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Preface

One major goal of learning is prediction. In this report we discuss the per-
formance of kernelised regression and support vector regression to model em-
pirical data by supervised learning.

Supervised learning is the machine learning task of inferring a function from
input data. Machine learning in this context is about learning a general rule
that maps input data to their desired output values. These given input-
output pairs are called the training data. A supervised learning model ana-
lyzes the training data and produces an inferred function, which can be used
in a predictive way, to map new input data. A wide range of supervised learn-
ing models are available, each with its pros and cons. The most widely used
learning algorithms are linear regression, kernelised ridge regression (KRR)
and support vector regression (SVR). Linear regression is a commonly known
but restricted technique for learning problems. The latter two techniques are
non-parametric methods to find a non-linear relation between an input and
an output variable and are therefore more convenient for learning problems.

This report is my attempt to bring together many of the important ideas
of supervised learning and explain them in a statistical framework. Illus-
trative examples are included to strengthen the properties of the discussed
techniques. Beside the theoretical framework, we consider two major chal-
lenges supervised learning models have to deal with. Finally, we present the
performance of the chosen models to different sets of data.
We stress that there is no single learning model that works best on all the
supervised learning problems. In other words, in this report we delve into
the understanding of the No Free Lunch Theorem.
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Variable Types and Notations

For a statistical learning model there is a set of predefined variables that
are denoted as inputs. These input variables have influence on one or more
output values.

Typically, a predefined input variable will be denoted by the symbol X.
If X is a vector, elements out of X will be represented by Xi. All vec-
tors will be column vectors, a transposed vector will give us a row vector
XT = (X1 . . . Xp). Observed input values (not predefined) are written in
lowercase, hence the ith observed value of X is written as xi.

Matrices are represented by bold uppercase letters. For example, a set of
N input-p-vectors xi, i = 1, . . . , N , would be represented by the N × p
matrix X. In general, vectors will not be bold, except when they have N
components. This convention distinguishes a p-vector of inputs xi for the ith
observation from the N vector xj containing all the observations on variable
Xj. Since all the vectors are assumed to be column vectors, the ith row of
X is xTi , the transposed vector of xi.

For now, we can formulate the exercise of supervised learning as follows:
given a training set of p measurements T = {(xi, yi)}pi=1, the goal is to find
a prediction of the output Y ∈ Y , denoted by Ŷ , using the input X ∈ X .
Where X is the input space and Y is the output space.

An input vector can be transformed into a feature vector, which contains
a number of features that are descriptive of the input object. In this report,
we will use these two terms interchangeably.
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1 A Introduction on Supervised Learning

Learning is a widely used concept in statistics, in this chapter we present the
theoretical framework of supervised learning. The learning problem consists
of deriving a function that maps the input to the output in a predictive way,
such that the learned function can be used to predict output from future
input. In doing so, there are two major challenges to attack. Along with the
theoretical framework of supervised learning, in this chapter we discuss these
challenges supervised learning has to deal with to make good predictions.

1.1 Statistical Decision Theory [1]

In this section we present some basic statistical decision theory to expose the
foundation of supervised learning models. We place ourselves in the world of
random variables and probability spaces.

Let X ∈ Rp be a random input vector and Y ∈ R a real valued output
variable, with joint probability distribution P(X, Y ). In supervised learning
we are looking for a function f(X) to predict Y . This prediction requires
a loss function L(Y, f(X)) for penalizing errors in the prediction. Typical
choices are

L(Y, f(X)) =

{
(Y − f(X))2 squared error

|Y − f(X)| absolute error.
(1.1)

This results in a criterion for choosing f ; we want to minimize the Expected
Prediction Error (EPE). This can be done using a quadratic loss,

EPE(f) = E
[
(Y − f(X))2

]
=

∫ (
y − f(x)

)2
P(dx, dy).

By conditioning1 on X and by the tower property of expectation2, we can
write the EPE as

EPE(f) = EXEY |X
[
(Y − f(X))2| X

]
.

1Conditioning means factoring the joint density P(X,Y )=P(Y |X)P(X),
where P(Y |X)=P (Y,X)/P(X), and splitting up the bivariate integral accordingly

2If H ⊂ F then E
[
E[X| F ]| H

]
= E[X| H] = E

[
E[X| H]| F

]
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Therefore we can minimize the EPE pointwise

f(x) = argmin
c

EY |X
[
(Y − c)2| X = x

]
.

The solution to this is given by

f(x) = E
[
Y | X = x

]
. (1.2)

Thus the best prediction of Y at any point X = x is the conditional mean.
This is also known as the regression function.

1.1.1 A Statistical Model and Least Squares Estimation

The goal of supervised learning is to find a suitable approximation f̂(x) for
the relationship between the input and output denoted by f(x).

Like we saw in the preceding section, the squared error loss leads to the
regression function f(x) = E

[
Y | X = x

]
. However, for most of the learning

problems, the input-output pairs (X, Y ) will not be related directly to each
other in the sense that Y = f(X). There will be unmeasured variables that
also contribute to Y . The additive error model assumes that we can put all
known and unknown relationships together via the error ε. We suppose that
our data can be described by the following model

Y = f(X) + ε, (1.3)

with random noise ε, where E[ε] = 0.

Having introduced the above model, it becomes straightforward to think
about the well-known least squares estimation as a method for prediction.
Given a vector of inputs XT =

(
X1 . . . Xp

)
, we predict the value of Y via

the model

Ŷ = α̂0 +

p∑
i=1

Xiα̂i. (1.4)

The term α̂0 is the intercept term. It is convenient to include the coefficient
X0 = 1 in X. This allows us to write equation (1.4) as an inner product

Ŷ = 〈X, α̂〉 =
(
1 X1 . . . Xp

)

α̂0

α̂1
...
α̂p

 = XT α̂, (1.5)
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with coefficient vector α̂ ∈ Rp+1. We are modeling a single output Ŷ ∈ R.
In general however, if α̂ would be a (p+ 1)×N coefficient matrix, Ŷ will be
a N -vector. Then, in the 2(p + 1)-dimensional input-output space, (X, Ŷ )
represents a hyperplane.

The least squares estimation (LSE) derives the coefficients α by minimiz-
ing the Residual Sum of Squares. Which is defined as follows,

RSS(α) =
N∑
i=1

(yi − xTi αi)2.

RSS(α) is a quadratic function, hence a minimum exists but may not be
unique. [1] The solution is easiest to represent in matrix notation. We can
write

α̂LSE = (XTX)−1XTy, (1.6)

where X is an N × p matrix with each row an input vector and y is an
N -vector of the outputs of the training set. Assuming that X has full rank3,
this minimum will give us an estimation for the parameters α.

Using these estimated coefficients for the linear model, for given input xi,
gives us the output ŷi = ŷi(xi) = xTi α̂. The fitted function is defined by the
p coefficients of α̂.

While the least squares method is a convenient method for estimation, it
is not the only criterion used. A more general approach for estimating the
coefficients α is the maximum likelihood estimation (MLE).

Suppose we have an independent and identically distributed (i.i.d.) ran-
dom variable yi for i = 1, . . . , N from a density P(yi). We can write the
log-likelihood as follows

`(α) =
N∑
i=1

log P(yi).

The idea of MLE is that the best values for α are those for which the prob-
ability of the observed yi are the largest. For the additive error model in

3We can state that X has full rank if and only if XTX is invertible

7



equation (1.3), under the assumption that ε ∼ N (0, σ2), the MLE is the
same as the LSE (1.6).
By introducing a linear model, we are now able to make predictions given
the input data. The purpose of the next sections is to understand how we
can learn successfully from predictions in general, independent of the chosen
learning model.

1.1.2 Supervised Learning

Supervised learning attempts to learn f by example through a teacher. The
term teacher refers to the fact that in supervised learning the true outcome
value is known such that we can compare the predicted outcome values to
the true ones. The input values xi of the training data T for i = 1, . . . , p
will be put into a learning model that produces outputs f̂(xi). The learning
algorithm has the property that it can modify its input/output relationship
f̂ in response to differences between yi− f̂(xi). This technique is called learn-
ing by example.

The models we mentioned in the preface are all used as learning models.
We introduce kernelised ridge regression (KRR) and support vector regres-
sion (SVR) in Chapter 2 and Chapter 3. However, the differences between
performance of these models rely on the statistical learning theory discussed
in this chapter. In Chapter 4 we study the empirical results and performance
of these models to real learning tasks.

1.2 Model Selection [1] [2] [3] [4] [10]

Recall out of section 1.1.1 the assumptions that the data is i.i.d. from an
unknown underlying probability distribution P(X, Y ). For a given learning
problem, we have a variable Y , a random vector of inputs X and a prediction
function f̂(X) that has been estimated from a training set T .

The hypothesis space H ⊂ F is a space of functions f̂H : X → Y of some
underlying target space F , which contains all possible functions from X to
Y . The hypothesis space is the space of functions the learning model will
search through.

The loss function in equation (1.1) measures the error of a function on some
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individual data point. The risk of a function f̂ is the average loss over data
points according to the underlying distribution P, defined as

R(f̂) := E
[
L(Y, f̂(X))| T

]
. (1.7)

The risk of a function f̂ , as in equation (1.7), is the expected loss of the fit
at all the data points X ∈ X .

The learning model searches the best fit f̂ ∈ H, based on the given training
points. In theory we know exactly what the best fit is in H, namely the one
with the smallest risk. For simplicity we assume that it is unique and denote
it as

f̂H = argmin
f̂∈H

R(f̂).

However, at this point, it is impossible to compute the risk of a fit f̂ because
we have no knowledge about the underlying density function P. This is where
statistical learning theory provides a framework to analyze the situation and
comes up with solutions.

1.2.1 Model Complexity

The performance of a learning model when making predictions for new test
data is called generalization. [1] Assessment of this performance is important
because it tells us how to choose our learning method.

Given the training data T , let f̂ be the fit our learning model came up
with. We cannot compute the underlying risk R(f̂), but we can count the
number of mistakes the fit makes on the training points. The result is called
the empirical risk or training error. Mathematically speaking,

Remp(f̂) :=
1

N

N∑
i=1

L(Yi, f̂(Xi)). (1.8)

We say that a fit f̂ generalizes well, if the difference |R(f̂)−Remp(f̂)| is small.

Note that with this definition, it just means that the empirical error Remp(f̂)

is a good approximation of the true risk R(f̂). It does not necessarily mean
that f̂ has a small overall empirical risk Remp(f̂).
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Consider the following regression example. Given empirical data {(xi, yi)}pi=1,
for simplicity we take X = Y = R. Figure 1 shows a plot of such a dataset,
along with two possible fits. Fit f̂(b) represents a fairly complex model, but
fits the training data perfectly with 0 training error.
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0
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10

15

(a) Degree 2 polynomial fit f̂(a)
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(b) Degree 21 polynomial overfit f̂(b)

Figure 1: Polynomial fit to N = 20 points of data

On the other hand, we have f̂(a), a quadratic line that does not perfectly
fit the training data. There are some residual errors, resulting in a small
positive training error, for example measured by a quadratic loss function.

What about the true risk R(f̂(a)) and R(f̂(b))? We know we cannot com-

pute this risk from the training data. We can however say that f̂(a) and f̂(b)
perform differently. For example, if f̂(a) is the true underlying function, then

f̂(b) would have a huge true risk since the distance between the true and the
fitted function is large, we call this overfitting. [1]

This example shows the crucial decision we have to make. Do we fit the
training data to a complex function, resulting in a small or zero training
error but bad generalization performance? Or do we fit the training data to
a simple function at the cost of a slightly higher training error? In statistics
this is known as the bias-variance dilemma.
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1.2.2 Empirical Risk Minimization (ERM)

Recall that we assumed the data to be i.i.d. from an unknown underlying
distribution P(X, Y ). As we have seen in the previous section, the learning
problem involves minimizing the risk introduced in equation (1.7).

The fact that we do not know the underlying distribution P(X, Y ), makes
it impossible to minimize this risk. But we do know the training data gen-
erated by the distribution. So to proceed, we can approximate the true risk
by computing the empirical risk on the data and we will try to minimize the
empirical risk instead of minimizing the true risk. We will derive a fit f̂ as
the function

f̂ := argmin
f∈H

R(f).

The ultimate goal of a learning model is to find this best fit in H, for which
the risk is minimal. This technique is known as the empirical risk minimiza-
tion principle (ERM).

Note that the empirical risk (1.8) is defined as the average of the loss func-
tion L(Yi, f̂(Xi)) on specific training points and that the true risk (1.7) is the
mean of this loss function over the whole distribution. Hence, from the law of
large numbers we can conclude that for a fixed function f̂ , the empirical risk
converges to the true risk as the number of training points goes to infinity,

Remp(f̂) =
N∑
i=1

L(Yi, f̂(Xi))→ E
[
L(Y, f̂(X)

]
for N →∞.

For a given, finite sample this means that we can approximate the true risk
(the one we are interested in) very well by the empirical risk (the one we can
compute on the sample).

1.2.3 Bias-Variance Tradeoff

In section 1.2.1 we already pointed out the problem of model complexity:
when is a model “simpler” than another one? We stated that the task of
regression is to find a approximation f̂ with an acceptable risk. To real-
ize this, can we choose H equal to the space F of all functions and define
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f̂ := argmin
f∈F

Remp(f)?

Unfortunately, the answer is no. In this section we will see that if we optimize
over a too large function class H, in particular if we make H so large that
it contains all f̂ for all different probability distributions P, this will not be
able to learn successfully.

Identical to section 1.2.1, the generalization error or test error is the predic-
tion error for new test data. It arises from two events:

• Approximation Errors, also called the bias. These errors are due to the
fact that the hypothesis space is smaller than the target space. Hence
the underlying function may lie outside the hypothesis space. A poor
choice of the hypothesis space will result in high approximation errors
and we be called a model mismatch.

• Estimation Errors, also called variance. These errors are, given a cer-
tain hypothesis space, the differences between the error of the value in
the training data and the error of the best predictor. If the estimation
error is large, then the hypothesis class is probably too large for the
given amount of data.

Recall that f is the true function, f̂ is our approximation of f and f̂H are the
possible approximation functions which are in H. In figure 2 we illustrate
that the generalization error can be decomposed in the following way

R(f̂)−R(f) =

(
R(f̂)−R(f̂H)

)
︸ ︷︷ ︸

estimation error

+

(
R(f̂H)−R(f)

)
︸ ︷︷ ︸
approximation error

.

At this point, the size of the hypothesis space H is the mechanism to balance
the trade-off between the estimation and approximation error, see figure 3.
When we choose a very large hypothesis space H, the approximation error
will become small. However, the estimation error will be rather large because
the hypothesis space H will contain complex functions which will lead to
overfitting. When the hypothesis space H is small however, the opposite will
happen, underfitting.

12
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Figure 2: Illustration of errors in modelling
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Figure 3: The trade-off between the estimation and the approximation error
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1.2.4 Bias-Variance Decomposition

In section 1.1.1 we assumed that Y = f(X) + ε where ε ∼ N (0, σ2). In
the context of the bias-variance tradeoff, we can derive an expression for the
expected prediction error (EPE) from section 1.1.1 for a regression fit f̂(X)
for an input vector X, using the squared error loss

EPE(f̂) = E[(Y − f̂(X))2| X]

= σ2 +
(
E[f̂(X)]− f(X)

)2
+ E

[
f̂(X)− E[f̂(X)]

]2
= σ2 + Bias2(f̂(X)) + Var(f̂(X)).

The first term, σ2, is the irreducible error and cannot be avoided since it
depends on the chosen model and not on the procedure.
However, we do have control over the second and the third term. The second
term is the squared bias, the amount by which the average of our estimate
differs from the true mean. The last term is the variance, the expected
squared deviation of f̂(X) around its mean. In the last sections, we described
the origin of the bias and variance of a model. KRR and SVR are both models
that control these errors in a special way. We will elaborate the techniques
these models use in the next chapters.

1.2.5 Model Assessment

When we have a diversity of models, (potentially) with different complexity,
to choose from then how do we select the best fit for our data?

We do know that for the assessment of a chosen model, the most important
is the generalization error. We have seen that this error can be approximated
by computing this risk on a large test set, data that is not used for training
the model. By assumption, when we train the model, we do not have access
to the test set.

We can create a test set by partitioning the available data set into two dis-
joint parts: a training set and a test or validation set. The training set is
used for training the model and the validation set is used in order to select
the complexity of the model. We fit the different models to the training set
and evaluate its performance on the validation set. Consequently, we choose

14



the model with the best performance.

A guideline could be to use 80% of the data to train the model and 20%
is used for validating the model. If there is not enough data, we face diffi-
culties to train our model and to make a trustworthy estimate of prediction
performance. A criterion could be: reduce the number of variables such that
there are less points of data than variables that has to be estimated. Since
generally, we can not choose the number of data points.
An elegant solution could be cross validation. This method splits the train-
ing data into K-folds, then for each fold k ∈ {1, . . . , K} we train our model
on all the folds except the kth, illustrated in figure 4.

Run 1

Run 2

Run 3

Run 4

Run 5

Figure 4: Scheme of 5-fold cross validation

Then we average the (K − 1) runs to estimate the generalization error, the
average training error when we apply the function f̂(X) to an independent
test sample from the joint distribution of X and Y .
To conclude, estimation of test error for a particular training set is not easy
in general, given just the data from that same training set. Instead, cross
validation is a generally applicable way to predict the performance of a model
on a validation set using computation instead of mathematical analysis.
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1.3 Linear Regression Models and Least Squares [1] [4] [10]

We made the first steps towards a learning model in section 1.1.1 using a
linear model to make predictions. A linear regression model assumes that the
regression function from equation (1.2) is linear in the inputs X1, . . . , Xp.
However, it is extremely unlikely that the true function f(X) is really linear
in X. Therefore, to obtain more advanced models, we replace the input
vector X with transformations of X and then use linearity in a new space.
This technique is known as linear basis expansion. Denote φi(X) : Rp → R
the ith transformation of X for i = 1, . . . , p. We then model

f(X) =

p∑
i=1

φi(X)αi + ε.

A pth-polynomial can be fit in this way by choosing φi(x) = xi for i =
1, . . . , p or for trigonometric functions we can choose φ1(x) = cos(ω1x),
φ2(x) = sin(ω1x), φ3(x) = cos(ω2x) and φ4(x) = sin(ω2x). Figure 5 shows
the illustration of a least squares fit to a 2-dimensional input vector.

Until now, we have made minimal assumptions about the distribution of
the data. To study the characteristics of α we will assume that the yi are in-
dependent and have constant variance σ2 for i = 1, . . . , N . The covariance
matrix of the LSE could be easily deduced from equation (1.6) and is given
by

Cov(α̂| X) = (XTX)−1σ2.

To make deductions from these coefficients, extra assumptions are needed.
We assume that the deviations of Y around its expectation are additive and
Gaussian. For that reason,

Y = E[Y | X1, . . . , Xp] + ε

= α0 +

p∑
i=1

Xiαi + ε, (1.9)

where ε ∼ N (0, σ2). From equation (1.9) we can easily derive that

α̂ ∼ N
(
α, (XTX)−1σ2

)
,

which is a multivariate normal distribution. We can use these distributional
properties to form confidence intervals for the parameters α̂i.
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Figure 5: Least Square Estimation fitted with a quadratic

1.3.1 Bias-Variance Decomposition

To understand better the appearing errors using a linear model, we can do,
similar to the bias-variance decomposition in section 1.2.4, such a decompo-
sition for the expected prediction error (EPE) of a linear model f̂(X) = XT α̂

EPE(f̂) = E[(Y − f̂(X))2| X]

= σ2 +
(
f(X)− E[f̂(X)]

)2
+ ‖φ(X)2‖σ2. (1.10)

Here, φ(X) = X(XTX)−1X are the linear weights that produce the fit

f̂(X) = X(XTX)−1XTY.

So, Var(f̂(X)) = ‖φ(X)‖2σ2 is dependent of X.
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Once we found the bias-variance decomposition we can look to the gener-
alization error of this model. The principle problem with cross validation is
that it is slow, since we have to fit the model multiple times. This motivates
to compute analytical bounds to the EPE. Since we have N points of training
data, we can take the average which results in p

N
σ2. In doing so,

1

N

N∑
i=1

EPE(f̂) = σ2 +
1

N

N∑
i=1

(
f(xi)− E[f̂(xi)]

)2
+

p

N
σ2.

Here, model complexity is directly related to the number of coefficients p.
This sample error is an alternative for cross validation to achieve model
comparison. We will discuss analytical bounds of the EPE more extensive in
Chapter 2 and 3.

In this chapter we have been considering all the core statistical learning
theory related to supervised learning. From now on we will work towards
the introduction of the main learning models in this report, kernelised ridge
regression and support vector regression.
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2 Towards Kernelised Regression Models

In this section we will move beyond linearity and study more sophisticated
models for regression and their performances for learning tasks.

A reason why we could not be convinced by the LSE is the accuracy of the
prediction. Regularly, a linear regression model contains many correlated
variables, i.e. coefficients become poorly determined and produce models
with high variance and low bias. To alleviate this, we could rise the predict-
ing accuracy by shrinking or setting some coefficients of α to zero. In doing
this, we give up some amount of bias to reduce the variance of the prediction
and may improve the overall predicting accuracy.

In this chapter we discuss different methods to control the bias and vari-
ance. In linear models this is known as regularization. Later on we introduce
non-parametric models to find a non-linear relationship between the input
and output data.

2.1 Linear Ridge Regression [1] [4] [5] [10]

Ridge regression is a simple example of a regularization method. Ridge re-
gression shrinks the coefficients of α by introducing a penalty on the absolute
value of each element of α. The ridge coefficients minimize a penalized resid-
ual sum of squares

α̂ridge =argmin
α

{ N∑
i=1

(yi − α0 −
p∑
j=1

xijαj)
2 + δ

p∑
j=1

α2
j

}
, (2.1)

where xij denotes an element of the matrix X. In matrix notation,

RSS(δ) = (y −Xα)T (y −Xα) + δαTα. (2.2)

Here δ > 0 is a parameter that stands for complexity. In this way we can
control the amount of shrinkage, if δ is large, the amount of shrinkage is large.

Notice that the intercept α0 has been left out of the penalty term. It can be
shown that adding a constant c to each yi would not results (as expected) in
a shift of the predictions by the same amount c. Therefore we estimate α0 by
ȳ = 1

N

∑N
i=1 yi. The other coefficients will be estimated by ridge regression
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without intercept. [1]

It can be shown that the solution for equation (2.1) and (2.2) is of the form

α̂ridge =
(
XTX + δI

)−1
XTy.

We have to pay attention to the choice of the quadratic penalty αTα. As
a consequence of this choice, the ridge regression solution is again a linear
function of y. The solution adds positive elements to the diagonal of matrix
XTX before inversion. This makes the problem nonsingular, even if the
system of equations is poorly conditioned, i.e. when XTX does not have full
rank, or when the eigenvectors are small.

2.1.1 Geometric Interpretation

An illustration will help us to better understand the technique of ridge re-
gression. Figure 6 depicts the ridge regression method when there are only
two coefficients.

RSS(δ) = (y −Xα)T (y −Xα)︸ ︷︷ ︸
1

+ δαTα︸ ︷︷ ︸
2

Component 1 has elliptical contours, centered at the LSE/MLE. For dif-

ferent fixed heights c component 2 will represent the circle α2
1 + α2

2 = c1,
where c1 = c

δ
. For all values of δ the range of solutions for minimizing RSS(δ)

will be an intersection of the level curve of the circle and a level curve of the
ellipse.

We can do some reasoning for this, when we are moving out of a black
node, an intersection point, along a blue level curve our likelihood will not
change because we are at the same height but we have moved out of the red
circle, so we are doing worse. And vice versa for following the red curve and
moving away of the blue one.
Bottom line, the points of intersection between the level curves will be our
solutions.
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α̂1

α̂2

•
•
•

•

•

•

δ2 →∞

α̂LSE, δ2 = 0

•
2 δ2 · α̂T α̂

1 (y −Xα)T (y −Xα)

Figure 6: Geometric interpretation of ridge regression

2.1.2 Bias-Variance Decomposition

We can apply bias-variance decomposition to ridge regression like we did in
section 1.3.1 to linear regression. The expected prediction error (EPE) for a
ridge regression fit f̂(X) = XT α̂ is similar to equation 1.10, only the linear
weights differs. For an input vector X,

φ(X) = X(XTX + δ2I)−1X.

For ridge regression we can formulate the bias term more elegantly. Let α∗
denote the coefficients for the optimal estimation

α∗ = argmin
β

E
[
(f(X)−XTα)2

]
.
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We can write the average squared bias for X as

E
[
f(X)− E[f̂(X)]

]2
= E

[
f(X)−XTα∗

]2
+ E

[
XTα∗ − E[XT α̂]

]
. (2.3)

The first term at the right hand side is the average squared model bias, the
difference between the best fit and the true function. The second term at the
right hand side is the average squared estimation bias, the difference between
the average estimate E[XT α̂] and the best fitting approximation. So we can
write equation (2.3) as

= Average
(
Model Bias

)2
+ Average

(
Estimation Bias

)2
.

For linear models fit by ordinary least squares, the estimation bias is zero.
For restricted fits, such as ridge regression, it is positive, and we trade it off
with the benefits of a reduced variance. The model bias can only be reduced
by enlarging the class of linear models to a richer collection of models, by
including interactions and transformations of the variables in the model.

2.1.3 Discussion

In figure 8 we see a polynomial fit of degree 14 using ridge regression. The
data, with added noise, is originally distributed as a polynomial of degree
2. We see in figure 8(a) that when δ is too small the polynomial will still
wiggle a lot and results in overfitting. When we increase δ, the coefficients
become smaller and henceforth, this results in a smoother fit, see figure 8(b).
For a good choice of δ the polynomial wiggles less and is not that smooth,
see figure 8(c). We present more analytical results of experiments with ridge
regression in Chapter 4.
Other shrinkage models could be derived by replacing the so-called `2 ridge
penalty term

∑p
i=1 α

2
i in equation (2.1) by other penalty terms, for exam-

ple the `1 lasso penalty
∑p

i=1 |αi|. However, the lasso method makes the
solutions nonlinear in the yi’s and there is no closed form expression as in
ridge regression. Each of these techniques corresponds to a different form of
regularization, used to prevent overfitting.
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Figure 8: The error bars (dotted), representing σ2 = 2, get wider as the fit
gets smoother

2.2 Kernels [1] [3] [4]

In this section we place regression into the larger context of regularization
methods. We can formulate the regularization problem introduced in section
2.1 in general as

min
f∈H

[ N∑
i=1

L(yi, f̂(xi)) + δJ(f̂)

]
, (2.4)

where L(yi, f̂(xi)) is a loss function and J(f̂) is a penalty function.
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The remarkable feature of the solution for this regularization problem is
that while equation (2.4) is defined over an infinite dimensional space, the
solution is finite dimensional. We elaborate this in the next section.

2.2.1 Reproducing Kernel Hilbert Spaces (RKHS)

An important subclass of problems of the form in equation (2.4) is generated
by a positive definite kernel κ(x, y) and the corresponding space of functions
Hκ is called a reproducing kernel Hilbert space (RKHS). The penalty func-
tion J could also be defined in terms of the kernel. Now, we will give a short
introduction to this class of models.

Let x, y ∈ Rp. We consider the space of functions generated by the lin-
ear span of {κ(·, y), y ∈ Rp}, i.e. arbitrary linear combinations of the form
f(x) =

∑
i αiκ(x, yi), where each kernel term is viewed as a function of the

first argument and indexed by the second.

In the scope of this report we focus on so-called Mercer kernels or posi-
tive definite kernels. The importance of Mercer kernels is Mercer’s theorem.
Heretofore, we have to introduce the Gram matrix, defined by

K =

κ(x1, y1) . . . κ(x1, yN)
...

κ(xN , y1) . . . κ(xN , yN)

 .

Mercer’s Theorem. If the Gram matrix is positive definite (i.e. xTKx ≥
0), we can compute an eigenvector decomposition of the matrix K such that
there exists a function φ, mapping x ∈ Rp to F such that

κ(x, y) =
∞∑
i=1

γiφi(x)φi(y), (2.5)

where φ depends on the eigen functions of κ, with γi > 0 and
∑∞

i=1 γi <∞.
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Elements of Hκ can be written in terms of these eigenfunctions

f(x) =
∞∑
i=1

ciφi(x),

under the restriction that

‖f‖2Hκ
def
=
∞∑
i=1

c2i
γi
<∞,

where ‖f‖Hκ is the norm induced by κ. We state that J(f) = ‖f‖Hκ and
can be clarified as a generalized ridge penalty, where functions with large
eigenvalues in equation (2.5) get penalized less and vice versa.

Rewriting equation (2.4) gives

min
f∈Hκ

[ N∑
i=1

L(yi, f(xi)) + δ‖f‖Hκ
]
. (2.6)

It can be shown that the solution to equation (2.6) is finite dimensional and
has the form,

f(x) =
N∑
i=1

αiκ(x, yi).

For f ∈ Hκ holds that 〈κ(·, xi), f〉Hκ = f(xi). Likewise, 〈κ(·, xi), κ(·, xj)〉Hκ =
κ(xi, xj) (the reproducing property ofHκ). For that reason, we can formulate

J(f) =
N∑
i=1

N∑
j=1

κ(xi, xj)αiαj,

for f(x) =
∑N

i=1 αiκ(x, xi). Utilizing the above results, we can reduce equa-
tion (2.6) to the finite dimensional expression

min
α

(
L(y,Kα) + δαTKα

)
. (2.7)

The characteristic that the infinite dimensional problem in equation (2.6) can
be reduced to a finite dimensional problem is called the kernel property or
the kernel trick. So the idea of the kernel function is to enable operations to
be performed in the input space rather than the potentially high dimensional
feature space. Hence the inner product does not need to be evaluated in the
feature space. This provides a way to deal with the curse of dimensionality.
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2.3 Kernelised Ridge Regression [1] [4]

Using the kernel property for regression models, regularization problems now
depend on the choice of the kernel κ and the loss function L. If we consider
to use the squared-error loss, the solution to the regularization problem of
equation (2.6) can be written as an infinite dimensional problem,

min
{cj}∞1

[ N∑
i=1

(
yi −

N∑
j=1

cjφj(xj)

)2

+ δ

∞∑
j=1

c2j
γj

]
. (2.8)

To be consistent, the above minimization problem can be written in matrix
notation as

min
α

(
(y −Kα)T (y −Kα) + δαTKα

)
. (2.9)

It can be shown that the solution for α is given by

α̂ = (K + δI)−1y

and that

f̂(x) =
N∑
i=1

α̂iκ(x, xi).

Therefore, the vector of N fitted values is given by

f̂ = Kα̂

= K(K + δI)−1y. (2.10)

Now, we have kernelised the ridge regression problem. That a minimizer f̂ of
a regularized empirical risk function defined over a RKHS can be represented
as a finite linear combination of kernel products evaluated on the input points
is known as the representer theorem.

However, the computations still depend on the amount of training data N .
So to provide a good fit for a high dimensional problem will generally require
a large training set and potentially high computing time. We will discuss
this problem more extendedly in the next chapter.
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2.3.1 Examples of RKHS

With the introduction of kernels in the previous section, the obvious question
that arises, which kernel function do we choose? We present two popular
examples of kernel functions that satisfy Mercer’s conditions down below.

Polynomial Kernel

The kernel κ(x, y) =
(
〈x, y〉+1

)d
for x, y ∈ Rp has M =

(
p+d
d

)
eigen-functions

that span the space of polynomials in Rp of total degree d. For example, with
p = 2 and d = 2, M = 6 and we find that

κ(x, y) = 1 + 2x1y1 + 2x2y2 + 2x1x2y1y2 + x21y1
2 + x22y2

2.

As a consequence of Mercer’s Theorem, the kernel function can be written
as φ(x)Tφ(y) where φ : R2 → R6

φ(x)T =
(
1
√

2x1
√

2x2 x21 x22
√

2x1x2
)
. (2.11)

So using this kernel is equivalent to working in a 6 dimensional feature space.

Note that while this approach seems reasonable in the particular example
above, it can easily become computationally infeasible for polynomials of
higher order, caused by the combinatorial blow up of

(
p+d
d

)
.

Radial Basis Functions (RBF) Kernel

The polynomial kernel is an excellent example of computing a high dimen-
sional inner products in a low dimensional input space. However, the sim-
plicity of this kernel method is not without any implications. Each of the
polynomials φi in (2.11) contains a scaling factor depending on the form of
κ, which influences the imposed penalty term.

The Gaussian kernel κ(x, y) = exp(− 1
2σ2‖x−y‖2) leads to a regression model

that is the expansion of Gaussian radial basis functions (RBF) kernel,

ki(x) = κ(x, xi) = exp
(
− 1

2σ2
‖x− xi‖2

)
, (2.12)

each function centered at one of the training feature vectors xi for i =
1, . . . , N and given σ2.
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Figure 9: Left column: fitted function. Right column: uniformly spaced
RBF basis functions for σ2 = 0.1, σ2 = 0.5 and σ2 = 50.

For example, we can use this kernel functions ki in a linear regression mode,
f̂(x) = α̂0 +

∑N
i=1 ki(x)α̂i, to fit a function to data. Where we use equation

(2.9) to estimate the coefficients α̂.

Figure 9 shows a RBF kernel for different values of σ2. Comparable with the
performance of ridge regression in section 2.1.3, if we choose σ2 too small,
this will result in a very wiggly function. If we choose σ2 too big, the fitted
function is just a straight line since each datapoint is equally close to every
basis function.

In contrary to the polynomial kernel, the Gaussian kernel is an inner product
in some infinitely-dimensional space. This becomes clear when we look at

28



the Taylor-expansion of equation (2.12)

exp

(
− ‖x− xi‖

2

2σ2

)
= exp

(
−‖x‖

2

2σ2

)
· exp

(
− ‖xi‖

2

2σ2

)
·
∞∑
j=0

(xTxi)
j

j!

=
∞∑
j=0

〈
j

√
exp
(
− ‖x‖2

2σ2

)
j!

x,
j

√
exp
(
− ‖xi‖2

2σ2

)
j!

xi

〉j
.

Since the inner product has the dimensionality of the range of the summation,
this is an inner product in some infinitely-dimensional space.

2.3.2 Kernel Selection

With the introduction of different kernels, the obvious question is, which is
the best kernel for a particular problem? Kernel methods achieve flexibility
by fitting models to a target point xi and by varying the width of the kernel,
e.g. σ2 for a RBF kernel. To study this question we will work towards the
theoretical framework of support vector machine (SVM) that will be intro-
duced in the next chapter.

Recall the bias-variance tradeoff out of section (1.2.3). Among most of the
models, it turns out that the training error Remp will be effectively estimated
less than the true risk R. A fitting method typically accustoms to the train-
ing data and subsequently the training error will be an optimistic estimate
of the generalization error.

The origin of this optimism in Remp is easiest to understand when we fo-
cus on the so-called in-sample error. Let Y 0 be N new response values at
each of the training points xi, i = 1, . . . , N . We define the in-sample error
as

Rin(f̂) =
1

N

N∑
i=1

E
[
L
(
Y 0
i , f̂(xi)

)
| T
]
. (2.13)

We define the optimism as the difference between Rin and the training error
Remp

op ≡ Rin −Remp.
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Note that this is typically positive since Remp is a too optimistic estimate.
The optimism increases linearly with the complexity (i.e. number d of basis
functions) we use for f̂ , but decreases as the training sample size increases.
Now, a convenient way to estimate the prediction error is to estimate the
optimism and then add it to the training error Remp.

The in-sample error is not of direct interest since it is unlikely that test
and training input vectors coincide. But for comparison between models, the
in-sample error is effective and often leads to a convenient model selection.
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3 Support Vector Regression

Consider the `2 regularized empirical risk function as we did in section 2.2

min
f∈H

[ N∑
i=1

L(yi, f(xi)) + δ‖α‖2
]
. (3.1)

If L is a quadratic loss, equation 3.1 represents ridge regression. We saw in
section 2.3 how we can obtain kernelised ridge regression.

Kernelised ridge regression relies on the kernel function κ(xn, xm) where ev-
ery pair of training data xn and xm must be evaluated. This could take
excessive computation time when we apply kernelised ridge regression to a
large training set. A solution for this problem is using sparse kernel machines.

To make a prediction by a sparse kernel machine, only a subset of the train-
ing data points will be evaluated by the kernel function, known as support
vectors. To ensure that the solution will be sparse we will introduce in this
chapter a new loss function.

The combination of the kernel trick with the modified loss function is known
as Support Vector Machines (SVM). First, we have to prepare the framework
of statistical learning theory for SVMs.

3.1 Vapnik-Chervonenkis (VC) Dimension [1] [3] [6]

A difficulty in estimating the in-sample error from equation (2.13) is the need
to specify the complexity of the fit. In general, it is difficult to pin down the
effective number of parameters for a fitted model. The Vapnik-Chervonenkis
dimension provides such a general measure of complexity.

Suppose we have a set of functions {f(x, α)} with coefficient vector α and
x ∈ Rp. The VC dimension is a way of measuring the complexity of a class
of functions by determining how wiggly the contained function can be.

Definiton The VC dimension of the set of functions {f(x, α)} is p if and
only if there exists a set of points {xi}pi=1 such that these points can be sep-
arated in all 2p possible configurations, and that no set {xi}qi=1 exists, where
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q > p, is satisfying this property.

The left panel of figure 10 shows that the class of linear lines in the plane
can shatter three points. The right panel shows that the class of linear lines
cannot shatter four points. Hence the VC dimension of the class of linear
lines in a plane is three. The class of nonlinear curves could shatter four
points, so this class has VC dimension greater than four. E.g. the function
a · sin(bx) has infinite VC dimension.

• •

•
•

•

•
•

Figure 10: Illustration of VC dimension

3.1.1 Structural Risk Minimization (SRM)

One can use the VC dimension in constructing an estimate for the risk of a
fit. If we fit N training points using a class of functions {f(x, α)} having VC
dimension h, then the following bound holds with probability 1− η

R(f̂) ≤ Remp(f̂)

(1−
√
λ)
, where λ =

h log(N
h

) + h− log(η
4
)

N
. (3.2)

These bounds hold simultaneously for all members of f(x, α) and are taken
from Cherkassky and Mulier (2007, pages 116-118). Note that this expression
for the risk is independent of the distribution P.

Now, Structural Risk Minimization (SRM) creates an increasing sequence
of VC dimensions h1 < h2 < . . . which are related to hypothesis space Hhi
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for i = 1, 2, . . . from different models. SRM consists in choosing the smallest
value of the upper bound

min
Hhi

(
Remp(f̂)

(1−
√
λ)

)
for i = 1, 2, . . . . An excellent example in which the SRM can be success-
fully carried out are Support Vector Machines. To discuss SVMs we have to
introduce an alternative loss function called the ε-insensitive loss function.

3.2 ε-insensitive Loss Function [4] [9]

The problem with kernelised ridge regression is that the coefficient vector
α̂ ∈ Rp depends on all the p training points, which could face difficulties
with computation time and is therefore not a sparse estimate. To obtain
a sparse estimate we will introduce a new loss function which includes a
distance measure, the epsilon insensitive loss function, defined by

Lε
(
Y, f̂(X)

)
=

{
0 if |Y − f̂(X)| ≤ ε

|Y − f̂(X)| − ε otherwise.

The above equation is saying that any point that is lying in a ε-tube around
the prediction f̂(xi) is not penalized by the loss function. Figure 11 and 12
make this visible.

3.3 Support Vector Regression [7] [8] [9]

The most important idea of applying SVMs on regression, support vector
regression (SVR), is that using small subsets of the training data will give
us enormous computational advantages. In SVR the basic idea is that an
input vector x first will be mapped onto a m-dimensional feature space via
a non-linear fixed mapping φ and to do linear regression in this space,

f̂(x) = α̂0 +
〈
α̂, φ(x)

〉
with φ : Rp → X .

We have to keep in mind that α̂0 is the bias term.

Briefly, SVR is linear regression in a high dimensional feature space which
corresponds to non-linear regression in the low dimensional input space Rp.
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Figure 11: ε-insensitive error function used by SVM regression
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Figure 12: Illustration of the ε-tube used in SVM regression for ε = 1

Using the kernel trick, the dot product would not have to be computed in this
high dimensional space and can be expressed in the low dimensional input
space Rp.

Since φ is fixed, we determine α̂ from the data like before: minimizing equa-
tion 3.1 but now we will use the ε-intensive loss function. However, this
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empirical risk function is not differentiable, as a result of the absolute value
in the loss function. To avoid this problem we introduce the slack variables
ξ+i , ξ

−
i ≥ 0 for i = 0, . . . , p to express the amount of which each point lies

above or below the ε-tube. See figure 12.

Thus SVR can be formulated as minimizing the following function with
C = 2

δ2

min
f∈H

[
C

p−1∑
i=0

(ξ+i + ξ−i ) +
1

2
‖α̂‖2

]
,

subject to


Yi ≤ α̂0 +

〈
α̂, φ(x)

〉
+ ε+ ξ+i

Yi ≥ α̂0 +
〈
α̂, φ(x)

〉
− ε− ξ−i

ξ+i , ξ
−
i ≥ 0.

(3.3)

3.3.1 Support Vector Expansion

Minimizing equation 3.3 is a quadratic programming optimization problem.
To solve this optimization problem we will use the Lagrange multipliers
η+i , η

−
i , µ

+
i , µ

−
i ≥ 0 to create the Lagrangian

Λ =
1

2
‖α̂‖2+C

p−1∑
i=0

(ξ+i + ξ−i )−
p−1∑
i=0

(η+i ξ
+
i + η−i ξ

−
i )

−
p−1∑
i=0

µ+
i

(
α̂0 +

〈
α̂, φ(x)

〉
+ ε+ ξ+i − Yi)

−
p−1∑
i=0

µ−i
(
Yi − α̂0 −

〈
α̂, φ(x)

〉
+ ε+ ξ−i ). (3.4)
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It follows from the existence of a saddle point that the partial derivatives of
Λ with respect to the variables α̂0, α̂, ξ

+
i , ξ

−
i have to be zero

∂Λ

∂α̂0

=

p−1∑
i=0

(µ+
i − µ−i ) = 0 (3.5)

∂Λ

∂α̂
= α̂−

p−1∑
i=0

(µ+
i − µ−i )φ(xi) = 0 (3.6)

∂Λ

∂ξ+i
= C − µ+

i − η+i = 0 (3.7)

∂Λ

∂ξ−i
= C − µ−i − η−i = 0 (3.8)

Substituting equation 3.5 and 3.6 into equation 3.4 and reformulating equa-
tion 3.7 and 3.8 to η±i = C − µ±i will result in maximizing−

1
2

∑p−1
i,j=0(µ

+
i − µ−i )(µ+

j − µ−j )〈xi, xj〉

−ε
∑p−1

i=0 (µ+
i + µ−i ) +

∑p−1
i=0 Yi(µ

+
i − µ−i )

subject to

p−1∑
i=0

(µ+
i − µ−i ) = 0 and µ+

i , µ
+
i ∈ [0, C].

It follows that equation 3.6 could be written as

α̂ =

p−1∑
i=0

(µ+
i − µ−i )φ(xi).

Thus f̂(x) can be written as

f̂(x) = α̂0 +

p−1∑
i=0

(µ+
i − µ−i )

〈
φ(xi), x

〉
. (3.9)

This is called support vector expansion. The coefficient estimate vector α̂
can be described as a linear combination of training data xi. From another
point of view, the complexity of the function f̂ only depends on the number
of support vectors and is independent of the dimension of the input space X .
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Finally, we can use the kernel trick to replace the inner product 〈φ(xi), x〉
with a kernel function κ(xi, x), making the prediction

f̂(x) = α̂0 +

p−1∑
i=0

(µ+
i − µ−i )κ(xi, x). (3.10)

The difference between equation 3.9 and equation 3.10 is that α̂ can no longer
completely be described as a linear combination of the training data xi.

37



4 Performance of Regression Methods

In this section we put the theory of the first three chapters into work. Ac-
cording to Chapter 1, we have been doing experiments with the amount of
available train and test data to see the relationship between model complex-
ity and the resulting train and test error.
Afterwards, we present familiar experiments using the discussed techniques
in chapter 2 and 3, we give a close look at the performance of kernelised re-
gression methods. Finally, we compare the performance of linear -, kernelised
ridge- and support vector regression (SVR) on a single data set.

To accomplish these experiments we have been using implementations for
MatLab and Python to produce and calculate error margins, execution time,
plots etc. Especially, the MatLab toolbox PMTK3 which comes together with
the book Machine Learning: a Probabilistic Perspective written by K.P. Mur-
phy.

4.1 Train Error, Test Error and Model Complexity [10]

4.1.1 Polynomial Regression and the Degrees of Freedom

Intuitively, it is obvious that the more training data is available, the better
we will be able to learn. We did an experiment with data distributed as a
degree 2 polynomial with Gaussian noise of variance σ2 = 4. We tried to fit
polynomials of degree 1, 2, 10 and 25 with an increasing amount of available
training data. We call the four models M1, M2, M10 and M25.

The results of the mean squared training error (dotted blue) and test error
(solid red) for increasing amount of available data are illustrated in figure 13.
We see that for M2, M10 and M25 the test error decreases to some limit.
This limit consists of the approximation and the estimation error, together
they form the noise floor of the model.

We see that the estimation error for model M2, M10 and M25 is zero,
since both are able to properly estimate the regression function. However,
the estimation error ofM1 is substantial, which becomes clear from the fact
that the error occur high above the noise floor.
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Figure 13: Train and test errors for polynomial regression with different
degrees of freedom and with an increasing amount of available training data

In other words, for any model that is capable enough to estimate the true
regression function, the test error will go to the noise floor as N →∞.

On top of this, we realize that there will be some discrepancy between the
parameters that we estimate and the best parameters that we could estimate
given a particular model. Before, we discussed this as the approximation er-
ror and goes to zero as N →∞, but again, it goes faster to zero for simpler
models. We can see this happening in figure 13.

So far we have been discussing the test error, which is what we care most
about since ideally our model has to generalize well. What about the train-
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ing error? For models that are too simple, the training error is initially high,
since we cannot model the truth. But for models that can estimate properly
the regression function, the training error will increase to some limit as N
increases. The reason for this is that initially the model is powerful enough
to memorize the training data. But when more data will be available, it
becomes harder to fit all the data perfectly given a fixed model. Eventually,
error on the training set will match the error on the test set, which also be-
comes visible in figure 13.
Beside this, if the error on the training set increases with N , it is a sure sign
that we are overfitting.

To conclude, when lots of data are available, simple models can work surpris-
ingly well. However, there will be problems if there is too little data. This
is a reason to study more sophisticated learning models. For example, even
in the data-rich domain as web search, from the moment we want to start
personalizing the results, the amount of data available for individual users
look small again relative to the complexity of the problem.

4.1.2 Ridge Regression and the Choice of δ

In section 2.1.3 we discussed three degree 14 polynomial fits using ridge
regression. Similar to the preceding section, in this section we study the
behavior of the train and test error but now in relation to the choice of δ.
Beside this, we take a closer look to the shrinkage technique of ridge regres-
sion. As a simple example, suppose we fit again a degree 14 polynomial to
N = 21 points of data for δ = e−20,135, note that this is almost comparable
with LSE. Therefore, the resulting curve in figure 14(a) is very wiggly. The
corresponding coefficients of α̂ are as follows (without α̂0).

α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7

6.560 -36.934 -109.255 543.452 1022.561 -3046.224 -3768.013

α̂8 α̂9 α̂10 α̂11 α̂12 α̂13 α̂14

8524.540 6607.897 -12640.058 -5530.188 9479.730 1774.639 -2821.562

Table 1: Coefficients of the degree 14 polynomial fit in figure 14(a)

40



0 5 10 15 20
−10

−5

0

5

10

15

20

(a) δ = e−20,135

0 5 10 15 20
−10

−5

0

5

10

15

20

(b) δ = e0,102

Figure 14: Ridge regression fit for different choices of δ

We see that there are many large positive and negative coefficients. These
balance out exactly to make the curve wiggly such that it almost perfectly
interpolates the data. But we realize that this situation is unstable, if we
change the data a little the coefficients would change a lot. By penalizing the
the sum of the magnitudes of the coefficients, we ensure the function is more
simple. We see that increasing δ results in a smoother function, illustrated
in figure 14(b). This time using δ = e0,102 we find the following coefficients.

α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7

2.128 -36.934 0.807 16.457 3.704 -24.948 -10.472

α̂8 α̂9 α̂10 α̂11 α̂12 α̂13 α̂14

4.360 13.711 10.063 8.716 3.966 -9.349 -9.232

Table 2: Coefficients of the degree 14 polynomial fit in figure 14(b)

In figure 15(a) we plotted the mean squared error (MSE) on a training and
a test set versus log(δ) for the above ridge regression fits. Complex functions
(small delta) begin on the left moving towards simple functions (big delta)
on the right. We see that when we increase δ the error on the training set
(dotted blue) increases. For the error of the test set (solid red), we first see
an overfit and thereafter an underfit.
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Figure 15: The stars correspond to the values of δ used for ridge regression
in figure 14 .

In this section, we saw more analytical results of the ridge regression
method for different values of δ. A common way to pick δ is using cross
validation. A 5-fold cross validation estimate of the future MSE for this
set of data is shown in figure 16. As we see, CV comes up with the value
δ = e0,102.

4.2 Kernelised Regression

One big disadvantage of KRR is that we do not have sparseness in the vector
α which can lead to excessive computation time if big datasets need to be
evaluated. SVR instead, is using the concept of support vectors. In the
context of computation time, this is useful because when we test a new data,
i.e. new test data, we only have to sum over the support vectors which is
much faster than summing over the entire training set. First we take a look
at the performance of KRR. Afterwards, the relationship between sparseness
and support vectors becomes clear from the experiments with SVR using
different loss functions.
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Figure 16: 5-fold cross validation, the blue line indicates the lowest MSE
value

4.2.1 Kernelised Ridge Regression and the Choice of the Kernel
Function

In this section, we apply KRR to data with added noise, the data was orig-
inally distributed as a degree 2 polynomial and the function sin(x)

x
. We are

using the two different kernel functions we discussed in section 2.3.1. We
separated the available data randomly into training data and test data ac-
cording to the 80-20% ratio. The resulting fit relies only on the set of training
data, the plotted red dots are the test data.

In the case of the originally degree 2 polynomial distributed data, for fixed

δ and polynomial kernel function κ(x, y) =
(
〈x, y〉 + 1

)2
we obtained the fit

in figure 17(a). Which is an excellent result. For fixed δ and RBF kernel
function ki(x) = exp(− 1

2σ2‖x−xi‖2) using different values for σ2 we obtained
the the other results in figure 17. It is self evident that the kernel functions
does not fit the data so well.
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(a) KRR using the polynomial kernel
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(b) KRR using the kernel function
ki(x) = exp(− 1

2σ2 ‖x− xi‖2), σ2 = 0.5
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(c) KRR using the kernel function
ki(x) = exp(− 1

2σ2 ‖x− xi‖2), σ2 = 2
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(d) KRR using the kernel function
ki(x) = exp(− 1

2σ2 ‖x− xi‖2), σ2 = 4

Figure 17: KRR fits to originally polynomial distributed data using
different kernel functions

However, if we apply KRR to data originally distributed as the function
sin(x)
x

, the RBF kernel performs better. This is illustrated in figure 18.

44



-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

5
Kernelised Ridge Regression (polynomial kernel)

Fit to training data

Test data

(a) KRR using the polynomial kernel
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(b) KRR using the polynomial kernel

function κ(x, y) =
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〈x, y〉+ 1

)4

-5 -4 -3 -2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

4

5
Kernelised Ridge Regression (RBF kernel)

Fit to training data

Test data

(c) KRR using the kernel function
ki(x) = exp(− 1

2σ2 ‖x− xi‖2), σ2 = 0.5
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(d) KRR using the kernel function
ki(x) = exp(− 1

2σ2 ‖x− xi‖2), σ2 = 2

Figure 18: KRR fits to originally sin(x)
x

distributed data using different
kernel functions
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4.2.2 SVR and the Loss Function

In figure 19 we compare SVR models with a RBF kernel using different loss
functions. Due to the ε-insensitive loss function SVR obtains a sparse model,
leading to good generalization. However, if we take a way this characteris-
tic loss function, the sparseness will be gone. We illustrate this using the
quadratic loss function for SVR in figure 19.
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Figure 19: Support Vector Regression using different loss functions

Red circles denote the training data. We see that the two methods give
similar performance. However, SVR using the ε-insensitive loss function is
much sparser (and hence faster in time) then SVR using the quadratic loss
function.
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4.3 Linear Regression versus Support Vector Regres-
sion [11]

Linear regression assumes that the relationship between the input X and the
output Y is approximately linear. To find the best linear fit we minimize the
sum of squared errors (1.6). However, it is extremely unlikely that the true
function f(X) is indeed linear in X. So often, a fit of linear regression model
is useless and will never be used. The performance of the linear fit to data is
given in figure 20. The data is generated according to a sinus function where
strong noise has been added to every fifth data point.
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Figure 20: Performance of linear, polynomial and SVR learning models

The introduction of linear basis function expansion allowed us to use polyno-
mial regression models. Polynomial regression assumes that the relationship
between the input X and the output Y is modeled as an n-th degree poly-
nomial. The performance of a degree 2 polynomial fit is given in figure 20.
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A final alternative is to use kernelised models such as support vector re-
gression with a polynomial or a RBF kernel. Kernelised regression, as a
non-parametric regression method, does not assume any underlying function
between input X and output Y . The performance of SVR using a RBF
kernel with σ2 = 2 is illustrated in figure 20.

4.4 Kernelised Ridge Regression versus Support Vec-
tor Regression [11]

Kernelised Ridge Regression (KRR) and Support Vector Regression (SVR)
are both kernelised regression models but differ in the penalty function (ridge
versus ε-insensitive loss function). For KRR we found a closed-form solu-
tion (2.10) instead of the quadratic programming problem SVR has to deal
with, discussed in section 3.3. Because of this, KRR is typically faster for
small/medium sized datasets. On the other hand, for bigger sized datasets,
SVR will have lower prediction time since KRR is not sparse.

Figure 21: The fit of KRR and SVR, σ2 = 2
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Figure 22: Left: Execution Time of KRR and SVR. Right: training error of
KRR and SVR

Figure 21 illustrates the performance of KRR and SVR on a dataset. The
data is generated according to a sinus function where strong noise has been
added to every fifth data point. The two methods give similar performance.
Fitting KRR is faster than SVR for small/medium training sets (for less
than 103 samples). However, for larger training sets SVR scales better. The
execution time for the above fit is represented in figure 22(a). Note that the
degree of sparsity and thus the fitting time depends on the parameters ε and
C of the SVR. Which can be determined by k-fold cross validation.
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4.5 Conclusions

The theoretical framework of supervised learning, introduced in Chapter 1,
helped us to understand the origin of the challenges supervised learning mod-
els have to deal with. In this report, we have been focussing on two major
challenges: the tradeoff between bias and variance and the model complexity
related to the amount of training data.

We decomposed bias and variance in the conceptually and mathematically
way to understand better the data fitting process. Using the empirical risk
minimization (ERM) principle, we computed the theoretical decomposition
of the bias-variance tradeoff for linear - and linear ridge regression.
Then, to control better the stability of the obtained learning models, we
introduced the non-parametric method kernel regression. Different from lin-
ear regression methods, kernel regression makes no assumptions about the
probability distribution of the variables. But kernel regression is known as a
non-sparse method, which could lead to excessive computation time for big
datasets.

An example of a sparse kernel regression method is support vector regres-
sion. This learning model relies only on relevant information from the data,
so called support vectors. Since less data has to be evaluated, this leads to
computational advantages. However, support vector regression relies on the
more complex structural risk minimization (SRM) principle. SRM minimizes
an upper bound on the expected risk opposing ERM that minimizes the error
on the training data. This difference results in a better performance of SVR
in supervised learning.

Away from all the theory, we have been experimenting in Chapter 4 with
the above discussed techniques to model and learn from empirical data. We
became aware of the fact that when enough data is available, simple models
can work well. When less data is available, we have to rely on other models,
i.e. non-parametric support vector regression. In doing so, we have to con-
sider the sparsity-accuracy tradeoff as part of the model selection process.
Ultimately, we have shown that using sparse kernel regression (SVR) is more
effective in terms of execution time and leads to a slightly better predictive
performance.
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Finally, the advantage of statistical learning theory compared to cross vali-
dation is that the bounds on the risk are quicker to compute than using cross
validation. The disadvantage is that it is hard to compute the VC dimension
for many interesting models.
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