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Abstract

State-of-the-art instance segmentation is one
of the hottest topics in image recognition. Im-
age recognition makes use of convolutional neu-
ral networks. Training convolutional neural net-
works require a vast amount of data and com-
putational excelling machines. This is often not
feasible for simple tasks. This master thesis in-
vestigates multiple machine learning methods to
assist the user to label data and to train convolu-
tional neural networks, without a need for large
datasets and the newest computer. This mas-
ter thesis proposes a tool that can train neural
networks within two hours and gives promising
results for small datasets.
Keywords: image recognition, convolutional
neural networks, deep learning, active learning,
transfer learning, instance segmentation

1. Introduction

Deep convolutional neural networks have led to a ma-
jor increase in possibilities in the field of image recog-
nition (Krizhevsky, Sutskever, & Hinton, 2012; Zeiler
& Fergus, 2014; He, Zhang, Ren, & Sun, 2016; Shin et
al., 2016). The improvement of performance in recent
years is mainly due to the existence of larger labeled
datasets, more powerful and deeper models, compu-
tational excelling machines and better techniques to
prevent overfitting. In most real world situations
there is a lack of labeled data samples (Otálora, Per-
domo, González, & Müller, 2017). A vast amount
of data and thus a large amount of variation is also
needed to prevent overfitting. Three ways to reduce
the pain of manually labeling data and to prevent
overfitting are (i) data augmentation, (ii) active learn-
ing, and (iii) transfer learning.

This master thesis proposes a state-of-the-art tool
to address these problems and combines the tasks of
(i) obtaining data, (ii) transfer learning, (iii) anno-
tating data, (iv) data augmentation, (v) instance seg-
mentation using Mask RCNN, and (vi) probabilistic
active learning. Data augmentation is used to im-
prove the simplicity and speed of algorithms (van Dyk
& Meng, 2001). It also increases the variation of the
data and reduces the chance of overfitting. Active
learning reduces the amount of manually labeled data,
by querying the oracle (i.e. a human annotator) to la-
bel data that is most likely to improve the algorithm
(X. Li & Guo, 2013). Transfer learning addresses the
problem of needing large datasets to train a neural
network, by using information gained from training
a source domain (Pan & Yang, 2010). There do not
exist any similar tools that try to combine all these
different methods in one simple interface. Besides,
tools made for image recognition are often either too

simple or too complex. Too simple in the way that
the neural network can not be trained on new data or
too complex in the way that non-programmers can-
not use it. The proposed tool is easy-to-use and can
be adjusted to the needs of the user. This model can
be trained in under two hours and gives good results
when using a very small number of images.

Together with the tool, this master thesis proposes
a methodology to test how well the different aspects of
the tool perform. Transfer learning is essential when
using a small dataset and improves the neural network
predictions significantly. Probabilistic active learning
and data augmentation in combination with transfer
learning give similar results to just applying trans-
fer learning. The methods are compared based on an
average precision score given for five different Inter-
section over Union values. Furthermore, the methods
are compared based on twelve different loss values.
The methods are tested on two dataset and obtains
a maximum average precision of 94%. This was done
using only 45 images to train the Mask RCNN model.

This master thesis is structured as follows: In the
next section, background information on neural net-
works, data augmentation, active learning and trans-
fer learning is given. In section 3, the related work
is discussed. Section 4, gives in depth information on
the different methods discussed in section 2. In sec-
tion 5, the methodology is described. Furthermore,
it gives the configurations that are used to test the
different methods. In section 6, a presentation and
visualization of the results is given. It explains which
methods should be used and the different possibilities
a user of the tool has. In the final section the results
will be discussed and future work will be stated.

2. Background

Image recognition is a vital thread in computer vision
research (Vijayanarasimhan & Grauman, 2009). Deep
convolutional neural networks have led to a major in-
crease in possibilities in the field of image recognition
(Krizhevsky, Sutskever, & Hinton, 2012; Zeiler & Fer-
gus, 2014; He, Zhang, Ren, & Sun, 2016; Shin et al.,
2016). Image recognition has four known fields: im-
age classification, object detection, semantic segmen-
tation and instance segmentation (Caelles et al., 2017;
Michaelis, Ustyuzhaninov, Bethge, & Ecker, 2018).
Image classification is used to classify and provide
labels for a given image. Object detection is used
to identify the object category and locate the posi-
tion of an object using a bounding box (Ren, He,
Girshick, & Sun, 2015). A bounding box is a mini-
mal box boundary enclosing a set of interesting data
points (i.e. an object) in an image. The idea be-
hind semantic segmentation is to identify the object
category of each pixel in an image (Long, Shelhamer,
& Darrell, 2015). Instance segmentation is a com-
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bination of object detection and semantic segmenta-
tion (Romera-Paredes & Torr, 2016). Mask region-
based Convolutional Neural Network (Mask RCNN)
is a well-known method that achieves Instance Seg-
mentation (He, Gkioxari, Dollár, & Girshick, 2017).
This research uses the Mask RCNN framework and
will be discussed in Section 5.

In the next paragraphs this master thesis will first
explain neural networks and why they are used for
image recognition. Then, three methods to reduce
the amount of manual labeled data for training the
neural network are discussed.

Neural networks. The last years have been crucial in
the progress of training artificial neural networks that
are matching and in some cases even surpassing hu-
man ability on various machine learning tasks (Gur-
ney, 2014; Hannun et al., 2014; Taigman, Yang, Ran-
zato, & Wolf, 2014; Schroff, Kalenichenko, & Philbin,
2015; Yosinski, Clune, Nguyen, Fuchs, & Lipson,
2015). The best known types of neural networks are:
(i) autoencoders, (ii) recurrent neural networks, and
(iii) convolutional neural networks1. The first type
of neural networks, autoencoders, are based on the
observation that random initialization does not work
great for training a neural network and that each layer
should be pre-trained using an unsupervised learning
method (J. Li, Luong, & Jurafsky, 2015). These type
of neural networks have rarely been used in real appli-
cations. However, thanks to the upcoming of residual
learning in recent years this framework has the po-
tential to surpass the current performance on dimen-
sionality reduction by other standardized methods
(e.g. Principal Component Analysis (Section 4) and t-
Distributed Stochastic Neighbor Embedding (Section
7) (He, Zhang, Ren, & Sun, 2016). The second type,
recurrent neural networks are used on sequential data
and can be used to predict with a certain probability
(Graves, Mohamed, & Hinton, 2013). Recent break-
throughs are mainly in speech and text analysis (Le-
Cun, Bengio, & Hinton, 2015). Another known field
where this method is used is stock prediction. The
final type is convolutional neural networks. They are
primarily used to extract features from input images.

This master thesis will focus on convolutional neu-
ral networks since these have been proven to be suc-
cessful for image recognition and object detection in
many fields (Sener & Savarese, 2017). LeCun, Ben-
gio, et al. (1995) states that:“The ability of multi-
layer back-propagation networks (i.e. convolutional
neural networks) to learn complex, high-dimensional,
non-linear mappings from large collections of exam-
ples makes them obvious candidates for image recog-
nition.” However, there exist other methods for im-
age recognition and object detection like support vec-

1https://blog.statsbot.co/neural-networks-for

-beginners-d99f2235efca, accessed on 11-11-2019

tor machines and haar-like features. Support vector
machines are a supervised learning model that uses
data for classification and regression analysis2 (Vap-
nik & Lerner, 1963; Boser, Guyon, & Vapnik, 1992;
Drucker, Burges, Kaufman, Smola, & Vapnik, 1997;
Drucker, Wu, & Vapnik, 1999; Chapelle, Haffner, &
Vapnik, 1999; Chapelle & Vapnik, 2000). Chapelle,
Haffner, & Vapnik (1999) shows that support vector
machines can generalize well on image classification
problems. In the past twenty years there have been
a lot of improvements in techniques for neural net-
works in the field of image recognition and support
vector machines are not used a lot anymore in this
field3. Haar-like features are computational much
faster than convolutional neural networks, but lack
the ability to adapt to new situations4. For example,
haar-like algorithms cannot recognize faces that are
tilted or are covered partly. State-of-the-art meth-
ods therefore mainly use convolutional neural net-
works kernels. An image kernel is a small matrix that
can be used in machine learning for feature extrac-
tion5. This method can recognize faces while covered
or tilted, but is computational more costly. Besides,
a vast amount of labeled data is needed to train these
kind of models. In most real world situations there
is a lack of labeled data samples (Otálora, Perdomo,
González, & Müller, 2017). A vast amount of data
and thus a large amount of variation is also needed to
prevent overfitting. Three ways to reduce the pain of
manually labeling data and to prevent overfitting are
(i) data augmentation, (ii) active learning, and (iii)
transfer learning.

Data augmentation. Data augmentation refers to a
standard way of filling in missing data or as a solution
for a lack of data (Tanner & Wong, 1987; Frühwirth-
Schnatter, 1994). It refers to augmenting labeled data
to create new data or to make the available data un-
derstandable. Data augmentation is used to improve
the simplicity and speed of algorithms (van Dyk &
Meng, 2001). The method was popularized in statis-
tics for deterministic algorithms by Dempster, Laird,
& Rubin (1977) and for stochastic algorithms by Tan-
ner & Wong (1987). Deterministic algorithms always
result in the same output given a fixed set of in-
puts and conditions. Stochastic models take uncer-
tainty into account, which means that the output is

2https://medium.com/@dataturks/understanding-svms

-for-image-classification-cf4f01232700, accessed on
11-11-2019

3https://medium.com/analytics-vidhya/the-scuffle

-between-two-algorithms-neural-network-vs-support

-vector-machine-16abe0eb4181, accessed on 11-11-2019
4https://towardsdatascience.com/whats-the

-difference-between-haar-feature-classifiers-and

-convolutional-neural-networks-ce6828343aeb, accessed on
11-11-2019

5http://setosa.io/ev/image-kernels/, accessed on 11-11-
2019
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not unique given a fixed set of inputs and conditions.
Most neural networks can be seen as a determinis-
tic function when it is trained6. However, the pro-
cess of training a neural network has stochastic ele-
ments (e.g. random initialization, nonlinearities and
stochastic gradient descent). The idea of using data
augmentation for image recognition comes from the
fact that the performance of convolutional neural net-
works increases based on the amount of data it gets.
Data augmentation is used to enlarge the training
dataset size and helps to prevent overfitting by adding
more variation to the data (Inoue, 2018). This is even
if the data is of lower quality or similar to other im-
ages (Perez & Wang, 2017). The data augmentation
used in this master thesis is stochastic and is used to
create new data that is augmented randomly.

There exist many methods for data augmentation.
This master thesis uses ten augmenting methods: (i)
flip, (ii) rotate, (iii) scale, (iv) crop, (v) translation7,
(vi) lighting condition, (vii) perspective transforma-
tion8, (viii) Gaussian Noise (Schlüter & Grill, 2015),
(ix) Random Erasing (Zhong, Zheng, Kang, Li, &
Yang, 2017), and (x) conditional generative adversar-
ial nets transformation or style transfer (Gatys, Ecker,
& Bethge, 2016). The first seven methods are ba-
sic augmentation methods and will not be discussed.
However, the three final augmentation steps will be
described. (viii) Gaussian Noise adds data points that
have a probability density function equal to that of
the normal distribution (i.e. Gaussian distribution)
to all frequencies. This is done to make sure that
high frequency patterns (which are often not part of
the intended training data) are distorted so that the
neural network will not only look at those. Of course
this also means that lower frequency patterns are dis-
torted too. However, a neural network can be trained
to still use those lower frequency patterns. Another
(less computational costly) known method that adds
similar noise is the salt and pepper noise, which just
spreads black and white pixels throughout the whole
image. (ix) Random Erasing is done by randomly se-
lecting a rectangle region and replacing its pixels with
random values. (x) Conditional generative adversar-
ial nets can transform an image from one domain to
another domain. For example changing the theme of
an image to a Picasso style theme. This method is
very robust, but computationally too expensive for
increasing the training set. A better alternative that
is mainly used in data augmentation for increasing
the size of the training set is neural style transfer.

6https://www.quora.com/Are-neural-networks

-stochastic-or-deterministic, accessed on 11-11-2019
7https://medium.com/nanonets/how-to-use-deep

-learning-when-you-have-limited-data-part-2-data

-augmentation-c26971dc8ced, accessed on 11-11-2019
8https://medium.com/ymedialabs-innovation/

data-augmentation-techniques-in-cnn-using-tensorflow

-371ae43d5be9, accessed on 11-11-2019

It mixes the ambiance of a reference image with the
content of the image that needs augmentation. This
produces an effect that is similar to conditional gen-
erative adversarial nets.

Active learning. The main idea behind active learn-
ing is that a machine learning algorithm can perform
better when it can choose the data points that need
to be labeled (Settles, 2010). Active learning reduces
the amount of manually labeled data, by querying the
oracle (i.e. a human annotator) to label data that is
most likely to improve the algorithm (X. Li & Guo,
2013). Active learning generally consists of four com-
ponents: (i) labeled training examples, (ii) unlabeled
examples which labels can be obtained, (iii) some-
thing that can provide these correct labels, and (iv)
a methodology to choose which unlabeled examples
should be chosen (Holub, Perona, & Burl, 2008).

Several scenarios have been studied in the past
in which the algorithm can use the oracle to learn:
(i) membership query synthesis (Angluin, 1988), (ii)
stream-based selective sampling (Atlas, Cohn, & Lad-
ner, 1990; D. Cohn, Atlas, & Ladner, 1994), and (iii)
pool-based sampling (Lewis & Gale, 1994; McCal-
lumzy & Nigamy, 1998). The first, membership query
synthesis, is not suitable for neural networks. This
is due to the nature of how unlabeled instances are
selected. The oracle can just create new instances
instead of picking one out of the underlying distri-
bution. To address this problem stream-based se-
lective sampling and pool-based sampling were pro-
posed. Stream-based selective sampling makes the
assumption that obtaining an unlabeled instance is in-
expensive. After obtaining the unlabeled instance the
learner decides if it is useful to label this instance. To
make this decision it uses query strategies to see if la-
beling the instance can result in increasing the learner.
Pool-based sampling is commonly used in real-world
problems. Pool-based sampling needs large collections
of unlabeled data that is gathered once (Lewis & Gale,
1994). It makes the assumption that there is a small
set of labeled instances from which it can learn a cer-
tain decision boundary. It asks the oracle to label
instances that are likely to increase the accuracy of
the learner. This last scenario of sampling is used in
this master thesis.

Active learning can be applied to deep neural net-
works that are used for image recognition (Ducoffe &
Precioso, 2018). The goal hereby is to minimize the
amount of annotations required by the oracle to label
the dataset. Annotations in instance segmentations
can be seen as drawing polygons around the object to
be labeled. Minimizing the amount of annotations can
be done through (i) using a smart method of query-
ing the right images to label, and (ii) pre-labeling new
images from the unlabeled data pool.

First, this master thesis will look at how to query

https://www.quora.com/Are-neural-networks-stochastic-or-deterministic
https://www.quora.com/Are-neural-networks-stochastic-or-deterministic
https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced
https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced
https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced
https://medium.com/ymedialabs-innovation/data-augmentation-techniques-in-cnn-using-tensorflow-371ae43d5be9
https://medium.com/ymedialabs-innovation/data-augmentation-techniques-in-cnn-using-tensorflow-371ae43d5be9
https://medium.com/ymedialabs-innovation/data-augmentation-techniques-in-cnn-using-tensorflow-371ae43d5be9
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the right image to label. This can be done by using
statistical methods (D. A. Cohn, Ghahramani, & Jor-
dan, 1996). Some methods to do this are uncertainty
sampling, Query-By-Committee (Ducoffe & Precioso,
2017), Expected Model change, Expected Error
Reduction, Variance Reduction, Density-Weighted
Methods (Settles, 2010), Deep Bayesian Active Learn-
ing (Gal, Islam, & Ghahramani, 2017) and (multi-
class optimised) probabilistic active learning (Krempl,
Kottke, & Spiliopoulou, 2014; Krempl, Kottke, &
Lemaire, 2015; Kottke, Krempl, Lang, Teschner,
& Spiliopoulou, 2016). This master thesis uses
a probabilistic active learning method. Krempl,
Kottke, & Spiliopoulou (2014); Krempl, Kottke, &
Lemaire (2015); Kottke, Krempl, Lang, Teschner, &
Spiliopoulou (2016) illustrate how probabilistic active
learning performs and what the advantages are over
other known methods.

Secondly, this master thesis will look at how the
queried image can already be labeled by the machine
when selected. This type of active learning is also
known as cooperative machine learning (Wagner et
al., 2018). To achieve this the output and predictions
from the Mask-RCNN model are used in combination
with the active learner. Hereby, it can be predicted
if the image contains the to be found object and the
position of the object. The model will use images
where the label has a high confidence and gives it
to the oracle. The oracle can then add, adjust or
delete the polygons if needed. The principle is that
at first the learner will make mistakes. But in time
the performance of the learner will increase until a
certain threshold is met. Once this threshold is met
the learner can predict new objects in an image and
add these to its training data, without interaction of
the oracle.

Transfer learning. Many machine learning methods
make the assumption that it can only work well if the
training and test data are drawn from the same distri-
bution and feature space (Pan & Yang, 2010). How-
ever, when the distribution or feature space changes
the model usually has to be rebuilt from scratch. To
rebuilt the model new training data is needed, which
is often very time consuming and sometimes impossi-
ble in real world application. To address this problem
transfer learning can be used. The key idea behind
transfer learning is that learning something for one
task can help you with learning a new task in the
same domain or even in a different one (Taylor &
Stone, 2009). For example, learning to play guitar,
can help the understanding on how to play the pi-
ano. Applying knowledge learned on previous tasks
can help with solving new problems faster or better.

There are two main approaches for transfer learn-
ing: (i) instance-based, and (ii) feature-based (Pan,
Kwok, Yang, et al., 2008). The instance-based ap-

proach learns different weights to label training ex-
amples in the source domain to help learn to la-
bel in a target domain (Huang, Gretton, Borg-
wardt, Schölkopf, & Smola, 2007; Sugiyama, Naka-
jima, Kashima, Buenau, & Kawanabe, 2008). The
feature-based approach tries to learn the shared fea-
ture structure of two domains to build a bridge for
knowledge transfer between the two domains (Ando
& Zhang, 2005; Blitzer, McDonald, & Pereira, 2006;
Raina, Battle, Lee, Packer, & Ng, 2007). This master
thesis focuses on an instance-based approach used on
convolutional neural networks.

3. Related work

This section provides a brief review of previous work
in image recognition and object detection. Since the
introduction of convolutional neural networks by Le-
Cun et al. (1989), it usage has grown immense (Zeiler
& Fergus, 2014). From only being able to classify
hand-written digits and detecting faces, recent years
have shown that convolutional neural networks are ca-
pable of much more. The implementation of AlexNet
(Krizhevsky, Sutskever, & Hinton, 2012) is the base
of how convolutional neural networks are used cur-
rently. The improvement of performance in recent
years is mainly due to the existence of larger labeled
datasets, more powerful (deeper) models, computa-
tional excelling machines and better techniques to
prevent overfitting. M. Lin, Chen, & Yan (2013) pro-
poses a method “Network In Network” that makes
use of 1x1 convolutional layers and implements micro
neural nets globally in the neural network. This idea
is used by Szegedy et al. (2015) to create GoogLenet
(i.e. Inception net).

Simonyan & Zisserman (2014) illustrates the bene-
fits of very deep nets in their work on VGGnet. How-
ever, deep neural nets have the problem of vanish-
ing/exploding gradients, which hinders convergence
(Bengio, Simard, Frasconi, et al., 1994; Glorot & Ben-
gio, 2010). Shortcut connections with identity map-
ping are proposed by He, Zhang, Ren, & Sun (2016) in
their work on residual neural network as a solution to
this problem. Identity mapping is making a replica
from the previous layer into a new layer. Szegedy,
Ioffe, Vanhoucke, & Alemi (2017) combines the ideas
of Inception networks and residual learning for even
more powerful networks.

State-of-the-art methods that use these previously
mentioned neural networks are MultiBox (Szegedy,
Reed, Erhan, & Anguelov, 2014), Single Shot Multi-
Box Detector (SSD) (Liu et al., 2015), Faster Region-
based Convolutional Neural Network (Faster-RCNN)
(Girshick, Donahue, Darrell, & Malik, 2014; Girshick,
2015; Ren, He, Girshick, & Sun, 2015), Feature Pyra-
mid Networks (FPN) (T. Lin et al., 2016), Region-
based Fully Convolution Network (R-FCN) (Dai, Li,
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He, & Sun, 2016), You Only Look Ones (YOLO)
(Redmon, Divvala, Girshick, & Farhadi, 2016), Reti-
naNet (T. Lin, Goyal, Girshick, He, & Dollár, 2017),
and MobileNet (Howard et al., 2017). According
to Huang et al. (2017) region based detectors like
Faster-RCNN, FPN and R-FCN show a small accu-
racy advantage over single shot detectors like YOLO,
SSD and MobileNet. However, this increase in ac-
curacy can only be achieved when real-time speed is
not needed9. Since speed of classifying an object is
not the main objective for this research a method
Mask-RCNN is used. Mask-RCNN is a simple to
train model for instance segmentation and extends
the Faster-RCNN method (He, Gkioxari, Dollár, &
Girshick, 2017).

4. Preliminaries

In the following sections, this master thesis will dive
deeper into how convolutional neural networks are
structured. It will also look into weight initialization
(which is important for transfer learning) and intro-
duces the probabilistic active learning (PAL) method.

Figure 1: A fully connected neural network

Convolutional neural network. To introduce a con-
volutional neural network, first some general under-
standing of how a neural network is structured must
be given. Figure 1 illustrates a fully connected neural
network, where each neuron is connected to all the
neurons of the previous network. A neural network is
a network of nodes (i.e. neurons) and general has an
input layer, one or more hidden layers and an output
layer10 11. A node in a neural network has (multi-
ple) input and gives an output. Figure 2 visualizes
one neuron. The neuron gets inputs x1, x2, x3, ..., xn

9https://medium.com/@jonathan hui/object-detection

-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd

-and-yolo-5425656ae359, accessed on 11-11-2019
10http://cs231n.github.io/convolutional-networks/, ac-

cessed on 11-11-2019
11http://neuralnetworksanddeeplearning.com/

chap1.html, accessed on 11-11-2019

which are the outputs of a previous layer. Addition-
ally, weights w1, w2, w3, ..., wn are defined for every
connection. The size of the weight indicate how im-
portant a connection is. Together with an activation
function the output of the neuron is calculated. The
output t, is determined by:

s = b+

n∑
i=1

wi · xi (1)

t = σ(s) (2)

where b is a bias weight and σ the activation func-
tion.

Figure 2: A single neuron

Looking at the number of neurons, connections and
weights in a neural network a computational prob-
lem arises when using images as data. Each pixel
of an image is a feature. Thus, resulting in a very
high number of inputs. Given the fact that convolu-
tional neural networks only connect one neuron with
a small subset of neurons in the previous layer, make
them more suitable than fully connected networks for
image recognition12. A convolutional neural network
is a more complex network and uses its neurons to
find features that determine the classifications of im-
ages. Figure 3 shows a small convolutional network.
The three important layers are (i) the convolutional
layer (ii) the pooling layer and (iii) the fully connected
layer.

The convolutional layer, which gives the network
its name, is a linear operation that uses multiplica-
tion of the input with a set of weights. With images

12https://www.quora.com/What-is-the-difference

-between-a-fully-connected-layer-and-a-fully

-convolutional-layer, accessed on 11-11-2019
13https://towardsdatascience.com/understanding

-neural-networks-from-neuron-to-rnn-cnn-and-deep

-learning-cd88e90e0a90, accessed on 11-11-2019

https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
http://cs231n.github.io/convolutional-networks/
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
https://www.quora.com/What-is-the-difference-between-a-fully-connected-layer-and-a-fully-convolutional-layer
https://www.quora.com/What-is-the-difference-between-a-fully-connected-layer-and-a-fully-convolutional-layer
https://www.quora.com/What-is-the-difference-between-a-fully-connected-layer-and-a-fully-convolutional-layer
https://towardsdatascience.com/understanding-neural-networks-from-neuron-to-rnn-cnn-and-deep-learning-cd88e90e0a90
https://towardsdatascience.com/understanding-neural-networks-from-neuron-to-rnn-cnn-and-deep-learning-cd88e90e0a90
https://towardsdatascience.com/understanding-neural-networks-from-neuron-to-rnn-cnn-and-deep-learning-cd88e90e0a90
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Figure 3: A simple convolutional neural network13

this can be seen as multiplying an input matrix W ,
with a matrix of weights, called a kernel or a filter
K. This input matrix, is a MxN matrix, where M
represents the vertical size of the pixels in an image
and N the horizontal size. The kernel is smaller than
the input data and slides over the whole image. This
is used to detect a certain feature consistently in the
entire image. Figure 4a shows how this is done using
an input matrix of size 5x5 and a weight matrix of
3x3. However, sometimes the filter does not perfectly
fit the input matrix. To address this problem zero
padding P , can be added. This is also useful to make
sure that features near the edge of an image are also
taken into account. Another option to adjust how the
filter moves is stride. Stride S, is the number of pixels
that the filter shifts over the input matrix. Figure 4b
illustrates padding and stride. The size of the output
matrix (i.e. feature map) O, is determined by:

O =
W −K + 2P

S
+ 1 (3)

In neural networks non-linear functions are used

after a linear convolutional layer to introduce non-
linearity to the activation map14. The three most
popular non-linearity functions for neural networks
are (i) Sigmoid, (ii) Tanh, and (iii) ReLU. The Sig-
moid function takes the input and results in an ouput
in the range of 0 and 1. It is given by σ(k) = 1

1+e−k ,
where k is the output of the convolutional layer. How-
ever, when the activation is at either tail, the gradi-
ant becomes close to zero. In backpropagation this
will result in a vanishing gradient. Tanh has out-
puts between -1 and 1. It has the same problem
of saturation as the Sigmoid function, but outputs
are zero centered. Rectified Linear Unit (ReLU) is
probably the most popular function and computes
f(k) = max(0, k). ReLU is more reliable and con-
verges six times faster than Sigmoid and Tanh. Figure
5 visualizes these activation functions.

A convolutional layer is very useful to find the pre-
cise position of features in an image. However, a small
rotation of features in an image will result in a to-

14https://www.datascience.com/blog/convolutional

-neural-network, accessed on 11-11-2019

Figure 4: An example on how a 3 x 3 kernel moves over an image. (Left) a. Shows the movement of the kernel
(gray) with P = 0 and S = 1 over an input matrix (dark blue) and gives an output (light blue). (Right) b. Shows
the movement of the kernel (gray) over an input matrix (dark blue) with P = 1 and S = 2 and gives an output
(light blue)

https://www.datascience.com/blog/convolutional-neural-network
https://www.datascience.com/blog/convolutional-neural-network
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Figure 5: Activation functions

tally different feature map. To address this limita-
tion, down sampling is used15. Down sampling can be
achieved by using an extra convolutional layer. The
more common and robust approach is to use a pooling
layer. This layer is added after a non-linearity func-
tion. Pooling layers are used to reduce the number of
parameters of each image in the dataset16. This re-
duction of the number of parameters can also be seen
as creating a lower resolution version of an image. The
two most common down sampling methods used for
convolutional networks are (i) max pooling, and (ii)
average pooling, see Figure 6. Similar to a convolu-
tion, pooling makes use of a filter to get an output.
Often a 2x2 filter with stride 2 is used to reduce the
size of each feature map by 2. With max pooling the
highest number is used of the feature map. Average
pooling calculates the average of the feature map.

After (multiple) convolutional and pooling layers,
a convolutional network ends with one or more fully
connected layers. Neurons in the fully connected lay-
ers have full connectivity with all neurons in the pre-
ceding and succeeding layers, as can be seen in a stan-
dard neural network. The fully connected layer is used
to combine the features found in the rest of the net-
work. Finally, an activation function is used to clas-

15https://machinelearningmastery.com/pooling-layers

-for-convolutional-neural-networks/, accessed on 11-11-
2019

16https://www.datascience.com/blog/convolutional

-neural-network, accessed on 11-11-2019

Figure 6: (Top) a. Max pooling,(Bottom) b. Average
pooling

sify the outputs17. Often a softmax activation func-
tion is used that turns the numbers from the neural
network into probabilities18. These probabilities are
used to give a certainty of the classification of objects
in an image.

The depth of a network is of crucial importance
and it was thought that adding more layers to a net-
work should result in better classification (He, Zhang,
Ren, & Sun, 2016). However, two problems arise
when training deeper models: (i) vanishing/exploding
gradients, and (ii) degradation. Vanishing/exploding
gradients hampers the convergence of a neural net-
work (Bengio, Simard, Frasconi, et al., 1994). This is
caused by the slopes of the derivatives that become
very small or very big. This problem is addressed by
normalized initialization and intermediate normaliza-
tion layers (Simard, LeCun, Denker, & Victorri, 1998;
Glorot & Bengio, 2010; Saxe, McClelland, & Ganguli,
2013). This means that the weights are set accord-
ingly to the input so that the output of each layer
does not get too low or too high. Ioffe & Szegedy
(2015) also addresses this problem by proposing batch
normalization. The second problem, degradation, is
the observation that adding more layers does not al-
low the network to learn as well as a smaller net-
work (Srivastava, Greff, & Schmidhuber, 2015; He &
Sun, 2015). This is counter intuitive, since it is as-
sumed that deeper models are able to do at least as
well as a simpler, shallower model. Take for exam-
ple a deep network solution that copies all the lay-
ers from a smaller model and extends it by adding
layers that are identity mapping. This should pro-
duce no higher training error, but experiments prove
otherwise. This research uses a deep residual frame-
work with 101 layers (ResNet 101), which uses short-
cut connections with identity mapping to address the
problem of the degradation problem (He, Zhang, Ren,
& Sun, 2016). Shortcut connections are used to add
input to the output after a few weight and activa-
tion function layers. Thus if the weight layers impose
degradation, the model can always select the input
from the shortcut connection. Figure 7 and 8 visual-
ize the addition of a shortcut connection to a part of
a neural network.

Besides the training algorithm of a neural network,
weight initialization is the most important factor for
the probability of convergence, the speed of conver-
gence and the quality of predictions of the neural
network (Fernández-Redondo & Hernández-Espinosa,
2001). Weight initialization is one of the most effec-
tive ways to speed up the training of a neural network
(Drago & Ridella, 1992; Denoeux & Lengellé, 1993;

17https://medium.com/@RaghavPrabhu/understanding

-of-convolutional-neural-network-cnn-deep-learning

-99760835f148, accessed on 11-11-2019
18https://medium.com/data-science-bootcamp/

understand-the-softmax-function-in-minutes

-f3a59641e86d, accessed on 11-11-2019

https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://www.datascience.com/blog/convolutional-neural-network
https://www.datascience.com/blog/convolutional-neural-network
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://medium.com/data-science-bootcamp/understand-the-softmax-function-in-minutes-f3a59641e86d
https://medium.com/data-science-bootcamp/understand-the-softmax-function-in-minutes-f3a59641e86d
https://medium.com/data-science-bootcamp/understand-the-softmax-function-in-minutes-f3a59641e86d
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Figure 7: An abstract view of a normal neural net-
work.

Figure 8: An abstract view of a residual neural net-
work with a shortcut connection

Martens, 1996). For neural network a local optimiza-
tion method is used for training and will result in a
local optimum (Yam & Chow, 2000). Gradient de-
scent is the go to local optimization technique for the
training of neural networks. The local optimum found
by gradient descent will determine the quality of the
classification abilities of the neural network. When
the local optimum is close or the same as the global
optimum, the neural network will perform well. How-
ever, if the local optimum is not similar to the global
optimum it will result in a poorly trained network.
Besides gradient descent, a back propagation tech-
nique (Rumelhart, Hinton, & Williams, 1985; Rumel-
hart, Hinton, Williams, et al., 1988) is used to make
sure that the error is optimized with respect to the
weights (LeCun et al., 1989; Fernández-Redondo &
Hernández-Espinosa, 2001). It is clear that the weight
initialization has a large influence in the speed of con-
vergence and influences if the training algorithm finds
an acceptable local minimum.

There are multiple ways to initialize weights: (i)
zero initialization, (ii) random initialization, and (iii)
initialization through transfer learning. In zero ini-
tialization all the weights are initialized with 019. If
all the weights are initialized with 0, weights in subse-
quent iterations will keep the same value. This makes
the hidden layers symmetric and does not make it
better than a simple linear model. Assigning ran-
dom values to the weights is a better method for neu-

19https://towardsdatascience.com/weight

-initialization-techniques-in-neural-networks

-26c649eb3b78, accessed on 11-11-2019

ral networks, since it will result in different weights.
However, a problem arises when values are very high
or low. It will result in either vanishing or explod-
ing gradients, which hampers convergence. He & Sun
(2015) proposes an activation where the weights are
initialized according to the ReLU activation function
to resolve this problem. Glorot & Bengio (2010) pro-
poses a similar method for TanH. The final method
for weight initialization is through transfer learning
(Raina, Battle, Lee, Packer, & Ng, 2007; Pan, Kwok,
Yang, et al., 2008; Taylor & Stone, 2009; Pan & Yang,
2010; Shin et al., 2016). Transfer learning makes use
of weights from a neural network that was trained
for a different domain (i.e. source domain). These
weights are trained to minimize the classification er-
ror of the different domain (i.e. target domain) (Cire-
san, Meier, & Schmidhuber, 2012). The weights of the
target domain are initialized using the final weights of
the source domain. This is a very good method, es-
pecially when having a lack of data, since the weights
are already trained on finding specific features. These
specific features (e.g. edges, shapes, facial features)
can be useful for finding the features in the neural
network that needs to be trained.

Probabilistic active learning. There exist many ac-
tive learning methods to help the annotator with
querying images to be labeled. This master thesis
will focus on probabilistic active learning (PAL), since
it is a computational efficient and versatile method
(Krempl, Kottke, & Spiliopoulou, 2014). PAL also
shows promising results in the field of deep learning.
There exist more optimized solutions like Optimised
probabilistic active learning (OPAL) (Krempl, Kot-
tke, & Lemaire, 2015) and multi-class OPAL (Kot-
tke, Krempl, Lang, Teschner, & Spiliopoulou, 2016).
These optimized solutions are cost-sensitive and non-
myopic. Thus, may be capable in given better results.
However, in the scope of this research these optimized
solutions are too complex and are not used to show
the benefits of using a probabilistic method for ac-
tive learning. This master thesis also solely focuses
on two classes and does not take multi-class scenarios
into account.

The PAL method can be explained by three aspects:
(i) label statistics, (ii) density weights, and (iii) prob-
abilistic gains. Following the smoothness assumption
(Chapelle, Scholkopf, & Zien, 2009), PAL considers
that a candidate instance x, has the most influence on
the classification in its neighborhood (Krempl et al.,
2014). Thus, the effect of labeling a new candidate
instance (x, .), largely depends on the values of its
neighboring labeled instances. This can be captured
in the label statistics, ls = (n, p̂), where n is the abso-
lute number of instances in that neighborhood and p̂
the number of positives. The values of n are obtained
by counting the labeled instances, or approximated by

https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78
https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78
https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78
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a kernel frequency estimation. p̂ can be seen as the
posterior probability that a certain instance should
be classed either positive or negative. When n ← 0,
PAL is similar to random sampling, since it has no
information about the data space (Krempl, Kottke,
& Lemaire, 2015). The density, dx, on unlabeled in-
stances shows the importance of a certain neighbor-
hood. If the neighborhood, thus the instance in this
neighborhood, have a high density, it has more influ-
ence on a larger part of the dataset and is deemed
more important. The probabilistic gain, pgain(ls), is
the expected cost reduction of selecting a certain can-
didate instance. Combining the probabilistic gain and
the density weights the optimal candidate is selected
for labeling.

The psuedo-code for the PAL algorithm is given in
Algorithm 1. Iterating over the data pool U , for each
labeling candidate x, the label statistics lsx, the den-
sity weight dx, and the probabilistic gain pgain, are
calculated to get gx (lines 1-6). Finally, the candidate
with the highest gx is selected (line 7).

Algorithm 1 Probabilistic active learning

Input: U // Unlabeled pool
L // Labeled pool

Output: x // Index of the optimal candidate

1: for x ∈ U do
2: (n, p̂)← labelstatistics(x,L)
3: dx ← densityweight(x,L ∪ U)
4: gx ← pgain(n, p̂) · dx
5: return arg max

x∈U
(gx)

Dimensionality reduction. As stated previous, an
image is the same as a MxN matrix of features. Each
feature equals one dimension. Working with high di-
mensional data is computationally very slow or in-
feasible (i.e. curse of dimensionality) (Verleysen &
François, 2005). To address this problem a dimen-
sionality reduction technique called Principal Compo-
nent Analysis (PCA) can be used (Wold, Esbensen, &
Geladi, 1987). PCA is very well suited for dimension-
ality reduction, but reducing dimension always results
in a loss of information. This research uses PCA to
calculate the density weights for the PAL method.
Figure 9 is used to illustrate what PCA does. When
having data that is described in multiple dimensions,
it is possible to look at it from a central point of view.
To reduce the number of dimensions a straight line is
fitted through the central point of view that results
in a minimal sum of squared error for b or a maximal
sum of squared error for a. Statistics usually opt for
the first option. However, PCA uses the second op-
tion, since it is easier to compute. This can be done

for any dimension. These lines are called Principal
Components (PC) and are divined by the slope of the
line in comparison to each dimension. The straight
orange line is used to describe the first dimension and
is called PC1. The second straight green line is used
to describe the second dimension and is called PC2.
For example an image is used with a width of 2 pixels
and a height of 3 pixels, 2x3 matrix. This results in
having 6 dimensions. To reduce the six dimensional
data space into a two dimensional data space, PC1
and PC2 can be used. Both, PC1 and PC2 consists
of six values, one for each original dimension. PCA
is done using Singular Value Decomposition (SVD).
Using SVD makes sure that the lengths of each PC is
scaled to 1. This means that taking a step of exactly 1
on a PC line will result in an increase or decrease of ex-
actly 1. This results in a scaled distance from the data
points. This vector of exactly 1 is also known as the
eigenvector. This eigenvector can be used to calculate
the eigenvalue using a Pythagorean method (see yel-
low triangle). The eigenvalues are the sum of squared
distances from the center point on the PC line to the
central point. For the bottom right point this distance
is equal to a. Six data points found by reducing the
dimensions are shown in Figure 9. Each data point
visualizes exactly one image in a two-dimensional hy-
perspace. To visualize high dimensional data it is of-
ten reduced to two- or three-dimensional data, as was
done to illustrate PCA. This is due to the fact that
humans are only capable to understand visualization
of two- or three-dimensional data. However, to cal-
culate the density weights for the PAL algorithm, the
dimensions are reduced to ten. This is done to make
sure that not too much information will be lost when
reducing the dimensions. Using the reduced dimen-
sions, the PAL algorithm can find the importance of
the neighborhoods and thus the density weights.

Figure 9: Principal Component Analysis
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5. Methodology

This master thesis proposes a tool to use instance
segmentation in combination with data augmenta-
tion, probabilistic active learning and transfer learn-
ing. The data augmentation active and transfer learn-
ing instance segmentation (DATALIS) methodology
consists of seven steps:

1. Data collection

2. Transfer learning

3. Image annotation

4. Data augmentation

5. Mask RCNN

6. Active learning

7. Prediction

Figure 10 illustrates the methodology applied to
building this tool. The visualization of the tool can
be found in Appendix A.

In step 1 data is collected. Transfer learning is ap-
plied in step 2. In step 3-6 the images are annotated,
augmented and run through the Mask RCNN and
probabilistic active learning algorithms. This cycle
will be repeated until a certain predefined threshold
is met. In step 7 a prediction is made on a test dataset
to see how well the neural network performs on pre-
dicting a class. In the next sections, each step of the
methodology will be addressed briefly. However, step
5(Mask RCNN) will be discussed in depth, since this
is the most important part of the methodology and
has not been covered previously in this master thesis.

5.1. Data collection

Data collection can be done in two ways: (i) using
an existing (annotated) dataset, or (ii) collecting new
data. Using an existing dataset is useful when test-
ing the performance of a methodology. This is due to
the fact that this dataset is not created by the tester
and thus is not biased by that particular researcher.
Besides, many existing datasets have enough data for
training, validating and testing. The second way of
obtaining data is by collecting it manually. Collecting
data manually is time consuming, but when training
a neural network for a specific case, usually manual
obtained data is needed. Since this research is focused
on images, the collection of images is only addressed.
This research focuses on obtaining images through an
API. An API is a useful way of interacting with a
certain provider to get specific information, in this
case images20. To obtain data this research uses an
API provided by Flickr.com. Through this API, the
user can specify how many images should be collected
and additional key words can be added. For example
when collecting images of a balloon, the user can spec-
ify keywords like party or birthday.

In this master thesis two benchmark datasets are
used to test how well transfer learning, probabilistic
active learning and data augmentation work on in-
stance segmentation. The first dataset contains 61
images of balloons21 in the training set, 13 in the val-
idation set and 10 in the test set. The dataset has
255, 47 and 136 object instances for the training, val-

20https://medium.com/@TebbaVonMathenstien/what-is-an

-api-and-why-should-i-use-one-863c3365726b, accessed on
11-11-2019

21https://github.com/matterport/Mask RCNN/tree/

master/samples/balloon, accessed on 11-11-2019

Figure 10: DATALIS methodology.

https://medium.com/@TebbaVonMathenstien/what-is-an-api-and-why-should-i-use-one-863c3365726b
https://medium.com/@TebbaVonMathenstien/what-is-an-api-and-why-should-i-use-one-863c3365726b
https://github.com/matterport/Mask_RCNN/tree/master/samples/balloon
https://github.com/matterport/Mask_RCNN/tree/master/samples/balloon
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idation and test set respectively. The second dataset
contains 45 images of dogs22 in the training set, 5 in
the validation set and 14 in the test set. Here the
training set and validation set only have one object
instance on each image, resulting in 45 and 5 object
instances respectively. The test set has 19 object in-
stances. Both datasets are very small, since the goal
of this research is to see if this tool is useful to use for
training neural networks, without much manual effort
to label a lot of instances.

5.2. Transfer learning

To test how well transfer learning can be applied
on the Mask RCNN model, this master thesis uses
weights gathered from a neural network trained on
a Common Objects in Context (COCO) dataset (T.-
Y. Lin et al., 2014). This COCO dataset can be de-
fined as the source data and was trained on 1.5 million
object instances. These objects are visualized in over
200.000 labeled images and consist of 80 different ob-
ject categories. Transfer learning is well suited when
weights are gathered from a source domain that have
similar features to the target set (Taylor & Stone,
2009). The balloon target domain is not part of the
COCO dataset and thus needs to reshape and use
features for other object categories to define the bal-
loons. The dog target domain is already featured in
the COCO dataset and thus should be able to use di-
rect features found in the COCO dataset. However,
both target domains should be able to use the fea-
tures of the COCO dataset, since the features found
in the source domain are similar to that of the target
domain. This master thesis also looks into the useful-
ness on using weights from a totally different source

22https://github.com/RomRoc/maskrcnn train tensorflow

colab, accessed on 11-11-2019

domain that do not have many similarities. The Mask
RCNN model trained on dog weights is used as source
domain for a new Mask RCNN model that is used to
predict balloons.

In transfer learning there are multiple ways to re-
train the gathered weights from the source domain.
The two most common ways are by retraining all
the weights, or only selecting the end of the neural
network (heads) and retraining those (Pan & Yang,
2010). The heads for Mask RCNN are the bounding
box regression, classifier and mask heads of the net-
work (see section 5.5). In both cases all the weights
are transferred from the source domain to the target
domain. However, when only training the heads, all
the weights from the earlier stages in the model re-
main unchanged. When training the whole network,
every stage is retrained. This master thesis addresses
these two ways to see the difference in performance.
These two ways are also compared to transferring the
COCO weights, but without retraining the network.
This is done to see what the ground prediction of the
model is when transferring the weights, without the
addition of new training data to reshape the features.
The tool gives the user more freedom in choosing how
much of the model should be retrained and gives the
possibility to retrain any given layer that the user
deems useful.

5.3. Data annotation

Data annotation in instance segmenation is the draw-
ing of polygons around the target instances (He,
Gkioxari, Dollár, & Girshick, 2017). When using a
benchmark dataset (e.g. balloon and dogs dataset),
no annotation is needed. These datasets are anno-
tated by the creater of the dataset. However, when
training a dataset on a specific domain chosen by the

Figure 11: Mask RCNN model

https://github.com/RomRoc/maskrcnn_train_tensorflow_colab
https://github.com/RomRoc/maskrcnn_train_tensorflow_colab
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user, images must be annotated. The tool has a build-
in annotation application called VGG Image Annota-
tor (VIA) (Dutta & Zisserman, 2019). This tool is
easy to use and outputs a json file with the created
annotations. The Mask RCNN model can access these
json files with ease and uses these to train the model.

5.4. Data augmentation

As described in section 2, nine different data augmen-
tation methods can be used to alter the image. The
tool lets the user select the number of augmented im-
ages it wants to create for the training set and also
gives the option to create augmented images for the
validation set. This is useful, since the size of the
validation set can improve the performance of a neu-
ral network significantly (Guyon, 1997). In this mas-
ter thesis the performance of the neural network is
addressed by looking at augmenting only the train-
ing set, and augmenting both the training set and
the validation set. For performance measurements,
30 augmentations on each image are performed. This
results in 1830 training images and 390 validation im-
ages for the balloon dataset. For the dogs dataset,
1350 training images and 150 validation images are
created.

5.5. Mask RCNN

The Mask RCNN model is a two stage proposal net-
work. T. Lin, Goyal, Girshick, He, & Dollár (2017)
state that two stage detectors outperform more classic
object detectors that use a sliding window paradigm.
Whereas object detectors that use a sliding window
paradigm can find objects rather efficient, two stage
proposal networks show for very good accuracy. In
the first stage of the Mask RCNN model, images
are scanned and areas of interest are generated. In
the second stage, objects in these areas are classified
through generated bounding boxes and masks. The
Mask RCNN model was proposed by He, Gkioxari,
Dollár, & Girshick (2017) and extends its predeces-
sor Faster RCNN. The main extension is that Mask
RCNN takes pixelwise segmentation into account, in-
stead of only looking at object classification. The
Mask MRCNN model is given in Figure 11. In the
next sections, the structure of the Mask RCNN is ex-
plained through visualization. Finally the configura-
tions used for testing are discussed.

Backbone. The backbone consists of a convolutional
nerual network and a Feature Pyramid Network. The
convolutional neural network used in Mask RCNN is
usually a residual network with 50 or 101 layers (He,
Gkioxari, Dollár, & Girshick, 2017). This research
uses a residual network with 101 layers, referred to
as resnet101 (He, Zhang, Ren, & Sun, 2016). Figure

Figure 12: Residual network with 101 layers.

12 shows the structure of the residual network. The
network consists of five convolutional stages, followed
by a max pooling layer, a fully connected layer and
the final predictions.

Figure 13: Convolutional block used in a residual net-
work.

Stage 1 takes the images as input, adds zero
padding and does 64 7x7 convolutions with a stride
of 2. Then it adds a batch normalization layer to
increase the stability of a neural network and normal-
izes the output from the previous convolutional layer.
Stage 1 ends by applying a ReLU activation function,
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Figure 14: Identity block used in a residual network.

followed by a max pooling layer.

Stage 2 till 5 use convolutional and identity blocks
to address the values from the max pooling layer. A
convolutional block (Figure 13) is a combination of
convolutional layers, batch normalization and activa-
tion functions (ReLU). Moreover, it adds a shortcut
connection that has a convolutional layer and batch
normalization in it. Identity blocks are similar to con-
volutional blocks. However, the only difference is that
the shortcut connections are identity mapping (He,
Zhang, Ren, & Sun, 2016), see Figure 14. Stage 2
has one convolutional block, followed by two identity
blocks. All three of these blocks uses 256 filters of
size 64x64. Stage three has one convolutional block,
followed by three identity blocks. Here the blocks
use 512 filters of size 128x128. Stage 4 is the biggest
stage and has one convolutional block and 22 identity
blocks. In this stage 1024 filters of size 256x256 are
used for the blocks. The final stage uses 2048 filters

Figure 15: Feature Pyramid Network.

of size 512x512 for each block and has one convolu-
tional block and only two identity blocks. The stride
is doubled at each stage. Stage 1 started with stride
2, thus stage 2 has a stride of 4. Stage 3-5 have stride
8, 16 and 32 respectively. This means that at each
stage the spatial dimension is halved23.

The detection of objects at different scales can be
challenging when using only convolutional neural net-
works. To address this problem, Feature Pyramid
Networks (FPN) are used (T. Lin et al., 2016). Con-
volutional neural networks can be seen as a bottom-up
approach to find features. FPN uses the output from
the convolutional neural network in a top-down path-
way24. Figure 15 shows this approach. On the left,
the five stages from the residual network are shown.
The outputs from each stage are used in the FPN to
find features. From stage 5, a 1x1 convolution filter is
applied to create M5. This is the first feature map for
object prediction. Going down the top-down path, the
previous layer is upsampled by 2, using nearest neigh-
bors upsampling. Nearest neighbors upsampling is a
simple technique and uses pixel duplication to create
new higher resolution images (Mazzini, 2018). These
higher resolution images are added element-wise to
the feature maps obtained at the corresponding stages
from the residual network. However, stage 1 is not
considered with FPN, since the spatial dimension is
too large. Thus, slowing down the process and making
it unfeasible. After obtaining all the merged layers, a
3x3 convolution is applied to each layer to obtain the
pyramid feature maps, P2-P5. P6 is calculated by us-
ing a maximum pooling operation on P5. To illustrate
the scale of the input image and how the feature maps
size varies during the process, the dimensions are also
given in Figure 15. The dimensions are given by the
width w, the height h, and the channel c: (w, h, c).

Region proposal network. FPN is used to find fea-
tures and is not an object detector by itself25. Thus,
a Region Proposal Network (RPN) is used to scan
all the FPN top-bottom pyramid feature maps and
proposes regions of interest (ROI) that could contain
objects. To bind the objects in the feature maps, an-
chors are used by the RPN. Anchors are a set of boxes
that have predefined locations and sizes relative to the
images. Anchor ratios are given to get a set of boxes
that have a slightly different width to height ratio.
An anchor stride of 1 is used in this master thesis.
This is done to be sure that an anchor is created for
each cell in the backbone feature map. RPN runs a

23https://medium.com/@fractaldle/mask-r-cnn-unmasked

-c029aa2f1296, accessed on 11-11-2019
24https://medium.com/@jonathan hui/understanding

-feature-pyramid-networks-for-object-detection-fpn

-45b227b9106c, accessed on 11-11-2019
25https://medium.com/@jonathan hui/understanding

-feature-pyramid-networks-for-object-detection-fpn

-45b227b9106c, accessed on 11-11-2019

https://medium.com/@fractaldle/mask-r-cnn-unmasked-c029aa2f1296
https://medium.com/@fractaldle/mask-r-cnn-unmasked-c029aa2f1296
https://medium.com/@jonathan_hui/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c
https://medium.com/@jonathan_hui/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c
https://medium.com/@jonathan_hui/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c
https://medium.com/@jonathan_hui/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c
https://medium.com/@jonathan_hui/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c
https://medium.com/@jonathan_hui/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c
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Figure 16: Region Proposal Network head - Generate a class and boundary box prediction for each pyramid
feature map.

Figure 17: Region Proposal Network - Generate proposals from the anchors, class and boundary box predictions.

Figure 18: Box head predictions.

Figure 19: Box final detections.
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binary classifier over these anchors in an image26. An-
chors with a high possibility of containing objects are
passed to the second stage of the Mask RCNN model.
Remember that the first stage only scans the images
and finds areas of interest. The second stage is where
objects are classified.

Figure 16 illustrates how the RPN takes the pyra-
mid feature maps from the FPN as input. Each fea-
ture map is passed through a 3x3 convolution layer.
The output is passed and transformed to generate a
class and bounding box prediction. N is the batch
size and the numbers 3 and 4 depict the number of
anchor ratios and the coordinates respectively.

The output, together with the generated anchors,
are used to generate proposals. Figure 19 illustrates
how the generation of proposals is done. First, k an-
chors are selected that have a good objectness score.
The standard value for k is 12000 for training. Sec-
ondly, the anchor boxes are modified according to the
boundary box output from the RPN head. The third
step is to remove invalid boxes. Then non-maximum
suppression is applied to remove boxes that are too
similar to each other. When boxes have a higher
overlap than the threshold t = 0.7, a box is removed.
Since previous steps are performed separately for each
feature pyramid, the fifth step is to concatenate each
anchor box. This can be done, since no information
of FPN layer origin is needed for the ROI anymore.
The final step is to select a top n proposals based on
the corresponding objectness score. Default is to set
n = 2000 for training. This top proposals is selected
based on the whole batch.

26https://medium.com/@alittlepain833/simple

-understanding-of-mask-rcnn-134b5b330e95, accessed
on 11-11-2019

Regions of interest classifier and Bounding Box re-
gressor. The ROIs obtained by the RPN first have
to be mapped to the specific feature maps from the
FPN. Only four (P2-P5) are used for this association,
since P6 is specifically used to obtain ROIs by the
RPN. Equation 4 shows how the feature maps are
chosen based on the ROIs width w and height h.

k = k0 + log2 (

√
wh

224
) (4)

where k0 = 4 and k is the Pk layer in the FPN. So
if k = 3 for example, the feature map P3 is chosen.

Since the ROIs are all of a different shape, a uni-
form shape has to be created. This is done through
a ROI Align operation. In earlier models (Fast and
Faster RCNN) (Girshick, 2015; Ren, He, Girshick, &
Sun, 2015), this was done through a ROI pooling op-
eration. Both the ROI align and the pool operations
create a PxP matrix. However, the advantage of us-
ing a ROI align operation is that it works well on
situations where pixel to pixel correspondence mat-
ters. Since this research relies on instance segmen-
tation masks, pixel to pixel correspondence is from
utmost importance. After the ROI align operation,
multiple fully connected layers and ReLU activation
functions are used to output the class probabilities
and a bounding box regression in the box head, see
Figure 18.

The output from the box head is used, together
with the proposals from the RPN, to get the final
class and bounding box detections. This is done in a
similar way as the RPN (see Figure 17), but sets the
non-maximum suppression threshold, t = 0.5. Figure
19 illustrates this process.

Figure 20: Process on choosing the feature maps based on the output from the FPN.

https://medium.com/@alittlepain833/simple-understanding-of-mask-rcnn-134b5b330e95
https://medium.com/@alittlepain833/simple-understanding-of-mask-rcnn-134b5b330e95
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Figure 21: Segmentation mask predictions.

Figure 22: Segmentation mask post-processing.

The process on how the FPN and RPN work to-
gether to propose feature maps is visualized in Figure
2027. These feature maps are reshaped through the
ROI align operation. These final feature maps are
used in the object and classification heads.

Segmentation mask. The process of extracting seg-
mentation masks is similar to that of the bounding
boxes. However, this process does not make use of
fully connected layers, since these lose spatial infor-
mation. The segmentation mask head starts with a
ROI align operation. Instead of passing the output
through fully connected layers, multiple convolutional
layers are used, followed by a ReLU activation func-
tion. For each detection, a deconv operation is added.
These features are then passed through a predictor
and creates a mask for each class of each detection, see
Figure 21. To make sure that the masks are aligned
to the coordinates of the image, the masks have to
be resized according to that input image. The final
step is to apply a binary mask which uses a threshold,
t = 0.5, to see if a pixel either belongs to the class or
to the background. Figure 22 depicts these final steps.

The final three outputs of the model are a bounding
box prediction, class probability and a segmentation
mask. The jupyter notebook at https://github

.com/jordanvandijk9/Methodology Mask RCNN/

blob/master/Methodology visualization.ipynb

visualizes the whole process of the Mask RCNN
model and the outputs based on one test image.

27https://medium.com/@jonathan hui/understanding

-feature-pyramid-networks-for-object-detection-fpn

-45b227b9106c, accessed on 11-11-2019

Configurations. To train the Mask RCNN model,
certain configurations have to be stated. The tool
is written in python 3.6.8 with a tensorflow / keras
application. To train the neural network an Ubuntu
server with two Nvidia Tesla K80’s GPUs is used. The
GPUs have a size of 12GB and can process two images
each at ones. Multiplying the number of GPUs by the
image count, gives the batch size. Thus, the batch
size that is used for this research, is four. The batch
size determines the number of images in one iteration.
Each image has a channel count of three (RGB) and
optimally has a shape of 1024x1024, thus a dimension
of [1024, 1024, 3].

To train the model, each image is used once for
each epoch. Passing the entire training set through
the neural network is called an epoch28. However,
one epoch is not enough for a well trained neural net-
work. This master thesis uses 20 epochs to see how
well the neural network performs. When the train-
ing dataset is too large, steps per epoch can be de-
fined. This is the number of batch iterations that are
performed before an epoch is considered finished29.
Thus, resulting in only a part of the training data to
be used in that epoch. The validation steps is used
similarly for the validation set and can also be defined
if needed. Since this master thesis uses small datasets,
these two configurations are not necessary. A learn-
ing rate of 0.0005 is used to make sure that the model
converges. Appendix B gives a full overview of all the
configurations

28https://towardsdatascience.com/epoch-vs-iterations

-vs-batch-size-4dfb9c7ce9c9, accessed on 11-11-2019
29https://datascience.stackexchange.com/questions/

29719/how-to-set-batch-size-steps-per-epoch-and

-validation-steps, accessed on 11-11-2019

https://github.com/jordanvandijk9/Methodology_Mask_RCNN/blob/master/Methodology_visualization.ipynb
https://github.com/jordanvandijk9/Methodology_Mask_RCNN/blob/master/Methodology_visualization.ipynb
https://github.com/jordanvandijk9/Methodology_Mask_RCNN/blob/master/Methodology_visualization.ipynb
https://medium.com/@jonathan_hui/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c
https://medium.com/@jonathan_hui/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c
https://medium.com/@jonathan_hui/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c
https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9
https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9
https://datascience.stackexchange.com/questions/29719/how-to-set-batch-size-steps-per-epoch-and-validation-steps
https://datascience.stackexchange.com/questions/29719/how-to-set-batch-size-steps-per-epoch-and-validation-steps
https://datascience.stackexchange.com/questions/29719/how-to-set-batch-size-steps-per-epoch-and-validation-steps
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Figure 23: Precision-recall curve shown for, IoU = 0.50 and AP = 0.6273.

5.6. Probabilistic active learning

Probabilistic active learning can be very promising
in the field of neural networks when working with a
small dataset. The active learner uses the neural net-
work to predict which new image should be labeled.
However, neural networks need a lot of data to pre-
dict well. These two statements are rather contra-
dicting. To solve this problem, the active learner uses
a prediction made by the neural network, only us-
ing a small amount of data. By using a prediction,
the active learner can choose with a particular cer-
tainty the best possible solution. Adding only one
new annotated data point to the labeled pool will not
increase the performance of the neural network drasti-
cally. Therefore, this master thesis uses 30 augmented
images of the chosen data point at each new iteration.
The active learner is used on a neural network where
transfer learning is applied too.

5.7. Prediction

The final step of the methodology is making the pre-
diction. This master thesis assumes that transfer
learning will be the most important factor of obtain-
ing good predictions. Neural network with active
learning will take long to implement, but might give
good results with a very small dataset. Data aug-
mentation will probably reduce overfitting and helps
the learner to converge faster. Some limitations of
this research can be that training any neural network
costs time. Due to the time constraints, running each
method multiple times or using epochs is therefore
infeasable.

The final prediction is made by using the output of
the earlier steps of the methodology. Final predictions
use a threshold t = 0.9. Any object that is found in an
image that has a lower probability than this threshold,

is discarded. However, this probability is given by the
Mask RCNN model and does not state whether this
prediction is correct or not. In instance segmentation,
the quality of the prediction is measured by looking at
how well the objects are classified and if the pixelwise
prediction is similar to the ground truth object. To
measure this performance an Average Precision (AP)
measurement (T.-Y. Lin et al., 2014) in combination
with an Intersection over Union (IoU) (Rezatofighi et
al., 2019) is used30. The AP uses a precision-recall
(PR) curve to calculate the average precision31. Fig-
ure 23 visualizes the PR curve in blue. To calculate
the average precision, the curve is first smoothened.
This is done to make sure that the calculated aver-
age precision is less suspectable to small variations.
The values below the curve are used to calculate the
average precision. To obtain the precision and recall
(and thus the precision-recall curve), the IoU is used.
The IoU measures the overlap between two bound-
aries, see Appendix C. It measures the overlap of the
prediction and the ground truth object. If the over-
lap is more than a given threshold the prediction is
correct. In this master thesis, multiple IoU thresh-
olds are used: [0.5, 0.6, 0.7, 0.8, 0.9]. This is done to
see if the model is only good at finding the objects
or if it also performs well on pixelwise segmentation.
Instance segmentation relies on a pixelwise detection
of an object. Thus, a neural network that can achieve
a high average precision with a high IoU is deemed
more useful. However, often only the objects have to
be found for deep learning tasks. The precise loca-

30https://medium.com/@jonathan hui/map-mean-average

-precision-for-object-detection-45c121a31173, accessed
on 11-11-2019

31https://medium.com/@timothycarlen/understanding

-the-map-evaluation-metric-for-object-detection

-a07fe6962cf3, accessed on 11-11-2019

https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
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Table 1: Balloons: AP and IoU

IoU
Training 0.5 0.6 0.7 0.8 0.9

Full neural network 0.0529 0.0274 0.0003 0.0003 0.0000
Only coco 0.0331 0.0181 0.0147 0.0000 0.0000
Transfer learning heads 0.8861 0.8761 0.8558 0.8170 0.4842
Transfer learning all 0.8974 0.8974 0.8974 0.8691 0.6956
Augmentation 0.0255 0.0176 0.0000 0.0000 0.0000
Augmentation training 0.0697 0.0447 0.0333 0.0000 0.0000
Augmentation TL heads 0.8616 0.8616 0.8616 0.7945 0.4402
Augmentation TL all 0.9039 0.9039 0.9018 0.8517 0.3263
Active learning TL all, Aug(11) 0.8658 0.8658 0.8408 0.7692 0.3293
Random learning TL all, Aug(11) 0.8431 0.8431 0.8156 0.7678 0.4338

tion is of less importance and thus a lower IoU with
a high average precision is good enough. This master
thesis makes a distinction between neural networks
well suited for object detection [IoU = 0.5, 0.6, 0.7],
and neural networks that are best for instance seg-
mentation tasks [IoU = 0.8, 0.9]. This does not mean
that a high average precision for one of the categories
means that a neural network does not perform well
for the other field. Both fields are very closely linked
and a high average precision for each IoU is optimal.
Besides, a high average precision for a higher IoU is
infeasible if the results from lower IoUs are low. Ap-
pendix D gives an example of the overlap between the
prediction and the ground truth values.

6. Presentation and analysis of the data

In this section explanation and visualiziation of the
results will be given. The results are based on the
different elements of the methodology. First, the dif-
ferent machine learning methods will be compared.
This is done by training the model ten times on each
dataset. The results will be compared based on the
AP and its values of five different IoU thresholds. Sec-
ondly, the effect of probabilistic active learning is dis-
cussed in depth. Thirdly, this master thesis looks into
the effects of transfer learning. Finally, the training
and validation loss(es) will be given and discussed.

Comparison of different machine learning methods.
Table 1 and Table 2 show the average precision of
different IoU threshold values for multiple neural net-
works trained on the balloon and the dog dataset re-
spectively. The average precision is calculated after 20
epochs for each neural network. For each dataset, this
master thesis looks at the performance of (i) a normal
neural network (random initialization of weights), (ii)
a neural network that has its weights initialized by

the COCO dataset, (iii) a neural network with trans-
fer learning applied only on the heads, (iv) a neural
network with transfer learning applied on each layer,
(v) a neural network where each image is augmented
30 times for the training and validation set, (vi) a neu-
ral network where each image is augmented 30 times
for only the training set, (vii) a neural network that
uses a combination of transfer learning applied to the
heads and data augmentation, (viii) a neural network
that uses a combination of transfer learning applied to
each layer and data augmentation, (ix) active learn-
ing (with transfer learning on all layers and data aug-
mentation), and (x) random learning (with transfer
learning on all layers and data augmentation).

Looking at Tables 1 and 2 , it is clear that a neural
network without transfer learning (i, ii, v, and vi)
does not result in a high average precision for any
IoU. Where using only the coco weights (ii) result in
the highest value of these bad cases. With a 19.9%
average precision found on the dog dataset on both an
IoU of 0.5 and 0.6. Whereas only using augmentation
for the dog dataset results in a neural network that
is not able to correctly identify a single object. For
the balloon dataset, using transfer learning on all the
layers with augmentation gives the best performance
on finding the objects with an IoU of 0.5, 0.6, and 0.7.
However, transfer learning on all the layers without
augmentation gives the best results when looking at
an IoU of 0.8 and 0.9. This can also be said about
the dog dataset where augmentation overall resulted
in the highest average precision based on the object
detection IoU values. Using no data augmentation
slightly outperformed augmentation on the instance
segmentation task.

Based on the average precision of each IoU, no clear
distinction can be made between the methods that use
transfer learning. Each method has a similar perfor-
mance. Using only the heads gives a slightly better
result for the dog dataset. However, using the whole
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Table 2: Dogs: AP and IoU

IoU
Training 0.5 0.6 0.7 0.8 0.9

Full neural network 0.1571 0.0714 0.0357 0.0000 0.0000
Only coco 0.1990 0.1990 0.1710 0.0752 0.0000
Transfer learning heads 0.9405 0.8810 0.6667 0.5952 0.0714
Transfer learning all 0.8333 0.7976 0.6548 0.5714 0.0714
Augmentation 0.0000 0.0000 0.0000 0.0000 0.0000
Augmentation training 0.0000 0.0000 0.0000 0.0000 0.0000
Augmentation TL heads 0.9405 0.8095 0.7381 0.4048 0.0000
Augmentation TL all 0.8452 0.6667 0.5238 0.4524 0.0714
Active learning TL all, Aug(11) 0.8810 0.7976 0.5833 0.5119 0.0714
Random learning TL all, Aug(11) 0.9048 0.9048 0.6905 0.5179 0.0000

neural network for transfer learning gives a slightly
better result on the balloon dataset. Looking at Ta-
ble 3 it is clear that running one epoch using transfer
learning on the heads (with or without data augmen-
tation) costs the least amount of time. Since every
neural network runs for 20 epochs, time can be a
big factor in choosing a neural network. There was
no significant difference found between the different
methods that used transfer learning, thus the fastest
method should be chosen. This method is a transfer
learning method that uses training only on the heads.

Table 3: Average time spend on running one epoch.

Type Average time per epoch

Full neural network 640s
Only coco 80s
Transfer learning heads 320s
Transfer learning all 680s
Augmentation 700s
Augmentation training 670s
Augmentation TL heads 350s
Augmentation TL all 710s
Active learning TL all, AUG 980s
Random learning TL all, AUG 840s

Probabilistic active learning vs random learning.
Probabilistic active learning (PAL) is proposed as a
solution on getting good results with a small amount
of data. To see how well it performs, Table 1 and 2
show that PAL has similar results to other methods,
but with less images. Whereas the other methods use
61 and 45 images for balloons and dogs respectively.
PAL and random learning uses a maximum of eleven
images. To see if active selection of new images gives
a better performance than just adding random im-
ages, this section compares PAL to random learning.

Both PAL and random learning involves interaction
of the user during the training of the neural network.
It either gives the user a new image randomly, or the
image is actively selected by the model. Table 3 shows
that a user needs to spend around 980 seconds on run-
ning one epoch using PAL and 840 seconds on random
learning. Table 4 and 5 show the average precision
found on the balloon and dog dataset respectively.
This is done by looking at the average precision at
each iteration. One iteration in this case is applying
either active or random learning and running the neu-
ral network for two epochs. Both methods start with
two annotated images and add one image at each it-
eration. The annotated image is first augmented 30
times, to make sure that it can have effect on the
model. This results in eleven annotated images and
330 augmented images after ten iterations. It can be
seen that both PAL and the random learner give good
results. Whereas the active learner slightly outper-
forms the random learner for the balloon dataset, the
random learner performs better on the dog dataset.
Both dataset perform equally well on object detec-
tion. However, it can be stated that training a neural
network with interaction from the user performs bet-
ter on the balloon dataset on instance segmentation
tasks. This can be due to the fact that a balloon
has a less complex shape than a dog and can be seg-
mented more easily using less data. There was no
significant difference between actively selecting a new
image to randomly selecting a new image. Besides,
active learning takes the longest time to train. To
conclude, this master thesis cannot recommend to use
PAL for instance segmentation. However, only select-
ing a few images (actively or randomly) gives similar
results to using the whole dataset.
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Table 4: Balloons: active learning vs random learning

IoU
Epochs 0.5 0.6 0.7 0.8 0.9

Active learning
2 0.8238 0.8158 0.7998 0.7277 0.4470
4 0.8731 0.8694 0.8484 0.8069 0.5330
6 0.8505 0.8505 0.8505 0.8191 0.6418
8 0.9102 0.9102 0.9035 0.8915 0.6328
10 0.9191 0.9191 0.9055 0.8606 0.5296
12 0.8857 0.8834 0.8834 0.8487 0.6184
14 0.8634 0.8634 0.8634 0.8332 0.6138
16 0.8794 0.8794 0.8794 0.8401 0.6014
18 0.9238 0.9188 0.9120 0.8881 0.5681
20 0.8658 0.8658 0.8408 0.7692 0.3293

Random learning
2 0.7607 0.7470 0.6975 0.5233 0.1323
4 0.7998 0.7722 0.6683 0.6259 0.2415
6 0.6482 0.5863 0.3887 0.2247 0.1371
8 0.7708 0.7664 0.7257 0.6297 0.4129
10 0.8779 0.8712 0.8443 0.7580 0.3787
12 0.8671 0.8671 0.8483 0.7984 0.5361
14 0.8990 0.8953 0.8827 0.8238 0.5636
16 0.8178 0.8144 0.7952 0.7428 0.4200
18 0.8546 0.8546 0.8521 0.7967 0.3858
20 0.8431 0.8431 0.8156 0.7678 0.4338

Table 5: Dogs: active learning vs random learning

IoU
Epochs 0.5 0.6 0.7 0.8 0.9

Active learning
2 0.9048 0.8929 0.5317 0.3889 0.0000
4 0.8373 0.8214 0.5794 0.4544 0.0714
6 0.8810 0.8214 0.5714 0.5000 0.0000
8 0.9405 0.9405 0.8175 0.6508 0.0000
10 0.8611 0.7877 0.7163 0.6329 0.0000
12 0.9603 0.8888 0.7937 0.7143 0.0079
14 0.9246 0.8532 0.7103 0.5516 0.0000
16 0.8333 0.7381 0.6667 0.5556 0.0833
18 0.9286 0.8571 0.7857 0.6429 0.0238
20 0.8810 0.7976 0.5833 0.5119 0.0714

Random learning
2 0.9762 0.9405 0.6548 0.3651 0.0000
4 0.9762 0.9762 0.8333 0.6429 0.0000
6 0.9048 0.9048 0.7500 0.5714 0.0119
8 0.8929 0.8214 0.7857 0.6429 0.0714
10 0.8690 0.7619 0.7262 0.7143 0.1429
12 0.9286 0.9286 0.7262 0.5000 0.0794
14 0.9405 0.8690 0.7262 0.5298 0.0000
16 0.9405 0.9405 0.8690 0.7262 0.0238
18 0.9008 0.8294 0.5714 0.4286 0.0238
20 0.9048 0.9048 0.6905 0.5179 0.0000
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Table 6: Balloons: transfer learning

IoU
Epochs 0.5 0.6 0.7 0.8 0.9

COCO 0.1990 0.1990 0.1710 0.0752 0.0000
TL H 0.9405 0.8810 0.6667 0.5952 0.0714
TL A 0.8333 0.7976 0.6548 0.5714 0.0714
TL DB 0.9037 0.9037 0.8994 0.8494 0.6997

Transfer learning. To take a deeper look at how
transfer learning performs an, extra overview is given
to the main transfer learning results on the balloon
dataset. Different to the results from Table 1, here a
transfer learning operation is used where the source
domain is the dog dataset. The weights from the dog
neural network (trained on using transfer learning on
all layers of the neural network) are used to see how
well it works to transfer learn on balloons. Table
6 shows four different transfer learning results: (i)
coco only (COCO), (ii) transfer learning heads from
coco weights (TL H), (iii) transfer learning all from
coco weights (TL A), and (iv) transfer learning from
dogs weights (TL DB). As expected, all three trans-
fer learning methods outperform just using the coco
weights to predict the objects. However, surprisingly
the TL DB outperforms the other two transfer learn-
ing methods on four of the five IoU thresholds. This
is surprising since the shapes of dogs and balloons are
very dissimilar and Taylor & Stone (2009) states that
using transfer learning from similar domains tend to
give better performance. A possible explanation can
be that the dog weights that are used are obtained
after transfer learning from the coco dataset. Since
this neural network is also focused on a binary clas-
sification problem, it might be easier to fit on a new
binary classification problem. There is no significant
difference between using transfer learning from the
coco or from the dog weights. Both options are feasi-
ble and result in faster and better training of a neural
network.

Losses. To see what the costs are of training the
neural networks, this master thesis uses twelve differ-
ent losses (He, Gkioxari, Dollár, & Girshick, 2017).
The first six losses that are used visualize the valida-
tion loss and are given by the (i) overall validation
loss, (ii) RPN anchor class validation loss, (iii) RPN
bounding box validation loss, (iv) Mask RCNN clas-
sification loss, (v) Mask RCNN bounding box refine-
ment loss, and (vi) mask binary cross-entropy loss.
The same losses are also visualized for the training
loss.

The Mask RCNN classification loss reflects how

good the model is at predicting the correct class.
Since this master thesis uses a binary classification
problem, this loss reflects if the model classifies the
balloon or dog correctly. The RPN anchor class loss
does something similar, but only looks if it can find
an object and not whether this is the particular ob-
ject that has to be found. This is the reason that
the RPN anchor class loss tends to be lower than the
Mask RCNN classification loss32. The Mask RCNN
bounding box refinement loss shows the distance be-
tween the predicted bounding box and the ground
truth bounding box. It is by nature a regression
loss and uses a Smooth L1 loss within and penalizes
larger difference exponential. Hence, it shows how
good objects can be found within an image. Hereby,
the RPN bounding box loss is used to show how well
the model finds ROIs in an image. The mask binary
cross-entropy loss reflects the pixel-wise classification.
It is calculated for each ROI and is only based on
masks corresponding to the right class. As stated,
these losses are used for both the training and valida-
tion loss. The difference in the training and validation
loss can be used to see if the model is overfitted.

Looking at Figure 24, it can be seen that the over-
all validation and training loss tends to be high for (i)
a normal neural network, (ii) a neural network where
each image is augmented 30 times for the training and
validation set, (iii) a neural network where each im-
age is augmented 30 times for only the training set.
Looking at the difference between the overall valida-
tion loss (10.0) and the overall training loss (7.5), it
can be stated that these methods also have a problem
of overfitting. This is the reason that the methods do
not perform well on unseen data (i.e. test data), see
the bad results for average precision in Table 1. The
other methods have similar values for the validation
losses and the training losses. Interesting to see is that
the loss values of each method do not fluctuate much
between the epochs. This can be due to wrong hy-
per parameter settings (e.g. batch size, loss weights,
network size). However, the hyper parameters cho-
sen were selected carefully and looking at the values
from the loss functions and the average precision the
methods have a good performance.

Figure 25 shows the values from the loss functions
on training the method on the dog dataset. Similar
results can be found for the dog dataset, as the bal-
loon dataset. However, the two methods that use aug-
mentation in combination with either transfer learn-
ing implementation, shows signs of overfitting. The
overall validation loss is twice as high as the training
loss. Surprisingly this does not result in bad average
precision scores in Table 2. This is due to the fact that
the validation loss mostly differs in the RPN bound-

32https://stackoverflow.com/questions/55360262/

what-exactly-are-the-losses-in-matterport-mask-r-cnn,
accessed on 11-11-2019

https://stackoverflow.com/questions/55360262/what-exactly-are-the-losses-in-matterport-mask-r-cnn
https://stackoverflow.com/questions/55360262/what-exactly-are-the-losses-in-matterport-mask-r-cnn
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Figure 24: Validation and training loss on the balloon dataset.

Figure 25: Validation and training loss on the dog dataset.
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ing box loss compared to the training loss. This is
possibly solved by the MRCNN head when only the
dog objects are of importance and not each ROI.

Following the comparison of the different methods
based on the average precision and loss function, it
can be stated that transfer learning is of utmost im-
portance when having a small dataset. Transfer learn-
ing increases the performance and results in low losses,
even when only running a few epochs. Data augmen-
tation does not improve the results in this master the-
sis. PAL also does not improve the results and is not
show significant better than random sampling. In-
teresting is the fact that using only a small subset
of images resulted in the same average precision as
using the whole dataset. This master thesis recom-
mends to use a transfer learning method only on the
heads, with COCO weight initialization, without data
augmentation and without PAL.

7. Discussion

The improvement of performance in recent years is
mainly due to the existence of larger labeled datasets,
more powerful and deeper models, computational ex-
celling machines and better techniques to prevent
overfitting. In most real world situations there is
a lack of labeled data samples (Otálora, Perdomo,
González, & Müller, 2017). A vast amount of data
and thus a large amount of variation is also needed to
prevent overfitting.

This master thesis addresses the problem of need-
ing a vast dataset to train neural networks for instance
segmenation. It also addresses the problem that there
does not exist an uniform tool where users can cre-
ate and use a neural network, without much effort.
This master thesis proposes a tool that uses multi-
ple machine learning methods: (i) transfer learning,
(ii) data augmentation, and (iii) active learning and
is structured in a seven step methodology DATALIS.
Furthermore, each of the machine learning methods
is tested on the average precision for five Intersection
over Union values. Also the loss values are taken into
account to see how well a method performs. This
master thesis states that transfer learning is the most
important factor for getting good results when using
a small dataset. This is in accordance to Pan & Yang
(2010). This research was expecting to see positive ef-
fects on applying data augmentation and active learn-
ing. However, the addition of data augmentation or
active learning did not change the results significantly.

In future work more tests should be done to see
how well the model works on more complex object
detection and instance segmentation tasks. The con-
volutional neural network that is used is already a
view years old. Newer versions that use an incep-
tion neural network structure are also suitable for
instance segmentation and can give slightly better

results (Szegedy, Ioffe, Vanhoucke, & Alemi, 2017;
Huang et al., 2017).

The probabilistic active learning (Krempl, Kottke,
& Spiliopoulou, 2014) has also had a few improve-
ments in the past years and can be suited for multi-
ple classifications (Krempl, Kottke, & Lemaire, 2015;
Kottke, Krempl, Lang, Teschner, & Spiliopoulou,
2016). This research focuses on binary classification,
but this can be changed in the future. Also the PAL
method uses a label statistics, where the label statis-
tics are averaged to calculate one PAL score. How-
ever, there is also the option to get a PAL score for
each instance and then average these scores. This
might result in better suitable images to annotate and
results in better performance of the neural network.
PAL also makes use of PCA for calculating the density
weights. Linderman, Rachh, Hoskins, Steinerberger,
& Kluger (2017) states that t-distributed stochastic
embedding and auto-encoders (He, Zhang, Ren, &
Sun, 2016) can result in better values for dimension-
ality reduction. This research has only used principal
component analysis, which might give non-optimal re-
sults. This research can also be applied to videos.
This is already been implemented in the code for the
tool, but has not been reported and tested. Future
work can hopefully prove that data augmentation and
probabilistic active learning is useful for the training
of convolutional neural networks used for instance seg-
mentation.
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Appendices
A. Tool visualization

Figure 26: Landing page of the tool (1)
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Figure 27: Landing page of the tool (2)

Figure 28: Landing page of the tool (3)
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Figure 29: Page that contains the steps to train the Mask RCNN model.

Figure 30: Page where new data can be annotated for the training, validation or test set.
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B. Configurations used to train the Mask RCNN model

Table 7: Configurations Mask RCNN

Configurations values

GPU Nvidia Tesla K80
GPU size 12GB
GPU count 2
Images per GPU 2
Batch size 4
Image channel count 3
Image shape [1024, 1024, 3]
Image resize mode Square
Image minimal dimension 800
Image maximal dimension 1024

Backbone Residual network 101
Backbone strides [4, 8, 16, 32, 64]
Fully connected layer size 1024
Top down pyramid size 256
Classes (including background) 2
Bounding box standard deviation [0.1, 0.1, 0.2, 0.2]
Length of square anchor (RPN) stride [32, 64, 128, 256, 512]
Ratio anchor (RPN) at each cell [0.5, 1, 2]
RPN anchors per image 256
RPN anchor stride 1
RPN nms threshold 0.7
RPN bounding box standard deviation [0.1, 0.1, 0.2, 0.2]
ROI positive ratio 0.33
Pool size 7
ROIs per image 200
Pre nms training 6000
Post nms ROI inference 0.33
Post nms ROI training 2000
Mask pool size 14
Mask shape [28, 28]

Detection minimal confidence 0.9
Detection nms threshold 0.3
Batch normalization Freeze
Learning rate 0.0005
learning momentum 0.9
Weight decay regularization 0.0001
Gradient norm clipping 5.0

RPN class loss 1.0
RPN bounding box loss 1.0
MRCNN class loss 1.0
MRCNN bounding box loss 1.0
MRCNN mask loss 10.0
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C. Intersect over Union visualization

The predictions (yellow and green) are compared to the ground truth object (blue). The green circle has more
than 90% overlap with the blue circle and thus will give positive result on every IoU. The yellow circle has more
than 50% overlap with the blue circle. However, it does not have more than 60% overlap, thus it will only give
positive results on an IoU of 0.5.

Figure 31: Intersect over Union for a threshold of 0.5 and 0.9.



Jordan van Dijk 2019

D. Overlap of predictions and ground truth

The prediction is compared to the ground truth for a certain average precision

Figure 32: Overlap of the prediction and ground truth.
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