
Defining maturity of agile
requirements engineering practices

Leon de Reeder

Business Informatics, Faculty of Science
Department of Information and Computing Sciences

Utrecht University
Domplein 29, 3512 JE Utrecht

Info Support BV

Kruisboog 42, 3905 TG Veenendaal

Supervised by
Dr. Sjaak Brinkkemper and Dr. Fabiano Dalpiaz

December 11th 2019

Abstract - Scrum provides a framework for project management that has become
very popular over the past few years in the context of software development.
However, Scrum has many gaps and holes in which practitioners are free to
adjust the framework to their individual needs or apply best practices. This
study investigates what common practices are in agile requirements
engineering and defines a maturity matrix that can be used to assess Scrum
teams. The maturity model is developed based on a case study and validated
using interviews and focus groups in order to assess teams and guide toward
good agile RE practices.

2

Acknowledgements
Foremost, I would like to express my gratitude for all the supervision and guidance
received from my supervisor dr. Sjaak Brinkkemper. His expertise on the subject of
maturity models helped me immensely for those moments where I needed some
directions.

Secondly, I would like to thank dr. Fabiano Dalpiaz for being my 2nd supervisor and,
most of all, supplying me with an incredibly valuable dataset that I could use for my
research and contribute to.

Thirdly, my sincere thanks go out to my daily supervisor at Info Support, Beau
Verdiesen. His help with contacting relevant experts and participants in my study was
invaluable, as was his help proofreading my work.

Finally, I thank all experts and colleagues that were willing to participate or contribute
to my study. Alex van Assem, Cas Jongerius, Erik Sackman, Ivo Diepstraten, Marc Wils,
Marieke Keurntjes, Mark Jousma, Mark van Schaik, Patricia van Eijk & Remi Kok.

3

List of Abbreviations

RE Requirements Engineering

PBI Product Backlog Item

PB Product Backlog

BDD Behavior-Driven Development

RQ Research Question

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

4

1. Introduction ___ 6

1.1. Problem statement 6

1.2. Research context 7

1.3. Contributions of this study 8

1.4. Outline and milestones 8

2. Research approach __ 9

2.1. Design science 9

2.2. Solution design & validation 9

2.3. Theory Building 11

2.4. Literature review 12

2.5. Case studies 12

2.6. Interviews 12

2.7. Metamodeling for situational analysis and Design Methods 13

3. Literature review ___ 14

3.1. Requirements engineering 14

3.2. Defining maturity 29

4. Case studies to discover practices __ 42

4.1. Case study Info Support 42

4.2. Case studies at other companies 43

4.3. Method of analysis 44

4.4 Results 48

5. Designing the maturity model __ 49

5.1. Method 50

5.2. Defining the scope of the SBRE model 55

5.3. Defining focus areas & capabilities 55

5.4. The maturity matrix 80

6. Applying the model ___ 81

6.1. Team A 81

6.2. Team B 82

7. Conclusion __ 85

8. Discussion __ 89

5

8.1 Threats to trustworthiness 89

8.2. Future research 91

References___ 92

Appendix A: Interview template for data collection ______________________________ 99

Appendix B: Case study dataset & analysis _____________________________________ 103

Appendix C: Maturity matrix changelog __ 104

6

1. Introduction

1.1. Problem statement
One of the great characteristics of agile methodologies is that they, as their name
implies, are agile. They can easily be adapted to operate in a great number of different
scenarios and contexts and be flexible in volatile environments. While the adaptability
of these methodologies is one of their biggest advantages, it can also become one of
their disadvantages. The flexibility of these methodologies means that usually, no two
scenarios in which they are applied will be identical, making it hard to perform
scientific research on an experimental basis due to the many confounding variables
introduced. Currently, one of the most popular agile software development methods
in use is Scrum [1]. Scrum is defined as “A framework within which people can address
complex adaptive problems, while productively and creatively delivering products of the
highest possible value” [2]. Even though many teams claim they use Scrum, many of
them do not use ‘pure Scrum’ as described by the original creators [3]. As stated by the
Scrum guide written by the original authors, “Scrums’ roles, events, artifacts, and rules
are immutable and although implementing only parts of Scrum is possible, the result is not
Scrum. Scrum exists only in its entirety and functions well as a container for other
techniques, methodologies, and practices” [2]. As many teams adapt or extend Scrum to
fit their own needs, it becomes easy for organizations to lose track of the way of
working of teams, as a uniform process no longer exists.

“I estimate that 75% of those organizations using Scrum will not succeed in getting the
benefits that they hope for from it … Scrum is a very simple framework within which the
“game” of complex product development is played. Scrum exposes every inadequacy or
dysfunction within an organization’s product and system development practices. The
intention of Scrum is to make them transparent so the organization can fix them.
Unfortunately, many organizations change Scrum to accommodate the inadequacies or
dysfunctions instead of solving them ... Scrum purposefully has many gaps, holes, and bare
spots where you are required to use best practices ... ” - Ken Schwaber on Scrum [4]

As the above quote from Ken Schwaber indicates, many teams change Scrum to
accommodate inadequacies or dysfunctions. For those areas that Scrum leaves room
for improvisation, teams should use best practices. However, it is unclear what these
best practices are. Therefore, this study investigates software development teams and
the processes they use within the Scrum framework to deliver value to customers. The
focus is on requirements engineering (RE), as this is a critical process in the software
development lifecycle with a big impact on the success of a project [5]. Requirements
engineering is the subset of systems engineering concerned with discovering,
developing, tracing, analyzing, qualifying, communicating and managing
requirements that define the system at successive levels of abstraction [6]. The study
by Hall, Beecham & Rainer suggests that mature companies have fewer requirements

7

problems [7]. We are curious if and how teams have altered their RE practices in Scrum
and if it is possible to define ‘best’ or ‘mature’ practices that can be generalized across
industries.

1.2. Research context
The goal of this research is to develop a model to assess the maturity of requirements
engineering practices in Scrum. This allows for the following benefits;

- to compare the processes used by different software development teams.
- to provide an easy assessment for teams to determine their maturity.
- to guide immature teams toward maturity, speeding the adoption of good

practices.
Translating the goal into the main research question (MRQ) gives us;

MRQ: How to develop a maturity model for RE practices in Scrum?

In order to answer the MRQ, several research questions are chosen to steer the
research.
RQ1: What are common RE practices in Scrum used by software development teams?
In order to determine maturity practices, we need to get an understanding of RE
practices that are currently being used by software development teams. This question
will be answered by using scientific literature and case studies.

RQ2: How can RE maturity in Scrum be defined?
Once an understanding of common RE practices in Scrum is defined, we must discover
how to define maturity. What does it mean to be mature in RE in Scrum? Hopefully,
the answer to RQ1 provides us an overview of common practices and characteristics of
agile RE and Scrum, which can be used to identify the meaning of maturity. This needs
to be done based on expert opinions and best practices according to literature and case
studies.

RQ3: How can RE maturity be measured and compared among different software
development teams?
RQ4: Is the constructed artifact valid?
Answering RQ3 will result in a model that can be applied to software teams that are
working in different contexts. As all software teams are unique due to size,
environmental influences, differences in skills among others, it is important to
develop a model that allows for comparison of their RE practices and maturity. This
model also needs to be validated.

8

1.3. Contributions of this study

Contribution to science

This study provides a scientific contribution by performing a study on commonly used
RE practices in Scrum. While there have been studies done on processes used in Scrum
and how they differ among practitioners (e.g. Diebold et al. [3]) there are no studies
that explicitly focus on RE practices in Scrum, nor is there any measurement tool to
assess and compare different software development teams’ RE practices. This study
contributes to the body of knowledge by introducing both knowledge on common agile
RE practices and variations in RE and a validated assessment model that can be applied
on teams. This study introduces a maturity model for RE practices in Scrum. While
there have been previous maturity models that are based on requirements engineering
these have been based on traditional development techniques like the waterfall model.
These cannot simply be converted to an agile development technique like Scrum.
While the purpose of traditional based RE and agile RE is the same, they have key
different characteristics.

Contribution to Info Support

As organizations grow and become larger their organizational structure adjusts.
Business units grow in size and become more independent. These units start forming
their own internal policies and guidelines. At Info Support, software development
teams have always been given lots of freedom to approach their way of working. After
years of growth, upper management has obtained new interest in their software
development teams’ way of working. While it is not required that all teams follow a
uniform process, insight in processes/techniques used by teams can provide valuable
knowledge. The development of a maturity model can allow for easy assessments of
teams and might lead to improvements among teams.

1.4. Outline and milestones
This thesis work is spread out over a period of 8 months from May until December
2019. There are two phases. The first phase takes three months and answers RQ1 and
RQ2 by performing an exploratory literature study, expert interviews and case studies.
The second phase takes 5 months and is used to answer RQ3, RQ4 and the writing of
the thesis.

9

2. Research approach

2.1. Design science
This study is a study of design science, as the main goal is to design and investigate an
artifact in a certain context [8]. The goal of this particular study is to design a maturity
model for RE practices in Scrum. The artifact in question is the maturity model. From
the design of this artifact, we also want to investigate its problem context and the
validation of the artifact. Wieringa’s design cycle provides a framework for this study
to follow; a problem investigation, treatment design, treatment validation and
treatment implementation [8].

Figure 1: The design cycle [8]

2.2. Solution design & validation
Before the maturity model can be designed, we need to get an understanding of the
common RE practices in Scrum currently used by teams. This is done by answering
RQ1 (“What are common RE practices in Scrum used by software development teams?”),
based on a literature review and case studies of development teams.

Next, an understanding of maturity in the context of these practices must be defined.
This is done by answering RQ2 “How can RE maturity in Scrum be defined?”. Here we
try to define best practices by studying literature and case studies. RQ1 and RQ2 fit in
the problem investigation of the design cycle.

Once it is clear what constitutes as RE maturity, we need to answer RQ3, “How can RE
maturity be measured and compared among different software development teams?”. The
answers to RQ1, RQ2 and RQ3 will be used to create a maturity model, which relates
to the second phase of the design cycle Treatment design. The model will be designed
based on the literature review and case studies. In RQ4 (“Is the constructed artifact
valid?”) we aim to validate the designed model. The research method used to validate

10

the model will be expert opinions and a focus group. A team of experts will be selected,
consisting of product owners or other practitioners who extensively encounter
requirements engineering practices in their daily work, e.g. business/information
analysts. Experts are used to check whether the designed artifact conforms to the
desired requirements. Feedback from the experts will be used to redesign the artifact,
if necessary. Table 1 shows what sources will be used to answer each sub research
question. The research questions have been plotted against the design cycle in figure
2.

Question Literature Case studies Experts

RQ1 X X

RQ2 X

RQ3 X X

RQ4 X

Table 1: What sources will be used to answer the research questions.

Figure 2: The research questions of this study mapped on the design cycle

As can be seen in figure 2 there originally were two other research questions. RQ5 (In
which ways does high maturity provide benefits?) and RQ6 (Should software development
teams strive for high maturity in RE?) did not serve to directly answer the main research
question but instead wanted to answer knowledge questions about the designed
artifact to determine whether the artifact can be useful in practice. The main idea was
that once the model can be applied on software development teams we can investigate

11

whether and to what extent high maturity provides benefits over low maturity. If that
were the case, then it would sound logical that high maturity in RE practices in Scrum
is something these teams should strive for. To check for this, RQ6 wanted to discover
in which scenarios development teams should actually invest effort in achieving
certain levels of high maturity. It is entirely possible that raising the level of maturity
requires a big investment of resources for relatively low returns. Sometimes, a
convenient practice might be the best practice, being more beneficial than some
expansive practice. Unfortunately, these knowledge questions about the artifact had
to be cut due to time constraints.

2.3. Theory Building
Not only is this a study of design science, but it is also a study of theory building. We
try to construct a theory on what mature practices in agile RE are to be able to
construct an artifact that assesses these practices. Following the flowchart (figure 3)
by Dul & Hak, we perform theory-building research [9]. We start with an exploration
of theory, which is done by performing a literature review for RQ1 and RQ2. Now, an
exploration of practice is done, which in this study consists of case studies, to also
answer RQ1. These two explorations are used to build a theory of RE maturity in Scrum
(the maturity model, RQ3) which is then followed by initial theory-testing (validating
the model, RQ4).

Figure 3: Deciding on the type of research can be done by following this flowchart [9]

12

2.4. Literature review
A literature review is used as a starting point to answer the first three research
questions. It is not a systematic literature review but focuses on the specific research
questions. As for the procedure, a search engine is first used (primarily Google
Scholar). Relevant work is selected, from which backward and forward snowballing is
used to find other relevant literature. Journal and conference publications were also
scanned. Grey literature is also included if it’s relevant to the question at hand and
publicly available. Finally, previous related literature performed by Utrecht University
was also considered. The only inclusion criteria for scientific articles is that the article
must be accessible through the available portals without a paywall.

2.5. Case studies
In order to confirm and expand findings in the literature review (the exploration of
theory) case studies are used. Case studies are used as an exploration of practice. A
case study is defined by Dul & Hak as ‘a study in which (a) one case (single case study)
or a small number of cases (comparative case study) in their real-life context are
selected, and (b) scores obtained from these cases are analyzed in a qualitative manner
[9]’. In this study, we combine a multiple-case study performed by the author of this
study at the host company of Info Support with a multiple-case study performed by
students at other companies. These case studies have been described in reports and
are encoded and analyzed in NVIVO, which is computer software for qualitative
analysis.

2.6. Interviews
Expert interviews are used at several points during the study to collect qualitative data.
Expert interviews are used to:

- gather data on RE practices in agile software development teams (chapter 4 &
appendix A).

- validate the designed maturity model (chapter 5 & appendix C).
- apply the maturity model to a team (chapter 6).

The sampling method used for all interviews is convenience sampling. One concern
with interviews discussed in the work by Englander is that the sampled interviewees
belong to the required population (agile software development teams) and that the
interviewee has the right expertise [10]. Due to the nature of the host research
company (software development) selecting interviewees belonging to the correct
population was guaranteed. Experts having the right expertise is more difficult to
guarantee. Experts were selected based on their role which had to be related to
requirements engineering but the amount of experience the experts had was out of the
control of the researcher.

13

2.7. Metamodeling for situational analysis and Design Methods
In this study, there will be several figures in which the metamodeling technique
described by van de Weerd & Brinkkemper is applied [11]. This UML-based modeling
technique is used to model and compare the processes used in the context of Scrum by
software development teams. It is a useful technique to visualize the processes in a
project, the order in which they occur, who executes the process, what kind of
deliverable or concept is generated by the process and how these deliverables relate to
each other.

14

3. Literature review
This section executes the literature review to answer RQ1 “What are common RE
practices in Scrum used by software development teams?” and RQ2 “How can RE maturity
in Scrum be defined?”. We briefly introduce the topics requirements engineering and
Scrum to provide an understanding of the concepts. Section 3.1 provides a literature
review on the common practices of agile RE. Section 3.2 provides a literature review
on maturity research in Scrum and RE.

3.1. Requirements engineering
In this study, the concept of requirements engineering takes the definition provided
by Dick, Hull & Jackson [6]. Requirements engineering is the subset of systems
engineering concerned with discovering, developing, tracing, analyzing, qualifying,
communicating and managing requirements that define the system at successive
levels of abstraction [6]. In order to achieve these goals, many techniques and tools
have been proposed. A requirement is a ‘statement that identifies a product or process
operational, functional, or design characteristic or constraint, which is unambiguous,
testable or measurable, and necessary for product or process acceptability’ [6].
Requirements engineering has been found to be a critical process in software
development with a big impact on the end success of a project [5].

While traditionally RE has been a phase that (mostly) took place prior to the actual
development in the waterfall model some of the activities that belong to RE take place
during the entire development lifecycle, such as elicitation, documenting and
managing of requirements. Traditional RE consists of sub-sequential activities [12].
First, requirements elicitation is performed where initial information regarding
requirements and context is gathered. Secondly, during requirements analysis, this
information gathered is analyzed to understand the requirements. During
requirements specification information is turned into precise system specifications.
Requirements validation identifies and corrects errors in the requirements.
Requirements prioritization supports the elicitation by specifying the most valuable
requirements. Finally, system validation validates whether the output of the software
matches the requirements. There is some discussion whether system validation is part
of requirements engineering, as some studies state it does ([12]), and some state that
it does not [13]. In general however, the traditional phases of RE are quite clear and
well defined.

15

Figure 4: RE phases in the waterfall model [12]

3.1.1. Agile software development
Agile software development is an approach to software development that has seen a
significant rise in popularity during the last two decades [14]. This rise followed the
release of the agile manifesto, a manifesto that called for principles such as
‘Responding to change over following a plan’ and ‘Working software over
comprehensive documentation’ [15]. Agile development was an answer to the
tendency of requirements to change during processes, leading to an increase in costs
[16]. Agile methodologies aim to provide flexibility that traditional methods, such as
the waterfall model, lack.

Agile requirements engineering

Agile RE differs from traditional RE because it assumes that RE is practiced during the
entire lifetime of a product/system, whereas traditional RE is performed before the
development of the system is performed. One of the twelve principles of the agile
manifesto relates directly to this; ‘Changes in requirements are welcome, even late in
development’ [15]. The requirements are initially defined with the customer, after
which they become more refined, reprioritized and discussed over several iterations of
work to fit the scope of the next iteration [17].

3.1.2. Scrum
According to the official guide written by Scrums’ original creators, Scrum is ‘a
framework within which people can address complex adaptive problems, while
productively and creatively delivering products of the highest possible value’ [2]. The
annual report on the State of Agile found that Scrum is by far the most used framework
for agile project management, with 72% (n=1319) of the respondents using Scrum or
an adapted variant of Scrum [1]. Scrum is characterized by its short, iterative feedback
loop and Scrum Teams. All that the Scrum framework defines are some roles, events
and artifacts. Therefore, many other aspects can be adapted to a teams’ preferences.
The following description on Scrums’ Roles, Events and Artifacts is directly based on

16

the official guide by Schwaber and Sutherland and is, therefore, a description on Scrum
in its ‘purest’ form [2].

Scrum team & Roles

Scrum is performed by a Scrum team of 3 to 9 members, excluding the product owner
and Scrum Master (unless they also execute work of the sprint backlog). There are
three roles in the Scrum team; the Scrum Master, the Development Team and the
Product Owner.
The Product Owner is responsible for maximizing the value of the product resulting
from the work of the Development Team. The Product Owner has the responsibility of
managing the Product Backlog. This contains activities like expressing backlog items,
ordering the items in the backlog, optimizing the value of work for the Development
Team, ensuring visibility and transparency of the Product Backlog and ensuring that
the Development Team understands items in the Product Backlog on the level needed.
The Development Team consists of professionals who work on the delivery of a
releasable increment of the product at the end of each sprint. The Development Team
is self-organizing, cross-functional and shares accountability for the release.
The Scrum Master promotes and supports Scrum by helping everyone understand
Scrum theory, practices, rules and values.

Scrum events

Scrum contains one all-encompassing event that serves as a container for other
events; the Sprint. The sprint is a phase of less than one month during which a
releasable product increment is created. The sprint contains four other events. Firstly,
Sprint Planning serves to identify the goal and work to be done for the current Sprint.
Secondly, there is the Daily Scrum. These are short, standup meetings with the
Development Team which discuss the work to be done for the day and to inspect the
progress toward the sprint goal.
Thirdly, after there is no more work to be done for the current Sprint (or the time limit
is reached) there is a Sprint review, which reflects on the sprint and work left to be
done. Finally, the Sprint Retrospective aims at identifying areas of improvement which
can be enacted during the next sprint.

Scrum artifacts

Scrum consists of three artifacts; the Product Backlog (PB), the Sprint Backlog (SB) and
Increments.
The Product Backlog is an ordered list of everything required in the product. An item
in the product backlog is often called a PBI (product backlog item). It contains
requirements for any change necessary to be made. The PB evolves over time as new
requirements emerge. The PB not only contains a list of requirements but also
features, enhancements and fixes that are required to be made. Often, they contain
even more concepts, such as testing definitions. The PB is never done and

17

continuously evolves. Backlog refining (sometimes also called Backlog grooming or
cleaning) involves the adding of detail, estimates and order to backlog items.
The Sprint Backlog contains all backlog items selected for the current Sprint, together
with a plan for delivering the product Increment and realizing the Sprint Goal. The
purpose of the Sprint Backlog is to make all work visible that the development team
identified as necessary to meet the Sprint Goal.
The Increment is the sum of all the Product Backlog items completed during a Sprint
and the value of the increments of all previous Sprints. An increment must be ‘Done’
(what the definition of ‘done’ means is defined by the development team) at the end
of a sprint. As teams mature, the definition of ‘done’ is likely to expand and include
stricter criteria to ensure a higher quality of the increment. According to its official
guide, it is very important that all team members have a ‘shared understanding’ of the
definition of done.

Meta Modeling Scrum

The events, artifacts and roles present in Scrum are meta modeled in Figure 5 below.
Many activities and concepts that occur in traditional RE are still undefined. As
mentioned before, Scrum is a framework with many gaps in which users can choose
what to apply, like techniques, processes or best practices [4]. Therefore, the meta-
model of Scrum looks like Figure 5, but in real-world cases will look different
depending on how development teams choose to alter/extend Scrum. Scrum
technically only consists of iterations of Sprints, which consists of four activities that
have their own sub-activities. The actual sub-activities are undefined by Scrum itself.
The Sprint Planning results in a Sprint Backlog, which consists of Backlog Items.
Following the Sprint Planning, Daily Scrum is performed iteratively for as long as the
Sprint Backlog is not empty, contributing to the Increment. Finally, the Sprint is ended
with the Sprint Review followed by the Sprint Retrospective, after which a new Sprint
is started.

18

Figure 5: Metamodel of the Scrum framework with activities, roles and concepts

3.1.3. Requirements engineering in Scrum
In Scrum, the Product Owner is responsible for requirements elicitation and
prioritization. The requirements reside in the Product Backlog, which is a prioritized
list for the work still to be done for the software [12]. The Product Owner and
development team perform requirements analysis, specification and validation in
collaboration. At the end of an iteration, the Product Owner should perform the
system validation [12]. Some studies report that agile RE resolves issues like
communication, over scoping, requirements validation, requirements documentation
and rare customer contact [18].
Although the official Scrum guide describes events, artifacts and roles many things are
still unknown or open to interpretation. This is also the case for requirements
engineering. While some of the responsibilities and events of requirements
engineering are clear, details are missing. The Scrum guide, for example, states that
the Product Owner is responsible for the elicitation of the requirements, but not which
elicitation technique should/can be used. The guide is clear that the Product Owner
should prioritize the requirements, but not which technique should be used (e.g.
MoSCoW, Stack ranking, Kano model). The guide is clear that requirements are
contained in the backlog, but not how they should be documented (e.g. format,
acceptance criteria, quality criteria).

The mapping study by Curcio et al. on requirements engineering in agile software
development identified 9 systematic literature or mapping studies on the topic of

19

requirements engineering in agile practices [17]. This study is used as a starting point
to discover agile RE practices discussed in the literature.
The first study discussed by Curcio et al. is the systematic literature review by Inayat
et al., which aimed to answer three research questions [18];

- RQ1. What are the adopted practices of agile RE according to published
empirical studies?

- RQ2. What are the challenges of traditional RE that may get alleviated by agile
RE?

- RQ3. What are the challenges of agile RE?
Twenty-one studies were included in the review. The study identified 17 different RE
practices of which none had a higher occurring frequency than 5. This indicates that
there is no single standard practice. The practices and their reported frequency can be
found in table 2 below. While this table demonstrates some practices, it is unclear how
they are performed. For example, many different techniques can be used for
prototyping (e.g. wireframe, storyboard, full-fledged prototype) or prioritization (e.g.
MoSCoW, gut feeling, business value, story points). It is also unclear if teams used
several techniques for the same purpose (e.g. use both wireframes and storyboards).

Practice Reported frequency

Requirements prioritization 5

Testing before coding 4

Face-to-Face communication 3

Customer involvement 3

Iterative requirements 3

Retrospectives 3

User stories 2

Change management 2

Prototyping 2

Requirements modeling 2

Review meeting and acceptance
tests

2

Requirements management 2

Table 2: Identified requirements engineering practices with a frequency > 1 [18]

20

The study concludes that agile RE practices differ from traditional RE with practices
such as customer involvement, change in requirements management, cross-functional
teams, review meetings and sessions. These are features missing in the traditional way
of RE; thus, they can outperform traditional RE practices [18].

The study by Medeiros et al. [19] focused on two specific RE activities in agile
development;

1. What RE techniques are used to elicit requirements?
2. What RE techniques are used to specify requirements?

The study included 21 studies of which 50% used Scrum and others used methods like
Kanban or Extreme Programming. Nine of these studies reported the requirements
elicitation technique used. Almost all (8 out of 9) of these studies used interviewing as
a technique to elicit requirements, joint application design (JAD) and focal groups
were used three times, brainstorm was used twice and questionnaires, workshops and
trawling were only mentioned once.
On the specifying of requirements, the study found that user stories were by far the
most used format for defining requirements (19 out of 24). The popularity of this
format is confirmed in other works, although the template of user stories can be
different [20,21]. Most of the studies included in the review also reported the use of
more than one specification format (21 out of 24) [19].

The literature study by Schön et al. was aimed at identifying practices that involve
stakeholders in the process of RE and are compatible with agile software development
and what common ways are for requirements management [13]. They found that 77%
of participating teams directly involved stakeholders in the development process and
56% directly involved the end-user as well (n=27). On the topic of requirements
management, 93% used an artifact, 63% had documentation that was understandable
without prior knowledge and 50% differentiated between functional and technical
requirements (n=27). On the types of artifacts, the user story was once again the most
popular with 56% of studies reporting the use of user stories (n=27). Forty-one percent
used some form of prototyping, followed by use cases (26%), scenarios (22%), story
cards (22%), personas (15%) and other artifacts (<15%).

The study by Cao & Ramesh researched differences in practices between traditional
and agile RE [22]. They found that in agile RE requirements are continuously
reprioritized, unlike traditional RE where requirements are only prioritized at the start
of the project. Six practices were identified; face-to-face communication over written
requirements, extreme prioritization, prototyping, reviews and tests, iterative RE and
constant planning. Agile RE processes were found to blend together, instead of the
traditional RE processes which are clearly defined separate steps. Cao et al. published
another study as a follow-up on the study on agile versus traditional RE practices [23].
A case study was conducted on sixteen organizations. The same six common practices
were identified, as well as seven common occurring challenges (Figure 6).

21

Figure 6: Common agile RE practices and resulting challenges identified by Cao et al. [23]

Heck & Zaidman performed a systematic literature review on quality criteria for agile
requirements specifications [24]. The quality of the requirements is typically
considered as an important factor for the quality of the end product, yet agile RE has
not specified any form of standard to guarantee quality [24]. In an earlier study on
quality frameworks, Heck & Zaidman found that experts in the agile domain agree on
the importance of quality frameworks [25]. In their study, Heck & Zaidman identified
16 papers that discuss a total of 28 different quality criteria for agile requirements
specifications. Based on this, they recommend three best practices;

- Use a list of quality criteria. Teams should create a list of quality criteria. There
is no recommendation for a single list of criteria; teams should decide for
themselves what criteria are useful in their context. Some example criteria that
are mentioned are SMART (tasks should be specific, measurable, achievable,
relevant and time-boxed) and INVEST (user stories should be Independent,
Negotiable, Valuable, Estimable, Small and Testable).

- Have a definition of ready, which is a checklist to determine whether a user story
is ready for developers to start implementing it.

- Use a tool to manage requirements. A tool should be used to store requirements,
store traceability information and apply quality checks.

However, it is unclear what Heck & Zaidman mean with an agile requirements
specification. In traditional RE, the RE specification would be the end product of the
RE process, used as input to start developing the product. An agile method such as
Scrum does not recognize an agile requirements specification artifact except for the

22

product and sprint backlog. It is also unclear how many teams actually invest time and
effort into this agile requirements specification.

The work by Paetsch, Eberlein & Maurer compares traditional RE approaches and agile
software development to determine possible ways how agile software development
can benefit from RE methods [26]. Paetsch et al. recognize traditional RE in five
categories; elicitation, documentation, validation, management and analysis. RE
techniques that are important or synergize well with agile approaches are;

- Customer involvement. As encountered in other works, customer involvement is
vital in agile development. For RE, direct customer involvement is important
to elicit requirements with the right stakeholders.

- Interviews. These are the most commonly used technique for elicitation and
stimulate face-to-face communication. Direct interaction is important for
trust between the customer and the developer.

- Prioritization is highly important in agile development. The requirements with
the most business value must be developed first. Whichever requirement
provides the most business value is determined with prioritizations.

- Joint-application development is used to increase customer involvement and to
gain an understanding of the system to be built.

- Modeling is used in agile development but usually does not become part of the
documentation. Instead, models are quickly drawn on whiteboards or paper
and then discarded after fulfilling their purpose. In agile development,
requirements are often not modeled and instead quickly translated into
running code.

- Documentation is usually underperformed in agile development. The scope often
focuses on core aspects of the system and not all requirements will be included
in the documentation.

- Validation is often done with review meetings and acceptance tests. By
delivering working software, customers can immediately validate whether the
requirement has been correctly implemented. Review meetings are useful for
discussion about strengths and weaknesses of the software.

- Management of requirements should (traditionally) enable the tracing of
changes made to requirements and rationale behind the changes. However,
ensuring traceability costs time and money and it is not proven whether any
economic benefit exists. This is why agile projects often do not base themselves
on a fixed scope/price but on time and expenses.

- Observation and social analysis can be used for the elicitation of requirements,
especially as a highly qualified user is not always the best person to elicit
requirements from.

- Non-functional requirements are often ill-defined in agile development. Agile
methods need to include more explicitly the handling of non-functional
requirements. The authors do not have any recommendations to solve this
issue.

23

Requirements quality

Medeiros et al. proposed a model that improves the quality of software requirements
specifications [27]. The most referenced models identified in their literature study
were based on ISO-IEEE 830, which contains eight quality characteristics for a good
specification; correctness, unambiguousness, completeness, consistency,
prioritization, verifiability, modifiability and traceability. Other findings were that (1)
software requirements specifications should not be used as a mechanism to validate
requirements, (2) developers should prevent a fragmented software requirements
specification, (3) experience of the developers with agile software development is
crucial for success and companies need to promote best practices, (4) smaller
requirements and sprints make for a simpler, clearer and readable software
requirements specification and (5) specific tools can (and should) be used to support
traceability of requirements and thereby facilitate the impact analysis of requirements
change [27]. It remains unclear from this study how often teams produce a software
requirements specification, as one of the more often identified challenges in agile RE
is a lack of documentation.

There have also been extensive studies on the quality of the most common type of
requirement used in Scrum; the user story. The quality user story framework (QUS) by
Lucassen et al. attempts to identify quality violations in user stories based on 14
criteria [28].

Figure 7: The quality criteria influencing the quality of a user story [28]

 Lucassen et al. [29] created a tool, AQUSA (Automatic Quality User Story Artisan), that
is capable of analyzing a set of user stories and determine whether they are in
accordance with 5 out of the 14 quality criteria;

- Well-formed
- Atomic
- Minimal
- Uniform
- Unique

24

The study by Lucassen et al. solely focuses on the quality of the actual user story
sentence “as a … I want … so that ...”. The work by Heck & Zaidman focuses on the
entire quality of the backlog item that contains the user story [25]. It proposes a quality
assessment framework for just-in-time requirements. In this framework, a user story
has three categories of quality criteria (QC1 = completeness, QC2 = uniformity, QC3 =
consistency/correctness) in two dimensions. The dimensions are C (for ‘on creation’)
and J (for ‘Just in time’) indicating at which point in time the criteria need to be met.
For example, when a user story is first elicited and documented it is not necessary to
have acceptance criteria yet. The quality criteria are;

- QC1.C: On creation, a user story needs to consist of the basic elements role,
functionality and business value.

- QC1.J: Just in time, a user story needs to have additional elements which are
acceptance criteria (and the team can decide on more elements they want to
add)

- QC2. C: Stories are uniform by using the same template
- QC2.C: Any attachments to a user story use uniform and standardized

modeling languages.
- QC3.J: A user story should conform to the INVEST standard

When evaluating the framework, practitioners preferred over using a ‘gut-feeling’. A
checklist aids in not forgetting criteria, basing opinions on facts, to educate other team
members and to standardize the review process [25].

What remains unclear about the quality of requirements is whether there is a benefit
to ensuring a certain quality standard. None of the studies discussed about quality
frameworks provided any evidence or significant results on the importance of quality.

Requirements specification

As mentioned before, user stories are by far the most popular format in which
requirements are documented. A user story is a description of a feature written from
the perspective of the person that requires it [13]. A user story is usually part of an epic
story. User stories are often written in a certain format/template, for example the
Connextra template; “As a [type of user], I want [goal], (so that [some reason])” [20].
In this way, user stories answer a Who (who is it for), What (does he/she want) and
Why (why does he/she want it). Regardless of the template, a user story always
includes a role (the who), a means (the what), an (optional) end (the why), and a format
(figure 8) [28].

In a study conducted on user story practices, 59% (N=182) of practitioners were found
to use the Connextra format [20]. For quality frameworks, 23% of respondents used the
INVEST framework, while 33% had their own quality criteria and 40% did not check
their stories on quality. On templates (such as the Connextra template) practitioners
noted that it does not really matter which template is used, as long as the team uses a
single one that everyone agrees on. The alignment of a team relying on a standardized
structure improves work productivity and quality [20]. Also, while templates can allow

25

for the removal of the benefit part (or Why part) practitioners state that it is an
essential part of the user story.

Figure 8: Conceptual model of a user story [28]

Challenges in Agile RE

Several studies investigated challenges that are present in agile RE. Inayat et al.
identified several challenges of agile RE and practices to solve them [18]. Firstly,
minimal documentation (one of the principles of the agile manifesto) often causes
problems. Without altering Scrum, only user stories and backlog items are
documentation of the product, causing traceability issues. Secondly, customer
availability is advocated by agile methods but in reality can be scarce. Thirdly, budget
and schedule estimation can be difficult due to the volatility of the requirements; some
may be added, some may be dropped, and nobody knows when either will occur. While
effort estimation techniques are used in Scrum, such as planning poker, the volatility
of requirements still makes it hard to make correct estimations. The team discusses
user stories and everyone estimates the amount of work a story is likely to be. Fourthly,
inappropriate architectures created by teams in earlier iterations can become
problematic in later iterations due to new requirements. Fifthly, non-functional
requirements are considered to be a major challenge for agile RE. Finally, customer
inability and agreement can occur when the customer has trouble with decision
making and is incompetent in the domain knowledge.

The study by Medeiros et al. [19] also discusses challenges in agile RE. They found two
main challenges; interaction with the client and change management. The agile
principle of ‘teams quickly adapt to change’ is something not experienced by the
companies included in the study. Also, the principle of ‘continuous interaction with

26

the customer’ is hard to achieve. This challenge was also mentioned by Inayat et al
[18].

The mapping study performed by Heikkilӓ et al. found that the user story format is
often insufficient [12]. Only simple, customer visible functional requirements can be
described with user stories, and the lack of additional documentation causes issues
with traceability. Furthermore, requirements prioritization is often based on the
requirements that offer the most business value for the customer, which might cause
system architecture/improvements/non-functional requirements to be ignored [12].

Another challenge was identified in the work of Cao & Ramesh (2008). They found that
non-functional requirements (NFR) are often neglected over functional requirements,
which often led to redevelopment and bottlenecks [22]. In a follow-up study, Cao et al.
identified another six issues; cost and schedule estimation, customer access &
participation, inadequate architecture, minimum documentation, lack of
requirements verification and prioritization on single dimensions (focus on business
value) [23].

The literature study by Elghariani & Kama confirms most of the aforementioned
challenges [30]. Lack of documentation, client availability, incorrect budget and time
estimations, inappropriate software architectures and ignoring non-functional
requirements are once again mentioned as challenges in agile RE.

Hall, Beecham & Rainer performed an empirical analysis on twelve companies to
discover requirements engineering problems [7]. The authors found that the RE
process is often hindered by organizational issues like lack of skill and poor staff
retention. The authors conclude that most requirements problems are organizational
rather than technical and that there is a relationship between companies' maturity and
patterns of requirements problems. Process assessment to achieve higher maturity
seems to benefit companies even when they are very immature.

In 2017, the Naming the Pain in Requirements Engineering (NaPiRE) initiative
published a qualitative analysis of RE problems for 228 companies in over 10 countries
[31]. The ten most-cited problems can be found in table 3 below.

27

Table 3: The 10 most cited problems in agile RE [31]

Fernández et al. performed a cause-effect analysis of the three most critical RE
problems that they identified. The ten most reported problems and their causes can be
seen in figure 9 below. Figure 9 shows that the biggest cause of problems is the lack of
RE related experience. Therefore, a maturity model might be a good way to suggest
improvements to those who are unaware of techniques to implement or use.

28

Figure 9: The relation of the top 10 causes, top 10 problems and the project impact [31]

3.1.4. Conclusion
This section discussed common RE practices in Scrum, as well as the benefits and
challenges of applying RE in Scrum. Traditional RE used to be performed prior to
software development, but in Scrum RE and development are practiced during the
entire lifetime of the product/system. Agile RE is characterized by evolving
requirements and constant reprioritization. A key concept of Scrum is that teams are
self-organizing and should apply best-practices where needed. The literature clearly
shows that it is unclear which RE practices are ‘best-practice’, which is reflected by the
fact that many studies looking into RE practices used by Scrum teams had low
frequencies and a high variance of different practices. In agile RE, several studies
discuss the quality of agile requirements and techniques/frameworks to ensure quality.
Quality frameworks such as INVEST are used in some form in a majority of the teams
analyzed in studies. The user story is by far the most commonly used technique to
document functional requirements, although the templates used differs. While agile
RE has benefits, such as lower times to market, better customer involvement and
better suited for dealing with volatile requirements, there are also significant
challenges noted by several studies. These studies often reported similar problems
such as a lack of customer involvement (or no onsite customer), negligence of non-
functional requirements, lack of documentation, insufficiency of the user story format
to capture all relevant information and estimation issues. As one study noted, there is
a relationship between a team’s maturity and patterns of requirements problems,
making maturity a beneficial quality to strive for [7]. Because the literature is at many

 29

times vague on how certain processes and techniques are performed, the literature
review will be combined with a case study, which is discussed in chapter 4.

3.2. Defining maturity
This section is concerned with research question two; ‘How can RE maturity in Scrum
be defined?’. Now that an understanding of common RE practices in Scrum is defined,
we must discover what maturity in RE practices actually means. This needs to be done
based on expert opinions and best practices according to literature. In section 3.2.1. a
brief introduction of maturity modeling is discussed. Section 3.2.2. discusses maturity
models that were designed for agile environments. Section 3.2.3. discusses maturity
modeling for requirements engineering.

According to the mapping study by Wendler, the purpose and definition of maturity
models can often differ among publications. Wendler gives the following definition
and purpose of a maturity model;

‘The purpose of models dealing with maturity is to outline the conditions when certain
examined objects reach the best (perfect) state for their intended purpose. In addition, there
has to be a “final” state of maturity (fullness of growth) in which no further development is
possible … maturity models describe and determine the state of perfection or completeness
(maturity) of certain capabilities’ [32].

As maturity models describe and determine the state of perfection or completeness of
certain capabilities, the final states in these models can be considered best practices.
Best practices are defined by the Oxford dictionary as;

Commercial or professional procedures that are accepted or prescribed as being correct or
most effective.1

However, this would be an incorrect definition of the maturity we aim to achieve in
our model. There exist many practices that are generally acknowledged as good or best
practices, but they can still be useless for a team in a certain context. In the context of
this study, a mature practice can be any practice as long as it is justified in the context
in which it is applied. As one study noted, there is a relationship between a team’s
maturity and patterns of requirements problems, making maturity a beneficial quality
to strive for [7]. Yet the maturity to strive for can be different depending on the project
context.

1 https://en.oxforddictionaries.com/definition/best_practice

https://en.oxforddictionaries.com/definition/best_practice

30

3.2.1. Maturity modeling
Maturity modeling has its roots in the field of quality management [33]. The most well-
known maturity model is probably the capability maturity model (CMM) [34]. The
CMM was published in 1993 and its goal was to help organizations improve their
software process by assessing processes in order to find possible areas for
improvement. The CMM focuses on the maturity of organizational processes. As most
developed maturity models are based on the CMM, this section explains the concept
and the way a maturity model works.

In an immature software organization, software processes are generally improvised by
practitioners and their management during the course of the project [34]. Processes
are usually not specified and if they are, not rigorously adhered to. Contrasting, a
mature organization has clear standards for processes and they are accurately
followed. Communication, roles and responsibilities are clear throughout the
organization and resources are spent on continuous improvement [34].

The CMM provides a framework for organizing steps towards maturity into five levels,
creating an ordinal scale for measuring a process’s maturity. A maturity level is a ‘well-
defined evolutionary plateau toward achieving a mature software process’ [34]. According
to the CMM, a higher process capability level results in better performance. Although
an organization can have different processes on a different maturity level, a process
usually needs to be improved on a level-by-level basis for the improvement to be
successful. This means that ‘skipping’ a level should be avoided. A maturity level
consists of several key process areas. A key process area is a cluster of related activities
that are considered important to perform in order to reach a new level of maturity.

The CMM publication provides several reasons for its usefulness but for this study the
main reason is that a maturity model can be used to assess teams to identify strengths
and weaknesses. It can then guide a team on what steps need to be taken to improve
on these identified weaknesses.

Since the publication of the CMM, the research and development of other maturity
models has reached over 20 different domains [32]. The mapping study by Wendler
found 237 articles studying maturity models [32]. Of these, 56% (108) were concerned
with the development of new maturity models. According to Wendler, the high
amount of new maturity model development is an issue, as authors often do not
consider previous work. Authors intending to develop new maturity models should
carefully check if there are other solutions available. Wendler notes that oftentimes
authors do not review existing models that might serve their purpose. In other cases,
Wendler states that authors sometimes ‘referred to other models (mostly CMMI) and
transferred their structure and content without checking if this makes sense for their
intended purpose’. Wendler gives the advice that authors of new maturity models first
have to analyze if there are existing models and then carefully check their
applicability. This is important for the quality and relevance of the new model and to

31

prevent development expenditure in case suitable models already existed.
Furthermore, maturity modeling studies often have issues regarding the validation of
their designed maturity model; over half of the identified studies (52%) did not
validate their models. Wendler states that there is no clear or ideal method to validate
a maturity model. In most studies case studies and interviews were used. In about a
third of the studies, qualitative surveys were included to validate the designed artifact.

Maturity model types

In this study, we consider two different types of maturity models; fixed-level maturity
models and focus area maturity models. Most maturity models are fixed-level maturity
models, e.g. the CMM. Fixed-level maturity models often consist of several levels of
maturity and each level is associated with several processes that need to be
implemented/conformed to. A limitation of these models is that dependencies
between processes are unclear and therefore provide little guidance on the order in
which processes should be implemented [35]. Additionally, fixed-level maturity
models do not recognize that different levels of maturity can occur for different
processes (e.g. some activity might be associated with maturity level 1, yet another
activity that is also performed is associated with maturity level 3).

The focus area maturity model is also referred to as a maturity grid in other studies
[33,36]. A maturity grid consists of activities and a maturity level for each activity. The
difference between the two models is that fixed-level models have global descriptions
of maturity are described for each level, there are no individual descriptions for each
activity at each maturity level, whereas a maturity grid identifies process areas and
activities with their individual maturity level.

As stated earlier, many maturity models have already been created. It is important to
analyze previously created models before creating new models as they may already
serve the purpose of assessing RE practices in Scrum. As stated by Wendler, it is
important to check if there are existing suitable maturity models which can be
(partially) re-used, and whether these models have been validated [32]. For the
purpose of analyzing previously created models, this chapter discusses maturity
models and related studies found in scientific literature that are related either to
Scrum/agile (section 3.2.2.) or requirements engineering (section 3.2.3.).

32

3.2.2. Maturity and Scrum/Agile
Maturity models like the CMM and agile can, according to some, be described as oil
and water; they do not like to mix [37]. This dilemma is well demonstrated by the
following quote of Schweigert et al.

“From the agile camp you can hear someone say that CMMI is the big American
waterfall model monster, and is outright contra-productive to agile methods. From
the CMMI camp you can hear someone to say that agile methods are hackers from
hell that uses the agile paradigm to enjoy anarchy with no rules. You can also hear
some say that agile works best in CMMI level 5 companies. The context of the
dilemma, however, is slightly awkward. CMMI describes characteristics of good
development practices, and agile is a lifecycle concept. So from a meta point of view
they can easily co-exist” [38].

Despite the fact that, on paper, maturity modeling and agile seem to contradict each
other to some extent, there has been plenty of research on the topic [37,39–42]. The
study by Marçal et al. mapped CMMI project management process areas to Scrum to
check whether Scrum satisfies any of the CMMI areas [40]. It was concluded that not
all processes of CMMI are satisfied in Scrum and that organizations looking to achieve
high CMMI maturity should look for other methods for project management. A trend
that coincides with this finding was found in the literature review of agile and maturity
model research by Henriques & Tanner [43]. Figure 10 below demonstrates how at
first, the majority of research on the topic of CMMI and Agile was focused on
combining agile and CMMI, whereas this trend has turned around and now studies
focus more on studying agile maturity without the use of CMMI.

Figure 10: Trend in agile Maturity and Agile/CMMI percentage research articles [43]

33

Despite the decline in popularity of CMMI/agile research articles, the CMMI Institute
a report on improving agile performance with CMMI [41]. According to the report,
there is value in both paradigms and they are not incompatible at all. The
incorporation of CMMI goals into the project activities of agile teams can help make
these teams more mature and/or capable at handling the continuity of projects [42].

The agile maturity model by Petal & Ramachandram (figure 11) is a fixed-level
maturity model and consists of five different maturity levels, each with its own goals
[44]. Similar to the CMM, at the initial level (1) agile processes are (barely) defined and
the development environment is unstable. The second level (2) explored indicates a
more structured and complete software development practice. One of the goals of this
level is ‘improved agile requirements’. According to the authors, at this level
organizations should have specified policies and resources for requirements
engineering. Development should follow story cards (cards with user stories written
on them) driven development, which is a very common practice in Scrum. For each
maturity level, the activities of the associated level that were RE related were analyzed.
The results for this can be found in table 3 below.

Figure 11: The agile maturity model by Petal & Ramachandram [44]

Although Petal & Ramachandram defined the tasks/processes in table 3 to measure
whether the goal is achieved, their model has issues. The activities (and measures for

34

whether they are achieved) are rather ambiguous. For example, ‘there is a plan to
manage story cards’ is very unclear on what a plan is, how detailed it should be, et
cetera. Another example would be the criterium ‘there is commitment to each story
card’. The authors do not specify any definition or metrics for commitment. This issue
was also mentioned in the work by Yin; the model lacks measurement goals to monitor
and evaluate the performance of the practices listed in each level [45]. As most RE
related activities (15 out of 20) are associated with maturity level 2, this seems to
suggest that high maturity in Scrum can only be achieved by having a solid, well-
defined and repeatable set of RE related activities as a building point. Another
limitation of this model is that it has not been validated in an industrial setting and
therefore is only based on literature.

Maturity
level

Key Process area RE related criteria

2 Project planning The planning game is used to create
project plans

Planning work is based on the business
value

Estimation is done by the developers

Story cards driven
development

User stories are written to solve
requirements engineering

Unique story card structure is defined

A plan exists to manage story cards

Obtain an understanding of the story cards

Obtain commitment to story cards

Identify inconsistency between story cards
and customer’s original requirements

Elicit customer needs from onsite
customer

Manage requirements change

Story cards are written from multiple
viewpoints

On-site customer
availability

Onsite customer is a domain expert

Obtain commitment to story cards from
onsite customer

35

Customer is always available

3 Mutual interaction Story cards are written by the collaboration
of onsite customer and developers

Communicate results through acceptance
testing

Implementation and
interaction

The list of user stories is reprioritised
based on an updated evaluation of the
project at each iteration boundary

4 - No RE related activities

5 Project planning Each story card comes with acceptance
tests

Story cards driven
development

Implementation of acceptance tests with
story cards

Table 3: RE related activities, their associated focus area and maturity level based on
Patel & Ramachandran [44]

In their study, Ozcan & Demirӧrs assessed several agile maturity methods [46]. They
analyzed five models, of which we already discussed and the model by Patel &
Ramachandran [44]. The study found that most models were inconsistent with their
abstraction levels, having some concepts at process level and others at practice level.
Furthermore, most models lack metrics that can be used to determine whether a goal
is achieved. Out of the five models, the best-assessed model was the agile adoption
model by Sidky, Arthur & Bohner [47].

The model by Sidkey et al. is not only a fixed-level maturity model but expands on it
using a measurement index, the Sidkey Agile Measurement Index (SAMI) [47]. This
measurement index consists of four components;

- Agile levels; these are the standard 1-5 fixed levels.
- Agile principles; these are principles advocated by agile methods to ensure that

processes are agile.
- Agile practices; this is a list of 40 activities and techniques, distributed over the

agile levels and principles.
- Indicators; these are questions an assessor can use to determine whether an

organization is ready to introduce a new practice.
Of these 40 activities, three are RE related. The activity ‘evolutionary requirements’ is
associated with agile level 2 and the agile principle of Embracing change to deliver
customer value. At agile level 4 and the agile principle of technical excellence is the
practice of using user stories.

The work by Fontana et al. discusses what defines maturity in agile software
development [48]. By abstracting the details of 14 analyzed agile maturity models they

36

concluded that agile maturity can be characterized as;
- Practices adoption
- Continuous improvement
- Sustaining agility
- Project performance
- Highly productive teams

Additionally, the authors discuss which agile practices can be considered mature. The
authors conclude that their results uncover the diversity of possibilities to reach agile
maturity. There are different structures, assessment modes, underlying concepts of
maturity and mature practices.

3.2.3. Maturity and RE
RE has traditionally been a well-documented process resulting in an expansive
specification and there are several works discussing maturity modeling for RE. Niazi,
Cox & Verner published an adapted measurement framework (REMMF) for assessing
the maturity of the requirements engineering process [49]. The structure of REMMF
can be seen in figure 12 below.

Figure 12: Structure of REMMF includes reasoning for the categories (focus areas),

practices and ways to measure each practice [50]

This assessment model categorized 66 RE practices over 7 categories. Niazi et al. based
their RE process maturity categories and good RE practices on the work by
Sommerville [51];

1. Requirements documentation: practices related to structuring and organizing
the requirements documents.

2. Requirements elicitation: practices to help discover the requirements from
stakeholders, application domain and organizational environments.

37

3. Requirements analysis and negotiation: practices to help identify and resolve
incompatibilities and missing information problems.

4. Describing requirements: practices for effectively writing requirements.
5. System modeling: practices for the development of models in order to better

understand requirements
6. Requirements validation: practices to help establish formal validation

procedures relating to incompleteness, inconsistency or incompatibility
problems.

7. Requirements management: practices for requirements management.

Based on our findings of section 3.1, these categories have overlap between them or
do not exist in agile RE. For example, requirements documentation does not comprise
many activities in agile RE, as the only place requirements are usually documented is
the product backlog. System modeling is also frequently omitted by development
teams as teams tend to not commit resources to such activities.

Niazi et al. tries to measure the RE processes by adopting a measurement framework
originally developed by Motorola, yet tailored towards RE [52]. This measurement
works by awarding points for a process on three dimensions; approach, deployment
and results. For every dimension, a process can receive a score of poor (0 points), weak
(2 points), fair (4 points), marginally qualified (6 points), qualified (8 points) and
outstanding (10 points). Figure 13 below shows an example of scoring the category
‘requirements documents practices’, which contains 8 processes. Each process is
awarded a number of points, the total number of points is cumulated and divided by
the number of practices in the category.

Figure 13: Grading example in the REMMF model [49]

A practice in the model of Niazi et al. can be one of three categories; basic,
intermediate and advanced. These categories were based on the work of Sawyer,
Sommerville & Viller [53]. A basic practice is often relatively simple and cheap to
introduce and use. They provide a foundation for repeatable RE processes. An
intermediate practice is more complex and leads to a more defined RE process, costing
more and taking more time to implement. Finally, advanced practices are intended to
support the continuous improvement of an RE process which consists of advanced

38

methods and requires specialist expertise. Some of these practices are very costly to
introduce, others are relatively cheap but may require organizational change.

The Requirements Engineering Process Maturity (REPM) model designed by
Gorschek et al. [54]. The model is a fixed-level maturity model with 5 levels and three
key process areas; requirements management, requirements elicitation and
analysis/negotiation. The model was applied on 4 different projects at different
companies. It was found that none of the teams were able to achieve even maturity
level 1, since they did not meet all criteria. However, some teams did achieve
activities that belonged to level 2, 3 or even higher. This indicates that the fixed-
level maturity model does not paint a true picture on the maturity of a team and a
focus-area maturity model might be more appropriate.

The problem with the maturity models discussed above is that they are relatively old
(all studies were published before 2010) and focus on the more traditional RE process
instead of the agile RE process this study focuses on. As discussed earlier in the
introduction of this chapter, agile activities can appear to be done in an ad hoc, chaotic
fashion while in fact they are very repeatable or appropriate, albeit with a lack of
extensive documentation. Applying maturity models that were not specifically
designed with agile practices in mind will likely result in low maturity scores, even
though the development effort or performance of the team might be going very well.
For example, applying the model of Niazi et al. on a scrum project team will likely
result in a lower maturity score than a team that performs traditional RE as the model
was not constructed with agile principles and practices in mind.

In section 3.2.2. the process improvement framework by Patel & Ramachandran was
discussed. This framework is aimed at agile maturity. Another model published by
these authors which is specifically aimed at agile RE practices is the story card maturity
model [55]. A story card is very similar to a backlog item, as it stores some requirement
and other information like business value or acceptance criteria. This fixed-level
maturity model consists of four levels; initial (1), repeatable (2), defined (3) and
managed (4). There are 19 key process areas and 71 areas for improvement. While this
makes for an extensive model, a lack of validation and evaluation of the model tells us
little on the accuracy/usefulness of the model. The key process areas can be seen in
figure 14 below.

39

Figure 14: The story card maturity model levels and key process areas [55]

Searching for best practices in agile RE resulted in surprisingly little literature on this
topic, and when there is it is often written for traditional RE practices. One study by
Patel & Ramachandran discusses best practices for agile RE [56]. The guidelines are
only for story cards, which is an artifact mostly used in extreme programming.
However, a story card shares a lot of similarities with a backlog item. They often both
contain a user story describing the functionality, a workload estimation, some priority,
acceptance and test criteria and additional details. Therefore, the guidelines proposed
for story cards should also be applicable for (functional) backlog items. Patel &
Ramachandran propose a total of 31 unique guidelines that should be applied.
Unfortunately, this article is hidden behind a paywall and was inaccessible.

The work of Hofmann & Lehner investigates how traditional RE contributes to the
success of software projects [5]. They make a recommendation on 10 best practices
which can be seen in the table below. Although these are for traditional RE they may
still hold relevance for agile RE. The recommended practices, cost of introduction, cost
of application and key benefit are described in table 4.

40

Best practice Cost of
introduction

Cost of
application

Key benefit

Involve customers and users
throughout RE

Low Moderate Better understanding of
real needs

Identify and consult all likely
sources of requirements

Low/Moderate Moderate Improved requirements
coverage

Assign skilled project
managers and team members
to RE activities

Moderate/
High

Moderate More predictable
performance

Allocate 15 to 30 percent of
total project effort to RE
activities

Low Moderate/High Maintain high-quality
specification throughout
the project

Provide specification
templates and examples

Low/Moderate Low Improved quality of
specification

Maintain good relationships
among stakeholders

Low Low Better satisfy customer
needs

Prioritize requirements Low Low/Moderate Focus attention on the
most important customer
needs

Develop complementary
models together with
prototypes

Low/Moderate Moderate Eliminate specification
ambiguities and
inconsistencies

Maintain a traceability matrix Moderate Moderate Explicit link between
requirements and work
products

Use peer reviews, scenarios
and walk-throughs to
validate and verify
requirements

Low Moderate More accurate
specification and higher
customer satisfaction

Table 4: Best practice suggestions for traditional RE [5]

Although not a maturity model, the International Requirements Engineering Board
(IREB) published a handbook on their standards for agile RE [57]. The handbook
presents five categories of topics that are important in agile RE;

- Prerequisites for successful system development, such as balancing vision
and/or goals, stakeholders and scope of the system.

- Functional requirements
- Quality requirements
- Estimating, ordering and prioritizing of requirements
- Scaling RE for distributed teams

This handbook is a very useful source for the to-be-developed maturity model, as it
not only explains what processes are important for effective agile RE but also discusses
several different techniques that can be used. For example, documenting the system
boundary can all be done with either a context diagram, natural language

41

documentation, use case diagrams, story mapping or a combination of these. The
handbook does not specify which of these is better, but that one of these should be
used to achieve a correctly documented system boundary.

3.2.4. Concluding maturity models
Maturity models are a useful tool to assess the current practices in a team, to compare
teams with one another and to guide teams toward best practices. There are several
existing maturity models that focus on agile or on requirements engineering, but none
combine the two topics. Some models that focus on agile do incorporate some
topics/techniques that relate to requirements engineering. The maturity models that
focus on requirements engineering are all (except for one) focused on traditional RE
and do not take into account how agile changed RE, making them inapplicable to agile
RE. Furthermore, all models we encountered (both agile and RE focused) are fixed-
level models. These are limited due to the fact that growth is not as linear as they
describe and dependencies between capabilities are unclear. Nevertheless, the fixed-
level models likely include practices and criteria that will be applicable to the matrix
as well.

42

4. Case studies to discover practices
To discover which and how the RE methods mentioned in the previous chapter are
used/adapted in real-world software development teams several case studies are
performed. This chapter discusses two different case studies that were performed:

- A multiple case study at software development teams from Info Support
- A multiple case study at other companies performed by students for a project

at the requirements engineering course at Utrecht University.

4.1. Case study Info Support
The case studies are performed at teams from Info Support. From these teams, data
collection is performed. In order to gain an understanding of the processes performed,
semi-structured interviews are performed on team members of software developments
who are responsible for or involved with the RE process. These can be business
analysts, scrum masters and product owners. Finally, we want to discover if the teams
face the same challenge as described in the literature and how they mitigate these
challenges. The interview template that was used to guide the interviews can be found
in appendix A. This template was based on the template that was used to guide
students of the RE course during their case study (section 4.2) so the findings can be
merged and compared.
The case study serves to gain an understanding of several topics;

1. The processes that are applied in a team and the rationale behind them.
2. The operational context of the team
3. The artifacts produced by and used in (1).

Data was collected using expert interviews. Expert interviews are used to understand
the RE processes used by Scrum teams. Using a semi-structured template, we want to
gain a detailed understanding of the techniques they apply and the rationale behind
the choices that are made. This template was based on the template used by the
students who performed the case study in section 4.2 and can be found in appendix A.

The case study was performed at software development teams from Info Support BV
which is the company that the author is doing his research internship at. Info Support
develops tailor-made software for customers. Often, employees of Info Support are
mixed with employees of the customer to form a project team at the customer (onsite).
In other cases, teams develop from the head office using product owners by proxy
(surrogate customers). Info Support has around 500 employees divided over 5 business
units; healthcare, finance, industry, mobility & agriculture/food/retail. For this case
study, we looked at a total of 4 teams that were sampled based on convenience
sampling. The teams had to adhere to the same requirements as the teams in section
4.2. Table 4 below shows the participating experts and their experience.

43

ID Function(s) /
Roles

Experience
in current
organization

Experience
in current
function

CaseExpertA Agile Coach 13 13

CaseExpertB Business analyst 0.5 0.5
CaseExpertC Product

owner/business
analyst/ lead dev

1.5 7

CaseExpertD Product owner/
Business analyst

5 5

Table 5: Participating experts in the case study

4.2. Case studies at other companies
Similar to the case study at Info Support, several other case studies were performed by
students of the requirements engineering course at Utrecht University. A group of
students investigated user story practices. Divided into groups of 2, they analyzed 28
software development teams at 27 different companies. Participating companies
adhered to the following requirements;

- The company uses user stories to document functional requirements.
- The company creates one or more software products or provides software

development services.
- The company applies an agile software development method, preferably

Scrum, in a team-based fashion.

The students interviewed 2 persons per team, after which they generated a report
based on their findings. This report included three categories;

- Pre-user story practices. This contains practices that are used to create a goal,
vision, epic stories, roadmap generation.

- Specification practices. This consists of practices that are used to elicit and
document user stories, as well as tools that are used, templates used for stories,
quality criteria and acceptance criteria.

- Post-user story practices, consisting of practices such as validation of the user
stories, prioritization techniques, traceability of user stories.

Additionally, three kinds of metrics were collected from the teams (if possible);

- Release burndown charts. A common way to measure the work still to be done
in a sprint. A burndown chart contrasts the planned work and work still to be
done.

- Recidivism rate, which is the number of stories that remain unfinished in a
sprint and which go back into the sprint backlog.

- Velocity, which is the sum of story points completed in a sprint. This is often
used as an indicator of the amount of work a team does.

44

4.3. Method of analysis
The case studies both at Info Support and other companies have been combined into
a dataset. This dataset consists of 32 teams in total. The data was analyzed using Nvivo
12, which is computer software for qualitative data analysis.

In order to make sense of all unsorted data in the reports, Nvivo provides the node
system. A node is a collection of references about a specific theme. Using nodes, text
(or other information elements) can be encoded in an appropriate node. Nodes can
also be ordered in a certain hierarchy. The set of nodes started with four categories
which were based on the interview template (Pre-US, Specification-US, Post-US and
Other). During the analysis of the reports new nodes can be created under one of these
category nodes. For example, information about elicitation techniques was entered in
the elicitation node and categorized under the Pre-US node, as elicitation takes place
before User stories are documented. The figure below shows an example of the node
hierarchy after the analysis of several reports. Eventually, no new topics will emerge
and all relevant information can be stored in one of the nodes in the node structure.

45

Figure 15: An example of nodes encoded in Nvivo divided among several categories

After all reports have had their relevant information encoded in nodes the resulting
node structure, the number of reports referenced per node and the number of
references per node. The overall categories of Pre-Us, Spec-US, Post-US and Other
have been changed to Ideation, Implementation, Management & Planning, Support &
Other. This can be seen in figure 16 below.

46

Figure 16: The final node structure, number of files referenced per node and number of

references per node from 32 teams

47

Figure 17 below shows how nodes are encoded. Figure 18 demonstrates what a node
looks like in Nvivo. The analysis of a node was done manually and was done by;

- Identifying common patterns of practices
- Creating a logical order of process improvement

Figure 17: Sample screenshot on the encoding of a report. The highlighted text is text that
is encoded in a node. The corresponding node can be seen on the right.

48

Figure 18: Example screenshot of a node. In this case, the prioritization node

4.4 Results
In total, we analyzed 32 teams located at 29 different companies. The companies range
from multinationals to startups. From these teams, 18 work for software service
companies; companies who sell their services to customers in order to create a specific
software solution/service for that customer. The other 14 work for software product
companies; companies who sell a software product or build a product for their own
business needs.
Based on 32 teams there were 33 nodes containing a total of 817 references, or 25.5
references per team. The findings of the analysis are discussed together with the
maturity matrix, focus areas and capabilities in chapter 5. A link to the fully analyzed
dataset can be found in appendix B.

49

5. Designing the maturity model
Out of all the models and studies discussed on agile and RE maturity in chapter 3, none
of them are focus area maturity models. Yet a focus-area maturity model has several
advantages over a fixed-level model. As mentioned before, focus-area maturity models
can demonstrate dependencies between different capabilities and determine maturity
for individual focus areas, giving more insight into the maturity of an individual focus
area [35]. Therefore, the aim is to design a focus-area maturity model.

Before getting into the actual design of the model, we quickly explain how these
models work and can be read. Figure 19 below shows a focus area maturity model for
software product management [58]. This model consists of 15 focus areas divided
among four categories; requirements management, release planning, product
planning and portfolio management. Every focus area has some capabilities (the
capital letters) on a specific maturity level (0 to 10).

Figure 19: A maturity model for software product management [58]

As mentioned before, maturity grids contain dependencies between capabilities. There
are two types of dependencies [59];

- Intra-process capability dependency
- Inter-process capability dependency

Capabilities within focus areas are always dependent on each other, i.e. capability B
from focus area 𝑥 is always dependent on capability A, C is dependent on B and so on.
This is known as intra-process capability dependency and demonstrated in the figure
below.

50

Figure 20: Dependencies between capabilities within a focus area

Capabilities from different focus areas can also be dependent on each other. In this
case, the order in which they appear on the maturity scale decides the dependency,
i.e. a capability that appears on maturity level 2 can be dependent on some
capabilities of maturity level 1. This is known as an inter-process dependency and
demonstrated in figure 21 below. Note that inter-process dependencies can exist, but
don’t need to. That is to say, it is entirely possible (and actually much more likely)
that a capability from one focus area is not dependent on a capability from a different
focus area. In a maturity matrix, the actual dependencies are not visible, as there are
many intra-process dependencies and often several inter-process dependencies. The
dependencies are therefore described in the table describing a capability.

Figure 21: Possible inter-process dependencies between capabilities between focus areas

Figure 22: All possible dependencies between capabilities between/within focus areas

5.1. Method
Methods, techniques and comments on the creation and design of maturity models
have been described in some studies. While there are many studies on the design of
fixed-level maturity models (e.g. [60]) there are few methods specifically made for
focus area maturity models. The study by van Steenbergen et al. reviews several
methods proposed by other literature to propose a new method, which can be seen in
figure 23 below [35].

51

Figure 23: The development method of a focus area maturity model [35]

An altered method of the development method proposed by van Steenbergen et al. is
used for the development of the agile RE maturity matrix (figure 24). In this study, the
Scoping activity is done by means of a literature study and case study. Additionally,
this study validates the matrix after the initial design, as a lack of validated models is
a key issue in maturity model design [32]. The validation of the model is done by
combining two different approaches:

1. Expert interviews
2. Focus group

During the validation sessions, improvement actions and issues are produced. The
addition of the validation activity is visualized in the process-deliverable diagram
based on the diagram by van Steenbergen et al in figure 24. In this study, the final two
activities Instrument development and Implementation & Exploitation which are part of
the original development method are not performed.

52

Figure 24: The altered development method used in this study. After an expert validation

is performed the design model activity is performed again to process improvements
suggested by the expert. Remaining issues were discussed during the focus group activity.

5.1.1. Expert interviews
Firstly, expert interviews are conducted to improve the model, focus areas and
capabilities iteratively. As the first version of the model was created based on
identified capabilities in the literature review and case study there might still be
capabilities missing, unclear or incorrect. Some focus areas might be too big or too
small. Therefore, the first validation round consists of semi-structured expert

53

interviews. This validation method is partially based on the validation method used by
de Feijter in his validation of a DevOps maturity model [61]. Firstly, the sessions
started with the explanation of the maturity model, focus areas and capabilities. The
following questions were posed:

- [Understandability] Do you think the focus areas and its capabilities are
understandable?

- [Relevance] Do you think the focus areas and capabilities are relevant for agile
RE?

- [Completeness] Do you think the focus areas and its capabilities are complete?
If not, what should be added to make them complete?

- [Maturity] Do you think the order in which the capabilities should be
implemented is correct? (capabilities should be achieved in the presented
order)

When experts suggested improvements or issues with the model, the model was
improved before the next expert validation session. If there were issues that could not
be resolved, these issues were discussed with the focus group.

Name Function(s) /
Roles

Organization Experience
in current
organization

Experience
in current
function

ExpertA Agile Coach InfoSupport 13 13

ExpertB Product Owner Create 2 5
ExpertC Product

owner/business
analyst

InfoSupport 3 5

ExpertD Product owner/
Business analyst

InfoSupport 5 5

Table 6: Participants in the expert validation, experience is in years

54

5.1.2. Focus group
The expert validation sessions resulted in many suggestions and improvements.
However, in some cases the expert came up with an issue of the model but did not have
a clear idea on how to resolve the issue. Therefore, these issues were presented and
explained to the focus group, after which the participants discussed on a solution for
the issue.

Name Function(s) / Roles Experience in
current
organization

Experience
in current
function

FocusGroupExpertA

Service delivery manager 14 2

FocusGroupExpertB

Product owner / Business
analyst

4 4

FocusGroupExpertC

Agile coach / Project
manager

18 6

FocusGroupExpertD

Arealead Way of Working /
Manager / Senior Consultant

11 1.5

FocusGroupExpertE

Senior Consultant 13 6

Table 7: Participants in the focus group, experience is in years. All participants are
employees of Info Support

5.1.3 Results of the validation
The expert validation resulted in 37 revisions. These revisions can be any of the
following actions:

- Addition, removal, merging or splitting of focus areas.
- Addition, removal, merging or splitting of capabilities.
- Addition or removal of a dependency between capabilities.
- Altering the content of a capability in a focus area.

In addition, there were 5 issues that remained unsolved. These issues were resolved by
the focus group, resulting in another 6 revisions. The initial matrix consisted of 17
focus areas with 59 capabilities and 5 dependencies. The final version of the matrix
has 13 focus areas with 56 capabilities and 9 dependencies. Table 8 below shows how
the density of the matrix evolved over the iterations. The first validation session
immediately resulted in the removal of a great many focus areas (from 17 to 13) and
capabilities (from 59 to 49). Over the next validations and focus group the density of
the model slowly increased. The full changelog and evolution of the model can be
found in appendix C.

55

Matrix
version

Nr of
focus
areas

Nr of
capabilities

Nr of
dependencies

Capabilities
per focus
area
(average)

Capabilities
per
maturity
level
(average)

Nr of
revisions

Initial (V0.2) 17 59 5 3.47 5.90 N/a
1st validation
(V0.3)

13 49 5 3.77 4.90 14

2nd validation
(V0.4)

13 53 6 4.07 5.30 14

3rd validation
(V0.5)

13 54 7 4.15 5.40 5

4th validation
(V0.6)

13 54 7 4.15 5.40 4

Focus group
(V1)

13 56 8 4.31 5.60 6

Table 8: Results of the validation sessions

5.2. Defining the scope of the SBRE model
As mentioned before, the scope of the model is focused on all activities, processes or
artifacts that are related to RE in Scrum. Additionally, the model should focus on
assessing a team and not their entire organization. It addresses processes, activities
and problems that occur at this level. For example, many problems identified in the
work of Fernández cannot be addressed by team’s themselves [31]. Policy restrictions,
mistakes/incompetence at the customer side and insufficient resources granted from
higher management are some of the causes of RE problems that teams cannot easily
address themselves [31]. The model should focus on aspects of agile RE that the team
can influence and improve. Examples are the use of certain techniques, responsibilities
and roles within a team, communication with end-users & stakeholders, et cetera.

5.3. Defining focus areas & capabilities
The original results of the case study resulted in 19 focus areas distributed over 5
categories. During the validation of the model focus areas were merged with each
other, changed or removed. This resulted in 13 focus areas distributed over 4
categories. Some of the focus areas have a clear inspiration from literature, like
eliciting requirements, documenting requirements, validating requirements and
managing requirements [50,51]. Others originate from the prevalence encountered in
the case study, like estimating effort.

The categories are;

• Management & Planning. This category contains focus areas that describe
capabilities which influence the management and planning activities within

56

agile RE. The focus areas are roadmapping (long term planning), stakeholder
involvement and sprint planning (short term planning).

• Ideation. This category contains focus areas that describe capabilities which
influence the process of the ideation (a creative process which forms new ideas
or concepts) of new requirements. The corresponding focus areas are Goals &
Vision and Eliciting requirements.

• Specification. This category contains focus areas which are involved in the
process of specifying requirements before they can be built. The
corresponding focus areas are Documenting requirements, Templates, Refining
requirements and Acceptance criteria.

• Implementation. This category contains focus areas that are involved in the
process of implementing requirements. The corresponding focus areas are
Prioritizing requirements, Estimating effort, Validating requirements and
Traceability & Documentation.

In traditional RE the main and sub-activities could be easily identified (figure 4). In
agile RE, the boundaries between processes blur significantly. This can be seen by the
great variety in the focus areas. There are some that are related to high-level project
management (roadmapping, goals & vision), some are clearly based on Scrum activities
(sprint planning, refining requirements) and others become relevant when the
requirement has been implemented (acceptance criteria, validating requirements). Yet
they all have in common that there is a significant relationship with RE. In the
following sections, each focus area and its corresponding capabilities will be
explained. Sometimes the capabilities refer to literature work, a report or transcription
in the case study (indicated with r (report) and t (transcript) or the changelog of the
matrix which can be found in appendix C). Reports and transcripts can be found by
accessing the NVIVO file in appendix B.

5.3.1 Roadmapping
Roadmapping is not only the act of creating a roadmap. It can be seen as an act of high-
level planning the development effort. Roadmaps are commonly used to establish the
order of software releases. Usually, they are established for a year or less. Only 2
companies made longer roadmaps, for 2 and 5 years respectively. They are often based
on an epic-level. As most epics are usually estimated on a t-shirt based sizing it is hard
to estimate the duration of several epics, and it is therefore not recommended to try
to estimate as accurate as possible. Product software companies should establish both
long-term and short-term strategies for their product.

The length of sprints is also important. When sprints are too short, this creates too
much overhead with other activities. When sprints are too long, the agile principles
(such as frequent delivery of working software) are ignored. All teams in the case study
had either a 2- or 3 week duration for sprints. Sprints should not be shorter, as the
overhead of some activities will take up too much team to complete actual backlog
items. They also shouldn’t be longer, as this conflicts with agile values such as

57

continuous delivery of working software and hinders the ability of the team to quickly
respond to changes. According to the first expert validation (changelog v0.3),
roadmapping should also be seen as a prioritization activity, as stakeholders actively
plan and prioritize high-level requirements. The first capability is the existence of a
roadmap that describes for at least a multitude of sprints which high-level
requirements (like epics or features) will be built. Sprints should have a consistent
length and 2-3 weeks are commonly used as a default sprint length. Roadmaps are
often based on a feature or epic level.

A. Existing roadmap

Description A roadmap exists that considers what epics/features
will be built in the upcoming sprints. Sprints are of
consistent length of 2 to 3 weeks. Epics or features
have some rough estimation, for example using T-
shirt sizing.

Prerequisite(s) None
Reference(s) [57]

The second capability is defined by teams continuously updating their roadmap. Agile
RE is characterized by continuous reprioritization. This does not mean that the
roadmap should change every sprint, but that there are regular moments at which the
team considers the current roadmap and whether there need to be any changes based
on recent performance, changing needs, et cetera. Expert C mentioned during the
validation that having a living roadmap increases the agility of a team, i.e. it is easier
to adapt to changes.

B. Living roadmap

Description The roadmap is ‘living’ by being continuously
updated and reprioritized in accordance with
stakeholders and the team.

Prerequisite(s) None
Reference(s) changelog v0.5

Capability C states that roadmaps should be established for a longer period. Product
software companies are often more dependent on the success of their software product
and probably feel the need to plan ahead further in time as a strategic need.
Considering the high dependency of the success of the company on the success of the
software product, these teams should ensure to plan ahead further yet still ensure
capability B of continuously reconsidering the roadmap. In case of project based
teams, they should have some outline mapped out for the duration of the project.

58

C. Long term roadmaps
Description The team has a roadmap established for releases of

the product for the upcoming year or duration of the
project.

Prerequisite(s) None
Reference(s) [57]

Capability D is based on teams that operate in multi-team projects and is therefore
situational for these teams. Working in multi-team projects can cause significant
challenges; one of these is dependencies between teams. Sometimes, teams will be
dependent on software updates that are built by other teams. For many reasons (e.g.
underperforming, being delayed) a single team can cause a chain reaction impacting
other teams. For this reason, the RE@agile handbook advices to create multi-team
roadmaps which also consider dependencies between teams [57]. Some examples are
proposed in the Scaled Agile Framework (SAFe).

D. Multi-team roadmaps
Description The teams use multi-team roadmaps that take into

account explicit dependencies between teams
Prerequisite(s) Situational for multi-team projects only.
Reference(s) [57]

5.3.2 Stakeholder involvement
Customer involvement and stakeholder management are key aspects for successful
releases. By involving the customer and other stakeholders during certain activities it
is more likely that the release will be satisfactory for said customer/stakeholders. Note
that customer and stakeholder can have different meanings. The customer is often a
member of the client company who is assigned the role of product owner, but there
are often more members of the client company who also have an interest or stake in
the product. Although these can also be considered customers, we call them
stakeholders. The work by Schön et al. was aimed at identifying practices that involve
stakeholders in the process of RE and are compatible with agile software development
[13]. The first capability states that some stakeholders are occasionally involved in RE
activities such as elicitation or validation. Involving customers and users throughout
RE is recommended as a best practice in the work of Hofmann & Lehner, as it results
in better understanding of the real needs [5].

A. Occasional involvement
Description Stakeholders are involved during some activities such

as elicitation, validation, decision-making,
prioritization, but not on a consistent basis.

Prerequisite(s) None
Reference(s) [5,13,26]

59

The second capability is a simple improvement upon capability A, stating that
stakeholders need to be involved consistently. That means stakeholders will participate
in certain activities (like refinement sessions) on a consistent basis. Consistent
participation lowers the communication barrier between the team and stakeholders.

B. Consistent involvement
Description Some stakeholders are involved in some activities

such as elicitation, validation, decision-making and
prioritization on a consistent basis.

Prerequisite(s) None
Reference(s) [13,26]

The involvement of stakeholders is very dependent on the capability of a team to
identify all relevant stakeholders. Ignoring stakeholders can result in missing
important sources for requirements. Failing to take into account some sources
stakeholders, such as compliance or legal, might have severe consequences for the
success of the project. Therefore, capability C states that teams should ensure to
perform a systematic identification of relevant stakeholders at the start of a project
and keep it up-to-date during the project, as the importance of certain stakeholders
changes during the course of a project.

C. Stakeholder identification
Description The team has a clear overview of stakeholders of the

product/project. Systematic identification of
stakeholders is done at the beginning of a project and
is kept up-to-date during the project.

Prerequisite(s) None
Reference(s) [57]

As a key concept of agile is personal communication with stakeholders it is important
that stakeholders are onsite. Having onsite stakeholders makes it easier for the team
to have continuous communication with these stakeholders. It is not necessary that
all stakeholders are always onsite, but it should be a goal to ensure easy
communication lines within the team and between stakeholders. The availability of
stakeholders was also a criteria in the maturity model of Patel & Ramachandran (table
3) [44].

60

D. Onsite stakeholders
Description Customers and (important) stakeholders are onsite,

facilitating their ability to be consistently present
during elicitation, verification and validation
activities.

Prerequisite(s) None
Reference(s) [44]

Finally, very few of the reports included elicitation and verification with end-users.
For some teams, this is easier to achieve than for others. For example, the end-user
can be onsite in case of internal software systems. For external end-users, involving
these users is more difficult but still possible, for example by requesting feedback,
organizing consumer panels, et cetera.

E. End-user involvement
Description The team involves the end-user in elicitation and

verification activities
Prerequisite(s) Situational, as the end-user does not always exist or is

not always available
Reference(s) r4, r15 (feature requests), r11 (customer journeys)

5.3.3 Sprint planning
Sprint planning is an activity in which backlog items are selected to be implemented
in the upcoming sprint. Naturally, even performing sprint planning is the first
capability in this focus area. To be able to perform sprint planning, teams should
ensure that there are enough backlog items to enter the upcoming sprint. Having too
few items to work on is a waste of development resources. Sprint planning should be
a small activity at the start of the sprint where it is quickly discussed which items will
be done in the upcoming sprint. Some teams in the case study also use the sprint
planning to refine items (e.g. r9), but according to expert C this is way too late and all
items should be refined prior to the sprint planning.

A. Performing basic sprint planning

Description Sprint planning is done prior to the start of a sprint.
The team ensures there are enough backlog items to
enter the upcoming sprint.

Prerequisite(s) None
Reference(s) r10, r12, [2]

The second capability is based on prioritization. Sprints should be planned based on a
certain prioritization. Note that sprint planning itself is not a prioritization activity.
That is to say, the backlog should be prioritized prior to the sprint planning activity.
Because of this, the capability has a dependency on prioritizing requirements : A.

 61

B. Prioritized sprint planning

Description Backlog items are prioritized and enter a sprint
backlog based on their prioritization.

Prerequisite(s) Dependency on Prioritizing requirements : A
Reference(s) changelog v0.5

As a common problem identified was a lack of time/scheduling issues it is important
that teams are able to estimate the capacity and workload for their sprints correctly
[62]. As with prioritization, this should be done prior to the actual sprint planning is
performed. Therefore, this capability has a dependency on Estimating effort : A. Teams
should also take into account their expected capacity for the upcoming sprint, for
example by using Yesterday’s weather2.

C. Capacity and estimations

Description Team takes into account the expected capacity of the
team for the next sprint and the expected workload of
items.

Prerequisite(s) Dependency on Estimating effort : A
Reference(s) changelog v0.5

The fourth capability is based on the definition of ready. Having a definition of ready
was one of the three practices recommended by Heck & Zaidman [24]. This definition
of ready acts as a checklist whether backlog items are ready to be worked on, the team
understands what needs to be done, the item is estimated and prioritized. The actual
act of establishing a definition of ready is done in the refinement focus area, and
therefore this capability has a dependency on Refining requirements : B. This capability
only states that the definition of ready is used to ensure that items that are not defined
as ‘ready’ will not enter the upcoming sprint.

D. Definition of ready

Description The team has an established definition of ready.
Backlog items that are not defined as ‘ready’ will not
enter a sprint.

Prerequisite(s) Dependency on Refining requirements : B
Reference(s) e1, [25,63]

The final capability in sprint planning is the verification of items prior to the
development. Verification also does not explicitly need to happen during the sprint
planning activity itself, but can be done by including a stakeholder in the planning
activity or publishing the sprint backlog to the stakeholders and have them confirm
their approval. This capability is partially based on a maturity criteria from the agile

2 https://www.scruminc.com/yesterdays-weather/

https://www.scruminc.com/yesterdays-weather/

62

maturity model by Patel & Ramachandran (table 3, ‘obtain commitment to story cards
from onsite customer’).

E. Verification of the sprint backlog

Description Before a PBI enters a sprint backlog, its verified with
the customer/stakeholder whether the item still
conveys the correct wishes of the
customer/stakeholder.

Prerequisite(s) None
Reference(s) [44]

5.3.4 Goals & Vision
Most companies have strategic goals and visions established for their products or
business. Most reports from the case study do not specify exactly how these goals and
visions are established, but two of the companies used the OGSM framework to specify
their goals. OGSM stands for Objectives, Goals, Strategies and Measures and is a
strategic planning process. It is clear that software product companies need to
establish goals and visions for their products to continue developing and improving
them. While software service companies do not need to establish these goals/visions
themselves (as their customer has a certain goal/vision in mind), they do need to make
sure they correctly understand the goals/visions of their customers. This is often done
with simple interviews but some companies pay extensive attention to stakeholder
management. Thus, the first capability states that the team must have a shared
understanding of the goal and vision of the product/project. High-level requirements
are requirements that are elicited from stakeholders, based on their goals and visions
[57]. Therefore, correctly understanding this goal and vision is an important first step
for the correct identification of high level requirements.

A. Shared understanding of the goal and vision

Description The team has established a shared understanding of
the goal and vision of the product or project.

Prerequisite(s) None
Reference(s) changelog v0.3

Relevant stakeholders formulate the vision and the goals. Therefore, the identification
of a new stakeholder may have an impact on the vision or the goals (and this is also
why the identification of stakeholders is a capability in the Stakeholder involvement
focus area). Additionally, different stakeholders can have different goals and visions
for a product/project. Teams should not be aware of only the goal & vision of one
stakeholder, but to be consider other stakeholders as well. These vision and goals can
be used to define an initial scope [57].

63

B. Stakeholder Goals & Visions
Description The team extracts the goals and vision of individual

stakeholders for the product to define an initial scope.
Prerequisite(s) Dependency on Stakeholder involvement : C
Reference(s) [57]

Understanding the goal and vision of the product/project is one thing. According to
expert A during the validation the establishment of a teams’ own goals and vision for
the product/project is a clear sign of a mature team. The construction of their own goal
& vision allows a team to determine the best ways to contribute toward this
goal/vision, and involves the team into the product/project better than merely
following some stakeholders’ goal/vision. In the case studies, software teams usually
do not define the vision & goal for themselves. There are some exceptions in the
reports. Startups for example, are often so small that the development team represents
the entire company (r6, r13). In other teams, the team generates a vision & goal by
themselves that align with the vision & goal of the company (r4, r5). Expert C states
that she believes this is a clear sign of a more mature team, as a team that aligns their
own vision & goal to think and work pro-active. An example was one of the reports
(r5), in which teams are given the freedom to formulate their own goal/vision, as long
as it aligns/contributes to the department goal/vision.

C. Team Goal & Vision
Description Teams establish a goal & vision for themselves in

which they state how they will achieve the company
goals & vision.

Prerequisite(s) None
Reference(s) r5, changelog v0.3

There are techniques that can be used to establish goals & vision. Having team
knowledge of such techniques and applying them where applicable is seen as the final
capability for this focus area. Examples of techniques to define the goal & vision of
their product are proposed by the RE@agile handbook, the works of Pichler or the
OGSM framework we encountered at some teams (r5, r2) [57,64]. These techniques can
have different purposes. For example, a technique that can be used to generate high-
level requirements from goals and vision is impact mapping, with other techniques
like the OGSM serve for creating strategies and metrics to achieve a goal. Capability D
states that teams should know and apply dedicated techniques when relevant.

D. Dedicated techniques
Description The team uses appropriate techniques to establish

goals & visions
Prerequisite(s) None
Reference(s) [57,64], e1, r5, r2

64

5.3.5 Eliciting requirements
Elicitation is the process of seeking, uncovering, acquiring, and elaborating
requirements from stakeholders [65]. The most popular elicitation method in both
literature and the case studies was interviews with stakeholders [19]. Regardless
whether these interviews were structured, semi-structured or free format the ease of
use that interviews offer appear to make them very popular. Several reports mention
solely interviews as the way elicitation is performed. Therefore, the first capability
states that requirements are elicited from stakeholders using interviews. Interviews
can be of any type, and we also consider just a face to face discussion an interview. The
work by Paetsch, Eberlein & Maurer state the value of interviews is that direct
interaction is important for establishing trust between the customer and developer
[26].

A. Elicitation by interview

Description Requirements are elicited from stakeholders using
interviews.

Prerequisite(s) None
Reference(s) [19,26]

As several reports mention only interviews as the way elicitation is performed,
applying different techniques in different contexts is a sign of more mature teams.
Some reports mention more expansive elicitation techniques such as collaborative
workshops with multiple stakeholders together (e.g. t1, t2 & r2). Very rarely, the end-
user is also used to elicit new requirements. This can be done by using feature requests
(r15), or some teams apply customer journeys (r11). This happens more often when
the end-user is a user within the company, as it is easy to contact this type of end-
user, and is much more rare in companies who do not have easy ways to contact their
end-users. Often, elicitation results in the extraction of high-level requirements and
some low-level requirements. The stakeholders will not be involved again until
verification and validation activities, or when something remains unclear.

B. Elicitation techniques

Description The team uses dedicated elicitation techniques to
generate low-level requirements from high-level
requirements. Techniques like story mapping or other
workshop/collaboration sessions

Prerequisite(s) None
Reference(s) t1, t2, r22, r11, r15, [57,66]

Capability C is somewhat similar to capability B as they both imply the use of dedicated
workshops or meetings. The difference is that capability C assumes the combination

 65

of different disciplines during certain workshops. For example, 3 amigo sessions3 are
a commonly used approach in Scrum to involve the disciplines of testing, business and
development. Involving several disciplines such as business, technical and testing in
a meeting allows for a different dynamic. Such depth is often not necessary for most
requirements, but can be useful when discussing challenging backlog items or
stakeholder wishes. Note that combining disciplines is also possible for the refinement
of items, and that these two activities can be done in the same meeting/workshop.
Expert C noted during the validation that many teams likely apply a technique like 3
amigo sessions but are unaware that this is a specific technique.

C. Combining disciplines

Description The team combines disciplines (such as testing,
technical & business) during elicitation activities.

Prerequisite(s) None
Reference(s) t2

Capability D states that mature teams know their stakeholders’ goals and vision so well
there is elicitation meetings are highly efficient. This capability arose from the
validation with expert D, who stated “Very mature teams no longer need to elicit small
details from stakeholders. If they are mature enough, they can think for themselves well
enough to fill in these details by themselves. I consider this to be a final step of maturity”.
The team will be able to determine for themselves how to interpret the wishes of the
stakeholder and fill in missing details. This capability was discussed by the focus
group. The focus group agreed this was an indication of high maturity. However, there
does need to be a dependency to the validation focus area. If elicitation with the
stakeholder is omitted (or done very rarely) the corresponding requirements need to
be validated extra thoroughly with the stakeholder after implementation, even more
so than if elicitation were not omitted. As a result of this discussion capability D has a
dependency to the validating requirements focus area capability E, as the experts
stated that when omitting elicitation the validation needs to be thorough and not on a
lower level validation capability.

D. Efficient elicitation

Description The team no longer needs to elicit low-level
requirements and can implement low-level
requirements without prior consultation with a
stakeholder.

Prerequisite(s) Dependency on Validating requirements : E
Reference(s) Changelog v0.6 , changelog v1

3 https://www.agilealliance.org/glossary/three-amigos/

https://www.agilealliance.org/glossary/three-amigos/

66

5.3.6 Documenting requirements
The documentation of requirements can be done when a requirement is first elicited,
and stays relevant all the way throughout the remaining development process. Tools
can be used to support RE activities, and the main use of tools in teams is the
documentation of requirements. Almost all teams use either JIRA (17 teams) or Azure
Devops (11 teams) as a centralized place to collect and refine on requirements. This is
also the place where additional information is stored, such as estimates, prioritization,
designs, notes, acceptance criteria. Confluence (5 teams) is used by some as a
collaboration tool and Excel also still sees some use (3 teams). This results in
Capability A, the use of a tool to document, store and manage requirements. At this
level, the tool can be as simple as an Excel file that contains backlog items. However,
capability C will demonstrate why this is not a good way to store requirements. Some
teams also use a physical Kanban or scrum board (10 teams). While the functioning of
a physical board is similar, one expert (v1) states ‘A physical board is useful during
standup meetings, allowing for a quick overview and discussion on backlog items’. Usually,
teams who use a physical backlog also use a digital backlog. The use of a tool was also
recommended as a best practice by Heck & Zaidman [25].

A. Documenting with tools
Description The team uses a tool to manage requirements. This

can be a physical board, such as a Scrum board, or an
electronic tool, such as JIRA or Azure devops.

Prerequisite(s) None
Reference(s) [25]

The second capability is that teams should regularly refine and reprioritize their
backlog, which is an ongoing activity [2]. This is often done in refinement sessions,
and therefore has a dependency on Refining requirements : A. This ensures the regular
production of items that can enter into a new sprint and also prevents a cluttered
backlog with items that are no longer relevant. This concept is also known as backlog
grooming.

B. Backlog refinement
Description Product backlog and backlog items are regularly

refined and reprioritized
Prerequisite(s) Dependency on Refining requirements : A
Reference(s) Changelog v0.3

The third capability was created during a validation session with expert B (changelog
v0.4). The expert states that it is very important (and also stated by the scrum guide)
that backlog items are transparent and can be accessed by all stakeholders. The expert
states that this is also the value of a tool like azure devops or Jira as it allows for easy
transparency over a file like excel to keep a backlog. Another advantage of having a

67

transparent backlog is that, as mentioned in sprint planning : E, stakeholders can verify
a sprint planning by themselves.

C. Transparent backlog
Description The documented requirements are transparent and

accessible by all relevant stakeholders. Requirements
are documented in a template.

Prerequisite(s) Dependency on Templates : A
Reference(s) Changelog v0.4

Capability D and E are concerned with the use of quality frameworks. Requirements
should be documented in such a manner that they adhere to a quality framework, such
as INVEST or QUS. INVEST criteria are similar to the definition of ready. It provides
criteria to assess whether a story or backlog item adheres to a certain quality, which in
turn means it is ready to enter a sprint. Lucassen et al. found that practitioners who
use quality frameworks such as INVEST believe they improve productivity and product
quality [20]. However, as so few teams in the case study actually used any form of
quality criteria (6 out of 32 teams used some quality framework, such as INVEST) it
has been defined as capability D. Finally, there have been more extensive frameworks
to ensure the quality of stories, such as QUS [29]. As such a framework does not see
any use by the teams in the case study and is even more extensive than INVEST
criteria, it is defined at a high maturity level in capability E. The applicability of such
an extensive framework was confirmed by expert A during the validation, but only in
certain contexts like safety-critical software where the quality of software and
requirements must be extensively proven. The use of quality criteria was
recommended as a best practice in the work by Heck & Zaidman [63]. A checklist also
aids in not forgetting criteria, basing opinions on facts, to educate other team
members and to standardize the review process [25].

D. Quality frameworks
Description The team has quality criteria (such as INVEST) to

ensure the quality of stories.
Prerequisite(s) None
Reference(s) [24,25,57,63], r15, r14, r17

E. Extensive quality frameworks

Description The team uses an even more expansive quality
framework to test for user story quality, such as QUS.

Prerequisite(s) None
Reference(s) [29]

68

5.3.7 Templates
Templates dictate the format in which a requirement is stored. As was found in
literature, it does not really matter what template is used as long as a template is used
consistently [20,25]. Hence capability A, the consistent use of a template, does not
recommend a certain template. Although user stories and the Connextra template are
highly popular, we do not want to enforce the use of them via a capability. The
important thing is that team members know which template to use and what template
they can expect. Specification templates are a recommended best practice in the work
of Hofmann & Lehner [5].

A. Established template
Description The team has an established template for

requirements which is used consistently.
Prerequisite(s) None
Reference(s) [5,20,25]

An issue in agile RE is the lack of attention toward non-functional requirements [22].
Capability B states that teams should make a clear distinction between functional and
non-functional requirements, and that non-functional requirements should not be
specified in the user story format as it is considered an unsuitable format (e1).
According to an expert (e1) it is important that teams distinguish between functional
and nonfunctional requirements. “There is a reason we call backlog items backlog items,
they do not all need to be functional requirements. These are just items that in the end
should be small enough to be done in a sprint, and whether it is a user story, technical
requirement or test case is irrelevant. The argument that NFRs do not have business value
is not true at all. If the customer says that is the case, then the product owner is probably
talking to the wrong stakeholder (e1).” We try to enforce this with capability B. The issue
of neglecting non-functional requirements was also mentioned in the work by Paetsch
et al. [26]. The authors noted that agile methods need to include more explicitly the
handling of non-functional requirements. Some suggestions for handling non-
functional requirements are discussed in the RE@agile handbook [57].

B. Distinction functional/non-functional
Description There is a clear distinction between functional and

non-functional requirements. Non-functional
requirements are not specified in a format that is
intended for functional requirements (such as a user
story).

Prerequisite(s) None
Reference(s) e1, t1, [22,26]

Some templates, such as the user story, contain a description of the benefit of a
requirement. The use of a benefit part is considered vital by many teams (but not all,

69

e.g. r13, r14, r16) and this was also confirmed in literature and during the validation
(changelog v0.3, changelog v0.4) [20]. Capability C therefore states that the team should
always describe the benefit of implementing the requirement.

C. Benefit argumentation
Description The team always describes the benefit in their

requirements.
Prerequisite(s) None
Reference(s) r10, r21, r22, changelog v0.3, changelog v0.4, [20]

Backlog items can also consist of a certain ‘template’, or structure of information
elements. From the four teams at Info Support it became clear that only a user story is
not enough. The teams often find themselves adding additional items to backlog
items, such as acceptance criteria, additional natural language to further explain the
item, technical analyses, mockups/diagrams, business value of the item, unanswered
questions, tasks for the developers, relevant stakeholders for the item, et cetera. This
is also mentioned in the mapping study by Heikkilӓ et al., who found that the user
story format is often insufficient [12]. There is no hard limit on what elements should
be included; this is for the teams to determine which elements should be included. A
mature team will not set a hard demand for information elements that should be
included but is able to determine relevant elements on an individual backlog item (e.g.
some teams might always want to include some technical description, while others
may want to omit it). The agile maturity model by Patel & Ramachandran also state
that teams should create their own structure for backlog items [44].

D. Additional information elements
Description Backlog items consist of additional relevant

information aside from the user story, such as
acceptance criteria & business value of the item. The
team creates and alters this template according to
their needs.

Prerequisite(s) None
Reference(s) r22, [12,25,44], changelog v1

5.3.8 Refining requirements
Refining requirements is the addition of details and expansion of requirements after
the initial elicitation. Although not an official Scrum activity, requirements are often
refined in a refinement meeting. Refinement sessions are vital to ensure quality of
requirements and the shared understanding of the team. The goal of these sessions is
to add detail to backlog items. The case study showed that teams often have 1-3
refinement meetings per sprint. Therefore, the first capability states that a team
should have at least one refinement meeting per sprint.

70

A. Regular refinement meetings
Description Refinement meetings occur at least once per sprint.

Backlog items that are not yet ready are refined by
adding detail/missing information, divide a PBI into
tasks, re-prioritization, et cetera.

Prerequisite(s) None
Reference(s) r10, r13, r15

The second capability involves the definition of ready. The use of a definition of ready
allows a team to easily identify work items that are not yet ready to be worked on and
hence, need to be further refined. What the definition of ready should define is
something for teams themselves to determine according to their needs fitting their
context. Having a definition of ready was recommended as a best practice in the work
of Heck & Zaidman [25].

B. Definition of ready
Description The team uses a definition of ready to identify

backlog items that are ready to enter a sprint and
items that need to be further refined.

Prerequisite(s) None
Reference(s) [25,63]

The third capability was based on similar principles as estimating using a baseline. It
is desirable that work items that are too big are refined into smaller tasks. If an item is
estimated at a certain amount (e.g. >13 story points) of work, the team should decide
whether the item is too big to work on in a sprint. This item should then be divided
into smaller items by the team. The use of a baseline was suggested by expert B during
the validation of the model. Naturally, this can only be done if items are actually
estimated, and the capability therefore has a dependency on Estimating effort : A.
Another advantage of keeping requirements small is that it makes for a simpler, clearer
and more readable requirements specification/backlog [27].

C. Refining with a reference size
Description The team uses some reference point at which items

are considered to be too ‘big’ to enter a sprint. The
team tries to refine these items into smaller
individual items.

Prerequisite(s) Dependency on Estimating effort : A
Reference(s) [27]

The final capability is based on the agile principle of ‘just enough, just in time’. It is
desirable that a team has enough backlog items ‘ready’ to enter the upcoming sprint.
If there are enough items, the team should ensure to not keep blindly refining items

71

simply because not all items in the backlog are ready. If for example, the team refines
enough items for the upcoming four sprints and then the prioritization or wishes of
stakeholders changes all this refinement effort could be wasted. This capability was
suggested by expert C during the validation.

D. Refining just enough, just in time
Description The team ensures to refine enough items for the

upcoming sprint.

Prerequisite(s) None
Reference(s) Changelog v0.5

5.3.9 Acceptance criteria
Acceptance criteria document criteria which a PBI must adhere to. Many teams use
these to validate their PBI’s. Not all teams use these, 16 out of 32 teams explicitly
stated they use acceptance criteria for each PBI. Acceptance criteria are usually added
during refinement sessions. Acceptance criteria are unique for a given PBI. The case
study showed that acceptance criteria are used in some manner by half of the teams
(16 out of 32). Some teams describe acceptance criteria as vital (e.g. r11). In some
cases, acceptance criteria are defined by the customer (or product owner) and in some
cases by the development team itself. There is no clear consensus which is better.
However, the maturity model by Patel & Ramachandran also includes a criteria
specifically stating the use of acceptance criteria [44]. Acceptance criteria are also used
to validate with the customer that a requirement is correctly implemented.

A. Acceptance criteria
Description Acceptance criteria are defined for PBI’s.
Prerequisite(s) None
Reference(s) r11, [44]

There are several ways acceptance criteria can be added. Specification by example is a
popular method to perform acceptance criteria using examples as a source of truth,
instead of having different kinds of documentation created by business analysts and
developers separately. Specification by example was suggested by the focus group as a
great practice that fit in between simple acceptance criteria and the step toward
automated acceptance testing.

B. Specification by example
Description Acceptance criteria are defined using specification by

example.
Prerequisite(s) None
Reference(s) e1, t2, t3, t4, changelog v1

72

Some teams apply acceptance criteria in simple natural language, while others go as
far as automatic testing. An automatic testing format used for acceptance tests is
based on the BDD template ‘given [a condition], when [an event occurs], then [outcome]’.
This can be tested automatically by writing tests and attaching these to the code. Some
teams go beyond textual acceptance criteria and use the formal language Gherkin (e.g.
r1), which is a domain specific language that should also be understandable for non-
technical stakeholders. The main idea is to allow the binding of acceptance criteria to
the code, allowing for automating acceptance tests. Starting with the creation of
formal acceptance criteria such as feature files is the first step toward acceptance test-
driven development.

C. Formal acceptance criteria
Description Acceptance criteria are defined using a formal syntax,

such as Gherkin
Prerequisite(s) None
Reference(s) [67], r1

The focus group had some issue with the distinction between capability C and D. The
experts were rather surprised that there are teams who perform capability C without
also performing D, as a team should create formal acceptance criteria because they
want to do automate their acceptance testing. Only performing C seems like a waste
of effort. However, after some discussion the experts agreed that only performing C
does provide some other benefits aside from allowing to progress to capability D.
Therefore, these capabilities have not been merged, but the experts highly recommend
to achieve level D when the team achieves level C.

D. Acceptance test-driven development
Description Acceptance criteria are automatically tested whenever

possible by using acceptance test-driven development
Prerequisite(s) None
Reference(s) [67]

5.3.10 Prioritizing requirements
Prioritizing requirements is the process of identifying the most valuable requirements
from a set of requirements [68]. The literature already established that a key aspect of
agile RE is its continuous reprioritization [22]. During the interview with the agile
expert (e1) the expert mentioned that prioritization should be done based on business
value, but teams should keep in mind that non-functional requirements provide
business value as well. Other reports mention prioritization is always a tradeoff
between the effort and value of a story. In technical projects prioritization is often less
of an important consideration as technical dependencies often make it clear which
work needs to be done first (t4). This contrasts with functional requirements, in which
a stakeholder will often have a preference which is implemented as soon as possible.

73

Dedicated prioritization methods such as MoSCoW are rarely used (only in r18), with
teams usually relying on experience, gut-feeling and expert opinions. One report
stated that the team prioritizes based on the story points estimated for PBI’s (r15). The
first capability only requires that backlog items are prioritized, regardless of the
method. The product owner is responsible for the prioritization and does not need to
include the team or built a proper argument for his/her prioritization. Prioritizing
requirements was also a best practice recommended in the work of Hofmann & Lehner
[5].

A. Basic prioritization

Description PBI’s are prioritized by the product owner without
proper argument to the team.

Prerequisite(s) None
Reference(s) Changelog v1, [5]

While literature showed that prioritization in agile RE is one of its key concepts it does
not specify which prioritization techniques are used [12]. Some literature did however
mention prioritization should not be overly focused on only delivering ‘business
value’, as this may result in a lack of attention toward architectural or technical quality
[12,30]. Other literature claims that requirements with the most business value must
be developed first [26,44]. The focus group determined that requirements should be
prioritized based on a proper argumentation, regardless of the value a team gives to
business value (this can differ, is it functionality? little risk high reward? low costs?).
An example mentioned in literature is involving the Cost of Delay. This concept
assumes that most requirements also have some sort of cost when they are delayed.
For example; delaying the adoption of a new architecture, which might not provide a
lot of business value straight away, can be increasingly costly as adoption is delayed.
The new architecture might provide new opportunities which are not directly
measurable in business value.

B. Prioritization based on some concept
Description The prioritization of PBI’s is based on a proper

argument, which can include concepts such as
business value, the cost of delay & the results from
previous sprint

Prerequisite(s) None
Reference(s) [44,69], changelog v1

The focus group discussed that the team should be included as well in the
prioritization. A product owner ignoring advice or feedback from their team is a clear
sign of immaturity according to the focus group. While the product owner has the final
responsibility over the backlog and its prioritization the PO should include the team
in the prioritization as well. The focus group did not specify how this should be
achieved, but it can be done during refinement meetings.

74

C. Team-based prioritization

Description Prioritization is a co-production with the
development team.

Prerequisite(s) None
Reference(s) changelog v1

The final capability was determined by the focus group as well. The group stated that
a good prioritization should be justifiable with facts and numbers. For example, costs
have been calculated, risks are predicted. Naturally, not every backlog item needs to
have such a justification. However, for large items, features or epics these calculations
can and should be done.

D. Substantiated prioritization
Description The prioritization is made justifiable/measurable with

facts and numbers, like the costs, value, risks and
impact of the items.

Prerequisite(s) None
Reference(s) changelog v1

5.3.11 Estimating effort
Estimating effort allows teams to judge the complexity of backlog items. Additionally,
it aids the team with sprint planning. Therefore, a backlog item should always be
estimated in some manner. Capability A assumes that estimation is always done,
regardless of the method (e.g. planning poker, expert opinion), unit of estimation (e.g.
work hours, story points) and actors involved (e.g. the entire team, just the product
owner).

A. Estimating of backlog items
Description The required effort for backlog items is always

estimated.
Prerequisite(s) None
Reference(s) r10, r11, r28

The estimation of a PBI is often done during refinement sessions. As with
prioritization, it should be a team activity in which discussion about the
solution/implementation of the PBI takes place, as this gives members insight into
how much work will go into it and better understanding of the requirement. Having
team-based estimation is a good way to ensure the estimations are more accurate as
team members get to discuss their rationale behind a certain estimation. The scrum
guide also specifically states that the development team is responsible for estimates
[2].

75

B. Team-based estimations
Description All team members participate in estimations of

backlog items, as the resulting discussions increase
shared understanding.

Prerequisite(s) None
Reference(s) [2]

There are different methods used to estimate the workload of a PBI. The most common
method is by far planning poker (29 teams), which is valued for its accuracy, light
weight (short time/effort) and contributing to the shared understanding of the team
on the implementation. Other methods are expert opinion (4 teams) or t-shirt
estimation (1 team). There was one team that always assigned the same amount of
work to a PBI, so therefore had no estimation process. Capability C values the use of
light-weight estimation techniques, as teams value the shared understanding a
technique like scrum poker creates and not whether every items’ estimation is 100%
correct.

C. Light-weight estimation
Description Teams use a consistent, light-weight technique such

as planning poker to estimate backlog items.
Prerequisite(s) None
Reference(s)

The final capability D was added during the validation by expert B. The expert stated
that when estimating it is very important that the team uses some reference backlog
item or baseline which estimations are based on. Otherwise, everyone can have their
own interpretation of what a ‘work hour’ or ‘story point’ means. This is not a difficult
capability to achieve, but according to the expert, is something that teams often don’t
do.

D. Baseline estimations
Description Teams use a baseline to estimate. Using a baseline

(e.g. always estimate based on a specific item) aids in
shared understanding.

Prerequisite(s) None
Reference(s) Changelog v0.4

76

5.3.12 Validating requirements
After the development team has implemented a requirement, it needs to be validated.
Is the requirement implemented in a way that satisfies the stakeholders’ wish?

Reality shows that some teams do not take validation as serious. Some teams in the
case study do not validate their implemented requirements at all (e.g. r26). Naturally,
not all requirements are as easy to validate as others. Functional requirements can be
validated in cooperation with stakeholders using a simple demo or prototype.
Technical requirements which cause ‘invisible’ changes are not so simply verified, and
teams validate these based on expert opinions, using acceptance criteria, unit tests
and code coverage.

The first capability states that the product owner validates the implemented
requirements. As the person responsible for the backlog, the PO can check whether
the implemented requirements meet the wishes of the customer/stakeholders.

A. Product owner validation

Description Validation is done by the product owner by checking
whether the described functionality has been
established.

Prerequisite(s) None
Reference(s) r18, r21, r2

The second capability concerns using a definition of done. Having a uniform definition
of done for all backlog items is important according to the official Scrum guide [2]. The
definition of done defines when a PBI is finished and requires no more work. It is
simply a list of criteria which must be met before a product increment is considered to
be completed, just as how a definition of ready is a list of criteria which must be met
before a PBI can enter a sprint. Typically, the Definition of Done is created by the
development team.

B. Validating with a Definition of Done

Description The team has established is a definition of done which
is identical for all PBI’s. An item is validated when it
satisfies to the criteria in the definition.

Prerequisite(s) None
Reference(s) r3, r19, r7

A mature team should use acceptance criteria tailored to individual items to decide
whether they have been implemented correctly. Because acceptance criteria are a
focus area on their own, this capability has a dependency on Acceptance criteria : A.
Hence, this capability only serves to assert the maturity of the validation process and
not the maturity of the use of acceptance criteria.

77

C. Validating with acceptance criteria

Description Validation is supplemented by using acceptance
criteria for PBI’s.

Prerequisite(s) Dependency on Acceptance criteria : A
Reference(s) r2, t1, t4, r10, r14

According to literature, validation is often done with review meetings and acceptance
tests [26]. By delivering working software, stakeholders can often easily verify whether
the implemented requirement is in accordance with their expectations. Review
meetings are an official Scrum event and should be present at the end of each sprint
[2]. Capability D states that teams should include the customer and other relevant
stakeholders to check their satisfaction with the release. A common way to achieve
this are review meetings, in which some sort of demo or prototype can be presented to
the stakeholder. This type of validation allows for immediate feedback. According to
the focus group the capability should not specifically demand ‘review meetings’ as
they could see scenarios in which review meetings would be turned down. For
example; in projects with fast release cycles (e.g. every day) review meetings might be
done only once every sprint while there are 14 releases in the same sprint. Reviewing
all work released in 14 releases in a single review meeting is difficult, and should
therefore be validated by the customer/stakeholder in live production. Because of this,
there is a capability E which states that customers/stakeholders validate items live or
in a test environment without having to schedule team meetings. Validating with
stakeholders is a recommended best practice in the work of Hofmann & Lehner [5].

D. Validating with customer/stakeholder

Description Validation is done by including the customer or other
stakeholders to check their satisfaction with the
release/sprint. There are review meetings in which the
team and important stakeholders discusses which
items are done.

Prerequisite(s) None
Reference(s) [26], r15, r21, r22, changelog v1

E. Validating in production

Description The customer/stakeholder checks all PBI items in the
production environment or test environment.

Prerequisite(s) None
Reference(s) changelog v1

It should be noted that many teams in the case study also test for the quality of the
written code or code coverage, but this is not considered to be within the scope of
requirements engineering.

78

5.3.13 Traceability & Documentation
As was found in literature and confirmed by the case studies, traceability is a topic that
gains little attention from teams [70]. The majority of teams ignores the topic, some
teams trace code back to the original backlog item (e.g. r6), and some have a wiki or
other format in which they document decisions (e.g. t3). The lowest level of
traceability that originated from the case study was the tracing of code back to the
original backlog item/requirement it was written for. Expert A stated during the
validation that dependencies between stories should be traced as well, and one team
was found to actually do so (r20). For example, when several stories combine toward
one specific requirement this should be made visible. In that case, the team can quickly
trace possible issues that occur with stories when something needs to be changed.

A. Code to PBI tracing and inter-story dependencies

Description Code can be traced back to its original backlog item.
Dependencies between stories are traced.

Prerequisite(s) None
Reference(s) r6, r20, changelog v0.3,

The second capability is based on how teams document information such as
architectural designs, functionalities of the software and release changelogs. An
example is the use of a wiki with some kind of format, like Arc42. The team must be
aware of different types of documentation they may have to create. The agile@re
handbook identifies different kinds of documentation [57]. Most documentation, like
the backlog is merely documentation for communication purposes, to communicate
what work needs to be done. As mentioned by Paetsch et al. models are often still used
in agile RE, but are quickly drawn for some discussion and then discarded [26]. This
documentation is known as documentation for thinking purposes. However, two types
of documentation warrant more formal documentation; legal documentation and
preservation documentation. Some preservation documentation techniques were
encountered in the case study like the use of a wiki that the team contributes to during
development (t4, r7).

B. Basic documentation

Description The team is aware what kinds of documentation needs
to be created. has a wiki or other format of
documentation containing information on releases,
functionality & definitions.

Prerequisite(s) None
Reference(s) t4, r7

The use of a traceability matrix was recommended by Hofmann & Lehner as a best
practice [5]. Having a medium cost of introduction, such a matrix allows a team to track

79

a requirement from the moment it originates through its specification and eventual
implementation.

C. Traceability matrix

Description The team uses a traceability matrix
Prerequisite(s) None
Reference(s) [5]

The final capability is the use of living documentation. Living documentation is
documentation based on automatic testing and can therefore update itself with each
release. In doing so, it provides both traceability as it will automatically show if tests
have failed and documentation that requires little work once established. Feature files,
for example, are files that contain Gherkin acceptance criteria and scripts to
automatically test the criteria.

D. Living documentation

Description Teams create living documentation by following BDD
practices, for example with the use of feature files.

Prerequisite(s) None
Reference(s) changelog v0.3, changelog v0.4

80

5.4. The maturity matrix
The validated maturity matrix can be seen in table 9 below. A detailed description of
the evolution of the model during the validations and focus group can be found in
appendix 9.3. The 56 capabilities are distributed over 13 focus areas (horizontal rows)
and 10 maturity levels (vertical columns). The amount of maturity levels (10) is
somewhat arbitrary; it ensures a relatively good spread of the capabilities and allows
the dependencies to be correctly reflected in the model. The first three maturity levels
contain mostly level A capabilities; 13 out of 15 are A capabilities, 2 out of 15 are B
capabilities. Levels four and five are mostly B capabilities; 10 out of 12 are B
capabilities, 2 out of 12 are C capabilities. Maturity levels six and seven are mostly C
capabilities; 9 out of 11 are C capabilities, 1 out of 11 is capability B, 1 out of 10 is a D
capability. The final maturity levels eight to ten are mostly D and E capabilities; 12 out
of 18 are D, 4 out of 18 are E, 2 out of 18 are C. Table 10 shows the maturity matrix
with some interesting statistics.

Scrum based Requirements Engineering maturity matrix

 1 2 3 4 5 6 7 8 9 10
Management & Planning

Roadmapping A B C D
Stakeholder involvement A B C D E
Sprint planning A B C D E

Ideation
Goals & Vision A B C D
Eliciting requirements A B C D

Specification
Documenting requirements A B C D E
Templates A B C D
Refining requirements A B C D
Acceptance criteria A B C D

Implementation
Prioritizing requirements A B C D
Estimating effort A B C D
Validating requirements A B C D E
Traceability & Documentation A B C D

Table 9: The validated maturity model

81

Table 10: The maturity matrix with statistics and dependencies visualized

6. Applying the model
Applying the model is another way to highlight any missed problems with the model
and to discover any insights a filled in matrix can offer. Due to time constraints the
model is applied to only two teams, making it impossible to discover any trends or
patterns for our dataset. Also, due to the lack of an assessment model and established
metrics for individual capabilities applying the model was done in a semi-structured
interview with the researcher present to explain the capabilities if necessary.

6.1. Team A
Team A achieved 44 out of all 56 capabilities. The team achieves all capabilities in 5
out of 13 focus areas; Stakeholder involvement, refining requirements, prioritizing
requirements, estimating effort and validating requirements. Interesting is the fact
that there are three capabilities achieved which should be dependent on capabilities
occurring earlier in the focus area. These capabilities have been indicated with yellow,
indicating that they are achieved but strictly adhering to the rules of a maturity matrix
shouldn’t be achieved. For sprint planning, the team achieves capability E (Verification

82

of the sprint backlog) and not capability D (Having a definition of ready). For eliciting
requirements, the team achieves both capability C (Combining disciplines) and D
(Efficient elicitation) while not achieving capability B (Elicitation techniques). The
highest maturities achieved (10) are capability E in stakeholder involvement, capability
D in refining requirements, capability D in Prioritizing requirements, capability D in
estimating effort and capability E in validating requirements. The lowest maturity
achieved (3) is capability A in eliciting requirements. The average maturity level of team
A (when ignoring ‘yellow’ capabilities) is 8.

Matrix v1
 1 2 3 4 5 6 7 8 9 10
Management & Planning

Roadmapping A B C D
Stakeholder involvement A B C D E
Sprint planning A B C D E

Ideation
Goals & Vision A B C D
Eliciting requirements A B C D

Specification
Documenting requirements A B C D E
Templates A B C D
Refining requirements A B C D
Acceptance criteria A B C D

Implementation
Prioritizing requirements A B C D
Estimating effort A B C D
Validating requirements A B C D E
Traceability & Documentation A B C D

 1 2 3 4 5 6 7 8 9 10
Table 11: The filled in matrix for team A

6.2. Team B
Team B achieves 38 out of the 56 capabilities. The team achieves all capabilities in only
one out of 13 focus areas; estimating effort. Similar as with team A, there are several
instances where a capability in a focus area is achieved without achieving a prior one.
As with team A, for sprint planning, the team achieves capability E (Verification of the
sprint backlog) and not capability D (Using a definition of ready). For templates, the team
achieves capability C (Benefit argumentation) and D (Additional information elements)
without achieving capability B (Distinction between functional/non-functional
requirements). For refining requirements, the team achieves capability C (Refining with
a reference size) and D (Refining just enough, just in time) without achieving capability
B (Having a definition of ready). The highest maturity achieved (10) is capability D in

83

estimating effort. The lowest maturity achieved (3) is capability A in acceptance
criteria. The average maturity level of team B is 6.8.

Matrix v1
 1 2 3 4 5 6 7 8 9 10
Management & Planning

Roadmapping A B C D
Stakeholder involvement A B C D E
Sprint planning A B C D E

Ideation
Goals & Vision A B C D
Eliciting requirements A B C D

Specification
Documenting requirements A B C D E
Templates A B C D
Refining requirements A B C D
Acceptance criteria A B C D

Implementation
Prioritizing requirements A B C D
Estimating effort A B C D
Validating requirements A B C D E
Traceability & Documentation A B C D

 1 2 3 4 5 6 7 8 9 10
Table 12: The filled in matrix for team B

Filling in these models in practice with a team member gave several lessons that
should be addressed in the future. For some capabilities it is easy to establish
whether they are achieved. An example is capability A from templates. All that needs
to be checked is whether a template is used. For other capabilities it is very difficult,
like capability E from Eliciting requirements. A next step for the model would be to
establish clear criteria for capabilities to determine whether they are achieved.

Additionally, in its current state the capabilities can still be interpreted incorrectly
by team members. When an assessor is present with good understanding of the
model (e.g. the author) this is not a big issue. However, in order to assess a large
number of teams it would be easier to have teams self-assess their capabilities using
an assessment instrument and descriptions of capabilities should be unambiguous or
supplemented with clear metrics or satisfaction criteria.

Finally, an inherent principle of the maturity matrix is that capabilities later in a
focus area are dependent on capabilities occurring earlier in said focus area.
However, this dependency is not always enforced in the real world, i.e. it is entirely
possible (and already happened several times for only two teams) that capabilities

84

are achieved by a team without achieving the capability they have a dependency on.
While the validation tried to ensure that capabilities within a focus area show the
‘preferred’ way of improving in a focus area according to the experts these scenarios
do occur. This also occurred in the work of Gorschek et al, where not a single team
was able to achieve maturity level 1 yet many teams had some capabilities achieved
in higher maturity levels [54].

85

7. Conclusion
This chapter serves to answer the research questions established in chapter 1.

RQ1: What are common RE practices in Scrum used by software

development teams?

To answer the first research question a literature review was performed. The review
discussed common RE practices in Scrum, as well as the benefits and challenges of
applying RE in Scrum. Traditional RE used to be performed prior to the actual software
development, but in Scrum RE and development are practiced simultaneously during
the entire lifetime of the product/system. Agile RE is characterized by evolving
requirements and constant reprioritization. A key concept of Scrum is that teams are
self-organizing and should apply best-practices where needed. Literature clearly
showed that it is unclear which RE practices are ‘best-practice’, which is reflected by
the fact that many studies looking into Scrum RE in practice had low frequencies and
a high variance of different practices. In agile RE, there are several studies discussing
the quality of agile requirements and techniques/frameworks to ensure quality.
Quality frameworks, such as INVEST, are used in some form in a majority of the teams
analyzed in studies. The user story is by far the most commonly used technique to
document functional requirements, although templates differ. While agile RE has
benefits, such as lower times to market, better customer involvement and better suited
for dealing with volatile requirements, there are also significant challenges noted by
several studies. These studies often reported similar problems such as a lack of
customer involvement (or no onsite customer), negligence of non-functional
requirements, lack of documentation, insufficiency of the user story format to capture
all relevant information and estimation issues. As one study noted, there is a
relationship between a team’s maturity and patterns of requirements problems.

Because the literature was found to be lacking either due to contradicting findings
between studies and the small sample sizes a multiple case study was performed on 32
software teams. We concluded that there were five main categories of activities,
processes or artifacts in which RE plays a big part in Scrum. These are;

- Management & planning, which covers focus areas that describe capabilities
that influence the management and planning activities within agile RE.

- Ideation, containing everything related to the extraction of an idea or wish to
be able to formulate a requirement.

- Specification, which has a strong focus on all that is involved in the process of
specifying requirements before they can be built.

- Implementation, covering all that is involved in correctly implementing and
validating requirements.

The findings of this research question were used as input for the creation of the
maturity matrix.

86

RQ2: How can RE maturity in Scrum be defined?

Several existing studies have been discussed that try to define RE maturity by either
proposing some best practices or defining maturity by designing maturity models.
There are maturity models that focus on agile/Scrum or requirements engineering, but
none combine the two topics. Some models that focus on agile do incorporate some
topics/techniques that relate to requirements engineering. The maturity models that
were discussed in this study that focus on requirements engineering all (except for
one) focused on traditional RE and do not consider how agile methods changed RE,
making them inapplicable to agile RE. An important finding is that defining maturity
is very dependent on the context of a software development team. This makes it
difficult to determine whether a team is mature based only on the judgings of a
maturity model. A complicated process (like acceptance-test driven development) may
be a sign of a mature team but that does not mean that a team that deliberately chooses
not to implement ATTD is less mature, as their different contexts can justify both
decisions. The important take away is that a mature team is aware of processes and
artifacts it can implement and can choose the right capabilities to achieve that will
benefit them the most.

RQ3: How can RE maturity be measured and compared among different

software development teams?

In order to measure and compare RE practices in Scrum maturity models are a useful
tool to assess the current practices in a team, to compare teams with one another and
to guide teams toward adopting good practices. Two types of maturity models were
considered for this study; fixed-level maturity models and focus area maturity models.
Fixed-level maturity models often consist of several levels of maturity and each level
is associated with several processes that need to be implemented/conformed to. A
limitation of these models is that dependencies between processes are unclear and
therefore provide little guidance on the order in which processes should be
implemented. Focus area maturity models consist of activities and a maturity level for
each activity. The difference between the two models is that fixed-level models have
global descriptions of maturity are described for each level, there are no individual
descriptions for each activity at each maturity level, whereas a focus area model
identifies process areas and activities with their individual maturity level. All models
we encountered (both agile and RE focused) are fixed-level models. These are limited
due to the fact that growth is not as linear as they describe and dependencies between
capabilities are unclear. Therefore, we opted for the design of a focus area maturity
model using the findings of the literature study and the case study.

87

RQ4: Is the constructed artifact valid?

The maturity matrix was validated on an iterative basis using expert interviews. The
initial version was discussed with an expert on agile RE who proposed issues and
improvements. After four iterations, the model and unresolved issues were presented
to a focus group. The validation with the focus group resulted in the finalized version
of the maturity matrix. As all improvements have been implemented and no more
issues resulted during the focus group we can say that the matrix is valid. However,
two test assessments of the model on actual software teams brought an issue forward.
An inherent principle of the maturity matrix is that capabilities later in a focus area
are dependent on capabilities occurring earlier in that focus area. However, this
dependency is not enforced in the real world, i.e. it is possible and already happened
several times that capabilities are achieved by a team without achieving the capability
they have a dependency on. While the validation and experts tried to ensure that
capabilities within a focus area show the ‘preferred’ way of improving in a focus area
these aforementioned scenarios do occur.

MRQ: How to develop a maturity matrix for RE practices in Scrum?

This study developed a maturity matrix by executing several steps. First, a literature
study was performed to gain an understanding of agile RE by answering RQ1 and RQ2.
Due to the literature being unclear on common RE practices and processes an
additional multi-case study was performed. With RQ1 and RQ2 answered, we opted to
design a focus area maturity model. The actual design of the model was done by
answering RQ3. Focus areas and capabilities were based on the case study and
literature. With the designed model, there were several validation rounds in order to
answer RQ4. Each research question served as a step to develop a maturity matrix,
resulting in the following development method (figure 25).

88

Figure 25: Development method for a maturity matrix for agile RE in Scrum

89

8. Discussion

8.1 Threats to trustworthiness
Validity and reliability are important concepts in quantitative research. In qualitative
research, the concepts of validity and reliability cannot be addressed in the same
manner [71]. With over 6400 citations, four well known and accepted criteria that
should be considered for qualitative research over validity and reliability were
proposed in the work by Guba [72]. These are:

- Credibility
- Transferability
- Dependability
- Confirmability

We will discuss these criteria and if threats toward these criteria are present in this
study.

Credibility

Credibility is mostly aligned with internal validity. One suggestion by Lincoln & Guba
that is not adhered to was random sampling of individuals. In this study, sampling
occurred on the basis of convenience. This may result in a slight bias, as the daily
supervisor often proposed useful individuals since the author was unfamiliar with the
host company. However, this convenience sampling only occurred on 4 out of the 32
teams that participated. For the other 28 teams it is unknown how their authors
sampled a participating team for their report. It is likely some authors had some sort
of connection to a person or company, but this is out of the sphere of influence of the
author.

Transferability

Transferability is mostly concerned with the generalizability of the study, similar to
external validity. We tried to ensure the generalizability of the model by having a large
and varied sample size. The software teams included in the case study come from a
large number of organizations. These organizations are of varied size (from 10 to
10.000+) and they are different types of organizations (from startups to
multinationals). For some of the participating organizations core business is involved
with software development and for other organizations software development is
merely a side activity to support their core business. However, the results of a
qualitative study must always be understood within the context in which the fieldwork
was performed [72]. The designed model should be applied to more teams who did not
participate in the study to further examine its transferability.

90

Dependability

The chosen method to validate the constructed artifact of expert opinion has a threat;
this validation method only works if the expert has a good understanding the artifact
[8]. The reliability of the experts was ensured by choosing experts who had experience
with RE related roles, such as product owners or business analysts, who had operated
in an agile context. However, the true expertise and quality of an expert is hard to
determine [73]. Having stricter criteria, e.g. having at least 5 years of experience,
would have had a negative impact on finding experts willing to participate.

Confirmability

Confirmability is mostly concerned with the objectivity of measurement instruments
and serves to ensure that findings of the study the result of the experiences and ideas
of the informants, instead of the researcher’s characteristics and preferences [71]. A
technique to reduce the effect of investigator bias is triangulation. In this study,
triangulation was applied by using both expert opinions and focus groups, as their
distinct characteristics result in individual strengths. The combination of different
methods compensate for their individual limitations and exploits their respective
benefits [71]. The use of methods was also influenced by the available case study of
other students. In their case studies, the students collected their data by means of an
expert interview. In order to combine the case studies performed by the author and
the students the case studies at Info Support were structured and performed in a
similar way to that of the students’ case study.

There are several other limitations of this study. A limitation of the dataset is that it
is very likely that teams are included that claim to work with Scrum but in reality omit
many principles and practices of the method. This phenomenon is often referred to as
‘Scrum in name only’ [74,75]. The phenomenon is described as Scrum anti-patterns in
the work by Eloranta et al.; “The practical implementation of Scrum in companies rarely
follows the text book ideals. Typically, companies deviate from the proposed Scrum
practices for different reasons. While some deviations may be well motivated and
reasonable, companies are often tempted to adjust Scrum for the company without clearly
understanding the consequences of the deviations” [74]. It is hard to determine how many
teams in our dataset apply Scrum anti-patterns and to what extent these patterns have
a negative or positive impact on their RE practices. In the future, case studies should
take into consideration what these anti-patterns are as to recognize teams which
maybe should be omitted from the dataset.

Another risk of this study is the risk of over-generalizing the model. By using a broad
dataset we try to fit all types of teams in the model with all kinds of different projects
(e.g. webdev, high-risk projects, technical projects) and different kinds of companies
(software products vs SaaS). It is possible that there are teams for who the model is not
applicable at all, for example in safety-critical projects. This is something that could
be further tested by applying the model on a much larger dataset.

91

8.2. Future research
First and foremost, future research could try and expand on the existing model. This
research focus only on the maturity of RE in scrum and it could be integrated in a
bigger model in scrum which contains other important capabilities, for example in the
field of the actual development or testing. Maturity models for Scrum already exist and
were discussed in chapter 3.2.2. However, none of these are focus area maturity
models.

A limitation of this study is that the resulting maturity model is only applied to two
teams (due to time constraints). Not only does this make it impossible to discover any
trends or patterns for our dataset, it also means that more improvements for the model
can be missed. The two assessments of the teams already give some striking insights
(chapter 6). In this maturity model all focus areas and capabilities are given the same
importance. However, it is very likely that some capabilities make a bigger impact than
others, and should be prioritized. Capabilities can and perhaps should be given a
weight, in order to better compare teams. For example, a team that has many
capabilities of lesser importance will currently end up with a higher average maturity
level than a team that has achieved some very important capabilities yet overall
achieved less capabilities. It is unclear to what extent it is possible to calculate some
maturity score by having weight per capability and to compare some overall maturity
scores of teams. Or perhaps the difference in context and team preferences has such a
big impact that maturity between teams can never be accurately be compared.

The lack of many assessments of the model on actual teams is also due to the fact that
the development method by van Steenbergen et al. was only followed up to the activity
of the actual development [35]. The remaining activities Instrument development and
Implementation & Exploitation were not performed. In a follow-up study, these
activities should be performed. The development of an assessment instrument can
establish some clear metrics for when capabilities are achieved, allowing team
members to more easily assess their own team and not rely on an expert of the model
to do the assessment. We discussed some studies with measurement models in section
3.2.3. with models like the ones produces Niazi or Sommerville but did not have time
to set up such a model [50,53]. Establishing a clear measurement framework could be
a follow up study in the future and is a necessary step for an assessment instrument
that can be used without having to include an expert on the model.

Originally, there were two other research questions (RQ5 and RQ6) which have been
removed from this study due to a lack of time. These questions should be answered in
a follow-up study. Once the maturity model is designed and validated, we originally
wanted to use it to answer RQ5 “In which ways does high maturity provide benefits?” and
RQ6 “Should software development teams strive for high maturity?”. The idea was to
apply the model on all teams in the dataset, but due to the fact we only applied it on

92

two teams the questions have not been answered. These questions should be answered
in a follow-up study.

References
1. 13th Annual State Of Agile Report [Internet]. CollabNet VersionOne; 2019 May

[cited 2019 May 14]. Available from: https://www.stateofagile.com/#ufh-i-
521251909-13th-annual-state-of-agile-report/473508

2. Schwaber K, Sutherland J. The Scrum GuideTM [Internet]. 2017 [cited 2019 May
9]. Available from: https://www.scrumguides.org/scrum-guide.html

3. Diebold P, Ostberg J-P, Wagner S, Zendler U. What Do Practitioners Vary in
Using Scrum? In: Lassenius C, Dingsøyr T, Paasivaara M, editors. Agile
Processes in Software Engineering and Extreme Programming. Springer
International Publishing; 2015. p. 40–51. (Lecture Notes in Business
Information Processing).

4. Reddy A. The Scrumban [R]Evolution: Getting the Most Out of Agile, Scrum,
and Lean Kanban. Addison-Wesley Professional; 2015. 519 p.

5. Hofmann HF, Lehner F. Requirements Engineering as a Success Factor in
Software Projects. IEEE software 4. 2001;18:58–66.

6. Dick J, Hull E, Jackson K. Requirements Engineering. Springer; 2017. 254 p.

7. Hall T, Beecham S, Rainer A. Requirements problems in twelve software
companies: an empirical analysis. IEE Proceedings - Software. 2002
Oct;149(5):153–60.

8. Wieringa RJ. Design Science Methodology for Information Systems and
Software Engineering [Internet]. Berlin Heidelberg: Springer-Verlag; 2014 [cited
2019 May 8]. Available from:
https://www.springer.com/gp/book/9783662438381

9. Dul J, Hak T. Case Study Methodology in Business Research. Routledge; 2007.
321 p.

10. Englander M. The Interview: Data Collection in Descriptive Phenomenological
Human Scientific Research. Journal of Phenomenological Psychology. 2012 Jan
1;43(1):13–35.

11. Weerd I van de, Brinkkemper S. Meta-Modeling for Situational Analysis and
Design Methods. Handbook of Research on Modern Systems Analysis and
Design Technologies and Applications. 2009;35–54.

93

12. Heikkilä VT, Damian D, Lassenius C, Paasivaara M. A Mapping Study on
Requirements Engineering in Agile Software Development. In: 2015 41st
Euromicro Conference on Software Engineering and Advanced Applications.
2015. p. 199–207.

13. Schön E-M, Thomaschewski J, Escalona MJ. Agile Requirements Engineering: A
systematic literature review. Computer Standards & Interfaces. 2017 Jan
1;49:79–91.

14. Hoda R, Salleh N, Grundy J. The Rise and Evolution of Agile Software
Development. IEEE Software. 2018 Sep;35(5):58–63.

15. Beck K, Beedle M, Van Bennekum A, Cockburn A, Cunningham W, Fowler M, et
al. Manifesto for Agile Software Development. 2001;10.

16. Augustine S, Payne B, Sencindiver F, Woodcock S. Agile project management:
steering from the edges. Commun ACM. 2005 Dec 1;48(12):85–9.

17. Curcio K, Navarro T, Malucelli A, Reinehr S. Requirements engineering: A
systematic mapping study in agile software development. Journal of Systems
and Software. 2018 May 1;139:32–50.

18. Inayat I, Salim SS, Marczak S, Daneva M, Shamshirband S. A systematic
literature review on agile requirements engineering practices and challenges.
Computers in Human Behavior. 2015 Oct 1;51:915–29.

19. Medeiros JDRV, Alves D, Vasconcelos A, Silva C, Wanderley E. Requirements
engineering in agile projects: a systematic mapping based in evidences of
industry. ESELAW, CIBSE Ibero-American Conference on Software Engineering.
2015;460.

20. Lucassen G, Dalpiaz F, Werf JMEM van der, Brinkkemper S. The Use and
Effectiveness of User Stories in Practice. In: Daneva M, Pastor O, editors.
Requirements Engineering: Foundation for Software Quality. Springer
International Publishing; 2016. p. 205–22. (Lecture Notes in Computer Science).

21. Wang X, Zhao L, Wang Y, Sun J. The Role of Requirements Engineering
Practices in Agile Development: An Empirical Study. In: Zowghi D, Jin Z,
editors. Requirements Engineering. Springer Berlin Heidelberg; 2014. p. 195–
209. (Communications in Computer and Information Science).

22. Cao L, Ramesh B. Agile Requirements Engineering Practices: An Empirical
Study. IEEE Software. 2008 Jan;25(1):60–7.

94

23. Ramesh B, Cao L, Baskerville R. Agile requirements engineering practices and
challenges: an empirical study. Information Systems Journal. 2010;20(5):449–
80.

24. Heck P, Zaidman A. A systematic literature review on quality criteria for agile
requirements specifications. Software Qual J. 2016 Sep 15;26(1):127–60.

25. Heck P, Zaidman A. A framework for quality assessment of just-in-time
requirements: the case of open source feature requests. Requirements Eng. 2017
Nov 1;22(4):453–73.

26. Paetsch F, Eberlein A, Maurer F. Requirements engineering and agile software
development. In: WET ICE 2003 Proceedings Twelfth IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises, 2003. 2003. p. 308–13.

27. Medeiros J, Goulão M, Vasconcelos A, Silva C. Towards a Model about Quality of
Software Requirements Specification in Agile Projects. In: 2016 10th
International Conference on the Quality of Information and Communications
Technology (QUATIC). 2016. p. 236–41.

28. Lucassen G, Dalpiaz F, Werf JMEM van der, Brinkkemper S. Forging high-quality
User Stories: Towards a discipline for Agile Requirements. In: 2015 IEEE 23rd
International Requirements Engineering Conference (RE). 2015. p. 126–35.

29. Lucassen G, Dalpiaz F, van der Werf JMEM, Brinkkemper S. Improving agile
requirements: the Quality User Story framework and tool. Requirements
Engineering. 2016 Sep 1;21(3):383–403.

30. Elghariani K, Kama N. Review on Agile requirements engineering challenges.
In: 2016 3rd International Conference on Computer and Information Sciences
(ICCOINS). 2016. p. 507–12.

31. Fernández DM, Wagner S, Kalinowski M, Felderer M, Mafra P, Vetrò A, et al.
Naming the pain in requirements engineering. Empir Software Eng. 2017 Oct
1;22(5):2298–338.

32. Wendler R. The maturity of maturity model research: A systematic mapping
study. Information and Software Technology. 2012 Dec 1;54(12):1317–39.

33. Fraser P, Moultrie J, Gregory M. The use of maturity models/grids as a tool in
assessing product development capability. In: IEEE International Engineering
Management Conference. 2002. p. 244–9 vol.1.

34. Paulk MC, Curtis B, Chrissis MB, Weber CV. Capability maturity model, version
1.1. IEEE Software. 1993 Jul;10(4):18–27.

95

35. van Steenbergen M, Bos R, Brinkkemper S, van de Weerd I, Bekkers W. The
Design of Focus Area Maturity Models. In: Winter R, Zhao JL, Aier S, editors.
Global Perspectives on Design Science Research. Springer Berlin Heidelberg;
2010. p. 317–32. (Lecture Notes in Computer Science).

36. Maier AM, Moultrie J, Clarkson PJ. Assessing Organizational Capabilities:
Reviewing and Guiding the Development of Maturity Grids. IEEE Transactions
on Engineering Management. 2012 Feb;59(1):138–59.

37. Turner R, Jain A. Agile Meets CMMI: Culture Clash or Common Cause? In: Wells
D, Williams L, editors. Extreme Programming and Agile Methods — XP/Agile
Universe 2002. Springer Berlin Heidelberg; 2002. p. 153–65. (Lecture Notes in
Computer Science).

38. Schweigert T, Nevalainen R, Vohwinkel D, Korsaa M, Biro M. Agile Maturity
Model: Oxymoron or the Next Level of Understanding. In: Mas A, Mesquida A,
Rout T, O’Connor RV, Dorling A, editors. Software Process Improvement and
Capability Determination. Springer Berlin Heidelberg; 2012. p. 289–94.
(Communications in Computer and Information Science).

39. Sutherland J, Jakobsen CR, Johnson K. Scrum and CMMI Level 5: The Magic
Potion for Code Warriors. In: Proceedings of the 41st Annual Hawaii
International Conference on System Sciences (HICSS 2008). 2008. p. 466–466.

40. Marcal ASC, Soares FSF, Belchior AD. Mapping CMMI Project Management
Process Areas to SCRUM Practices. In: 31st IEEE Software Engineering
Workshop (SEW 2007) [Internet]. Columbia, MD: IEEE; 2007 [cited 2019 May
28]. p. 13–22. Available from: http://ieeexplore.ieee.org/document/4402760/

41. A Guide to Scrum and CMMI®: Improving Agile Performance with CMMI
[Internet]. CMMI Institute; 2016 Dec. Available from:
https://cmmiinstitute.com/resource-files/public/marketing/document/a-guide-
to-scrum-and-cmmi®-improving-agile-perfor

42. Glazer H, Dalton J, Anderson D, Konrad M, Shrum S. CMMI®or Agile: Why Not
Embrace Both! [Internet]. Software Engineering Institute; 2008 Nov. Available
from:
https://resources.sei.cmu.edu/asset_files/TechnicalNote/2008_004_001_14924.p
df

43. Henriques V, Tanner M. A Systematic Literature Review of Agile and Maturity
Model Research. Interdisciplinary Journal of Information, Knowledge and
Management. 2017;12:53–73.

96

44. Patel C, Ramachandran M. Agile maturity model (AMM): A Software Process
Improvement framework for agile software development practices.
International Journal of Software Engineering IJSE. 2009;2:3–28.

45. Yin A, Figueiredo S, da Silva MM. Scrum maturity model. Proceedings of the
ICSEA. 2011;20–9.

46. Ozcan-Top O, Demirörs O. Assessment of Agile Maturity Models: A Multiple
Case Study. In: Woronowicz T, Rout T, O’Connor RV, Dorling A, editors.
Software Process Improvement and Capability Determination. Springer Berlin
Heidelberg; 2013. p. 130–41. (Communications in Computer and Information
Science).

47. Sidky A, Arthur J, Bohner S. A disciplined approach to adopting agile practices:
the agile adoption framework. Innovations Syst Softw Eng. 2007 Sep
1;3(3):203–16.

48. Fontana RM, Albuquerque R, Luz R, Moises AC, Malucelli A, Reinehr S. Maturity
Models for Agile Software Development: What Are They? In: Larrucea X,
Santamaria I, O’Connor RV, Messnarz R, editors. Systems, Software and
Services Process Improvement. Springer International Publishing; 2018. p. 3–
14. (Communications in Computer and Information Science).

49. Niazi M, Cox K, Verner J. A measurement framework for assessing the maturity
of requirements engineering process. Software Qual J. 2008 Jun 1;16(2):213–35.

50. Niazi M. An Instrument for Measuring the Maturity of Requirements
Engineering Process. In: Bomarius F, Komi-Sirviö S, editors. Product Focused
Software Process Improvement. Springer Berlin Heidelberg; 2005. p. 574–85.
(Lecture Notes in Computer Science).

51. Sommerville I, Sawyer P. Requirements Engineering: A Good Practice Guide. 1st
ed. New York, NY, USA: John Wiley & Sons, Inc.; 1997.

52. Daskalantonakis MK. Achieving higher SEI levels. IEEE Software. 1994
Jul;11(4):17–24.

53. Sawyer P, Sommerville I, Viller S. Requirements process improvement through
the phased introduction of good practice. Software Process: Improvement and
Practice. 1997;3(1):19–34.

54. Gorschek T, Svahnberg M, Tejle K. Introduction and Application of a
Lightweight Requirements Engineering Process. In 2003 [cited 2019 Jun 27].
Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:bth-9641

97

55. Patel C, Ramachandran M. Story Card Maturity Model (SMM): A Process
Improvement Framework for Agile Requirements Engineering Practices. Journal
of Software. 2009 Jul;4(5):422–35.

56. Patel C, Ramachandran M. Best Practices Guidelines for Agile Requirements
Engineering Practices. Handbook of Research on Software Engineering and
Productivity Technologies: Implications of Globalization. 2010;1–14.

57. Aschauer B, Hruschka P, Lauenroth K, Meuten M, Rogers G. CPRE Advanced
Level RE@Agile - Handbook [Internet]. International Requirements
Engineering Board; 2018. Available from:
https://www.ireb.org/en/downloads/#cpre-advanced-level-re-agile-handbook

58. Bekkers W, van de Weerd I, Spruit M, Brinkkemper S. A Framework for Process
Improvement in Software Product Management. In: Riel A, O’Connor R,
Tichkiewitch S, Messnarz R, editors. Systems, Software and Services Process
Improvement. Springer Berlin Heidelberg; 2010. p. 1–12. (Communications in
Computer and Information Science).

59. van de Weerd I, Bekkers W, Brinkkemper S. Developing a Maturity Matrix for
Software Product Management. In: Tyrväinen P, Jansen S, Cusumano MA,
editors. Software Business. Springer Berlin Heidelberg; 2010. p. 76–89. (Lecture
Notes in Business Information Processing).

60. De Bruin T, Freeze R, Kaulkarni U, Rosemann M. Understanding the Main
Phases of Developing a Maturity Assessment Model. In: Campbell B, Underwood
J, Bunker D, editors. CD-ROM: Australasian Chapter of the Association for
Information Systems; 2005 [cited 2019 Jun 4]. p. 8–19. Available from:
https://eprints.qut.edu.au/25152/

61. de Feijter R. Towards the adoption of DevOps in software product
organizations: A maturity model approach [Internet]. Utrecht University; 2017.
Available from: https://dspace.library.uu.nl/handle/1874/350740

62. Wagner S, Fernández DM, Felderer M, Kalinowski M. Requirements Engineering
Practice and Problems in Agile Projects: Results from an International Survey.
arXiv:170308360 [cs] [Internet]. 2017 Mar 24 [cited 2019 Oct 1]; Available from:
http://arxiv.org/abs/1703.08360

63. Heck P, Zaidman A. A Quality Framework for Agile Requirements: A
Practitioner’s Perspective. arXiv:14064692 [cs] [Internet]. 2014 Jun 18 [cited
2019 May 22]; Available from: http://arxiv.org/abs/1406.4692

64. Pichler R. Agile Product Management with Scrum: Creating Products that
Customers Love (Addison-Wesley Signature Series (Cohn)) 1st Edition.
Addison-Wesley Professional; 1 edition; 2010. 160 p.

98

65. Zowghi D, Coulin C. Requirements Elicitation: A Survey of Techniques,
Approaches, and Tools. In: Aurum A, Wohlin C, editors. Engineering and
Managing Software Requirements [Internet]. Berlin, Heidelberg: Springer Berlin
Heidelberg; 2005 [cited 2019 May 27]. p. 19–46. Available from:
https://doi.org/10.1007/3-540-28244-0_2

66. Patton J, Economy P. User Story Mapping: Discover the Whole Story, Build the
Right Product. O’Reilly Media, Inc.; 2014. 324 p.

67. Trumler W, Paulisch F. How “Specification by Example” and Test-Driven
Development Help to Avoid Technial Debt. In: 2016 IEEE 8th International
Workshop on Managing Technical Debt (MTD). 2016. p. 1–8.

68. Berander P, Andrews A. Requirements Prioritization. In: Aurum A, Wohlin C,
editors. Engineering and Managing Software Requirements [Internet]. Berlin,
Heidelberg: Springer Berlin Heidelberg; 2005 [cited 2019 Jul 19]. p. 69–94.
Available from: https://doi.org/10.1007/3-540-28244-0_4

69. Leffingwell D. Agile Software Requirements: Lean Requirements Practices for
Teams, Programs, and the Enterprise. Addison-Wesley Professional; 2010. 562
p.

70. Inayat I, Moraes L, Daneva M, Salim SS. A Reflection on Agile Requirements
Engineering: Solutions Brought and Challenges Posed. In: Scientific Workshop
Proceedings of the XP2015 [Internet]. New York, NY, USA: ACM; 2015 [cited
2019 Sep 4]. p. 6:1–6:7. (XP ’15 workshops). Available from:
http://doi.acm.org/10.1145/2764979.2764985

71. Lincoln YS, Guba EG. But is it rigorous? Trustworthiness and authenticity in
naturalistic evaluation. New Directions for Program Evaluation.
1986;1986(30):73–84.

72. Guba EG. Criteria for assessing the trustworthiness of naturalistic inquiries.
ECTJ. 1981 Jun 1;29(2):75.

73. Dorussen H, Lenz H, Blavoukos S. Assessing the Reliability and Validity of
Expert Interviews. European Union Politics. 2005 Sep 1;6(3):315–37.

74. Eloranta V-P, Koskimies K, Mikkonen T, Vuorinen J. Scrum Anti-Patterns – An
Empirical Study. In: 2013 20th Asia-Pacific Software Engineering Conference
(APSEC). 2013. p. 503–10.

75. Eloranta V-P, Koskimies K, Mikkonen T. Exploring ScrumBut—An empirical
study of Scrum anti-patterns. Information and Software Technology. 2016 Jun
1;74:194–203.

99

Appendix A: Interview template for data collection
It should be noted that the topics/questions in the protocol were guidelines. It is
possible some were omitted or changed during an interview to adapt to a different
context of the interviewee. The interview was a semi-structured interview.

Permission to record interview? [0]
Company;
Interviewee;

1. Context

Name of the company, location,
country, name of contact

General information on the company:
history, sector, target markets, mission,
etc.

Key figures such as size, turnover,
number of customers, etc.

An overview of the company’s
products/services: description of main
functionality, product/service platform,
customer markets.

What is the product/project the team is
currently working on?

Perceived maturity of the team? (scale
1-5)

How is the product roadmap established
and updated?

How are the boundaries of a release
defined (for a release-based product)?

At what stage are user stories
introduced?

100

How is a roadmap or a release definition
refined into a set of user stories?

Are there intermediate artifacts that are
utilized to obtain user stories?

How are customers involved in the RE
practices? How often is there
interaction between customer and
developers?

How is RE elicitation done? What
techniques?

Length of sprints

2. Requirements specification

How are requirements specified? (more
than only user stories?)

Who and what role is writing user
stories?

What template is used, if any, and why?

Do they make use of epics, user stories,
and themes?

What automated tools are used for
managing user stories?

How much importance does the benefit
part (“so that”) have?

Does the company use a quality
framework; if so, which one and why?

Are user stories complemented by other
requirements notations (e.g., for quality
requirements)?

Are user stories complemented with
acceptance tests, and using which
notation?

101

What is the technique or process that is
employed for effort estimation: expert
opinion, story points, planning game,
function points?

To what extent is the team satisfied
with their effort estimation practices
for user stories?

What is the prevalent team opinion on
the effectiveness of working with user
stories?

Do you use any requirements modeling
technique?

How are requirements verified, if at all?

3. Post US specification

Do developers work directly on user
stories, or are those refined?

If refined, what notations are used to do
so?

How are user stories validated after they
have been implemented?

Are user stories changed after their
initial specification, when and why?

Are user stories traced to other software
development artifacts, and vice-versa?

How are user stories prioritized?

What other information is included in a
backlog item, aside from the user story?

5. Additional information

How does the team deal with challenges that originate from literature?
Examples, people;
- High turnover

102

- Motivation issues towards RE
- Customer availability
- Budget and time estimations

Examples, resources;
- Lack of specialized tools
- Lack of documentation (e.g. tracing)
- Inappropriate architecture
- Growing technical debt
- Distributed teams, communication problems?

Did you encounter any of these challenges?
How did you solve them?
How did you mitigate them?

103

Appendix B: Case study dataset & analysis
The case studies were stored and analyzed in NVIVO. The NVIVO file (46mb) can be
found here https://drive.google.com/file/d/172BxDdYHY2zJ8Wd-
tFIrk2KPfLLCnzaU/view?usp=sharing.

Note: it can only be opened using NVIVO and be accessed with an account of Utrecht
University. If you seek access and are not a member of Utrecht University, please
submit a request for access to l.dereeder@students.uu.nl.

https://drive.google.com/file/d/172BxDdYHY2zJ8Wd-tFIrk2KPfLLCnzaU/view?usp=sharing
https://drive.google.com/file/d/172BxDdYHY2zJ8Wd-tFIrk2KPfLLCnzaU/view?usp=sharing
mailto:l.dereeder@students.uu.nl

104

Appendix C: Maturity matrix changelog

Bold capabilities are capabilities that have a dependency on another capability in a
different focus area.
Italic capabilities are capabilities that are situational.

The image above shows a metamodel of a maturity model. The validation sessions
could result in a number of changes. The revisions that can be encountered in the
changelog are;

- Addition, removal or merging of focus areas
- Addition, removal or merging of capabilities in a focus area
- Moving a capability to a different focus area
- Adding a dependency between capabilities
- Changing the content of a capability in a focus area

V0.1 First version of the matrix based on the case study & literature

105

106

V0.2 Changelog based on the case study & literature
, 6 revisions
R.1. Removed shared understanding from focus areas. Shared understanding is an
important concept in scrum, but does not warrant its own focus area. This is because
there are certain activities which can be done to establish a shared understanding,
such as refinement sessions and stakeholder management on a certain level.
Therefore, capabilities need to reflect that they add to a shared understanding.

R.2. Removed definition of done & ready from focus areas. The two capabilities are
divided to other focus areas. Capability A (there exists a definition of done that is
identical for all PBI’s) is added to Validation capability A. Capability B (there exists a
definition of ready) is added to the focus area sprint planning as capability B. This
means that these capabilities no longer have a dependency, as their original focus
area has disappeared.

R.3 Added Prioritization capabilities

R.4 Changed capabilities in the elicitation focus area. Capability C is new which
contains 3 amigo sessions.

R.5 Creation focus area renamed to documenting

R.6 Focus area epics is renamed to high-level requirements, as it better reflects the
content of the focus area. Epics, are high-level requirements. But not all high-level
requirements are epics, yet the focus area discusses high-level requirements and not
necessarily epics.

107

V0.3 Changelog after validation with expert A and discussion with lecturers. 14
Revisions
R.1. Customer involvement & Stakeholder management renamed to stakeholder
involvement (by advice from the supervisor)

R.2. Stakeholder involvement capability E has been made situational, as the end-user
does not always exist or is available

R.3 Sprint planning order is revised by advice from Remi; B becomes D, D becomes C,
C becomes B

R.4 The expert mentioned that the topic of living documentation is something for
high maturity teams and a capability discussing it could be added somewhere in
acceptance criteria or documentation & traceability. A capability D was added in
documentation & traceability dedicated to living documentation.

R.5 Capabilities have been balanced over the 10 maturity levels

R.6 Responsibilities A and B have been removed after discussion with Remi. The
reasoning behind this is that it does not concern agile RE, and the given capabilities

108

are rules required to adhere to Scrum. As few capabilities remain, the expert was
asked if the focus area is relevant enough to remain, or that the remaining
capabilities could be placed in other focus areas. The expert states that the
capabilities could be included in other focus areas. Responsibilities C and D are
relevant for agile RE. Capability C is added to prioritization, capability D still needs
to find a new focus area

R.7 Goals & vision have been merged with epics as they have many similarities. Goals
& Vision often directly lead to the creation of epics, Remi even stated ‘your goal &
vision are your epics, except they are not yet formulated in this way’.

R.8 Part of capability A from focus area documenting is moved to sprint planning
capability A, concerning the part ‘the team ensures there are enough backlog items
to enter the upcoming sprint’. The expert states this has more to do with sprint
planning than documenting.

R.9 Capability C from focus area validation has been removed. This capability
concerns the use of unit tests. While unit tests are a good practice to test code
coverage and the quality of code, the expert argued, it does not in any way validate
whether a requirements has been correctly implemented. It is therefore considered
out of scope for the model. Capability D (a backlog item is verified before it will enter
a sprint) has been moved to sprint planning and, as it was rarely done by teams, is
added there as capability E.

R.10 In agreement with the expert, the focus area of metrics has been removed, as
there are no capabilities to be found. While most teams track some metrics it is often
unclear what the purpose for this tracking is. The expert also states that the use of
metrics is not related to RE.

R.11 The focus area of tools is removed. The capabilities are divided over other focus
areas. Capability A & B (use of a tool for documenting & managing requirements) are
moved to focus area Documenting as capability A. Capability C (the use of
collaboration software such as confluence) is removed, as this collaboration software
is often also used to manage requirements but provides other, non RE-related,
functions for team collaboration, which are good but also out of scope for the model.
Capability D (the use of a tool to check the quality of a requirement) has also been
removed. This was advised by Fabiano as it is important to use the more detailed
quality framework (such as QUS) and whether this is done with a specific tool should
not matter. There already existed such a capability in documentation (capability D)

R.12 With the deletion of the metrics and tools focus groups, the category of Support
has been removed.

R.13 Added capability D to traceability & documentation, stating that teams should
practice BDD development in order to create ‘living documentation’, which is
documentation that automatically updates itself. BDD documentation is a way to

109

share the definition of your features and have a common dialogue for business and
technological stakeholders.

R.14 The expert suggested that capability E (a PBI does not enter the sprint before it
is verified with the customer) from sprint planning should be removed, as it is
already covered by capability D. The expert argues that having a definition of ready
should already cover this criteria. The problem with this is that the expert assumes
that having a definition of ready will include this criteria. However, the definition of
ready is defined by the team itself, thus having a definition of ready does not
guarantee verification is actually done. This issue is not yet resolved, and will be
discussed with the next expert.

110

V0.4 Changelog after validation with expert B, 14 revisions, 2 issues
R.1 Added capability D to traceability & documentation, stating that teams should
practice BDD development in order to create ‘living documentation’, which is
documentation that automatically updates itself. BDD documentation is a way to
share the definition of your features and have a common dialogue for business and
technological stakeholders.

R.2 Capability C from roadmapping has been expanded to include ‘the continuous
updating of the roadmap’. Expert M mentioned that although it is important to
schedule a roadmap this roadmap needs to be continuously updated and
reprioritized.

R.3 Part of capability A from goals & vision ‘The team uses different levels of
granularity to distinguish between high-level requirements (such as epics) and low-level
requirements (such as user stories)’ is moved to capability A from documenting
requirements as it is more related to this focus area according to the expert.
Capability C has been changed, as the expert states that mature teams do not blindly
follow some goal & vision from higher up the hierarchy chain and teams should
establish their own vision & goal, regardless of the techniques used.

R.4 The elicitation focus area has a situational capability D added. The expert states
that he sees teams that are really mature will no longer have to elicit many low-level
requirements, as they understand the stakeholders needs so well they can
immediately work out new requirements. The expert acknowledges implementing
requirements without consulting the stakeholders can also be a huge risk and is
therefore an indication of the high maturity of a team. This may be a controversial
item to add to a high maturity level and therefore this issue will be presented to the
focus group who will have the final verdict.

R.5 The documenting requirements focus area has a new capability C, the old
capabilities C and D are now D and E. Expert B states that it is very important (and
also stated by the scrum guide) that backlog items are transparent and can be
accessed by all stakeholders. The expert states that this is also the value of a tool like
azure devops or jira as it allows for easy transparency over a file like excel to keep a
backlog.

R.6 The estimating of epics was included in capability C for estimation, but is moved
to roadmapping

R.7 The capability B from refining requirements is removed, as the expert stated this
is not and should not be a hard demand. After checking the scrum guide, this was
found to be correct. The expert stated there are plenty of times where it can be
entirely reasonable to invest large amounts of sprint capacity into refining.
Capability B has been replaced by having a definition of ready that teams use to
identify whether an item still needs refinement or not. This also introduces a
dependency from Capability D from sprint planning to this capability.

111

R.8 Capability C from refining requirements has been expanded to include the fact
that teams should use some kind of reference story or tipping point to determine
when a story is too big and should be split up.

R.9 Capability A from validating requirements has been split up. The part ‘There is a
definition of done which is identical for all PBI’s’ has been added as capability B.
Previous capability B is now C, and C is now D. The reason for splitting this up is
because the expert stated he has seen many teams who did not establish a definition
of done, and it should therefore be a capability B on its own.

R.10 Capability C from validating requirements has been split up. The part ‘there are
review meetings in which the team and important stakeholders discuss which items
are done’ has been merged with capability D as they conveyed the same meaning.

R.11 Capability E has been added to validating requirements. The expert states that
while review meetings are a great way to validate, he believes there is an additional
level of maturity. The expert states that showing of the progress during a review
meeting is quite different from actually validating in the real-world environment in
which the system operates. Therefore, (capability E) the customer should validate
PBI’s himself in the working environment of the system. However, the expert did not
really know how this capability should be formulated. Therefore, this issue will be
presented to the focus group who will have a final verdict on the issue.

R.12 Capability A from traceability and documentation has been removed, as the
expert noted that the capability states that there is no effort towards the focus area,
and therefore it should not be a capability A (but a capability ‘zero’ or non-existent)

R.13 Capability A from traceability and documentation (which was previously
capability B) has been expanded by including the process of mapping dependencies
between stories. The expert states that this is important when changes happen to see
which other PBI’s may be affected.

R.14 Capability D from estimating effort is introduced by the expert. The expert
states that when estimating it is very important that the team uses some reference
backlog item or baseline which estimations are based on. Otherwise, everyone can
have their own interpretation of what a ‘work hour’ or ‘story point’ means.

112

113

Changelog v0.5 after validation with expert C, 5 revisions, 1 issue
R.1 Expert B argued that capability E in sprint planning is already covered by
capability D. The argument given is that a definition of ready should already include
some criteria that this verification activity took place, and thus capability D would
already guarantee that capability E took place. This issue was discussed with expert
C, who argued that while a good definition of ready should indeed cover this, not all
teams who have a definition of ready have a ‘good’ definition of ready and therefore,
the capability has remained the same. The issue will be presented to the focus group
for a final verdict.

R.2 Expert C states that the recent addition from expert B in capability C from
Roadmapping (“The roadmap is continuously updated and reprioritized.”) is a good
addition. The expert states that a roadmap needs to ‘live’, instead of being a static
artifact that is only created at the beginning of the project. The expert states this
capability is not situational for product software companies however, and it should
therefore be moved to capability B. Expert C states that capability D is incomplete
and should contain something about the SAFe framework (scaled agile framework),
which acknowledges two types of roadmaps; short- and long term roadmaps.

R.3 The expert suggested changing the order of capability B and C in the templates
focus area. The reason for this is that in the opinion of the expert, the A and C
capability are both very pragmatic about what needs to be built and B is about why it
needs to be built. The expert is of the opinion that this needs to be at a higher
maturity level, thus they have been switched.

R.4 The expert suggests that the step in the focus area of acceptance criteria between
A and B is fairly large (there are a lot of teams that use acceptance criteria, and there
are way fewer teams that use a formal language such as gherkin). The expert did not
know what should be in between however. Thus this issue will be presented to the
focus group.

R.5 The expert suggested a new capability D for the refining requirements focus area.
While it is important that there are enough refined items to enter a sprint a team
should also be careful not to ‘over-refine’, i.e. there should not be enough refined
items for the upcoming four sprints. This would lower the flexibility of the team and
the relevance of items may be debatable 4 sprints later, making the refinement of
them a wasteful activity.

114

115

Changelog v0.6 after validation with Expert D, 4 revisions, 2 issues
R.1. The expert argued that capability C in stakeholder involvement should be
changed. ‘Systematic identification of stakeholders is done at the beginning of a
project’ should be supplemented with a up-to-date overview of stakeholders, as
stakeholders can change during a project.

R.2. The expert argued that an additional capability for eliciting requirements would
be involving the end-user in elicitation. However, this is already covered in
stakeholder involvement capability E and is therefore not adjusted.

R.3. The expert argued that there are more factors to involve in prioritization, and
that these could be included in the prioritizing requirements focus area. However, he
had no ideas on how these should be included. Therefore, this issue is discussed with
the focus group who will give a final verdict.

R.4. The expert argued that really mature teams no longer need to add a lot of
information to some requirements, arguing that less=more for mature teams. The
expert did not know how this should be added however, as it is a high maturity
capability but does not really describe a process improvement. Therefore, this issue
is discussed with the focus group who will give a final verdict.

Changelog v0.6 after validation with Focus Group, 5 revisions

116

Name Function Experience in
current
function
(years)

Experience
working for
current
organization
(years)

FocusGroupExpert A Service delivery
manager

2 14

FocusGroupExpert B Product owner /
Business analyst

4 4

FocusGroupExpert C

Agile coach /
Project manager

6 18

FocusGroupExpert D

Arealead Way of
Working /
Manager / Senior
Consultant

1.5 11

FocusGroupExpert E

Senior
Consultant

6 13

The expert validations resulted in five issues which could not be resolved during

these validation sessions. These five issues have been discussed and resolved by the
focus group;

Issue 1: Expert C was of the opinion that there was a capability missing in the
acceptance criteria focus area between the current capabilities A and B. However, the
expert was unsure as to what this capability should be. The focus group was asked on
their opinion of the current state of the focus area and its capabilities and whether
they could identify a ‘missing’ capability. The group noted that the main idea behind
acceptance criteria is that the team has a shared understanding when the item is
finished. The experts agreed that a great way to perform acceptance criteria and
achieve good shared understanding is the use of specification by example. Therefore,
a new capability B has been added which describes the use of specification by
example to describe acceptance criteria. The experts were rather surprised that there
are teams who perform capability C without also performing D, as a team should
perform C because they want to do D as well. Only performing C seems like a waste of
effort. However, after some discussion the experts agreed that only performing C
does provide some other benefits aside from allowing to progress to capability D.
Therefore, these capabilities have not been merged.

Issue 2: Expert B was of the opinion that there was an additional capability in the

eliciting requirements focus area. This capability was explained by the expert; “Very
mature teams no longer need to elicit small details from stakeholders. If they are mature
enough, they can think for themselves well enough to fill in these details by themselves. I
consider this to be a final step of maturity”. This issue caused quite a bit of discussion
among the focus group as many experts took this to mean there is no contact with
the stakeholder at all. The final verdict of the group was that yes, this is an indicator

117

of a very mature team. However, there does need to be a dependency to the
validation focus area. If elicitation with the stakeholder is omitted the corresponding
requirements absolutely need to be validated with the stakeholder after
implementation, even more so than if elicitation were not omitted. As a result of this
discussion a new capability E has been added to the eliciting requirements focus area
with a dependency to the validating requirements focus area capability E, as the
experts stated that when omitting elicitation the validation needs to be thorough and
not on a lower level validation capability.

Issue 3: Expert B was of the opinion that there is an additional capability in the

validating requirements focus area. This capability E was defined as ‘supplementing
review meetings, the customer checks all PBI items in the working environment’.
This capability was still rather vaguely defined and therefore the focus group was
asked to give their opinion on the focus area and capability. The experts agreed that
this is an important final step, but stated that the current text should be changed.
According to the experts ‘supplementing review meetings’ should be omitted, as they
could see scenarios in which review meetings would be turned down, for example; in
projects with fast release cycles (e.g. every day) review meetings might be done only
once every sprint while there are 14 releases in the same sprint. These should be
validated by the customer/stakeholder in live production. Because of this, the
capability has remained the same with some textual changes about the presence of
review meetings.

Issue 4: Expert D was of the opinion that there are more aspects involved in the

prioritization of requirements, but was unsure how this should be included in the
capabilities. Therefore, the focus group was asked for their opinion on the current
focus area prioritizing requirements and whether they had any remarks or addition of
elements. There was quite some discussion between the experts what constitutes as
‘business value’ and ‘cost of delay’. An expert stated that he missed the fact that
prioritization is often linked to a certain goal. The main argument against capability
B was that prioritizing on business value can mean anything from ‘business value is
based on one factor (e.g. costs)’ all the way up to ‘business value is based on all
factors that have a positive contribution to the work item (e.g. costs, customer
demand, impact)’. The conclusion was that capability A should state that the
argumentation by the product owner is not explained to the team. ‘The product
owner is responsible for the prioritization of backlog items’ should be removed as
this is already a prerequisite by Scrum.

FocusGroupExpert C suggests that capability B and C should be merged and there
should be a new capability C stating that the team is contributing to the
prioritization. This is a sign of a mature team because the team is also involved in the
development process.

The discussion resolved around two questions. What do we think is a sign of a
mature team regarding the prioritization process?

118

A. The team can reach an objective prioritization by prioritizing with a lot of
argumentation.

B. The team can reach a consensus when prioritizing.

In the end, the following order of new capabilities was proposed and agreed upon
by experts.

Issue 5: Expert D was of the opinion that in the focus area Templates there should
be an additional capability E. According to the expert, the most mature teams have
established such a high level of shared understanding that it is no longer necessary
to include all kinds of information in backlog items, arguing that sometimes
less=more. The focus group was asked for their opinion on the issue. Expert D argued
that a template should never be a goal on its own and that it is a way to achieve a
shared understanding among team members. FocusGroupExpert E and
FocusGroupExpertC argue that the statement less = more is dangerous, and they both
encountered situations where not adding some information resulted in
misunderstanding within the team. However, they do agree with the argument
provided by expert D that very mature teams know each other so well that this
(less=more) argument can be true in some situations. The experts argue that its
‘good’ if a team uses a template but very hard to argue what a ‘good’ template should
contain, as it is very context specific. The experts argue that teams should use a
template and adjust the template to their own needs. The final capability has been
adjusted to reflect this. Teams should use a template but adjust it to suit their own
needs.

Issue 6: Before the focus group, all focus areas were ordered based on

improvement steps that the experts argued were logical/how they saw them in
practice/how important they were. However, between the focus areas there are also
areas that are more important for an immature team to establish capabilities in first
over other focus areas. The model does not yet convey this correctly. For example,
focus areas stakeholder involvement and estimating effort both have a capability A at
maturity level 1, suggesting that an absolute immature team should prioritize
implementing these capabilities first over, for example, ‘A’ capabilities from other
focus areas that start at either maturity level 2 or 3, like Sprint planning capability A.

119

The focus group was asked to try and identify which focus areas should have priority
over others to start implementing. This discussion results in quite a big shift of the
first capabilities in focus areas. While the experts argued that for later focus areas it
is much more arbitrary and almost impossible to say which capability needs to be
done over another due to the specific context being an enormous factor, they did
identify some priorities for early capabilities, focus areas that should definitely be
prioritized at the start of a completely immature team. The table below shows how
the experts identified the importance of the focus areas, and it has been used to
redistribute (mostly) capabilities that occur early in a focus area, like the A and B
capabilities.

Matrix v1
Focus area Maturity level

120

1 2 3 4 5 6 7 8 9 10
Management & Planning

Roadmapping A B C D
Stakeholder involvement A B C D E
Sprint planning A B C D E

Ideation
Goals & Vision A B C D
Eliciting requirements A B C D

Specification
Documenting requirements A B C D E
Templates A B C D
Refining requirements A B C D
Acceptance criteria A B C D

Implementation
Prioritizing requirements A B C D
Estimating effort A B C D
Validating requirements A B C D E
Traceability &
Documentation

 A B C D

Focus area 1 2 3 4 5 6 7 8 9 10
Maturity level
Matrix v1

Matrix v1
 1 2 3 4 5 6 7 8 9 10
Management & Planning

Roadmapping A B C D
Stakeholder involvement A B C D E
Sprint planning A B C D E

Ideation
Goals & Vision A B C D
Eliciting requirements A B C D

Specification
Documenting requirements A B C D E
Templates A B C D
Refining requirements A B C D
Acceptance criteria A B C D

Implementation
Prioritizing requirements A B C D
Estimating effort A B C D
Validating requirements A B C D E

121

Traceability &
Documentation

 A B C D

 1 2 3 4 5 6 7 8 9 10
Matrix v1

Matrix with stats v1
Focus area Maturity level

1 2 3 4 5 6 7 8 9 10 Capabilities per focus
area Management & Planning

Roadmapping A B C D 4
Stakeholder involvement A B C D E 5
Sprint planning A B C D E 5

Ideation
Goals & Vision A B C D 4
Eliciting requirements A B C D 4

Specification
Documenting requirements A B C D E 5
Templates A B C D 4
Refining requirements A B C D 4
Acceptance criteria A B C D 4

Implementation
Prioritizing requirements A B C D 4
Estimating effort A B C D 4
Validating requirements A B C D E 5
Traceability &
Documentation

 A B C D 4

Number of capabilities per
maturity level

6 3 6 6 6 5 6 6 6 6 Total = 56 capabilities
 Average capabilities per

focus area = 4.30
Average capabilities per
maturity level = 5.6

Levels 1-3: Mostly A capabilities, 13 out of 15 are A, 2 out of 15 are B
Levels 4-5: Mostly B capabilities, 10 out of 12 are B, 2 out of 12 are C
Levels 6-7: Mostly C capabilities, 9 out of 11 are C, 1 out of 11 is B, 1 out of 11 is D
Levels 8-10: Mostly D and E capabilities, 12 out of 18 are D, 4 out of 18 are E, 2 out of
18 are C

