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Abstract

Neutron stars consist of QCD matter at extreme densities, which is a regime in which

first principle QCD calculations cannot be performed. Also, neutron stars often have extremely

large magnetic fields. Therefore, in this work, we investigate a different approach to strong

coupling theories: we employ the gauge/gravity duality and we study how it can be used in QCD.

Hence, we consider a holographic model for QCD, named V-QCD, and use this to compute the

phase diagram, the equation of state and more thermodynamic quantities at finite density and

magnetic field. Lastly, the equation of state is used to investigate the consequences for neutron

stars. We see that our holographic model produces potentially realistic results for the core region.
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1 Introduction

During the 50’s multiple experiments with particles took place that shed light to a variety and

ever growing number of new particles, the hadrons. Researchers realized that all this amount of

hadrons was a hint that this the particle zoo cannot be the final answer and there should exist

some fundamental particles aside from the ones they already knew. They would be able to play

the role of the buildings blocks of the increasing number of newly discovered particles.

Motivated by the above, the formulation of Quantum Chromodynamics (QCD) came

to existence. QCD describes the strong force which is dominant in the substituents of atomic

nuclei, namely quarks and gluons. Quarks are bound inside protons and neutrons under normal

circumstances and gluons are the force carriers. Particles described by QCD are characterized by

two parameters, colour (hence "chromo" in QCD) and flavour. QCD is a strongly coupled theory

that has three key features which are going to be discussed in detail later. These are confinement,

chiral symmetry breaking and asymptotic freedom. Both theorists and experimentalists are trying

to tackle the peculiarities of QCD. The most difficult part is precisely the fact that since it is

strongly coupled, perturbation theory fails in low energies. Hence, people had to come up with

other techniques to describe its key features. Lattice QCD is one of these techniques that is

successful but only to zero values of chemical potential. In 1997 though, Maldacena [4] in his

groundbreaking work in which he modeled strongly coupled theories through higher dimensional

gravity, opened a new door to approach not only QCD, but strongly coupled theories in general.

Since then, there has been a significant effort to reproduce a holographic model that

corresponds to the salient features of QCD [24], [25]. The advantage of studying the problem this

way is that once a holographic model has been established and gives reasonable results, then we

can gain insight on more QCD phenomena like quark-gluon plasma for example, and also discover

completely new aspects of our theory.

In this thesis, we work on a holographic model that seems to describe successfully QCD

at the region where neutron stars in the QCD phase diagram reside, and we examine how baryons

are affected when a constant external magnetic field is applied. We will use the resulting Equation

of State to solve the Tolman-Oppenheimer-Volkoff (TOV) equation for neutron stars and see if a

reasonable Mass/Radius curve comes out.
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In Chapter 2 a brief overview of QCD and the techniques that we have so far will be

discussed. In Chapter 3 AdS/CFT is going to be introduced and the connection with QCD is

going to be made. In Chapter 4, the most recent holographic models resulting to the model we

are working with in this thesis, namely V-QCD, are going to be described. The magnetic field

and neutron stars are going to be introduced and more of our work is continued in Chapter 5,

including an ansatz to approximate baryons. Finally, in Chapter 6 Grand potential, neutron stars

and further results are going to be given and discussed.
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2 Elements of Quantum Chromodynamics

2.1 Brief overview of QCD

There are four known fundamental forces in the universe. Gravity, Electromagnetic force, the

Weak and the Strong interaction. The last three are described successfully within the Standard

model of Particle Physics. QCD is part of the Standard Model and describes the Strong interaction

which is responsible for the strong nuclear force. This force is what binds quarks together in

order for them to form mesons and baryons. The force carriers are the gauge fields in the field

theoretic description of the theory and are called gluons. Quarks come in six flavours, namely

up, down, top, bottom, charm, strange and each flavour comes in three colours. The masses of

up and down are not known precisely because they have not been detected as isolated particles.

It is worth mentioning at this point that quarks can actually change their flavour due to weak

interactions and that also gluons do not carry flavour, but only colour. QCD is described by an

SU(3) gauge theory of the Yang-Mills type [1] and the Lagrangian reads :

L = −1
4F

α
µνF

µν
α + Ψ̄ν(iγµDµ −m)Ψν (1)

where the field strength tensor Fαµν is defined as follows :

Fαµν = ∂µA
α
ν − ∂νAαµ + gfabcAbµA

c
ν (2)

the covariant derivative has the form :

Dµ = ∂µ − igAαµtα (3)

and the commutation relations of SU(3) are given by the following relation :

[tb, tc] = ifabcta (4)

Aαµ is the gauge field (gluons) in the adjoint representation, Ψ are the fermion fields

(quarks) in the fundamental representation, fabc are the structure constants of the SU(3) group

and tα are its generators.

There are three key features of this theory that are relevant for our work :

• Chiral Symmetry Breaking

The QCD Lagrangian helps us understand the symmetries of our theory. It enjoys what is
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called chiral symmetry [2]. The chiral symmetry is eminent by considering two flavours, up

and down because their masses are very light and approximately the same. We consider

the limit of massless quarks. The fermion field now has the form Ψ =

u
d

 and m =mu 0

0 md

 where mu and md are the masses of the up and down quarks. Now our

Lagrangian is divided to left (L) and right (R) fields. In the limit of zero quark mass the

full chiral symmetry of can now be expressed in the following manner :

SU(2)V × SU(2)A × U(1)V × U(1)A (5)

The invariance under U(1)V is related to the conservation of baryon number, while the

invariance under SU(2)V corresponds to Heisenberg’s isospin symmetry. However, the

vacuum breaks the axial symmetries as it is not invariant under transformations of the form

SU(2)A × U(1)A. The breaking of this symmetry produces a quark-antiquark condensate

〈qq̄〉 6= 0 which acts as an order parameter and is telling us that the vacuum of space is

populated by quark-antiquark pairs at no energy cost. This is analogous to what happens in

a superconductor, where pairs of electron form a condensate. The resulting ground state has

an indefinite number of quark-anti-quark pairs that fills the vacuum while still preserving

Lorentz invariance. For this to happen, we must be working on the strongly coupled regime

and the quark pairs must have opposite quantum numbers for both momentum and angular

momentum. It is worth mentioning that U(1)A is also broken by the chiral anomaly.

In reality though, quarks masses do not vanish which is why the Chiral symmetry in this

context is characterized as approximate. In this sense, since 〈qq̄〉 6= 0 breaks axial SU(2)

symmetry, pions can be regarded as approximate light Goldstone bosons, and hence, the

fact that the pion mass is substantially smaller than the mass of other hadrons is explained.

• Colour confinement QCD has the property that physical states correspond to colour singlets

(q†q) transforming under SU(3). In more detail,

qa → Uabq
b

(q†)a → (q†)bUba

where U ∈ SU(3) and U+U = 1

(6)

This fact is what we call "colour confinement" [2]. We can imagine it like the figure shown

above (1). A quark-antiquark pair is being held together by an invisible string which is



9 2.1 Brief overview of QCD

Figure 1: Taken from [31]. The colour confinement is depicted in the picture. Between a quark

anti-quark pair a string of length L can be realized to hold them together.

realised as the strong force. As we try to tear the pair apart the force increases indefinitely

in a linear fashion via the following potential [31] :

Vqq̄(L) = σ0L+ ... (7)

where L is the separation between the quark and the antiquark and σ0 is the string tension.

This phenomenon of "infrared slavery" although we have strong indications of its existence

is non-perturbative by nature, hence perturbation theory fails and we need a different

theoretical mechanism to describe it.

It is believed that the this confining mechanism can break down and lead our theory to a

deconfined phase under extreme conditions like high temperatures (e.g. extremely energetic

heavy-ion collisions) or very high densities (e.g. in neutron stars). It is speculated that the

deconfined phase was present in the early stages of the universe. Nowadays, experiments

with heavy-ions collisions are being made to study QCD in the quark-gluon plasma state,

where quarks and gluons are no longer confined.

• Asymptotic freedom QCD is a non-Abelian gauge theory. In general, these theories exhibit

the property of asymptotic freedom which means that the running gauge field coupling

tends to vanish logarithmically at small distances [5], [2]. In other words, as the energy scale

increases the value of the coupling constant becomes smaller meaning that the interactions

are weaker at this scale. This can also be seen by the beta function for a general SU(Nc)

theory with Nf flavours:

β(g) = dg(µ)
d log(µ) = − g2

16π2 (11Nc
3 − 2Nf

3 ) (8)

The beta function vanishes at zero coupling. In first order as can be seen above it is negative

for Nf
Nc

< 11
2 . This is in accordance with the asymptotic freedom statement and also gives
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us the advantage to use perturbation theory at small gauge couplings. These theoretical

claims have been confirmed by experiment.



11 2.2 Lattice QCD

2.2 Lattice QCD

Phenomena involving large momentum transfer imply the small value of the coupling constant,

where perturbation theory in QCD is reliable. In this chapter we are going to introduce a

different approach which allows us to study phenomena where the coupling constant is of order of

unity and perturbative QCD fails. Lattice QCD is such a tool introduced by Wilson in 1974 [9]

which provides a way to calculate things like the hadronic spectrum, the matrix elements of the

corresponding operators of these hadronic states, but also study confinement, chiral symmetry

breaking and the role of topology in the system. Lattice QCD, being an intrinsically Euclidean

formulation is not well-suited for calculating certain important dynamical observables such as

transport coefficients or any sort of real-time correlation functions in the quark-gluon plasma for

instance.

Lattice approach

The basic idea is to approach QCD on a four-dimensional Euclidean space of discrete space-time

points rather than in the continuum [5]. Quarks and gluons can only exist on lattice points and

travel over connection lines. In principle, it is a non-perturbative implementation of field theory

using the Feynman path integral technique. The distance α between these points acts as a cut-off

for both small and large momenta singularities that occur in the field theory.

We have to work in Euclidean space-time so as the volume and the temperature of the theory is

associated to the number of points. The partition function reads :

Z =
∫
DAµDΨDΨ̄e−S (9)

where S is the following action :

S =
∫
d4x(1

4FµνF
µν − Ψ̄/DΨ) (10)

Fµν is defined in (2) and /D is the Dirac operator. Fermions (quarks) are represented by

Grassmann anti-commuting numbers Ψ and Ψ̄ and when integrated out the partition function

can be rewritten as :

Z =
∫
DAµ det /De

∫
d4x(− 1

4FµνF
µν) (11)

Bosons (gluons) are represented by the commuting gauge fields Aµ. It is obvious in this context

that the fermionic contribution is contained in the det /D term leaving the partition function
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an integral only over the background gauge fields. Hence, the action can be rewritten : S =

Sgauge + Sfermions =
∫
d4x(− 1

4FµνF
µν)− (det /D). In this point it is worth mentioning that the

"quenched" approximation of QCD refers that the above determinant is taken to be constant

which implies that the vacuum polarization effects are removed and it is used in simulations.

Further technicalities on the theoretical approach of lattice QCD are explained in detail in [5].

Estimates of Lattice QCD

In our work we are interested in studying the thermodynamics of QCD. Hence, it is logical to

refresh our memory on the thermodynamic quantities that are relevant. Keep in mind that QCD

as introduced earlier is an SU(3) theory which belongs in the more general family of SU(N)

theories whose thermodynamics quantities are going to be given. Starting from the partition

function Z(T, V ) the free energy density is :

f = −T
V

lnZ(T, V ) (12)

the energy density and pressure :

ε = T 2

V

∂ lnZ(T, V )
∂T

(13)

p = T
∂ lnZ(T, V )

∂V
(14)

but when considering large homogeneous systems this holds : p = −f . So the quantities above

can be re expressed as :

ε+ p

T
= ∂p

∂T
(15)

and ε− 3p = T 5 ∂

∂T
( p
T 4 ) (16)

whereas the entropy density is :

s = ε+ p

T
(17)

Temperature and the volume are dependent by the lattice size N3
σ ×Nτ and the lattice spacing α

with the following relations :

T−1 = Nτα, V = (Nσα)3 (18)

The difficulty when trying to tackle this problem is the direct calculation of the partition function.

People have turned into Monte Carlo simulations but in [39] the expectation value of the action

is studied. This is connected to the confined or deconfined phase transitions of the theory where
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the proper observables are the string tension or the critical temperature. The order of the

aforementioned phase transitions is expressed through the study of the susceptibilities which

clearly shows that the number of flavours Nf play an important role although the number of the

colours Nc are not so relevant giving us the freedom to take this number to infinity to construct

new models as will be shown later on.

Lattice QCD gives promising results in accordance with experiments [30] using numerical

simulations hinting theoretical physicists to use this theory as a boundary check on the models

they come up with. Although, Lattice QCD imposes also an infamous problem on its own apart

from the failure of an analytic solution to the partition function. This problem is often called the

"sign problem" [27]. So far all the modelling is being done at zero chemical potential µ. When

one tries to add a value to the chemical potential, then the Dirac operator has also a Ψ̄µγ0Ψ

component. Since the Dirac operator is calculated through a determinant, this means that a

phase factor is now present who serves as a weight leading to complex eigenvalues which can also

be negative.This leads to two possibilities, the first being an imaginary chemical potential and

the second being the existence of two degenerate quarks, e.g. mu = md and µu = −µd. Monte

Carlo simulations are not doable at a non-zero chemical potential although work to overcome

these issues is being done towards that direction. An example is [27]. Other approaches that are

worth mentioning are effective field theory and perturbative methods but we will not elaborate

more on those since we will not use them.
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2.3 QCD phase diagram

At this point, having mentioned a few important facts about QCD it is fruitful to introduce and

discuss a specific QCD phase diagram [13], [26]. The one we are working with is a diagram of

temperature T (in the vertical axis) and the chemical potential µB (in the horizontal axis) which

is produced from a combination of theoretical research and experiments (RHIC, LHC, FAIR SIS

300). It describes the state of the matter in different values of T and µB that can be either found

in the universe or are highly speculated from our current understanding of the theory. For this

reason the diagram is not characterized by absolute certainty as a lot of its regions are being

explored experimentally. Nevertheless, it serves us as a very good tool. When constructing a

new model for our theory using holography for example, which is the topic of this thesis, we can

check if our model agrees on the areas that are proven experimentally to behave as the diagram

suggests giving us a green light to push our model further.

Before jumping into the diagram itself let us briefly recall the classification of phase

transitions. The characteristic of a 1st order phase transition is that the first derivative of the free

energy is discontinuous at Tc. This means that at a critical temperature Tc, part of the system

is in one phase and the rest is in another phase. On a 2nd order phase transition though, both

the free energy and its first derivative are continuous, unlike the second derivative at Tc. The

third kind of phase transition is the analytical crossover. In this case the free energy and all its

derivatives are continuous at the critical temperature. This means that the change will be smooth

without discontinuities making it more difficult to identify which phase you are in the diagram.

An impression that we have on the QCD phase diagram is shown in figure 2. Starting

from the left part of the diagram, in the slice for µB equal to zero up to arbitrary values of

temperature, lattice simulations are applicable. The phase described by large values of temperature

on that slice, is believed to have existed during the early stages of the universe and by cooling

down, hadrons were formed. Chiral Symmetry is broken in the hadronic phase in general up to

a certain critical temperature and is restored elsewhere. Quarks and gluons here are confined

forming up the hadrons, but as we move up to higher temperatures there is a crossover leading

to the deconfined phase. In this area quarks and gluons are no longer confined and are the

only form of matter we encounter. This form of matter is called Quark-Gluon plasma (QGP).

Chiral symmetry is also restored at this point. One would expect QGP to behave as an ideal gas.

Surprisingly, its behaviour is closer to a perfect fluid with a very small shear viscosity. The form
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Figure 2: Taken from [6]. Impression of QCD phase diagram. It depicts the 3 phases of QCD

matter with respect to temperature and net baryon density.

of matter as we know it, appears when QGP cools down. Protons and neutrons are formed and

when cooled even further are able to form nuclear matter. Experiments are being held at RHIC

and LHC where for increasing temperature one starts from the hadronic phase and attempts to

investigate the plasma phase.

Moving to higher temperatures and larger µ, due to chiral symmetry restoration, the

area of the phase transition where the hadron gas becomes QGP is not strict, as it is obvious

from the diagram. In this area the most effective theoretical tool we posses is perturbation theory.

This happens because at high energies the coupling is weak making perturbations possible. As

we continue further at high densities and low temperatures (T < 100MeV ), there lies a colour

superconducting phase in which up and down quarks with two out of three colors pair and form

a condensate in analogy to BCS theory. It is speculated that the transition from the colour

superconductor to the QGP is of 1st order. In the middle of the diagram where the temperature

is low and the baryonic density is increased (cold dense QCD matter) much effort is being done

to find a suitable theoretical model as this area is mainly uninvestigated making our knowledge

limited. In this area though, as is obvious from the diagram is where neutron stars can be found.

The reason that there is not much solid knowledge in this area is because for the slice µB = 0 up

to high temperatures we can use lattice simulations, for high energies we can use perturbations
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but in this particular area lattice simulations fail due to the sign problem and perturbation theory

also fails because the coupling is strong. Hence, in order for us to study cold and dense QCD

matter and apply our results to neutron stars we have to use a different technique. This technique

is the AdS/CFT correspondence and is going to be introduced in the next section.
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3 Gauge/Gravity duality

In this section we are going to review some basic concepts of the duality. The general idea of

AdS/CFT correspondence lies in the boundary of AdS. Locally the boundary appears to be flat,

so making use of the Minkowski spacetime to describe it, makes sense. This particular spacetime

is also used in field theory calculations hinting us to look further into AdS. Therefore, in the

boundary one can make non-gravitational calculations using conformal field theory, whereas in

the bulk one is free to use the full AdS spacetime (+1 dimension) for gravity. This indicates

the existence of a dictionary between the conformal field theory and gravity, i.e. one can make

calculations using one of the two theories and have a direct correspondence on the other because

they are equivalent [7] :

Zgauge = ZAdS (19)

Gerard ’t Hooft’s work in the large N expansion [10] hints for a stringy description of QCD.

There Gerard ’t Hooft realized that only planar diagrams with the quarks at the edges dominate.

The ground was set for the so called Holography Principle but it took more than 20 years and

the groundbreaking work of Juan M. Maldacena [4] and the realization of Dp branes in string

theory by Polchinski (1995) to finally establish the duality in more stable grounds. In other

words, with the correspondence two distinct physical theories are equivalent and the way they are

equivalent is going to be discussed briefly in this chapter. In more detail, in the first subsection

the AdS spacetime is going to be described and motivated. Next, the correspondence is going to

be formally described. Finally, we will see how temperature, phase transitions and baryons are

implemented in the holographic picture.
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3.1 The Anti-de Sitter (AdS) spacetime

As mentioned earlier AdS spacetime in 5 dimensions is ideal to capture the duality due to the

local similarity with Minkowski space. It is a spacetime with constant negative curvature. Let us

first consider a simpler case [7]. Namely, the AdS2 spacetime which has SO(2,1) invariance and

can be embedded into a flat spacetime with two timelike directions :

ds2 = −dZ2 − dX2 + dY 2 (20)

−Z2 −X2 + Y 2 = −L2 (21)

where L is the AdS radius. If we pick the global coordinate system (t̃, ρ) :

Z = L cosh ρ cos t̃, X = L cosh ρ sin t̃, Y = L sinh ρ (22)

the metric becomes :

ds2 = L2(− cosh2 ρdt̃2 + dρ2) (23)

We observe that AdS has only one timelike direction t̃ which is periodic with periodicity 2π. In

order to avoid problems with causality one has to unwrap the timelike direction and consider the

covering space of AdS2 where −∞ < t̃ < +∞. This spacetime has a constant negative curvature

of R = − 2
L2 . The embedding can be seen in figure 3.

The most common are the static coordinates which can be useful in the comparison with AdS

Figure 3: Taken from [7]. Embedding of AdS2 to R2,1.

black hole, the conformal coordinates where a "spatial" boundary appears and the most widely

used Poincaré coordinates. Let’s stick to the latter ones a bit further but on higher dimensions.
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For (d > 2) they are defined by the following transformations :

X0 = Lr

2 (x2
i − t2 + 1

r2 + 1) (24)

Xp+2 = Lrt (25)

Xi = Lrxi, (i = 1, 2, ..., p) (26)

Xp+1 = Lr

2 (x2
i − t2 + 1

r2 − 1) (27)

The metric now has the form :

ds2

L2 = r2(−dt2 + dx2
p) + dr2

r2 (28)

where (r > 0) and (−∞ < t < +∞) and the AdS boundary is located at r → ∞. This metric,

which is different from global AdS is also known as the "Poincaré patch". In the AdS/CFT

philosophy this boundary condition is used to add external sources to the gauge theory side.

When considering the five dimensional AdS for example one can realise its symmetries :

• 4-D Poincaré invariance : this symmetry is enjoyed by x,y,z,t coordinates dual to the gauge

theory.

• 4-D scale invariance : transformations of the form xµ → αxµ and r → 1
αr leave the metric

invariant. The interpretation of the r-coordinate is the gauge theory energy scale.
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3.2 Description of AdS/CFT

Hints of AdS/CFT

Before Maldacena who put the correspondence in formal terms there were hints of the duality.

More generally, there were hints of a notion that dimensionality plays an important role and

that different dimensional theories describing existing physics could be connected. The first hint

comes from General relativity when one studies black hole thermodynamics. Black hole entropy

is given by the area law [7]:

S = 1
4
A

l2pl
kB (29)

with lpl being the Planck length and is proportional to the area as the name suggests. Although,

there is a distinction in this description of entropy as it differs from the thermodynamic entropy

in the sense that it does not count the microscopic states and is not proportional to the volume of

a system. This is remarkable because it gives us a clue on the nature of black holes microscopic

states. There is no correspondence for example of a 4-D black hole to a 4-D statistical system.

However, a 5-D area is a 4-D volume. The Holographic Principle describes precisely that. The

statistical system which is one dimension lower than the gravitational system is a gauge theory.

The second hint comes from Gerard ’t Hooft’s work on the large Nc expansion [10], [15].

Trying to tackle QCD non-perturbatively, he considered the limit of large number of colours (Nc)

and the theory had two parameters : the number of colours Nc and the gauge theory coupling

constant gYM . The ’t Hooft coupling is defined as λ = g2
YMNc. The limit is now given by :

Nc →∞ with λ being kept constant and large.

In that limit planar diagrams (4) (diagrams that can be drawn on a plane) dominate

suggesting the effect of topology on diagrams. In fact, as the dependence on N goes like N2−2h,

where h is the number of "handles", it is clear that diagrams with h = 0 dominate in the large

N expansion. We see that 2-D diagrams dominate and hence we have a stringy realization of

QCD. ’t Hooft’s work led to the Holographic principle hinting again the connection between two

different theories with different dimensionality.
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Figure 4: Taken from [15]. A planar diagram that can be drawn on a sphere (left), and a

non-planar diagram that must be drawn on a torus (right).

Gubser-Klebanov-Polyakov-Witten (GKPW) relation

The two theories, namely, the one in the bulk and the other on the boundary of the AdS space

are related by the following relation [7], [15] :

〈e
∫
ddxJ (x)O(x)〉CFT =

∫
DΦe−SAdS |Φ(x,∂AdS)=J (x) (30)

The left hand side (LHS) of this formula describes a 4-D gauge theory in the boundary and

the right hand side (RHS) describes a 5-D gravitational theory in the bulk. More precisely, the

LHS is the generating functional of the gauge theory with an external source. One can compute

there correlators although, things get difficult at strong coupling. However, the RHS is the

generating functional of the gravitational theory where at strong coupling (low energy string

theory) calculations are easy. A loose description of the procedure done is the following : One

usually finds the equations of motion of the field in the bulk Φ but uses the AdS boundary as

boundary conditions for the on-shell action S. One acquires a 4-D quantity, namely the boundary

value of the source. This way we realize that in general a bulk field in this prescription acts as an

external source of a boundary operator. The conversion of calculations made on one side of the

duality into the results of calculations on the other side is being done by the so called AdS/CFT

"dictionary" [18] :
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AdS/CFT Dictionary

Boundary: field theory Bulk: gravity

Energy momentum tensor T ab Metric field gab
Global symmetry current Ja Gauge field Aa
Scalar operator Ob Scalar field Φ

Conformal dimension of the

operator

Mass of the field

Source of the operator Boundary value of the field

(leading term)

VEV of the operator Boundary value of radial

momentum of the field

(subleading terms)

The dictionary can be generalized to the global aspects of both sides as well [18] :

Global aspects

Boundary: field theory Bulk: gravity

Global spacetime symmetry Local isometry

Temperature Hawking temperature

Chemical potential/charge

density

Boundary values of the gauge

potential

Phase transition thermal gas/black hole solutions

By studying the conformal groups it is shown that the extra dimension r of the bulk is associated

with the energy scale of the gauge theory. So when trying to study the UV and IR behaviour of

the field theory then one has to study the r →∞ and r → 0, respectively.

Motivation of AdS/CFT through D-branes

String theory is a theory of strings but also branes. The D-branes are the objects where the

endpoints of an open string are constrained. Hence, open strings are on the brane surface but

closed strings are free to propagate in the bulk. Since we are interested in QCD which is an
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SU(Nc) theory it is important to realize that if we put Nc coincident D-branes the endpoints of

open strings have the freedom to be attached to whichever one of the D-branes [7], [17]. This

degree of freedom is the correspondence to the SU(Nc) degrees of freedom. D-branes of higher

dimensionality are also called Dp-branes where p gives away their dimension. Hence, we will

consider a 10-D superstring theory and we will try to mimic QCD. For this, we use a D3-brane

which describes a (3+1) gauge theory.

Figure 5: Taken from [17]. Stacked Nc D3-branes in a (9+1) spacetime.

But, in this point we must stress a very important fact. The D3-brane admits two

different descriptions at two different scalling limits. So we have two theories for two different

limits. In the limit where the string coupling is gs � 1 and at the same time gsNc � 1, we get a

N = 4 SYM, while for gs � 1 and gsNc � 1 we get supergravity on AdS5 × S5. In both limits

there is a 10-D flat spacetime geometry due to supersymmetry.

More specifically, the D3-brane describes the the 4-D gauge theory that lives in it. But

one has to consider extra 6 dimensions due to superstring theory. So, the gauge fields live on

the brane and we have a remaining number of 6 scalars that are free to propagate among the

branes. These extra fields transform in the adjoint representation of SU(Nc). In the case of

D3-branes, we have an isotropy among all the directions for the 6 scalars, which provides us with

the so called SO(2, 4)× SO(6)R symmetry of the N = 4 SYM. So far, we are missing something.

D3-branes cannot only describe a gauge theory because they are part of superstring theory that

is a unified theory, hence also containing gravity and we are also missing massive string modes.
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The mass density of the D-brane according to string theory is :

T3 '
Nc
gs

1
l4s

(31)

and also the mass is given by :

M ' 1
ls

(32)

So we have to understand how the D-brane affects the geometry. In the first limit mentioned

above, one takes ls → 0 which means that gravity can be ignored (hence the 10-D flat spacetime)

and also massive string modes vanish.

It is now fruitful to consider the second limit where ls is kept finite and gsNc � 1. In

this limit, one cannot ignore gravity anymore and the supergravity description of the D-brane

becomes more accurate. An observer from infinity does not see anymore a flat space. He rather

sees a curved spacetime coming from u → 0. This geometry is described by a black D3-brane

solution which reads :

ds2
10 = Z−

1
2 (−dt2 + dx2

3) + Z
1
2 (du2 + u2dΩ2

5) (33)

where Z = 1 + (L
u

)4, L4 ' gsNcl4s (34)

In the near-horizon limit (u� L) the metric becomes :

ds2
10 → ( u

L
)2(−dt2 + dx2

3) + L2(du
2

u2 + dΩ2
5) (35)

So the geometry is described by AdS5 × S5 as advertised in the beginning. Although, away from

the source (u→ 0) the geometry is still a flat 10-D spacetime, a geometry which is shared in both

limits 6.

Summing up, we seem to have two different theories to describe the system at two

different regions. AdS/CFT that they are the same since the system doesn’t change. In order

for this to be true, a calculation must be done somewhere in the middle and the two viewpoints

must agree, a task which is not easy and has not been done yet. In the next figure we are going

to see the geometry in both limits.

The general form of the correspondence can now be rewritten as [7]: ZAdS5 = ZCFT .



Figure 6: Taken from [7]. In the different limits spacetime can be approximated by either a flat

geometry with a source or a curved one.
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3.3 Implementation of Temperature and Phase Transitions

In our work, but also in general we are interested in the temperature of a system. For us to

use the gauge/gravity duality we must realize how temperature is implemented and connected

in both sides. One would say that implementing temperature on the gauge theory side of the

correspondence is more intuitive since one can just choose a SU(Nc) theory describing quarks

for example and temperature is implemented through the usual statistical mechanics techniques.

Although, it is left to see how the temperature in the gravity theory side is associated with the

temperature in the gauge theory side. The first step when trying to tackle a gravity problem is

to find a solution to the Einstein equations [7].

Fortunately, a solution to Einstein equations with a negative cosmological constant is

the Schwarzschild-AdS black hole with a planar horizon. The metric is the following :

ds2
5 = −(L

r
)2h(r)dt2 + dr2

(Lr )2h(r)
+ (L

r
)2(dx2 + dy2 + dz2) (36)

where h(r) = 1− (r0

r
)4 (37)

This metric exhibits an horizon at r = r0 and a curvature singularity at r = 0. Planar horizon

means that the horizon extends indefinitely in (x, y, z)-directions. Also, this system enjoys scaling

symmetries xµ → αxµ, r → r
α and r0 → r0

α which means that different black holes arising from

this metric have different horizon radii but are in essence, equivalent. In general, the temperature

of a black hole is given by the formula :

T = f ′(r0)
4π (38)

and in the current case T = 1
π
r0
L2 . From the area law, one can calculate the entropy density :

s = S
V3

= 1
4G5

( r0
L )3. Then, by using the temperature and the holographic dictionary from which :

N2
c = π

2
L3

G5
, one can arrive at :

s = π2

2 N2
c T

3 (39)

and also by making use of dε = Tds, the energy density is given by :

ε = 3
8π

2N2
c T

4 (40)

which is a Stefan-Boltzmann law analogue. The AdS radius L and G5 can be combined to give

Nc parameter in the Stefan-Boltzmann law, which is another reason why the Schwarzschild-AdS

(S-AdS) black hole is suitable in contrast to the standard Schwarzschild black hole. At this point,
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we should also realize the fact that due to the planar horizon giving equivalent systems, no phase

transition can be seen. Phase transitions are implemented in our theory via the Nc dependence.

When the entropy density is proportional to N2
c the dual gauge theory is in the deconfined phase,

since entropy basically counts O(N2
c ) degrees of freedom. In the confined phase the entropy

density is no longer proportional to N2
c .

To make a phase transition apparent, we have to use a different solution to the Einstein

equations. When using the S-AdS black hole with spherical horizon for example one gets black

holes with different horizon radii, creating effectively different systems. emperature is associated

by the location of the horizon and horizons now are plenty but different at the same time. Thus,

they "create" different systems through the only dimensionful quantity, temperature, which is

responsible for phase transitions.

In this thesis we study QCD in the large Nc limit as we will see later. Large Nc gauge

theories in general have a rich phase structure as we also saw in the QCD phase diagram [7]. So

our new tool, AdS/CFT should provide us with a description of these expected phases, otherwise

it has no chance of being realistic. Fortunately, it can be shown that the different phases of

interest can be realized by using different solutions that approach AdS asymptotically. The S-AdS

black hole with spherical horizon as discussed earlier and also the AdS Soliton solution which has

the form :

ds2
5 = ( r

L
)2(−dt′2 + dx2 + dy2 + hdz′2) + L2 dr

2

hr2 (41)

where L2 = l
r0

π
and h = 1− (r0

r
)4 (42)

This geometry is a compactified S − AdS5 black hole along the z-direction and also "double

Wick-rotated". The aforementioned alternations that have occurred, make the geometry to no

longer describe an actual black hole because h no longer multiplies time, and also because of

the spacetime ending at r = r0. This makes it suitable to describe the confined phase at low

temperature T < 1
l . At high temperature T > 1

l one must resort to the S-AdS black hole solution

again that describes the plasma phase. At T = 1
l , a discontinuity occurs at the entropy making

apparent a 1st order phase transition from confined to deconfined phase and vice versa.

By parameterizing the theory using TL, one gets for one value of temperature two

different values for the horizon location. A "small" and a "large" black hole as is often referred to

because they are compared to the AdS scale L. By using these two different horizon locations one
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gets two temperatures. Between these two temperatures one has a critical value Tc and when

the system is at T < Tc then we have the "thermal gas solution" and when T > Tc we have the

"S −AdS5 black hole solution". This also describes the confined/deconfined transition and it is

the technique that will appear in our work to describe the different phases as we will see later.

2nd order phase transitions are trickier so we will mention the general idea. For the 1st

order phase transition one basically had to change geometries with no black hole to a geometry

with compact black hole horizon in order to mimic the discontinuity of the entropy [31]. For the

2nd order one has to change from a black hole geometry to another one which also has a black

hole so the entropy is continuous.
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3.4 Baryons in SU(N) gauge theory

In this section we are going to describe a picture of how baryons are implemented in the holographic

picture. The spirit of this description is consistent with how we are going to treat baryons as well

which is the topic of this thesis.

In [21] E. Witten describes baryons in an instructive way using branes. In that context

quarks are considered to be the endpoints of Type IIB superstrings in AdS5×S5 which correspond

to particles in the fundamental representation of SU(N). These superstrings are supposed to

connect two different endpoints x1 and x2 in the AdS boundary. If you put N quarks then the

endpoints will be x1, x2, x3, ..., xN and you will have N strings oriented in the same way. The

baryon vertex in demand is the point (also named soliton) shown in the figure below (7) where

the strings are able to terminate in the bulk of AdS5 × S5.

Figure 7: Taken from [21]. A D5-brane couples to N superstrings. In order to cancel out their

charge a baryon vertex is produced.

Considering N same external charges in the baryon vertex, one can construct them by

wrapping a D5-brane on S5. In superstring theory there is a self-dual five-form field Ω5 whose

flux on S5 by N units is given through the AdS5 × S5 compactification by :

N =
∫
S5

Ω5

2π (43)

This Ω5 form is coupled in the worldvolume of the D5 − brane with a U(1) gauge field α in the
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following way : ∫
S5×R

α ∧ Ω5

2π (44)

This produces N-units of charge from the α field. Although, in a closed universe the total charge

must be zero, therefore a source must be introduced in the form of the string that has an endpoint

in the D5-brane which a gives a total charge of N (+1 or -1 depending on the orientation of

the string). So in this case, we need N strings of the same orientation to cancel the N U(1) α

charges in the D5-brane. Hence, this point in the D5-brane is the baryon (or antibaryon with an

opposite orientation) vertex that we are looking for. Baryons though, are fermions therefore are

characterized by antisymmetry. This is achieved by setting proper boundary conditions at spatial

infinty but we won’t go to such detail here. Other constructions [23], in the same spirit though

also apply and will be used in this work. For example, in the case of the D4/D8 model, baryons

are identified as D4-branes wrapped on S4 in the D4 background. Such a D4-brane is realized as

a small instanton configuration in the world-volume gauge theory on the probe D8-brane. The

main point of this part, is that baryons can indeed be implemented in a string theory picture by

considering a five-form which can give us the baryon charge. This will be extremely important in

our work because a term like this will be present in the definition of our model and will be used

to calculate the baryon charge.
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4 AdS/QCD

The goal is to use AdS/CFT in such a way as to describe QCD, its phenomenology and at the

same time be in accordance with existing data. So far two approaches are available [22], [31] :

the top-down approach and the bottom-up. Both are trying to describe QCD using holography

but they use a different path.

Top - down : One starts from a specific string theory set up and the exact dual field

theory can be identified. Namely, one uses a D-brane setup in 10-D and then replaces this

set-up with a gravitational background of geometry and the various form fields at the "decoupling

limit". In the large Nc limit we wish to describe the infrared physics that will strictly specify

the correspondence in the duality. This ambitious approach has the great advantage of being

extremely precise due to the fact that the field theory is derived. Hence it provides a strict

holographic dictionary. Although, this method is extremely difficult as well. The problem rises

when considering non-conformal gauge theories on the gauge theory side where there is some

low energy scale, like ΛQCD in QCD that breaks conformality and produces Kaluza-Klein (KK)

states at the same mass as the states of QCD.

Bottom - up : This method is different from the above. Instead of going all the way

from the strict guidelines of the theory where one uses string theory and tries to realize its results,

one goes in a more "hand-wavy" way where one implements by hand the operators of interest

using some ideas of string theory and tries to write a down a proper action describing the dual

fields. In this sense, one builds his way from the bottom, making some necessary assumptions of

the components needed, to the top by modelling a specific action which describes a theory like

QCD. This action must respect of course the general aspects of the theory under consideration

like symmetries, while leaving masses and coupling constants unknown so they can be chosen to

fit the data. The next step is to put that action in the test to see how realistic it is with our

current data and if yes if it can provide some insights. A variety of bottom-up models have been

produced. In this thesis we will work with V-QCD which is an upgraded version of Improved

Holographic QCD (IH-QCD) which will be described in short in the next section.

The goal of this chapter is to give a short discussion of the components of the V-QCD

bottom-up model on which this work is based on and finally arrive to the V-QCD model and our

work.
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4.1 Improved Holographic QCD (IH-QCD)

This is the first constituent of the V-QCD model. IH-QCD is modelling the Yang-Mills theory of

QCD [31]. It is working on the large Nc limit and is based on a 5-D non-critical string theory

involving gravity and a dilaton field λ = eΦ with a non-trivial potential. The action is given by :

Sglue = M3
PN

2
c

∫
d5x
√
−det g(R− 4

3
(∂λ)2

λ2 + Vg(λ)) (45)

and our ansatz for the metric in the vacuum is the following :

ds2 = e2A(r)(dt2 + dx2 + dy2 + dz2 + dr2) (46)

The Einstein’s equations now take the form :

Φ′2(r) = −9
4(A′′(r)−A′2(r)), V (Φ) = e2A(r)(3A′′(r) + 9A′2(r)) (47)

The dilaton field eΦ is dual to the TrF 2 operator, so it is identified as the ’t Hooft coupling

λ = g2Nc in the gauge theory side which for λ→∞ gives the IR limit and for λ = 0 gives the

UV limit. The r-coordinate is the bulk coordinate and for r = 0 we are given the UV boundary

which is asymptotically AdS. This metric also possesses a black hole horizon which acts as an IR

cutoff breaking conformal symmetry. The e2A(r) is called the conformal factor.

In the UV the metric must be asymptotic to AdS which will provide us with the dilaton

dynamics. Additionally, the IR asymptotics of the dilaton potential dictate quark confinement.

Hence, we realize that the dilaton potential has to be chosen by hand in the region that is being

studied. This signals the fact that this model belongs to the bottom-up family. The background

solution of λ is the running coupling constant for QCD. In order for it to be reasonable one has

to take into account the restrictions of the physical theory both in UV (large eΦ) and the IR

(small eΦ). Usually in the IR limit, the holographic method is to be trusted unlike the UV limit.

Hence, for the IR one gets

Vg(Φ) ∼ λ 4
3
√

log λ (48)

so phenomena like confinement, mass gap, discrete spectrum and asymptotically linear glueball

trajectories are produced. Since holography is not to be trusted in the UV, one sticks to QCD

perturbation theory requiring agreement of the holographic beta function and the perturbative

beta function. The potential is then given by :

V (Φ) = 12
l2

(
1 + V0e

Φ + V1e
4
3 Φ[log(1 + v2e

4
3 ΦV3e

2Φ)] 1
2

)
(49)
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Figure 8: Taken from [32]. Energy density from lattice simulations for different Nc compared

with IH-QCD.

which produces a thermal gas phase and two deconfined phases where a "small" and a "big" black

hole appear respectively. In the intermediate regions of λ the potentials are coupled through

data from experiments and lattice simulations. One last remark is that the IH-QCD model fits

surprisingly well with lattice data as we see in the figure 8 of energy density above. We also

conclude from the figure that the number of colours Nc do not appear to alter the results. This

allows us to consider the large Nc limit as a good qualitative approach of QCD.
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4.2 V-QCD setup

V-QCD is the model we are considering in this thesis which is also studied extensively in [11],

[16], [22], [29], [37]. More specifically, we want to examine how baryons in the model studied in

[3], are affected when a magnetic field is applied. The "V" in the name comes from Veneziano

because we are working in the Veneziano limit throughout this model. This means that flavour

sector is fully backreacted to the glue sector and we are considering the limits :

Nc →∞, Nf →∞,
Nf
Nc
≡ xf fixed, g2Nc fixed (50)

From the previous section (IH-QCD) we are using the dilaton field λ = eΦ describing the gluonic

sector in this manner. But in order for our model to approximate baryons we must also include

flavours [29] (i.e. quarks). Flavours are introduced in our model by considering the space being

filled with a D4− D̄4 configuration [34] and [14]. We use brane - antibrane pairs by including

the physics of an open string tachyon which stretches between the brane - antibrane pairs. In the

holographic dictionary the tachyon field is dual to the q̄q operator which is responsible for the

chiral symmetry breaking of QCD. On the branes though, live the gauge fields (AµL/R)ij which

are dual to the left and right handed currents q̄iγµ(1± γ5)qj/2. The gauge fields AL, AR and the

tachyon field T are considered in the flavour space, hence they are Nf ×Nf matrices. We also

consider the tachyon field to be flavour independent T = τ(r)1Nf . The gauge fields transform

under the left and right U(Nf ) as :

AL → VLALV
†
L − idVLV

†
L , AR → VRARV

†
R − idVRV

†
R, (51)

T → VRTV
†
L , T † → VLTV

†
R (52)

with VLV †L = 1Nf = VRV
†
R. The tachyon potential is taken to be Sen-like :

Vf (λ, TT †) = Vf0(λ)−ατ
2

(53)

where α is a constant.

The dynamics of a configuration of a stack of Nf brane - antibrane pairs using the

tachyon field is captured in the following way :

SDBI = −1
2M

3N2
c Tr

∫
d5x

(
Vf (λ, T †T )

√
−detA(L) + Vf (λ, TT †)

√
−detA(R)

)
(54)

where the radicands are defined as :

A(L)
µν = gµν + w(λ, T )F (L)

µν + κ(λ, T )
2 [(DµT )†(DνT ) + (DνT )†(DµT )] (55)
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A(R)
µν = gµν + w(λ, T )F (R)

µν + κ(λ, T )
2 [(DµT )(DνT )† + (DνT )(DµT )†] (56)

The covariant derivative is :

DµT = ∂µT + iTALµ − iARµT (57)

and the field strength energy tensor is defined by :

F (L/R) = dAL/R − iAL/R ∧AL/R (58)

For the model to be complete, the following functions must be specified : Vg(λ), Vf0(λ), κ(λ) and

w(λ). Vg(λ) is specified by the IH-QCD, while Vf0(λ), κ(λ) and w(λ) are chosen to fit the data.

It is important to note that the choice of w(λ) is crucial for the baryon physics. The choice of

these potentials is dealt in [3]. Finally, the metric ansatz we are using is :

ds2 = e2A(r)(−f(r)dt2 + dx2 + dy2 + e2W (r)dz2 + f(r)−1dr2) (59)

and the full action of our model using (45) and (54), is summarized in :

SV−QCD = Sglue + SDBI + SCS (60)

where the relevant parts of the final term determine how the solitons source baryonic charge and

is going to be explained later.
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4.3 Properties of V-QCD

In this section we are going to show some results of V-QCD at finite temperature and chemical

potential to see if this model gives indeed some reasonable outcomes so we can continue to our

own calculations. In this consideration the bulk fields λ,Φ, T correspond to the three arguments

in p(T, µ,mq) and only the case where mq = 0 is considered, so the pressure is simply stated

as p(T, µ). By using the same number of massless flavours and colours, namely xf = Nf
Nc

= 1,

one gets the following dependency of chemical potential with temperature describing the phase

transitions [11].

Figure 9: Taken from [11]. Phase transitions in V-QCD at finite temperature. 3 phases are

present : hadron gas and 2 plasma phases where chiral symmetry is either broken or restored.

As we can see in figure (9) we have three phases. We must point out that this specific

figure has been produced with V-QCD but with a different choice of potentials than the ones

we will use in our work. The results though are qualitatively comparable which is why we are

considering this figure. For low values of chemical potential and up to intermediate values for

temperature we get the "hadron gas", a vacuum phase with zero pressure. For a very small window

of temperature which decreases as µ is increased appears a 1st order phase order transition to the

broken chiral symmetry plasma phase with a non-zero tachyon. To greater temperatures chiral

symmetry is restored in the plasma via a 2nd order phase transition with vanishing tachyon.
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The way we get the transitions through pressure in our model is by considering different black

hole solutions with dilaton and tachyon hair. It is also worth noting that as T → 0 in the chiral

symmetric plasma phase the geometry turn out to be asymptotically AdS2 × R3 making the

entropy approach a finite value and not zero. It is speculated to lead to an instability which is

assumed to be because of the colours being locked in the Veneziano limit or even the existence of

a colour superconducting phase. This structure of the diagram is reasonable when compared to

the QCD phase diagram which was introduced earlier, giving us some confidence to consider our

model for specific regions in the diagram.

For the vectorial flavour singlet gauge field as : AL = AR = 1NfΦ(r)dt one gets the

following zeroth order DBI action :

S
(0)
DBI = −M3NcNf

∫
d5xVf0(λ)e−τ

2√
−det g

×
√

(1 + e−2A(r)f(r)κ(λ)(τ ′(r))2 − e−4A(r)w(λ)2(Φ′)2)
(61)

We should also see what kind of phases does V-QCD actually provide. As usual, we get the

different phases by applying different metrics which are the solutions. V-QCD has two solutions.

One is the thermal gas solution without a horizon and the other one is a black hole solution

with a horizon. Each of these two solution have one extra parameter to take into account that

gives rise to an extra phase. This parameter is the existence or not of a scalar tachyon hair, or

in simpler words nonzero bulk condensate of the field τ . Its existence or not determines the

breaking of the chiral symmetry breaking. With this in mind we can split the phases into four.

Although, previous studies [16], [11], [37] with a specific choice for potentials Vg, Vf , κ and w show

that only three are relevant :

• Tachyonic thermal gas solution : this is the confined phase of QCD where chiral symmetry

is broken for low T and µ.

• Tachyonless black hole solutions : here QCD is deconfined with chiral symmetry restored

for large T and µ.

• Tachyonless black hole solutions : in the intermediate values of T and µ this phase might be

present depending in the choices for the potentials. Quark matter is deconfined but chiral

symmetry is broken. This phase though does not appear in our work.

The above picture can be summarized in the following matrix :
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V-QCD phases

blackening factor f(r) = 1 blackening factor f(r) 6= 1

Thermal gas with τ(r) = 0 Black hole with τ(r) = 0

Thermal gas with τ(r) 6= 0 Black hole with τ(r) 6= 0
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4.4 Turning on Magnetic field and adding baryons in the V-QCD setup

The absence of baryons is realized as the zeroth order of the DBI action and considering the

vectorial flavour gauge field with magnetic field (B) turned on as :

AML = AMR =
(

Φ(r),−yB2 ,
xB

2 , 0, 0
)

(62)

By substituting this choice to calculate the field strength energy tensor (58), also calculate the

covariant derivative of the tachyon field (57) and also considering the metric (59) one puts them

altogether in (55) and (56) and after that calculates the determinant. In this manner, one gets

the zeroth order DBI action :

S
(0)
DBI = −M3NcNf

∫
d5xVf0(λ)e−τ

2√
−det g

√
(1 + e−4A(r)B2w(λ)2)

×
√

(1 + e−2A(r)f(r)κ(λ)(τ ′(r))2 − e−4A(r)w(λ)2(Φ′)2)
(63)

The zeroth order DBI action does not consider the existence of baryons. In order to

take them into account they will be added as small perturbations to the gauge field. In this sense

we separate the gauge field to Abelian and non-Abelian part :

AML = AMR =
(

Φ(r),−yB2 ,
xB

2 , 0, 0
)

+ ÂL/R(baryon) (64)

The order of the coordinates in the field strength energy tensor is t,x,y,z,r. After plugging in (64),

it has the following form :

FMN
L/R =



0 0 0 0 −Φ′(r)

0 0 B 0 0

0 −B 0 0 0

0 0 0 0 0

Φ′(r) 0 0 0 0


+ F̂L/R(baryon)

We effectively divide the gauge field into Φ and a flavour singlet part (i.e. the baryon), which is

not well defined for generic baryon fields. So we have to impose two consistency conditions to fix

this : ∫
d4xTr(F̂ (L)

rt + F̂
(R)
rt ) = 0∫

d4xTr(F̂ (L)
xy + F̂ (R)

xy ) = 0
(65)
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Now we move further by developing the radicands (55) and (56) as a series with respect to the

small gauge fields :

A
(L)
MN = gMN + κ(λ)δrMδrN (τ ′)2 + w(λ)(δrMδtN − δtMδrN )Φ′

+ w(λ)B(δxMδ
y
N − δ

y
Mδ

x
N ) + w(λ)F (L)

MN + κ(λ)τ2

2 (AMAN +ANAM )
(66)

where A = AL −AR and a similar identity holds for ARMN .

The effective metric when neglecting baryons is defined as :

g̃ ≡ gMN + κ(λ)δrMδrN (τ ′)2 + w(λ)(δrMδtN − δtMδrN )Φ′ + w(λ)B(δxMδ
y
N − δ

y
Mδ

x
N ) (67)

so that :

(g̃−1)MPA
(L)
PN = (g̃−1)MP g̃PN + w(λ)(g̃−1)PNF (L)

MN + κ(λ)τ2

2 (g̃−1)PN (APAN +ANAP ) =

δMN + w(λ)(g̃−1)MPF
(L)
PN + κ(λ)τ2

2 (g̃−1)MP (APAN +ANAP )

(68)

The way this is expanded is by using δMN = 1 and also setting these two variables :

ε1K1 = w(λ)(g̃−1)MPF
(L)
PN and (69)

ε2K2 = κ(λ)τ2

2 (g̃−1)MP (APAN +ANAP ) (70)

where :

ε1 = w(λ), ε2 = κ(λ) and

K1 = (g̃−1)MPF
(L)
PN , K2 = τ2

2 (g̃−1)MP (APAN +ANAP )
(71)

And after that we calculate the determinant using the following expansion :√
det[−(g̃−1)MPA

(L)
PN ] =

√
det(1 + εK) = eTr(log1+εK) =

eTr(εK−
1
2 ε

2K2)+... = 1 + Tr(εK)− 1
2Tr(εK)2 + 1

2(TrεK)2 + ...
(72)

The order of coordinates is again t,x,y,z,r and the effective metric g̃MP has the form :

−e2A(r)f(r) 0 0 0 −w(λ)Φ′(r)

0 e2A(r) Bw(λ) 0 0

0 −Bw(λ) e2A(r) 0 0

0 0 0 e2A(r)+2W (r) 0

w(λ)Φ′(r) 0 0 0 e2A(r)

f(r) + κ(λ)(τ ′)2


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and the inverse (g̃−1)MP is :
−e2A(r)+e−8A(r)(e4A(r)+B2w(λ)2)κ(λ)f(r)(τ ′)2

f(r)Ξ 0 0 0 − e
−4A(r)(1+B2w(λ)2e−4A(r))w(λ)Φ′(r)

Ξ

0 e2A(r)

e4A(r)+B2w(λ)2
−Bw(λ)

e4A(r)+B2w(λ)2 0 0

0 Bw(λ)
e4A(r)+B2w(λ)2

e2A(r)

e4A(r)+B2w(λ)2 0 0

0 0 0 e−2A(r)−2W (r) 0
e−4A(r)(1+B2w(λ)2e−4A(r))w(λ)Φ′(r)

Ξ 0 0 0 e2A(r)(1+B2w(λ)2e−4A(r))f(r)
Ξ


with Ξ being defined as :

Ξ = detg̃

detg
=

(1 + e−4A(r)B2w(λ)2)
(

1 + e−2A(r)κ(λ)f(r)(τ ′)2 − e−4A(r)w(λ)2(Φ′)2
) (73)

We now calculate the following term as it will be important for the calculation of
√
−detA(L/R) :

(g̃−1)MNF
(L)
NM = 2w(λ)Φ′

ζ
F

(L)
tr + 2Bw(λ)

e4A(r) +B2w2(λ)F
(L)
xy (74)

where ζ = e4A(r) + e2A(r)f(r)κ(λ)(τ ′)2 − w(λ)2(Φ′)2.

We can now write down the expression for the determinant :

√
−detA(L/R) =

√
−detg̃

(
1 + w(λ)

2

(
2w(λ)Φ′F (L/R)

tr Ξ−1e−8A(r)(e4A(r) +B2w(λ)2+

2Bw(λ)
e4A(r) +B2w(λ)2F

(L/R)
xy

)
+ κ(λ)τ2

2 (g̃−1)MN
s TrAMAN

− w(λ)2

4 Tr
(

(g̃−1)MN
s F

(L)
NP (g̃−1)PQs F

(L/R)
QM

)) (75)

At this point we are able to substitute this expression in the DBI action (54) in order to get the

leading order term which icludes the zeroth order term (S(0)
DBI) :

S
(1)
DBI = −M3NcTr

∫
d5xVf0(λ)e−τ

2√
−detg̃

(
1 + w2(λ)

2 Φ′Ξ−1e−8A(r)(e4A(r)

+B2w2(λ))(F (L)
tr + F

(R)
tr ) + Bw2(λ)

2(e4A(r) +B2w2(λ)) (F (L)
xy + F (R)

xy )

+ κ(λ)τ2

2 (g̃−1)MNAMAN −
w2(λ)

8 (g̃−1)MN
s (g̃−1)PQs (F (L)

NPF
(L)
QM + F

(R)
NP F

(R)
QM )

) (76)

By applying the consistency conditions (65) the action gets the final form :

S
(1)
DBI = −M3NcTr

∫
d5xVf0(λ)e−τ

2√
−detg̃

√
Ξ
(
κ(λ)τ2

2 (g̃−1)MNTrAMAN

− w(λ)2

8 (g̃−1)MN
s (g̃−1)PQs Tr(F (L)

NPF
(L)
QM + F

(R)
NP F

(R)
QM )

) (77)
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4.5 Chern - Simons terms

In the full action of the V-QCD model (60) we saw that the first term is responsible for the

behaviour of gluons and the DBI term is the realization of flavours through branes. The model

though also consists of a third term, namely SCS , where CS stands for Chern - Simons. This term

is crucial for our work, since via this term we will be able to identify the total baryon number

Nb and calculate the baryon charge ρ by making a specific approach which will be explained in

the next section. The 5-form Ω5 which appears in the definition of the SCS is responsible for

the baryon vertex in a similar manner as was discussed in section 3.4 and the quantities that we

mentioned above are going to be calculated via the coupling of Φ, B and fB (which will be defined

below). The SCS term has been studied extensively in [33] and the form Ω5 that we will use is

explained also in [14], so in this work we will merely use their results and follow their reasoning.

In these terms appears a potential Vα(λ, τ) which has some constraints. In the UV

(λ = τ = 0) its normalization must reproduce the correct axial anomaly and perturbative

corrections in λ must vanish due to the perturbative nonrenormalization of the anomaly. Also, in

the IR the contributions from the CS terms have to vanish faster than those coming from the

DBI. So the string motivated ansatz is the following : Vα(λ, τ) = e−bτ
2 for b > 1. Although, we

are going to set b = 1 for simplicity and it is going to be reintroduced later through τ .

The relevant term is given by [14] and is :

SCS = iNc
4π2

∫
Ω5 (78)
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where

Ω5 = 1
6Tre

−τ2

(
− iAL ∧ F (L) ∧ F (L) + 1

2AL ∧AL ∧AL ∧ F
(L)

+ i

10AL ∧AL ∧AL ∧AL ∧AL + iAR ∧ F (R) ∧ F (R) − 1
2AR ∧AR ∧AR ∧ F

(R)

− i

10AR ∧AR ∧AR ∧AR ∧AR + τ2[iAL ∧ F (R) ∧ F (R) − iAR ∧ F (L) ∧ F (L)

+ i

2(AL −AR) ∧ (F (L) ∧ F (R) + F (R) ∧ F (L)) + 1
2AL ∧AL ∧AL ∧ F

(L)

− 1
2AR ∧AR ∧AR ∧ F

(R) + i

10AL ∧AL ∧AL ∧AL ∧AL

− i

10AR ∧AR ∧AR ∧AR ∧AR
]

+ iτ3dτ ∧
[
(AL ∧AR −AR ∧AL) ∧ (F (L) + F (R)) + iAL ∧AL ∧AL ∧AR

− i

2AL ∧AR ∧AL ∧AR + iAL ∧AR ∧AL ∧AR
]

+ i

20τ
4(AL −AR) ∧ (AL −AR) ∧ (AL −AR) ∧ (AL −AR) ∧ (AL −AR)

)

(79)

Following the work of [3] we want to extract the coupling between the solitonic components, Φ,

fB and B by substituting AL/R → Φdt− yB
2 dx+ xB

2 dy+AL/R and after that collect the coupling

terms. For simplicity of calculations we have introduced the term fB = −y2dx+ x
2dy and we also

add two total derivative terms (which are given in the appendix) to get to :

Ω̃5 = Ω5Φ=0 + 1
30Φdt ∧H(Φ)

4 + 1
30BfB ∧H

(B)
4 + 1

30BΦdt ∧ dfB ∧H2 (80)

where

eτ
2
H

(Φ)
4 = Tr

(
− 3iF (L) ∧ F (L) + 3iF (R) ∧ F (R) + 6iτdτ ∧ (AL −AR) ∧ (F (L) + F (R))

+ 3τ2(AL −AR) ∧ (AL −AR) ∧ (F (L) − F (R))

+ τ3dτ ∧ (−4iAL ∧ F (R) + 4iAR ∧ F (L) +AR ∧AL ∧AL

− 2AR ∧AR ∧AL − 2AL ∧AL ∧AL + 2AR ∧AR ∧AR)
)

(81)

The additional terms that appear in (80) are another 4-form H
(B)
4 and a 2-form H2 whose full

form is similar to (81) and are going to be given explicitly in the appendix. In this calculation

the following exterior algebra rules for the forms were applied :

• fB ∧ fB = (−ydx+ xdy) ∧ (−ydx+ xdy) = 0

• dτ ∧ dΦ = 0
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• dfB ∧ dfB = (2dx ∧ dy) ∧ (2dx ∧ dy) = 0

• dτ ∧ fB = (∂µτdxµ) ∧ (−ydx+ xdy) = −y∂rτ(r)dr ∧ dx+ x∂rτ(r)dr ∧ dy

• dΦ ∧ dfB = (∂µΦdxµ) ∧ (2dx ∧ dy) = 2∂rΦ(r)dr ∧ dx ∧ dy

• fB ∧ dfB = 0

• dτ ∧ dfB = (∂µτdxµ) ∧ (2dx ∧ dy) = 2∂rτ(r)dr ∧ dx ∧ dy

• dΦ ∧ fB = −y∂rΦ(r)dr ∧ dx+ x∂rΦ(r)dr ∧ dy

By applying these rules and imposing our homogeneous ansatz (as is going to be explained

later) on the derivative terms of H(B)
4 and H2, we see that fB ∧H(B)

4 and dt∧ dfB ∧H2 evaluate

to zero. This is not the case for dt ∧H(Φ)
4 . It is closed and exact, dH(Φ)

4 = 0. Hence, we move on

taking into account only the term H
(Φ)
4 which is :

eτ
2
Φ ∧H(Φ)

4 = Tr
(
− 15iΦ ∧ F (L) ∧ F (L) + 15iΦ ∧ F (R) ∧ F (R) + 15τ2Φ ∧AL ∧AL ∧ F (L)

− 15τ2Φ ∧AL ∧AL ∧ F (R) − 15τ2Φ ∧AL ∧AR ∧ F (L) + 15τ2Φ ∧AL ∧AR ∧ F (R)

+ 15τ2Φ ∧ATL ∧ATR ∧ F (L)T − 15τ2Φ ∧ATL ∧ATR ∧ F (R)T + 15τ2Φ ∧AR ∧AR ∧ F (L)

− 15τ2Φ ∧AR ∧AR ∧ F (R) + 8iΦ ∧AL ∧AL ∧AL ∧AL + 8iτ2Φ ∧AL ∧AL ∧AL ∧AL

− 8iΦ ∧AR ∧AR ∧AR ∧AR − 8iτ2Φ ∧AR ∧AR ∧AR ∧AR + 30iτΦ ∧ dτ ∧AL ∧ F (L)

+ 30iτΦ ∧ dτ ∧AL ∧ F (R) − 30iτΦ ∧ dτ ∧AR ∧ F (L) − 30iτΦ ∧ dτ ∧AR ∧ F (R)

− 10τ3Φ ∧ dτ ∧AL ∧AL ∧AL + 30τ3Φ ∧ dτ ∧AL ∧AL ∧AR

− 30τ3Φ ∧ dτ ∧AL ∧AR ∧AR + 10τ3Φ ∧ dτ ∧AR ∧AR ∧AR
)

(82)

The total charge density is defined as :

ρ = −δSV−QCD
δΦ′ |bdry =

∫
dr
δSV−QCD

δΦ (83)

where the equations of motion for Φ are used, which is why the baryon charge is given by the

coupling to Φ in the CS action :

NcNb =
∫
drd3x

δSCS
δΦ = iNc

24π2

∫
H

(Φ)
4 (84)

with Nb being the total baryon number. At this point it becomes clear that the integral above

includes non-Abelian terms (AL, AR, F (L), F (R)) that we do not know how to substitute. Our
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idea is to use an approximations for these terms in order to include baryons. This approximation

will attempt to describe them in a specific way so we can continue with our calculations. For this

to be achieved an ansatz is going to be made, which is motivated the next section.



45

5 Baryons from a homogeneous bulk gauge field in V-QCD

Before jumping into the calculations we should first analyze the idea of baryons in general and

then the approximation which will be used. Our goal is to realize how the magnetic field affects

the baryons in the context of cold QCD described by V-QCD. Historically, baryons are being

included in top-down approaches in various ways. A D-brane that joins Nc open strings gives

a baryon vertex and the baryon number is provided through the Chern-Simons terms by the

coupling of a five-form as discussed earlier. In effective holographic theories though, baryons

have been implemented using the Witten-Sakai-Sugimoto (WSS) top-down model [23], in which

they were approached as small solitons in the beginning and then it was generalized to include

contributions beyond this approach. When one tries to be more specific, namely wants to study

baryons for high values of µb and low T in the QCD phase diagram, homogeneous approximations

have been made before in the WSS model but also in probe branes. In terms of the holographic

dictionary, one can see that dense baryonic QCD matter is dual to configurations with a high

density of solitons so it makes sense to

The way we are going to approach the baryons in this work is the following. To simplify

the analysis we will consider the baryon configuration to be homogeneous in spatial directions,

working also in an isospin symmetric setup neglecting the effects due to light quark masses. Our

ansatz enjoys a SU(2) flavour symmetry in the spatial components of the non-Abelian flavour

gauge field and it is on top of a fixed thermal gas gravitational backgound. The baryon density is

given again from the Chern-Simons terms. The whole bulk will be filled with the homogeneous

baryon field h(r) (system with a high density of baryons), but there will be a region that the

solution there is highly inhomogeneous and will be modeled through a discontinuity. One can

also see this in the superstring theory picture. Namely, the whole bulk is filled in a homogeneous

way with N D4 − branes with each one giving a baryon charge because of their coupling. We are

assuming that the baryon (or soliton) centers are at some point rc. This specific point is hard to

solve analytically. So what we are doing is that we assume that there is a localized discontinuity

of the h(r) field at a very specific and narrow "line" at rc which since we consider small we don’t

take it into account. The baryon field though in the rest of the bulk is homogeneous, giving us

the impression of having "tails" for each soliton. In this context we can solve for equations of

motion for the rest of the bulk by varying with respect to rc and minimizing the action there.

Hence, in the r-direction there will be three regions splitted by the "soliton centers" in rc :
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• r � rc : the region close to the boundary is well described by the homogeneous baryon

field.

• r ∼ rc : here is where the discontinuity lies making the configuration highly inhomogeneous

and nontrivial.

• r � rc : the region close to the IR is again well described by the homogeneous baryon field.

This can also be seen graphically in the following drawing (10) :

Figure 10: Homogeneous ansatz, where we assume that soliton centers are located in a narrow

highly inhomegeneous area but the rest of space is homogeneous.

One can safely assume in this context that when the density of baryons is taken to be

very high, like in our case, then the small area that produces the inhomogeneity in the middle of

the bulk should not affect the main characteristics of the QCD phase diagram.
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5.1 Setup

At this point we will introduce our ansatz which will be plugged into the DBI action that is

known only up to first order for non-Abelian gauge fields and also the Chern-Simons part of the

action. The ansatz is SU(2) solitons in the thermal gas background, namely the non-Abelial part

of the gauge field which respects chiral symmetry and parity [19], [20] :

AiL = −AiR = h(r)σi (85)

In order to get the baryon charge we must calculate
∫
dt ∧H(Φ)

4 :∫
dt ∧H(Φ)

4 = 48i
∫
d5x

d

dr
[e−bτ

2(r)h3(r)(1− 2bτ2(r))] (86)

where the coefficient b has been rescaled back in τ and h(r) is the baryon field. The problem

is that the UV and IR contributions vanish giving us zero total derivative boundary terms and

baryon density. More specifically, the tachyon sets the action to zero in the IR and h(r) vanishes

in the UV. The way to come around is through the discontinuity of h(r) in the region in between

which gives nonzero baryon density. Plugging in the ansatz in S(1)
DBI and considering SCS we get

the full action :

Sh = S
(0)
DBI + S

(1)
DBI + SCS =

− 2M3Nc

∫
d5xVf0(λ)e−τ(r)2

e5A(r)+W (r)
√

Ξ
(

1 + 2e−4A(r)−2W (r)(e2W (r) + 2Q2)w(λ)2h4(r)
Q4

+ 2e−2A(r)−2W (r)(2e2W (r) +Q2)τ2κ(λ)h2(r)
Q2 + e−4A(r)−2W (r)(2e2W (r) +Q2)w(λ)2f(r)h′(r)2

2Ξ

)
− 2Nc

π2

∫
d5x

d

dr
[e−bτ

2(r)h3(r)(1− 2bτ2(r))]

(87)

where Ξ when introducing (88) has the form : Ξ = Q2(G2 − e−4A(r)w(λ)2(Φ′)2).
Also:

Q2 = 1 + w(λ)2B2e−4A(r)

G2 = 1 + e−2A(r)f(r)κ(λ)(τ(r)′)2
(88)

The action we just presented is trusted only far away from r = rc, where h(r) is not discontinuous.

We ignore the singular contributions that arise from the h′(r) terms by treating the our integrals

in the following manner :∫ ∞
0

dr →

(∫ r−c

0
+
∫ ∞
r+
c

)
dr ≡ lim

ε→0+

(∫ rc−ε

0
+
∫ ∞
rc+ε

)
dr (89)
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From this action (87) the charge density can be derived. Note that there is a Φ′ dependency in Ξ.

So:

ρ = −δSh
δΦ′ = −Vρe

W (r)e−4A(r)Q2w2Φ′√
Ξ

(90)

where

Vρ = 2M3NcVf0(λ)e−τ(r)2
e5A(r) (91)

The only part of the full action depending on Φ is the Scs term. Hence, using the Φ equation of

motion we have :

ρ′ = − d

dr

δSh
δΦ′ = −δSh

δΦ = 2Nc
π2

d

dr
[e−bτ

2
h3(1− 2bτ2)] (92)

except again the point r = rc where h is discontinuous. Also, for ρ :

ρ =


%+ 2Nc

π2 [e−bτ2
h3(1− 2bτ2)], (r < rc)

2Nc
π2 [e−bτ2

h3(1− 2bτ2)], (r > rc)

where % is the density at the boundary (i.e. the physical baryon density) and can be written in

terms of the discontinuity :

% = 2Nc
π2 e−bτ(rc)2

(1− 2bτ(rc)2) Disch3(rc) (93)

where the discontinuity is defined as :

Disc g(r) ≡ lim
ε→0+

(
g(r + ε)− g(r − ε)

)
(94)

Our goal for future work is to introduce a more generalized and sophisticated anstatz. This is the

following :

A1
L = −A1

R = h(r)g(r)σ1

A2
L = −A2

R = h(r)g(r)σ2

A3
L = −A3

R = h(r)
g2(r)σ

3

(95)

We know use a more generalized function in the direction of the magnetic field and the goal

is to perform the same numerical analysis as will be done later and conclude whether we can
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indeed generalize this ansatz or not. This specific ansatz is not worked out fully yet. However,

we have plugged it in the Chern - Simons terms introduced in the previous chapter and the result

is encouraging. An analogue to (86) is the following by performing the same calculations but

using (95) this time :∫
dt ∧H(Φ)

4 = 48i
∫
d5x

d

dr
[e−bτ

2(r)(h3(r)− 2h3(r)bτ2(r))] (96)

This is a good result because the baryon charge can still be written in terms of a total derivative.

This allows us to continue further in the numerical analysis. We will not consider this ansatz in

the rest of this thesis, though. We will only work with (85) from now on.
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5.2 Grand potential

In this section follows the calculation of the Grand potential. According to our approximation,

solitons exist at the discontinuity located at rc. We are going to find that specific point by

minimizing the action that we derived above while keeping the physical baryon density fixed. A

soliton in the r-direction in the CS term can be written as :

SCS '
iNc
24π2 Φ(rb)

∫
dt ∧H(Φ)

4 (97)

This is true because the other forms H(B)
4 and H2 evaluate to zero at the homogeneous ansatz

that we are considering. Moreover, we can see that field Φ is simply coupled leading us to baryons

carrying a fixed charge. Hence, we consider % in (93) fixed. Since also H(Φ)
4 is exact, the integral

becomes a boundary term, which suggests that the quantization can be read off by inserting the

asymptotic form of the soliton solution in this expression. This leads the discontinuity to diverge

at rc being too deep in the IR and also at rc where 2bτ2(rc)2 = 1. The free energy and the DBI

action diverge as well at this point preventing the baryon from falling in the IR. Another fact

that comes up when considering fixed charge baryons, is that we should work on the canonical

ensemble by performing a Legendre transformation :

S̃h = Sh −
∫
d4xΦ(0)ρ(0) = Sh +

∫
d5x

d

dr
[Φρ] (98)

and since at r = rc the CS terms become : Scs =
∫
d5xΦρ′ we get :

S̃h = SDBI +
∫
d5xΦ′ρ (99)

The next step is to find Φ′ by inverting the charge density (90) and plugging it into (99). There is

a little trick to get Φ′ expression. Namely, we should recall that we are working in an expansion

of the original DBI action at small amplitudes of F (L/R). So when expanding to get Φ′ we ignore

higher powers of h. After considering all this we have :

Φ′ = − e4A(r)Gρ

w
√
e2W (r)Q2V 2

ρ w
2 + e4A(r)ρ2

(
1−

2e−4A(r)(e2W (r) + 2Q2)V 2
ρ w

4h4(r)
Q2(e2W (r)Q2V 2

ρ w
2 + e4A(r)ρ2)

−
2e−2A(r)(2e2W (r) +Q2)V 2

ρ w
2τ2κ(λ)h2(r)

e2W (r)Q2V 2
ρ w

2 + e4A(r)ρ2 + e−4A(r)−2W (r)(2e2W (r) +Q2)w2f(r)h′2(r)
2G2Q2

)
(100)
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Now we can write down the final action where Q and G are defined in (88) and Vρ in (91) :

S̃h = −
∫
d5xVρG

√
e2W (r)Q2 + ρ2

(Vρwe−2A(r))2

(
1 +

2e4A(r)(e2W (r) + 2Q2)V 2
ρ w

4h4(r)
Q2(e2W (r)Q2V 2

ρ w
2 + e4A(r)ρ2) +

2e−2A(r)(2e2W (r) +Q2)V 2
ρ w

2τ2κ(λ)h2(r)
e2W (r)Q2V 2

ρ w
2 + e−4A(r)ρ2 + e−4A(r)−2W (r)(2e2W (r) +Q2)w2f(r)h′2(r)

2G2Q2

) (101)

Numerical analysis

From these equations we are now able to extract the Lagrangian and then calculate the

equations of motion for h(r). They admit two types of solutions, namely black hole and thermal

gas solutions. For our numerical analysis, we need to construct the confining background first

(the metric and the scalars) which is generated by shooting from the IR. This is achieved by

considering the equations of motion and boundary conditions of the background fields A, f, λ,

and τ [3]. Then we insert the background in (101) and we solve the resulting equations of motion

for h(r). This numerical procedure has been done before and is explained in detail in [11]. We

have to get rid of the divergences that appear in the action though. These exist in the dilaton

gravity part and in the zeroth order DBI action S(0)
DBI (i.e. thermal gas background). We do not

perform a regularization in the standard manner. We rather evaluate the difference between the

full baryon action S̃h and the thermal gas background with zero baryon charge S(0)
DBI . In this

way, the divergences cancel trivially and exactly against the same terms for the reference solution

i.e. the thermal gas background.

The location of rc is computed numerically and not analytically as well. The way this is

achieved is by minimizing the action we derived with respect to rc and C2. C2 is the free parameter

rising through the asymptotics of the h(r) field that we introduced via our ansatz. In more detail,

we insert the standard UV behaviour and solving for h(r) we get the form : h(r) ' C1 +C2r. By

using the holographic dictionary, we see that C1 is associated with non-Abelian sources which is

unphysical. So, we set C1 = 0. This is the reason why when we minimize the action numerically,

the only free parameters we minimize with respect to are rc and C2. When we inspect the IR

asymptotics, h = 0 is an exact solution to the action and this is the one we consider since we have

checked that the solution in the IR region (r > rc) simply vanishes. Also, we must keep in mind

that we treat the action in basically two independent parts. This is because of the discontinuity.

Namely, the Lagrangian density is split into two pieces for r < rc and r > rc which are treated

separately in absence of the delta function at rc.
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With this procedure we are able to compute the on-shell action directly, with which we

calculate the Free energy that is defined through the following relation :

F =
[
S̃h
]
on−shell (102)

Although, we do not have the expression for the Grand potential just yet. By integrating the final

action we get the Free energy of the system. The Grand potential which is equal to minus the

pressure, comes from Legendre transforming back (103). There results will be used to construct

all the subsequent diagrams.

Ω =
[
Sh
]
on−shell (103)
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5.3 The h(r) field potentials

In the numerical analysis we work in the in the probe limit, constructing the thermal gas

background solutions [29], without including baryons and by setting the quark mass to zero. The

potentials used in our analysis for the h(r) field and the background fields are the following [3] :

Vg(λ) = 12
(

1 + V1λ+ V2λ
2

1 + λ/λ0
+ VIRe

−λ0/λ(λ/λ0)4/3
√

log(1 + λ/λ0

)
Vf0(λ) = W0 +W1λ+ W2λ

2

1 + λ/λ0
+WIRe

−λ0/λ(λ/λ0)2

1
κ(λ) = κ0

(
1 + κ1λ+ κ̄0

(
1 + κ̄1λ0

λ

)
e−λ0/λ

(λ/λ0)4/3√
log(1 + λ/λ0)

) (104)

where the UV parameters are :

V1 = 11
27π2 , V2 = 4619

46656π4 ,

κ0 = 3
2 −

W0

8 , W1 = 8 + 3W0

9π2 , W2 = 6488 + 999W0

15552π4 and W0 = 2.5
(105)

And for the glue sector potential the parameters are :

λ0 = 8π2

3 and VIR = 2.05 (106)

All these numbers were chosen to correspond data from lattice studies [32] and studies of the

thermodynamics of pure Yang-Mills theory [35], [37]. In [37] the "potentials 7a" is constructed.

the w(λ) potential is chosen :

1
w(λ) = w0

(
1 + w̄0e

−λ̂0/λ
(λ/λ̂0)4/3

log(1 + λ/λ̂0)

)
(107)

the UV parameters in this case are :

κ1 = 11
24π2 , W0 = 2.5, w0 = 1.28, M3 = 1.321 + 7/4

45π2l3
,

and l is the AdS radius, l = (1− 2.5/12)−1/2
(108)

Finally, the IR parameters are the following :

WIR = 0.9, κ̄0 = 1.8, κ̄1 = −0.23,

λ̂0 = 8π2/1.18, w̄0 = 1.8
(109)
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5.4 Neutron Stars

Neutron stars are the densest and smallest stars that we have observed, not taking into account

objects like black holes, quark stars, strange stars and white holes. They are the result of the

collapse of a very massive star (order of 4 - 8 M�). Using theoretical and observational data,

the actual neutron star mass that is produced is at least 1.1 M� with an upper value of 2.16

M�. Although, in the window between 1.1 to 1.39 M� the star in consideration is very likely to

be a white dwarf as well. Although the work in [40] does not discuss the mass limits strictly, it

provides a mass spectrum candidate as can also be seen in the figure (11). Apart from that, the

radius is of the order of 10 kilometers. These information gives us a hint on what to expect from

a neutron star created from our model, if V-QCD has any chance to be realistic after all.

Their formation is an interesting process. Let’s consider the Hertzsprung–Russell diagram

which is a plot of luminosity against the colour of the stars ranging from the high-temperature

blue-white stars on the left side of the diagram to the low temperature red stars on the right

side. Any star in that figure with mass > 8 M� is a possible candidate. During the end of the

star life cycle, its gravitational collapse is being halted by neutron-degeneracy pressure combined

with strong force repulsion. However, this is a dynamical and violent procedure which leads to a

supernova explosion. If the remnant mass of the resulting core of this explosion is larger than 3

M� then it collapses further to a black hole. If not, then a neutron star is formed.

Holographic QCD is a very interesting way to connect with neutron star current research,

as it provides a more fundamental theoretical model that describes the dynamics of the constituents

of neutron stars. With a holographic model like this in hand, one is able to produce a neutron

star Equation of State candidate and test the results with current data. Actually, one can go even

further and create the merger of binary neutron stars and analyze the spectral properties of their

gravitational waveforms [38]. This is very exciting especially in this time, when gravitational

waves have been detected for the first time in 2015 and more and more people are working on it

ever since. This means that theorists can collaborate with experimentalists to combine tools like

the AdS/CFT correspondence with data from gravitational waves detectors and find the elusive

equation of state for neutron stars.
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Figure 11: Taken from [40]. Measured and estimated masses of neutron stars.
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6 Results and Conclusion

In this final chapter, we are going to present the results of our theory including the results for

neutron stars. In more detail, we will present and use the Grand potential results for different

values of the magnetic field and solve the Tomlan-Oppenheimer-Volkoff (TOV) equation. With

this we will construct a Mass/Radius curve and check whether our model produces a realistic

neutron star or not. We will also calculate more thermodynamic quantities and finally our

thoughts will be summed up alongside ideas for future work.
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6.1 Grand potential result

In figure (12) that follows we present the Grand potential with respect to chemical potential for

different values of the magnetic field.

Figure 12: Grand Potential over chemical potential. The critical value of µ where our system

shifts from the thermal gas to the baryonic phase increases with higher vaues of B.

We observe that the critical value of µ where our system shifts from the thermal gas phase to

the baryonic, increases. This might indicate that baryons become more massive when a constant

magnetic field is applied in the backgound. By using multiple data points from our numerical

approach, we construct a phase diagram (13) of the critical values of µ with respect to the

magnetic field. Again, it describes the shift from the thermal gas to the baryonic phase.
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Figure 13: The curve depicts the critical values of µ, where the system goes through the phase

transition.
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6.2 Speed of sound

We also calculate the speed of sound in the direction of the magnetic field of our system [12]. We

begin from the first law of thermodynamics written in the following form :

−dp = −sdT − ndµ−MdB (110)

where p is the pressure, s is the entropy density, T is the temperature, n is the number density, µ

is the chemical potential, M is the magnetization and B is the magnetic field. Then we solve for

the speed of sound by using the definition :

c2s = dp/dε (111)

where ε is the energy density. The formula we arrive in this manner and we use for our graph is :

c2s = −
∂p
∂µ |B

µ ∂
2p
∂µ2 |B +B ∂2p

∂µ∂B

(112)

For this calculation, we used the free energy we found in the previous section in order to calculate

the terms −∂p∂µ |B and µ−∂
2p

∂µ2 |B for different values of B. Although, because of the way our

numerics work we were not able to calculate directly the derivative with respect to B of the free

energy for the term B −∂
2p

∂µ∂B . In order to overcome this obstacle we created a free energy function

using B as free parameter, by creating multiple data points for different values of B and then

fitting these point to the desired function. Hence, we were able to create the following figure that

compares the speed of sound for different values of B.

We can see in figure (14), that by increasing the value of the background constant

magnetic field the speed of sound drops. This leads us to conclude that the equation of state

becomes stiff with respect to the application of the magnetic field.



Figure 14: Speed of sound drops for larger values of the magnetic field.
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6.3 Nuclear Saturation Density

We also calculate the nuclear saturation density (ns) of our system which is simply defined as
dp
dµ |B evaluated at the transition from the thermal gas phase to the baryonic phase as a function

of B. We use our numerical analysis to produce points from B=0 to B=3 with a 0.1 step. Apart

from that we also use the 0.25, 0.75, 1.25, 1.75, 2.25, 2.75 extra points for better accuracy. The

resulting figure is the following :

0.5 1.0 1.5 2.0 2.5

μ
c

Λ

0.22

0.24

0.26

0.28

n
s

Λ3

Nuclear Saturation Density

Figure 15: Nuclear Saturation Density increases with magnetic field.

From this diagram it is also obvious that by applying a constant magnetic field in the

background the nuclear saturation density also increases. We stop at the value of B = 2.5 because

for greater values than this our numerics break down. Although, the trend is pretty obvious.
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6.4 Tomlan-Oppenheimer-Volkoff (TOV) equation and M/R curve

From General Relativity we know [36] that the TOV equation comes from considering a general

static, spherically symmetric metric. We are then looking for non-vacuum solutions, which

is achieved by considering the star interior as a perfect fluid in the energy-momentum tensor

in the Einstein equations. Then, we arrive to an expression of the mass within a radius R,

which is the integral of the energy density over the stellar interior. By taking into account the

energy-momentum conservation we finally arrive to the TOV equation :

dp

dr
= − (ε+ p)[Gm(r) + 4πGr3p]

r[r − 2Gm(r)] (113)

We have also arrived to an Equation of State from V-QCD which is of the form :

ε(p) = F (µ) + µn+BM (114)

where ε is the energy density, F is the free energy, µ is the chemical potential, n is the number

density, B is the magnetic field and M is the magnetization. So, by combining these 2 equations

we are able to get the M/R curve (16) for a holographic neutron star.

We can clearly see that while increasing the magnetic field, the neutron star becomes

smaller. Taking into account also, that baryons appear to become more massive, we can assume

that the neutron star becomes denser as well. We have to mention that a slight rescale of pressure

had to be done in the end of our calculations in order to match the realistic values of neutron

stars radii. Our initial radius for B = 0 was of the order of 18.5 km so + 7.5 km of the real

value. The same rescaling was done for B = 1, B = 2 and B = 3. We do not consider this small

rescale though as problematic as it amounts to refitting the normalization factors of the baryon

action which is explained in [38]. This happens because our model is a bottom-up model as is

already mentioned, which means that better and more accurate potentials can be chosen and

give us more realistic results. In addition, radii go to zero at small mass because we don’t have a

realistic model for the neutron star crust. The crust is weakly coupled physics at lower density

so holography is not directly useful for it, at least with the homogeneous approach. The results

we have right now, we consider very encouraging. We also see that for B = 3 the curve is weird.

This happens because our numerical method breaks down for values greater than 2.65 for B. We

include the curve though just to show the trend.



Figure 16: Mass/Radius curve for different values of the external magnetic field.
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6.5 Conclusion

Summing up this thesis project, we considered nuclear matter in the presence of a constant

background magnetic field in a holographic model using simple approximations (i.e. the

homogeneous ansatz). We performed numerical analysis and we arrived to data for the free energy

of the system. We then used this data to acquire an equation of state which we used to solve the

TOV equations. Hence, we arrived to results for thermodynamic quantities and neutron stars.

We found :

• Critical µc, on which the system goes from a thermal gas to a baryonic state increases with

B.

• Speed of sound decreases with B.

• Nuclear saturation density increases with B.

• Neutron Stars appear to become denser and smaller with increasing B.

Our goal for future work is to continue our work on the more generalized and sophisticated ansatz

(95). We believe that numerical analysis which will be done in the near future, will put us in the

position to generalize our results or at least improve them.
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A Forms in Chern-Simons terms

In section 4.5 we encountered the redefined Ω̃5 5-form (80). In this equation there appeared

two 4-forms H(Φ)
4 , H(B)

4 and one 2-form H2. H(Φ)
4 was defined in the text but the rest were not

explicitly stated because when evaluating the wedge product with fB using our ansatz (85), they

were zero. For completeness, we give their form here :

eτ
2
fB ∧H(B)

4 = Tr
(
− 15ifB ∧ F (L) ∧ F (L) + 15ifB ∧ F (R) ∧ F (R) + 15τ2fB ∧AL ∧AL ∧ F (L)

− 15τ2fB ∧AL ∧AL ∧ F (R) − 15τ2fB ∧AL ∧AR ∧ F (L) + 15τ2fB ∧AL ∧AR ∧ F (R)

+ 15τ2fB ∧ATL ∧ATR ∧ F (L)T − 15τ2fB ∧ATL ∧ATR ∧ F (R)T + 15τ2fB ∧AR ∧AR ∧ F (L)

− 15τ2fB ∧AR ∧AR ∧ F (R) + 8ifB ∧AL ∧AL ∧AL ∧AL + 8iτ2fB ∧AL ∧AL ∧AL ∧AL

− 8ifB ∧AR ∧AR ∧AR ∧AR − 8iτ2fB ∧AR ∧AR ∧AR ∧AR + 30iτfB ∧ dτ ∧AL ∧ F (L)

+ 30iτfB ∧ dτ ∧AL ∧ F (R) − 30iτfB ∧ dτ ∧AR ∧ F (L) − 30iτfB ∧ dτ ∧AR ∧ F (R)

− 10τ3fB ∧ dτ ∧AL ∧AL ∧AL + 30τ3fB ∧ dτ ∧AL ∧AL ∧AR

− 30τ3fB ∧ dτ ∧AL ∧AR ∧AR + 10τ3fB ∧ dτ ∧AR ∧AR ∧AR
)

(115)

which turns out to be the same as H(Φ)
4 but this time it is wedged with fB which is why it is

zero. H2 is :

eτ
2
H2 = Tr

(
− 30iF (L) + 30iF (R) + 15AL ∧AL − 15τ2AL ∧AL

− 15AR ∧AR + 15τ2AR ∧AR + 20iτ3F (L) − 20iτ3F (R) − 5τ3AL ∧AL

+ 5τ3AR ∧AR + 60iAL − 20iτ3AL − 60iτAR + 20iτ3AR

) (116)
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