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Abstract

Since the inception of quantum anomalies in the 1960’s, the topic has come
to be generally quite well-understood. Nonetheless, it is still not clear how
exactly anomalous effects can be observed on a macroscopic scale within the
context of particle physics. Through hydrodynamic considerations, one finds
that certain anomalies could macroscopically produce what is known as anoma-
lous response, a process giving rise to P-odd, T -even transport phenomena.
The associated anomalous conductivities have been computed in the absence of
dynamical gluons using a variety of approaches, which have lead to the belief
that the conductivities obey a universality restriction. We attempt to compute
radiative corrections to such universal values by including dynamical gluons
within the setting of the quark gluon plasma. Due to the difficulty of studying
quantum chromodynamics using perturbation theory, we compute the conduc-
tivities using a holographic model, namely V-QCD. Our model recovers the
universal values of the conductivities in the absence of dynamical gluons. After
including such dynamical effects, we observe no radiative corrections to the Chi-
ral Magnetic Effect or Chiral Vortical Effect. However, we find that the Chiral
Separation Effect does recieve radiative corrections.
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Chapter 1

Introduction

Noether’s theorem says something very deep, yet simple about symmetry. While
the connection it provides between the symmetries of a physical system and con-
served quantites can be understood by a high school student, its consequences
for quantum systems are much more subtle. It turns out that symmetries that
are respected classically are not always so lucky upon quantization. We will
now specify as to what exactly is meant by this.

In even spacetime dimensions the Lorentz group has two unitarily inequiva-
lent spinor representations, giving rise to the notion of chirality. On a classical
level Noether’s theorem implies that for a chirally symmetric theory, i.e a the-
ory with massless fermions, there exists an associated conserved axial current.
However, one has to be mindful when considering chiral transformations in the
quantized theory. In particular, one finds that the path integral picks up a non
trivial Jacobian under chiral transformations, which implies the presence of a
chiral anomaly.

As long as we are speaking of a global symmetry there is no issue and
the anomaly is nothing more than a feature of the quantum theory. Indeed,
the existence of chiral anomalies in particle physics is experimentally validated
by the observation of a neutral pion decaying into two photons [1], a process,
which is prohibited by the classical theory. Be that as it may, the gauging of an
anomalous symmetry leads to a violation of unitarity. Consequently, anomaly
cancellation is imposed on gauge theories, which in the case of the standard
model greatly contrains its fermion content.

The goal of this thesis is to study possible macroscopic manifestations of
quantum anomalies, specifically in systems possessing chiral fermions. Through
the study of parity-odd (P-odd), time reversal-even(T -even) transport in the
context of hydrodynamics, one identifies a plethora of so-called anomalous con-
ductivites giving rise to what is known as anomalous transport. Anomalous
transport phenomena are thought to play role in many different fields of physics.
In condensed matter, they are relevant in the study of Dirac and Weyl semimet-
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Figure 1.1: Illustration of the creation of the QGP taken from [2]. Relativistic
heavy ions are collided producing hot QCD matter, which is penetrated by a
strong magnetic field, H.

als [3]. It has been suggested in astrophysics that anomalous transport is re-
sponsible for the sudden acceleration of neutron starts at birth [4], known as
neutron star kicks. Furthermore, such phenomena have been invoked [5] in an
attempt to explain charge asymmetries in the final state of heavy ion collisions
[6]. It is the latter example, which we will focus on in this thesis.

The sole existence of a quantum anomaly is not enough to produce anoma-
lous transport; it is necessary that we consider our theory of interest on a chiral
medium. This provides a hint as to why we might observe anomalous trans-
port in the quark gluon plasma (QGP), the phase of quantum chromodynamics
(QCD) where deconfined quarks can be modelled as a chiral fluid. As shown
in Fig 1.1, experimental access to the QGP is provided by the collisions of rel-
ativistic heavy ions. If the impact parameter in non-zero, an intense magnetic
field will be created that is aligned, on average orthogonal to the reaction plane.

Strongly coupled gauge theories such as QCD are notoriously difficult to
work with using perturbative methods. Therefore, it is necessary to make use
of nonperturbative techniques. A prime example of the latter is holography,
which has been identified as an important tool in studying anomalous transport
phenomena [7], [8]. In this thesis, we will make use of holography to compute
anomalous conductivities in the presence of dynamical gluons. The thesis is
outlined as follows.

In Chapter 2, we will discuss how anomalous transport arises in the context
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hydrodynamics. We will also define the individual chiral conductivities and list
their universal values. Chapter 3 will firstly review anomalies from a microscopic
perspective before qualatively explaining the macroscopic anomalous effects in
a QGP background. We will use 4 to introduce holography and specifically,
the AdS/CFT correspondence. Moreover, we will define a holographic model,
which we use to study the QGP, namely V-QCD.

The final two chapters will consist of the results. In particular, Chapter 5
will contain details of the holographic background to be considered. In addition,
we will note the consequences of the inclusion of a massive vector field in the
bulk theory. Linear response will then be performed on this background in
Chapter 6 and the relevant anomalous conductivities will be computed. Lastly,
a conclusion and outlook section 7 are included summarizing the work of the
thesis and suggesting future research directions.
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Chapter 2

Hydrodynamics

Laboratory experiments are often performed by perturbing some equilibrated
system with an external source, ΦA0 coupled to an operator OB , before observing
said response δ〈OB〉 to such a perturbation. Through linear response theory,
we study such a response at linear order in the external source [9]. In Fourier
space, this is expressed as

δ〈OB〉 = GBAR ΦA0 , (2.1)

where GBAR is the retarded Green’s function

GBAR (k) = −i
∫
d4xe−ikxΘ(t)〈[OA(t, x),OB(0, 0)]〉, (2.2)

with θ(t) a step function. As we will see below, such a response is characterized
by transport coefficients. Transport coefficients are then determined by Kubo
formulae, which are stated in terms of the Green’s functions. The main goal of
this thesis will be to calculate such transport coefficients.

These aforementioned Green’s functions should be determined from the mi-
croscopic theory, which in our case is QCD. However, the QGP phase of QCD
is a strongly coupled fluid and thus cannot be studied using conventional per-
turbative techniques. Nonetheless, these Green’s functions can in some cases
be computed using the AdS/CFT correspondence, as we will see in Chapter 4.
On the other hand, one can narrow down the necessary information concerning
the Green’s function using macroscopic considerations such as conservation laws
and low-energy effective theory. The latter formalism is known as hydrodynam-
ics.

2.1 Constitutive Relations

Hydrodynamics is an effective field theory describing the time evolution of sys-
tems near equilibrium [10]. Such a description directly concerns currents asso-



6 Hydrodynamics

ciated with the microscopic theory, whose equations of motion are identified as
the Ward identities evaluated from the quantum theory. Next, one writes down
the so-called consitutive relations, which are intended to capture phenomeno-
logically the macroscopic properties of the system of interest. These are given
in terms of locally defined thermodynamic quantities such as temperature, T
and chemical potential, µ. For the U(1) vector current, axial current and the
energy-momentum tensor these are

〈Jµa 〉 = Nauµ + jµa , a = (V,A), (2.3)

〈Tµν〉 = Euµuν + P∆µν + (qµuν + qµuν) + tµν (2.4)

respectively, where uµ is the fluid velocity, ∆µν = ηµν + uµuν and jµa , q
µ are

transverse to the fluid velocity [11]. The coefficients E , P , Na, qµ, jµa and
tµν will be given in terms of T , µV and uµ. Note that for the moment, the
above two equations are just the general decompositions of a symmetric 2-tensor
and a vector in flat spacetime. However as hydrodynamics is concerned with
states deviating slightly from thermal equilibrium, it assumes a priori that the
local thermodynamic quantities T (x), µV (x) as well as uµ(x) are slowly varying
functions. With this assumption in mind, we can organize the constitutive
relations in a derivative expansion of x,

〈Jµa 〉 = 〈Jµa 〉(0) + 〈Jµa 〉(1) + ..., (2.5)

〈Tµν〉 = 〈Tµν〉(0) + 〈Tµν〉(1) + .... (2.6)

In this thesis we will only be concerned with the first two terms in the derivative
expansion 1.

At zeroth order, the expansion is given as [11]

〈Jµa 〉(0) = nau
µ, (2.7)

〈Tµν〉(0) = εuµuν + p∆µν , (2.8)

where ε is identified as the energy density, p as the equilibrium pressure and
na as the equilibrium charge density. In ideal hydrodynamics, these quantities
are then promoted to slowly varying fields. Now, ε(x) is defined as the local
energy density, p(x) as the local pressure and na(x) as the local charge density.
These functions can then be expressed in terms of T (x), µV (x) using the usual
thermodynamic relations from the free energy, F defined at equilibrium.

At first order, one has to deal with a large set of ambiguities as redefinitions
of local temperature, chemical potential and fluid velocity compete with terms
at higher order in the derivatives. This stems from the fact that T (x), µV (x)
and uµ(x) have no first-principles definition out of equilibrium and should be
thought as nothing more than auxiliary parameters in terms of which the rele-
vant currents are given. The ambiguity issue is resolved by specifying a frame

1One should consult [12] regarding contribions from second order terms
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choice. In this case, we first choose the Landau frame [13]. This frame is defined
by demanding Tµνuν = εuµ to all orders, implying that q = 0 in (2.4). Before
proceeding, as we want to study anomalies in the microscopic theory, we turn
on the sources defined as the electric, magnetic fields in the local rest frame
along with the local vorticity

Bνa =
1

2
εµνρσuµFρσa, (2.9)

Eµa = Fµνa uν , (2.10)

ων =
1

2
εµνρσuµ∂ρuσ, (2.11)

which will act as sources for various kinds of anomalous response, as we will see.
Leaving out the details of the derivation [11], it turns out that at first order,
the constitutive relations are

〈Jµa 〉(1) = −γabT∆µν∂ν

(µb
T

)
+ γabE

µ
b + ξBabB

µ
b + ξaΩω

µ, (2.12)

〈Tµν〉(1) = −η∆µρ∆νσ
(
∂ρuσ + ∂σuρ −

2

3
ηρσ∂λu

λ
)

(2.13)

− ζ∆ρσ∂λu
λ.

The dissipative transport coefficients γab, η and ζ are identified as the electric
conductivity, shear viscosity and the bulk viscosity respectively. Futhermore,
the non-dissipative transport coefficients ξBab and ξaΩ are identified as the anoma-
lous conductivities. We will now explain how one comes to the conclusion of this
identification [12]. Notice that the spatial components of the U(1) currents, 〈J ia〉
are P-odd, T -odd, while both of the magnetic fields and vorticity are P-even
and T -odd. We can then conclude that ξBab, ξaΩ are P-odd and T -even. A sim-
ilar analysis of the other transport coefficients η, ζ and γab shows that they are
P-even and T -odd. The T -odd coefficients will contribute to entropy produc-
tion and are thus dissipative in nature. Conversely, the T -even coefficients will
not contribute entropy production and are non-dissipative. Considering their
microscopic origin, we refer to these non-dissipative conductivities as anomalous
conductivities from now on.

2.2 Anomalous Transport in Hydrodynamics

When computing anomalous conductivities, it makes more sense to present the
constitutive relations in the no-drag frame [14]; contributions to the energy
current in the Landau frame are not directly visible because they are absorbed
into the definition of the fluid velocity. In the no-drag frame, the currents read

〈Jµa 〉 = 〈Jµa 〉(0) − γabT∆µν∂ν

(µb
T

)
+ γabE

µ
b + σBabB

µ
b + σaΩω

µ, (2.14)

〈Tµν〉 = 〈Tµν〉(0) + 〈Tµν〉(1) +Qµuν +Qνuµ, (2.15)
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where Qµ = σ̃Ba B
µ
a +σ̃Ωω

µ. In the no-frag frame, the fluid velocity only parame-
terizes the dissipative “normal flow”. Physically, if one inserts a heavy impurity
into the flow then over long time scales, all of the normal flow will vanish, leaving
only the charge and momentum flow induced by the anomalies. The anomalous
terms from the above expressions can be identified as the response functions,
which we originally wanted to extract from the hydrodynamic setup. Explicitly,
they are given as

〈δJµa 〉 = σBabB
µ
b + σaΩω

µ (2.16)

〈δTµν〉 = Qµuν +Qνuµ. (2.17)

From this point onwards, we only focus on the U(1) response, dropping the
B superscript in (2.16). The Kubo formulae for calculating the conductivities
are [7]

σab = lim
k→0

εijk
ikj

2k2
〈J iaJkb 〉

∣∣∣
ω=0

, (2.18)

σaΩ = lim
k→0

εijk
ikj

2k2
〈J iaT tk〉

∣∣∣
ω=0

, (2.19)

which can be calculated through the use of holographic methods. In this the-
sis, we will only calculate 〈δJµV 〉. Therefore we will only be concerned with
σV V , σAV = σV A and σV Ω, which are associated with the Chiral Magnetic Ef-
fect (CME) [5], the Chiral Magnetic Separation Effect (CSE) [15] and the Chiral
Vortical Effect (CVE) [16] respectively. The conductivity σAΩ is associated with
the Chiral Vortical Separation Effect (CVSE) whereas σAA has a different in-
terpretation from the rest of the conductivities [7]. While the axial magnetic
field BµA is not expected to exist in nature, it is seen as a tool to compute σV A,
given that from a holographic perspective, δ〈JµV 〉 will be easier to calculate than
δ〈JµA〉. It is for this reason that we do not consider σAA as it couples to BµA in
the δ〈JµA〉 equation.

It is interesting to note that for the above setup, through the use of hydro-
dynamcs alone one can almost completely determine the chiral magnetic and
chiral vortical conductivities [17]. This is done by defining a local entropy cur-
rent and demanding it to be positive definite. Such a computation results in
the values of the conductivities

σV V =
µA
2π2

, σV A =
µV
2π2

, σV Ω =
µV µA
2π2

. (2.20)

These values have been found using multiple approaches, namely an energy
balance argument, [18], holography [19], effective field theory [20] and hydro-
dynamics as we have seen above. This hints at the idea of universality, which
has been shown in more formal manner using holography [21], [22]. In the case
where dynamical gluons are present, the chiral magnetic and vortical conductiv-
ities are expected to deviate from their universal values [23]. This is also clear
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from the fact that the universal values (2.20) disagree with lattice QCD cal-
culations [24], which clearly include radiative corrections from such dynamical
gluons. The main goal of this thesis will be to calculate such radiative correc-
tions holographically, using a slightly different holographic setup in comparison
to [25].
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Chapter 3

Chiral Anomalies and
Anomalous Transport

Throughout the field of physics, symmetry plays a central role due to the conse-
quence of Noether’s Theorem. It often happens that, following the quantization
of a theory, some of its symmetries at the classical level do not survive or be-
come anomalous, signifying the presence of a quantum anomaly. In particular,
the vanishing of a chiral symmetry at the quantum level is known as a chiral
anomaly. While the anomaly might not necessarily be detrimental to the quan-
tum theory’s validity, one finds at the very least that the related Ward identities
need to be modified.

3.1 The Source of the Anomaly

Computing the Jacobian

Even though anomalies were first observed through the computation of triangle
diagrams [26], we will see how they emerge in a more explicit fashion by study-
ing the path integral Jacobian related to chiral transformations [27]. To start,
consider the Lagrangian in flat space with massless Dirac spinors transforming
under an SU(Nc) gauge group

L = ψ̄ /Dψ − 1

2g2
YM

Tr
(
GµνG

µν
)
,

= Lmatter + Lgauge. (3.1)

where

Dµ = ∂µ − iWµ, (3.2)

Wµ = W a
µ t
a is the Lie algebra-valued gluon field in the adjoint representation

and ψ represents an array of Nf quark fields. As we are only concerned with
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exposing the anomaly, for the moment we restrict ourselves to the calculation
of how the quantity ∫

Dψ̄Dψ exp

[
−i
∫
d4xLmatter

]
(3.3)

transforms under a chiral transformation. In particular, we write

Dψ̄′Dψ′ = JDψ̄Dψ (3.4)

and compute the Jacobian, J . Let us do this explicitly for a chiral transforma-
tion

ψ′ = Uψ , U(x) = exp
[
iβ(x)γ5

]
(3.5)

Under (3.5), the transformation of the measure appears as a functional deter-
minant,

Dψ → Dψ′ = (DetU)−1Dψ , Dψ̄ → Dψ̄′ = (DetŪ)−1Dψ̄, (3.6)

where
〈x| U |y〉 = U(x)δ4(x− y) , 〈x| Ū |y〉 = Ū(x)δ4(x− y). (3.7)

To detect the presence of an anomaly, we must now compute

Ū(x) = iγ0 exp[−iβγ5]iγ0 = exp[iβγ5] = U(x). (3.8)

This implies that the Jacobian is

J = (DetU)−2, (3.9)

which does not necessarily equal unity. The method for computing J is sketched
below, where we refer to [28], [29] for further details. The general idea is to
expand the spinors in terms of the eigenfunctions of /D

/Dϕn(x) = λnϕn(x),

where ∫
d4xϕ†n(x)ϕm(x) = δn,m, (3.10)

which allows us to express the determinant in a gauge-invariant way. One
realizes that this is necessary—if ψ transforms in a covariant way then so should
Dψ. It turns out that the Jacobian takes the form

J = exp

−2i lim
N→∞

N∑
n=1

∫
d4xβ Tr

(
ϕ†nγ5ϕn

). (3.11)

Hidden within the argument of the exponential is a δ(0), which implies that we
should introduce a regulator, f(s). Such a regulator effectively cuts off the “high
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frequency” modes, the large eigenvalues of /D and is manifestly gauge-invariant.
The regulator is introduced by writing

lim
N→∞

N∑
n=1

∫
d4xβ Tr

(
ϕ†nγ5ϕn

)
= lim
M→∞

∞∑
n=1

∫
d4xβ Tr

(
ϕ†nγ5f

( λ2
n

M2

)
ϕn(x)

)

= lim
M→∞

∞∑
n=1

∫
d4xβ Tr

(
ϕ†nγ5f

( /D
2

M2

)
ϕn(x)

)
, (3.12)

where f(s) is an arbitrary smooth function such that

f(0) = 1 , f(∞) = 0 , sf ′(s)|s=0 = 0 , sf ′(s)|s=∞ = 0. (3.13)

The calculation of this quantity is quite a lengthy procedure, which can be found
in [28]. The final result is

J = exp
[
− 2i

∫
d4x

1

32π2
βεµνρσ Tr

(
GµνGρσ

)]
,

= exp

[
i

∫
d4xβA1

]
, (3.14)

where we have defined the anomaly function

A1 = − Nf
16π2

εµνρσ Tr
(
GµνGρσ

)
(3.15)

and Gµν = ∂µWν − ∂νWµ, the gluon field strength tensor.

By restoring factors of ~ through a redefinition of the action S → S/~, one
can see that J actually corresponds to a one-loop effect. It is then natural to
wonder if the anomaly equation (3.14) recieves any corrections when diagrams
with more than one loop are taken into account. It was shown by Adler and
Bardeen using a diagrammatic approach [30] that this is not the case, imply-
ing that the anomaly is one-loop exact. We note that this is a major argument
for identifying the anomaly with the non-invariance of the path integral measure.

Atiyah-Singer Index Theorem

One can also invoke the Atiyah-Singer index theorem [31] to strengthen this ar-
gument, as we will now see. Even though the proof was initially demonstrated
for a Dirac operator on S4, we will present its adaption to our situation. Spe-
cializing to the case where a global transformation is parameterized by β(x) = β
with a single quark flavor, we sketch the proof for the analytical index of the
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hermitean operator i /D
E

, where /D
E

is a Euclidean operator. Recalling (3.10),

and using the fact that {i /DE
, γ5} = 0 by definition, we can show that for λEn 6= 0

i /D
E

(γ5ϕn) = −λEn γ5ϕn, (3.16)

which implies that ϕn and γ5ϕn are orthogonal functions. Hence, eigenfunctions
of the non-zero eigenvalues will not contribute to the argument of the exponen-
tial in (3.11).

Let us now specialize to the case where λEn = 0. For these zero modes,

we can simultaneously diagonalize i /D
E

and γ5 because both ϕn, γ5ϕn have the
same eigenvalue, namely zero. These eigenfunctions clearly will contribute to
(3.11). In fact, the total contribution will read∫

d4x
∑

zero modes

ϕ†nγ5ϕn = index(i /D
E

) (3.17)

where index(i /D
E

) = nL−nR and nL, nR are respectively the number of +1,−1
eigenvalues of the matrix γ5. Using the results of the previous section, we can
write

index(i /D
E

) =
1

32π2

∫
d4xεµνρσ Tr

(
GµνGρσ

)
. (3.18)

Obviously, the left hand side is an integer. The right hand side is also an integer
— this is known as the winding number and it reveals the topological class to
whch the field Wµ belongs. We explicitly relate this to the Jacobian by writing

J = exp

[
iβ

∫
d4xA1(x)

]
= exp

[
−2iβ(nL − nR)

]
. (3.19)

Now that we have sufficiently demonstrated where the origin of the anomaly
lies, we can go on and exhibit how one modifies the relevant Ward identities.

3.2 Modification of Ward Identities

We now present the full theory of interest, which we will later on attempt to
model using holography. We have included external vector and axial gauge
fields, which are denoted by the flavor singlets, Vµ and Aµ respectively. The
action is

S =

∫
d4xψ̄ /Dψ − 1

2g2
YM

Tr
(
GµνG

µν
)
− Nf

16π2
θεµνρσ Tr

(
GµνGρσ

)
, (3.20)

where the last term is CP-odd and includes the topological effects of such non-
abelian gauge theories1. The covariant derivative is further modified because of

1This term is directly related to the winding number mentioned in (3.18).
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the background gauge fields

Dµ = ∂µ − i(Wµ + qfVµ + γ5Aµ). (3.21)

The coupling constants qf are different for each of the quark flavors, meaning
that we assume implicit multiplication in flavor space. At the classical level,
the action 3.20 is invariant under the group of chiral transformations U(Nf )L×
U(Nf )R, which we rewrite as U(1)V × U(1)A × SU(Nf )L × SU(Nf )R. The
action of each subgroup on the quark fields is

ψL → eiαψL , ψR → eiαψR, (3.22)

ψL → eiβψL , ψR → e−iβψR, (3.23)

ψL → ULψL , ψR → URψR, (3.24)

where the left and right-handed components of the spinors have been defined
with the use of the usual projectors [1]

PL =
1− γ5

2
, PR =

1 + γ5

2
(3.25)

where we again assume multiplication in flavor space. The vector and axial
phase transformations are determined by α and β respectively2 while UL, UR
are the SU(Nf )L/R matrices.

The full symmetry group is drastically affected by the quantization of the
theory. While it is not relevent for our discussion, the existence of the quark
condensate in the QCD vacuum induces the spontaneous symmetry breaking
SU(Nf )L × SU(Nf )R → SU(Nf )V where SU(Nf )V is the diagonal subgroup
of SU(Nf )L × SU(Nf )R. This mechanism is thought to be responsible for the
observed spectrum of pions observed in particle physics experiments3. Only
the U(1)V subgroup remains untouched. As we will see shortly, its associated
Noether current

J µV = iqf ψ̄γ
µψ (3.26)

is conserved on an operator level signifying the conservation of electric charge.
The classical axial Noether current is

J µA = iψ̄γµγ5ψ. (3.27)

As we observed in the previous section, this symmetry becomes anomalous as
a consequence of the quark path integral measure’s transformation properties.
We will now see how the related Ward identity is affected. Let us only consider

2This is in keeping with the notation (3.5) used in the previous section.
3In reality pions are not massless, which they should be according to Goldstone’s theorem.

This is due to the fact that the chiral symmetry is only approximate after quark mass terms
are added to the theory by hand.
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the matter part, Smatter[ψ̄, ψ] =
∫
d4xψ̄ /Dψ of the (3.20) and observe the change

of the quark fields under vector and axial phase transformations∫
Dψ̄DψeiSmatter[ψ̄,ψ] =

∫
Dψ̄′Dψ′eiSmatter[ψ̄′,ψ

′]

=

∫
Dψ̄DψJeiSmatter[ψ̄,ψ]+i

∫
d4x(α∂µJ µV +β∂µJ µA). (3.28)

Our definition of J needs to be modified to take into account the additional
anomaly functions that arise due to the inclusion of the external fields Vµ, Aµ.
Similar to the calculation outlined in the previous section, one can show that
[28]

A2 = − Nf
32π2

Nf∑
f=1

q2
f ε
µνρσFVµνF

V
ρσ, (3.29)

A3 = −NcNf
96π2

εµνρσFAµνF
A
ρσ. (3.30)

The full Jacobian is then

J = exp

[
i

∫
d4xβA

]
, (3.31)

where A = A1 +A2 +A3. Expanding (3.28) up to first order in α, β yields∫
Dψ̄DψeiSmatter[ψ̄,ψ] =

∫
Dψ̄DψeiSmatter[ψ̄,ψ]

(
1

+ i

∫
d4x(α∂µJ µV + β(A(x) + ∂µJ µA )

)
. (3.32)

As α, β are independent we can immediately read off the Ward identities

∂µ〈J µV 〉 = 0, (3.33)

∂µ〈J µA 〉 = −A. (3.34)

Indeed, the axial equation above is an example of an anomalous Ward identity.
There is a subtlety that we have glossed over with repsect to the presentation
of the identities above [32]. In particular, the expressions are defined as the
consistent currents and are constructed in such a way that the vector current
is conserved4. Depending on the physical situation that one is intending to
describe, it may be preferable to construct a current that is invariant under
gauge transformations. With this in mind, one can define a covariant current by
adding the Bardeen-Zumino polynomial [32] to the previously defined consistent
currents

JµV = J µV +
NcNf
4π2

εµνρσAνF
V
ρσ, (3.35)

JµA = J µA +
NcNf
12π2

εµνρσAνF
A
ρσ. (3.36)

4More formally, such a prescription ensures that the Wess-Zumino consistency condition
is satisfied.
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Figure 3.1: Illustration of the Chiral Magnetic effect, taken from [33].

3.3 Anomalous Transport in High Energy Physics

We have seen how quantum anomalies emerge through the consideraton of the
path integral under chiral transformations. It is then natural to wonder if these
phenomena could possibly manifest themselves on a macroscopic level, specif-
ically in the context of high energy physics. The presence of non-zero chiral
imbalance, µA alone is a necessary but not sufficient ingredient needed to pro-
duce macroscopically observable anomalous effects. We also need the presence
of a chiral medium, which in this case is given by an external magnetic field
~B, at least for the CME and CSE. Below we will attempt to paint a qualita-
tive picture arguing how such manifestations could arise, following [2] and [33].
Although we only specify the dependence of anomalous response currents be-
low, it should be emphasized that each of the conductivities have been found
to take their universal values (2.20) in the absence of dynamical gluons, as was
discussed at the end of the last Chapter 2.

The Chiral Magnetic Effect

Consider the QGP, which in this context can be regarded as a conductor with
deconfined electrically charged quarks5. For simplicity, we only consider one
quark flavor. As is depicted in the left part of 3.1, the application of an external
magnetic field leads to a magnetization effect with the quarks’ spins, ~s aligned
along the direction of ~B. Specifically, the right-handed quarks will have ~p||~s
and the left-handed quarks will have ~p|| −~s, where ~p is the quark’s momentum.
Furthermore, if a chiral imbalance, µA > 0 is introduced, the chirality of the
left-handed quarks will flip, inducing an electric current, ~J ∝ µA ~B. This shown

5We are speaking of massless quarks, which means that the projection of spin onto mo-
mentum, also known as helicity is equivalent to the notion of chirality.
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Figure 3.2: Illustration of the Chiral Separation Effect, taken from [33].

in the right of Fig 3.1.

The Chiral Separation Effect

It is then natural to wonder if an axial current, ~JA could be produced using
a similar setup. The answer is yes, at least theoretically. Here we start by
considering sea of right-handed quarks. Again, we only consider a single flavor
for simplicity. As is shown in the left of Fig 3.2, the application of a magnetic
field induces a magnetization of the quark’s spins. The essence of the CSE
is contained within the fact that we then turn on a non-zero vector chemical
potential, µV > 0. The right-handed quarks will then generate a current ~JR ∝
µV ~B. Similarly, the left handed quarks will form a current in the opposite
direction ~JL ∝ mu~B. The combination of the two yields the axial current6,
~JA ∝ µ~B. The interpretation of the CSE is that it is simply the CME for
purely left-handed or right-handed quarks.

The Chiral Vortical Effect

It is also possible for anomalous transport effects to take place when a fluid of
chiral fermions undergoes a global rotation. This is introduced by defining a
vorticity, ~ω = 1

2
~∇ × ~v where ~v is the flow velocity field. As is shown in the

left of Fig 3.3, in the presence of a global rotation, the quarks experience an
effective interation ∼ −~ω · ~s. This induces a spin polarization effect, similar
to the case of the CME and CSE. The difference here is that the polarization
effect is charge-blind, in comparison to the magnetization, which is needed for
the CME and CSE to occur.

Two further ingredients necessary for the CVE is a non-zero µV , µA. Given
µA > 0, there will be more right-handed quarks than left-handed quarks and

6The author of the paper [18] with Fig 3.2 writes this current as ~J5.
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Figure 3.3: Illustration of the Chiral Vortical Effect, taken from [33].

given µV > 0, there will be more right-handed quarks than right-handed anti-
quarks. The combination leads to the generation of a current ~J ∝ µV µA~ω. The
inclusion of the factor µV µA comes from the fact that if either µV or µA equals
zero, the current will cease to exist owing to cancellations.
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Chapter 4

Holographic Applications to
QCD

Holography is intuitively understood as an attempt to geometrize the renormal-
ization group flow in quantum field theories (QFT) or more generally, many-
body systems. Specifically, this should be done by first considering a continuous
family of D-dimensional theories, each labelled by some length scale1 r. The
length scale is then identified with an extra spatial dimension, yielding a single
D + 1-dimensional theory. Among the requirements of such an identification is
that the D-dimensional and D + 1-dimensional theories should have the same
number of degrees of freedom.

In general, it is not known how to construct this mapping between theories.
However, some guidance is provided by the fact that the D + 1-dimensional
theory may be a description of quantum gravity, which is suggested by the
holographic principle— the holographic principle [34] asserts that for a gravita-
tional theory, the number of degrees of freedom in a volume V scales with the
boundary of the volume itself, ∂V . The AdS/CFT correspondence proposed by
Maldecena [35] in 1997 is an explicit realisation of this idea. We will briefly mo-
tivate why this is so, following [36] before providing a more concrete summary
of the topic.

As our D-dimensional quantum field theory lives in Minkowski space, we
present the most general metric inD+1 dimensions consistent withD-dimensional
Poincaré symmetry

ds2 = Ω2(r)(−dt2 + d~x2 + dr2). (4.1)

The warp factor Ω can only depend on r as we demand translational invarance in
the other space and time directions. Let us now specialize to the case where our

1We follow the convention where r → 0 limit is identified with the UV limit of the QFT
while the r →∞ limit is identified with the IR limit of the QFT.
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quantum field theory possesses conformal symmetry. A conformal field theory
(CFT) is invariant under the transformation (t, ~x) → C(t, ~x) for a constant C.
As r represents the length scale in our CFT, our gravity theory should have
r → Cr fixing

Ω(r) =
L

r
, (4.2)

where L is some constant. We then proceed to identify L with the anti-de Sitter
(AdS) radius, precisely because

ds2 =
L2

r2
(−dt2 + d~x2 + dr2) (4.3)

is the metric for AdS spacetime in D + 1 dimensions. It is not hard to see
that each constant r-slice of this spacetime is isometric to some D-dimensional
theory living in Minkowski space with coordinates (t, ~x). In particular, if we
take the limit r → 0, we recover the conformal field theory itself[36]. This is
why it is often said that the CFT “lives on the boundary” of AdS.

4.1 The AdS/CFT Correspondence

Maldacena’s original conjecture is motivated by considering type IIB superstring
theory in (9+1)-dimensional Minkowski spacetime from the perspective of both
open and closed strings. For practical applications it is necessary to take the
so-called weak form of the duality. This is done by comparing both perspectives
in the low-energy limit, where one concludes that there should exist an equiv-
alence between N = 4 super Yang-Mills (sYM) in 3 + 1 dimensional flat space
and type IIB classical supergravity on AdS5×S5 given that the free parameters
of each theory are identified in the way described below.

The parameters on the field theory side are gYM, the Yang-Mills coupling
and N , the rank of the gauge group while on the string theory side they are gs,
the string coupling and the ratio L2/α′ where L is the radius of curvature and
α′ = l2s with ls the string length [37]. The correspondence is established by the
identification

g2
YM = 2πgs , 2g2

YMN =
L4

α′2
(4.4)

where we also note that the ’t Hooft coupling is λ = g2
YMN . The weak form

of the duality then corresponds to taking the ’t Hooft limit where N →∞ and
also demanding λ� 1. On the string theory side, if gs → 0 then from the per-
spective of perturbative string theory, we are only including tree level diagrams
while α′/L2 → 0 amounts to the point-particle limit.

The AdS/CFT correspondences proposes a map between two different the-
ories [38]. The one-to-one map or dictionary is a consequence of the fact that
the symmetry groups of the two theories coincide. Such a mapping is known as
the field-operator map and is made more explicit by considering the boundary
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behaviour of the supergravity fields. We therefore consider this behaviour for a
free scalar field, φ in D + 1 dimensions with the action

S = −Y
2

∫
drdDx

√
−g
(
gMN∂Mφ∂Nφ+m2φ2

)
, (4.5)

where g is defined according to (4.3). From here onwards, we will denote the
bulk theory’s tensor indices by the latin letters M,N, ... while as usual the
QFT’s indices will be denoted by the Greek letters µ, ν, .... One finds that after
comptuting the associated equation of motion for the scalar field and performing
the Fourier decomposition φ(r, x) = eip

µxµφp(r), the Klein-Gordon equation for
the modes φp(r) reads

r2∂2
rφr(z)− (D − 1)r∂rφp(r)− (m2L2 + p2r2)φp(r) = 0. (4.6)

Asymptotically, there exist two independent solutions

lim
r→0

φp(r) ∼

{
r∆+ normalizable,

r∆− non-normalizable,

where

∆± =
D

2
±
√
D2

4
+m2L2 (4.7)

A mode is normalizable if the action evaluated on this solution is finite. More-
over, if we write

φ(r, x) ∼ φ0(x)r∆− + φ+(x)r∆− + ..., (4.8)

where

φ0(x) = lim
r→0

φ(r, x)r−∆− , φ+(x) = lim
r→0

φ(r, x)r−∆+ (4.9)

and ... represents the subleading terms at the boundary. One can then con-
clude via dimensional analysis that the normalizable mode corresponds to the
vacuum expectation value for a dual scalar field theory operator O with confor-
mal dimension ∆+. Conversely, φ0 is identified as the source of such an operator.

Having seen how the field-operator map works for a scalar field, we will now
observe in general how it induces a map between the genererating functionals
of both theories. In Euclidean signature, for a D-dimensional conformal theory
living on the boundary of (D + 1)-dimensional AdS space, this is stated as

Zstring

∣∣∣
lim
r→0

φ(r,x)r∆−−D=φ0(x)
=

〈
exp

(∫
dDxφ0(x)O(x)

)〉
CFT

(4.10)

for a scalar field φ(x). This holds for the strongest form of the correspondence,
where Zstring is not necessarily known. Assuming the weak form of the corre-
spondence, we may perform a saddle point approximation on the string partition
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function and conclude that

exp
(
− SSugra[φ]

)∣∣∣
lim
r→0

φ(r,x)r∆−−D=φ0(x)
=

〈
exp

(∫
dDxφ0(x)O(x)

)〉
CFT

= exp
(
−W [φ0]

)
(4.11)

where SSugra is the on-shell bulk action, which acts as the generating functional,
W [φ0] for connected correlation functions involving the operator O(x). The
usefulness of the duality is now made manifest through the fact that we can
compute these connected correlation functions by functional differentiation with
respect to the sources

− δnW [φ0(x)]

δφ1
0(x1)δφ2

0(x2)...δφn0 (xn)

∣∣∣
φi0=0

=
〈
O1(x1)O2(x2)...On(xn)

〉
CFT

. (4.12)

Having demonstrated the power of this approach for a scalar operator, it is im-
portant to note that one can do the same for other gauge invariant operators
on the boundary theory after identifying, respectively, their dual fields on the
gravity side 37. Some of these results are summarized in Table 4.1.

At this point we should probably mention how the extra five dimensions of
S5 affect the establishment of the duality [39]. Arising from the compactifica-
tion of S5 is the emergence of Kaluza-Klein (KK) modes. This results in the
existence of an additional sector in the bulk Hilbert space. Fortunately, the op-
erators spanning this sector turn out to be in precise correspondence with the
operators with higher conformal dimension on the field theory side. When the
low-energy limit is taken, the subsector of the Hilbert space containing N = 4
super-multiplets of the energy-momentum tensor and flavor currents can be
identified with the low-lying gravitational fields.

While the case described above is the most well understood of the conjec-
ture, progress towards understanding more realistic theories can be obtained
from N = 4 sYM by relevant or marginal deformations. In particular, at-
tempts to model QCD holographically can be categorized into top-down and
bottom-up models. The top-down approach generally consists of starting from
some D-brane setup in string theory and taking the decoupling limit to obtain
gravitational a background with various form fields [40]. While this has the
advantage of providing us with a precise dictionary between the QFT on the
D-branes and the dual gravitational quantities, the resultant QFT often turns
out to be different from QCD. In addition to this, it is found that in order
to decouple the KK modes operators from pure Yang-Mills one needs to take
the limit of large curvature on the gravity side, necessitating the inclusion of
higher derivative terms in the bulk action. Due to these obstructions, we at-
tempt to study QCD using a bottom-up model in this thesis, namely V-QCD.
From this point onwards, as we are attempting to describe a 3 + 1-dimensional
quantum field theory, we specialize to the case where the bulk theory lives in
five spacetime dimensions.
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Gravity QFT

D+1 dimensions D dimensions
Holographic direction RG scale
Strongly coupled Weakly coupled
Scalar field Scalar operator
Gauge field Conserved current
Metric tensor Energy-momentum tensor

Table 4.1: The holographic dictionary, taken from [10].

4.2 V-QCD

The idea of a bottom-up model is to give up the ambitious goal of trying to
find an exact holographic dual of QCD, instead attempting to construct an IR
effective theory [39]. As was already mentioned, the class of bottom-up models
we choose to work with is V-QCD [41]. V-QCD is based on the combination
of two frameworks, namely Improved Holographic QCD (IHQCD) [42], which
attempts to model the gluonic sector and a setup based on a Sen-like tachyonic
Dirac-Born-Infield (DBI) action, which attempts to model the quark sector [43].
Before we proceed to oultine separately the structure of each of these sectors,
it is worth mentioning the issue of taking the Nc → ∞. In this limit, the
effect of quarks is suppressed by powers of Nf/Nc → 0, which corresponds
to the “quenched limit” [44]. In order for the quarks to backreact onto the
supergravity background, we should instead take the Veneziano limit [45],

Nc →∞ , Nf →∞ ,
Nf
Nc

= x, (4.13)

where x is fixed. We take x = 1 from now on.

Glue Sector

Our task of holographically modelling the gluonic sector of QCD is simplified
somewhat by the fact that a sector of relevant and marginal low-lying opera-
tors can be treated separately from the rest of the Hilbert space of operators
[46]. Therefore, we can start by looking for bulk theory, which is holographi-
cally dual to an SU(Nc) gauge theory. This dual model should correspond to
some five dimensional non-critical string theory. It is reassuring that if we are
only interested in studying the IR physics, we need not worry about our general
lack of knowledge about non-critical string theories since we should be able to
approximate the holographic dual by a two-derivative gravitational action.

In our model, the only field that we will be concerned with from IHQCD is
the dilaton, λ = eΦ, which is dual to the scalar gluonic operator, TrGµνG

µν



26 Holographic Applications to QCD

and therefore sources the ’t Hooft coupling in Yang-Mills theory2. In order to
use holography, we want the solutions to approach the AdS5 spacetime near
the conformal boundary. However, we do not want the symmetries of AdS to
be respected all the way into the interior of the bulk theory, because of the
running of the coupling constant in QCD. In particular, we want to break the
scaling symmetry. In the bulk theory, this is achieved by writing down a non-
trivial potential for the dilaton, Vg(λ). Generally, one tries to model these bulk
potentials with the ansatz [47]

V (λ) =

nUV∑
k=0

Vkλ
k + e−λ̃0/λ(λ/λ̃0)α log

(
1 + λ/λ̃0

)β nIR∑
k=0

vk(λ/λ̃0)−k. (4.14)

For the gluonic potential, Vg(λ), the coefficients V1 and V2 are fixed by requiring
the UV RG flow of the ’t Hooft coupling to be the same as in QCD up to two-loop
order. The IR coefficients are chosen to reproduce qualitative features of QCD
such as confinement, magnetic charge screening and linear glueball trajectories
through a comparison with lattice data [48]. This results in the choice

Vg(λ) = 12

[
1+V1λ+

V2λ
2

1 + λ/λ̃0

+VIRe
−λ̃0/λ(λ/λ̃0)4/3

√
log
(

1 + λ/λ̃0

)]
, (4.15)

where the explicit values for the coefficients are given in Appendix A. The
gluonic part of our action is then based on Einstein-dilaton theory

Sg = M3
pN

2
c

∫
d5x
√
−g

(
R− 4

3

(∂Mλ)2

λ2
+ Vg(λ)

)
, (4.16)

where Mp is the Planck mass.

Flavor Sector

Quarks are included in the holographic setup by embedding flavor branes in
the 5D geometry [43]. Specifically, these are space-filling Nf D4-branes and Nf
D̄4-branes. The low-lying fields on the branes are the tachyon, T as well as
the gauge-fields, AL,µ on the flavor branes and AR,µ on the anti-flavor branes.
The tachyon sources the quark mass matrix, while the gauge fields correspond
to the flavor currents in QCD. As we are interested in studying the QGP, we
turn off the tachyon as the quark condensate is not expected to play a role in
this phase of QCD3. For future reference, we rewrite the gauge fields in terms

2Technically, the field Φ is the dilaton. However, because we will not need to mention Φ
at any other point there will be no ambiguity present by referring to λ as the dilaton.

3It is expected however, that the inclusion of the tachyon will produce some of the more
realistic features of the QCD phase diagram. We will provide a discussion related to this in
the Conclusion 7.
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of their vector and axial components

AL,M = VM +AM ,

AR,M = VM −AM . (4.17)

These are packaged into the action through the effect DBI term

Sf = −
xM3

pN
2
c

2

∫
d5xVf (λ)

[√
−detA+ +

√
−detA−

]
, (4.18)

where
A(±)MN = gMN + w(λ)(FVMN ± FAMN ), (4.19)

and

FVMN = ∂MVN − ∂NVM ,
FAMN = ∂MAN − ∂NAM . (4.20)

The potentials Vf (λ) and w(λ) are chosen in a similar manner to that of Vg(λ),
starting from the ansatz (4.14). They are given as

Vf (λ) = W0 +W1λ+
W2λ

2

1 + λ/λ̃0

+WIRe
−λ̃0/λ(λ/λ̃0)2, (4.21)

1

w(λ)
= w0

[
1 + w̄0e

λ̂0/λ
(λ/λ̂0)4/3

log
(

1 + λ/λ̂0

)]. (4.22)

The UV coefficients of the above two potentials are determined by comparison
with QCD beta function while the IR coefficients are chosen to reproduce some
of the prominent features of the QCD phase diagram, such as chiral symmetry
breaking and linear meson trajectories.

Anomalous Sector

CP-odd effects are taken into account [43] by the addition of the term

Sa = −
M3
pN

2
c

2

∫
d5x
√
−gZ(λ)(∂Ma− 2xAM )2. (4.23)

where the axion, a is dual to the term εµνρσ Tr
(
GµνGρσ

)
, sourcing the θ-angle.

According to [49], the mass term for AM produced by the above action is nec-
essary to include gluonic contributions to the model of anomalous transport; a
massive axial gauge field will source a current JA with non-vanishing anomalous
dimension. The axion then ensures that Sa will be gauge invariant, as we will
see below. We initially account for a non-trivial coupling to the dilaton via the
potential

Z(λ) = Z0

(
1 + d

λ4

λ̂4
0

)
. (4.24)
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As we will see when studying the UV asymptotics of our model, this choice of
potential does not produce the desired features of QCD and will need to be
modified. This will be discussed in the next chapter.

In order to take into account the anomalous effects due to the external gauge
fields in the boundary theory, Vµ, Aµ, we also need to include the Chern-Simons
term [43] defined as

SCS = −
M3
pN

2
c x

2

∫
d5xε̃MNPQRAM (3κFVNPF

V
QR + γFANPF

A
QR) (4.25)

where ε̃MNPQR is the Levi-Civita symbol.

Gibbons-Hawking and Counterterm

We formally need to include two extra terms to the action. The first is the
Gibbons-Hawking (GH), whose inclusion is necessary to make the variational
problem of the metric well-defined on spacetimes with a boundary, such as AdS
[37]. Its contribution reads

SGH = 2M3
pN

2
c

∫
d4x
√
−hK, (4.26)

where

Kµν = ∇µnν =
1

2
nρ∂ρhµν , K = hµνnµν . (4.27)

with hµν the induced metric on the bounary, nµ the outward directed unit
normal to the boundary and K is the extrinsic curvature. The second is the
counterterm SCT, which we will not consider explicitly here [50]. Its presence
is required to make the value for the on-shell action action on geometries with
infinite volume such as the asymptotically AdS that we are considering finite.

4.3 Holographic Model

Putting everything together, the holographic action to be studied is stated in
full as

S = Sg + Sf + Sa + SCS + SGH + SCT. (4.28)

As the full equations of motion are quite cumbersome and provide no physical
insight before an ansatz, presented in the next section is assumed, they are listed
in the Appendix B. We make use of the holograhic prescription (4.12) to derive
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the one point function4

J µV = lim
r→0

M3
pN

2
c xVf (λ)w(λ)

8

∑
k=+,−

√
− detAk

(
A−1µr
k −A−1rµ

k

)
+ 6M3

pN
2
c xκε̃

σνρµrAσ∂νVρ, (4.29)

which we identify as the consistent current defined in (3.33). Observing the
response of this current to a perturbation will enable us to calculate the anoma-
lous coefficients in Chapter 6.

Since the on-shell gravity action supplies us with information about the ef-
fective action of the boundary theory (3.20), we can find expressions for the
anomaly coefficients in terms of the Chern-Simons coefficients, κ and γ. By
anomaly coefficients ai, we mean the numerical prefactors in the anomaly func-
tions Ai whose definition should be clear from (3.15), (3.29) and (3.30). We will
now observe how the holographic action transforms under the gauge transfor-
mation

VM → VM + ∂Mα, (4.30)

AM → AM + ∂Mβ, (4.31)

a→ a + xβ. (4.32)

Performing such a gauge transformation and using Stokes’ theorem, we are left
with the boundary term

−
M3
pN

2
c x

2

∫
d4xβεµνρσ(3κFVµνF

V
ρσ + γFAµνF

A
ρσ). (4.33)

If we then perform both the chiral transformation and the gauge transformations

Vµ → Vµ + ∂µα, (4.34)

Aµ → Aµ + ∂µβ (4.35)

on the effective action of the QFT theory (3.20), we find that we are left with
the term

−
∫
d4xεµνρσ

([
βa1−

Nf
16π2

δθ
]

tr
(
GµνGρσ

)
+βa2F

V
µνF

V
ρσ+βa3F

A
µνF

A
ρσ

)
. (4.36)

Firstly, note that we can actually cancel out the contribution from the gauge
anomaly A1 by insisting that

θ → θ +
Nf

16π2
δθ = θ +

Nf
16π2

β (4.37)

4We do not consider the one point function JA here as its computation requires us to solve
the equations of motion in full. Moreover, we only need to know JV in order to compute the
CME, CSE and CVE.
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We can then compare the two expressions (4.33), (4.36) to find that

κ =
2a2

3M3
pN

2
c x

, γ =
2a3

M3
pN

2
c x
. (4.38)

The goal of this thesis is to compute anomalous conductivities, which should
be given in terms of κ, γ. Using the above identifications, we can then compute
the conductivites in terms of the anomaly coefficients. Consequently, the con-
ductivities will take a form similar to (2.20).



Chapter 5

Holographic Background

As was discussed in Chapter 2, we will compute anomalous conductivities asso-
ciated with the QGP by making use of linear response theory. In order to apply
linear response, we will schematically write our holographic fields in the form
background + fluctuation1

g = gbg + δg, (5.1)

V = Vbg + δV, (5.2)

A = Abg + δA. (5.3)

This chapter will contain an explicit, thorough explanation of how the back-
ground terms are chosen before evaluating the equations of motion, listed in
Appendix B given such ansatz2. Following is an explanation detailing the con-
struction of the numerical setup, specifically with relation to the choice of co-
ordinates. We will study the UV asymptotics of the gauge fields and provide
a comment related to the issue of our initial definition of Z(λ). Lastly, we will
briefly discuss some plots, which characterize the thermodynamics of the back-
ground.

5.1 Background Ansatz

We firstly state the reasoning behind our constuction of the background metric.
As was mentioned before, we do not want to the bulk theory we consider to
possess all of the symmetries of AdS. Therefore we need to adjust our ansatz
for the metric so that it is asymptotically AdS, while at the same time breaking
some of these symmetries as we go further into the IR. The general ansatz we
presume is

ds2 = e2a(r)
(
− f(r)dt2 +

1

f(r)
dr2 + dxidx

i
)
. (5.4)

1We do not consider fluctuations of the axion or dilaton.
2Linear response on this background will then be performed in the next chapter.
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The asymptotic UV behaviour of the warp factor e2a(r), a ∈ [0,∞) and the
blackening factor f(r) are fixed by demanding that

lim
r→0

e2a(r) =
L2

r2
, lim

r→0
f(r) = 1 (5.5)

so as to match with (4.3).

The choice of background directly affects the nature of the potential influ-
encing two test quarks. As we are trying to describe the plasma phase of QCD,
we want the force between quarks to disappear at large distances. This is done
by considering a black hole solution [51] characterized by the existence of a
non-extremal horizon at rh and the vanishing of the blackening factor at said
horizon. Furthermore, the Hawking temperature of this black hole [37] is

T

Λ
= −f

′(rh)

4π
, (5.6)

which is naturally identified with the temperature of the QGP we are consid-
ering3. The constant Λ is related to ΛQCD, which is set to 1 in the numerical
solver. Nevertheless, we include it in our definition for the sake of clarity and
because we eventually want to plot dimensionless quantities.

It has been proposed [37] that finite density and chemical potential are intro-
duced by allowing for a non-trivial profile for the time component of the gauge
field in the radial direction

Vbg = Vt(r)dt , Abg = At(r)dt. (5.7)

In its most elementary definition the chemical potential is the energy needed to
add one unit of charge to the thermal ensemble. Since the thermal ensemble is
represented by a black hole, one can define the addition of a unit of charge by
transporting such a charge from infinity to behind the horizon. It then seems
natural to identify the vector chemical potentials as4

µV = Vt(rh)− Vt(0) (5.8)

However there exists further gauge freedom, which allows us to set the temporal
components of the gauge fields to zero at the horizon, leaving us with chemical
potential

µV = −Vt(0) (5.9)

With the above definitions in mind, we can go on and evaluate the equations of
motion, which are presented below.

3The appearance of a minus sign in the definition of temperature is an artifact of the
coordinate system where r → 0 in the UV.

4The situation for the axial chemical potential is more complicated and will be treated in
detail later in the chapter.
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5.2 Background Equations of Motion

Maxwell and Axion Equations

All components of the background vector and axial gauge equations are zero
apart from the time components, which immediately implies that ∂ra = ∂ia = 0.
We will discuss the time dependence of the axion below. For the moment, the
vector and axial equations are listed respectively as

0 = ∂r

[xVf (λ)w2(λ)

4

∑
k=+,−

√
−detAk

V ′t ±A′t
e4a(r) − w2(λ)(V ′t ±A′t)2

]
(5.10)

and

0 = ∂r

[xVf (λ)w2(λ)

4

∑
k=+,−

k
√
−detAk

V ′t ±A′t
e4a(r) − w2(λ)(V ′t ±A′t)2

]
+
Z(λ)e3a(r)

f(r)
(∂ta− 2xAt) (5.11)

where X ′ denotes a derivative with respect to r. To clear up any possible
confusion, the appearance of ± indicates that a + appears in the k = + term
and that a − appears in the k = − term. The determinant factor’s explicit
appearance through such a background ansatz is√

−detAk = e10a(r) − e6a(r)w2(λ)(V ′t ±A′t)2. (5.12)

For future reference, it will be convenient to define

Q+ =
xVf (λ)w2(λ)

2

√
−detA+

V ′t +A′t
e4a(r) − w2(λ)(V ′t +A′t)

2
, (5.13)

Q− =
xVf (λ)w2(λ)

2

√
−detA−

V ′t −A′t
e4a(r) − w2(λ)(V ′t −A′t)2

(5.14)

so that the Maxwell equations can be written as

0 = ∂r

[1

2
(Q+ +Q−)

]
, (5.15)

0 = ∂r

[1

2
(Q+ −Q−)

]
+
Z(λ)e3a(r)

f(r)
(∂ta− 2xAt). (5.16)

We can use the above information to fully determine the behaviour of the axion.
In particular, with the knowledge that the axion only possesses time dependence
we conclude that

∂2
t a = 0, (5.17)

which admits the solution
a(t) = a0 + xa1t, (5.18)

where a0, a1 are constants. In fact, because the axion only appears through a
constant contribution to the action (4.23), we will neglect it from this point
onwards.
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Einstein Equations

There are three independent components of the background Ricci tensor: Rtt, Rrr
and Rxx. They read

Rtt = 3f(r)(a′(r))2 +
5

2
f ′(r)a′(r) + f(r)a′′(r) +

1

2
f ′′(r)

=
1

3
Vg(λ)e2a(r) + 2

Z(λ)

f(r)
(xAt)

2

− xVf (λ)e−3a(r)

12

∑
k=+,−

√
−detAk

2e4a(r) − 3w2(λ)(V ′t ±A′t)2

e4a(r) − w2(λ)(V ′t ±A′t)2
, (5.19)

Rrr = −5

2
f ′(r)a′(r)− 4f(r)a′′(r)− 1

2
f ′′(r)

= −1

3
Vg(λ)e2a(r) +

4λ′2

3λ2
f(r)

+
xVf (λ)e−3a(r)

12

∑
k=+,−

√
−detAk

2e4a(r) − 3w2(λ)(V ′t ±A′t)2

e4a(r) − w2(λ)(V ′t ±A′t)2
, (5.20)

Rxx = 3f(r)(a′(r))2 + f ′(r)a′(r) + f(r)a′′(r)

=
1

3
Vg(λ)e2a(r)

− xVf (λ)e−3a(r)

6

∑
k=+,−

√
−detAk

e4a(r)

e4a(r) − w2(λ)(V ′t ±A′t)2
. (5.21)

From the equations above along with (5.10) and (5.11) we can derive the useful
relations

0 =
2Z(λ)(xAt)

2

f2(r)
+ 3a′′(r)− 3(a′(r))2 +

4λ′2

3λ2
(5.22)

0 = ∂r

[
f ′(r)e3a(r) − Vt(Q+ +Q−)−At(Q+ −Q−)

]
. (5.23)

Finally, one can add the Einstein equations and then differentiate with respect
to λ to get the equation of motion for the dilaton. It can also be computed by
varying the holographic action with respect to λ and then evaluating it on the
holographic background. We include the dilaton equation for completeness

0 =
8

3λ
∂r

[
e3a(r)f(r)λ′

]
+ e5a(r) dVg(λ)

dλ
+

2

f(r)
e3a(r) dZ(λ)

dλ
(xAt)

2

− 1

2
x
dVf (λ)

dλ

∑
k=+,−

√
−detAk

+
1

2
xVf (λ)w(λ)

dw(λ)

dλ

∑
k=+,−

√
−detAk

(V ′t ±A′t)2

e4a(r) − w2(λ)(V ′t ±A′t)2
, (5.24)

although it will not be relevant in what follows.
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5.3 Construction of Numerical Solution

We will solve both the background and fluctuation equations numerically. An-
ticipating the numerical issues that will arise due to taking the limit r → 0 in
the UV, we make a suitable change of coordinates [41], writing all of our fields
in term of the exponent of the warp factor, a. The change of coordinates is
defined through the relation

q = ea
dr

da
. (5.25)

To clean up the equations of motion, it makes sense to define5√
−det Ãk = e2a −

(w(λ)

q

)2
(V̇t ± Ȧt)2, (5.26)

where Ẋ denotes a derivative with respect to a. In a coordinates Q+ and Q−

are then

Q+ =
xVf (λ)w2(λ)e3a(V̇t + Ȧt)

2q

√
−det Ã+

, (5.27)

Q− =
xVf (λ)w2(λ)e3a(V̇t − Ȧt)

2q

√
−det Ã−

. (5.28)

We now go on and respectively rewrite the Maxwell equations (5.15), (5.16)
along with three equations from the gravity sector: (5.21), eq5.22 and (5.22) in
these coordinates6

0 = ∂a

[1

2
(Q+ +Q−)

]
, (5.29)

0 = ∂a

[1

2
(Q+ −Q−)

]
− 2xq

Z(λ)e2a

f(a)
At, (5.30)

ḟ(a) + f(a)
(

4− q̇

q

)
=

1

3
Vg(λ)q2 −

∑
k=+,−

xVf (λ)eaq2

6
√
−det Ãk

, (5.31)

0 =
2Z(λ)(xAt)

2

f2(a)
+ 3e2a

(
1 +

q̇

q

)
− 3

e2a

q2
+

4e2aλ̇2

3q2λ2
, (5.32)

0 = ∂a

[e4a

q
ḟ(a)− Vt(Q+ +Q−)−At(Q+ −Q−)

]
. (5.33)

These will be the five equations that we will use to solve for Vt(a), V̇t(a), At(a),
Ȧt(a), f(a), ḟ(a), q(a) and λ(a). We will integrate from a = 0 to a = acut,
where acut is interpreted as a UV cutoff. Therefore, we need to specify the
boundary conditions V̇th, Ȧth, ḟh, qh and λh in addition to the assumptions

5In what follows, the matrix Ã itself is of no concern to us. The definition of its determinant
just allows us to simplify the equations of motion slightly.

6As was mentioned previously, we will not include the axion term.
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Vth = Ath = fh = 07, which were justified in the previous section.

We enforce the conventional boundary condition by setting ḟ(0) = 1. Ex-
panding (5.31) at the horizon and demanding regularity yields the condition

q2
h =

6

2Vg(λh)− xVf (λh)
∑
k=+,−

1√
1−(w(λhq

−1
h ))2(V̇th±Ȧth)2)

. (5.34)

From (5.25), we can see that we should take the negative branch as the definition
of qh. There is obviously the issue that qh is written in terms of itself. This is
rectified by defining the horizon values of the derivatives of the gauge fields as

QV = q−1
h V̇th , QA = q−1

h Ȧth. (5.35)

An initial choice of QV , QA then automatically determines qh, V̇th and Ȧth.
The value of λh is then regarded as a free parameter, whose behaviour we will
study in the final section of this chapter.

Scaling Symmetries

It is necessary to produce the UV behaviour (5.5) in order to construct an
asymptotically AdS spacetime. This is done by first noticing that the equations
of motion are invariant under

• The scaling of f . The following quantities scale as:
f → f

δ2
f

,q → q
δf

, Vt → Vt
δf

, At → At
δf

• The scaling of a. The following quantities scale as:
a→ a+ δa, Vt → Vte

δa , At → Ate
δa

The number δf is computed by reading the unscaled f̃(acut) from the output of
the numerical solution, before solving

δ2
f =

f̃(acut)

f(acut)
, (5.36)

where we have demanded that f(acut) = 1.

From [52], the UV expansion of the unscaled aus is

aus = a0 +
1

b0λ
+
b1
b20

ln(b0λ) +O(λ) (5.37)

7To avoid numerical issues we impose an IR cutoff, ε ∼ 10−7 and set Vth = Ath = fh = ε.
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where the bi’s are coefficients of the QCD beta function, a0 is a constant of
integration and the asymptotic expansion of the dilaton is

λ = − 1

b0 ln(rΛ)
+O

( ln
(
− ln(rΛ)

)
ln(rΛ)

2

)
. (5.38)

We will scale our solution in such a way that the integration constant is zero.
Therefore, it is necessary to first define

δa = logL− acut +
1

b0λ
+
b1
b20

ln(b0λ) (5.39)

and then scale appropriately with δa as described above to produce the desired
asymptotics.

5.4 Gauge Field Asymptotics

Even though we are solving the system numerically in a coordinates, we will
define the chemical potentials µv, µA in r coordinates as to agree with more
general conventions. From the background equations (5.10), (5.11), it can be
shown that the asymptotic behaviour of the gauge fields is

lim
r→0

Vt ∼ −µV + Ṽ r2 (5.40)

lim
r→0

At ∼ −µAr∆ ln rp + Ãr2−∆ ln r−p (5.41)

With these definitions, we now go to a coordinates using (5.37) and (5.38). At
leading order, we can then write

ea =
L

r
. (5.42)

In a coordinates, the asymptotic expansions of the vector gauge field is

lim
a→∞

Vt ∼ −µV + Ṽ L2e−2a (5.43)

The vector chemical potential can then be read easily from the constant be-
haviour of Vt.

The situation for the axial gauge field is more complicated. For such a
massive field, the asymptotic behaviour in a coordinates is

lim
a→∞

At ∼ −µAe−∆aL∆a−p + Ãe(∆−2)aap. (5.44)

If we then expand (5.30) near the UV, we can use the expansions (5.38) and

q = −L
(

1− 4

9a
+O

( 1

a2

))
(5.45)
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Figure 5.1: Behaviour of Z0 as a function of c for different values of d. It turns
out that we need to increase c, d to at least O(1) to push Z0 below Z∗0 .

from [41] to calculate ∆, p. Expanding up to zeroth order, our result is

∆ = 1−

√
1 +

4Z0xL2

W0w2(λ0)
(5.46)

where λ0 is the value of the dilaton at the UV boundary. To completely deter-
mine ∆, we should compute Z0 independently using our numerically generated
background. This coefficient Z0 can be fixed by computing the topological sus-
ceptibility in pure Yang-Mills [53] and such details are put in Appendix A.
Recalling the definition of Z(λ), (4.24) with d = 0.1, L = 1/

√
1− 5/24 we cal-

culate Z0 ∼ 16.4, implying ∆ ∼ −6.434.

Let us pause and consider the physical meaning of ∆ in our boundary theory
[49]. The normalizable mode of (5.44) is identified with the associated current
of the QFT, J µA via the holographic prescription. The conformal dimension of
this current is

dim(Ã) = [J µA ] = 3−∆ (5.47)

where ∆ ≤ 0. This implies that we need to demand ∆ ≤ −1. Otherwise
the dual operator will be irrelevant in the IR and the AdS asymptotics will be
destroyed. For this reason, we henceforth refer to ∆ as the anomalous dimension.
Furthermore, our previous calculation of ∆ ∼ −6.434 clearly does not satisfy
this requirement. In fact, we can solve (5.46) with ∆ = −1 to show that
Z0 ≤ 0.906 = Z∗0 , the critical value of Z0. It will not be possible to go below
this critical value with a “natural” choice8 of the coefficient, d.

8By natural, we mean a value, which can be justified through comparison with experimental
or lattice data.
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Figure 5.2: Behaviour of T as a function of λh for small, fixed Q̃A. The curves
converge to the Q̃V = 0 curve as Q̃V is decreased.

We attempt to fix this problem by adding a linear term to the potential
Z(λ). The potential is redefined as [53]

Z(λ) = Z0

(
1 + c

λ

λ̂0

+ d
λ4

λ̂4
0

)
. (5.48)

This seems to work quite well. As is summarized in Fig (5.1), it is possible to
obtain a Z0 < Z∗0 by tweaking c and d appropriately. We intend on matching
these coefficients to some physical quantities computed from lattice QCD in
the future9. For the sake of this thesis however, we will just choose a setup,
which does not destroy the AdS asymptotics. In addition, we need to ensure
we avoid any numerical issues that could be produced by taking ∆ too close to
−1. Therefore, we choose Z0 = 0.57 with c = 18 and d = 10. This determines
∆ = −0.7.

Expanding (5.30) up to O(1/a) analytically determines the value of p as

p = −2
b0λ̃0

(
4L2Z0 + 3w2

0∆(∆− 2)(W0 +W1λ)
)
− 9cL2Z0

9b0λ̃0w2
0(∆− 1)(W0 +W1λ)

. (5.49)

Plugging in all of the V-QCD coefficients along with coefficients from our nu-
merical solution, we calculate p = −1.82, The coefficients W1, w0, λ̃0 are defined
in Appendix A and the choices of Z0, ∆, c, L have been mentioned above. The
value of b0 = 3/8π2 is taken from [52]. Given the numerical values of ∆, p we
can calculate the value of µA by plotting Ate

∆aL−∆ap and reading its constant
value at large a.

9We will elaborate as to what exactly is meant by this in the Conclusion 7.
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Figure 5.3: Behaviour of T as a function of λh for small, fixed Q̃V . The curves
converge to the Q̃A = 0 curve as Q̃A is decreased. Note that the curves fall off
at lower λh when the unscaled axial charge is larger.

5.5 Background Analysis

This chapter is concluded by a few comments related to the plots 5.2, 5.3, 5.4
and 5.5. It should be noted that because the chemical potentials are the outputs
of our numerical solver, they are more difficult to fix. This is why we instead
choose to fix the unscaled charges Q̃V , Q̃A. For the sake of brevity, we write
these in terms of the scaled charges

Q̃V = QV
Λ

s 1
3

(5.50)

Q̃A = QA
Λ

s
1
3

(5.51)

where s, the entropy density is defined as [37]

s

Λ3
= exp(3δa) (5.52)

There is not much to be learned from the plots 5.2, 5.4 other than the fact
that the choice of vector charge does not have a significant impact on the back-
ground’s thermodynamics, at least in comparison to the choice of axial charge.
In particular, one can see that the family curves in Fig 5.2 converge to the
Q̃V = 0 curve at a much faster rate than in Fig 5.3, where they converge to
the Q̃A = 0 curve. The significantly larger backreaction of the field AM on the
gravitational background can be traced back to the fact that it is massive.
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Figure 5.4: Behaviour of µV as a function of λh for small, fixed Q̃A. Clearly, the
value of unscaled vector charge only impacts the vector chemical potential at
high temperatures. Note that the curves fall off at lower λh when the unscaled
axial charge is larger.

The complete decay of temperature in the plots 5.2, 5.3 is cut out at λh = 90.
The reason for this is that at such a low temperature, the QGP phase should
not be the dominating phase. There is potential to study this behaviour fur-
ther by the inclusion of the tachyon. This will be elaborated on further in the
Conclusion 7.

It is easy to see that in Fig 5.5, the curves level out for smaller λh, the larger
the value of Q̃A. This is in contrast to the case in Fig 5.3 where the temper-
ature curves decay at lower λh the larger the value of Q̃A. As was mentioned
already, this demonstrates the fact that the value of Q̃A significantly impacts
the background thermodynamics. It is also possible to infer from nonmonotonic
nature of the curves in Fig 5.5 that there may be some kind of phase coexistence.
However, without further analysis of the system’s thermodynamics, not much
more can be said about this.
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Figure 5.5: Behaviour of µA as a function of λh for small, fixed Q̃V . The
behaviour of the axial chemical potential could be indicative of some non trivial
phase behaviour.



Chapter 6

Anomalous Conductivities

In this final chapter we will present the main results of the thesis. We will ob-
serve the response of suitably defined fluctuations on the background explored
in the previous chapter. This will allow us to compute the anomalous conduc-
tivities associated with the CME, CSE and CVE.

We consider the following ansatz for the fluctuations

δgtx = e2a(r)(δh1(r)z + δh2(r)) , δgty = e2a(r)(δl1(r)z + δl2(r)) (6.1)

δVx = δVx1(r)z + δVx2(r) , δVy = δVy1(r)z + δVy2(r) (6.2)

δAx = δAx1(r)z + δAx2(r) , δAy = δAy1(r)z + δAy2(r) (6.3)

where the perturbations are assumed to be wave-like with their momentum ori-
ented in the z direction. We have assumed constant magnetic field and vorticity
so that the fluctuations have no time dependence and only depend linearly on
z. The fact that we are only considering linear response implies that none of the
fluctuations will couple to other fluctuations. Therefore, as we are only inter-
ested in studying the impact of the dilaton on the background, its fluctuation
can be turned off in a consistent way.

6.1 Fluctuation Equations of Motion

We now list the equations of motion for the fluctuations defined above. As we
intend to solve the fluctuation equations numerically, it is convenient to imme-
diately present the equations in a coordinates.

Maxwell Equations

For all of the fluctuating fields, only the x, y components of the equations are
non-zero. We start by listing the equation of motion for the vector fluctuations.
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The x and y components are

−6κ(∂zδVyȦt + V̇t∂zδAy) = ∂a

[xVf (λ)w2(λ)e3a

4q

∑
k=+,−

f(r)(δV̇x ± δȦx)√
−detAk

]
+

1

2
δġtx(Q+ +Q−) (6.4)

and

6κ(∂zδVxȦt + V̇t∂zδAx) = ∂a

[xVf (λ)w2(λ)e3a

4q

∑
k=+,−

f(r)(δV̇y ± δȦy)√
−detAk

]
+

1

2
δġty(Q+ +Q−) (6.5)

respectively, where we have used the definitions of Q± and (5.29). Similarly, for
the axial gauge field they are

2Z(λ)x2qe2aδAx+2
(

3κ∂zδVyV̇t + 2γ∂zδAyȦt
)

= ∂a

[xVf (λ)w2(λ)e3a

4q

∑
k=+,−

k
f(r)(δV̇x ± δȦx)√

−detAk

]
+

1

2
δġtx(Q+ −Q−) (6.6)

and

2Z(λ)x2qe2aδAy−2
(

3κ∂zδVxV̇t + 2γ∂zδAxȦt
)

= ∂a

[xVf (λ)w2(λ)e3a

4q

∑
k=+,−

k
f(r)(δV̇y ± δȦy)√

−detAk

]
+

1

2
δġty(Q+ −Q−). (6.7)

Einstein Equations

Using the background equations, the Einstein equations simplify to

δV̇x(Q+ +Q−) + δȦx(Q+ −Q−) + δAx∂a(Q+ −Q−) =
e4a

q

(δġtxq̇
q

−δg̈tx − 4δġtx

)
, (6.8)

δV̇y(Q+ +Q−) + δȦy(Q+ −Q−) + δAy∂a(Q+ −Q−) =
e4a

q

(δġty q̇
q

− δg̈ty − 4δġty

)
, (6.9)
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which can both be integrated to yield

∂a

[
δVx(Q+ +Q−) + δAx(Q+ −Q−)

]
= ∂a

[
− e4aδ ˙gtx

q

]
, (6.10)

∂a

[
δVy(Q+ +Q−) + δAy(Q+ −Q−)

]
= ∂a

[
− e4aδ ˙gty

q

]
. (6.11)

Consistent Current Response

We derive the form of the fluctuation of the relevant one-point function, from
which we will read off the conductivities. The equation of motion for the field
δV can be schematically rewritten as

δJ µV = δJ̃ µV − δ
(
∂ν

δS

δFVνµ

)
(6.12)

where δJ µV is the fluctuation of the current defined in (4.29) and δJ̃ µV is the same
expression evaluated at the horizon (as opposed to the boundary). Assuming
our fluctuation ansatz, the only non-zero components of δJ̃ µV are just (6.4) and
(6.5). We note that f(a) vanishes at the horizon by definition. We also require
δgtx to vanish at the horizon to ensure the regularity of our solution1 [21].
Therefore, δJ̃ µV = 0 and we are left with

δJ xV = 4a2

∫ acut

0

da(At∂zδV̇y − V̇t∂zδAy), (6.13)

δJ yV = −4a2

∫ acut

0

da(At∂zδV̇x − V̇t∂zδAx), (6.14)

where we have used (4.38) to express the fluctuations in terms of anomaly coef-
ficients. The appearance of this one-point function implies that we do not need
to solve the full set of equations above in order to read off the conductivities.
Let us now explain why this is so. Firstly, note that the one-point function
only depends on z derivatives of the fluctuations. Then, if we expand all of our
equations of motion above in the form

F (a) + zG(a) = 0, (6.15)

we can just use the coefficient of z and hence, write the equations of motion in
terms of δh1,δl1, δVx1, δVy1, δAx1 and δAy1.

This realization significantly simplifies our task of solving the equations of

1We can actually show this independently by writing (6.4), (6.5) in the form (6.15) and
using that f(a) = 0 at the horizon.
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Figure 6.1: Exhibition of the linear dependence of the response current (6.13)
on BA. This implies that there will be a response associated with the source
BA, namely the CSE.

motion numerically. The input for the numerical solver is

0 = ∂a

[xVf (λ)w2(λ)e3a

4q

∑
k=+,−

f(r)(δV̇x1 ± δȦx1)√
−detAk

]
+

1

2
δḣ1(Q+ +Q−), (6.16)

2Z(λ)x2qe2aδAx1 = ∂a

[xVf (λ)w2(λ)e3a

4q

∑
k=+,−

k
f(r)(δV̇x1 ± δȦx1)√

− detAk

]
+

1

2
δḣ1(Q+ −Q−), (6.17)

∂a

[
δVx1(Q+ +Q−)+δAx1(Q+ −Q−)

]
= ∂a

[
− e4aδḣ1

q

]
. (6.18)

Note that because the Chern-Simons terms are no longer needed, the x and y
components of the equations essentially coincide. The above three equations
can be solved to compute δVx1, δAx1, δV̇x1 and δȦx1, which is all that is needed
in order to calculate the response to the consistent current (4.29). We also need
to supply the boundary conditions2 δVx1h, δAx1h, δV̇x1h and δȦx1h. Moreover,
δḣ1h will be a free parameter.

2Recall that we have demanded δgtxh = 0, which imples that δh1h = 0.
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Figure 6.2: CSE radiative corrections as a function of µV with µA fixed. The
conductivity is normalized by the universal conductivity, µUV A.

6.2 Computation of Anomalous Conductivities

Similarly to the case in Chapter 5, we define the relevant sources through the
asymptotic behaviour of δVx1, δAx2 and δh1. Precisely, the magnetic fields and
vorticity are

lim
a→∞

δVx1 ∼ −BV + V̂ L2e−2a, (6.19)

lim
a→∞

δAx1 ∼ −BAe−∆aL∆a−p + Âe(∆−2)aap, (6.20)

lim
a→∞

δh1 ∼ −ω + ĥL2e−2a (6.21)

respectively.

It is important to note that we will not be computing corrections to the
universal values associated with the covariant current (2.20), the form in which
they are usually presented. This stems from the fact that it is impossible to
define a covariant current in the case where AM is massive [49]. Therefore, the
universal values that we will make reference to from this point onwards are [25]

σV V = 0 , σV A =
µV
2π2

, σV Ω = 0. (6.22)

Before actually computing the radiative corrections, we need to confirm if any
of the chiral or vortical conductivites recieve corrections at all. This is not so
straightforward as there is no analytical formula to work with. We only know
that the response (6.13) should have the appearance of (2.16). Hence, by tweak-
ing the values of the input parameters and the sources, we can deduce exactly
which forms of anomalous response are present.
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Figure 6.3: CSE radiative corrections as a function of µA with µV fixed. The
conductivity is normalized by the universal conductivity, σUV A.

We find that the CME and CVE are zero, thereby receiving no radiative cor-
rections in accordance with (6.22). As is shown in Fig 6.1, the CSE is non-zero.
Indeed, this has to be the case for our result to agree with the universal values
(6.22). Whether or not the CSE receives corrections is a different question. It
turns out that it does and we will spend the rest of the section attempting to
identify such corrections.

As was mentioned in the previous chapter when discussing plots of the ther-
modynamic quantities, it is extremely difficult to fix the output values of the
numerical solver, µV and µA. However, this is necessary to check the universal
behaviour of the CSE3. While not visible in either Fig 6.2 or Fig 6.3, we find in
the presence of constant µV , that σUV A is constant. Furthermore, in the presence
of constant µA, the dependence of σV A on µV is linear. This is a reassuring
consistency check, implying that our model does produce the required universal
behaviour (6.22) in the absence of the gluon anomaly.

We will finalize this section by providing a comparison of the figures 6.2 and
6.3. The function in Fig 6.2, while monotonically increasing has a very small
derivative compared to that in Fig 6.3. In other words, the adjustment of µV
seems to have a very small effect on the radiative corrections in comparison
to that of µA. As we have seen before during the analysis of the holographic
model, this stems from the massive nature of the field associated with µA.

The fact that µV is associated with a massless field allows us to probe a
larger range of chemical potentials, although this is still not really large enough.
Ideally, one would like to have access to both vector and chemical potentials

3The universal values for the conductivities are computed by turning off the mass term in
the equations of motion, i.e sending Z(λ)→ 0.
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� 1. However, the square root in the DBI action will contribute to numerical
difficulties if the input unscaled charges Q̃V , Q̃A are too large. We have found
that the conductivity becomes negative if µA is further increased in Fig 6.3.
This sheds a significant amount of doubt over the validity of the prediction as
the corrections go to zero.
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Chapter 7

Conclusion and Outlook

We have successfully built a holographic model, which enables us to compute
radiative corrections to anomalous conductivities within the setting of the QGP.
We summarize our main results below while also mentioning some aspects of
the model that could be investigated further.

It is apparent that the key ingredient needed in the holographic model to
produce dynamical gluons is a massive axial gauge field, AM . The presence of
this massive field intentionally induces an anomalous dimension, ∆ associated
with the current J µA . Moreover, for the considered model to produce QCD, we
must demand that ∆ > −1. It turns out that the constant Z0 is intimately
related to ∆. However, our original definition for Z(λ) will not be able to pro-
duce a ∆ satisfying this bound. We showed that by adding a linear term to
the potential Z(λ), this problem is seemingly fixed and for the purpose of the
thesis, we chose ∆ = −0.7.

There are many avenues that one could pursue to expand on this analy-
sis. First and foremost, it would be ideal to fix the coefficients c, d to some
physical quantity associated with either lattice or experimental data. In the
bulk theory, pseudoscalar gluballs are associated with fluctuations of the ax-
ionic field, δa. The fact that the potential Z(λ) is holographically related to
the spectrum of pseudoscalar glueballs [42] could then provide a mechanism for
fixing such coefficients. In addition, it could be intructive to perform a com-
parison between our results and [25], where the fluctuations are organized in a
perturbative expansion in ∆. A better understanding of the behaviour of the
radiative corrections of the CSE as a function of ∆ in general woud be desirable.

The thermodynamics of the holographic background were studied by plotting
the temperature and chemical potentials as a function of the free parameter, λh.
Perhaps, as should be expected, the massless field VM does not backreact at all
in comparison to AM . From Fig 5.5, the nonmonotonic nature of the µA curves
imply that there could be some kind of phase coexistence. To study this fur-
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ther, one could make use of technology already provided by V-QCD [52]. It was
mentioned in Chapter 4 that the justification to not include the tachyon comes
from the fact that we are not considering the chiral condensate to be relevant
for our analysis. Nonetheless, it might be interesting to include the tachyon if
we want to incorporate chiral symmetry breaking into the phase structure of
our model [43].

In Chapter 4, we made use of the holographic prescription to compute the
current J µV . One can just as easily compute the current J µA by functional dif-
ferentiation of the on-shell gravitational action with respect to Aµ. Within the
response to this current lies another anomalous conductivity, namely σΩA, as-
sociated with the CVSE. The CVSE has the special property, which is that its
universal value only depends on temperature [8]. It is believed that for this
reason, σΩA is more likely to be observed in the QGP. This is because temper-
ature is the only ingredient required to produce such an anomalous response,
as opposed to the aforementioned conductivities, in which case the existence
of a chiral medium is required. Computing δJ µA is definitely a realistic goal.
The only caveat is that one would then need to solve the full set of fluctuation
equations, including the Chern-Simons terms.

The response to the current δJ µA was computed numerically. Radiative cor-
rections were found to be zero in the case of the CME and CVE, matching
with the universal behaviour (6.22). We were also able to recover the univer-
sal value for the CSE by observing the lack of dependence of σV A on µV and
linear dependence on µA. The radiative corrections were then studied for fixed
µV and separately for µA. We have concluded that there are indeed radiative
corrections to the CSE, although a more concrete understanding of the param-
eter space associated with the numerical solver will be needed to explore the
behaviour properly.
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Potential Definitions

In this appendix we give the coefficients of the potentials Vg(λ), Vf (λ) and w(λ)
explicitly [54]. We do not explain the justification behind the choice of such
coefficients as this was partly explained in chapter 4 as well. Lastly, we demon-
strate how the coefficient Z0 was computed from the work [53].

Potential Coefficients

For clarity’s sake we recall the definitions here, starting with the gluonic poten-
tial

Vg(λ) = 12

[
1+V1λ+

V2λ
2

1 + λ/λ̃0

+VIRe
−λ̃0/λ(λ/λ̃0)4/3

√
log
(

1 + λ/λ̃0

)]
. (A.1)

In addition, the potentials for the flavor sector are

Vf (λ) = W0 +W1λ+
W2λ

2

1 + λ/λ̃0

+WIRe
−λ̃0/λ(λ/λ̃0)2, (A.2)

1

w(λ)
= w0

[
1 + w̄0e

λ̂0/λ
(λ/λ̂0)4/3

log
(

1 + λ/λ̂0

)]. (A.3)

We then choose to work with the definitions of the UV coefficients

V1 =
11

27π2
, V2 =

4619

46656π4
, w0 = 1.28

W0 = 2.5 , W1 =
8 + 3W0

9π2
, W2 =

6488 + 999W0

15552π2
. (A.4)

Furthermore, the choice of IR coefficients is

VIR = 2.05 , λ̂0 =
8π2

3
, WIR = 0.9.
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Computation of Z0

Recall the definition of Z0 that produces the correct IR asymptotics, namely

Z(λ) = Z0

(
1 + c

λ

λ̃0

+ d
λ4

λ̃4
0

)
, (A.5)

with λ̃0 = 8π2. We compute Z0 by making use of Eq 2.17 in [53]. After rewriting
the equation in a coordinates and scaling, we arrive at the expression

Z0 = −
∫ acut

0

dae−4(a+δa) qχ(
1 + c λ

λ̃0
+ dλ

4

λ̃4
0

)
M3
pΛ

(A.6)

where χ is the topological susceptibility. Even though this is only supposed to
be valid in the T = 0 regime, we can adapt our numerical solution to such a
situation by taking λh to be very large (∼ 106). The numerical values of Mp,Λ
and χ are taken from lattice data [53], [47] and their combination reads

χ

M3
pΛ

=
45π2

1.3

( 191

(1.28)(270)

)
. (A.7)



Appendix B

Holographic Equations of
Motion

In this appendix, we list the full equations of motion for the holographic model
(without assumption of any specific background or fluctuations). The equation
of motion for VM is

3

4
κε̃MNPQRFVMNF

A
PQ = ∂M

[xVf (λ)w(λ)

8

∑
k=+,−

√
−detAk

(
A−1RM
k −A−1MR

k

)]
,

(B.1)
while for AM , it reads

ε̃MNPQR(
3

4
κFVMNF

V
PQ + 2γFAMNF

A
PQ) = Z(λ)

√
−ggMR(∂Ma− 2xAM )

+ ∂M

[xVf (λ)w(λ)

8

∑
k=+,−

k
√
−detAk

(
A−1RM
k −A−1MR

k

)]
. (B.2)

The Einstein equations are

RMN = −gMNVg(λ)

3
+
gMNxVf (λ)

12
√
−g

∑
k=+,−

√
−detAkTr(A−1

k )

+
4

3λ2
∂Mλ∂Nλ−

xVf (λ)

8
√
−g

∑
k=+,−

√
−detAkgMP

(
A−1PQ
k + A−1QP

k

)
gQN

+
1

2
Z(λ)(∂Ma− 2xAM )(∂Na− 2xAN ). (B.3)
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Finally, the equations of motion for the dilaton and the axion are

√
−g
2

dZ(λ)

dλ
(∂Ma− 2xAM )2 =

8

3λ
∂M

[gMN√−g∂Nλ
λ

]
+
√
−g dVg(λ)

dλ

− x

2

dVf (λ)

dλ

∑
k=+,−

√
− detAk

+
1

4
xVf (λ)

dw(λ)

dλ

∑
k=+,−

√
−detAkA

−1MN
k

(
FVMN ± FANM

)
(B.4)

and
0 = ∂M [gMN√−gZ(λ)(∂Na− 2xAN )] (B.5)

respectively.
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