methods
of obtaining a probability distribution using convolutional neural networks. Furthermore, we examine
whether convolutional neural networks add any skill with respect to fully connected neural networks
and quantile regression forests.

This thesis is structured as follows. In section 2 an overview of statistical postprocessing will be given,
section 3 will give an overview of neural networks and convolutional neural networks and section 4 will
describe the methods used for obtaining a probability distribution with convolutional neural networks.
The last chapter will describe the experiments, in which we compare convolutional neural networks to
quantile regression forests and fully connected neural networks, to determine whether convolutional
neural networks’ capability of using spatial information will lead to more skilful forecasts.
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2 Statistical Post Processing

2.1 Statistical Forecasting

The following sections are based mainly on Wilks [44] and Hastie et. al. [19]

In statistical forecasting we try to give a weather forecast based on statistical relationships between
variables. We could for example try to find the relationship between air pressure at a certain location
and the probability of rain the next day. To do this we need to have data for both these variables.
The variable that we are trying to predict is called the predictand and will be denoted by y ∈ Y.
The variables we use to base these predictions on are called the predictors and will be denoted by
x ∈ X , where X will typically be a subset of Rm with m the number of predictors. We assume that
the predictors are realizations of a random variable X and the predictands are realization of a random
variable Y . The aim of statistical forecasting is then to find a map f : X → Y such that

E[Y |X = x] = f(x).

Or when the aim is to estimate the full probability distribution of our predictand, we want to find
a map f s.t. f(x) = P (Y |X = x), a so called probabilistic forecast. The data used to find such a
mapping is called the training data, which contains corresponding pairs (xi, yi) for i = 1, .., N . The set
containing the training data will be denoted by D. In the rest of this section we will describe methods
of estimating these relationships.

2.2 Regression

When trying to derive a relationship between some predictor x and a predictand y we can either
use non-parametric or parametric methods. Parametric methods assume that the relationship can be
approximated by some pre-defined function, where the exact shape of the function only depends on a
number of parameters. Non-parametric methods are methods that don’t have such a strong a priori
estimate of the shape of the function that has to be approximated. In general non-parametric methods
have the benefit that they are less dependent on a good a priori estimate of the relation we are looking
for. The freedom these methods have however, come at a price. They generally need a lot more data
and are not capable of extrapolating to values outside of the training dataset, and thus don’t handle
extreme values well. An example of a non-parametric method is Quantile Regression Forest (QRF),
which will be described in section 2.3. In the next section we will describe a few simple parametric
methods first.

2.2.1 Linear Regression

Let X ⊂ Rn and Y ⊂ R. The simplest and probably most well known parametric method is linear
regression. In linear regression we assume that the relation between the predictand y and the predictors
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x is linear, i.e., we assume that we can write the function f : X → Y, which gives the expected value
of y given x, as f(x) = Wx + b, where W ∈ R1×n and b ∈ R. Although this is an affine map instead
of a linear one, we can turn it into a linear function by adding an extra variable to the data which is
always equal to one, i.e. we define x̃ = [1,xT ]T and W̃ = [b,W ], such that f(x) = W̃ x̃ = Wx + b.
From here on we will use this linear formulation, leaving out the tildes.

The most common framework used for estimating the parameters W is least squares regression. In
least squares regression we try to minimize the average squared distance between f(x) and y. Let xi
be the i-th predictor datapoint and yi the corresponding predictand, with i = 1, .., N where N is the
number of data points. Then the parameter W is chosen such that it minimizes the following quantity

J(W ) =

N∑
i=1

(Wxi − yi)2. (1)

The mean squared error is a popular choice for the quantity that is to be minimized. Firstly it
is easy to find the optimum due to the fact that ∇J(W ) = 2

∑N
i=1(Wxi − yi)xi allows for analytic

solving methods. Furthermore, if we assume that the errors are independent and identically distributed
Gaussians, than the mean squared error is equal to the maximum likelihood estimate. (See Section
2.2.3)

2.2.2 Logistic Regression

Linear regression can also be used for classification. In this case we add a function that transforms the
output of the linear layer to a binary value. Typically one uses the logistic function for this task. The
logistic function is defined by σ : R→ [0, 1] s.t.

σ(x) =
1

1 + e−x
.

This function has the property that limx→−∞ σ(x) = 0 and limx→∞ σ(x) = 1. In this case we get a
function f : X → (0, 1) s.t. f(x) = σ(Wx). Similarly as before we can minimise the mean squared
error to fit the parameters to our model. In this case the predictands y will be either 1 or 0 representing
two classes.

Since σ(x) < 1/2 for negative values of x and σ(x) > 1/2 for positive values of x, sign(Wx) determines
which class our sample is more likely a part of. The two classes are divided in the predictor space
by the plane Wx = 0. Hence logistic regression determines a linear plane dividing two classes. The
output of sigmoid function can be interpreted as the probability of the predictand being equal to one.
i.e. we estimate the probability for Y given X as

P̂ (Y = 0|X = x) = 1− σ(Wx)

P̂ (Y = 1|X = x) = σ(Wx)

When we have more than two categories we need a higher dimensional output. In this case the
parameter W are a n by k matrix instead of a vector, where n is the dimensionality of the predictors
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and k the number of categories. In this case we can use the softmax function defined as softmax :
Rk → Sk−1 s.t.

softmax(z)i =
ezi∑k
j=1 e

zj
for i = 1, .., k.

Note that for k = 2 we have

softmax(z) = [σ(z1), 1− σ(z1)].

Therefore the softmax function can be seen as an extension of the logistic function for multiple category
problems.

2.2.3 Parametric Density Estimation

In linear regression we give a deterministic estimate for y given x, i.e. we model E[Y |X = x]. This
is done by minimizing the mean squared error. By doing this we make some assumptions on the
underlying distribution of the errors. Furthermore sometimes we want to obtain a full probability
distribution instead of just the expected value, i.e. we want to model P (Y |X). To do so effectively we
need to make some assumptions on the shape of the probability distribution. We could for example
assume the errors to be normally distributed with constant variance. Write P̂W (y|x) for the estimate
of the probability density function of Y given X = x. Then our estimate has the form

P̂W (y|x) =
1√

2πσ2
e
−(y−Wx)2

2σ2 , (2)

for some value of σ. Similarly to before we need to optimize some value to fit the parameter W . The
paradigm that is generally used for this task is maximum likelihood estimation. The probability, or
likelihood, of our predictands being equal to yi given predictors xi, for i = 1, .., N is given by:

LH(W ) =

N∏
i=1

P̂W (Y = yi|X = xi) (3)

We then want to find the value W which maximizes this value. i.e. Ŵ = arg maxW LH(W ). To simplify
this expression we generally use the logarithm instead. Since the logarithm is strictly increasing on
R+, maximizing a strictly positive function is the same as maximizing the logarithm of one. Taking the
logarithm has the advantage that it turns the product in a sum, which is generally easier to optimize.
Define the log-likelihood L(W ) = log(LH(W )). Then this is given by:

L(W ) =

N∑
i=1

log(PW (Y = yi|X = xi)) (4)

For an estimate P̂W (Y = y|X = x) = 1√
2πσ2

e−
(yi−Wxi)

2

2σ2 the log-likelihood becomes:

L(W ) =
∑

log(
1√
2pσ2

e−
(yi−Wxi)

2

2σ2 ) = C1 − C2

∑
(yi −Wxi)

2. (5)
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Where the constants C1 ≥ 0 and C2 > 0 are dependent on σ but not on W and hence not of interest for
maximizing the log-likelihood. We can therefore assume these constant to be zero and one respectively.
Doing so we see that maximizing the log-likelihood for a normal distribution with a constant standard
deviation, gives the same estimation for E[Y |X] as least squares regression.

In many cases these assumptions do not hold. We could for example have a situation where the variance
is dependent on x as well, or the distribution might be skewed. An example of such a situation would
be predicting a variable such as wind speed, where negative values are not possible. In this case other
distributions such as a Weibull- or a truncated normal distribution could be used. The truncated
normal distribution is obtained from a normal distribution by giving negative values zero probability.
Let Φ(x) and φ(x) be the CDF and PDF of a standard normal distribution respectively. Then we
define the probability density function of the truncated normal as:

f(µ,σ)(x) =
1
σφ(x−µσ )

1− Φ(µσ )
. (6)

In this case fitting the parameters W based on log-likelihood gives a result for E[Y |X = x] which is
different from the result one would get using least squares.

We can also choose to let the assumption on the standard deviation go. If we for example have a model
where the standard deviation increases proportionally to ‖x‖, then the least squares method would
focus more on minimising the squared error far away from the origin, which might lead to a large bias
relative to the variance close to the origin. The maximum-likelihood estimation with a second set of
parameters Wσ is capable of modeling these errors relative to estimated variance. This should give a
better result in such a scenario.

We can extend linear regression to be able to model non-linear dependencies by transforming the
predictors x using some non-linear function, a so called linear basis expansion. Let h : Rm → RM be a
transformation from our predictor space to RM . We can then use linear regression on the transformed
M -dimensional predictors h(x). I.e. let W ∈ RM , then model the relation between predictors x and
predictands y by:

f(x) = Wh(x).

If we would for example want to model quadratic relations between x and y we could define h : Rm →
Rm2

as:
h(x)i+mj = xixj for i, j ∈ {1, ..,m}.

For many different tasks we need different basis expansions, and selecting the right map h can be a
difficult task. In section 3 we will introduce neural networks as a method to let such a map be selected
based on training data.

2.3 Quantile Regression Forest

Parametric methods described above are dependent on good a-priori assumptions on the relationship
between the predictors and the predictand. Non-parametric methods are methods that try to model the
dependencies between predictors and predictand using minimal assumption. Examples of such methods
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are nearest neighbour methods and decision trees. In this section we will first describe decision trees
and then go on to quantile regression forests.

2.3.1 Decision Trees

A decision tree splits the domain into rectangles based on data, such that some measure is minimized.
This splitting is done iteratively, using a greedy algorithm, starting with the split which gives the
highest gain. This process can be visualized as a tree graph, where the root is the full dataset D and
every leaf represents a division of the rootset according to some simple rule. For example let the root
be the full dataset D, then the two branches represent either {(z, y) ∈ D‖zi ≤ c} or {(z, y) ∈ D‖zi > c}
for some c and i ∈ {1, ..,m}. After such a split we have two leafs which together divide the data in the
root. This set can be splitted again into two branches similarly to what is done for the root. Figure 1
shows schematically what this looks like for a simple 2-dimensional example.

Figure 1: Schematic representation of a decision tree splitting up a two dimensional space into six
different rectangles, such that every rectangle contains a single category.

To be more precise, let X be the space in which the predictors x live and Y the space in which the
predictands live, furthermore let D denote our training dataset. We then want to subdivide X into L
rectangles, Rl for l = 1, ..., L, such that for all x ∈ X there exist a unique Rl such that x ∈ Rl. Every
rectangle is then associated with a value in the predictand space, µl ∈ Y. When y is categorical the
value µl associated with every rectangle is the most common category in the set D ∩ (Rl × Y). i.e.

µl = arg max
y∈Y

N∑
i=1

1Rl(xi)1{y}(yi)

Similarly when y is a continuous variable we can assign the following value to the rectangle Rl

µl =

∑
yi1xi∈Rl

#{xi ∈ X s.t. xi ∈ Rl}
, (7)
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i.e. the average value of the predictands from the training data whose corresponding predictors are part
of the rectangle. Now write l(x) for the index of the rectangle that x belongs to, i.e. l(x) =

∑L
i=1 i1x∈Ri .

The decision tree T then defines a mapping T : X → Y s.t. T (x) = µl(x).

Splitting up X into rectangles is done as follows: Let lk = D ∩ (Rl × Y) be the leaf representing the
subset of the training-data for which xi ∈ Rk. Our goal is to split Rk into two new rectangles Rk′ , Rk′′ .
This split is defined by a tuple (j, t), where j ∈ {1, ...,m} is the dimension along whihc the split
happens and t is a threshold value. The new rectangles are then defined by Rk′ = {z ∈ Rk s.t. zj < t}
and Rk′′ = Rk \Rk′ . The tuple (j, t) is chosen such that the quantity

G(Rk, (j, t)) =
nk′

nk
H(Rk′) +

nk′′

nk
H(Rk′′) (8)

is minimised with respect to (j, t), where nk′ = |X∩Rk′ | and H is generally referred to as the impurity.
For classification problems H is often taken to be either the Gini-Index or Cross entropy, for regression
tasks H is typically chosen to be the average squared error or the average absolute error, which, for a
given rectangle R, is defined by

Hmse(R) =
1

nk

∑
xi∈R

(xi − µk)2. (9)

For a large enough number of splits a decision tree will only contain nodes with a single datapoint
(xi, yi) from our training set. Meaning that without restrictions the model will learn something similar
to a 1-nearest neighbour approach. This will in practice lead to overfitting. To prevent this we can
limit the minimum leaf size, i.e. only allow a new split whenever nk′ and nk” are larger than some
predefined number.

2.3.2 Random Forests

A random forest [8] is an ensemble of decision trees where some randomness is added to the tree building
process. This is done in two steps. First we use a different bootstrapped sample of the training data
for every decision tree in the random forest. Secondly before every split only a randomly chosen subset
of the predictors is considered for splitting. In this way we get a large number of predictions, which
are decorrelated up to a point. We can average over these predictions to obtain a better more robust
prediction. More precisely let θi represent the parameters that describe how tree i is grown and write
T (θi) for the corresponding tree. For a random forest containing k decision trees the random forest
defines a mapping µ̂ : X → Y s.t.

µ̂(x) =
1

k

k∑
i=1

T (θi)(x). (10)

Or for classification problems

µ̂(x) = arg max
y∈Y

k∑
i=1

1{y}(T (θi)(x))
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2.3.3 Quantile Regression Forests (QRF)

The method explained above gives an estimation of E[Y |X = x]. Meinshausen [31] proposed a method
of obtaining an estimate of a full conditional cumulative density function, F (y|x), using random forests.
In this method, called Quantile Regression Forrest, hereafter referred to as QRF, we use the same
algorithm as described above for building a number of trees. However instead of associating a single
value µl to every leaf, every leaf is associated with an empirical cumulative distribution function,
defined by

µl(y) :=
N∑
i=1

1[yi,∞)(y)1xi∈Rl
#{xi ∈ X s.t. xi ∈ Rl}

. (11)

Similar to before we can subsequently average over the results of all the trees to obtain a final estimate
for the cumulative density function F (y|x), which is given by

F̂ (y|x) =
1

k

k∑
i=1

T (θi)(x)(y). (12)

2.4 Forecast Verification

Once we have a forecast we want to be able to determine how well it performs compared to other
methods. To do this another dataset is needed which is independent from the training dataset. There
are a number of different scores which we can use to compare forecasts, all with slightly different
properties. Common deterministic scores, which focus on E[Y |X], are the mean absolute error and the
mean squared error. Let f̂(x) be the an estimate for E[Y |X], than the mean squared error and the
mean absolute error are given by 1

N

∑N
i=1(|f(xi)− yi|) and 1

N

∑N
i=1(f(xi)− yi)2 respectively.

We also want to be able to analyze probabilistic forecasts using scores that take the full probability
distribution P (Y |X) into account. There are two scores which are often used to assess the quality of a
probabilistic forecast. The first is the Brier score. The Brier score does not look at the full probability
distribution P (Y |X), but only at the cumulative distribution function at a certain benchmark value. In
doing so it turns a continuous problem into a 2-category classification problem. Let F̂ be the estimated
cumulative distribution function and let y be an observation. For a certain benchmark value c we then
define the Brier score as

BSc(F̂ , y) = ((1− F̂ (c))− 1[y,∞)(c))
2. (13)

Comparing the Brier scores for different benchmark values can tell us in which ranges of the predictand
a forecasting model performs well. A method that takes into account the full shape of the probability
distribution is the continuous ranked probability score (CRPS). Again let F̂ be the estimated cumula-
tive distribution function and let y be an observation. The CRPS is than defined as

CRPS(F̂ , y) =

∫
R

(F (c)− 1[y,∞)(c))
2dc. (14)

This is equal to the integral of the Brier score over all benchmark values. For deterministic forecasts
this measure is equal to the mean absolute error. The CRPS can therefore be seen as a generalization
of the mean absolute error for probabilistic forecasts.
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Another method to asses whether a probabilistic forecast fits the data well is a rank histogram. A rank
histogram is not concerned with the resolution of the data as the other methods are, but looks at how
well the probabilities agree with the data, the so called calibration. This is based on the fact that if
a random variable Y has a cumulative distribution function F , then F (Y ) ∼ U(0, 1). Let F̂ (·|X) be
an estimation of the cumulative density function of Y given X. If F̂ is close to F , then the following
function should approximately match the cumulative distribution function of a uniform distribution.

F̂F (Y )(z) =
1

N

N∑
1=1

1(F̂ (yi|xi),∞)(z).

The closer F̂F (Y )(z) is to a uniform distribution, the closer F̂ is to the actual cumulative density

function. Unfortunately even if F̂F (Y )(z) is uniform we do not have any guarantees that the probability
distributions obtained by our model are correct. If for, for example, low wind speeds our model is under-
dispersed and higher wind speeds our model is over-dispersed the two effect could cancel each-other
out. Furthermore even if F̂F (Y ) is perfectly uniform, than we still do not necessarily have a good
model[18]. A model which would give a fixed probabilistic forecast based on past measurements, i.e.
the climatology, will give a better calibrated forecast than a conditional probability density function
whose mean is much closer to test measurements but whose spread is not wide enough. It is however
a good diagnostic tool for analyzing the calibration of your model.

In statistical postprocessing the performance of a method, relative to a benchmark method, is often
given by a skill score. For a given score, such as the Brier score or CRPS, the skill score of method a
relative to method b is defined as:

SS = 1− Score(a)

Score(b)
. (15)

Positive skill scores correspond to performances which are better than the method used as a benchmark.
In meteorology this benchmark is generally chosen to be the climatology. Here the climatology is an
estimate of the probability distribution P (Y = y) which does not depend on the predictors x.

2.5 Proper Scoring Rules

We want that metrics we use to assess the quality of a probabilistic forecast are actually optimized for a
good estimate of the probability. Let S(P, y) be a score for a probabilistic forecast P and corresponding
event y. Furthermore write S(P,Q) = EY∼Q(S(P, Y )) for the expected score when the distribution of
your data Y is Q. A good verification metric should give the best score when P = Q. Scoring rules
such that S(Q,Q) < S(P,Q) for all P 6= Q are called strictly proper scoring rules[15]. Optimizing your
probabilistic forecast w.r.t. a score should be done with a score that has this property.

If we would for example try to model a Bernoulli distribution Q;

Q(Y = 0) = 1− q
Q(Y = 1) = q,
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using an estimated distribution P̂ ;

P̂ (Y = 0) = 1− p
P̂ (Y = 1) = p,

and use the following scoring rule;

S(P, y) = −|P (Y = 1)− y|,

i.e. the Brier score with the absolute value instead of the square. Then the expected score is given by

S(P̂ , Q) = −q|P̂ (X = 1)− 1| − (1− q)|P̂ (X = 1)| = −q(1− p)− (1− q)p.

The maximum score will then be obtained for

arg min
p

S(P,Q) = arg max
p

−q(1− p)− (1− q)p =


p = 0 if q < 0.5

p = 1 if q > 0.5

p ∈ [0, 1]if q = 0.5.

Using this scoring function would therefore give overconfident results. The actual Brier Score, however,
has expectation:

S(P̂ , Q) = q(p− 1)2 + (1− q)p2

Such that:

d

dp
(q(p− 1)2 + (1− q)p2) = 2q(1− p) + 2(1− q)p

=⇒ arg min
p

S(P,Q) = q.

Meaning that the Brier skill score is minimized in the expectation when P̂ = Q.

For continuous variables there is a wealth of proper scoring rules as well. The two rules used in this
study are the continuous ranked probability score and the negative log-likelihood.

Proposition 1. The CRPS is a proper scoring function.

Proof. Let S(P,Q) be the expected negative CRPS for a probability measure P with respect to Q,
then

S(P,Q) = −
∫ ∫

(P (X < c)− 1[y,∞)(c))
2dcdQ(y)

S(P,Q) = −
∫ ∫

(P (X > c)− 1[c,∞)(y))2dcdQ(y)

S(P,Q) = −
∫ ∫

(P (X > c)− 1[c,∞)(y))2dQ(y)dc

S(P,Q) = −
∫
BSc(P,Q)dc,
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where BSc(P,Q) is the Brier score. The Brier score has an unique minimum when P (Y < c) = Q(Y <
c) for all values of c ∈ R, therefore S(P,Q) ≤ S(Q,Q) with equality if and only if P = Q.

The parameters in parametric density estimation described in section 2.2 are chosen by maximising the
log-likelihood, or similar minimising the negative log-likelihood. Furthermore we will use the (negative)
log-likelihood in conditional density estimate with neural networks.

Proposition 2. The negative log-likelihood is a proper scoring function.

Proof. Let S(P,Q) be the negative log-likelihood for an estimated probability distribution P and data
drawn from Q. Furthermore, assuming they exist, denote the probability density functions of P and
Q as f and g respectively, then by Jensen’s inequality.

S(P,Q)− S(Q,Q) = −
∫

log(f(y))g(y)dy +

∫
log(g(y))g(y)dy

= −
∫

log(
f(y)

g(y)
)g(y)dy ≥ − log

∫
f(y)

g(y)
g(y)dy = 0

Where equality holds if and only if f = g. This means that the negative log-likelihood is minimized in
expectation only for P = Q.
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3 Deep Learning

This section mainly follows Goodfellow et. al.[16]

3.1 Feedforward Neural Networks

In section 2 we gave a short description of linear and logistic regression. We furthermore mentioned
how non-linear relationships could be obtained by transforming data first using linear basis expansions.
Choosing good expansion for the problem at hand can be a difficult task. The idea behind neural
networks is that they can learn such expansions based on the data.

Neural networks are based on the human brain. The idea is that there are a number of neurons which
are connected to each other. Through these connections they can send information to other neurons.
Mathematically neural networks can be seen as a generalization of linear regression. Let x ∈ Rm be
the input data. We can represent this input of a neural network as m neurons, where every neuron
represent one of the m variables in the input vector. We can then connect every one of these neurons
with the output neuron. Each of these connection is then assigned a weight w. The value of the output
neuron y connected to the set of neurons x is then given by

y =
∑

wixi = Wx, (16)

which corresponds to linear regression. Similar to logistic regression we can modify the output Wx
with a non-linear function, such as the logistic function, to get a non-linear relation between x and
y. The idea behind neural networks is that we can add extra layers of neurons between the input
and output layer. Write hl for the l-th layer. Furthermore write W l

ij for the parameter describing the

relation between hl−1i and hlj . A neural network with k hidden layers, such as shown in figure 2 for k
= 2, then is a function:

h1 = W 0x

h2 = W 1h1

...

y = W khk

Due to every step being linear this is equal to y = W k...W 0x, which is a linear map. The added benefit
comes from adding a non-linear map f on top of every layer. i.e. pick some functions fl : Rnl → Rnl
and define the neural network as,

h1 = f0(W
0x)

h2 = f1(W
1h1)

...

y = fk(W
khk).
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Figure 2: Example of a simple neural network with two hidden layers.

In simple cases f has the form f(x) = [σ(x1), .., σ(xn)], where σ : R → R is called an activation
function, which is applied to every neuron individually. Examples of activation that are commonly
used are the tanh and rectified linear unit(Relu), defined as

tanh(x) =
e2x−1

e2x+1

Relu(x) =

{
0 for x < 0

x for x ≥ 0,

with the latter the most popular one. The non-linearity f can however take a more complicated form
as well when combined with, e.g. batch normalization or pooling layers, described in section 3.3.
Similar to what was done with linear regression, we can add bias terms to every layer. This is done
by adding an extra neuron, with value one, to every layer. The function fl, described above, becomes
fl : Rnl → Rnl+1 s.t. f(x) = [1, σ(x1), .., σ(xn)], in this case. It can be shown that, when the activation
functions σ agrees to a small number of properties, any continuous function can be approximated up to
any predetermined precision by a neural network, given that the network has enough hidden units[21].

Now that we have an iterative definition of the function learned by a neural network we can focus
on how to use it for a regression or classification task. In the linear models described in section 2
we optimized parameters through minimization of a loss function. The same will be done for neural
networks. Let θ be the vector containing the parameters of our neural network, and f(θ, ·) : Rn → Rk be
the corresponding map defined by the neural network. As in section 2 write xi, yi, with i = 1, ..., N , for
the predictors and corresponding predictands in the training dataset D. Furthermore let J : Y×Y → R
be the loss function. And define a cost function C as the sum of the loss over the whole trainingset,
i.e.

C(θ) =

N∑
i=1

J(f(θ,xi), yi). (17)
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The goal then is to find a parameter θ̂, such that:

θ̂ = arg min
θ

C(θ).

To determine the optimal parameters θ̂ for the model f(θ,x) we need to find θ s.t.

∇θ(
N∑
i=1

J(f(θ,xi), yi)) = 0.

To do so we need to determine this gradient first. This is done through the back-propagation algorithm
that will be described here. The derivative of J(f(θ,xi), yi) depends on a parameter W l

ij by,

dJ(f(θ,xi), yi)

dW l
ij

=
dJ(f(θ,xi), yi)

df(θ,xi)

df(θ,xi)

dW l
ij

. (18)

We described earlier how a feed-forward neural network can be seen as the composition of a number
of functions:

y = f(θ,x) = fk ◦W k−1fk−1 ◦ ... ◦W 0x, (19)

where fl : Rnm → Rnl+1 is a non linear function and W l : Rnl+1 → Rnl+1 the weight matrix describing
the connections in layer l. Furthermore, let Dfl be the total derivative of fl and let i, j define the i-th
and j-th unit vector. Finally define al = W lhl. The inputs of the hidden layers hi defined earlier are
then given by

hl = fl(a
l−1). (20)

We can then write the derivative of the values in layer hl with respect to the parameters W l
ij as

dhl

dW l
ij

= Dfl(a
l−1)W l−1dh

l−1

dWm
ij

+ δm(l−1)Dfl(a
l−1)i⊗ jhl−1, (21)

where δk(l−1) is the Kronecker delta. Now define the matrix δk+1 = dJ(f(θ,xi),yi)
df(θ,x) and for l = k, ..., 1

define δl = δl+1Dfl(a
l−1)W l−1. We can use this to write the derivative of J(f(xi, δ), yi), with respect

to any of the parameters W l
ij , as

dJ(f(θ,xi), yi)

dW l
ij

= δl+2Dfl+1(a
l)i⊗ jhl.

Now this allows us to efficiently determine the gradient by starting with the top layer and moving
back. This algorithm is called the back propagation algorithm.
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Algorithm 1: Backpropagation Algorithm

input : xi,yi
begin

Initialize: ;
h0 = xi ;
for l in 0,..,k-1 do

al = W lhl;

h(l + 1) = fl(a
l−1);

end

δk+1 = dJ(f(θ,xi),yi)
df(θ,xi)

;

for l in k,..,1 do
δl = δl+1Dfl(a

l−1)W l−1;
for i,j do

gl−1ij = δl+2Dfl+1(a
l)i⊗ jhl ;

end

end
Return g (Here g = ∇θJ(f(θ,xi), yi))

end

The algorithm described above determines ∇θJ(f(θ,xi), yi). Summing over the full trainingset than
gives use∇θC(θ). Once we have determined the gradient of the cost function we can update the weights
W l
ij such that the loss over the trainingset is reduced. The algorithm that is commonly used for this

is called adaptive moment estimation (ADAM)[23], which is describe in Algorithm 2. The gradient
of the cost function is generally not determined over the whole training dataset before updating the
parameters. Instead the training dataset is divided into subsets called batches. The gradient of the
cost function is then determined based on a different batch every step.
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Algorithm 2: ADAM[23]

begin
Set hyperparameters: ;
α : Stepsize ;
β1, β1 ∈ [0, 1): Exponential decay rates for the moment estimates;
C(θ) cost function;
Initialize: ;
θ0 initial parameter vector;
m0 = 0 initial 1ste moment vector ;
v0 = 0 initial 2nd moment vector;
t = 0 initial stimestep;
while θt not converged do

t = t+1;
gt = ∇θCt(θt−1);
mt = β1mt−1 + (1− β1)gt (Update biased first moment estimate);
vt = β2vt−1 + (1− β2)g2 (Update biased second raw moment);
m̂t = mt/(1− βt1)(Compute bias corrected second raw moment estimate);
v̂t = vt/(1− βt2) (compute bias corrected raw moment estimate);
θt = θt−1 − αm̂t/(

√
v̂t + ε)

end
Return θt;

end

3.2 Convolutional Neural networks

When we want to analyze images using machine learning techniques we run into problems with di-
mensionality. An input image of 100 by 100 pixels contains ten thousand input parameters. Many
methods used in machine learning do not perform well for such high dimensional data. Dimensionality
reduction techniques can be used to overcome this problem. Such techniques downgrade the image,
to some low-dimensional representation, which still captures some of the structure. Examples of such
methods are Tsne[29] and Umap[30]. We can also try to learn such a dimensionality reduction based
on the training data using neural networks.

However, for a naive implementation of Neural Networks a lot of parameters are needed. For an input
image of 100 by 100 pixels, a model with a hidden layer of 100 neurons will already need more than a
million learnable parameters. To bring this number down we can use some a priori information on the
structure of the problem.

Pixels in images have a clear spatial structure, it therefore makes sense to think about the input x
not as a vector but as a matrix, (or tensor for multichannel inputs). We furthermore want part of this
structure to be conserved when it is passed through the network. On top of that, it can be assumed,
that pixels close to each other generally have a stronger relationship and might be more relevant to
combine, than pixels that are far apart. Henceforth it makes sense to only connect neurons to their
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Figure 3: Example of a simple locally connected neural network.

nearest neighbours. This reduces the amount of necessary trainable parameters. More precisely let
Wi,j,k,l be the weight corresponding to the connection between xi,j and hk,l, then

Wi,j,k,lWi+d1,j+d2,k+d3,l+d4 = 0 if di > d, for any i = 1, .., 4,

where d is the maximum distance of neighbouring interactions. Figure 3 shows an example of a simple
locally connected network.

When we would not do this, the actual location of pixels in an image would not matter for the network.
i.e. we could pick a random permutation of the input image and apply this to all the data. If a fully
connected network would be able to learn to classify a certain set of images, it would also be able to
do this for the permuted set of images. A model capable of such a task, can heuristically be seen as
too powerful for our goal.

The second method to decrease the number of parameters is parameter sharing. In many image
classification tasks we want to be able to determine whether certain object are present in the image,
independent of where the object is located. i.e. we want the model to be invariant with respect to
translations of the input. This can be achieved by using the same transformation everywhere on an
input image, i.e. Wi,j,k,l = Wi+n,j+n,k+n,l+n for all i, j, k, l, n.

Convolutional neural networks are currently the most popular paradigm in image recognition task.
Convolutional neural networks use the two techniques described above in what is called a convolutional
layer. A convolutional layer applies the same operation to every part of an input image. This operation
is called a convolution. The parameters of the convolutional layer are given by Ki,l,m,n, which is called a
kernel. let V be an input image for a convolutional layer and let Vi,j,k be the element of V corresponding
to channel i, row j and column k and let Z be the output of the convolutional layer with the same
format. The output of the convolutional layer is then given by

Zi,j,k =
∑
l,m,n

Vl,j+m−1,k+n−1Ki,l,m,n. (22)
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Figure 4: Simple example of a convolutional layer, followed by a Relu activation function and a max
pooling layer. Here the kernel is given by K1,1,0,0 = 1,K1,1,1,0 = −1,K1,1,0,−1 = −1 and Ki,j,m,n = 0
otherwise.

Where l is summed over the number of channels in the output image, which is called the size of the
convolutional layer, and m and n are typically summed over {−1, 0, 1}. Figure 4 shows a simple
example of a convolutional layer with only a single input and output channel.

Convolutional layers are often followed by a max pooling layer. A max pooling layer takes the maximum
value of every 2 by 2 block in the image. The combination of max pooling and convolutional layers
reduces the size of an image, while trying to maintain as much relevant structure as possible.

3.3 Practical Considerations

Many of the architecture decisions that are made for neural networks are not statistical in nature, but
are rather meant to both make sure that the gradient descent converges to a good minimum and make
sure it converges fast enough.

There are multiple reasons why gradient descent might not converge to a good minimum; the main
two being the gradient either vanishing or exploding. A vanishing gradient happens mainly when the
activation functions have a zero derivative. A tanh, for example, has a zero derivative for values that
are far from the origin. If, for some reason, the values of neurons are very large at the start of training,
then the gradient will almost immediately go to zero, even though we are very far removed from an
actual minimum. In such cases the gradient vanishes at a plateau and not at a local minimum.

To mitigate these problems, the initial estimates made by our model, should be such, that the gradient
is not equal to zero from the start. Most popular activation functions have an approximately linear
part. The hyperbolic tangent, for example, is approximately linear around the origin and the rectified
linear unit (Relu) is linear for positive values. If, for every neuron in the neural network, the input
value for the activation function falls in this range, then the model starts out as an approximately
linear function.
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To make sure the activations of the neurons fall in this linear range, the input data is standardized,
i.e. we scale and translate all the input values xi to be centered around zero, with standard deviation
one. Furthermore the weights W have to be initialized. When we initialize the weights we want some
asymmetry in the model. When all the weights of a model are equal, the gradient will be equal for all
the weights as well, meaning that all the weights are updated in the same way and thus stay equal for
all training steps. To avoid this the weights are generally initialized randomly.

The weights are often picked from either a uniform or a normal distribution with zero mean. If we
want the model to be initialized such that most activations fall into the linear range we need to base
the standard deviation of the randomly chosen weights on the number of neurons in every layer.

Let al = W lhl and hl = f(al−1). Where W l represents the parameters in layer l, hl, the input of
the layer and f(a) = [σ(a1), .., σ(an(l+1)

)] the activation functions, with nl the number of neurons in

layer l. Furthermore assume that the weights are realizations of a random variable wl s.t. E[wl] = 0.
Moreover write E[al], V ar[al] for the expectation and variance of values in al; and E[hl], V ar[hl] for the
expectation and variance of values in hl, which we assume to be identically distributed at the start of
training. Then

V ar[al] = nlV ar[wl]E[h2l ]. (23)

Now assuming our activations hl fall in the linear range of the activation function σ, we find

V ar[al] ≈ nlV ar[wl]E[a2l−1]. (24)

Now if σ is linear around zero, such as for example the tanh, and E[al−1] = 0, then we get

V ar[al] = nlV ar[wl]V ar[al−1].

Therefore we need V ar[wl] = 1
nl

to be sure that the variance of the activations in different layers stays
roughly the same. If we would choose V ar[wl] to be a constant c, independent from nl, we would get
V ar[al] = V ar[a0]

∏l
i=1 cni. Which could, depending on c, increase or decrease exponentially.

The rule described above takes into account the forward pass through the network to make sure every
activation is approximately in the linear range. However this does not take into account the backward
pass through the model, which is used to compute the gradient. It is important to have all the gradients
in approximately the same range at the start as well, otherwise weights will only be updated for the
lower layers. Following [13] we get the following estimates for the variance in the gradients. Assume
as before that we have f(al) = al. Furthermore denote by V ar[δal] and V ar[δhl] the variance of dJ

ali

and dJ
hli

, the derivatives of the loss function with respect to the individual neurons in layer l. We then

get the following estimate for the variance of the gradient, in every layer;

V ar[δhl] = nlV ar[wl]V ar[δal]

= nlV ar[wl]V ar[δhl+1].

Which means that the variance of the gradients vanishes or explodes if we do not have V ar[wl] = 1
nl+1

.

If the variance of the weights are not initialised according to this rule, we will get either very large or
very small gradients in the lower layers. This can lead to either divergence or to very small updates,
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which slows down the learning process. Glorot initialization, which is commonly used and is also the
default for, for example, Keras[9], makes a compromise between these two effects and initializes the
model by drawing weights from a distribution with a variance given by

V ar[wl] =
2

nl + nl+1
. (25)

Glorot initialization is based on two assumptions. First E[hl] = 0 and secondly σ′(al) = 1. These
assumptions are violated when we use the rectified linear unit as an activation function, as described
in [20]. For a rectified linear unit we have σ′(hi) = 0 for negative hi. Similarly we do not have the
relation E[a2l−1] = V ar[a2l−1], instead we have:

E[a2l−1] =
1

2
V ar[al−1]. (26)

Meaning that when Relu activation functions are used it is better to initialize your weights according
to a distribution with a variance given by:

V ar[wl] =
1

nl + nl+1
(27)

In practice however, the factor two does not matter much for shallow networks.

3.3.1 Batch Normalization

Batch normalization[22] is known to be an effective way of making the learning algorithm converge
faster. A batch normalization layer fixes the bias and standard deviation at the point in the network
where it is located.

When we train a neural network we generally update the parameters based on a different subset of
the trainingdata every step. Such a subset is called a batch. Denote a batch by B ⊂ D. Furthermore
let a(x) be the input of the batch normalization layer, given an input x for the neural network. The
batch normalization layer then first determines the mean µB =

∑
xi∈B a(xi) and sample variance

σB =
∑

xi∈B(a(xi)− µB)2. The output of the layer is then given by

â(xi) = γ(
a(xi)− µB√

σ2B + ε
) + β, (28)

where γ and β are learnable parameters. For γ =
√
σ2B + ε and β = µB the batch normalization layer

is equal to the identity function. This means that a model can in theory learn to to ignore this layer,
therefore the set of function a model can learn is not reduced by inserting such a layer.

Why batch normalization works as well as it does is a matter of debate. In [16] for example it is argued
that the benefit of batch normalization lies in the fact that it decouples the first and second moment
of different layers. Without batch normalization a small change in the parameters of, for example, the
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first layer can result in large changes in the statistics of the activations in layers further down. Batch
normalization forces the first and second moment to stay the same wherever the layer is put. This
means that changes to the weights in lower layers do not affect the first and second moment of higher
layers, stabilizing the training.

Similarly in [7] it is argued that the main benefit of Batch normalization lies in the ability to use a
higher learning rate without destabilizing the network, which helps both in convergence rate and is
argued to help the network converge to less sharp, better generalizable minima.

3.3.2 Dropout

There are a number of ways to prevent neural networks from overfitting, such as L1/L2 regularization,
which penalizes the size of the weights. A simple and popular method which has proven to be effective
is Dropout[40]. In dropout every training step a random number of connections is temporarily dropped,
i.e. every weight W l

ij is set equal to zero with a probability p. In this way every training step a slightly
different sub-network is trained. The idea behind this is that for a network trained in this manner,
inference is done not based on a single model but on an ensemble of models. Although it is not quite a
bagging method, since the sub-models are not independent, it has the benefit that it is computationally
more efficient than bagging since we do not need to train a large number of models.

Another benefit of dropout is that it makes sure that every neuron is in principle disposable. It
therefore reduces the influence of any individual neuron, which has a weight reduction effect as well.
For example, two input neurons with very strong correlation could be given large weights with opposite
signs to create an dependence on the small noise between the two variables. When we use dropout this
behaviour is discouraged since dropping any of the two weights means they can’t cancel each other
anymore.

At prediction time we need to average over all the submodels. A common heuristic used for this is to
multiply the outputs by p. A strict theoretical foundation is lacking for this heuristic, but it is proven
to be effective in practice.

3.3.3 Early Stopping

When training a neural network we generally have a validation dataset, which is independent from
the training dataset, to tune hyperparameters. An important hyperparameter in deep learning is the
number of Epochs. i.e. how many times the data is shown to the model and how long the gradient
descent is continued. Early stopping is a method to effectively tune this hyperparemeter by just
stopping the training process at the point where the validation score does no longer increase.
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4 Conditional Density Estimation

4.1 Kernel Density Estimation

In conditional density estimation we try to model P (Y |X) = P (X,Y )
P (X) . We can do this in a non-

parametric fashion using kernel density estimation to estimate both P (X,Y ) and P (X). Here we do
not assume any specific relation between the random variables X and Y . We furthermore do not
assume any shape for the probability density of X and Y . A popular way to do this is to look at the
space X ×Y, in which our data lives, and estimate the distribution directly from the density of points
(xi, yi) in our dataset. This is done by assuming that the probability that a point (x, y), drawn from
the same distribution as the training dataset, is proportional to the distance between this point and the
other points in the dataset. In general this is accomplished by picking a so called kernel function K(x)
and placing it on top of your data points. More precisely; let K(x) be mapping from Rn → R+ such
that

∫
K(x) = 1 and let xi ∈ Rn for i = 1, .., N be the data points. Then we estimate the probability

density function of X to be given by:

p̂(x) =
1

wN

N∑
i=1

1

N
K(

xi − x

w
), (29)

where w is a predetermined bandwidth parameter. A typical shape for such a kernel K would for

example be a Gaussian K(xi − x) = 1√
2π
e

(xi−x)2

2 . The bandwidth w can be thought of as a smoothing

parameter. A small bandwidth will give a spikier multimodal result, whereas a large bandwidth will
give an over-dispersed result.

We can use this method to obtain a conditional probability estimate by estimating both the whole
distribution P (X,Y ) and the distribution P (X), using equation 29. A big drawback of this method is
that we need a lot of data when x is higher dimensional. The method is based on the distance between
points in our dataset and new measurements for x. When the dimensionality goes up, the expected
distance between two points drawn from a uniform distribution goes up O(

√
n). The resulting sparsity

means that it is hard to get a proper estimate for both P (X,Y ) and P (X) resulting in even bigger
errors in the estimate for P (X,Y )/P (X).

To resolve this problem it is generally better to assume some relationship between the variables which
helps us in modeling P (Y |X) more directly from x. In section 2 we already described two methods of
doing this through linear methods or random forests. We can also use neural networks for this task.
In this section we will describe three different methods of obtaining such an estimate using neural
networks.
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4.2 Conditional Density Estimation With Neural Networks

4.2.1 Quantized Softmax

[32] A rather simple method of obtaining an estimate for the conditional density P (Y |X) using neural
networks is the quantized softmax[32]. In quantized softmax we try to approximate the probability
distribution by a histogram. The neural network learns a mapping f : X → Sm−1 where m is the
number of bins. The normalization is achieved by applying a softmax activation function to the last
layer,

Softmax(x)i =
exi∑m
j=1 e

xj
. (30)

The m-dimensional output of the neural network can then be turned in a conditional probability density
function estimate p̂(y|x) by

p̂(y|x) =
n∑
i=1

1aiV ol(ai)f(x)i,

where ai are pre-determined bins, and V ol(ai) is the volume of ai. The set of probability distributions
that can be learned by such a mapping is controlled by how we choose the bins ai.

To optimize this we need to pick a loss function which is minimized when samples are drawn from the
true probability distribution. i.e. a proper scoring rule. In chapter 2 we described two of these rules
namely the log-likelihood and the continuously ranked probability score.

4.2.2 Kernel Density Mixture Networks

Another method that can be used for probability density estimation is the Kernel Density mixture
network, introduced by Ambrogioni [2]. The idea behind a kernel mixture network is based on the
kernel method described above. However instead of estimating the full probability distribution P (X,Y )
we only use kernels to estimate the probability density function in the label space Y. I.e. let DY be
the set of measurements in the training data-set. Then we can estimate the probability distribution,
using kernel density estimation, to be given by

p̂(y) =
∑
y′∈DY

ωy′K(y − y′), (31)

where in normal kernel density estimation, as described earlier, we would pick ωy′ = 1
|Y | . We can make

this a conditional estimate by making the parameters ω dependent on x. i.e.

p̂(y|x) =
∑
y′∈Y

ωy′(x)K(y − y′). (32)

The map f : Rn → S|Y |−1 s.t. f(x) = (ωy1 , ..., ωy|Y |) is the mapping we want the neural network to
learn. To do this the output size of the neural network need to be equal to |Y |. This is in general
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too large and unnecessary. To reduce the output size we could use a clustering method like K-means
to select the kernel centers. The bandwidth of the kernels can be chosen beforehand or can be made
dependent on x as well, which in [36] was found to perform better. In the the second case we need to
double the amount of outputs of the neural network. Where the first n outputs are normalized using
a softmax activation function and the other n outputs need to be positive to represent the bandwidth.
An option for the activation function for the bandwidths could be a softplus activation function,

Softplus(x) = log(1 + ex). (33)

This ensures that the bandwidths are positive and prevents them from becoming too small, which
could cause numerical instability.

When we use a boxcar kernel K(yi − y) = 1{z∈R‖|z|<1}(|yi − y|) this method becomes similar to the
quantized softmax. A benefit of the kernel mixture method is however that we do not need to decide
upon the range of the bins beforehand. Furthermore Gaussian Kernels could be beneficial for they give
a smoother result than the boxcar kernels used in quantized softmax.

The loss function used for this method in literature is the negative log-likelihood. We can however also
use the CRPS for this task. A closed form expression for the CRPS exist when the kernels are chosen
to be Guassian. Let the probability density function of P̂ be given by the sum of M different Gaussian
kernels, then the CRPS is given by

CRPS(P̂ , y) =

M∑
i=1

ωiA(y − µi, σ2i )−
1

2

M∑
i=1

M∑
j=1

ωiωjA(µi − µj , σ2i + σ2j ), (34)

where A(µ, σ2) = µ(2Ψ(µσ )− 1) + 2σφ(µσ )[17]. We could also make the centers µi dependent on x. In
this case we get a mixture density network [6].

4.3 Parametric Methods

The methods described above are non-parametric or semi-parametric. We could also use neural net-
works in combination with parametric methods. A description of conditional density estimation using
linear methods was given in section 2. We could expand this by modelling the dependence between
parameters θ and x with a neural network. Similar to before this might perform better than non-
parametric methods, due to the fact that it is less flexible and therefore not as dependent on the
amount of data we have. In the experiments performed in this thesis we used a truncated normal
to model the probability distribution. In this case a neural network only needs to have two different
parameters as outputs. µ and σ. The corresponding conditional probability density function estimate
is then given by:

p̂(y|x) =

1
σ(x)φ(µ(x)−yσ(x) )

1− Φ(−µ(x)
σ )

, (35)

where φ and Φ are the probability density function and cumulative density function, of a standard
normal distribution, respectively. Similar to before we can use the log-likelihood and CRPS. For a
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normal distribution truncated at zero the expression for the CRPS is as follows[42],

CRPS(N0(µ.θ), y) =
σ

p2
{sp[2Φ(s) + p− 2] + 2pφ(s)− 1√

π
Φ(
µ
√

2

σ
)}, (36)

where p = Φ(µσ ) and s = y−u
σ . Similar to what is described for the Kernel Density networks one wants

the standard deviation to be positive and non-zero. A softmax activation function is therefore a good
choice here as well. Furthermore one needs to be careful with the initialization of the model. An initial
estimate for the standard deviation can, especially when using negative log-likelihood as loss function,
lead to exploding gradients and as a result a diverging model. If the CRPS is used as a loss function,
the initialization is less of an issue. This is due to the fact that for a point forecast the CRPS is equal
to the mean absolute error, for which the derivative is constant.

To examine the difference between CRPS and log-likelihood, when the estimated probability density
function and corresponding measurement are far apart, i.e. s >> 0, we can determine the derivative
of both these loss functions. The CRPS and the log-likelihood of a normal distribution with respect
to a measurement y are given by,

CRPS(N (µ, σ), y) = σ[
1√
π
− 2φ(s)− s(2Φ(s)− 1)]

L(N (µ, σ), s) =
1

σ
φ(s).

The derivative of the CRPS with respect to σ is then given by

dCRPS(N (µ, σ), y)

dσ
=

1

σ
CRPS(N (µ, σ), y) + σ

dCRPS(N (µ, σ), y)

ds

ds

dσ

=
1

σ
CRPS(N (µ, σ), y) + σ[4sφ(s)− 2Φ(s) + 1− 2sφ(s)]

−s
σ
.

We have lims→±∞ φ(s) = 0 and lims→±∞(2Φ(s)− 1) = s
|s| . This means that

lim
s→±∞

dCRPS(N (µ, σ), y)

dσ
= lim

s→±∞
|s|(σ + 1). (37)

Similarly we have

dCRPS(N (µ, σ), y)

dµ
= σ

dCRPS(N (µ, σ), y)

ds

ds

dσ

= σ[4sφ(s)− 2Φ(s) + 1− 2sφ(s)]
−1

σ
.

Thus for large values of |s| we get

lim
s→±∞

dCRPS(N (µ, σ), y)

dµ
= ±1. (38)
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Meaning that the derivatives of the CRPS are either linear in s or constant when |s| is large. If we
would do the same for the log-likelihood we obtain

dL(N (µ, σ), y)

dµ
=
y − µ
σ2

(39)

dL(N (µ, σ), y)

dσ
= − 1

σ
+

(y − µ)2

σ3
. (40)

This implies that the gradient of the log-likelihood grows much faster if σ << |(µ−y)|, with the result
that bad initial estimates of µ and σ lead to a diverging model. Furthermore this also implies that the
CRPS is less sensitive to outliers. The CRPS has to my knowledge not been used for Kernel Mixture
networks or quantized softmax. It has however been applied with success to density mixture networks
in [10] and [37].
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5 Experiments

The main aim of this study is to determine whether convolutional neural networks can provide added
value for statistical post-processing. We will focus on the post-processing of wind speed forecasts in the
months October to March, in the Netherlands. We will compare QRF, which is shown by Taillardat et
al [41] to outperform EMOS methods based on parametric density estimation as described in section
2, to both neural networks and convolutional neural networks. Furthermore three different methods
for obtaining probability densities using convolutional neural networks, as described in section 4, are
compared.

Figure 5: Wind speeds as predicted by HA40 for a lead time of 48H, compared to corresponding
measurements. Measurements from all weather stations are pooled in a single set.

5.1 Data

The input data X is provided by Harmonie-Arome cycle 40 (HA40) used by KNMI. We will focus
on forecasts at 0000UTC at a lead time of 48 hours. The predictand data Y , are the 10-minute-
average wind speed observations at 10 meters above the ground, from 44 different weather stations
in the Netherlands, which are shown in Figure 6. These measurements are provided as rounded to
the nearest m/s. Figure 5 shows a scatterplot between wind speed as predicted by HA40 and the
corresponding measurements in our data set. The observations from all the stations are pooled in the
training dataset, meaning that the model is trained for all stations at once, without providing station
specific information other than the surface roughness.

Reforecast data for HA40 is available from 2015 until 2017. Furthermore forecasts from 2019 are
available. This data will be split into two sets, as shown in Table 6. The first set is used for model
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Figure 6: Example of a wind speed forecasts provided by HA40. The red dots give the locations of the
Dutch weather stations used in this study.
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selection and training (2015-2017). The second set will be an independent data set used for testing the
selected models (2018-2019). We furthermore split the set used for model selection into three different
independent sets, which is used for cross-validation.

Model Selection
Fold 1 October - December 2015 and January - March 2016
Fold 2 October - December 2016 and January - March 2017
Fold 3 October - December 2017 and January - March 2015

Test set
November - December 2018, January-March 2019

and October - November 2019

Table 1: Definition of the different subsets used in cross-validation and testing.

In cross-validation we trained every model three times on the model selection set with a different fold
left out. This data was then used to make predictions on to test the model. The sets are chosen in this
way to ensure that there is at least six months between the training, test and validation sets. This is
necessary to avoid temporal correlations between the different data sets.

5.2 Predictors and Predictor Selection

In this research we use two sets of predictors. The first set contains the HA40 forecasts of a number
of variables in the neighbourhood of the station, which provides the corresponding observation. The
second set contains the wind speed forecast from HA40 for a large area around this station, see Figure
6 for an example. The first set is used in all the methods described. The second set is only used for
convolutional neural networks alongside the other set.

The set with local predictors we use in this study is based on previous research on post-processing of
wind speed forecasts by [11] and [41]. Based on their results we decided to take the variables shown in
BOX 1 into account for the predictor data.

These variables were taken from HA40, which forecasts each such variable up to a resolution of 2.5
by 2.5 kilometer. The 2.5 by 2.5 kilometer grid point closest to the station is used for the surface
roughness. For the other variables we picked a number of gridboxes around the station and determined
the mean value, maximal value and minimal value of each predictor in this region. The number of
gridboxes used, and whether to take the mean, maximum, minimum or a combination of them is
decided through a hyperparameter search. The predictors that gave the best results for our methods
are given in BOX 2

Some of the models were trained on the errors of linear regression instead of on the measurements
directly. In the section below I will further explain why this was done. The linear regression is fitted
on the mean values for the variables 2,3 and 4 as defined in Box 1 on an area of 12.5 by 12.5 km around
the station. These variables are selected through a greedy algorithm which adds predictors stepwise
based on which predictors reduce the mean squared error the most. The score does not improve
significantly after these predictors have been selected and therefore we left other variables out. These
variables are however, used in the non-linear methods, as they improve the results there.
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1. Wind direction at a height of 10 m;

2. Wind speed at a height of 10 m;

3. Surface roughness;

4. Meridional/zonal wind components at 925 hPa;

5. Mean sea level pressure;

6. Total Kinetic Energy;

7. Humidity at surface level;

8. Geopotential height 500 hPa;

9. Temperature at surface level;

10. Meridional and zonal windcomponents at 850 hPa;

11. day of the year;

Box 1: Predictors considered in our hyperparameter search. The wind directions are obtained by
dividing the Meridional and Zonal (North-South, East-West) components of the wind speed by the
total wind speed.

1. Wind direction at a height of 10 m;

2. Wind speed at a height of 10 m;

3. Surface roughness;

4. Meridional/zonal wind components at 925 hPa;

5. Mean sea level pressure;

Box 2: Predictors that gave the best performance in cross-validation
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5.3 Methods

The methods we compared are Quantile Regression Forests, Fully Connected Neural Networks and
Convolutional Neural Networks. We furthermore try different methods of obtaining a conditional
density estimate for the convolutional neural networks.

5.3.1 Quantile Regression Forests

We used the package Sci-kit garden to model quantile regression forests.[33] Within this package there
is no option to obtain a full cumulative density function however, therefore an alternative predict
function was used which determined the full cumulative density function as described in section 2. For
quantile regression forests the most important architectural choices that need to be made are based on
the minimum leaf size of the trees, and the amount of randomization.

We can control the randomization in the Random Forest by picking a random subset of predictors to
consider for splitting at every step. In practice the best results were obtained by using the full set of
predictors however. Hence the decorrelation between the trees occurs only through bootstrapping on
the trainingset.

Other hyperparameters that I looked at are the impurity function and the number of trees. For the
latter we used 100 trees in the first hyperparameter search and 500 for the final model. For the impurity
function I compared the mean squared error to the mean absolute error, and found the former to give
the best results.

We furthermore used quantile regression forest both on the observed wind speed data and on the
residuals of linear regression. The second approach could be beneficial for two reasons. The first
reason is that quantile regression forests cant extrapolate outside of the range of the training data.
Linear regression however, can extrapolate from the data to work outside the range of our training
data as well. By combining the two we can potentially have a model that is better for higher wind
speeds.

The second reason is that regression forests split the data into boxes based on which split minimizes the
total impurity the most. If one of the predictors has a much stronger correlation with the predictand
than the other ones, then the first number of splits will be based on this predictor. The other predictors
will not be taken into account when this decision is made. This could result in the first number of
splits learning the dependency between the forecasted wind and measured wind, which is approximately
linear. Only when no improvements can be made anymore by splitting based on wind speed predictions
the other variables are taken into account. At this point, however, the leaf sizes have become rather
small, which means there is less information to learn the residuals, especially for higher wind speeds
where the amount of data is already limited. The hypothesis is that by performing linear regression
first and using QRF to model the residuals, the model could perform better for higher wind speeds
and could potentially be better capable of estimating the uncertainty by having more data to model
the residuals.
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The best models as determined by the hyperparameter search have the following characteristics. The
predictor data contained the maximum, minimum and mean value of the predictors described in box
2. We have used the mean squared error as the impurity. For the random forest trained on the wind
speed measurements, hereafter referred to as QRF, we used a minimum leaf size of 30. For the random
forest trained on the residuals of linear regression hereafter refered to as QRF LR, we have used a
minimum leaf size of 42.

5.3.2 Neural Networks

The neural networks used in this research were programmed using Keras [9], with Tensorflow as backend
[1]. For the fully connected neural networks a quantised softmax output layer was used to estimate the
probability distributions. Similar to QRF this was done for both the observations and the residuals of
linear regression. In this case first using linear regression was hypothesized to give better results due
to the fact that lower wind speeds are way more prevalent in the training data set. Output neurons
which are related to high wind speeds therefore need to be activated in only a very small sample of
the data. Oversampling the data, such that training samples corresponding to high wind speed days
were shown to the network more often during the training phase, was tried, but this appeared to have
a negative impact on the results. This is probably due to the fact that this led to a large number of
copies for outliers in the trainingsset which do not generalise well. Less naive oversampling methods
with data augmentations might be more useful, but were not tried.

For the neural networks we have explored networks with n layers of size m followed by a Relu activation
function and a dropout layer, i.e. every neural network is a stack of n of the following blocks:

Fully connected layer

Relu

Dropout

After the n-th block we put the output layer, which has size 30 for the neural networks trained on the
wind speed measurements, where every node represents a different wind speed ranging from 0 to 29
m/s. For the neural network which learns the residuals of linear regression, we use 300 output neurons.
Here every neuron represents a different value for the residual ranging between −15 and 15 m/s. In
both cases ADAM was used as the optimizer using default options for the parameters other than the
learning rate.

The hyperparameter search was performed on the number of layers n and layer size m, the dropout rate,
L1 regularization strength, learning rate, learning rate decay parameter, optimizer and loss function.
We furthermore checked the same potential predictor variables as with QRF.

The neural network appeared to give the best results, when trained on the wind speed measurements
themselves, hereafter referred to as NN, uses the maximum and mean value of the input variables 1,2
and 3 from Box 2. The neural network trained on the residuals, hereafter referred to as NN LR, gave
the best results when trained on the means of the predictor variables from Box 2 and the maximum
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and minimum value of the wind speed. In NN LR we added an extra hyperparameter which models
the variance of Gaussian noise we added to the training labels. This is done to smoothen the results.
L1 regularization appeared to not improve the results and was left out completely for both methods.
The other hyperparameters are described in Table 2.

Hyperparameter NN NN LR

Number of layers 2 3
Layer size 106 106

Learning rate 3.47 ∗ 10−3 1.57 ∗ 10−3

Dropout rate 0.030 0.188
Loss function log-likelihood log-likelihood

Decay parameter 5.0 ∗ 106 8.4 ∗ 104

σ2 noise 0 0.315

Table 2: Hyperparameters for the selected models.

5.3.3 Convolutional Neural Networks

The convolutional networks are all trained on the residuals of linear regression. Convolutional neural
networks trained on the observation were found to be not skilful in preliminary testing. This was
partly due to the fact that networks, trained on the observations directly, took longer to converge
and converged to bad values much more often than models trained on the residuals. Which resulted
in a much slower hyperparameter search. This could be explained by the fact that the residuals are
distributed around zero, which makes it easier to initialize the model. Furthermore the reasons coined
for neural networks apply here as well.

An extra argument, which is more specific for convolutional neural networks, for applying linear re-
gression first is that we can use local information to do this. A convolutional neural network is based
on the translation invariance of the patterns it needs to learn. The wind speed we expect at a certain
weather station is however very dependent on the wind speed forecast at the location of the station.
The translation invariance of the convolutional layers is therefore not suited for predictions at a specific
weather station. Features in the forecast that correlate to the bias and the uncertainty are however
probably less local and therefore better suited to be analyzed using convolutional neural networks.

For convolutional neural networks three different methods of obtaining a conditional probability es-
timate are compared, see Chapter 4. Furthermore, a number of different architectures and hyper-
parameters are tuned. The convolutional neural networks are all fed two different inputs. The first
input is the full spatial forecast of the wind speed for a certain region around the weather station,
which provides the corresponding observation. This is the input which is fed into the convolutional
part of the network. The second input contains the other variables averaged over the nearest grid
boxes around the station similar to what is described for QRF and fully connected neural networks.

The convolutional part of the network consists of nconv layers with mconv filters. Each of these convo-
lution layers is built as shown in table 3, where we use a step size of 2 by 2 for the Max Pooling layer
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and a filter size of 3 by 3 for the convolutional layer. For the fully connected part of the network we
stacked layers as shown in table 4 The final architecture then looks as shown in table 6.

Dense

Activation

BatchNormalization

Dropout

Table 3: Dense layer

Conv2D

Relu

BatchNormalization

MaxPooling2D

Table 4: Convolution layer

InputConvolution
Convolution

...
Convolution Input

Dense Dense

Dense
...

Dense

Table 5: Convolutional neural network
architecture

The size of the output layer of the convolutional neural networks depends on which conditional density
estimation method is used. For quantized softmax, from here on referred to as CNN LR the output
layer has size 300 as is also used for NN LR. For the truncated normal, from here on referred to as
CNN LR N0, we only need two output neurons and for the kernel mixture network, from here on
revered to as CNN LR KMN, we need two parameters for every kernel we use.

The hyperparameters looked at in the hyperparameter search and the selected values for each of these
hyperparameters are shown in Table 6. In all these methods we used ADAM as optimizer using the
default parameters except for the learning rate. No real difference in performance was observed for the
CRPS and log-likelihood as loss functions, neither in training time nor in the final result. However for
CNN LR N0 the CRPS proved to be more stable and therefore a better choice.

Hyper parameter N0 KMN QSM

Input grid 100 60 60
Variables 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5
Layer size 60 80 80

Number of convolutional layers 3 3 3
Size of convolutional layers 16 16 16

Learning rate 0.0013, 0.00053, 0.0007283,
Loss function CRPS CRPS log-likelihood
Dropout rate 0.1028, 0.072, 0.0888,

Decay parameter 2.633e-06, 4.098e-5, 4.10e-07
Doise 0.315 0.26218 0.322

Number kernels n/a 60 n/a

Table 6: Hyperparameters CNN

39



Method CV1 CV2 CV3

NN 0.824 0.898 0.914
NN LR 0.828 0.865 0.889
QRF 0.814 0.861 0.888
QRF LR 0.819 0.871 0.900
CNN LR KMN 0.794 0.830 0.861
CNN LR N0 0.772 0.806 0.848
CNN LR 0.769 0.810 0.839

Table 7: Continuous ranked probability score of different methods in cross-validation. Here CV1 used
Fold 1 and Fold 2 as training set and Fold 3 as test set; CV2 used Fold 2 and Fold 3 as training set
and Fold 1 as test set; and CV3 used Fold 1 and Fold 3 as training set and Fold 2 as test set.

5.4 Results

The CRPS results on the cross-validation for the best models are shown in table 7. These results
show that convolutional neural networks outperform QRF on all three test sets in cross-validation.
Hyperparameters are selected based on these results however, therefore as mentioned before, we need
an independent test set the verify these results.

For the results on the independent set we made three different forecasts for every model. Each of these
forecasts is based on the model trained on a different training set as used in the cross-validation. This
is done to get an estimate of the variation in the results when different training data is used. In table 8
the results are shown for the root mean squared error, the mean absolute error and the CRPS. These
results show that adding spatial information through convolutions adds skill to both the deterministic
forecast(i.e. mean of the probabilistic forecast) and the probabilistic forecast. Furthermore we can
see that applying linear regression first improves the deterministic forecast of both QRF and neural
networks. It does however not improve the CRPS of QRF. In Figure 7 the Brier skill score relative
to QRF is shown for the three different training sets. From this it is clear that convolutional neural
networks are more skillful at higher wind speeds. For wind speeds above 18 m/s their performance
becomes worse again, however in this range there is not enough data for any conclusions. Figure 7
also shows that learning the residuals of linear regression mainly helps for higher wind speeds, while
for low wind speeds the results become worse for both neural networks and random forests. Figure 9
shows scatterplots between the expected value of the forecasts and the observations. Here we can see
clearly that forecasts of the convolutional neural networks lie closer to the diagonal.

For QRF and CNN a final test was done with models trained on the whole training data set. For the
convolutional neural networks the number of epochs was chosen to be 2/3rd of the average number of
epochs that gave the best results in cross-validation, i.e. 6,12 and 16 for CNN LR N0, CNN LR KMN
and CNN LR, respectively. The results obtained for the convolutional network in this case are slightly
worse than for the convolutional neural networks trained on only a part of the training data. This
is probably due to the fact that for the other networks we could use an independent data set, to
terminate training at the right moment, increasing the generalisability of the network. The results are
shown in table 9. Here we see that convolutional neural networks still outperform QRF, albeit slightly
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rmse mae CRPS
CV1 CV2 CV3 CV1 CV2 CV3 CV1 CV2 CV3

NN 2.457 2.331 2.391 1.176 1.142 1.158 0.820 0.799 0.809
NN LR: 2.204 2.126 2.176 1.109 1.090 1.099 0.793 0.779 0.786

QRF 2.244 2.220 2.245 1.116, 1.113 1.115 0.782 0.776 0.779
QRF LR: 2.157 2.151 2.154 1.094 1.096 1.091 0.780 0.781 0.780

CNN LR KMN: 1.968 1.886 1.922 1.045 1.032 1.039 0.752 0.744 0.748
CNN LR N0: 1.818 1.861 2.117 1.008 1.021 1.076 0.722 0.732 0.770

CNN LR: 1.851 1.814 1.889 1.011 1.003 1.026 0.724 0.718 0.733

Table 8: Results on the independent test set. Here CV1,CV2 and CV3 describe the training data used
for the model, similar to Table 7. The standard deviation in the CRPS was estimated by bootstrapping
a 1000 times and was found to be around 0.007 in all cases.

CV1 CV2

CV3 Cumulative rank histogram

Figure 7: Brier skill scores relative to the Brier score of QRF, for predictions trained on three different
training sets. Note that in all three cases the CNN’s perform better for higher wind speeds. The
results seem pretty stable over the three different tries. CNN LR N0 does, however, have much higher
variance than the other methods. The bottom right image gives the cumulative rank histogram for the
predictions of the three forecasts, per method, combined.
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Method rmse mae CRPS

Climatology 2.974 2.314 1.598
Linear Regression 2.399 1.170 -
QRF 2.217 1.110 0.776
QRF LR 2.124 1.086 0.774
CNN LR N0 1.891 1.030 0.735
CNN LR KMN 1.905 1.023 0.740
CNN LR 1.889 1.027 0.731

Table 9: The root mean squared error, mean absolute error and continuous ranked probability score
of different methods for the independent test set, trained on the total training data set.

less convincing. Figure 8 shows the Brier skill score of the models trained on the full data set with
respect to both the station climatology (left panel) and the Brier score of QRF (right panel). Here
the standard deviation, obtained by bootstrapping a 1000 times, is given as well. From these images
it is clear that for wind speeds above 15 m/s there is too much uncertainty to properly compare the
methods.

Figure 8: Brier skill scores relative to the station climatology(left) and QRF(right), for models trained
on the full data set. Here error bars give the standard deviation which is obtained by bootstrapping
the test data a 1000 times.

The right bottom panel of Figure 7 shows the cumulative rank histogram of all the methods. In this
figure we can see a clear difference between the models trained on the wind speed and models trained
on the residuals of linear regression for QRF and fully connected neural networks. Firstly the methods
trained on the residuals lie a lot closer to the diagonal, implying that on average they estimate the
spread a lot better. What is surprising however is that this does not hold for the convolutional neural
networks which are trained on residuals as well. For QRF and convolutional neural networks we see
that the cumulative rank histogram lies under the diagonal, which implies that for these methods
observations fall in the higher quantiles of the estimated distribution.

In the Appendix a few example forecasts are shown. These images show the input image of CNN LR,
the activations for the three layers of the CNN and the corresponding forecast. In these forecasts a
green line shows the forecast given by linear regression and the orange line the measurements. When
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we look at these the Dutch coastline is one of the few clear features. Based on this we could hypothesize
that the neural network is more skilful for higher wind speeds because of high skill for coastal stations.
Figure 10 shows the difference in CRPSS with respect to the climatology between QRF and CNN LR,
for different stations in the Netherlands. Here we can see no clear geographical preference for either
method, implying that the CNN uses different features as well to base its forecasts on.

5.5 Conclusion and Discussion

The results obtained from the independent test set show that for +48 hour wind speed forecast convo-
lutional neural networks can be of added value for statistical post-processing. In terms of CRPS and
mean squared error convolutional networks outperform QRF and fully connected neural networks in
both all the cross-validation sets and the final test set.

The Brier skill score plots show that convolutional neural networks outperform random forest for
higher wind speeds which are more important in weather forecasting. The bad performance of the
convolutional neural networks with respect to QRF in the low wind speed range could be explained
as an effect of using ordinary least squares regression first. This does assume symmetric errors and
therefore does not perform well around zero. This could potentially be mitigated by assuming the
errors to be truncated at zero. For wind speeds above 15 m/s the uncertainty in the Brier score grows
very fast however and conclusion for this range can therefore not be made. This is mainly caused by
a lack of days with high wind speeds in the available data set. An obvious solution for this would be
to obtain more data by obtaining reforecast data for more years, this is costly however. A solution to
this problem could to reforecasts days in the past with more extreme weather, such as days on which
weather warnings were issued, instead of reforecasting full years only, as is done now.

An important feature of good forecast methods is that meteorologist understand what the forecast
is based on. A large drawback of neural networks is that this is difficult to do for them. In the
appendix one can find a few figures showing the activations in the convolutional layers of the network
for a number of days. They do not give a clear indication however of what the network is looking
at. In future research it would be a good addition to try to explain the results. Different methods of
visualizing which parts of an input image is most relevant for the prediction made by a convolutional
neural network exist, such as for example layer wise relevance propagation [3]. This could potentially
help identify where the convolutional neural network is focusing on.

Using a parametric distribution such as the truncated normal could be beneficial in this case for it would
be easier to make a distinction between features that are relevant in predicting the bias and features
that are relevant in predicting the spread. In an ideal case identifying features which correspond to a
high bias or spread might even help in identifying shortcomings in the NWP model.

At the time this study was conducted not enough data for ensemble forecasts was available for HA40.
Most current post-processing studies are however based on ensemble output. An important next step
is therefore to see if convolutional neural networks also add skill when an ensemble of forecasts is given.
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HA40 NN NN LR

Linear regression QRF QRF LR

CNN LR KMN CNN LR N0 CNN LR

Figure 9: Scatterplots with the expectation value of the forecast on the x-axis and the observations on
the y-axis, for the independent testset.

Figure 10: CRPSS with respect to the climatology of different methods on the left. CRPSS of CNN LR
with respect to QRF on the right. Here positive values imply that CNN LR is more skilful than QRF.
No clear geographic preference for either model is visible in this image. Station numbers are explained
in Table 10 in the Appendix.
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Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available from tensorflow.org.
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A Appendix

Figure 11: Example forecast from CNN LR. The topleft image is the input image. The top right image
shows the the probabilistic forecast. Here the orange line is the observation whereas the green line is
the forecast obtained by linear regression. The bottom three images visualise the activations of the
convolutional layers.
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Figure 12: Example forecast from CNN LR. The topleft image is the input image. The top right image
shows the the probabilistic forecast. Here the orange line is the observation whereas the green line is
the forecast obtained by linear regression. The bottom three images visualise the activations of the
convolutional layers.
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Figure 13: Example forecast from CNN LR. The topleft image is the input image. The top right image
shows the the probabilistic forecast. Here the orange line is the observation whereas the green line is
the forecast obtained by linear regression. The bottom three images visualise the activations of the
convolutional layers.
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Figure 14: Example forecast from CNN LR. The topleft image is the input image. The top right image
shows the the probabilistic forecast. Here the orange line is the observation whereas the green line is
the forecast obtained by linear regression. The bottom three images visualise the activations of the
convolutional layers.
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Station Number Longitude Latitude Name

209 4.518 52.465 IJMOND
215 4.437 52.141 VOORSCHOTEN
225 4.555 52.463 IJMUIDEN
235 4.781 52.928 DE KOOY
240 4.790 52.318 SCHIPHOL
242 4.921 53.241 VLIELAND
248 5.174 52.634 WIJDENES
249 4.979 52.644 BERKHOUT
251 5.346 53.392 HOORN (TERSCHELLING)
258 5.401 52.649 HOUTRIBDIJK
260 5.180 52.100 DE BILT
267 5.384 52.898 STAVOREN
269 5.520 52.458 LELYSTAD
270 5.752 53.224 LEEUWARDEN
273 5.888 52.703 MARKNESSE
275 5.873 52.056 DEELEN
277 6.200 53.413 LAUWERSOOG
278 6.259 52.435 HEINO
279 6.574 52.750 HOOGEVEEN
280 6.585 53.125 EELDE
283 6.657 52.069 HUPSEL
285 6.399 53.575 HUIBERTGAT
286 7.150 53.196 NIEUW BEERTA
290 6.891 52.274 TWENTHE
308 3.379 51.381 CADZAND
310 3.596 51.442 VLISSINGEN
312 3.622 51.768 OOSTERSCHELDE
313 3.242 51.505 VLAKTE V.D. RAAN
315 3.998 51.447 HANSWEERT
316 3.694 51.657 SCHAAR
319 3.861 51.226 WESTDORPE
323 3.884 51.527 WILHELMINADORP
324 4.006 51.596 STAVENISSE
330 4.122 51.992 HOEK VAN HOLLAND
331 4.193 51.480 THOLEN
340 4.342 51.449 WOENSDRECHT
343 4.313 51.893 R’DAM-GEULHAVEN
344 4.447 51.962 ROTTERDAM
348 4.926 51.970 CABAUW
350 4.936 51.566 GILZE-RIJEN
356 5.146 51.859 HERWIJNEN
370 5.377 51.451 EINDHOVEN
375 5.707 51.659 VOLKEL
377 5.763 51.198 ELL
380 5.762 50.906 MAASTRICHT
391 6.197 51.498 ARCEN

Table 10: Location of weather stations in the Netherlands.
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