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Introduction

In his 1930 paper[15], physicist Lev Landau applied quantum mechanical rules to electrons in a
magnetic field to show that they describe quantized orbits. In other words, charged particles in
classical mechanics describe orbits when placed in a magnetic field, but when quantum mechanics
is considered, such particles are restricted to certain orbits. Landau then suggested that the mag-
netization should oscillate as the magnetic field is increased, but claimed such an effect could not
be observed experimentally due to lack of proper technology. He was proved wrong only a month
later, when De Haas and Van Alphen discovered the effect in Bismuth crystal[9]. It turned out that
Bismuth had a particular structure which allowed for the de Haas-van Alphen (dHvA) effect, as it
was so named, to be easily observed.

The following years did not yield further understanding of the phenomena, but a breakthrough
appeared when in 1947 J. A. Marcus[21] observed the dHvA effect in zinc. This showed that Bismuth
was not unique in this respect, which was contrary to the consensus at the time. By 1952, 13 metals
had been investigated, and only one of them did not show oscillatory behaviour. Around the same
time, Onsager[25] derived a relation between the frequency of oscillation, and the cross-sectional area
of the Fermi surface, which provided a tool to investigate the Fermi surface of metals. Similarly,
Lifshitz and Kosevich[16], who had developed the same idea on their own, published a detailed
theory of the dHvA effect which determined the frequency and amplitude.

By the 1960’s, most metals showed the dHvA effect, and as superconducting magnets entered
laboratories, the precision of measurement greatly improved. After an important conference in
New-York, many other methods were used to determine the Fermi surface, although the dHvA
effect remained the most versatile and accurate. Furthermore, oscillations in other properties were
also found, such as oscillations in the electrical resistance, which is referred to as the Shubnikov-
de Haas (SdH) effect. Nevertheless, the underlying cause of all such oscillations is the same, and
together, they are referred to as quantum oscillations. Today, quantum oscillations are still widely
used as a tool to probe the Fermi surface of metals, where they are used for example to investigate
conventional superconductors[8].

In 2004, graphene, a 2-dimensional carbon structure, was first identified in laboratory[24]. This
discovery was widely acclaimed, since graphene was expected to have very interesting properties, such
as high electrical and thermal conductivity. At the same time, superpositions of several graphene
layers were also observed, among which was twisted bilayer graphene (TBG), a superposition of
two graphene sheets characterized by a relative twist angle. In 2011, it was theoretically shown
that at specific angles, also called magic-angles, TBG demonstrated superconductive behaviour[2],
and in 2018, this was demonstrated experimentally[5, 6]. In any case, quantum oscillations were an
important part of experimental research, providing information on electron transport and the Fermi
surface of both graphene and TBG.

The objective of this thesis is to obtain an analytical derivation of quantum oscillations in TBG,
and to compare it to numerical calculations. The first chapter will introduce the models used
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in this thesis, namely graphene and TBG, where graphene will be used as a testing model. The
second chapter introduces quantum oscillations, where the relevant theory will be covered and then
applied to graphene and TBG. In the third chapter, the numerical method used in this thesis will
be introduced, and will be used to make an analytical approximation for TBG. This analytical
approximation will be used in the fourth chapter to obtain the quantum oscillations analytically.
Finally, the full numerical results will be presented in the fifth chapter, and will be compared to the
analytical results.



Chapter 1

Models

In this chapter, we introduce models relevant to this thesis. We first give an overview of graphene,
which is used as a means to test concepts throughout this text, and then move on to the main
model of this thesis, which is twisted bilayer graphene (TBG). For both systems, we introduce
their properties and present the band structure. The section on graphene is based on mostly on
refs. [7, 14], while the section on TBG is based on refs. [27, 10].

1.1 Graphene

Graphene[23] is a 2-dimensional material composed of carbon atoms arranged in a hexagonal honey-
comb lattice, as illustrated in fig. 1.1(a). It is the starting point for various other carbon structures,
such as fullerenes (balls of graphene) or nanotubes (rolled up graphene sheets), but more impor-
tantly, graphene can also be stacked up to form graphite, and it is in such arrangement that it
appears naturally.

Although the existence of graphene as a single layer of graphite was theorized already in the
1920’s[1], it was believed that due to thermal effects, graphene would collapse onto itself if iso-
lated. Nevertheless, in 2004, Geim and Novoselov[24] successfully extracted sheets of graphene from
graphite using scotch tape. This largely impacted the research community, and for this reason they
were awarded the Nobel Prize in 2010.

Following this discovery, it was discovered that graphene has a long list of remarkable properties[11,
33], such as high carrier mobility, breaking strength and thermal conductivity, as well as being im-
permeable to gases despite its thinness. As a result, graphene is the conversation piece for many
potential applications[11, 26] in computer electronics, data storage, composite materials and electri-
cal batteries, to cite only a few examples.

1.1.1 Lattice Properties

The honeycomb structure of graphene is illustrated in fig. 1.1(a). The sites A and B both rep-
resent identical Carbon atoms, but because their nearest neighbours are different, they must be
distinguished as two different sub-lattices. For a site A, its nearest neighbours are located at

δ1 = a(1, 0), δ2 =
a

2
(−1,−

√
3) and δ3 =

a

2
(−1,

√
3, )
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8 CHAPTER 1. MODELS

Figure 1.1: a.) Graphene honeycomb structure with carbon atoms located on sites A and B, lattice vectors a1

and a2, nearest neighbours for a site A δ1, δ2 and δ3, and the dashed shape represents the unit cell. b.) First
BZ of graphene, with reciprocal lattice vectors b1, and b2, and special points Γ, M , K and K′. c.) Band
structure of graphene for nearest neighbours, where the dashed shape represents the first BZ of graphene and
the inset is a magnification of the spectrum around a corner of the BZ.

where a ≈ 0.142 nm is the carbon-carbon distance (and
√

3a = a0, where a0 ≈ 0.246 nm is the
lattice constant). Furthermore, the unit cell includes both a B site and an A site, and is illustrated
in fig. 1.1(a) as a dashed line, and where the lattice vectors are

a1 =
a

2
(3,
√

3) and a2 =
a

2
(3,−

√
3).

The first Brillouin zone (BZ) of the reciprocal lattice is shown in fig. 1.1(b), where

b1 =
2π

3a
(1,
√

3) and b2 =
2π

3a
(1,−

√
3)

are the reciprocal lattice vectors. Note that the BZ has a hexagonal shape, which is chosen from
convention. The first BZ of graphene features the special points Γ at the centre, M on the edges,
and K and K ′ on the corners, as shown in fig. 1.1(b). The K and K ′ points are of significance, as
will be shown in the following subsection, and are located at

K =

(
2π

3a
,

2π

3
√

3a

)
and K ′ =

(
2π

3a
,− 2π

3
√

3a

)
,

where the remaining four corners can be obtained by a lattice translation. Note that K ′ = −K

1.1.2 Band Structure

Each carbon atom has 6 electrons. Two of them fill the 1s state and have a negligible effect on the
electronic properties. Three other electrons make up 3 σ bonds with all 3 of their neighbours, while
the last electron make a π bond with one other carbon atom. Since the π bond is the weakest bond,
it will be the most significant contributor to the electronic properties of graphene.
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In second quantization, we define the annihilation (creation) operator âσ,i (â†σ,i) for a π-bond
electron situated at site i on the sub-lattice A with spin σ, and a similar definition holds for the
operators b̂ on sub-lattice B. The energy spectrum of the electrons is described by assuming that
electrons can hop to nearest and next-nearest sites, and the resulting tight-binding Hamiltonian is

H = −t
∑
〈i,j〉,σ

(â†σ,ib̂σ,j + h.c.)− t′
∑
〈〈i,j〉〉,σ

(â†σ,iâσ,j + b̂†σ,ib̂σ,j + h.c.), (1.1)

where t (≈ 2.8 eV) and t′ (0.02 − 0.2 eV) are the nearest and next-nearest hopping parameters
determined by experiments. This Hamiltonian was first diagonalized by Wallace[35] in 1947, and
the resulting eigenvalues are

ε±(k) = ±t
√

3 + f(k)− t′f(k), (1.2)

with

f(k) = 2 cos(
√

3kya) + 4 cos(

√
2

2
kya) cos(

3

2
kxa).

The ‘+’ sign in eq. 1.2 refers to the conduction band (the upper band) and the ‘−’ sign refers to
the valence band (the lower band). The spectrum is shown in fig. 1.1(c) for t′ = 0, and in the case
where t′ 6= 0, the conduction and valence bands are asymmetric.

Since every carbon atom contributes 1 electron to a π bond, and since each electron can occupy
a spin up or spin down state, the valence band will be completely filled, while the conduction band
will be empty. This means that any small excitation will occur around the point where the bands
touch, which happens at zero energy for the case where t′ = 0. Furthermore, from eq. 1.2, we can see
that ε±(k) = ε±(−k) and therefore any k satisfying ε±(k) = 0 is paired with an equivalent −k that
satisfies ε±(−k) = 0. It happens that such pairs of solutions are located at the two in-equivalent
corners K and K ′, which are indeed related by K ′ = −K, as seen in fig. 1.1(b).

By expanding the spectrum around such points, we get Dirac equations for massless fermions

hK(k) = vFσ · k and hK
′
(k) = vFσ

∗ · k, (1.3)

for the K and K ′ points respectively, where the speed of light c is replaced by the Fermi velocity
vF = 3ta/2 (≈ 106 ms−1), and σ = (σx, σy). In this context, the Pauli matrices σx and σy do not
refer to real spin, but rather to a pseudo-spin associated with the two sub-lattices. Also note that
the momentum k is now relative to the K or K ′ points, which are also called Dirac points due to
the emergence of the Dirac equation. The eigenvalues of eq. 1.3 are

ε±(k) = ±vF |k|, (1.4)

which represent a so-called Dirac cone as seen in the inset of fig. 1.1(c), and are identical for both
the K and K ′. The emergence of Dirac equations for low energy has many interesting consequences,
such as states with a well defined chirality, which is broken at higher energies. Furthermore, since
the Dirac points come in pairs, the energy levels are doubly degenerate.

1.2 Twisted Bilayer Graphene

Twisted bilayer graphene (TBG) is a material composed of two superimposed graphene sheets with
a relative twist angle, as see in fig. 1.2(a). Due to the relative angle, the two honeycomb patterns of
the underlying graphene sheets interfere visually with each other to produce an array of light and
dark regions. The resulting interference is called a Moiré pattern, and it was believed that such
pattern could drastically modify the physics of the system[18].
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As a matter of fact, in 2011, Bistritzer and MacDonald[2] were able to demonstrate numerically
that at specific angles, called magic angles, TBG becomes superconductive. This discovery was later
confirmed by experiments[5, 6] done at 1.05◦, the highest magic angle, where superconductivity was
observed for temperatures of 1.7 K. This has attracted a lot of attention, mainly due to the ability
to easily tune the onset of superconductivity with a magnetic field.

In contrast to conventional superconductors, for which the relevant theory is 50 years old, TBG
is considered an unconventional superconductor and lacks proper theoretical understanding. For
this reason, considerable interest remains in studying TBG at magic angles[20], despite it having
few real-world applications as a superconductor, due to the high sensitivity of the superconductive
state with twist angle.

1.2.1 Lattice Properties

As a consequence of the relative twist angle θ, the hexagonal pattern of the two superimposed
graphene layers interfere with each other to produce Moiré patterns. The result is the appearance of
lighter areas that are periodic is space and separated by darker regions, as can be seen in fig. 1.2(a).
In the case of twisted bilayer graphene (TBG), the Moiré pattern is hexagonal, with period (i.e. the
distance between light areas)

LMoiré =

√
3a

2 sin(|θ|/2)
, (1.5)

where a ≈ 0.142 nm is again the carbon-carbon distance, and the equation is valid only for |θ| < π/6.
Since a hexagon is symmetric under a π/3 rotation, angles larger than π/3 can be reached using
θ′ = π/3− θ in eq. 1.5. Hence, the Moiré period decreases as the angle increases up until θ = π/6,
after which it increases back again only to diverge at θ = π/3 = 0.

While the Moiré pattern exists for any angle, the actual structure of TBG is not necessarily
periodic. This is significant, because the absence of periodicity prohibits from using tight bind-
ing to obtain the band structure, which drastically complicates the issue. In the case when the
twisted graphene sheets do indeed give rise to a periodic superstructure, we say that the structure
is commensurable, and we can define the lattice vectors

L1 = na1 +ma2 = n′a′1 +m′a′2

and L2 = R(π/3)L1, where R(θ) is the 2d rotation matrix, a(1,2) are the graphene lattice vectors,
a′(1,2) = R(θ)a(1,2) with θ the twist angle, and n,m, n′ and m′ are integers. Hence, the condition

for the superstructure to be periodic is to enforce na1 +ma2 = n′a′1 +m′a′2. The solutions to this
equation are not obvious, and are discussed in [29, 30]. In any case, the resulting requirement on
the twist angle θ is[10]

cos(θ) =
3q2 + 3qp+ p2/2

3q2 + 3qp+ p2
, (1.6)

where q and p are integers such that gcd(q, p) = 1, with gcd the greatest common denominator,
and π/3 > θ > 0. The limit p � q corresponds to θ = 0 while the limit p � q to θ = π/3. Com-
mensurable angles that lie outside the specified range are obtained by considering the geometrical
symmetries of graphene mentioned above. The set of possible values for (q, p) can be classified by
whether gcd(p, 3) = 1 or gcd(p, 3) = 3. These two different sets of solutions amount to details that
are out of the scope of this text, and for simplicity, we will stick to the case gcd(p, 3) = 1. Hence,
for gcd(p, 3) = 1, the TBG lattice vectors can be expressed as

L1 = qa1 + (q + p)a2 and L2 = −(q + p)a1 + (2q + p)a2.
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Figure 1.2: a.) TBG at θ ∼ 3.3◦, which corresponds to p = 2 and q = 19. b.) TBG at θ ∼ 21.8◦, which
corresponds to p = 1 and q = 1, and where red and blue lattices correspond to the underlying graphene sheets,
and the dashed line illustrates the unit cell. c.) First BZ zone of TBG, where the red and blue hexagons
represent the underlying graphene BZs with points K, K′, Kθ and K′θ, and the dashed hexagons are the
TBG BZs with points K1 and K2.

Like graphene, the Brillouin zone of TBG is a hexagon with reciprocal lattice vectors

G1 =
4

N
((2q + p)b1 + (q + p)b2) and G2 =

4

N
(−(q + p)b1 + qb2),

where N = 4(3q2 + 3qp + p2) is the number of sites in the TBG unit cell, and two in-equivalent
corners

K1 = (G1 + 2G2)/3 and K2 = (2G1 +G2)/3.

Note that the last line holds for any p and q. Since TBG inherits the two sets of graphene Dirac
cones K,K ′ andKθ,K

′
θ of the first and second layer respectively, it is sensible to ask where they are

located in the TBG Brillouin zone. For the case where gcd(p, 3) = 1, we have that K1 = K = K ′θ
and K2 = K ′ = Kθ, while for gcd(p, 3) = 3, we have K1 = K = Kθ and K2 = K ′ = K ′θ. Hence,
TBG has two doubly degenerate Dirac cones K1 and K2.

1.2.2 Band Structure

Although there are different analytical models for TBG, we will focus on the one presented by [2].
It describes the electronic properties close to the underlying graphene Dirac cones, and takes into
account the hopping between the two layers. This model has the advantage to work for any shift u
and any twist angle θ, irrespective of whether such angle represents a commensurable structure.

This model considers the low energy dynamics of TBG around the two Dirac cones K1 and K2,
and the Hamiltonian in real space can be written as

H =

(
−ivFσ−θ/2∇ T̂ (r)

T̂ †(r) −ivFσθ/2∇

)
, (1.7)

where T̂ is the real space hopping matrices, and σθ are the rotated Pauli matrices (i.e σθ = R(θ)σ
where R(θ) is the rotation matrix and σ = (σx, σy)). The matrix T̂ (r) is the sum of many contribu-
tions which are calculated numerically. However, the authors of ref. [2] truncate the sum to include
only the three most significant terms, in which case the matrix T̂ (r) can be expressed as

T̂ (r) =

3∑
j=1

e−iqjrTj ,
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where we have

q1 = kθ(0, 1), q2 = kθ(
√

3/2, 1/2) and q3 = kθ(−
√

3/2, 1/2),

with kθ = (8π/3a0) sin(θ/2), and the matrices

T1 = 1 + σx, T2 = 1− 1

2
σx −

√
3

2
σy and T3 = 1− 1

2
σx +

√
3

2
σy,

where σx and σy are the Pauli matrices, and note that the matrices Ti are hermitian.
In momentum space, where the momentum k is taken from the center of one Dirac cone, the

Hamiltonian is

HK(k) =


hKθ/2(k) wT1 wT2 wT3

wT †1 hK−θ/2(k − q1) 0 0

wT †2 0 hK−θ/2(k − q2) 0

wT †3 0 0 hK−θ/2(k − q2)

 , (1.8)

where hKθ (k) is the graphene Dirac Hamiltonian around the K point (eq. 1.3) rotated by the angle
θ, and w ≈ 0.11 eV is the inter-layer hopping energy. This Hamiltonian is expected to give accurate
results up to 1 eV and for θ < 10◦. The basis of this Hamiltonian is a four-vector of two-component
spinors Ψ = (ψ0, ψ1, ψ2, ψ3), where ψ0 is at the Dirac point of layer 1, while the remaining ψj are
at momentum qj and in layer 2. As shown in the original publication, the angle dependence of the
graphene Dirac Hamiltonian can be neglected, and this is still expected to produce accurate results
for θ larger than ∼ 1◦.

The Hamiltonian of eq. 1.8 can be further simplified to a lower energy approximation by expand-
ing around the Dirac cone of an isolated graphene layer. This is done by considering the momentum
dependent and independent terms separately, and expanding the momentum dependent term to
leading order in k. It can be shown that HK

0 has zero eigenvalues, such that only the momentum
dependent term contributes. Hence, the low energy Hamiltonian around the center of the Dirac cone
of one layer is

HK
k∼0(k) =

−vF
1 + 6α2

(
σ · k + w2

∑
j

Tjh
−1†(−qj)σ · kh−1(−qj)T †j

)
, (1.9)

where h is used instead of hK , α = w/vkθ and the sum is for values j ∈ 1, 2, 3. The first term
in eq. 1.9 accounts for the isolated graphene Dirac cone, while the second term introduces the
contribution from the neighbouring Dirac cones of the other layer. The term 1/(1 + 6α2) is for
normalization purposes. Eq. 1.9 can be written as

HK
k∼0(k) = −v∗Fσ · k, (1.10)

where

v∗F =
1− 3α2

1 + 6α2
vF (1.11)

is the renormalized Fermi velocity and α = w/vF kθ. The eigenvalues are

εk∼0 = ±v∗F |k|. (1.12)

Eq. 1.8 is not guaranteed to have analytical solutions, since it is an 8 × 8 matrix, and there is
not guaranteed solution for polynomial equations of order higer than 5. For this reason, eq. 1.8 is
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Figure 1.3: Numerical solution to eq. 1.8 (solid line), and analytical solution to eq. 1.10 (dotted line), for
θ ∈ {1.05◦, 5◦} along the kx and ky axis, and a is the carbon-carbon distance in graphene.
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diagonalized numerically, and the results are shown with the solid line in fig. 1.3, for θ = 5◦ and
θ = 1.05◦, and the spectrum is along both kx and ky. The dotted line shows the approximation
resulting from the Hamiltonian of eq. 1.10. For θ = 5◦, the emergent Dirac cone is clearly present,
and the approximation holds well for energies up to ε ∼ 0.2 eV. For θ = 1.05◦ however, the Dirac
cone is absent, and the lowest bands are in fact flat, as expected in a superconducting system. In
this case, the low energy approximation is not as good, and is in principle not justified since the
Dirac cone is not present.



Chapter 2

Quantum Oscillations

In this chapter, we introduce quantum oscillations, by first presenting the relevant classical theory, on
which we then enforce quantization to then demonstrate the emergence of the oscillations. Finally,
we consider the application to graphene and twisted bilayer graphene (TBG). The theory presented
is largely based on refs.[13, 32].

2.1 Electrons in a Magnetic Field

The dynamics of a charged particle, in this case an electron, can be obtained through the Lorentz
force

k̇ = e(v ×H), (2.1)

where k is the electron wave vector, v is the electron velocity, H is the magnetic field, c is the speed
of light and −e is the electron charge. The relationship between the electron velocity and the energy
ε is

v = ∇kε. (2.2)

From the above equation, we can see that v is normal to a surface of constant energy1, and therefore
k̇ is tangent to a surface of constant energy. Since k̇ is also normal to H, it follows that k will move
along a surface of constant energy on a plane perpendicular to H.

By integrating both sides, we get

(k − k0) = −e(R−R0)×H, (2.3)

where R is the electron position in real space, and k0 and R0 are constants of integration. This
shows that the electron position projected on a plane perpendicular to H describes a scaled version
of the motion of the wave vector. Note however that the electron can still travel in the direction of
the magnetic field. In other words, the motion of the electron in real space can be helical. However,
if we let R⊥ be the projection of R on a plane perpendicular to H, we get

|k − k0| = eH|R−R0|, (2.4)

giving the relative scaling between the real-space and momentum space orbits.

1Since v is the derivative of energy, it points in the direction of energy change, and therefore normal to a surface
of constant energy.

15
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Before we move on, we shall also define the cyclotron frequency,

ωc = 2πeH

/(
∂a

∂ε

)
k‖

, (2.5)

where a is the area in momentum space that the k orbit describes, and k‖ signifies that the component
of k along H is kept constant in the derivative. A derivation of eq. 2.5 is beyond the scope of this
thesis.

2.2 Quantization of Orbits in a Magnetic Field

We must now treat the above theory in the framework of quantum mechanics, in which the electron
orbits must be quantized. We assume that the orbits of particles in a magnetic field are quantized
according to the Bohr-Sommerfeld semiclassical relation∮

p · dr = 2π(n+ γ), (2.6)

where the integral is taken over a complete orbit, n is an integer, and γ is the phase correction, which
is γ = 1/2 for parabolic bands and γ = 0 for graphene. Furthermore, p and r are the canonical
momentum and position respectively. For an electron in a magnetic field, we have r = R⊥ as the
position perpendicular to H and the momentum p as the sum of the kinetic pkin = mv = k and the
field momentum pfield = −eA, where e is the charge of an electron and we have that H = ∇×A.
Hence, the total momentum is

p = pkin + pfield = k − eA, (2.7)

and substituting in eq. 2.6 we have∮
k · dR⊥ − e

∮
A · dR⊥ = 2π(n+ γ).

Using eq. 2.3 to transform the first term (the constants of integration account for nothing), and
Stokes’ theorem for the second, we get

H ·
∮
R× dR⊥ −

∫
S

H · dS = 2π(n+ γ)/e,

where S denotes an area in real space. For the first term, we have also used that the scalar triple
product remains unchanged under a circular shift and that the cross product is anti-commutative.
Finally, we get

Φ = 2π(n+ γ)/e,

where Φ = H · S is the magnetic flux and for the first term, we used the geometrical result∮
r × dr = 2× (area enclosed by orbit).

Hence, the Bohr-Sommerfeld rule ensures that the magnetic flux Φ through the real-space orbit
described by an electron is quantized. To get the quantization rule in momentum space, we use eq.
2.4 to get the momentum-space area a = (eH)2S, and hence we have

a(ε) = 2πeH(n+ γ), (2.8)

where the dependence of a on ε is stressed. Eq. 2.8 is most known as the Onsager relation, and
specifies what energies an electron is allowed to have in a magnetic field. In other words, for a given
H,n and γ, the Onsager relation dictates the specific surface area a the orbit of an electron must
obey.
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Figure 2.1: a). Number of particles N that are in orbits which are fully occupied (gray region), where N−100
is the number of particles in partially filled orbits (white region) for a system with 100 particles, and H is
the magnetic field. b.) Identical to a.) except plotted with respect to the inverse magnetic field 1/H.

2.3 De Haas-Van Alphen Effect

The de Haas-van Alphen effect reffers to oscillations observed in the magnetic moment of a metal.
In this section, we will establish the physical reason why such oscillations occur for systems in 2
dimensions. For 2 dimensions, we are essentially dealing with a restriction on the more general 3
dimensional case. Certain extra technical details occur in 3 dimensional systems, but we will not
consider them in this thesis.

In a 2 dimensional solid, and neglecting spin, the area in momentum space occupied by an
electron in the case H = 0 is (2π/L)2, where L is the real space length of the sample assumed to be
square. The number of states (neglecting spin) allowed per orbit is equal to the area between orbits
times the number of states per unit area for H = 0. From eq. 2.9, the area between two successive
orbits for a set value of H is

an+1(ε)− an(ε) = 2πeH. (2.9)

Hence, the degeneracy D for a single orbit is

D = 2πeH(L/2π)2 = ρH, (2.10)

where ρ = eL/2π. Then, for a system with N particles, the first Dn particles will reside in fully
filled orbits, where n refers to the number of filled orbits, while the remaining N − Dn′ particles
will occupy the last n+ 1 orbit. At specific values of H, all particles will reside in filled orbits, such
that Dn = N . We find that the interval between Hn and Hn+1, magnetic fields where exactly all n
and n+ 1 orbits are filled, is

1

Hn+1
− 1

Hn
=

ρ

N
. (2.11)

The imporant feature of eq. 2.11 is that it is constant with respect to 1/H, as can be seen in
fig. 2.1. Thus, there is a singularity in the energy that occurs periodically with 1/H, and this is the
nature of de Haas-van Alphen oscillations, and of quantum oscillations in general.

2.4 Example with Graphene

In order to illustrate the theory established above, we shall consider the case for graphene, more
precisely the low energy Dirac equation. From section 1.1, eq. 1.4, we have

ε±(k) = ±vF |k|,
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where the surface of constant ε are discs with radius |k|. Hence, the area of the discs are a = πk2,
and the energy can then be written as

ε = ±vF
√
a/π.

It follows directly from eq. 2.8 that in a magnetic field, the allowed eigenstates are

ε = ±vF
√

2eHn = ±ωB
√
n, (2.12)

where γ = 0, and it is common to define ωB =
√

2vF /lB and the magnetic length lB = 1/
√
eH.

However, using eq. 2.5, we have for graphene

ωc = eHv2
F /ε,

which is inversely proportional to energy, unlike ωc for parabolic bands for example. This is because
the spacing between the orbits is not constant for graphene, due to the square root dispersion.
However, we can interpret ωB as the spacing between the first and the second orbit (i.e. between
n = 0 and n = 1), such that ωB is the quantum limit of ωc. Nevertheless, throughout this thesis,
we will use ωc to refer to ωB , such that ωc = vF

√
2eH, since it is commonly done in other texts.

2.5 Twisted Bilayer Graphene

As previously pointed out, eq. 1.8 is not guaranteed an analytical solution, and we can therefore not
apply the theory derived in section 2.2. The consequence of this is that we must find a numerical
method to compute the spectrum of TBG in a magnetic field, and this will be discussed in the
next chapter. Nevertheless, we can obtain an analytical solution to the low energy approximation
of eq. 1.10, which gives

ε = ±v∗F
√

2eHn, (2.13)

where v∗F is the renormalized Fermi velocity from eq. 1.11.



Chapter 3

Numerical Method

As mentioned in the previous chapter, the twisted bilayer graphene (TBG) Hamiltonian is too
difficult to diagonalize analytically, and we must proceed numericaly. In this section, we present
a numerical scheme based on [4], through which we could in principle obtain the Landau levels
of any system, given that we know its Hamiltonian expressed in terms of ladder operators. Using
this numerical scheme, we also explain why it is difficult to obtain an analytical solution for TBG
in a magnetic field. Finally, we present the numerical results and discuss a possible analytical
approximation.

3.1 Quantization Using Ladder Operators

As previously mentioned, the momentum of an electron in a magnetic field is (~ = c = 1)

p = pkin + pfield = k − eA.

where −e is the charge of the electron and A = −yBêx is the Landau gauge. Because in quantum
mechanics kx and x do not commute, we expect [px, py] 6= 0. Indeed, we get

[px, py] = [kx + eBy, ky] = ieB

where we used that [y, ky] = i. Hence, [px, py] is equal to [x, kx] neglecting a factor of eB. This
suggests that the physics is essentially the same as the quantum harmonic oscillator, and can be
solved using ladder operators. Thus, we define the creation and annihilation operators as

â ∝ px − ipy and â† ∝ px + ipy,

as in the quantum harmonic oscillator, and where the constant of proportionality is found by en-
forcing [â, â†] = 1. Indeed, we get

[â, â†] = 2i[px, py] = 2eB,

which means that we have

â =
1√
2eB

(px − ipy) and â† =
1√
2eB

(px + ipy).

19
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In the case of an electron in a magnetic field, the ladder operators act on a Landau level, where â
(â†) decreases (increases) the Landau level of the particle by one. Their eigenvalues are

â|n〉 =
√
n|n− 1〉 and â†|n〉 =

√
n+ 1|n+ 1〉.

We can now express the momentum operators in terms of ladder operators. We obtain

px =
1

2

√
2eB(â+ â†) and py =

i

2

√
2eB(â− â†). (3.1)

The Hamiltonian of a particle in a magnetic field can now be expressed in terms of â and â† by
substituting the above equations. In some cases, the Hamiltonian can then be solved analytically,
such as the case for a 2D electron gas or graphene. In other cases, it is still too difficult to solve
analytically, and further work has to be done. In our case, we assume that our system is too
complicated to solve analytically, and we consider a numerical technique to solve a Hamiltonian
expressed in terms of ladder operators.

3.2 Numerical Implementation of Ladder Operators

To numerically solve any arbitrary Hamiltonian expressed in terms of ladder operators, we must
express the ladder operators â and â† as square matrices A, and A† of dimension N × N . The
matrices act on a basis of N Landau levels, where N is an arbitrary cutoff, and the matrix elements

An,m := 〈n|â|m〉 = δn,m+1

√
m and

An,m := 〈n|â†|m〉 = δn,m−1

√
n

are obtained by the above equations. For N = 3, we have

A =

0 1 0

0 0
√

2
0 0 0

 , and A† =

0 0 0
1 0 0

0
√

2 0

 .

The numerical scheme, requires the Hamiltonian to be decomposed as a polynomial in powers of â
and â†. The Kronecker product is then taken between the matrix ladder operators A, and A† and
their respective coefficients, and finally added together. For the term which is the zeroth power in
ladder operators, the Kronecker product is taken with the unit matrix of dimension N × N . To
illustrate, consider the example Hamiltonian

The numerical scheme requires to first express the Hamiltonian in terms of â and â† operators,
and then to separate the equation in powers of the operators. The final matrix is obtained by
taking the Kronecker product between the ladder operators in matrix form and their coefficients,
and adding them together. Consider the example

H =

(
c â†

â c

)
= (â)

(
0 0
1 0

)
+ (â†)

(
0 1
0 0

)
+

(
c 0
0 c

)
which has been deconstructed into a polynomial of ladder operators, and where c is an arbitrary
constant. The resulting ’augmented’ Hamiltonian H will therefore be

H = A⊗
(

0 0
1 0

)
+A† ⊗

(
0 1
0 0

)
+ 1⊗

(
c 0
0 c

)
,

where 1 is the unit matrix of dimension N × N . Due to the Kronecker product, the Hamiltonian
H will have a dimension greater than N (2N × 2N in this case), and is generally equal to N ×
(dim. of H). It then suffices to diagonalize H numerically using any suitable implementation.
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Figure 3.1: a.) Numerical solution for HK with N ∈ {10, 20, 30} Landau levels, the solid line is the analytical
solution, and we have used ωc = 1.0. b.) same as a.) but with HK,shift.

3.2.1 Example with Graphene

From section 2.4, we already established that low energy eigenvalues of graphene (eq. 1.4) lead to
eigenvalues ∼

√
n (eq. 2.12) in a magnetic field H, where the integer n is the Landau level index.

We can also arrive to this result using the previously defined Ladder operators, and using eq. 1.3
for the K Dirac cone along with the momentum substitutions from eq. 3.1, we get

HK = vF
√

2eH

(
0 â
â† 0

)
. (3.2)

To solve this equation, we assume (|n〉,±|m〉) as the form of the eigenvectors, which leads to eigen-
vectors (|n− 1〉,±|n〉) with eigenvalues

ε = ±vF
√

2eHn (3.3)

identical to eq. 2.12. For the K ′ Dirac cone, this amounts to the switch â ↔ â† in eq. 3.2, which
leads to eigenvectors (|n〉,±|n − 1〉) but identical eigenvalues. To diagonalize eq. 3.3 numerically,
one follows the scheme laid out in section 3.2, which gives a 2N × 2N matrix, where N is the
highest Landau level considered. The resulting positive1 eigenvalues are presented in fig. 3.1(a) for
N = 10, 20 and 30, along with the analytical solution given in eq. 3.3.

For further interest, we can apply an arbitrary momentum shift q to eq. 3.2, such that

HK,shift = vF
√

2eH

(
0 â+ q

â† + q∗ 0

)
, (3.4)

where q∗ is the complex conjugate of q. The numerical result is illustrated in fig. 3.1(b) for same
values of N . Eq. 3.4 can also be diagonalized analytically, and yields the same result as eq. 3.2, since
the added momentum terms can be absorbed into k by an adequate shift. However, the numerical
result only seems to be correct for Landau levels that are much smaller than the cutoff N . Hence,
the numerical result for a given Landau level n is not guaranteed exact but converges as N →∞.

3.2.2 Difficulty in Obtaining Landau Levels Analytically for TBG

As previously mentioned in section 2.5, it is difficult to obtain the eigenvalues of eq. 1.8 analytically.
Using ladder operators and the numerical scheme laid out above, we can further understand the
origin of this difficulty. First, we consider the previous Hamiltonian for graphene in a magnetic field

1The spectrum is symmetric.
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from eq. 3.2, where we neglect leading factors. We can apply the numerical procedure to get the
following eigenvalue equation

0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0

0 0 0 0
√

2 0

0 0 0
√

2 0 0
0 0 0 0 0 0




|0, a〉
|0, b〉
|1, a〉
|1, b〉
|2, a〉
|2, b〉

 = ε


|0, a〉
|0, b〉
|1, a〉
|1, b〉
|2, a〉
|2, b〉

 ,

where |0, a〉 referes to the 0th Landau level on sublattice a, and we have arbitrarily truncated the
matrix to keep only the first 3 Landau levels. Solving for ε amounts to solving the 6 equations

0 = ε|0, a〉, |1, a〉 = ε|0, b〉,
√

2|2, a〉 = ε|1, b〉,

0 = ε|2, b〉, |0, b〉 = ε|1, a〉,
√

2|1, b〉 = ε|2, a〉,

where the equations in the first column depend on |0, a〉 and |2, b〉, the second column on |1, a〉 and
|0, b〉, and the third on |2, a〉 and |1, b〉. Hence, the equations are grouped such that they only depend
on a few variables that are only present in those equations. This feature is a consequence of the fact
that the above matrix can be decomposed into block matrices along its diagonal. This makes the
equations easily solvable, where the first column leads to ε = 0, the second to ε = 1 and so forth.
If we now consider the Hamiltonian for graphene with a shift from eq. 3.4, and apply the same
procedure, we get the following equation

0 q 0 0 0 0
q 0 1 0 0 0
0 1 0 q 0 0

0 0 q 0
√

2 0

0 0 0
√

2 0 q
0 0 0 0 q 0




|0, a〉
|0, b〉
|1, a〉
|1, b〉
|2, a〉
|2, b〉

 = ε


|0, a〉
|0, b〉
|1, a〉
|1, b〉
|2, a〉
|2, b〉

 ,

where we considered that q is real such that q∗ = q. In this case, it is impossible to decompose
the above matrix into block matrices due to the introduction of q. The consequence is that any of
the resulting 6 equations will depend on the other 5, such that solving for one equation requires
solving all. This technical problem can be resolved by applying a shift to the momentum k prior to
introducing the ladder operators, but it does explain the convergence requirement explained in the
previous subsection.

If we now consider the TBG Hamiltonian from eq. 1.8, we see that it does contain Dirac Hamil-
tonians with a shift. However, it is not possible to eliminate this shift since the Dirac Hamiltonians
are connected to each other by off diagonal terms. In principle, if the off diagonal elements are small
enough to be neglected, the TBG Hamiltonian is solvable. This is the case for high magnetic fields
for example, but this would require ωc ∼ 100.

3.2.3 Numerical Computation of TBG Landau Levels

We now apply the above numerical scheme to to our TBG model, using eq. 1.8. The result is
shown in fig. 3.2 for the first 50 Landau levels, with ωc ∈ {10, 1, 0.1, 0.03} and θ ∈ {5◦, 1.05◦}.
The dashed line represents the high energy approximation and corresponds to

√
n/4, and the insets

show the difference between the approximation and the numerical results. The approximation is
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Figure 3.2: Numerical solution to the TBG Hamiltonian in a magnetic field using the aforementioned method
for ωc ∈ {10.0, 1.0, 0.1, 0.03}, and for θ ∈ {1.05◦, 5◦}, and where the dashed line represents the approximation
mentionned in the text. The results are shown for the first 50 Landau levels, and the matrices were truncated
at 2000 Landau levels. The insets show the difference between the analytical approximation and the numerical
solution for the first 500 Landau levels in all cases except for ωc = 0.03, for which the inset includes the first
1000 Landau levels.
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Figure 3.3: a.) and b.) Numerical results of TBG in a magnetic field compared to the low energy approxi-
mation from eq.1.10 at ωc = 0.03 for θ = 1.05◦ and θ = 5◦ respectively. c.) Percentage error between the
400th Landau level obtained using a cutoff N and the 400th Landau level obtained using N = 2000. Results
are presented only for the lowest values of ωc, since the convergence is almost guaranteed for high ωc.

justified since it corresponds to the spectrum in the case where the Dirac cones are uncoupled. In
such case, the Landau levels would behave as

√
n, where we include a factor of

√
1/4 to account

for the degeneracy.It is important to note however that eq. 1.8 is only valid for ε < 1 eV, such that
only the case when ωc ∈ {0.1, 0.03} is valid.

First of all, we note that for ωc = 10, the spectrum does behave as if the Dirac cones were
uncoupled, as mentioned previously. In this case, the spectrum is analogous to that of graphene,
except with an extra degeneracy factor of 4 clearly seen in fig. 3.2 (a) and (b). The results seem
to agree with the approximation for ωc ∈ {10, 1} for low Landau levels already (n ∼ 50). For
ωc = 0.1, the approximation differs somewhat, but only for low Landau levels, as shown by the
insets of fig. 3.2 (e) and (f). For ωc = 0.03, the approximation holds well for θ = 5◦ at relatively low
Landau level, but as seen in the inset of fig. 3.2 (g), the numerical results do not show an obvious
convergence towards the approximation even for the 1000th Landau level. For θ = 1.05◦, the low
Landau level range differs somewhat from the approximation, but eventually converges towards the
approximation.

Fig. 3.3 (a) and (b) show the first 50 Landau levels for θ = 1.05◦ and θ = 5◦ respectively,
compared to the low energy approximation from eq. 1.10, illustrated as the dashed line. The low
energy approximation holds well for θ = 5◦, as expected since the Dirac cone picture of TBG good
for this angle up to energies of ε ∼ 0.2 eV. However, for θ = 1.05◦, the low energy approximation
is accurate only for the first few Landau levels, as expected since there is technically no Dirac
cone at the magic angle. Fig. 3.3(c) illustrates the percentage in error of the 400th Landau level
for ωc ∈ {0.1, 0.03}, and demonstrates the limit of the numerical method. Obtaining results for
/theta = 5◦ proves very difficult above ωc = 0.03 since the convergence would require 2000 Landau
levels, and considering any more Landau levels greatly increases the computational time from minutes
to hours, causing the computational time for quantum oscillations to go from hours to months as
we will see in the results chapter.
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Lifshitz-Kosevich Formula

From the previous section, we obtained an analytical solution for twisted bilayer graphene (TBG)
in a magnetic field. I this section, we therefore introduce the Lifshitz-Kosevich formula, which is an
analytical way of obtaining the frequency and amplitude quantum oscillations. We then derive the
results for graphene and TBG following ref. [28].

4.1 General Case

The grand potential of a system can be expressed in terms of the system’s Green’s function by the
Luttinger-Ward functional (~ = c = kB = 1)

Ω = −T tr[ln(−Ĝ−1)]− T tr[ĜΣ̂] + Ω′,

where T is the temperature, the trace implies the sum over all energy states as well as the fermionic
Matsubara frequencies ωn = πT (2n+ 1), and the self-energy Σ accounts for disorder and interaction
effects. In the absence of disorder or interactions, the terms T tr[ĜΣ̂] and Ω′ do not contribute, and
we have

Ω = −T tr[ln(−Ĝ−1)] = −DT
∞∑
m=0

∑
ωn

ln(−g−1
m (iωn)), (4.1)

where we used that the trace of a diagonalizable matrix is equal to the sum of its eigenvalues, and
where gm(iωn) are the eigenvalues of Ĝ. The index m represents the mth Landau level, and the sum
over the Matsubara frequencies runs from n = −∞ to n = ∞. Lastly, we introduced a degeneracy
factor D to account for the fact that the sum over m counts each Landau level only once.

To compute the sum over m, we can use the Poisson summation formula derived in Appendix A,

∞∑
n=0

f(n) =

∫ ∞
0

dxf(x)

∞∑
l=−∞

ei2πlx =

∫ ∞
0

dxf(x) + 2

∞∑
l=1

∫ ∞
0

dxf(x) cos(2πlx),

where we used that 2 cos(x) = eix + e−ix for the last equality. The first term of the last equality is
neglected since it does not contribute to the oscillations, and hence we have

Ωosc = −2DT

∞∑
l=1

∑
ωn

∫ ∞
0

dx ln(−g−1(x, iωn)) cos(2πlx),

25



26 CHAPTER 4. LIFSHITZ-KOSEVICH FORMULA

where x indicates a continuous analog to the Landau level index m, and where Ωosc only referes to
the oscillatory part of Ω.

Integrating by parts gives us

Ωosc =− 2DT

∞∑
l=1

∑
ωn

[
ln(−g−1(x, iωn))

sin(2πlx)

2πl

]∞
0

+ 2DT

∞∑
l=1

∑
ωn

∫ ∞
0

dx
1

−g−1(x, iωn)

d

dx
(−g−1(x, iωn))

sin(2πlx)

2πl
,

and since the first term is non-oscillatory, we are left with

Ωosc = 2DT

∞∑
l=1

∑
ωn

∫ ∞
0

dx
1

−g−1(x, iωn)

d

dx
(−g−1(x, iωn))

sin(2πlx)

2πl
.

4.2 Graphene

We will now derive the Lifshitz-Kosevich (LK) formula for graphene, neglecting any disorder or
interaction effects. The inverse non-interacting Green’s function Ĝ−1

0 is

Ĝ−1
0 = (iωn + µ)1− Ĥ,

where ωn = πT (2n+ 1) are the Matsubara frequencies, and the Hamiltonian for graphene is

Ĥ =

(
0 ωc

√
m

ωc
√
m 0

)
,

where m is the Landau level index. Hence, we have

Ĝ−1
0 =

(
iωc + µ ωc

√
m

ωc
√
m iωc + µ

)
,

and the eigenvalues of this matrix are

g−1
m,± = iωn + µ± ωc

√
m.

The grand potential is then

Ωosc = 2DT

∞∑
l=1

∑
ωn

∑
λ=±1

∫ ∞
0

dx
1

iωn + µ+ λωc
√
x

λωc
2
√
x

sin(2πlx)

2πl

= 2DT

∞∑
l=1

∑
ωn

∫ ∞
0

dx
sin(2πlx)

2πl

ωc
2
√
x

{
1

iωn + µ+ ωc
√
x

+
1

−iωn − µ+ ωc
√
x

}

= 2DT

∞∑
l=1

∑
ωn

∫ ∞
0

dx
sin(2πlx)

2πl

ωc
2
√
x

2ωc
√
x

ω2
cx− (iωn + µ)2

where we used a sum over λ to account for the ‘±’ sign, and expanded the sum in the second
equality. For the third equality, we used 1/(A + B) + 1/(A − B) = 2A/(A2 − B2) with A = ωc

√
x

and B = iωn + µ. Using D = (ω2
cL

2)/(2πv2
F ) and further simplifying, we get

Ωosc = −ω
2
cL

2T

πv2
F

∞∑
l=1

∑
ωn

ω2
c

2πl

∫ ∞
0

dx
sin(2πlx)

(iωn + µ)2 − ω2
cx
. (4.2)
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Figure 4.1: Caption

If we consider only the integral, we have∫ ∞
0

dx
sin(2πlx)

(iωn + µ)2 − ω2
cx

=
1

2i

∫ ∞
0

dx

{
ei2πlx

(iωn + µ)2 − ω2
cx
− e−i2πlx

(iωn + µ)2 − ω2
cx

}
(4.3)

where we used that 2i sin(x) = eix − e−ix for the last equality. We can now use contour integration
and the Residue theorem to perform the integral, where we use the contours in Fig. 4.1(a) and (b)
for the first and and second terms respectively, and we treat ‘x’ as a complex number. For the first
term in (4.3), we have

2πi
∑
x0

Res(f, x0) =

∫
a1

dx
ei2πlx

(iωn + µ)2 − ω2
cx

+

∫
b1

dx
ei2πlx

(iωn + µ)2 − ω2
cx

=

∫ ∞
0

dx
ei2πlx

(iωn + µ)2 − ω2
cx

+

∫ 0

i∞
dx

ei2πlx

(iωn + µ)2 − ω2
cx
,

where the residues are summed over all poles x0 of the integral function f , and we note that the
path c1 vanishes when taken to infinity. We can see that the function has a pole at

x0 =
(iωn + µ)2

ω2
c

=
−ω2

n + 2iωnµ+ µ2

ω2
c

,

and it lies within the contour if ωnµ ≥ 0 and µ2 − ω2
n ≥ 0. In this case, the residue is

Res(f, x0) =
−1

ω2
c

e
i2πl

(iωn+µ)2

ω2
c ,

and hence we get∫ ∞
0

dx
ei2πlx

(iωn + µ)2 − ω2
cx

=−
∫ 0

i∞
dx

ei2πlx

(iωn + µ)2 − ω2
cx

+ 2πi
(−1

ω2
c

)
e
i2πi

(iωn+µ)2

ω2
c Θ(ωnµ)Θ(µ2 − ω2

n), (4.4)
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where Θ(x) is the Heaviside step function that is 1 for x ≥ 0 and 0 otherwise. The situation is
similar for the second integral of (4.3), where the pole is at the same location and the contour c2
also vanishes. On the other hand, the winding number of the contour is −1 and must be taken into
account. The residue is

Res(f, x0) =
−1

ω2
c

e
−i2πl (iωn+µ)2

ω2
c ,

which lies inside the contour only if ωnµ ≤ 0 and µ2 − ω2
n ≥ 0. Hence, we have∫ ∞

0

dx
e−i2πlx

(iωn + µ)2 − ω2
cx

=−
∫ 0

−i∞
dx

e−i2πlx

(iωn + µ)2 − ω2
cx

+ 2πi(−1)
(−1

ω2
c

)
e
−i2πi (iωn+µ)2

ω2
c Θ(−ωnµ)Θ(µ2 − ω2

n), (4.5)

and using (4.4) and (4.5), the integral (4.3) is∫ ∞
0

dx
sin(2πlx)

(iωn + µ)2 − ω2
cx

=
1

2i

{∫ i∞

0

dx
ei2πlx

(iωn + µ)2 − ω2
cx

+

∫ 0

−i∞
dx

e−i2πlx

(iωn + µ)2 − ω2
cx

+ 2πi
(−1

ω2
c

)
e
i2πi

(iωn+µ)2

ω2
c Θ(ωnµ)Θ(µ2 − ω2

n)

− 2πi(−1)
(−1

ω2
c

)
e
−i2πi (iωn+µ)2

ω2
c Θ(−ωnµ)Θ(µ2 − ω2

n)

}
where we switched the limits of the first integral to eliminate the minus sign. With further simplifi-
cation, we get∫ ∞

0

dx
sin(2πlx)

(iωn + µ)2 − ω2
cx

= −1

2

{∫ −∞
0

dx′
e2πlx′

(iωn + µ)2 + iω2
cx
′ +

∫ 0

∞
dx′

e−2πlx′

(iωn + µ)2 + iω2
cx
′

}

− π

ω2
Θ(µ2 − ω2

n)
[
e
i2πi

(iωn+µ)2

ω2
c Θ(ωnµ) + e

−i2πi (iωn+µ)2

ω2
c Θ(−ωnµ)

]
,

where we substituted x′ = ix and dx′ = idx for the integrals. The limits of integration change
from (i∞, 0) → (−∞, 0) and (0,−i∞) → (0,∞) for the first and second integral respectively. We
can further shift the first integral using x′′ = −x′ and dx′′ = −dx′, and the limits change from
(−∞, 0)→ (∞, 0). For the second integral, we only shift the limits and thus paying a negative sign.
Hence, we get∫ ∞

0

dx
sin(2πlx)

(iωn + µ)2 − ω2
cx

= −1

2

{
−
∫ ∞

0

dx′′
e−2πlx′′

(iωn + µ)2 − iω2
cx
′′ −

∫ ∞
0

dx′
e−2πlx′

(iωn + µ)2 + iω2
cx
′

}

− π

ω2
Θ(µ2 − ω2

n)
[
e
i2πi

(iωn+µ)2

ω2
c Θ(ωnµ) + e

−i2πi (iωn+µ)2

ω2
c Θ(−ωnµ)

]
,

and renaming all integration variables to x we have∫ ∞
0

dx
sin(2πlx)

(iωn + µ)2 − ω2
cx

=
1

2

∫ ∞
0

dxe−2πlx

(
1

(iωn + µ)2 − iω2
cx

+
1

(iωn + µ)2 + iω2
cx

)

− π

ω2
Θ(µ2 − ω2

n)
[
e
−4πlωnµ

ω2
c e

i2πl(µ2−ω2
n)

ω2
c Θ(ωnµ) + e

4πlωnµ

ω2
c e

−i2πl(µ2−ω2
n)

ω2
c Θ(−ωnµ)

]
. (4.6)
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Figure 4.2: a.) Quantum oscillations in the energy (eq.4.7) at T ∈ {10−1, 10−2, 10−3} at µ = 1. b.) Quantum
oscillations in the specific heat (eq.4.9) at T ∈ {10−1, 10−2, 10−3} at µ = 1. In both figures, the dashed lines
represent the period of the oscillations.

We can now sum both sides over the Matsubara frequencies, as in (4.2), and use that
∑
ωn
f(ωn) =∑

ωn>0(f(ωn) + f(−ωn)). Hence, we get

∑
ωn

∫ ∞
0

dx
sin(2πlx)

(iωn + µ)2 − ω2
cx

=
∑
ωn>0

(µ2 − ω2
n)

∫ ∞
0

dxe−2πlx

(
1

(µ2 − ω2
n)2 + (2ωnµ− ω2

cx)2

+
1

(µ2 − ω2
n)2 + (2ωnµ+ ω2

cx)2

)
− 4π

ω2
c

∑
ωn>0

Θ(µ2 − ω2
n)e

−4πlωn|µ|
ω2
c cos

(2πl(µ2 − ω2
n)

ω2
c

)
,

where for the first term, we used that 1/(A+B) + 1/(A−B) = 2A/(A2 −B2), and for the second
term, we used 2 cos(x) = eix+e−ix. The modulus on µ comes from the fact that µ has opposite signs
for Θ(ωnµ) and Θ(−ωnµ). Finally, since the integral does not does contribute to the oscillations,
we get

∑
ωn

∫ ∞
0

dx
sin(2πlx)

(iωn + µ)2 − ω2
cx

osc
= −4π

ω2
c

∑
ωn>0

Θ(µ2 − ω2
n)e

−4πlωn|µ|
ω2
c cos

(2πl(µ2 − ω2
n)

ω2
c

)
,

and inserting in (4.2), the final result reads

Ωosc =
2ω2

cL
2T

πv2
F

∞∑
l=1

|µ|∑
ωn>0

1

l
e
− 4πlωn|µ|

ω2
c cos

(2πl(µ2 − ω2
n)

ω2
c

)
(4.7)

where the upper limit of the Matsubara sum comes from Θ(µ2−ω2
n). We note that the fundamental

frequency (when l = 1 and n = 0) of (4.7) with respect to ω−2
c is µ2 − π2T 2. In the case where

µ� T , we can neglect the temperature dependence in the cos term in eq. 4.7.

The result of eq. 4.2 is shown in fig. 4.2(a) for various temperatures, and illustrates some
important features. Firstly, the greater the temperature, the faster the oscillations decrease in
amplitude, which makes quantum oscillations at high temperature difficult to detect. The damping
effect can be understood by considering the exponential in eq. 4.2, which, for a given ωc decreases
as T increases. Secondly, while the oscillations appear mostly as a sine, they have a cusp-like shape
for lower temperatures. This is because the sum over Matsubara frequencies includes more terms as
the temperature decreases, giving rise to more harmonics.
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4.2.1 Specific Heat

The specific heat is related to the grand potential by

c = −T ∂

∂T

(∂Ω

∂T

)
B
, (4.8)

and for the oscillatory part of c, denoted cosc, we replace Ω by Ωosc. Hence, from eq. 4.7, we get

cosc =
8L2

v2
F

∞∑
l=1

|µ|∑
ωn>0

ωne
− 4πlωn|µ|

ω2
c

[
cos
(2πl(µ2 − ω2

n)

ω2
c

){
|µ|
(

2− 4πl|µ|ωn
ω2
c

)
+

4πl

ω2
c

ω3
n

}
− sin

(2πl(µ2 − ω2
n)

ω2
c

){
ωn

(
3− 2

4πl|µ|ωn
ω2
c

)}]
. (4.9)

Note that technically the sum over the Matsubara frequencies should be performed before differen-
tiating, but this issue was overlooked. In any case, the results of eq. 4.9 are shown in fig 4.2(b).
As for the case of Ωosc, the higher temperatures decay faster and appear to have less harmonics.
However, the oscillations are more complex than for Ωosc, perhaps due to the eq. 4.9 having both
sine and cosine terms.

4.3 Twisted Bilayer Graphene

We will now derive the Lifshitz-Kosevich (LK) formula for twisted bilayer graphene (TBG), ne-
glecting any disorder or interaction effects, and using the approximation from section 3.2.3. This
derivation is similar to that of graphene, and therefore some details will be omitted. The eigenvalues
of the inverse non-interacting Green’s function are

g−1
m,± = iωn + µ± ωc

√
m/4.

The grand potential is then

Ωosc = 2DT

∞∑
l=1

∑
ωn

∑
λ=±1

∫ ∞
0

dx
1

iωn + µ+ λωc
√
x/4

λωc

8
√
x/4

sin(2πlx)

2πl

= 2DT

∞∑
l=1

∑
ωn

∫ ∞
0

dx
sin(2πlx)

2πl

ωc

8
√
x/4

2ωc
√
x/4

ω2
cx/4− (iωn + µ)2

where we used a sum over λ to account for the ‘±’ sign. Further simplifying, and using D =
(ω2
cL

2)/(2πv2
F ), we get

Ωosc = −ω
2
cL

2T

4πv2
F

∞∑
l=1

∑
ωn

ω2
c

2πl

∫ ∞
0

dx
sin(2πlx)

(iωn + µ)2 − ω2
cx/4

. (4.10)

If we consider only the integral, we have∫ ∞
0

dx
sin(2πlx)

(iωn + µ)2 − ω2
cx/4

=
1

2i

∫ ∞
0

dx

{
ei2πlx

(iωn + µ)2 − ω2
cx/4

− e−i2πlx

(iωn + µ)2 − ω2
cx/4

}
(4.11)
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and we can now use contour integration and the Residue theorem to perform the integral, where we
proceed is a similar way to the case for graphene, and use the same contours. The first term in the
integral has a pole at

x0 =
4(iωn + µ)2

ω2
c

=
4(−ω2

n + 2iωnµ+ µ2)

ω2
c

,

which lies within the contour of fig. 4.1(a) if ωnµ ≥ 0 and µ2 − ω2
n ≥ 0, and the residue is

Res(f, x0) =
−4

ω2
c

e
i8πl

(iωn+µ)2

ω2
c .

The second term has a pole at the same location, which lies in the contour of fig. 4.1(b) when
ωnµ ≤ 0 and µ2 − ω2

n ≥ 0, and the residue is

Res(f, x0) =
−4

ω2
c

e
−i8πl (iωn+µ)2

ω2
c .

Hence, inferring from the case for graphene, eq. 4.11 becomes∫ ∞
0

dx
sin(2πlx)

(iωn + µ)2 − ω2
cx/4

=
1

2i

{∫ i∞

0

dx
ei2πlx

(iωn + µ)2 − ω2
cx/4

+

∫ 0

−i∞
dx

e−i2πlx

(iωn + µ)2 − ω2
cx/4

+ 2πi
(−4

ω2
c

)
e
i8πl

(iωn+µ)2

ω2
c Θ(ωnµ)Θ(µ2 − ω2

n)

− 2πi(−1)
(−4

ω2
c

)
e
−i8πl (iωn+µ)2

ω2
c Θ(−ωnµ)Θ(µ2 − ω2

n)

}
.

We can neglect the integral terms since they don’t contribute to the oscillations, and we get∫ ∞
0

dx
sin(2πlx)

(iωn + µ)2 − ω2
cx/4

= −4π

ω2
Θ(µ2 − ω2

n)
[
e
i8πl

(iωn+µ)2

ω2
c Θ(ωnµ) + e

−i8πl (iωn+µ)2

ω2
c Θ(−ωnµ)

]
,

and performing the Matusbara sum as for graphene, we get∑
ωn

∫ ∞
0

dx
sin(2πlx)

(iωn + µ)2 − ω2
cx/4

= −16π

ω2
c

∑
ωn>0

Θ(µ2 − ω2
n)e

−16πlωn|µ|
ω2
c cos

(8πl(µ2 − ω2
n)

ω2
c

)
.

The final result the reads

Ωosc =
2ω2

cL
2T

πv2
F

∞∑
l=1

|µ|∑
ωn>0

1

l
e
−16πlωn|µ|

ω2
c cos

(8πl(µ2 − ω2
n)

ω2
c

)
. (4.12)

where the upper limit of the Matsubara sum comes from Θ(µ2−ω2
n). We note that the fundamental

frequency (when l = 1 and n = 0) of (4.7) with respect to ω−2
c is µ2 − π2T 2. Differentiating eq. 4.7

twice w.r.t to T gives us the oscillation in the specific heat

cosc =
8L2

v2
F

∞∑
l=1

|µ|∑
ωn>0

ωne
− 4πlωn|µ|

ω2
c

[
cos
(2πl(µ2 − ω2

n)

ω2
c

){
|µ|
(

2− 4πl|µ|ωn
ω2
c

)
+

4πl

ω2
c

ω3
n

}
− sin

(2πl(µ2 − ω2
n)

ω2
c

){
ωn

(
3− 2

4πl|µ|ωn
ω2
c

)}]
(4.13)
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Chapter 5

Results

From the previous chapter, we have the analytical result for the quantum oscillations, and we now
present the numerical results and compare them to the analytical solution. First we mention how
we obtain the quantum oscillations from the numerical Landau levels, we then provide an example
for graphene, and finally give the results for twisted bilayer graphene (TBG), and discuss their
significance.

5.1 Method

The numerical results are obtained by using eq. 4.1, where we first perform the Matsubara summa-
tion to get

Ωosc = Tω2
c

∞∑
m=0

G(εm(ωc), µ, σ) ln(1 + e−
εm(ωc)−µ

T ), (5.1)

where µ is the Fermi energy, T is the temperature, εm(ωc) is the mth Landau level and we emphasize
the fact that ε depends on ωc, and

G(x, µ, σ) = e−
(x−µ)2

2σ2

is a Gaussian function such that G(µ, µ, σ) = 1. This function weighs the eigenvalues such that only
the eigenvalues close to the Fermi energy contribute to Ωosc and therefore the constant background
is eliminated. Also note that the only factors kept from eq. 4.1 are ω2

c and T . For T � µ, we can
also use

Ωosc = ωc

M∑
m=0

G(εm(ωc), µ, σ)(εm(ωc)− µ), (5.2)

where M is the largest Landau index for which εM < µ is true.
As mentioned in previous sections, at T = 0, the nth oscillation is due to the nth Landau

level crossing over the Fermi energy. Since we know the period of the oscillations from the analytical
results, we can deduce what magnetic field is required to target oscillations caused by specific Landau
levels. For T 6= 0, this is still valid, since the effect of finite temperature only blurs the oscillations,
and if the temperature is not too high, the period will remain more or less the same. Based on the
analytical results, we have noted that the period depend on µ, such that it is in principle possible
to target oscillations caused by any Landau level at any magnetic field by fine tuning µ. However,
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Figure 5.1: Comparison between the analytical quantum oscillations in energy (eq. 4.7) and the numerical
results for T ∈ {10−5, 10−2} eV, and where the dashed lines represent the period of oscillation as expected
from analytical calculations.

there several constraints that we must consider. First of all, high magnetic fields (ωc > 0.1) are not
achievable experimentally. We will still consider such high magnetic fields, but we will note that
such results have little use. Furthermore, low magnetic fields (ωc < 0.03) are difficult to obtain
numerical results for, and therefore are impractical. Lastly, since our model for TBG is accurate for
energies lower than 1 eV, we must require that µ < 1 eV. Again, we will consider higher values of
µ, but we will comment on their application.

5.2 Results for Graphene

We will now consider the case of graphene, as to test our numerical method with the analytical
results. The numerical results for graphene are shown in Fig. 5.1 for T = 10−5 and = 10−2 eV, with
µ = 1 and σ = 1, and the analytical results are provided for comparison. The numerical values were
diagonalized using the numerical method established in section 3, while the analytical solution is
taken from eq. 4.7. The range of magnetic fields probed is ωc = 1 to ωc = 0.01, which corresponds
to B =∼ 103 T and B ∼ 0.1 T. The numerical results for the specific heat are not shown since they
are expected to be identical to the analytical results from Fig. 4.1. As we can see, the numerical
results agree with the analytical results, up to an overall factor, which we have neglected. In any
case, the period of oscillation identical, as well as the effect of temperature.

5.3 Results for Twisted Bilayer Graphene

The numerical results for TBG are shown in Fig. 5.2, for T = 10−4 eV, for θ ∈ {1.05◦, 5.00◦},
and µ ∈ {7.07 eV, 10 eV}. The results were generated for magnetic fields around ωc ∼ 1, which
corresponds to oscillations caused by the 200th and 400th Landau level for µ = 7.07 eV and µ = 10.0
eV respectively. The cutoffs used were N = 200 and N = 300 for µ = 7.07 eV and µ = 10.0, and we
have used σ = 1. The vertical dashed lines show the expected period obtained from the analytical
solution from eq. 4.12, which is 4(µ2−π2T 2), precisely 4 times smaller than the period for graphene
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Figure 5.2: Numerical quantum oscillations for TBG at T = 10−4 eV (∼ 1◦ K), where oscillations for
µ = 7.07 eV and µ = 10 eV correspond to oscillations around the 200th and 400th Landau level. The
oscillations were calculated around ω2

c ∼ 1 (∼ 900 Teslas), and the y-axis is arbitrary, since we have neglected
an overall constant factor.

oscillations. As previously noted, these results have been obtained for values of ωc and µ that do
not correspond to situations that have physical use. Nevertheless, we shall still interpret them.

First of all, in fig. 5.2(a) and (b), we note that for 1.00 . ωc . 1.06 (for (a)) and 1.00 .
ωc . 1.03 (for (b)), the oscillations correspond somewhat to the analytical prediction. However,
for 1.08 . ωc . 1.20 (for (a)) and 1.04 . ωc . 1.10 (for (b)), oscillations with a lower frequency
appears. From the figure, one can deduce that the frequency is 4 times greater than the analytical
prediction, and coincides with the frequency for graphene oscillations. As noted in subsection 3.2.3,
the analytical approximation agrees well with results around ωc ∼ 0.1, so this behaviour is somewhat
unexpected. A possible reason for this is due to the fact that the magnetic field used is high. In
such case, the diagonal terms in the TBG Hamiltonian are significantly larger than the off diagonal
terms, in which case the spectrum resembles that of graphene. For the case of fig. 5.2(c) and (d),
the oscillations agree more with the analytical results. There is still a region where oscillations with
a lower frequency appear, but they are less prominent than in fig. 5.2(c) and (d).

Fig. 5.3 shows the results for same values of µ, ω and θ, but at higher temperatures, namely
T ∈ {10−3, 10−2} eV. The cutoffs used were N = 200 and N = 300 again for µ = 7.07 eV and
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Figure 5.3: Numerical quantum oscillations for TBG at T ∈ {10−3, 10−2} eV (∼ 10◦ K and 100◦ K), where
oscillations for µ = 7.07 eV and µ = 10 eV correspond to oscillations around the 200th and 400th Landau
level. The oscillations were calculated around ω2

c ∼ 1 (∼ 900 Teslas), and the y-axis is arbitrary, since we
have neglected an overall constant factor.

µ = 10.0, and we have used σ = 1. As expected, for higher temperatures, the oscillations have
lower amplitude, and the high frequency harmonics get significantly damped. Hence, in all cases,
at T = 10−3 eV, the oscillations predicted analytically (i.e the oscillations with period similar to
the vertical dashed lines) are still observable, but vanish at T = 10−2 eV. On the other hand, lower
frequency oscillations are still observable up to temperatures of T = 10−2 eV.

Fig. 5.4 shows the results for T = 10−5 eV, for θ ∈ {1.05◦, 5.00◦}, and µ = 0.707 eV. For such
µ, the model is expected to produce physically meaningful results. The results were generated for
magnetic fields around ωc ∼ 0.1, which corresponds to oscillations caused by the 200th Landau level
for µ = 0.707 eV. Such magnetic fields correspond to ∼ 9 Teslas, which is a reasonable value for
experiments. Furthermore, note that the temperature is a full order of magnitude lower than in fig.
5.2, since the magnetic field is now lower. The cutoff used was N = 400, and we have used σ = 0.05.

One striking difference between fig. 5.4(a) and (b) is the presence of clear lower frequency
oscillations for (b) but not for (a). The period for the lower frequency oscillation in (b) is ∼ 18
times larger than the predicted TBG period, shown by the dashed vertical lines. At this regime,
the model is expected to give realistic results, and therefore such oscillations should not in principle
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Figure 5.4: Numerical quantum oscillations for TBG at T = 10−5 eV (∼ 0.1◦ K), where oscillations for
µ = 0.707 eV correspond to oscillations around the 200th Landau level. The oscillations were calculated
around ω2

c ∼ 0.1 (∼ 9 Teslas), and the y-axis is arbitrary, since we have neglected an overall constant factor.

be an artifact of the Hamiltonian from eq. 1.8. Nevertheless, the frequency of this oscillation does
not coincide with any prediction. The second striking difference between fig. 5.4(a) and (b) is the
complete lack of agreement of (a) with the analytical prediction, while (b) agrees well, especially
at the valleys of the low frequency oscillation. This could be because at θ = 1.05◦, the Dirac cone
picture is not justified anymore, and the analytical approximation is characteristic of a Dirac cone.
In any case, the results for θ = 1.05◦ (i.e. (a)) are problematic due to the onset of Landau level
splitting at such angles[19]. For high magnetic fields, the Landau level spectrum is expected to split,
where the specific magnetic field at which this happens is lower if the real space unit cell is larger.
For θ = 1.05◦, the onset of Landau level splitting[22] is ∼ 3 Teslas, while for θ = 5.00◦, the onset is
∼ 80 Teslas. Hence, for θ = 1.05◦, we are clearly in a regime in which Landau level splitting must
be considered, but this is not the case for θ = 5.00◦.

Fig. 5.5 shows the results for same value of µ, ω and θ, but at higher temperatures, namely
T ∈ {10−4, 10−3} eV. The cutoff used was N = 400 again, and we have used σ = 0.05. Again, for
higher temperatures, the oscillations have lower amplitude, and the high frequency harmonics get
significantly damped.



38 CHAPTER 5. RESULTS

Figure 5.5: Numerical quantum oscillations for TBG at T ∈ {10−4, 10−3} eV (∼ 1◦ K and 10◦ K), where
oscillations for µ = 0.707 eV correspond to oscillations around the 200th Landau level. The oscillations
were calculated around ω2

c ∼ 0.1 (∼ 9 Teslas), and the y-axis is arbitrary, since we have neglected an overall
constant factor.



Conclusion and Outlook

In this thesis, we have obtained the energy spectrum of twisted bilayer graphene (TBG) numeri-
cally using the model from ref. [2], from which we made an analytical approximation. We then
derived the quantum oscillations analytically using the Lifshitz-Kosevich and the analytical approx-
imation. Finally, we obtained the quantum oscillations numerically, and compared the results with
the analytical derivation. Although most of the results obtained do not lead to realistic cases, some
results do indeed describe situations that are possible in experiments. Such results are mainly for
θ ∈ {1.05◦, 5.00◦}, for ωc = 0.1 (∼ 9 Teslas), and for temeratures of T ∈ {10−5, 10−4, 10−3} eV (cor-
responding to 0.1, 1 and 10 Kelvins respectively). The case for θ = 1.05◦ should not be considered
seriously since at such angles, and at such magnetic fields, the Landau levels should split, and this
was not taken into account.

For future work, it would be interesting to consider the effect of Landau level splitting. Since at
low angles, TBG exhibits a large real space unit cell, it would then be possible to observe the Landau
level splitting with magnetic fields that are possible in experiments, and for that reason this is a
topic of interest. The authors from ref. [3] use the same model we have used and numerically obtain
the fractal structure expected from Landau level splitting, also called the Hofstadter butterfly. Ref.
[12] consider a similar model and show that the resulting butterfly has a different nature whether
the angle is above or below the first magic angle.

Also to consider, is the physics of TBG at low angles, i.e. angles below 1.05◦. At this regime,
our model does not produce physical results, although this is precisely where the interesting physics
lies, since it is at this range of angles that the model becomes can be superconductive. No analytical
model was found for TBG below 1.05◦, and numerical computations are costly due to the large
number of atoms per TBG unit cell. Recently however, ref. [34] claims to have analytically derived
the series of magic angles, which up to now was done only numerically. They have achieved this by
considering a chiral model, and their research would be interesting to consider moving forwards.

In the search for flat bands, twisted double bilayer graphene (TDBG) was also considered[17, 31].
This material consists of replacing the graphene sheets in TBG by bilayer graphene. The idea is
to use the displacement between the two graphene sheets within a bilayer to further fine tune the
onset of superconductivity, along with the twist angle. According to the experiments from ref.
[17, 31], such has superconductive states at temperatures up to T = 12◦ Kelvin, and a theoretical
Hamiltonian is provided by [31]. In both papers, quantum oscillations are measured experimentally,
thus showing their importance. Given that the numerical scheme developed in this thesis can be
applied to any Hamiltonian, it could be interesting to apply it to the model given in [31] for further
work.
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Chapter 6

Appendicies

6.1 Appendix A: Poisson Summation

For an arbitrary function f(n) summed over n from −∞ to ∞, we have

∞∑
n=−∞

f(n) =

∞∑
n=−∞

∫ ∞
−∞

dxf(x)δ(x− n) =

∫ ∞
−∞

dxf(x)

∞∑
n=−∞

δ(x− n),

where δ(x) is the Dirac delta. The first step is due to the Dirac delta’s translation property, and in
the second step we only moved the sum inside the integral. The term

∑
n δ(x− n) is called a Dirac

comb, where its Fourier series is

∞∑
n=−∞

δ(x− n) =

∞∑
k=−∞

ei2πkx

and therefore we get
∞∑

n=−∞
f(n) =

∫ ∞
−∞

dxf(x)

∞∑
k=−∞

ei2πkx.

In our case however, the function f(n) is summed over n from 0 to ∞, such that we have

∞∑
n=0

f(n) = lim
ε→0+

∫ ∞
−ε

dxf(x)

∞∑
n=−∞

δ(x− n) =

∫ ∞
0

dxf(x)

∞∑
k=−∞

ei2πkx,

where the integration limit allows us to take the sum of n from −∞ to ∞ in the first step, and the
lower integration limit must be ε→ 0+ to include the n = 0 term.
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