
Weakly Supervised Roadside Object Segmentation Using

Maps
∗

J.A.P Guelen

December 1, 2019

∗Special thanks to Cyclomedia, my supervisors Albert Ali Salah, Remco Veltkamp, Bas Boom and Julien Vijver-
berg

1



Abstract

Publicly available detailed maps offer semantic information of objects in street view im-
ages. We investigated if this information can be exploited to automatically create object
detection datasets on which (SOTA) state-of-the-art object detection methods can be trained.
To accomplish this, we use the Dutch BGT (basis grootschalige topografie) and DTB (digitaal
topografisch bestand) maps which are detailed maps of the Netherlands containing the location
of a large number of street objects. Using their location information, we find nearby street view
images from which we can focus on the position in the image. These images are then collected
and labeled with the objects on the map. This allows us to automatically create an image-wide
labeled dataset. We also investigated if bounding box and semantic segmentation results could
be acquired on this dataset. For this purpose, we used the weakly supervised learning technique
of (CAMs) Class activation maps. These CAMs give information about what features in an
image lead to a positive classification or negative classification and can give a rough location
of where the features are that led to this classification. To improve the accuracy of the CAMs,
we investigated two new methods. First, as we used a Resnet 50 network as our SOTA object
detection method, we have an additional point from which we could generate CAMs. Nor-
mally, when generating CAMs the last convolutional layer, which is a specific layer within a
Convolutional neural network (CNN), is used. However, an additional layer within the Resnet
50 network can also be exploited to generate CAMs namely the last ’add’ layer of the net-
work. Second, we investigated if the availability of depth information combined with the map
information could be used to automatically generate approximate masks of objects that can
improve overall performance. We found that our method of automatically generating datasets
using maps would generate large numbers of noisy labels. This noisy being present due to mis-
takes in maps and changes within the environment or due to dynamic obstruction within the
road environment i.e. a truck blocking vision of an object. However, even with these faults, we
are able to acquire decent image-wide defections performance acquiring an average F-score of
0.66 on 20 different objects. Where our highest performing object was able to generate a score
of 0.92. However, we found our bounding box and semantic segmentation results generated
with CAMs very lacking. While an increase of performance could be acquired by using the last
’add’ layer for CAM generation this performance increase was not enough to acquire acceptable
bounding box and semantic segmentation results. Furthermore, the automatically generated
masks were not able to significantly improve results. While an 7% increase in performance at
a semantic segmentation level could be seen, this improvement was far from what was required
to allow for use able results. Leading us to conclude that while the method shows promise, it
requires further research in order to acquire usable bounding box and semantic segmentation
results. Our main suggestion for future work is to investigate how the method performs when
less noise is present within the dataset.
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1 Introduction

Obtaining annotated datasets to train object detection methods is a time consuming process and
thus a costly task. In this Thesis, we investigate the possibility of using the semantic information
from maps to automatically generate annotated datasets in an effort to reduce this effort.

The problem of detecting and classifying objects in visual media, i.e. images and videos, with
computers has been an active research area in the field of computer vision for the last couple of
decades and is seen as one of the fundamental goals of this field (2).

The ability to automatically detect and classify objects has led to increased capabilities of automatic
systems, allowing them to solve increasingly complex real-world tasks. However, the current state-
of-the-art (SOTA) object detection methods learn how to detect and classify objects by using large
sets of examples (1) i.e. training sets. This introduces a problem as the creation of these large
training sets is exceedingly expensive since obtaining the images and properly defining what can be
seen in the image often involves large amounts of manual labor.

Object classification in the field of computer vision refers to the problem of automatically classifying
images into a predefined set of classes, where classes are categories of objects with some attribute or
property in common. object detection refers to the detection of an object or class in the image while
also specifying the location of that object. Recent object detection techniques have seen increased
performance as new methods were developed. This increased performance has led to useful real-
world applications that previously were not possible. An example is the creation of algorithms that
can automatically detect tumors in people (42).

Another recent possibility opened up by the ever-increasing performance of object detectors is that
autonomous driving is now within the realm of real-world use. Autonomous driving is the idea of
allowing vehicles to drive and control themselves partially or completely automatically. The current
SOTA autonomous cars can drive themselves successfully in specific well-defined environments. For
example, highways were one of the first locations where autonomous driving was possible as they
have clear and simple rules with few difficult maneuvers. But they still struggle in locations that
have context-dependent rules, where exceptions are prominent and in yet unseen and untrained
situations that require specific answers (59; 60).

Accurate object classification and detection of all objects in the road environment is crucial for
understanding more of the context of a certain location. Currently, the focus is on detecting objects
that directly impact driving, e.g. road markings, other vehicles, traffic signs. Having the ability to
detect more of the objects within the road environment could help improve autonomous driving, as
knowing what other objects are present in the current environment could help autonomous cars give
context to certain events. For example, by knowing where street lights are located, an autonomous
car could determine where it is on the road, even when road markings are faded or not visible.

Learning all these new possible objects is a challenging task but can be accomplished by using SOTA
methods. These methods, however, require large training sets/datasets which become increasingly
expensive as more object types are added. Furthermore, within the roadside environment, there
can be a high amount of inter-class variation as shown by Figure 1. This inter-class variation is
increased when going over country and region boundaries as there is not a standardized apperance
for many road-side objects. This amount of inter-class variance may require country/region-specific
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Figure 1: Example of the variance within the class street light.

models and training sets which would further increase the cost of creating accurate detection models
that are capable enough to allow for autonomous driving in multiple countries.

Furthermore, there are also different types of labels, with different cost associated with them,
that give different information about objects in images. The most basic type of label might only
give image-wide information, e.g. ”There is a cat in this image”, without specifying where the
particular object actually is. The next level of labeling produces a square rectangular shape, called
a bounding box, which is drawn around the object of interest (2; 18) e.g Figure 2. Methods that
produces bounding boxes are known as object detection methods. While bounding boxes give a
rough estimation where the object is and what size the object has within an image, when a more
precise shape of the object is necessary segmentation is used. Segmentation segments the image on
a pixel by pixel basis i.e. for every pixel we determine if it is part of the object/class. These pixels
then together create a mask of the object/class.

A further distinction can be made within this segmentation: Semantic segmentation and instance
segmentation. In semantic segmentation, segmentation is done on a class level e.g. all cows in
an image fall under the class cow and are segmented as a single mask. In instance segmentation,
segmentation is done on an instance level e.g. all cows in an image have their own segmentation and
their own masks. The difference between these forms of labeling is illustrated in Figure 2. While
these more information-rich forms of labeling will lead to more rich forms of predictions, they are
also often far more costly to create.

These harder kind of predictions do allows for additional application that without them would not
be possible. For instance, object avoidance requires knowledge on where an object is located an
image-wide detection in those cases would not be sufficient. Furthermore, when wanting to analyze
faults or mistakes in an object, being able to create a mask that perfectly encapsulated the object
would allow further methods to focus on detecting faults within the generated the masks. This
would simplify the following models significantly as they do not have to deal with the process of
finding and recognition the object.

Fortunately, there are methods to reduce the cost of creating new datasets, an almost universally
used method within computer-vision is to use pre-training. Pre-training - a form of transfer learning
- in object detection refers to the ability to get increased performance by first training on a large
existing dataset, for a different task, before training on a more specific classification task (6). This
can significantly reduce the size required to acquire high quality high level labels. Two popular
large existing datasets used for this are ImageNet (44) and Microsoft’s CoCo (43). By learning
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Figure 2: Different types of labels, image from Liu et al. (2).

on these datasets first the method can already learn common interchangeable patterns within the
images. This reduces the number of images needed for training as classification knowledge can
be transferred for new objects more easily compared to relearning them from scratch. This is a
prominent first step in the learning process of current SOTA methods (6). However, even with
transfer learning, creating a training set with semantic or instance segmentation labels is still very
time consuming and considered a costly undertaking. Another recent method that can significantly
reduce the cost of creating these datasets without lowering the type of label predictions is known
as Weakly Supervised Learning (WSL).

WSL in computer vision refers to the task of learning on a training set where labels are less precise
than the desired output also known as weaker labels as illustrated in Figure 3. WSL has the
advantage that it requires less strict forms of labeling. This allows for the use of simpler forms
of labels, for harder problems. More importantly, it allows for image-wide labels to be used for
semantic segmentation. The creation of image-wide labeled datasets is considerably easier and is
some cases the creation of such a dataset can be automated. This can drastically reduce the cost
of creating such a dataset. A downside of this method, however, is that the information missing
from the labels has to be acquired via different means as information lost by this weaker label, like
location information, has to be acquired via some different way.
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Figure 3: The different types of learning image from Bilen (54).

1.1 Goals And Challenges

In this Thesis, we investigate the possibility of using semantic information from maps to automat-
ically obtain image-wide labeling for static roadside objects. The key idea is that if an object is
labeled on a map, we can use its location to find a street view image nearby and focus on that
object. Thereby creating an image which we could now label as containing that object. Repeating
this enough times for enough objects, we hypothesize that this can then be used as an effective
training set for learning object detection on static roadside objects. If successful this would drasti-
cally reduce the cost of creating large training sets for the task of object detection of static roadside
objects, as this method can almost completely automatically generate such a training set. However,
the method will be largely reliant on the quality and accuracy of the map labels, and the noise in
the street environment. Figure 4 and 5 illustrate two ways how label noise can be introduced even
when an area was perfectly and accurately labeled. First, dynamic objects situated in the street
environment can introduce noise as they can block direct sight on the object. Second, noise can
be also be introduced due to the difference in time between the map measurement and the image
capture time. It is therefore key that the maps and street view images are as accurate in terms
of gps locations and objects being correctly labeled as possible, as the method itself can introduce
large forms of noise. In this research, we investigate if the public dutch BGT and DTB maps are
sufficient in fulfilling that role for maps. For street view images a private dataset from Cyclomedia
is used which contains roadside images across almost all areas covered by the BGT and DTB maps
(see Section 3).

Our first goal is thus to device a method that can automatically construct a dataset from map
information and street view images, (see section 4.1), and to investigate the quality of this dataset
(see section 5.2).

Our second goal is to investigate what performance can be achieved on the automatically generated
dataset. This performance will be measured on three levels: Image-wide classification, bounding
box generation and semantic segmentation. However as our only training is on image-wide labels,
WSL will have to be used to acquire bounding box and semantic segmentation results. Acquiring
result on these harder forms of labeling will be a challenging task as we have no direct location
information available. While methods exists that can acquire this information from image-wide
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Figure 4: Visibility of a map labeled object blocked by a dynamic object.

(a) Image taken in 2015 (b) Image taken in 2018

Figure 5: Two images taken at different times of the same location that should contain a bench
according to map labels. Unfortunately, the label is no longer accurate due to changes in the
environment.
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Figure 6: Example of how map information plus depth information can be combined to help localize
the object. Where (a,b) show how a direction is used to filter the object location from the image,
(c) shows how the direction and distance are calculated between (1)(2) which are the location of
the object and image respectively. Then, (d,e) show how a range on the distance is used to filter
out background and foreground. Finally, (f) shows the automatically generated rough mask when
(b,d) are combined.

defections, we will also investigate using depth information combined with map information.

As we have location information from the maps and a position of where the image was recorded,
we can calculate the distance and rough direction to the object within an image. If we use this
information with a depth image, it allows us to filter out everything before and after a certain
distance. When combining this with an approximate range on the direction, we are able to generate
a rough mask as shown in Figure 6. This mask can than be used during training to help give us
location information and help guide or WSL method. See section 4.3 for more detail.

1.2 Research Questions

These two main goals lead us to the following research questions.

1. Can the information on maps, combined with street view images, be used to create a dataset
capable of training object detection methods?

2. What performance can be achieved on this automatically generated dataset on an image-wide,
bounding box and semantic segmentation level?

3. Can location information acquired by leveraging depth information combined with map in-
formation improve bounding box and semantic segmentation performance?
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1.3 CycloMedia

This thesis was created at CycloMedia1, a company specializing in providing street-level imagery
with high accuracy. To create the street-level imagery, they use an advanced five-camera panoramic
image capture system. This system was developed in house and is put on top of cars that drive
around, taking high-quality images while also creating depth images by using lidar. They use these
images and depth images to populate their cloud platform, which allows customers to easily view
public locations in high quality. They also annotate these images on customers request with highly
detailed information. CycloMedia is based in the Netherlands and has customers around the world.

CycloMedia’s interest in this research is for reducing the cost of needing to manually annotate street
view objects while they are already present in maps. Furthermore, the automatic creation of new,
highly detailed maps could be a promising feature to sell to customers.

2 Related Work

In this section will go over related work, starting off by describing the SOTA with regards to object
detection methods. This is followed by unsupervised learning methods that also reduce the cost of
dataset creation. Finally, we investigate currently popular weakly supervised learning methods.

2.1 Object Detection In Computer Vision

object detection has seen great improvements in recent years, this is mainly a consequence of the
increased computing power enabling the advancement of new techniques. One of these techniques in
recent years was using Deep Convolution Neural Network (CNNs) for image classification as shown
by Krizhevsky et al. (1). This work showed a huge performance increase over existing methods and
showed that CNNs could get high performance in object detection. However, this new method also
introduced new challenges.

2.1.1 Neural Networks

CNNs are a type of neural network, where a neural network (NN) is a network of neurons connected
to each other in a particular way. These neurons are nonlinear functions that produce a sequence
of real-valued activations based on their inputs and some bias (17).

While some neurons have inputs directly from an input neuron, most have inputs through weighted
connections from other neurons. In a neural network, neurons are usually structured in layers where
neurons in one layer are connected to the neurons in another layers, illustrated in Figure 7. When
the neurons in one layer are fully connected to the neurons in an next layer, i.e. every neuron in
one layer has a connection to all the neurons in the next layer, we call this a fully connected layer.

Once a neuron gets inputs, it performs a computation and then passes its result to the next neuron
that is connected to it. In every connection between two neuron a weight is present which multiply

1 for more information about Cyclomedia see https://www.cyclomedia.com/en
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Figure 7: A neural network consisting out of multiple layers with multiple neurons arranged in a
feed forward structure.

the output value of a neuron. The inputs in a neuron are then usually summed after which an the
activation function denoted as φ performs a nonlinear computation. This leads to neuron Xo in
layer Li giving output yio with given inputs Xn ∈ Li−1 where n is the number neurons in layer
Li−1. The weights between neuron Xn in layer Li−1 and neuron Xo in layer Li we denoted by
wion. A bias is often added to each neuron as it allows the neuron the be more finely tuned and
add a certain value during computation instead of only modifying input. To easily add a bias to
the network, the number of input of each neurons is increased by one and we place an additional
neuron with output one at the beginning of this list of inputs. The bias can then be changed and
learned by changing the weight of this extra neuron, i.e. x0 = 1 and wio0 = bias, resulting in

yio = φ(

n∑
k=0

wikoXk). (1)

Several different activation functions exist with the main goals of an activation function being
to map the resulting values from input into a certain range, e.g. ≥ 0, 0 to 1 or −1 to 1, and
to add non linearity to improve classifier performance. This kind of remapping allows for non-
linear characteristics to be introduced into the network. As without such remapping the node
activation would be limited to linear combinations of input (64). Commonly used function include
the Relu (66), Sigmoid functions (65) and Tanh function. The Sigmoid, also knows as logistic,
activation function is structured in such a way that its output is always between 0 and 1, i.e.

ω(x) =
1

1 + e−x
, (2)
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(a) Sigmoid Activation function (b) Tanh Activation function (c) RELU Activation function

Figure 8: Example of the different activation functions

and its output is illustrated in Figure 8a. The Sigmoid activation function has the advantage that it
has clear bounds for the activation function. Furthermore, the Sigmoid activation function balances
values closer to 0 or 1 making the neuron more discriminatory towards inputs. The Tanh activation
function has a shape similar to the Sigmoid function but is structured to return -1 to 1, i.e.

ω(x) =
(ex − e−x)

(ex + e−x)
, (3)

resulting in the output as illustrated in Figure 8b.

This makes the function even more discriminative and allows for a clear distinction to be made
between a positive activation +1 and a negative activation −1.

The Relu activation function simply outputs the sum of the input as long as it is greater or equal
to zero else it outputs zero, which results in an output between 0 and ∞ i.e.

ω(x) =

{
if x ≥ 0 : : x

o/w : 0

}
, (4)

resulting in Figure 8c.

This Relu function, while much simpler then Tanh and the Sigmoid activation functions, has a
distinct advantage that in a large network a few neurons could lead to a strong estimation as these
neurons are not limited to a max output of 1. This reduces the effect of the vanishing gradient
problem, which is the problem were as the magnitude of the impact of a neuron get smaller and
smaller the bigger the overall network is, the impacts get to small for any impact full changes to
acquire. Using Relu can reduce the problems caused by the vanishing gradient problem as less of the
network has to activate for a given classification, thereby, increasing the magnitude of those that do.
However, this also introduces a problem as only a few neurons respond to a classification this means
the other neurons do not participate in training resulting in them also not being adjusted. This is
also known as the dying Relu problem (73). Choosing an activation function thereby impacts the
time the network needs to convergence.

Once an activation function has been chosen and a network of neurons has been constructed it
needs to be trained, in order to learn a function f(x) = y where y should be as close to the ground
truth. This is accomplished with a process called back-propagation.

The first step of this process is to randomize all the weights and biases within the neural network.
This is done to break up the symmetry within layers as if two weights leading to a single neuron are
equal they will also always remain equal to each other, a downside of using back-propagation (67).
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Back-propagation tries to minimize the error of the network. It does this by changing the weight
between neurons and tries to and find a direction in which to move each weight, with the goal of
reducing the incorrectness of the network. This measure of incorrectness is known as the loss and
this loss is calculated usually over a batch of examples which is a subset of all examples 2. This
loss is calculated by first letting the neural network make a prediction on a given input. A function
then compares the output of the network, i.e. predictions, with the expected result. The function
that calculates the difference between the two is called the loss function.

Many different loss functions exist all with their own benefits and downsides. A commonly used
loss function for classification is the square loss function. In the square loss function the loss is
calculated by taking the diffence between the real label θ̂ and the prediction label θ and squaring this
difference. Resulting in Loss(θ̂, θ) = [θ̂−θ]2. For back-propagation, the loss is usually multiplied by

0.5, resulting in Loss(θ̂, θ) = 0.5[θ̂−θ]2, this is done to make calculating the derivative easier, which
is needed for the back-propagation. One issue with this loss function is that because of the squared
part, it reacts very strongly to outliers i.e. outliers can have a large impact on the loss function,
which in turn can greatly effect the back-propagation algorithm. A simple solution for this is to
use the absolute loss function where instead of squaring θ̂ − θ we take it absolute value, resulting
in the function Loss(θ̂, θ) = |θ̂− θ|. However, this makes the function a non-differentiable function
which makes calculating the derivative a lot harder. After averaging the loss of all examples in the
current batch, back-propagation calculates how much every weight needs to adapt to do better in
the current training batch.

Gradient descent is used to try to move in the direction where the loss is minimal. To achieve this,
one needs to calculate the derivative of the loss in regards to how each weight and bias impacts
this loss i.e. how does every change to one weight or bias effect the output of the network. To
calculate the loss of a certain weight w in layer i that connects neurons n with neuron o, where n
is the neuron in the previous layer and o the neuron in the current layer one needs to know what
impact this has on the output of the network.

To find how one weights impacts the outputs of the network, we need to know how the neurons and
weights after it impact the output of the weight i.e. we need to know how the weights and neurons
after it effect its output. We, therefore, start at the end of the network and propagate the effect
backwards through the network i.e. backpropagation. This results in

∂E

∂wino
. (5)

Where E is the error of the network. This equals to

∂E

∂wino
=

∂E

∂yio

∂yio
∂netio

∂netio
∂wino

(6)

Where ∂E
∂yio

is the impact of the output of the neuron o in layer i. So starting at an output neuron

o ∂E
∂yio

= loss(θ̂, yio), the loss is propagated backwards to previous layers. To accomplish this it first

needs to be propagated back through the neurons activation function ∂yio

∂netio
after which this needs

to be propagated to all the inputs of the neuron ∂netio
∂wino

as illustrated in Figure 9. This process is

2This is also known as minibatch learning.
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Figure 9: Example neuron j, Modified from Chrislb (68).

repeated for all output neurons resulting in a list of impacts for each weight and bias. As these
impacts are calculated on the derivatives of the loss, they give a direction in which to change the
weights or bias of a neuron. By summing this list of impacts per weight or bias we get one direction
to move the weight or bias to.

This direction is then multiplied against a learning rate parameter. This learning rate parameter
(usually situated within [0, 1]) dictates how fast the function converges. However, setting this
parameter too high might result in overshooting while setting it to low would increase training
time. Therefor, this learning rate usually starts high and lowers the longer the training has been
going on.

Sometimes a weighted loss is used that weighs the loss for the different classes differently. This class
weighting is usually added after the loss function and reduces the impact of a certain class. This
can be desirable when there are class imbalances within a training set which can result in certain
classes not being able to be learned as the loss is mostly focused on a larger class. By incorporating
smaller weights for these over-represented classes compared to classes that are underrepresented it
allows the network to learn both classes.

2.1.2 Convolution Neural Network

A Convolution Neural Network (CNN) is a type of neural network with specific special layers.
One of the more important special layers is called a “convolutional layer”, which is a layer where
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Figure 10: Convolution layer, image from Apple (62).

typically a rectangular filter is shifted over a N-dimensional array of inputs. This filter has certain
activation events as illustrated in Figure 10.

The intuition behind this layer is simple, the convolutional layer allows for the detection of low-
level features e.g. a straight line, a curved line. These fundamental features can then be used in
new convolutional layers allowing the detection of higher-level features e.g. a combination of lines
creating a simple shape. Multiple different filters are used in each convolutional layer, where each
filter is an extra dimension added to the original 2d dimensional array, creating a 3d feature space.

Another commonly used layer in CNNs is called a pooling layer. In a pooling layer, the inputs over
a certain area are pooled together according to predetermined criteria. For instance, max-pooling
takes the maximum value out of some region, while average and minimum pooling take the average
and minimum values, respectively. These pooling layers are used to limit the size of CNNs and also
help in finding location and rotation invariant features (41).

A CNN is constructed out of multiple convolution layers combined with pooling layers in a feed-
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forward structure3. The final layer is then a dense Fully Connected (FC) layer with a size equal
to the number of labels. This final layer has the goal of providing an output on which the ground
truth labels can match i.e. an array of labels and scores indicating if an object is present within an
image.

This final layer also has a few different variants. For instance, there is the commonly used softmax
layer, which normalizes the inputs on a probability scale where the highest value of the input is
over-represented within the probability scale. It is commonly used as it is simplistic and provides
a probabilistic interpretation (69).

Another commonly used last layer is a Sigmoid layer. This is commonly used instead of softmax
in multi label problems, which are problems where multiple labels could be needed to correctly
describe the input.

Figure 11: An example of the structure of a CNN, image modified from LeCun et al.(63).

CNNs are also deep learning as they consist of many layers (17). Deep learning helps the network
with classification, as it allows learning distinct features. However, it also introduces a problem
as increasing the number of layers also increases the number of weights and biases of needing
to be accurately set. Thereby requiring a larger dataset to correctly train these extra weights.
Furthermore, this increased size increases the training time, requires more computing power and
needs more memory to be able to represent the network.

2.1.3 Object Detection CNNs

Krizhevsky’s et al. (1) showed that CNNs could achieve better results for object-classification task
than other (at the time) SOTA methods on a large amount of classes. They showed this by creating
a CNN network called Alexnet with which they won the ImageNet LSVRC-2010 contest (72). In

3 A feed-forward network is a network without any loops or circular flows.
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their paper, they showed numerous methods of increasing the performance and capability of CNNs.
They showed that a CNN can be trained over multiple GPU effectively allowing for larger sized
networks as more memory is available. Furthermore, they showed that they could reduce overfitting
by dropout layers. These layers, dropout input with a certain chance (50% in Alexnet). These
dropouts would then not be taken into account when the network would forward pass or backward
propagate. Krizhevsky’s et al. found that these layers could reduce overfitting at the cost of time
for convergence. Krizhevsky’s et al. also showed that the depth of the CNNs was really important
and removing layers would lead to performance decreases.

Girshick et al. improved on Krizhevsky’s et al. CNN method with a new method called R-CNN (6).
In R-CNN they introduced using a region proposal algorithm to segment the possible objects before
inputting them into a CNN. Region proposal algorithms are algorithms that provide suggestions
for dividing the image into sections (70).

Previously, only sliding window approaches were used for CNNs to accomplish this. This sliding
window approach requires an estimated object size, which then becomes the size of the sliding
window. This window then slides over the image with an predefined step size, and every window
step is then a new region. Depending on image size and step size, this could generate a large
number of regions. One problem is that the sliding window size is fixed, while the objects size
changes depending on the distance to the camera. Furthermore, the aspect ratio is also fixed
making it unable to deal with rotated objects.

Therefore Girshick et al. instead chose to use selective search as introduced by Uijlings Et al. (7).
Selective search works by first over-segmenting the image based on color, texture, size, and shape.
Working from this over-segmented image, areas adjacent to each other are combined based on
similarity and placed into a new layer. In this new layer, the process is repeated again and new
areas can be combined again with other adjacent areas. This process can be repeated until the
whole image is one region, see Figure 12. The advantage of this is that it creates multiple levels
and layers of segmentation, which can then be selected by certain criteria e.g. in the case where
you want a lot of smaller region proposals then you would include more of the lower layers. Finally,
these proposals can be turned into bounding boxes by putting the closest fitting box around each
region proposal.

This region proposal algorithm allowed for the uninteresting parts of the images to be disregarded
and focused to be placed on the interesting parts of an image, thereby significantly increasing
performance in both speed and accuracy of the CNN. They also found that transfer learning can
be highly effective for a CNN i.e. training on generic images followed by domain-specific tuning
yielded a significant performance boost (6).

After the publication of R-CNN multiple improvements where suggested. He et al. proposed a
method called SPPNet (8). SPPNet removed the fixed images size requirement that was needed for
R-CNN and CNNs, as fully connected layers have a fixed predetermined size. They achieved this
by introducing a new layer to CNNs called a “spatial pyramid pooling layer” (SPP).

The spatial pyramid pooling layer pools the image by bins that have certain sized areas. The first
pyramid pooling bin pools an area equal to the size of the entire image. The following pyramid
pooling bins pool in increasingly smaller areas of the feature space. These bins are then combined
into a fixed-size representation needed for the fully connected layers as can be seen in Figure 13.
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Figure 12: Selective search, image from Uijlings et al. (7).

The SPP layer gives the advantages that data preparation steps and data augmentation steps,
by resizing, become much simpler as no requirements are placed on the image size. Furthermore,
in cases where resizing was mandatory, warping and cropping could lead to a decrease in overall
performance, which can now be avoided. They also increased the speed of running the resulting
SPPNet on test images by only calculating the convolutional features of the whole image once as
opposed to R-CNN where these features are calculated for each region proposal separately.

Figure 13: Spatial pyramid pooling layer image from Kaiming He et al. (8).

SPPnet was followed by Fast R-CNN (9). Fast R-CNN sought to increase the performance of
SPPNet and R-CNN. This was done by using region proposal not on the image itself, but on the
feature space created by convolutional layers. This technique in a sense shared resources of the
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R-CNN with the region proposal algorithm, thereby increasing performance. They also proposed
adding a region proposal pooling, i.e. region of interest (ROI) pooling layer, which sought to do
what SPPnet also did, allowing for variant image size, but only for region proposals. They achieved
this not by using a full pyramid pooling layer, but instead by only using one layer of the pyramid
pooling layer, where they could change the resulting size of the image to any size. For example, if
they wanted to get 7x7 images, they could create an ROI pooling layer that would max pool the
images to a 7x7 image. This new ROI pooling layer led to increased performance as they found
that this single scale layering had a performance almost as good as a pyramid pooling layer with
significantly reduced cost.

With these new methods, the overall performance of CNNs increased and the added benefits of pre-
training and the ability of using differently sized images increased overall flexibility. Recently, focus
shifted to increasing the size of networks as it was found that the deeper the network the better
performance could be acquired. Furthermore, focus shifted to more detailed forms of detection,
namely semantic and instance segmentation.

2.1.4 Deep CNNs And Semantic And Instance Segmentation

To allow for semantic segmentation Long et al. (53) introduced FCN, fully convolutional networks
for semantic segmentation. In fully convolutional networks, the networks only consist of convolu-
tional layers and pooling layers. This removes the requirement of fixed-sized images needed for the
fully connected layers as fully connected layer have a fixed size requirement which is not present
within an FCN. Furthermore, it directly shows which regions where responsible for which classifi-
cation as no spatial information was lost as no fully connected layers are used. This allowed for
segmenting the image based on the classification an example of wich is shown in Figure 14.

Figure 14: FCN output before upsampling, image from Pakhomov (58).

However, the resulting segmentation is a downscaled version of the image, which is a side effect
of the convolutional layers. To get a more accurate image they upscale the image. However, they
found that this resulted in very coarsely segmented images. To improve results they suggested using
earlier convolution layers in creating the segmented images, as these earlier layers are less down-
scaled. They then upscaled all these images and combined them using the lower-level layers as a
way of adding detail to the segmentation images. This resulted in accurate semantic segmentation.
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Following this Simonyan and Zisserman (16) suggested increasing the depth of the current FCN
networks by reducing the size of the convolutional filters to a very small 3×3. This allowed them to
increase network depth of the FCN networks allowing for higher accuracy, as commonly was found
that the deeper a network the better performance could be acquired.

As the performance of hardware increased the ability to generate deeper and deeper models became
available. However, a problem was found when making very deep networks: When a deep network
starts converging the accuracy gets saturated after which it degrades fast (15). This means that
while increasing the number of layers increasing the expensiveness of the network, if the network
does not need this expressiveness the last layers of the network have to learn the identity function.
Learning the identity function is a problem in later layers as the network is not trained as a whole
but one layer at a time. Furthermore, with increased depth the gradient of the network slowly
vanishes with ever additional layer as the impact of a neuron on the outputs reduced with every
layer i.e. the vanishing gradient problem.

To combat this Kaiming He et al. (15); introduced deep residual networks, where the network
consists of so-called residual blocks where the input of this block is added to the output of the
block. Now, if the network needs to learn the identity function, it is enough for the residual
blocks to output zero which Kaiming He et al. expected to be easier then learning the identity
function. These residual blocks are the key building blocks of the Resnet network Kaiming He et
al. introduced. With these residual blocks, they were able to build a network much larger than
was possible before encountering the vanishing gradient problem as the magnitude for the neurons
further back in the network is increased by these blocks, which increased the overall performance.
Using these Residual block they suggested multiple differently sized networks e.g. Resnet 18, Resnet
34, Resnet 50, Resnet 101, Resnet 151 where the number indicates the number of convolutional and
dense layers in the network.

This was followed by R-FCN introduced by Jifeng Dai et al. (11) which proposed a Region proposal
network(RPN) build on top of resnet 101 to enable bounding box generation. As resnet is an FCN
and thereby has no FC layers it is considerably faster then Faster RCNN while having less overall
complexity. To in cooperate this RPN a Region layer is added after the last residual block of resnet
101 network which performance region proposals. These region proposals are then evaluating by
using Positive-Sensitive Score Maps (PSSM) these maps give the pooled response for a certain
region within the image. The generated region proposals are then overlapped with the PSSMs and
if each region within the region proposal has a high pooling score, the region proposal is accepted.

Finally, to allow for instance segmentation Mask r-CNN was introduced as a flexible framework
by He et al. (12). This framework added object instance segmentation to Faster R-CNN, which
allowed objects to be more precisely labeled and masked on an individual basis. To achieve this,
they combined two existing methods. To achieve semantic segmentation they used FCN; to detect
objects they used Faster R-CNN. As Faster R-CNN can detect the individual object by bounding
boxes and FCN can semantically segment the image, they suggested combining these two methods
to allow for instance segmentation.

Even with methods specialized on instance and semantic segmentation, it is still considered to be
expensive to create large enough training sets with correct labels for these cases. Instead of just
focusing on making the algorithms faster, the focus shifted on using different types of training.
Instead of relying on supervised training some focus shifted to unsupervised training and weakly
supervised training.
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A current popular way of reducing the cost of labeling a dataset is a method called weakly supervised
learning. Weakly supervised learning in computer vision refers to the task of learning on a training
set where labels are less precise than the desired output also known as weaker labels. This form
of labeling allows for the easier creation of training sets as the manual annotation process is much
less time-intensive e.g. creating specific masks for all objects in an image is much more resource
and time expensive than just stating what objects are visible within the image. It also allows for
the automatic creation of datasets as for instance search engines can now easily be used as a way
of finding images with a certain tag (4; 23). This allows for the combining of multiple different
existing datasets to automatically create a training set such as Zadrija et al. showed was possible
with Street view footage and map information (5). In their paper, they labeled street view footage
with map information and used the temporal aspects of videos to help with the classification. We
use a similar approach, like Zadrije et al. using the information on maps to label a dataset. However
we differ in approach and scope, where we use images instead of video and investigate if a more
broad approach is possible for roadside object detection.

2.2 Unsupervised Learning

In unsupervised learning, no class labels are added to the training set. So in unsupervised learning,
instead of trying to directly classify an object, the goal is to distinguish properties and find correla-
tions and structure in the data (25). Unsupervised learning has seen some use for object detection
problems as a way of bypassing the cost of creating large labeled datasets.

A recently popular technique used in unsupervised object detection is called zero-shot learning. In
zero-shot learning, a model is pre-trained on normally labeled data and uses the features learned
to differentiate new objects in unlabeled images based on these features. It looks at the learned
features and groups images and objects based on the features present.

Methods like zero-shot learning exploit the recently created, large public datasets like Imagenet
(44) and Microsoft’s CoCo (43), while not requiring any labels for new objects (27). While this
method already showed promise, a further improvement was made by Lampert et al. (28) who
suggest using a model pre-trained on attributes, such as color, size, but also distinct objects like
horn or tail, instead of image labels. With these attributes a better distinction could be made on
unseen objects, leading to an increase in performance.

Another unsupervised solution for object detection was introduced by Wang et al. (26). In their
paper, they introduce the idea of visual tracking in videos as a form of supervision which could be
derived from the videos themselves. Instead of requiring hundreds of thousands of labeled videos for
object detection, they only use unlabeled videos and the assumption that two images connected by
time have a similar visual representation as they probably contain the same object only in a different
time-frame. By using domain knowledge, they got close results to those of supervised solutions and
were able to cluster similar objects together. Showing that object detection for new objects can be
done in certain cases without creating new datasets, instead exploiting domain knowledge present
within videos.

20



2.3 Weakly Supervised Learning For Object Detection

Weakly supervised learning (WSL) in object detection refers to the task of learning on a training
set where labels are less precise than the desired output also known as weaker labels (see Figure 3).
Using weaker labels has the key advantage that they require less time to annotate and in some cases
can even be automatically generated by reusing and combining other existing datasets. WSL tries
to use this advantage of easier to create labels/datasets without losing the ability for higher level
annotations i.e. bounding box generation, semantic segmentation and instance segmentation. This
could drastically reduce the cost of learning object detection and segmentation as the creation of
manually labeled training sets can be exceedingly expensive. A downside of the method is that the
information missing from the labels has to be acquired via different means i.e. domain knowledge,
larger dataset, other priors.

The goal is thus to get extra information out of images and to rely less on the label. An example
of an automatically created training set was shown by Crowley and Zisserman (4). They proposed
to use Google images as a repository of positive samples for classification of new object classes to
be able to sort a database of paintings by what objects they contain e.g finding all paintings that
have dogs in them.

In their system, a pool of negative samples was prepared. Then, when a new search object query is
sent, such as “dog”, their system sends this query to Google images to retrieve 100 possible samples,
and together with preprocessed negative samples, a classifier is trained on-the-fly and applied to
the database of paintings. As the Google images had no information about where in the image
the dogs might be, the only label given to these images were image-wide. Crowley and Zisserman
showed that the creation of a weakly supervised dataset can be easily automated for small tasks
and can be done on the fly when needed.

While this shows promising results, one problem weakly supervised learning introduces when start-
ing with image-wide labels for object detection and segmentation is localization. As image-wide
labels have no location information available, there is in uncertainty about what and where the
label refers to. This localization problem is usually solved via Multiple instance learning (MIL)
(5; 10; 20; 21; 24; 30; 32) or localization via CNN (13; 19; 22; 34–36), where MIL is prominently
used for object detection (bounding boxes) and localization via CNN for semantic segmentation.

A third, less-used approach also exists, which involves using saliency. Saliency is the measure of
how much an object stands out in regards to its surroundings (75). Salience-based methods show
regions of interest or at least regions that stand out, which is usually indicative of an object being
situated there. Although less used it can be incorporated into MIL methods (48) and localization
via CNN methods (52).

2.4 Multiple Instance Learning

Multiple instance learning (MIL) is a method of labeling data by groups called bags. Instead of
each object receiving a label the entire group/bag is labeled. If a bag contains only negative objects
for a given label it is labeled negative. If even one of the objects in the bag does contain the label
then the entire bag is labeled positive for containing that label. Figure 15 illustrated the difference
between MIL and normal supervised methods.
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Figure 15: MIL based approach versus a supervision based approach, image from Kumar et al. (77)

MIL for weakly supervised object detection is usually used slightly differently; instead of a bag
consisting of multiple images, each bag consists of multiple regions of a single image (21). This
converts the problem from a localization problem to a MIL problem. The standard MIL pipeline
for object detection usually consists of three major steps: Setting up the bags, initialization and
finally localization and training a classifier (54).

2.4.1 Setting Up The Bags

The first step in the MIL process is to split the image into regions. Multiple methods exist for
achieving this, as most region proposal algorithms can fulfill this step. Methods like the sliding
window approach and selective search (7) have been used (55).

More advanced region proposal techniques like using saliency have also seen usage in splitting an
image into regions (48).

A saliency-based visual attention model was proposed Itti et al. (47) with the goal of rapid scene
analysis. In their paper they try to find regions of interest by creating a saliency map, their
approach was inspired by how human see. They noted that the feature integration theory very
adequately explains human vision. This theory states that human vision is first decomposed into a
set of topographical features, after which these features compete for saliency. For their model, they
followed this approach: First, they used three distinct types of features, color intensity (how high
are the color values), color difference (what difference is there between groups of pixels) and local
orientation information (how does orientation change pixels values respectively). They then use a
spatial invariant approach that splits each feature into nine differently sized maps.

They then normalized these maps and apply a technique called center-surround in an effort to find
outliers. These maps were then combined into a single saliency map were every feature has its own
saliency per channel (see Figure 16). In this combining of maps, the features in a sense compete
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Figure 16: Saliency based visual attention model, from Itti et al. (47)

for saliency. Allowing for the prioritization of relevant information. Their result showed the ability
to find disruptions in images even when noise was high.

2.4.2 Initialization

While some methods go straight to training after setting up the bags (49; 50), most methods do
some additional prepossessing. Most methods reduce the size of the original images by some margin,
with the intuition that the object labeled will probably be near the center and not cut off by the
image boundaries, however this only works for pictures taken by people and not for autonomous
cameras (31; 55).

A more advanced initialization was proposed by Song et al. (32). They noted that a large per-
formance increase could be obtained by adequate initialization. After separating each image into
a bag of 2000 region proposals they used a pre-trained R-CNN network to create a feature space
of each region proposal. Using a nearest neighbors algorithm, they generate a list for every region
proposal which contains the distance to all other region proposals, in terms of feature space. After
which they selected all the positive bag region proposal that are relatively close to other positive
bag regions, but far away from regions present in negative bags (see Figure 17). The intuition
behind this is if a region is closely related to one of the negative bag examples then it probably
does not contain the object as it is also present in negative examples. This method allowed them
to already do a pre-selection of regions to learn from. The final step of the pipeline is to train an
support vector machine (SVM) or in more recent method to train a CNN.
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Figure 17: The green class is only connected to other green (positive) classes, from Song et al.(32).

2.4.3 Localization And Training Via SVMs

Support Vector machines (SVMs) are supervised learning models that try to differentiate and
classify objects between two classes. They do this by looking at the different examples of both
classes and trying to find a line that separates these two classes best (46) i.e. find a vector x that
maximises the distance between two classes (see Figure 18).

Andrews et al. (39) introduced two SVM approaches for MIL, called MI-SVM and mi-SVM. MI-
SVM and mi-SVM are different from SVM in that instead of differentiating all negative points
from all positive points, mi-SVM and MI-SVM try to differentiate all negative points from at least
one point from each positive bag i.e. mi-SVM and MI-SVM want to differentiate objects that are
present in negative bags from objects that are only present in positive bags. mi-SVM simply tries
to find the vector that maximises the margin between all negative bags and at least one point
from each positive bag over all the possible labels assignments. MI-SVM instead tries to find the
maximized margin within a bag i.e. find two sets of points where the margin is maximized for each
positive bag. These two sets of points within a bag are then used to limit the search space when
picking possible label assignments when finding the vector that maximizes the margin between the
two classes. This method tried to exploit the fact that every positive bag should have at least one
region that corresponds to the label. However, this approach seems to have problems with noisy
data, as when a single positive example is present in any of the negative bags all the positives are
now present in a negative example resulting in a big loss in performance. To solve these issues,
more noise-robust method were suggested such as using CNNs.

2.4.4 MIL Localization And Training Via CNNs

Songs et al.(32) method showed that CNNs could be used to solve MIL problems (see 2.4.2). Wu et
al. (40), proposed a weakly supervised MIL learning framework using a deep convolutional neural
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Figure 18: SVM differentiating two different classes trying to maximize w, image from (71).

network called deep-MIL. They used an Alexnet CNN (1) where they redesigned the last hidden
layer to facilitate MIL. This layer combined the results of all objects in a bag i.e. they let every
region in the bag individually pass through the network starting from the first convolutions layer to
the last fully connected layer. All the outputs from the last fully connected layer are then combined
with a softmax layer. The intuition behind this is if every region proposal within a bag is passed
through the network and then combined at the last layer using a softmax layer, it should find the
region that contributes the most for a given classification.

The loss of each bag is then aggregated over that bag and the lowest loss in each bag is used to
calculate the gradient. The intuition behind this step is to find the region that has the lowest loss
and use that to classify the entire bag. This works as not all regions in the bag should contain the
object in them and we should only take the region that contains the object (see Figure 19).

While certain bags at the start of learning might classify the wrong region as correct since the
gradients of all bags are combined as long as most bags classify the correct regions it would still
eventually lead to the ability to learn. A more direct solution to solving the problem of wrongly
classifying the wrong regions at the start of training was proposed by Sangineto et al. (51). Their
idea is to first start with a simpler subset of images that are more reliable and only, later on,
introduce the harder images. This would deal with the problem of wrongly classifying samples at
the start of training. While dividing the dataset based on difficulty is not a new idea, it is new for
deep network-based classifiers in end-to-end training pipelines (51). To create this simpler subset,
they propose a self-paced iterative approach, where every iteration is using the current training
state of the classification network to find the images with the highest classification. These images
are then used for training the network. However, this process would not work for the first training
cycle as, at this point, the network has no knowledge of the labels. To solve this, they propose a
two-step procedure for the first iteration of the self-paced iterative approach.
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Figure 19: Example of how each region has it own individual loss and how the loss is lower for the
location where the objects is.
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First, they take a pre-trained CNN and change its softmax layer to be compatible with the training
set i.e. set the amount the output classes equal to the number of labels present within the training
set. Then using a small subset of the training set, they train the CNN using image-level labels.
Using the weights of this network, they initialize a Fast R-CNN network, this Fast R-CNN need
bounding boxes to be trained so they use the CNN to generate pseudo-ground truth bounding boxes
for training.

This Fast R-CNN is then trained for one iteration as a sort of one-shot MIL solution. The result is
the starting point of the self-paced iterative approach.

2.5 Localization Via CNNs

One method of solving the localization problem exploits the way CNN classify objects. After the
CNN classifies an object, the key idea is to look back through the CNN layers to see which areas
led to a positive classification. But as Fully Connected (FC) layers remove the ability to localize
objects, Zhou et al. introduced using a global average pooling (GAP) layer to replace these FC layers
(34). This allowed them to create Class Activation Maps (CAMs) that show the location of the
features that led to classification. This GAP layer performs average pooling on every convolutional
feature map resulting in a 1 by 1 layer for every convolutional feature map. This approach is
similar to the approach of Long and Shelhammer et al. (53) but instead of using multiple sets of
convolutional layers to construct a semantic segmentation map, Zhou et al. used only this GAP
layer, which in a sense does something similar i.e. replace the FC layers and take features from
multiple convolutional layers. Where their methods differentiate is that Zhou focuses more on the
weakly supervised aspects while Long and Shelhammer use supervised training.

This GAP layer allows for the most discriminatory areas of the object to be found, as no location
information is lost. However, less discriminatory areas are lost, as they are averaged by the GAP
layer. This introduces a problem as only the most discriminative features remain leading to scarce
CAMs where not the whole object is segmented, but only the most discriminative parts, e.g. Figure
20.

To solve this Grabcut can be used to create a more complete mask/segmentation of the object.
Rother et al. (74) suggest the method Grabcut as a way to go from a bounding box or incomplete
mask to a more accurate mask.

Grabcut grows the region we consider to be correct or incorrect i.e. foreground and background,
where foreground is a region where the object is present and background a region where the object
is certainly not located. This growing is achieved using a graphcut algorithm which uses a Gaussian
Mixed Model (GMM) to find the optimal location to segment the images. A GMM is a probabilistic
model that in this application models the probability that two regions are located next to each
other. If no foreground information is available, as in the case of only using bounding boxes, this
background region growing is the only thing used to refine the bounding box.

Ahn and Kwak proposed to solve the discriminative problem differently by adding a DNN (deep
neural network) called AffinityNet (35). This AffinityNet is then added as a post-processing step,
and tries to predict features next to the boundary of the CAM. If it does this successfully, that
area is added to the CAM. The intuition behind this is simple: If the AffinityNet can correctly
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Figure 20: CAM only detects the face of the horse, not the rest of the horse. Figure from Ahn et
al. (35).

predict a feature then this features was apparently near the CAM maps often enough to allow for
this prediction to happen i.e. features that are often present should probably be included.

Going in more detail, AffinityNet is trained to predict class-agnostic semantic affinity between
two adjacent coordinates. This affinity is predicted on feature maps, as to increase computational
efficiency, where the semantic affinity between two feature maps is the difference between each
feature in the feature map. The AffinityNet is trained by using areas within CAM as training
examples, where areas with very high confidence are used as positive examples and areas with very
high confidence of being background are used as negative examples. They specifically avoid areas
with medium confidence, in both positive and negative examples, as these are too risky to use as
training examples. These training examples were then used to train the AffinityNet. After training,
the predicted affinities are used in a random walk algorithm as probabilities. Regions with higher
affinity have a higher chance of being added to the CAM.

Another approach to solving the problem of a scarce CAM was introduced by Wei et al. (52). They
proposed to use an adversarial erasing approach in which they remove the most discriminative parts
of the CAM after classification. With the idea that now without the most discriminative part in the
image if we retrain the network on these images we would find the next most discriminative parts
of an object. They repeat this process until classification scores drop below a certain threshold. To
make sure no classification happened on the removed part of the image, the pixels were replaced
by the mean value of all training images.

The resulting CAMs from this method are then combined as weighted maps, taking their classifi-
cation scores as weights.To increase performance, they also sought to use background localization
cues, as this was found to increase performance when semantically segmenting an object.

To accomplish finding the background, they used a saliency-based method. This returns areas of
interest, thereby also showing areas of disinterest. Then, when generating a mask, they ignored this
background as well as three other kinds of pixels: pixels that were in removed foreground regions,
pixels that lie within object CAM maps, and finally pixels that are not assigned to semantic labels.
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Figure 21: Peak response maps from Zhou et al.(13).

While these methods allow for semantic segmentation, instance segmentation is not possible, as
the network can only tell which features lead to classification, but not to specific classes. However,
Zhou et al. (13) found that peaks in the class response maps usually correspond to instance-related
visual cues inside individual objects. When multiple of these peaks exist in an image, this can be
indicative of multiple objects being in the image as shown in Figure 21.

Zhou et al. (13) proposed to use a pre-trained FCN where a peak stimulator layer is added before
the softmax layer. This peak stimulator tries to stimulate peaks that are closely related to other
peaks within the class response map. Once training is completed, peaks that have been found are
transformed into peak response maps by looking which regions led to the creation of this peak. This
Peak Response Map (PRM) is then combined with the CAM and with an off-the-shelf segmented
proposals to provide instance-level segmentation. The performance of this approach is however
bounded by the quality of the off-the-shelf segmentation proposal.
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Figure 22: Example of BGT map.

3 Resources And Materials

This section goes over the available resources and materials in detail. First, we discuss the maps
used providing semantic information (Section 3.1). After which, we discuss the street view images
used in Section 3.2. Finally, we discuss over the depth images used in Section 3.3.

3.1 Maps

In this thesis, will focus on two maps the BGT (basis grootschalige topografie)4 illustrated in
Figure 22 and the DTB (Digitaal Topografisch Bestand)5 illustrated in Figure 23, which are both
dutch maps that show a large number of objects and region within the Netherlands (56).

Where the BGT map contains all municipality-owned objects e.g. all objects near and within cities,
villages and on smaller roads, and the DTB map contains all state-owned objects e.g. all objects
near and within highways, large provincial roads and waterways. As the bounds between these
regions can sometimes be vague, the maps overlap on occasions as seen in Figure 24.

The objects present within these maps are divided over three main types of objects: line objects,
region objects and symbol objects. Where line objects are objects like road markings, hedges,
guardrail, etc, and where region objects are objects like cities, fields, roads, buildings. Finally,
symbol objects directly refer to single objects by giving a single location. Example of these are
objects such as street lights, trees and traffic signs. These symbol objects are the objects we are
most interested in and contain most street relevant objects. The objects within the symbol type
are subdivided into 32 classes, where each class has a certain theme of grouping (for the full list see
Appendix 9.4). For example, the class pole contains all the pole type objects, see Table 1.

4 Dutch for basic large scale topographical map
5 Dutch for Digital topographic file
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Figure 23: Example of DTB map.

Figure 24: Difference between BGT and DBT maps and a region where the overlap.
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Object name Number of entries
Sirene (Sirene) 189
Afsluitpaal (barrier post) 510277
Verkeersbordpaal (traffic sign pole) 197381
Portaal (traffic height restrictive pole) 3113
Drukknoppaal (button pole) 5558
Poller (raising barrier post) 4007
Telpaal (counting pole) 286
Hectometerpaal (hectometre post) 35952
Verkeersregelinstallatiepaal ( traffic control installation pole) 39653
Grensmarkering (border marking) 2768
Lichtmast ( street light) 1987249
Haltepaal (busstop pole) 6727
Praatpaal (emergency telephone) 285
Vlaggenmast (flag pole) 13677
Dijkpaal (dike pole) 483

Table 1: Number of objects within the class ”Paal” (Pole) for the entire Netherlands

While certain objects only occur a few times in the entire dataset, for example Sirene is only present
189 times, Objects like, for example, street light are present almost two million times. These maps
not only give location information about objects, they also give the time of registration which
specifies when an object was mapped. Furthermore, the location information is highly accurate
usually within one meter. This makes using these maps ideal for our problems as they have large
amounts of different objects and most of these object also have a large number of individual entities
illustrated by Table 2. See Appendix 9.4 for a full list of available objects.

3.2 Street View Images

To find images for the location that the BGT and DTB maps provide, a large set of available street
view images of the Netherlands is required. To acquire these, we will use Cyclomedia’s repository
of street view images as they have mapped almost all roads in the Netherlands with high-quality
images, e.g. see Appendix 9.3. These images are created by a camera system with five cameras
that all take one image every five meters. These five cameras are pointed in different directions
(up, forward, left, backwards, right) allowing them to be combined to form a single cyclorama.
Where a cyclorama is a 360°images bubble that is viewed from the inside, Figure 25 illustrates a
2D representation of a cyclorama. The resolution of these image is normally 1536× 1536 but this
is dependent on when an image was taken e.g. images taken before the year 2016 and by an older
system are 512 × 512. However, for our research, we will only rely on the latest images which all
have at least a 1536× 1536 pixel resolution.

The camera system is normally situated on a car as illustrated in Figure 26 this allows it to be
driven around roads, bicycle paths and squares. The system also contains a GPS sensor to measure
the location of each cyclorama to be recorded. This allows each image to be position on a map
and requested by a location. Images can also be request given a specific image id or by a region
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BGT-object Amount DTB-object Amount
Drain 2550088 Map height marking 1124343
Street light 1983625 Illumination object 255984
Manhole 1266851 Drain 236510
Barrier post 509430 Traffic sign without cable 144624
Traffic sign 229045 Bollard pole 106911
Traffic sign pole 197055 hectometre sign 82356
Fire hydrant / well 170810 Manhole-cover 79874
Playground equipment 105821 Bollard rock 55370
Bicycle rack 105265 Utility cabinet 54059
Garbage can 94533 Roadside protection block 31168
Water well 87745 Paint sign 27876
Bench 83727 Signpost without cable 25469
Waste separation can 52847 Traffic light 20160

Table 2: Top 13 most occurring objects from the BGT and DTB map. For a full list, see Ap-
pendix 9.4.

Figure 25: 2d representation of a cyclorama.
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Figure 26: Cylcomedia’s camera system.

in the form of a polygon in which all images within are returned. It also allows for the sorting
on a specific year e.g. we might only want recently shot images since an object was only recently
mapped. Next, to returning these five images, some extra information is also passed namely: an
image id, location information, the direction of the car relative to north and finally a precision
measure that shows how accurate the location and direction parameters are and how much they
can be off, due to uncertainty in GPS information.

3.3 Depth Images

For some regions depth information is also available, see Appendix 9.3 for the availability of depth
information. This depth information is created by a lidar system 6 which is also placed on the
camera system. This lidar systems generates a set of point together with the five camera every five
meters. However, this lidar system has some lag compared to the camera system which in some
case can introduce a minor shift where the generated point do not exactly match the image. This
is however minor and small shift and should not have any large scale impacts.

Once a set of points is generated by the lidar system for a specific location, these point are trans-
formed into a mesh were point close to each other are connected. This mesh can than be transformed
into an depth images where the distance is encoded within the color of a specific pixel in an image
as illustrated in see Figure 27. For regions where no points where found the distance is set to -1,
to indicate no depth information is available for that region. This could be due to there not being

6 A lidar system is a laser system that sends out signals of light and measures the time for the signal to return
and as the speed of the signal is known, this can be used to calculate the distance to a particular point.

34



Figure 27: Example of depth image, where the color or a pixel represents the distance from the
camera to that pixel.

any object e.g. the sky or due to a particular surface refracting the incoming laser signals from the
lidar system. These depth images can be requested the same way street view images are requested.

4 Methodology

In this section, we will go over our methodology for answering our research questions. First we
will discuss our method of automatically generating a dataset from maps and images (see Section
4.1). Second, we will go over our method for training on this automatically generated dataset for
both image-wide object detection, bounding box object detection and semantic segmentation (see
Section 4.2). Finally, we will go over our method of improving the results by using automatically
generated masks (See section 4.3).

4.1 Automatic Dataset Generation Method

An overview of the automatic training set generation method can be seen in Figure 28. To auto-
matically generate a training set and validation set first a selection of classes needs to be made.
This selection of classes can be any of the objects within either the DTB or BGT maps (see Sec-
tion 3.1). However, for our method, we only investigated using points objects thereby disregarding
line objects and region objects. We make this decision as these other types of objects have different
kinds of problems associated with them i.e. how much of a line object or region object should be
in view for us to consider it visible. Furthermore, most of the line and region objects are used to
define boundaries, districts, and paths while our main focus is on roadside objects.
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When making a selection of classes, similar classes between the two maps can be combined into
a single class. This can be beneficial as in a few cases the class names between the maps might
different while they represent the same objects. For instance, the class ‘street light’ in the BGT
maps is called ‘illumination object’ in the DTB map. While small differences are present within
these two class labels, i.e. ‘illumination object’ also includes lights that don’t have a pole associated
with them while the ‘street light’ class only contains lights that are on top of street poles, most
locations within both maps point to the same type of object a simple street light. Furthermore, some
objects are visually too similar for a clear distinction to be made e.g. Figure 29 shows the difference
between the different types of Utility cabinets which can sometimes be very hard or impossible to
distinguish from an outside perspective. Combining them in most cases is a more optimal strategy
and when necessary to distinguish them one could use a second classifier specifically trained on
differentiating these similar classes.

Finally, the size of the dataset needs to be selected which determines the number of images per
class. The number of labels cannot directly be determined beforehand as it is unclear how many
objects are visible within the background before processing. This size should be generally a lot
lower than the objects with the least amount of occurrences in the DTB and BGT map, as there
is no guarantee how many of those objects are close to streets/roads and how many images can be
found per location.

Once a selection of size and classes have been made the automatic dataset generation can begin
which is illustrated in Figure 28. First, we take the BGT and DTB maps(A) which we then are
transformed into a list of coordinates of objects(B). A toroidal region is described (C) on the map
around these coordinates with a range of three to ten meters. For every object, all images in these
zones are downloaded until the requested size has been reached. A minimum range of three meters
is used as objects closer than three meters may not be clearly visible as they have a chance of being
cut off as illustrated in Figure 30. The images selected are then downloaded, focused on the object
and cropped to images with an FOV of 90°(E). We selected 90°as this allows most object to be
completely visible in most cases especially when including a minimum range of three meters. It
also allows the cycloramas to be easily split into four sections reducing the overall complexity when
making predictions.

The images are then labeled with the label of the object that was used to find an image. To find
the other objects presented within the image a view cone (F) is constructed by using the location of
the image, FOV, two pre-selected distances Xmin and Xmax, and the direction of the object. All
objects within this view cone are then considered as being visible. However, finding a good, single
cutoff point for distance could introduce large amounts of label noise. Therefore, we introduce a
hard region to the view cone where we ignore the class for a particular image when calculating a
loss if a class of objects is only present in the hard region of the view cone. This hard region does
come at a cost as some of the images get falsely discounted from the negative set, decreasing the
number of images that can be trained on. But as this negative set is expected to be several times
larger than the positive set as most classes are not present within most images the expectation is
that this trade-off will improve overall performance. The size of the normal label region of the view
cone we denote by the distance Xmin and the hard region by the distance Xmax. Where a label
is considered in the normal label region if within the view cone and the distance to the object is
smaller or equal then Xmin i.e. x ≤ Xmin where x is distance. While for the hard region the
distance is greater then Xmin and smaller then Xmax i.e. x > Xmin ∧ x ≤ Xmax.
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(a) Image of a CAI cabinet (b) Image of a cabinet house

(c) Image of a cabinet house (d) Image of a cabinet house

Figure 29: Images of two types of utility cabinets being very similar and very hard to distinguish
from each other.
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(a) (b) (c) (d)

Figure 30: Difference of images selected when minimum range is present (b,d) and when not present
(a,c). Illustrating that a minimum range can reduce objects being cut off by image boundaries.

We investigate the performance of the method by selecting 20 objects chosen to be differently
shaped, sized, rarity and environment they are usually situated in. Figure 31 illustrate our selected
classes. With these objects, a training set of 16,000 images (800 images per class) and validation
set of 4,000 images (200 images per class) is created. It should be noted that some of the chosen
object classes actually consist as multiple different classes in the maps. These where combined as
together as they were too similar to visually distinguish e.g. in the case of utility cabinet they
consist of the classes ‘Cabinet house’, ‘Communication Cabinet’ and ‘Electronic Cabinet’7.

The decision to use 20 different classes comes out of a feasibility study we did (see Appendix 9.1),
where we concluded that increasing the number of classes can increase performance as the number
of negative images increases. Furthermore, increasing the number of classes can help with the
localization of objects as the presence of one object can remove the uncertainty that another object
is at that location. While this does not happen for all objects, it can improve the performance of
objects that are never located next to each other e.g. a street light can certainly also have a traffic
sign on it, but a street gully will never be near an electronic freeway sign.

To evaluate the automatically generated dataset, we manually annotate a set of 400 images from
the dataset. We then compare this manually annotated set with the labels given by our method.
Using this manually annotated set, we can also fine-tune the label-range with a given value Xmin
and Xmax.

However, as this manually annotated set is normally not available, we suggest selecting values based
on the size and visibility of the object, placing them into one of four ranges expanding the ranges
when needed : Very Small (Xmin = 5,Xmax = 10), small (Xmin = 10,Xmax = 15),medium
(Xmin = 20,Xmax = 30), large (Xmin = 35,Xmax = 45). Figure 32 show why size cannot be the
only determination made when finding the range of the object as the general positioning of certain
objects can greatly impact visibility. Doing this for our 20 selected objects results in Table 3.

7translated from Dutch ‘kasthuis’, ‘CAI kast’, ‘elektrakast’
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Figure 31: Examples of the selected dataset, names in brackets indicate original Dutch labels as
given by map 41



Figure 32: Image showcasing that object in the ground are badly visible when viewed from a
distance due to their size and the angle of viewing.
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4.2 Training On The Automatically Generated Dataset

In this section, we describe how we train on the automatically generated dataset and acquire image-
wide object classification results (see Section 4.2.1). We then describe our method of acquiring
location information on the automatically generate dataset using CAMs 4.2.2. We follow this by
describing how we acquire bounding box object detection results (see Section 4.2.3) and semantic
segmentation results with the location information acquired by the CAMs (see Section 4.2.4).

4.2.1 Classification On The Automatically Generated Dataset

We investigate training on the generated dataset with a CNN network as these networks are gen-
erally more capable then non-deep learning methods especially when handling noisy datasets. For
this, we will use Resnet 50 (15) as it is a run-of-the-mill network that is often used for object
detection. Furthermore, the network is an FCN and as such can easily be converted into a CAM
generating network, a key feature we intend to exploit to acquire location information.

We also investigated a VGGnet 16 network, as this was originally used for the CAM method.
However, newer methods (13) show increased performance on the Resnet 50 network and we found
similar results in overall classification see Appendix 9.2.

We use a pre-trained version of Resnet, which is pre-trained on Imagenet, as our base model. We
then changed the last output layer of the network to a sigmoid dense layer instead of a softmax
layer as our problem is a multi-label detection problem. We set the size of this last layer to be
equal to the number of classes.

For the parameters of the network, we set a batch size of 4, due to memory constrains, and inves-
tigated multiple different learning rates. Furthermore, we used the decay and momentum values
suggested by Khe et al. (15). We kept training until our validation loss stagnated for more than
four epochs. Empirically, we found that after four epochs of no improvement, training longer will
not increase the performance. If this was the case, the epoch with the lowest validation loss is
selected.

As a loss, we use a binary cross-entropy loss, where we set the loss to zero for samples labeled ‘hard’
(-1), thereby ignoring the entire set of images for that class. We used binary cross-entropy, as it is
a loss often used in multi-label classification.

We take the mean of the loss over the current batch resulting in a loss per batch. This is a normal
step when using binary cross-entropy. Finally, we add class weighting to reduce the effect of class
imbalance which is necessary as certain classes are allot more prevalent in the street environment
e.g. street light occur more frequently then cameras in the background of other images. The class
weight simply reduces the network’s incentive to over-focus on the over-represented classes.

4.2.2 Localization Of Objects With CAMs

To be able to localize the object, we detect using our network we need a method that can acquire
localization information from our weakly labeled dataset. Numerous methods for this exist but
the two popular used ones are MIL based approaches and CAM based approaches. We chose to
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use the CAM generation method as introduced by Zhou et al. (34), as this method has some key
advantages over MIL based approaches.

First, MIL based approaches overall need very accurate labels and noise within these labels can
significantly reduce performance as seen in Song et al. (32).

Second, MIL based methods require a method to generate bags, for this region/objects proposal
methods such as sliding window and selective search. This makes the rest of the MIL based
method heavily depended on the quality of these methods as they form the basis of the method.
Furthermore, a sliding windows based approach would require a preset size to be determined for
every object class. Within the road environment, this leads to problems as the distance from
the camera to the object is highly in-consistent and so having a single fixed value would reduce
performance significantly. This fixed-size also creates problems as inter-class variations within
certain classes can be extensive e.g. while most utility cabinets have the same square shape they
do differ in size as illustrated in Figure 29.

Third, most MIL based approaches are limited to bounding box generation as they lack the required
precision for semantic segmentation. As one of our goals is to enable segmentation of objects, Zhou
et al.’s CAM method fits our problem better.

Generating a CAM from a network like Resnet 50 is straightforward, as the network is already an
FCN, thereby already maintaining localization information within the network. To now generate
the CAM from this FCN, the network is first trained normally. After the network has been trained
and an optimal epoch has been found, the network is changed to also output the values of the
last convolutional layer. When selecting the last convolutional layer we have a choice: the last
convolutional layer can be selected, which is located in the last identity block, or the last ‘add’
layer can be selected, which is located after the last convolutional layer and is a sum of the last two
convolutional layers. Both layers can be used for CAM generation and we investigate performance
of both methods.

Once a prediction is made, the output of the last convolutional layer or add layer has a shape of
(16, 16, 2048). For every class, the values that led to a positive classification need to be found. To ac-
complish this, the weights from the dense layer are taken, and their dimensionality is (n class, 2048).
These weights can map the convolutional layers value to a certain label. By taking the dot product
between these weights and the convolutional layer, the labels are directly connected to the convo-
lutional map, resulting in a CAM for each class shaped (n class, 16, 16). Figure 33 illustrates this
process and shows why the resolution of our CAM is directly linked to the size of the convolutional
layer.

Once the CAMs have been generated, they are normalized and their values are fit within a range
of 0 to 255. This makes it easy to visualize the CAMs. The normalization allows for a generic
threshold to distinguish foreground and background, and to take the most activated regions out
of an image. Furthermore, this normalization reduces the effect of confidence values on the CAM.
We investigate multiple values for finding an optimal threshold to distinguish the foreground and
background of the image (see Figure 34).

Looking at this process of CAM generation, it becomes clear that CAMs are in a sense the output of
the network if one would remove the last merge layer. Therefore, one could also directly remove the
merge layer, resulting in an output of (n class, 16, 16). To generate labels as well, one could use a
merge layer outside the network, which would change the CAMs (n class, 16, 16) to labels (n class).
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Figure 33: Image A shows a simplified diagram of the last layers of a Resnet 50 network, Image
B shows how we use those layers to generated CAMs. Where the add output is the output of the
last add layer, in image b this could also be replaced with the output of the last convolutional layer
which has the same shape and size as the add layer. The weights that where used to transformed
the average pooled layer output to the dense output are then reused to transform the add output
or last convolutional layer output to CAMs for all the classes in the model.

(a) Bi-linear upscaled normalised CAM (b) Nearest upscaled normalised CAM

Figure 34: Effect of thresholding the normalised CAM on a threshold of 200
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However, after preliminary research, we found that this network was incapable of converging to any
real values for both the CAM and labels and therefore we did not investigate this path any further.

4.2.3 Bounding Box Generation

We investigate two methods that convert our CAMs into bounding boxes. Our first method simply
creates a bounding box around the CAM at a certain threshold. Our second method using region
proposals generated by a selective search algorithm (7) and scores these region proposals based on
two features. The amount of foreground that is contained by the proposed bounding box minus the
amount of background that is contained by the proposed bounding box i.e.

Scorex =
∑

F [z]−
∑

B[z] (7)

where F is the foreground mask, B the background mask, z the proposed bounding box.

To generate the fore- and background two thresholds are used, the first selects the foreground, while
the second selects the background. An intentional gap is left between these thresholds to allow for
the growth of the bounding boxes in regions near the foreground.

To find an appropriate value to threshold the CAM we investigate multiple threshold values. To
validate our outputted bounding boxes we compare them against a manually annotated validation
set (see Section 5.1).

4.2.4 Semantic Segmentation Method

As with bounding boxes we use CAMs to help localize the object. We investigate two methods to
go from the CAMs to segmentation masks. The first is to simply use a high threshold on the CAM
and use that as our segmentation mask. The second option we research is to use GrabCut where we
select the highest valued parts of the CAM as our foreground and allow it to grow to our background
which are the lower parts of our CAM. We selected GrabCut as it is a simple algorithm to allow for
semantic segmentation. To find an appropriate value to threshold the CAM we investigate multiple
threshold values. To validate our outputted masks we compare them against a manually annotated
validation set (see Section 5.1).

4.3 Automatically Generated Masks

In this section, we discuss our method of using available depth and map information to help guide
our learning process and increase the quality of our CAMs. First will discuss how we use these form
of information to create approximate masks (see Section 4.3.1). Second, we will discuss how these
can be used to train our network (see Section 4.3.2). After which we will discuss how these masks
can also increase the resolution of the CAMs (see Section 4.3.3).
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Figure 35: Overview of our proposed CAM loss method. First, to generate an approximate mask
the direction of all objects of a certain class is first calculated. Then the distance to all these objects
is then calculated. Using these distances a range is created with which all areas within the depth
mask that fall within this range are found. This is then combined with a range over the direction
resulting in approximate ground truth masks. This approximate mask ground truth mask is then
compared using cross-entropy with the CAM which allows for a loss to be calculated.

4.3.1 Approximate Masks Generation

To improve the accuracy of CAM and help guide the learning process for bounding box detection
and semantic segmentation. We investigate improving the CAMs by introducing an additional loss
that aims to punish the CAMs during training when focused on the wrong part of an image i.e.
CAM loss. With the intuition that even if a label is correct it should also be able to find the object
within the image, otherwise it might be over-training or using the wrong feature for classification.
As no direct object-masks are available within the dataset, an approximate ground truth mask is
instead constructed out of the depth image (available from CycloMedia Lidar dataset), the relative
direction of the object within the image (available from the object location and image location)
and the distance to the object (also available from the object location and image location). By
combining this information a rough mask can be constructed that while not perfect should be
enough to point the CAM in the right direction(see Figure 35).

To create these masks, first an approximate depth range dr is calculated. Using the distance di
between the object and the recorders world location (image location), the range rw, in which a
pixel is considered to be part of the image is selected. If the object is further away the size of the
range is increased, since the distance measurement becomes noisier as the distance increases. Where
the range has an increased size the further the object is away as the depth images measurements
become more noisy as distance increases. Resulting in

rwi = max(dii ∗ o, 0.5), (8)

where o is a variable greater then 0. To further specify the masks, a direction range dr for each
object is also taken into account. First the relative direction of the object θd is calculated with
regards to the the recorders world location b. Resulting in

θd = atan(obx − bx, oby − by)− bd, (9)
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Figure 36: Image showing the effects of selecting different depth ranges O

where bd is the direction d of the image with regard to north and where obx, oby , bx and by are the
x and y coordinates of the object and image respectively. A range ra is then set on this direction
taking into account the distance to the object as they direction should become smaller the further
the object is away as the size of the object get smaller i.e.

rai = dii ∗ p (10)

where p is a variable greater then 0. This range is then applied against the direction of the object
i.e.

dri = (θdi − rai, θdi + rai) (11)

. These two ranges are then combined to generate a mask for every labeled class that is within an
image. Figure 36 illustrates the effects of picking different values of o, where we found a value of
2.5 to fit best. Figure 37 illustrates the effects of picking different values for p, where we found that
a value of 5 works best as most objects in our set aren’t too wide.

The masks are generated for every labeled object within an image. These masks are then combined
into a single mask per class i.e. the generated masks for every object are combined into a single
mask for each. This mask is then used during training and compared against a normalised CAM.

The masks generated by this method have a size of (512× 512) pixels. While this is larger then the
CAM that was generated ,i.e. (16× 16), down-scaling the mask to a 16× 16 would remove relevant
information e.g. see Figure 38. For the purpose of comparing the CAMs with masks, the CAMs
are upscaled to the size of the masks (512× 512) using bilinear upscaling. While this does result in
the CAM loss never being zero as the CAM resolution is just too low to perfectly fit the mask, it
should still allow for loss to improve the CAMs.
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Figure 37: Figure showing the effects of selecting a different width range p

(a) (512×512) depth mask (b) (16 × 16) depth mask (c) (16 × 16) depth mask

Figure 38: By down-scaling we lose significant amounts of information (b), if we change how we
downscale to instead if any pixel is positive to turn the entire region positive we see a better masks
(c). However, the mask (a) can instead be used if we upscale the CAM instead of downscaling the
mask
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4.3.2 Including CAM Loss Within Training

To see the impact of the interaction between the two different loss functions,the normal cross-
entropy loss function and the cam loss function, multiple different combined loss functions were
investigated. First l1 is the normal cross-entropy loss i.e.

l1 = −ylog(ŷ)− (1− y)log(1− ŷ) (12)

where y and ŷ are ground truth and the prediction respectively.

Second, l2 is the CAM loss is and consist of a cross-entropy comparison between the CAM and the
approximate depth mask i.e.

l2 = −clog(ĉ)− (1− c)log(1− ĉ) (13)

. Where c and ĉ are ground truth (approximate depth mask) and the prediction respectively (CAM).
Combining the two losses can then be accomplished in a few ways. We investigated to simply take
both loses into account using some weight i.e. resulting in loss = w1l1 +w2l2. We also investigated
the following relative loss function: loss = l1 + l1l2, to reduce the effects of noise in the dataset.
This relative loss function takes the cam loss l2 more into account when the predicted label l1 is
more wrong. This is desirable as when the loss on the labels is high, the network has a problem
selecting the right regions or features for this classification to be made in which case the cam loss
can help it focus on the right region. Furthermore, when the loss on the labels is low, the network
is apparently already able to find the right features and make correct classification and as such
reducing the impact of CAM is desirable as when a good classification we do not want to disturb
the region we learned on too much if, for instance, the mask is incorrect due to noise.

4.3.3 Increased Resolution

As our model now has a second form of ground truth that directly gives us a loss on the CAMs, some
upscaling techniques can be used to increase the resolution of the CAM. This can help in creating
more accurate and expressive CAMs. This is done by adding a binary up scaling layer before the
last Resnet residual block increasing the size of the CAM of the last CAM. While the label loss (L1)
cannot discriminate between these upscaled values, as it cannot discriminate between the values that
came from the same non upscaled value, our depth mask loss (L2) can. This method of upscaling
is a technique often used in supervised learning methods for semantic segmentation and bounding
box generation. It allows us to increase the resolution of the CAM to at least the resolution of the
depth masks. However this upscaling does come at a cost namely the size and memory requirement
of the model increase, as these last layers now have an increased size which increases the number of
connections. As the memory costs of upscaling the last layers to a (512×512) are too expensive we
instead investigate upscaling to a size 32×32 and to a size of 64×64. Furthermore, these last layers
lose their pre-training as they are reconstructed without having pre-trained weights available.

4.3.4 Normalised CAM

As stated before we normalized the CAM within the loss function before comparing them to the
automatically generated masks. This is necessary as the values of the CAM are not fixed by a
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Figure 39: Image A shows a negative CAM i.e. a CAM of a class we predicted not to be within the
image. As such due to normalization most of the Image is seen as the peak, resulting in the mask
(B) where white pixels are pixels with confidence greater than 0.5. While our mask for this object
(C) is empty. This results in a high loss even though the values within the CAM (A) are reasonably
low i.e. around 15 which for CAM standards is relatively low. The blue section indicates a large
negative part of the CAM this is a result of another object being present within the image that is
often not in the same image as the class of this CAM.

certain range, as they are generated based on the activations in the last add or convolutional layer
and the weights of the dense layer. Without normalization, we cannot compare the CAM to the
automatically generated mask. Normally, the network could learn to have values between a certain
range as normalization with Sigmoid or Tanh function could achieve reduce the effectiveness of
values past a certain range. However, the CAM is a product of how many features respond to
certain class labels which we would not want to change as the number of features that is can differ
per class. We, therefore, found the max and minimum values of the CAM and these were mapped
to zero and one respectively.

However, when evaluating our result we found two issues with this method. First, by normalizing
the CAM, we will always find a region that we consider to be foreground, even if the CAM itself
has only low or negative values as illustrated by Figure 39. By normalizing there will always be
a max discriminative region even if the values of this region are only slightly higher then the rest
of the CAM. This resulted in the CAM loss being very constant even as CAMs improved. As any
non-relative changes in the CAM would not have any effect on the loss.

Second, the max or minimum values can massively impact the loss of the entire CAM, resulting in
outliers having a major effect on the loss of the CAM.

To solve these problems we investigated multiple methods. First, we investigated using a soft-max
normalization, that while would not completely solve these issues it can reduce the effects reduce
the effect of negative CAM normalization issue.

Second, we investigate using the confidence of the labels predicted by the model to regulate the
normalization process. As the confidence is low for negative CAMs if we multiple the confidence
with the normalized with CAM values, the loss generated on these CAM should be majorly reduced.
While if the confidence is high the CAM should be selective and accurate. Furthermore, the model
is forced to have more confidence for true labels as the loss is higher when having low confidence
on a true label as the CAM values are lowered.
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Third, we investigate using the average of the top 10% of highest and lowest CAM results when
selecting our max and minimum values for normalization this would reduce the effect outliers have
on the CAM loss. This third option can also be combined with the first and second suggested
improvements.

4.4 Summarize

To summarize we first evaluate the performance of the dataset generation method by manually
validating 400 images generated by this method. We evaluate how many labels would be seen as
positive for the different label ranges and our proposed mixed label range. After which we train
a resnet 50 network on these different label ranges evaluating which gives the best classification
performance. We also investigate using multiple different learning rates to see what kind of effect
this has on the noise labels we are training on. The best label range model is then used as baseline
to compare the effects of using CAM loss against. This is done on a image-wide label level, a CAM
intersection level, bounding box level and finally on a Semantic segmenation level. While good
results for semantic segmentation our the key goals, getting accurate results on a image-wide or
CAM intersection level would already provide Cyclomedia with useful information.

The CAM loss models we will be investigated can not only be split up by their specific loss function
but also by what kind of layer the use to generate the CAM. Either the add layer or the last
convolutional layer. For all CAM loss models we investigate both. We also investigate using
different learning rates for all these models. Finally, we investigate different cam normalization
techniques. This results in the following list of models see Table 4.

Finally, we also train two additional CAM loss model with increased resolution were we select the
best performing model. Which, we then upscale to 32× 32 and upscale to 64× 64.
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Loss name Loss function CAM layer Learning rate CAM normalization
Relative loss L1 + L1L2 add 0.001 Normal
Relative loss L1 + L1L2 conv 0.001 Normal
Relative loss L1 + L1L2 add 0.001 Normal
Relative loss L1 + L1L2 add 0.01 Normal × Confidence
Related loss L1 + L1L2 add 0.01 softmax
Equal loss 0.5L1 + 0.5L2 add 0.001 Normal
Equal loss 0.5L1 + 0.5L2 conv 0.001 Normal
Equal loss 0.5L1 + 0.5L2 add 0.01 Normal
Equal loss 0.5L1 + 0.5L2 add 0.01 Normal × Confidence

Equal weighted loss 0.5L1 + 0.5L2 add 0.01 Softmax
Label less loss 0.3L1 + 0.7L2 add 0.001 Normal
Label less loss 0.3L1 + 0.7L2 conv 0.001 Normal
Label less loss 0.3L1 + 0.7L2 add 0.01 Normal
Label less loss 0.3L1 + 0.7L2 add 0.01 Normal × Confidence
Label less loss 0.3L1 + 0.7L2 add 0.01 Softmax
Depth less loss 0.7L1 + 0.3L2 add 0.001 Normal
Depth less loss 0.7L1 + 0.3L2 conv 0.001 Normal
Depth less loss 0.7L1 + 0.3L2 add 0.01 Normal
Depth less loss 0.7L1 + 0.3L2 add 0.01 Normal × Confidence
Depth less loss 0.7L1 + 0.3L2 add 0.01 Softmax

Table 4: Different CAM loss models
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5 Results

In this section we show the result acquired on our experiments. First we go over the metrics used
to evaluated the experiments in section 5.1. After which we show the in order the result of the
following experiments. First in section 5.2 we evaluate the automatically generated dataset. After
which we show the results acquired training on this generated dataset in section 5.3. Then we
show our result acquired using our CAM loss model in section 5.4. Finally, followed by the results
acquired using Upscaled CAM loss models in section 5.5.

5.1 Metrics

To evaluate the performance of our dataset, we will need some metrics. This section will go over
commonly used metrics for classification purposes and the metrics used for evaluating shapes such
as bounding boxes and masks. To do this, we need to distinguish the four types of predictions
our method can make. A correct prediction in which the method generated label is positive and
the validation set has the same positive label i.e. a True Positive (TP). A correct prediction in
which the method generated label is negative and the validation set has the same negative label
i.e. a True Negative (TN). An incorrect prediction in which the method generated label is positive
and the validation set instead has a negative label i.e. a False Positive (FP). Finally, there is the
incorrect prediction in which the method-generated label is negative and the validation set instead
has a positive label i.e. a False Negative (FN).

With these four different types of predictions, we evaluate the model in three different ways: recall,
precision, and F-score

The recall metrics can inform us about how many of the labels that exist we found and is calculated
as such

Recall = TP/(TP + FN). (14)

The precision metric can inform us about how many of the labels we found are correct and is
calculate as such

Precision = TP/(TP + FP). (15)

Recall and precision are key metrics in understanding how a model performs. However, looking
at each separately will give an incomplete picture of the performance a method might have. For
example, when evaluating a model by only looking at recall, we could be misled as a model might
just always output a true label in every image. This would result in a perfect recall score of 1 as
FPs are not accounted for when computing recall. The same could happen with precision when
for instance the method only makes one positive output while missing all other objects and this
positive output is correct, it would result in a perfect precision score of 1.

What is needed is a metric that combines the recall and precision. An often-used metric for
combining recall and precision is called the F-score. The F-score metric simple tries to take into
account both recall en precision i.e.

Fscore = 2× ((precision× recall)/(precision + recall). (16)

The F-score can be used to give a general idea of the performance of a model.
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Figure 40: Intersection over Union is calculated between two shapes by dividing the area of union
of the two shapes by area of their intersection.

While we now have some metrics for evaluating image-wide predictions, these metrics are insufficient
to evaluate shapes such as CAMs, bounding boxes, and masks. For these shapes, the definition
when a good classification is made needs to be changed. Unlike image-wide object detection, all the
individual objects/regions of a class that are visible need to be found. Furthermore, an additional
metric is needed that can evaluate how well we accomplished this. With this additional metric, a
judgment can be made if sufficient of the objects/object were found for a good classification (TP)
to have been made. A commonly used metric for this is IOU (Intersection over Union). IOU can
find how identical two shapes are in both position and shape in a singular metric. To calculate
the IOU of two shapes the area of the intersection between both shapes is taken and divided by
the area of the union union of both shapes as illustrated in Figure 40. This results in a number
between (0,1) that states how much the shapes are identical. An example of possible IOU scores is
shown in Figure 41.

While the IOU can give a great insights in how well two shapes are related. This metrics is not
perfect for judeging the qaulity of CAMs. A cam is not focsed on a perfect IOU but on recognizing
some key features of the objects. Towards this goal, we decide to introduce an additional metric
that directly judge the CAMs generated that doesn’t rely on IOU. The goals of this metric is to
investigate how well the CAM are able to localize all of the objects. Where we only want to know if
the highest points of the CAMs intersect with the semantic segmentation groundtruth. Counting it
positive if it does intersect. As we take the highest points of the CAMs this should not preference
CAMs that fill the entire screen as these will not have any peaks. This metrics allows us to quickly
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Figure 41: Examples of the IOU being calculated on two shapes.

see if our models are able to find at least a part of the object.

To evaluate the predictions made by our models, a ground-truth set is needed. For this, we manually
annotated 250 images with highly accurate polygons. An example of these annotations is shown
in Figure 42. These polygons can then be converted into segmentation masks, when evaluating
our semantic segmentation results and our CAM intersection results, and converted into bounding
boxes when evaluating our bounding box results.
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Figure 42: Example of manually annotated images using polygons.

5.2 Evaluating Automatic Dataset Generation Method

In this section we evaluate our automatically generated dataset as described by our method in
section 4.1.

The automatic dataset generation method generated a dataset of 20,000 images, 1000 images for
each class. This set was then annotated with labels up to 50 meters, allowing us to easily investigate
values for our label range Xmin and Xmax (see Table 5). The images were then split up into a
training set of 16,000 images and a validation set of 4,000 images.
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To evaluate the quality of the generated set, we compared it to our manually annotated labels of
the same images. Doing so reveals a clear difference between our manually annotated labels, i.e.
ground truth, and the method provided labels as illustrated in Figure 43. It should be noted that we
are evaluating on an image-wide level and as such even any distinguishability between the number
of objects for a given class is lost. For example, if a particular image contains twenty traffics signs,
it would still receive the same labels as an image only containing one traffic sign.

This difference is largely dependent on the label range per class. However, even when selecting the
best possible range for the objects, a large discrepancy can be seen between the ground truth and
method generated labels. Table 6 shows that this difference seems to be the largest for smaller
objects e.g. cameras, manholes, and hectometer posts.

The selecting of objects based on size and visibility in the road environment seems relatively suc-
cessful as the performance seems to be close or on the best performing range for most objects and
certainly better than selecting a generic range for all objects. We can also see that increasing the
label range for some of the smaller objects does not decrease the performance as fast as we would
expect. For example, street name sign performance does not drop as much after a label range of
25 meters, while these objects are certainly not visible in most cases after 25 meters. This is ex-
plained when we look at how many positive images for a certain class get added at the larger ranges
as shown in Table 5. For every range increase, the total number of negative images is decreased
resulting in a smaller pool of images being available to be added to the larger label range. This
massively reduced the number of added, positively-labeled images per class per increase of range.
Furthermore, after a range of 10 meters, a massive decrease for most objects can be seen. This is
due to the fact that the 800 images per class are found within the 3-10 meter range. After which an
increase can only be found when an object is within the background of another object. For certain
classes that occur very frequently within the road environment this happens more often as we see
with street lights, street gullies, and manholes. It is also related to how often an object is located
near another object. For instance, traffic lights occur often together with traffic signs and as such
traffic signs are often within the images of traffic lights.

The advantage of adding hard labels can be seen in Table 7, where we are able to reduce the number
of false negatives at the cost of some of the true negatives. As the number of true negatives is much
larger than the number of false negatives, we suppose that this trade-off is worth it when training
on the dataset. In the comparison against the manual validation set, true negatives do not have any
effect on the F-score, as such the hard label improves the overall results. While this performance
increase is small, the performance increase is bigger for classes that were underestimated in terms
of best visible range e.g. see street gully.
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Figure 43: F-score for the 20 classes at different label Xmin ranges
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True False
positive 18 7
negative 375 0

(a) Barrier/gate 0.84

True False
positive 16 4
negative 376 4

(b) Roadsign direction arrow 0.8

True False
positive 21 7
negative 368 4

(c) Bicycle stand 0.79

True False
positive 17 3
negative 373 7

(d) Roadside protection block 0.77

True False
positive 203 86
negative 76 35

(e) Street light 0.77

True False
positive 33 7
negative 347 13

(f) Traffic light 0.77

True False
positive 18 5
negative 371 6

(g) Public play equipment 0.77

True False
positive 31 15
negative 342 12

(h) Garbage can 0.72

True False
positive 17 7
negative 368 8

(i) Street name sign 0.69

True False
positive 15 12
negative 371 2

(j) Electronic freeway sign 0.68

True False
positive 20 14
negative 361 5

(k) Bench 0.68

True False
positive 41 30
negative 316 13

(l) Barrier post 0.66

True False
positive 26 20
negative 339 15

(m) Utility cabinet 0.60

True False
positive 68 19
negative 236 77

(n) Traffic sign 0.59

True False
positive 8 15
negative 377 0

(o) Ladder 0.52

True False
positive 24 47
negative 325 4

(p) Manhole 0.48

True False
positive 8 12
negative 373 7

(q) Camera 0.46

True False
positive 7 17
negative 374 2

(r) Hectometer post 0.42

True False
positive 16 6
negative 340 38

(s) Street gully 0.42

True False
positive 8 18
negative 356 18

(t) Information sign 0.31

Table 6: The mixed range label results on the manual validation set with F-scores.
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Objects Correctly removed FPs Falsely removed TNs
Traffic light 5 5
Barrier post 0 1

Utility cabinet 4 7
Traffic sign 8 7

Manhole 1 21
Barrier/Gate 0 4
Street gully 24 37

Electronic freeway sign 0 0
Bicycle stand 1 1

Street name sign 0 1
Garbage Can 0 4
Street light 7 4

Camera 0 0
Bench 0 3

Roadside protection block 0 0
Information sign 0 0

Public play equipment 2 1
Hectometer post 1 0

Ladder 0 2
Roadsign direction Arrow 0 4

Sum 53 102

Table 7: The number of correctly removed FPs and Falsely removed TNs on the validation set
consisting of 400 images labels with a mixed-label range.

True False
positive 33 7
negative 342 8

(a) Traffic light 0.81 (+0.04)

True False
positive 18 5
negative 370 4

(b) Public play equipment 0.8
(+0.03)

True False
positive 21 7
negative 369 3

(c) Bicycle stand 0.81 (+0.02)

True False
positive 203 86
negative 72 28

(d) Street light 0.78 (+0.01)

True False
positive 26 20
negative 332 11

(e) Utility cabinet 0.63 (+0.03)

True False
positive 16 6
negative 303 14

(f) Street gully 0.62 (+0.20)

True False
positive 68 19
negative 229 69

(g) Traffic sign 0.61 (+0.02)

True False
positive 24 47
negative 304 3

(h) Manhole 0.49 (+0.01)

True False
positive 7 17
negative 374 1

(i) Hectometer post 0.44 (+0.02)

Table 8: The mixed range label results on the manual validation set with false negative and true
negative removed as indicated by Table 7.
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(a) Epoch three acquired
lowest validation loss with
a value of 0.175

(b) Epoch three acquired
lowest validation loss with
a value of 0.174

(c) Epoch 15 acquired low-
est validation loss with a
value of 0.179

Figure 44: Resnet 50 mixed models loss with different learning rates.

5.3 Evaluating The Model Trained On The Automatically Generate Dataset

In this section, we evaluate the performance of the mixed label-range Resnet 50 model. First,
we evaluate the result on a image-wide level. Followed by evaluating the model on the quality
of the CAM generated. Finally, we investigate the performance of bounding boxes and semantic
segmentation masks generated on the CAMs.

5.3.1 Classification

With our mixed label-range, we trained three models all with different learning rates i.e. 0.01,
0.005 and 0.001. Figure 44 illustrates the loss we acquired while training on these different learning
rates. We see that the model with the higher learning rate, i.e. 0.01, validations loss converges very
fast before increasing again. This usually means that the model has a too high learning rate. The
medium learning rate, i.e. 0.005 achieves the lowest validation loss out of the three models, which
we found unexpected as the lower learning rate should allow it to converge to a lower value. Even
more unexpected is that the low learning rate, i.e. 0.001, validation loss convergence at the highest
point, while we would expect smaller steps in the low learning rate to provide more fine-tuning.

To measure the performance of the method, we validate them against a manually image-wide dataset
consisting of 400 images. We do not use the automatically constructed validation set as this set
can give some misleading results. We found this when investigating our classification results on the
different label ranges. Table 9 illustrates these misleading results we can obtained on different label
ranges. Namely, we found that the performance of certain smaller objects, i.e. street gullies and
manholes, would increase when increasing the label range. This was unexpected as at the larger
label ranges the objects would never be visible.

In Figure 45, we show some of the CAMs of a smaller class that should not be visible at large
ranges, and it becomes clear why the performance increased. Instead of learning the appearance
of these smaller objects, the network learned the environment these objects are usually situated
in. Now, when the label range increases, the model is pushed into learning the environment as
the object itself is too far away to be visible. When we now further increase the label range, the
performance is also increased as the chance of the image being labeled correctly that a certain
object is in that environment increases. The automatically generated validation set shares these
faults with the automatically generated training set which results in the model having increased
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Objects Mixed range 10 20 30 40
Average 0.69 -0.06 -0.04 -0.02 -0.01

Traffic light 0.79 -0.02 +0.01 -0.04 -0.0
Barrier post 0.46 +0.09 +0.05 +0.04 +0.07

Utility cabinet 0.52 -0.03 -0.01 0.0 -0.0
Traffic sign 0.56 -0.06 +0.04 -0.0 -0.02

Manhole 0.38 +0.05 +0.15 +0.2 +0.23
Barrier/Gate 0.83 +0.03 +0.01 -0.02 0.0
Street gully 0.33 +0.2 +0.36 +0.41 +0.44

Electronic freeway sign 0.8 +0.02 +0.02 -0.03 -0.01
Bicycle stand 0.75 -0.02 -0.02 -0.14 -0.07

Street name sign 0.51 -0.05 -0.03 -0.03 -0.2
Garbage Can 0.55 0.0 -0.05 -0.08 -0.03
Street light 0.86 -0.17 -0.1 -0.02 0.0

Camera 0.59 -0.01 -0.01 -0.03 -0.07
Bench 0.5 0.0 +0.07 -0.05 +0.01

Roadside protection block 0.65 +0.03 -0.01 -0.06 -0.07
Information sign 0.37 +0.06 +0.07 +0.01 -0.06

Public play equipment 0.73 -0.0 -0.0 -0.06 -0.12
Hectometer post 0.69 +0.01 -0.02 -0.16 -0.12

Ladder 0.74 0.0 -0.0 -0.03 -0.09
Roadsign direction Arrow 0.72 +0.1 +0.01 -0.04 -0.15

Table 9: Performance when training on different values for Xmin, where Xmax = Xmin + 10.
Evaluation on the automatically generated validation set.
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(a) CAM for street gully in an urban environment. (b) CAM for street gully under a bridge.

Figure 45: CAMs of street gullies showing that instead of detecting the street gully it detects the
environment it is in.

performance on this validation set. This problem could also be solved by specifically adding negative
images for certain environments, however this is almost impossible for certain objects. For instance,
within an urban living environment a street gully is located almost every few meters. Normally,
when manually annotating this problem can be avoided as many street gully are blocked or by
annotating bounding boxes resulting in the rest of the images functioning as a negative images.
However, we do not have access to either, we therefore do not specifically look for negative images
in any environment and instead use the background of other objects as negatives.

As such we use the manually constructed validation set for validating the performance. Table 10
shows the results acquired on this validation set, exposing the problems with having a larger label
range. Nevertheless, some of the less common objects do not seem to gain or lose in performance.
This confirms our results in Section 5.2 where we concluded that for these scarcer objects only a
few labels get added at the larger label range, and the network is able to largely ignore these noisy
labels.

Table 11 shows the result acquired using the different learning rate models on the manually created
validation set. We see that the higher learning rate model is the best performing network compared
to the lower and medium learning rate models. To understand why this happens we look at the
CAMs of the three networks. The CAMs, as shown in Figure 46, can shows that the model with
lower learning rates starts to take more of the background features into account leading it to worse
performance against the manual validation set. This would also mean that the more erroneously
labeled classes should perform better with the lower learning rate, which for some of the classes we
also see i.e. manhole, street gully, hectometer post. Interestingly, we do not see it for Information
Sign but this can be explained when taking into account that information sign is a class consisting
of many different sub-classes with widely different shapes. It thus takes the network longer to learn
this object.
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Objects Mixed range 10 20 30 40
Average 0.64 -0.15 -0.06 -0.07 -0.09

Traffic light 0.74 -0.12 -0.02 -0.05 +0.03
Barrier post 0.43 +0.1 +0.1 +0.08 +0.12

Utility cabinet 0.62 0.0 +0.1 -0.01 -0.07
Traffic sign 0.51 -0.18 +0.14 +0.01 -0.01

Manhole 0.52 +0.09 -0.24 -0.24 -0.27
Barrier/Gate 0.92 +0.02 -0.03 -0.14 +0.02
Street gully 0.28 +0.05 +0.0 +0.06 +0.02

Electronic freeway sign 0.89 -0.03 -0.08 +0.05 +0.03
Bicycle stand 0.88 -0.07 -0.06 -0.18 -0.22

Street name sign 0.63 +0.04 -0.02 -0.13 -0.14
Garbage Can 0.52 -0.15 -0.03 +0.01 -0.03
Street light 0.75 -0.36 -0.07 -0.0 -0.02

Camera 0.42 +0.16 +0.12 +0.17 +0.08
Bench 0.51 -0.14 +0.06 0.0 +0.09

Roadside protection block 0.65 +0.1 +0.11 +0.02 -0.04
Information sign 0.3 -0.02 -0.06 -0.03 -0.15

Public play equipment 0.79 -0.1 -0.0 -0.08 +0.04
Hectometer post 0.54 -0.1 -0.1 +0.17 -0.13

Ladder 0.57 -0.03 -0.05 +0.06 -0.14
Roadsign direction Arrow 0.73 +0.04 0.0 -0.0 -0.15

Table 10: F-scores for the different label range models on the manually created validation set.
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Learning rate 0.01 0.005 0.001
average 0.64 0.63 0.62

Barrier post 0.43 +0.08 +0.09
Garbage Can 0.52 -0.05 -0.02

Bench 0.51 +0.14 -0.02
Roadside protection bloc 0.65 +0.12 -0.03

Bicycle stand 0.88 -0.08 -0.06
Hectometer post 0.54 -0.06 -0.1
Information sign 0.3 -0.01 -0.03

Manhole 0.52 -0.02 -0.16
Utility cabinet 0.62 0.0 -0.01

Street gully 0.28 -0.19 -0.16
Street light 0.75 +0.01 -0.0

Electronic freeway sign 0.89 -0.02 -0.06
Roadsign direction Arrow 0.73 +0.11 +0.05

Barrier/Gate 0.92 0.0 0.0
Public play equipment 0.79 -0.0 -0.03

Street name sign 0.63 -0.07 -0.04
Ladder 0.57 -0.07 -0.0
Camera 0.42 -0.05 +0.15

Traffic sign 0.51 -0.05 +0.03
Traffic light 0.74 0.0 -0.05

Table 11: Difference in F-score when using a different learning rate on manual validation set.
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(a) Low learning rate learning the environ-
ment resulting in this FP CAM.

(b) Medium learning rate learning the en-
vironment resulting in this FP CAM.

(c) High learning rate learning only to ob-
ject resulting in this TP detection with ac-
curate CAM.

Figure 46: CAMs for the street-gully object at different learning rates.
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Learning rate 0.01 0.001 0.005
CAM generating layer Add Conv Add Conv Add Conv

Average 0.37 -0.0 0.33 -0.05 0.36 -0.01
Traffic light 0.36 +0.01 0.35 +0.03 0.4 -0.03
Barrier post 0.24 +0.01 0.35 -0.08 0.28 -0.02

Utility cabinet 0.32 0.0 0.22 -0.15 0.25 0.0
Traffic sign 0.4 -0.04 0.29 -0.05 0.27 -0.0

Manhole 0.38 -0.02 0.25 +0.06 0.3 +0.03
Barrier/Gate 0.76 0.0 0.73 +0.03 0.75 +0.01
Street gully 0.27 0.0 0.0 0.0 0.04 -0.04

Electronic freeway sign 0.32 +0.05 0.22 +0.02 0.35 -0.01
Bicycle stand 0.25 0.0 0.22 -0.06 0.0 0.0

Street name sign 0.0 0.0 0.07 -0.07 0.0 0.0
Garbage Can 0.51 -0.05 0.48 -0.04 0.59 -0.04
Street light 0.5 -0.04 0.44 0.0 0.48 -0.05

Camera 0.18 0.0 0.14 +0.12 0.2 +0.01
Bench 0.57 0.0 0.57 -0.07 0.5 0.0

Roadside protection block 0.43 -0.02 0.44 -0.28 0.34 0.0
Information sign 0.15 0.0 0.09 0.0 0.06 +0.0

Public play equipment 0.22 +0.01 0.29 +0.04 0.73 0.0
Hectometer post 0.61 0.0 0.5 -0.28 0.6 0.0

Ladder 0.5 +0.06 0.67 -0.33 0.67 +0.1
Roadsign direction Arrow 0.41 -0.01 0.3 +0.07 0.38 -0.08

Table 12: CAM intersection F-scores of the non CAM loss models, with different learning rates and
CAM generation using the last ’add’ layer and the last convolutional layer.

5.3.2 CAM Performance

In this section, we investigate the performance of the mixed label Resnet 50 model on the CAMs
generated by the networks using the intersection metric as explained in Section 5.1.

Table 35 shows the localizational ability of our CAMs, generated by the Resnet network, using
the intersection metric. We can see an overall poor performance when setting our threshold at
reasonable levels i.e. only taking the top 20%. It also again shows that a high learning rate is best
and that CAM generation produces the best results by using the ’add’ layer to generated CAM
instead of using the last convolutional layer. The difference we describe in section 4.2.2.

While some CAMs can be considered accurate, Figure 47 shows some of the issues with the CAMs.
First, they seem to have trouble finding multiple objects of the same class, instead of fixating on a
single object per class. The cases where the CAMs do find multiple objects are usually the cases
were these objects are right next to each other which results in slightly larger CAM in that region.
Second, for certain situations, the CAMs simply focus on the most common place where a specific
object would locate e.g. a ladder is often located at a roadside barrier. Thirds, another issue is
when two objects are often near each other, as in the case of utility cabinets and electronic freeway
signs, they often get confused with each other. This results in some cases to a large number of
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(a) CAM of roadside
protection block.

(b) CAM of barrier
post.

(c) Cam of traffic
light.

(d) Cam of ladder.

(e) CAM of electronic
freeway sign.

(f) CAM of utility
cabinet.

(g) CAM of roadsign
direction Arrow.

(h) CAM of street
light.

Figure 47: Common faults with CAMs. While (a)(b)(c) have correct CAM for a single object
the miss additional classes which are also present within the environment. Image (d) showing the
CAM picking the most commonplace where the object is often present. Furthermore, it shows an
activation on another object which is also often present within its environment. Image (e) and (f)
show the CAM of two objects that are often present within the same image, which in this case
results in them learning to respond to the same features. Image (g) and (h) show the cam missing
the correct objects.

features overlapping with each other and becoming indistinguishable. Resulting in almost identical
CAMs that are not situated on the correct objects.

5.3.3 Bounding Box And Semantic Segmentation Performance

In this section, we illustrate the performance of the bounding boxes and semantic mask generated
by the best performing Resnet model i.e. the mixed range model with a high learning rate of 0.01
and CAM generation using the last ’add’ layer.

Table 14 illustrates the performance of the model using the two CAM to bounding box methods
as outlined in section 4.2.3 with multiple different threshold values. Where the region proposal
method has increased performance at the higher IOU ranges while being less accurate at the lower
IOU ranges. This seems logical as the region proposal will sometimes already be able to find the
object and bound it. The CAM then just has to intersect with the object resulting in a high IOU
score. However, this approach is highly dependent on the generated region proposal and on what
this region proposal algorithm decides to focus on. This result in it falling more often especially for
certain object.
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Object 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Traffic light 0.63 0.26 0.12 0.09 0.03 0.0 0.0 0.0 0.0 0.0
Barrier post 0.67 0.11 0.02 0.02 0.0 0.0 0.0 0.0 0.0 0.0

Utility cabinet 0.5 0.27 0.18 0.09 0.0 0.0 0.0 0.0 0.0 0.0
Traffic sign 0.62 0.13 0.05 0.01 0.0 0.0 0.0 0.0 0.0 0.0

Manhole 0.5 0.22 0.17 0.17 0.09 0.0 0.0 0.0 0.0 0.0
Barrier/Gate 0.93 0.56 0.19 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Street gully 0.27 0.18 0.09 0.09 0.09 0.05 0.05 0.0 0.0 0.0

Electronic freeway sign 0.8 0.13 0.04 0.04 0.0 0.0 0.0 0.0 0.0 0.0
Bicycle stand 0.25 0.25 0.25 0.25 0.25 0.25 0.0 0.0 0.0 0.0

Street name sign 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Garbage Can 0.7 0.39 0.32 0.25 0.07 0.07 0.07 0.0 0.0 0.0
Street light 0.77 0.4 0.18 0.05 0.01 0.01 0.0 0.0 0.0 0.0

Camera 0.36 0.09 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bench 0.75 0.5 0.43 0.39 0.25 0.11 0.11 0.04 0.0 0.0

Roadside protection block 0.77 0.16 0.1 0.07 0.03 0.0 0.0 0.0 0.0 0.0
Information sign 0.15 0.15 0.15 0.15 0.08 0.08 0.0 0.0 0.0 0.0

Public play equipment 0.34 0.23 0.21 0.11 0.0 0.0 0.0 0.0 0.0 0.0
Hectometer post 0.7 0.35 0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ladder 0.5 0.5 0.4 0.2 0.2 0.0 0.0 0.0 0.0 0.0
Roadsign direction arrow 0.75 0.15 0.1 0.05 0.05 0.0 0.0 0.0 0.0 0.0

Table 13: Performance decrease when increasing the IOU for bounding box generation with region
proposals. It also show that certain objects with high performance drop faster then others. For
example, Barrier post, Traffic sign, Electronic freeway sign, Camera, RoadSide protection block,
Roadsign direction arrow.

The simple bounding box creation method can also illustrate the difficulty of correctly mapping the
entire object. As CAMs are known for only activating on the most discriminative/selective parts of
an image, objects that do not fit the resolution of the CAM can have increased in difficulties as the
CAM cannot adequately describe them. Table 13 illustrates that this issue is also present with our
model. This is best illustrated by looking at the performance lost when increasing the minimum
IOU for a positive classification to be made. If we look at the difference in performance by increase
the IOU threshold from 0.1 to 0.2, we can clearly see certain objects drop faster in performance then
others. Objects like traffic lights, barrier posts, traffic signs, barriers/gates, street gullies, electronic
freeway signs, street lights, cameras and hectometer posts all drop significantly. All these objects
cannot be represented by the CAM very accurately due to there size being either too small or too
big, which is illustrated by Figure 48. Finally, objects like electronic freeway signs and traffic lights
can have an additional problem as these objects are rarely alone within the image, usually even
situated together. This results in larger merged CAMs that our method cannot separate into two
different bounding boxes or masks leading to a bounding box or mask too large to adequately fit
the objects.

Table 15 shows the performance of the model using the two semantic-segmentation methods. We
can see an increase in performance over the bounding box method while normally one would ex-
pect semantic segmentation to be a harder problem. However, our generated masks are better at
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(a) A too selective
CAM of a street light.

(b) A too selective
CAM of a bar-
rier/gate, while the
resolution is also too
big for a bounding
box to encompass
the object.

(c) A CAM with an
insufficient resolution
to adequately repre-
sent the size of the
barrier post. Fur-
thermore the CAM
is also too selective
as does not find any
of the other barrier
posts.

Figure 48: Examples of too selective CAMs or too big CAMs due to the size of the object and the
resolution of the CAM.

thressholds Without region proposals With region proposals
Foreground threshold 30% 20% 10% 30% 20% 10% 10% 10%
Background threshold - - - 40% 40% 40% 50% 30%

0.0 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
0.1 0.25 0.25 0.22 0.18 0.15 0.17 0.18 0.17
0.2 0.13 0.16 0.14 0.1 0.1 0.11 0.09 0.11
0.3 0.09 0.1 0.08 0.07 0.08 0.08 0.07 0.09
0.4 0.03 0.06 0.05 0.06 0.06 0.07 0.05 0.08
0.5 0.01 0.03 0.02 0.04 0.03 0.04 0.04 0.05
0.6 0.0 0.01 0.0 0.03 0.02 0.03 0.03 0.03
0.7 0.0 0.0 0.0 0.02 0.01 0.02 0.01 0.02
0.8 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.01
0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 14: Table showing our CAM to bounding box generation methods results in F-scores for
multiple thresholds. While the bounding box method without region proposals on average generated
the best results. At higher IOUs the addition of region proposals produces better results.
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Method Thresholded CAM GrabCut
Foreground threshold 30% 20% 10% 30% 20% 10% 10% 10%
Background threshold - - - 40% 40% 40% 50% 30%

0.0 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
0.1 0.33 0.33 0.28 0.3 0.3 0.27 0.26 0.28
0.2 0.17 0.18 0.15 0.13 0.15 0.15 0.15 0.14
0.3 0.09 0.1 0.09 0.07 0.08 0.1 0.09 0.08
0.4 0.03 0.04 0.02 0.03 0.05 0.04 0.03 0.03
0.5 0.01 0.01 0.0 0.01 0.02 0.02 0.02 0.0
0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 15: The CAM to semantic mask generation methods results for multiple thresholds. While
the Thresholded CAM mask generation produced on average better results at lower IOU scores,
GrabCut produced better results at higher IOUs. Overall performance is still very low and any
results with an IOU higher than 0.1 are too low to be useful since, we are looking for IOU score
around 0.5.

representing semantic segmentation as first no individual objects have to be found as is the case
with bounding boxes. The semantic segmentation masks are only being punished with IOU scores
when missing an object, while in the case of bounding boxes this is regarded as an FN. We would,
therefore, suspect that the bounding box methods can get better scores at higher IOU thresholds
and this is also what we see. Comparing the thresholded CAMs with the Relative method we see
almost no improvement.

5.4 CAM Loss Model Performance

In this section, we evaluate the performance of the CAM loss models. First, we evaluate the
result on a image-wide label level. Second, we evaluate the models on the quality of the CAMs
generated. Finally, we investigate the performance of bounding boxes and semantic segmentation
masks generated on the CAMs.

We investigate if the CAM loss can solve the issue we had with the normal base method. We
expect it to be able as the CAM loss is able to provide provide additional location information to
the model. This information should also help CAMs find more objects as these masks are created
out of each of the objects found within the view cone. This mask would then punish the CAMs for
not finding more than 1 object. Finally, this should also disincentive the CAM fixing it on the most
discriminative/selective features often also present within an image such as the case with traffic
lights often being located near or on top of a particular stripped pole.

As the mixed range model showed the best overall performance, this model was used as our base
model for the models with a CAM loss. For the CAM loss included models, we investigated using
the last convolutional layer and using the last ‘add’ layer. Furthermore, we investigated two learning
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Model Convolutional Add
Relative 0.56 0.59

Equal weights 0.48 0.47
Label less 0.4 0.59
Depth less 0.53 0.53

Table 16: Average F-score for the different CAM loss models at a learning rate 0.001. We see an
overal performance increase when using the ’add’ layer to generated CAMs.

rates for each of the different models, a learning rate of 0.01 and a learning rate of 0.001.

5.4.1 Classification

Table 16 illustrates the difference between using the ‘add’ layer versus using the last convolution
layer (see appendix for comparison of all model switching between the ’add’ layer and the convolu-
tional layer 34).

We see an overall increase in performance when using the ‘add’ layer. This can be explained by
the intuition that this ’add’ layer will represent the overall model more than the last convolutional
layer as the convolutional layer can be partially skipped by the ‘add’ layer. We, therefore, use this
layer for all further experiments.

Next, we look at the classification result acquired by our CAM loss included models. Table 17
shows that the CAM loss model obtains overall worse or similar results to the normal Resnet model
with a high learning rate. This indicates that our proposed CAM loss function does not improve
image-wide classification performance.

Changing the normalization of the CAMs within the CAM loss changes the results slightly as
illustrated in Table 18. Again, we do not see any significant improvement.
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Model type Non CAM loss CAM loss
Model name Base model Relative Equal Label less Depth less

Model learning rate 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01
Average 0.66 -0.07 -0.05 -0.18 -0.03 -0.07 -0.08 -0.13 -0.05

Traffic light 0.74 0.0 -0.01 -0.04 -0.05 -0.04 -0.06 -0.04 -0.01
Barrier post 0.43 +0.18 0.0 +0.09 +0.17 +0.06 +0.13 +0.14 +0.1

Utility cabinet 0.62 -0.13 -0.05 -0.51 -0.04 -0.05 -0.09 -0.21 +0.02
Traffic sign 0.51 +0.08 +0.05 +0.06 -0.03 +0.05 -0.0 +0.06 +0.01

Manhole 0.52 -0.05 +0.11 -0.13 +0.06 -0.13 -0.03 -0.04 +0.03
Barrier/Gate 0.92 -0.02 +0.02 +0.05 -0.02 0.0 +0.02 0.0 +0.02
Street gully 0.28 -0.06 +0.05 -0.25 +0.06 -0.14 -0.21 -0.22 +0.08

Electronic freeway sign 0.89 -0.06 -0.06 0.0 0.0 +0.03 0.0 -0.03 -0.02
Bicycle stand 0.88 -0.1 -0.1 -0.1 -0.09 -0.09 -0.09 -0.09 -0.08

Street name sign 0.63 -0.05 -0.02 -0.28 +0.01 -0.06 -0.03 -0.19 -0.05
Garbage Can 0.52 -0.03 -0.07 -0.19 +0.01 -0.01 -0.04 -0.13 -0.03
Street light 0.75 +0.02 -0.01 -0.0 0.01 -0.0 -0.02 0.0 0.01

Camera 0.42 +0.1 +0.18 -0.02 +0.07 +0.14 +0.11 +0.04 +0.14
Bench 0.51 +0.08 -0.07 -0.06 +0.11 +0.02 +0.02 -0.06 +0.09

Roadside protection block 0.65 -0.05 +0.05 -0.57 +0.06 -0.07 -0.06 -0.4 -0.09
Information sign 0.3 +0.07 -0.07 -0.2 -0.02 +0.02 +0.03 -0.14 +0.01

Public play equipment 0.79 -0.03 +0.02 -0.11 -0.01 +0.02 -0.05 -0.03 0.01
Hectometer post 0.54 -0.35 -0.14 -0.24 -0.08 -0.22 -0.22 -0.24 -0.19

Ladder 0.57 -0.09 -0.03 -0.17 -0.03 0.0 -0.09 -0.12 -0.14
Roadsign direction Arrow 0.73 0.0 0.0 -0.06 +0.05 -0.01 +0.04 -0.01 +0.04

Table 17: F-scores of CAM loss models relative to baseline.
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These results on the CAM loss models seem to suggest that the information added by the CAM
loss does not significantly increase our performance on an image-wide label level. To see the more
direct impact of the CAM loss, we will investigate the accuracy of the CAMs generated by these
methods in the next section.

5.4.2 CAM Performance

Table 19 shows the performance of the different CAM loss functions at the two different learning
rates. While Table 20 shows the performance of the different CAM normalization methods. We,
again, see a higher learning rate produce the best results. However, none of the CAM loss models
show any significant improvement over the original best performing normal loss model. We do see
a small improvement by the relative cam loss on a selected few objects i.e. Electronic freeway sign,
public play equipment, ladders. Looking into the CAMs of the objects as illustrated by Figure 49
and Figure 50, we see two areas where major improvements are made: Firstly, the CAMs of the
electronic freeway sign are less selective for the relative loss; Secondly, with public-play equipment,
we see the model is better at distinguishing FPs where the normal loss model will sometimes learn
the environment it is positioned in. The CAM loss models seem to be less incentivized to focus on
a particular part, while also reducing the effects of learning the environment. It is interesting that
these improvements, while visible in the other CAM loss models, lead to worse performance. For
this we suspect two main reasons. First, this could be due to the fact that false-positive labels also
get a mask created for them. While the image-wide labels also have this noise, the effect is worsened
for these masks. This is as masks are generated from individual labels while image-wide labels are
the grouped product of all these individual labels. This results in the image-wide label being more
accurate than the individual labels as one TP label for a class can unintentionally correct all the
FPs label for that class in an image. For example, if an image contains 20 street lights according
to the map, but in actuality, only one of these street lights is visible, then image-wide labeling the
image as containing a street light is correct and the model would be able to learn the appearance
of a street light. However when generating masks this image would generate 19 FPs masks and
only one TP mask. Second, as the CAM resolution is low, the loss is acquired on a large section
of the image. This could disrupt the ability the network has to find the right features that should
contribute more as such large areas are needed. This second CAM problem could be solved by
increasing the CAM resolution which we investigate in section 5.5.
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Model type Non CAM loss CAM loss
Model name Base model Relative Equal Label less Depth less

Model learning rate 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01

Average 0.33 -0.06 +0.03 -0.14 -0.04 -0.12 -0.05 -0.1 -0.05
Traffic light 0.34 -0.02 -0.0 -0.04 -0.05 -0.09 0.0 -0.0 -0.09
Barrier post 0.23 +0.05 -0.02 +0.03 +0.14 0.0 +0.15 +0.0 +0.12

Utility cabinet 0.29 -0.06 +0.08 -0.21 -0.07 -0.14 -0.0 -0.22 -0.08
Traffic sign 0.39 -0.08 -0.08 -0.15 -0.15 -0.14 -0.16 -0.16 -0.13

Manhole 0.34 -0.08 +0.03 -0.34 -0.05 -0.28 -0.04 -0.08 -0.07
Barrier/Gate 0.67 -0.13 +0.05 -0.11 -0.08 -0.09 -0.06 -0.07 -0.13
Street gully 0.25 -0.25 +0.04 -0.25 -0.04 -0.25 -0.25 -0.25 -0.04

Electronic freeway sign 0.29 -0.01 +0.19 -0.02 -0.02 -0.06 -0.0 -0.09 +0.08
Bicycle stand 0.17 -0.06 +0.06 -0.06 -0.05 -0.07 -0.08 -0.06 -0.09

Street name sign 0.0 0.0 +0.07 0.0 0.0 0.0 0.0 0.0 0.0
Garbage Can 0.48 -0.04 +0.03 -0.08 0.0 -0.08 -0.04 -0.08 -0.09
Street light 0.49 -0.04 -0.06 +0.03 -0.03 -0.01 -0.06 -0.06 -0.04

Camera 0.15 +0.0 +0.01 -0.09 -0.04 -0.04 -0.04 +0.05 +0.03
Bench 0.53 -0.03 +0.04 -0.17 -0.04 -0.12 -0.01 -0.09 +0.05

Roadside protection block 0.39 -0.01 +0.1 -0.26 -0.04 -0.24 -0.11 -0.25 -0.06
Information sign 0.13 -0.07 -0.13 -0.13 -0.01 -0.07 -0.07 -0.07 -0.08

Public play equipment 0.18 -0.09 +0.18 -0.11 -0.06 -0.04 +0.06 +0.03 -0.04
Hectometer post 0.52 -0.19 -0.14 -0.42 -0.19 -0.35 -0.19 -0.34 -0.14

Ladder 0.42 -0.13 +0.17 -0.34 +0.04 -0.21 -0.07 -0.16 -0.22
Roadsign direction Arrow 0.37 -0.04 -0.08 -0.01 -0.09 -0.05 -0.06 -0.07 -0.05

Table 19: CAM intersection score of the CAM loss models relative to baseline.
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(a) CAM generated by base
model of electronic freeway sign.

(b) CAM generated by relative
CAM loss model of electronic
freeway sign.

(c) CAM generated by equal
CAM loss model of electronic
freeway sign.

Figure 49: CAM of electronic freeway signs CAMs of the different models. While the equal loss
has an overall worse performance, it does perform better in this example. In most cases, however,
it over focuses on the entire images, taking into account the structure of overhang on which the
electronic freeway signs are located.

5.4.3 Bounding Box And Semantic Segmentation Performance

Using the threshold found for the base model, we investigated the performance of our CAM loss
models on a bounding box and semantic segmentation level. Where we use the best performing
models i.e. model using the ‘add’ layer for CAM generation and with a high learning rate.

Table 21 illustrates our results generating bounding boxes without region proposals. Here we
see a slight improvement using the relative CAM loss model when using the simple bounding
box generation method. The rest of the CAM loss models seeming to have an overall worse or
similar result to the Base model. Table 22 illustrates the result acquired when using bounding box
generation with region proposals, here we see our base model still performs best which is unexpected
as our relative model seems to have a better overall CAM. However since the overall performance
differences are relatively small. We cannot adequately determine if our relative CAM loss model is
indeed much better.

Tables 23 and 24 show the result required when generating masks from our CAMs generated by
our CAM loss networks. Here, we again see the relative and base model produce the best results
with our relative CAM loss model performing again slightly better. Furthermore, using GrabCut
improves performance in most cases more than using the simple mask-generation method.

While we do see a slight increase in performance using our relative CAM loss method, it is the only
CAM loss model to do so. This seems to indicate that the mask can indeed increase performance
in cases where the model has issue in finding the object resulting in it taking the CAM loss more
and so the mask more into account. A negative side effect of this is that this loss is only represent
when our label is wrongly classified. Incases where we do correctly detect the object the mask is
ignore. This result in the method less able in distuiqushing two objects are our often present within
the images. For example, when a correct detection is made for the class Utility cabinets, which
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Figure 50: FP classification made by base model for public play equipment, mistakes not made by
CAM loss models.

Add layer - learning rate 0.01
Normalization normal Confidence

CAM loss Base model Relative Equal Label less Depth less Equal Depth less
0.0 0.55 0.55 0.54 0.54 0.54 0.54 0.55
0.1 0.25 0.28 0.22 0.24 0.25 0.23 0.25
0.2 0.16 0.18 0.13 0.14 0.15 0.13 0.16
0.3 0.1 0.13 0.09 0.09 0.09 0.09 0.09
0.4 0.06 0.1 0.05 0.05 0.05 0.04 0.04
0.5 0.03 0.04 0.02 0.01 0.01 0.02 0.03
0.6 0.01 0.02 0.01 0.0 0.0 0.0 0.01
0.7 0.0 0.0 0.01 0.0 0.0 0.0 0.0
0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 21: CAM loss models Fscores on different IOU thresholds for bounding box generation
without region proposals. We see a slight increase in performance by the simple related loss function.
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Normalization Normal Confidence
CAM loss Base model Relative Equal Label less Depth less Equal Depth less

0.0 0.55 0.55 0.55 0.54 0.54 0.53 0.55
0.1 0.17 0.14 0.15 0.14 0.16 0.13 0.15
0.2 0.11 0.07 0.09 0.06 0.1 0.06 0.08
0.3 0.09 0.05 0.07 0.06 0.06 0.05 0.06
0.4 0.08 0.04 0.04 0.05 0.04 0.04 0.05
0.5 0.05 0.03 0.03 0.04 0.03 0.03 0.04
0.6 0.03 0.02 0.01 0.02 0.02 0.03 0.02
0.7 0.02 0.01 0.01 0.02 0.02 0.02 0.01
0.8 0.01 0.01 0.0 0.01 0.0 0.01 0.01
0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 22: CAM loss models F-scores on different IOU thresholds for bounding box generation with
region proposals. We see our base model observing the best performance.

Add layer - learning rate 0.01
Normalization normal Confidence

CAM loss Base model Relative Equal Label less Depth less Equal Depth less
0.0 0.53 0.52 0.53 0.52 0.53 0.51 0.52
0.1 0.33 0.37 0.32 0.32 0.34 0.29 0.31
0.2 0.18 0.21 0.14 0.15 0.17 0.15 0.16
0.3 0.1 0.12 0.08 0.06 0.07 0.07 0.07
0.4 0.04 0.04 0.04 0.04 0.03 0.02 0.03
0.5 0.01 0.01 0.01 0.0 0.0 0.0 0.0
0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 23: Semantic segmentation results, using a threshold that selects the top 20% of CAM to
directly make a mask from the CAM.

83



add layer - learning rate 0.01
Normalization normal Confidence

CAM loss Base model Relative Equal Label less Depth less Equal Depth less
0.0 0.53 0.52 0.53 0.52 0.53 0.51 0.52
0.1 0.31 0.34 0.31 0.32 0.32 0.28 0.29
0.2 0.19 0.23 0.17 0.18 0.18 0.16 0.17
0.3 0.11 0.14 0.12 0.1 0.12 0.1 0.09
0.4 0.07 0.07 0.07 0.05 0.07 0.05 0.06
0.5 0.04 0.04 0.05 0.01 0.02 0.03 0.03
0.6 0.03 0.02 0.02 0.0 0.02 0.01 0.01
0.7 0.01 0.01 0.01 0.0 0.0 0.0 0.01
0.8 0.01 0.0 0.0 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 24: Semantic segmentation results uisng the Grabcut method between the Base model,
relative loss model, equal loss model and depth less model.

are ofthen located next to electronic freeway sign, the CAM loss is unable to divert the activation
of the CAM from the electronic freeway sign to the actaul location of the Utility Cabinent. This
can see in Figure 51, this also shows that the equal model is able to distinguish the two more
as it does take into account the CAM loss even when a positive classification is made. However,
this equal approach also introduces downside as the mask have an increased amount of label noisy
within them, resulting on overal lower scores. Furthermore, as the base and relative model find
overall more objects, there F-scores, when the IOU is low, are on average higher than the CAM
loss functions. As such the scores at higher IOU’s are equalized Having said that, the CAM loss
models are often still not able to find the object although they seem to get closer. The faults made
by the CAMs also indicate an alternative issue with the automatically generated masks. Objects
that are underneath or position within the same depth range and same direction range cannot
be distinguished leading to CAM where the mask cannot adequately distinguish object. As such
the masks do help to distinguish traffic signs from traffics lights and change the CAM of utility
closet from focusing on matrix signs which is a good thing however they instead also focus on the
overhang, which is also present within the depth masks.
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(a) CAM generated by base
model.

(b) CAM generated by relative
model.

(c) CAM generated by equal
model.

Figure 51: CAMs illustrating that the equal model is the only model capable of removing the
discriminative detection on the black and white pole which is often also present within images
where traffic light are also present.

5.5 Upscaled CAM loss models

In this section, we evaluate the performance of the upscaled CAM loss models. First, we evaluate
the result on a image-wide label level. Second, we evaluate the models on the quality of the CAMs
generated. Finally, we investigate the performance of bounding boxes and semantic-segmentation
masks generated on the CAMs.

5.5.1 Classification

Using our best performing CAM loss model, more specifically the relative CAM loss and the equal
loss models as it more generally uses the CAM information, we investigate upscaling the CAMs in
an effort to increase the resolution and expressiveness of the CAMs. These upscaled models are
trained using a high learning rate and generate CAMs using the ‘add’. We upscale these models to
two different increased sized. First to a CAM size of 32× 32 and second to a CAM size of 64× 64.
We thereby increase the size of the CAM from 16× 16 images to 32× 32/64× 64 images.

Table 25 illustrates our classification result acquired using our upscaled models. While the 32× 32
model relative model shows a small increase in performance over itself the rest of the upscaled
models show a significant drop in performance by increasing the size of the CAMs. This can be
described to the fact that the networks now have to learn an increased number of parameters taking
longer to train which leads to the noise in the datasets increasing its effect. This is also the reason,
we see large decrease in the more noisy classes such as information signs. While this is less the case
for more stable objects such as Barrier/gate.
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Loss normal relative equal
CAM size 16× 16 16× 16 32× 32 64× 64 16× 16 32× 32 64× 64
Average 0.66 0.6 0.63 0.57 0.62 0.55 0.55

Traffic light 0.74 0.72 0.77 0.61 0.69 0.72 0.59
Barrier post 0.43 0.43 0.57 0.57 0.6 0.54 0.55

Utility cabinet 0.62 0.57 0.59 0.34 0.58 0.38 0.58
Traffic sign 0.51 0.56 0.45 0.53 0.49 0.51 0.5

Manhole 0.52 0.63 0.65 0.54 0.58 0.36 0.45
Barrier/Gate 0.92 0.95 0.87 0.94 0.9 0.9 0.9
Street gully 0.28 0.33 0.45 0.13 0.34 0.13 0.21

Electronic freeway sign 0.89 0.83 0.84 0.84 0.89 0.89 0.91
Bicycle stand 0.88 0.78 0.78 0.81 0.79 0.73 0.75

Street name sign 0.63 0.61 0.54 0.63 0.64 0.49 0.37
Garbage Can 0.52 0.44 0.52 0.29 0.53 0.5 0.47
Street light 0.75 0.74 0.75 0.74 0.76 0.78 0.75

Camera 0.42 0.59 0.55 0.5 0.48 0.35 0.47
Bench 0.51 0.44 0.56 0.38 0.62 0.67 0.55

Roadside protection block 0.65 0.7 0.7 0.8 0.71 0.65 0.64
Information sign 0.3 0.24 0.07 0.17 0.29 0.12 0.13

Public play equipment 0.79 0.82 0.81 0.67 0.78 0.7 0.7
Hectometer post 0.54 0.4 0.63 0.43 0.45 0.33 0.32

Ladder 0.57 0.54 0.67 0.63 0.55 0.52 0.5
Roadsign direction Arrow 0.73 0.73 0.79 0.87 0.78 0.67 0.63

Table 25: Classification results in fscores using upscaled CAM models, we see a small improvement
when upscaling the relative model to a size of 32× 32. This seems to be mostly due to some of the
smaller objects now receiving more accurate CAM losses as the size of the 16 × 16 would ofthen
generate high losses even when fixated on the right location as the resolution was off.
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(a) Normal relative CAM.
(b) relative upscaled 32 × 32
CAM.

(c) equal upscaled 32×32 CAM.

(d) relative upscaled 64 × 64
CAM.

(e) equal upscaled 64×64 CAM.

Figure 52: CAMS generated by upscaled models for the detection of a street light.

5.5.2 CAM Performance

Our upscaled models CAMs should allow for increased resolution and expressiveness, figures 52
and 53 illustrate the result acquired by the upscaling of the CAMs. Where we can see that the
increase of resolution does allow the model to focus on more particular features. We also see the
relative model being able to find the Utility cabinet and distinguish it from an electronic freeway
sign. One can also see that the equal model has been affected more by the depth masks as it
still responds heavily to the structure above the utility cabinets. This region is almost always also
included when making the depth mask for this object as it is situated in the same direction and at
the same distance.

Looking now at how many of the CAM intersect with the ground truth, surprisingly we only see a
slight decrease in performance as shown in Table 26. This is surprising as the CAM generated by
the upscaled models are on average smaller and more focused which decreases the chance of them
overlapping with the ground truth.
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Loss normal relative equal
CAM size 16× 16 16× 16 32× 32 64× 64 16× 16 32× 32 64× 64
Average 0.42 0.38 0.36 0.34 0.34 0.31 0.31

Traffic light 0.43 0.41 0.37 0.45 0.32 0.44 0.43
Barrier post 0.32 0.42 0.38 0.42 0.39 0.45 0.17

Utility cabinet 0.3 0.25 0.33 0.21 0.27 0.35 0.2
Traffic sign 0.41 0.39 0.25 0.35 0.25 0.3 0.34

Manhole 0.41 0.3 0.4 0.38 0.33 0.31 0.34
Barrier/Gate 0.83 0.83 0.83 0.89 0.7 0.82 0.77
Street gully 0.26 0.03 0.2 0.0 0.23 0.07 0.13

Electronic freeway sign 0.52 0.45 0.51 0.36 0.3 0.42 0.55
Bicycle stand 0.25 0.25 0.0 0.29 0.18 0.22 0.17

Street name sign 0.0 0.0 0.0 0.11 0.0 0.0 0.07
Garbage Can 0.61 0.61 0.6 0.35 0.53 0.48 0.42
Street light 0.5 0.47 0.47 0.39 0.47 0.29 0.4

Camera 0.24 0.18 0.11 0.23 0.14 0.08 0.18
Bench 0.62 0.61 0.5 0.36 0.54 0.34 0.51

Roadside protection block 0.54 0.65 0.49 0.44 0.4 0.39 0.32
Information sign 0.15 0.08 0.08 0.09 0.15 0.09 0.06

Public play equipment 0.2 0.15 0.41 0.38 0.18 0.26 0.22
Hectometer post 0.7 0.48 0.48 0.35 0.44 0.22 0.31

Ladder 0.48 0.5 0.38 0.27 0.63 0.14 0.35
Roadsign direction Arrow 0.55 0.51 0.44 0.45 0.33 0.51 0.33

Table 26: CAM intersection performance for upscaled models. Where a prediction is seen as positive
if the top 20% of the CAM intersect with the Semantic segmentation groundtruth. Here we see an
overal decrease in performance by upscaling the models. While initially unexpected, it does follow
the intuition that as we increase the resolution the CAM has to be more precise to still intersect
with the ground truth. For examples, at the 16× 16 resolution a pixel can easily overlap with the
ground truth while at a resolution of 32 × 32 the models has to be more precise to still intersect.
This can explain why our result show an decrease in performance. Furthermore, as we only take
the top 20% by increasing the number of pixels we decrease the size of the activated region.
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(a) Normal relative CAM.
(b) relative upscaled 32 × 32
CAM.

(c) equal upscaled 32×32 CAM.

Figure 53: CAMS generated by upscaled models for the detection of a utility cabinets. Note no
position classification was made by the 64× 64 models and as such are not shown.

5.5.3 Bounding Box And Semantic Segmentation Performance

Tables 27 and 28 show the bounding box results acquired by the upscaled models. Unfortunately,
we do not see any major improvement with any of the upscaled models. This seems to indicate that
we can upscale the CAMs and increase the resolution for certain objects. However, this does make
the learning process harder and can, in fact, make the noise present within the depth generated
masks more significant, as shown in Figure 53. This same result is also shown when generating
semantic mask as shown by Tables 29 and 30.

6 Conclusions

We set out to investigate if the semantic information present with certain maps could be used
to construct an image-wide labeled dataset with which one could train a SOTA object detection
method. Furthermore, we set out to find what kind of result could be acquired on such a dataset
i.e. what kind of bounding box and semantic segmentation result could be acquired. For this,
we investigated using the weakly supervised technique of CAMs. To improve the accuracy of the
CAMs, we investigated two methods the first was simply to change which layer was used for the
CAM generation, which as we were using a Resnet network gave us a choice. Second, we also
investigate if we could automatically generate object masks by combining depth information with
semantic information available from the maps and use these masks to improve the CAMs.

What we found was a method that while capable of automatically generating large image-wide
datasets, was full of noisy labels. This noise mostly consists of label issues, labels not being visible
due to dynamic obstacles, map information not accurately describing what can be seen within an
image due to changes within the time of measurement and the time of image capture, and overall,
some noise within the maps themselves. Regardless of this high amount of noise, a Resnet 50
network was capable of producing an average F-score of 0.66. Which when taking into account
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Loss normal relative equal
CAM size 16× 16 16× 16 32× 32 64× 64 16× 16 32× 32 64× 64

0.0 0.55 0.55 0.54 0.51 0.54 0.47 0.49
0.1 0.25 0.28 0.26 0.22 0.23 0.19 0.19
0.2 0.16 0.18 0.15 0.13 0.13 0.11 0.11
0.3 0.1 0.13 0.11 0.08 0.09 0.06 0.06
0.4 0.06 0.1 0.07 0.05 0.04 0.03 0.03
0.5 0.03 0.04 0.04 0.01 0.02 0.02 0.01
0.6 0.01 0.02 0.02 0.0 0.0 0.01 0.0
0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 27: Resulting Fscores for bounding box generation, without region proposals on different
IOU thresholds. Here we see the upscaled models perform worse then we would have expected. We
suspect that this is due to two reasons. First, by increasing the resolution we need to learn more
parameters. Second, due to the increased resolution the generated CAMs will be more able to focus
on the most discriminative/selective features, resulting in it ignoring other key areas of the objects
necessary for generating accurate bounding boxes.

Loss normal relative equal
CAM size 16× 16 16× 16 32× 32 64× 64 16× 16 32× 32 64× 64

0.0 0.55 0.55 0.54 0.52 0.53 0.47 0.49
0.1 0.16 0.14 0.14 0.12 0.13 0.1 0.11
0.2 0.11 0.07 0.08 0.07 0.06 0.07 0.07
0.3 0.06 0.05 0.06 0.06 0.05 0.05 0.05
0.4 0.05 0.04 0.05 0.03 0.04 0.03 0.04
0.5 0.05 0.03 0.03 0.02 0.03 0.03 0.03
0.6 0.04 0.02 0.02 0.02 0.03 0.01 0.02
0.7 0.03 0.01 0.01 0.01 0.02 0.01 0.01
0.8 0.01 0.01 0.0 0.0 0.01 0.0 0.01
0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 28: Resulting Fscores for bounding box generation, with region proposals on different IOU
thresholds. Here we see similar results as bounding box generation without region proposals. Only
shifted towards receiving slightly better scores at higher IOU’s at the cost of lower scores at the
lower IOU ranges.
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Loss normal relative equal
CAM size 16× 16 16× 16 32× 32 64× 64 16× 16 32× 32 64× 64

0.0 0.53 0.52 0.52 0.5 0.53 0.47 0.47
0.1 0.33 0.37 0.33 0.29 0.32 0.1 0.28
0.2 0.18 0.21 0.21 0.17 0.14 0.07 0.15
0.3 0.1 0.12 0.12 0.09 0.08 0.05 0.08
0.4 0.04 0.04 0.08 0.05 0.04 0.03 0.01
0.5 0.01 0.01 0.04 0.0 0.01 0.03 0.0
0.6 0.0 0.0 0.0 0.0 0.0 0.01 0.0
0.7 0.0 0.0 0.0 0.0 0.0 0.01 0.0
0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 29: Results Fscores semantic mask generation, without GrabCut at different IOU thresholds.
Interestingly, we see the best results at a the higher IOU threshold yet. Both the relative and
equal 32 × 32 upscaled models able to outperform at a IOU threshold 0.5. Intiuatlifly this is
due the model able to beter respresent some of the objects with its higher resolution specficly
smaller objects that due not suffer as much from the CAM having the ability to focus on the most
discriminative/selective features.

Loss normal relative equal
CAM size 16× 16 16× 16 32× 32 64× 64 16× 16 32× 32 64× 64

0.0 0.53 0.52 0.52 0.5 0.51 0.45 0.47
0.1 0.31 0.34 0.31 0.27 0.28 0.25 0.26
0.2 0.19 0.23 0.2 0.16 0.16 0.15 0.18
0.3 0.11 0.14 0.13 0.11 0.1 0.09 0.12
0.4 0.07 0.07 0.1 0.07 0.05 0.04 0.07
0.5 0.04 0.04 0.05 0.03 0.03 0.03 0.03
0.6 0.03 0.02 0.03 0.02 0.01 0.02 0.02
0.7 0.01 0.01 0.03 0.01 0.0 0.0 0.01
0.8 0.01 0.0 0.0 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 30: Results Fscores semantic mask generation, with GrabCut at different IOU thresholds.
Here we see similar result to the mask generation with Grabcut. The relative 16 × 16 model able
to out perform the rest of the models at the higher IOU scales. However, unlike before the equal
loss models doesn’t perform as well as before. We expect this to be due to the grabcut method
expending the foreground into not background regions. These are expected to especially more noisy
in the equal model as these are probably the regions also falsely covered by the approximate masks.
Resulting in a decrease in performance.
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that the average F-score of the dataset the network trained on was only 0.64 is a very good result.
Specify certain classes we very successfully i.e. ’barrier/gate’, ’bicycle stands’, ’electronic freeway
signs’. While the network had more performance problems with smaller object i.e. ’street gully’,
’hectometer post’. These are common problems with object detection and numerous methods exist
to improve the ability of a network for detecting smaller objects (76). These objects could increase
the performance of the method was more specialized for smaller objects.

While these results showed promise, converting them to accurate bounding boxes and semantic
segmentation masks results proved to be a challenging task. To generate these mask the CAM
method was used. However, while the normal CAM methods state taking the last convolutional
layer of a network to generate CAMs with, a Resnet network as a layer after the last convolutional
layer which should be able to represent the features that led to a classification better. This other
layer the ’add’ layer was indeed able to give slightly better CAMs. However even with this slight
increase in performance numerous faults where still present within the CAMs. We quickly discovered
that certain objects would pair in CAMs with other objects also present within these environments.
For example, Utility cabinets and electronic freeway signs often located within the same environment
would, in a decent number of cases, generate identical CAMs. Where the utility cabinet would match
the electronic freeway sign as it is easier to discriminate and find the utility cabinet is. Furthermore,
it became clear that the network would almost always only focus on the most discriminative parts
of an object of the most discriminative object in the image even if multiple objects were present
within an image. This resulted in overall poor performance when generating bounding boxes and
semantic masks.

To improve these results, we introduced a CAM loss that uses the automatically generate mask
to guide the network into localizing the correct features and correct objects. To incorporate this
CAM loss within the Resnet 50 network we investigated multiple combined losses were we found
the relative loss, which takes the CAM loss more into account when the normal loss makes a bigger
mistake, to have the best performance. While the overall performance of the CAM loss model was
worse or equal to the normal loss model. The relative model was able to get a slight increase in
performance, where the average F-score of our cam intersection metric showed an increase of 0.03
and an increase of 7% could be seen at a semantic segmentation level. While small it shows that
our method is capable of improving the CAMs. However, in most cases the method introduces more
problems than it would solve. For which we found two main reasons: first as the mask method
uses all labels for each image to generate mask instead of grouping them together to a single label
per class. It introduces more of the noise that is within the dataset. Second, the masks themselves
depend on the object being alone by itself as for instance when placed on a wall or other large
surface our method of generating masks fails. These two issues introduced numerous new errors
within the learning process reducing overall performance. Finally, we also investigated upscaling
the CAM models using the automatically generated mask. Here, at the higher IOU threshold ranges
we found a small increase in performance the increased resolution able to better represent some of
the objects. However, in most cases, they perform worse due the upscaling relying more heavily on
the mask which as outlined above showed numerous faults.

In conclusion, we found that we were able to automatically generate object detection datasets, on
which the SOTA object detection method could learn and acquire decent image-wide classification
results. However, results for the bounding box and semantic segmentation where insufficient. While
small improvements could be seen by leveraging depth information with semantic map information,
the increase was too small to allow for usable bounding box and semantic segmentation results. The
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method does, however, show promise, and with further research could lead to more usable results.

7 Future Work

As the main issue with our method is dealing with a large amount of label noise within the dataset.
We suggest a semi-supervised method could help solve some of the major issues present within
using a map as a form of automatic labeling.

Furthermore, the noisy generated mask could be improved by using multiple viewpoints to construct
a more accurate mask of the object when possible. For instance, from a particular point of view,
an object might disappear within the background of another object especially when using depth
information. Using multiple viewpoints the possibility exists to further refine and improve these
depth masks.

In our approach to place a loss on the CAM, we automatically generated a mask in order to help
focus the CAMs. However, one could also step away from the weakly supervised paradigm and use
these generate masks directly within a common bounding box method. For this to have any chance
of working the map labels or the mask then self should be filtered in some way to reduce the noise
within them. This could be done manually but other techniques such as clustering the generated
masks could prove to be successful in removing large amounts of noisy.

As stated in our research the CAMs focus too much on the most discriminative features within
an image. A possible solution would be to filter the most activated regions out and try to let the
network learn on the remaining features. This would make the CAMs less discriminative and allow
them to generate more encompassing CAMs. This approach as suggested by Wei et al. (52) and
shows promising results that could help solve some of the CAM issues.

As we also saw problems with too few negative examples within certain environments. This could
probably be solved or the severity of this problem can be reduced by changing the method to
specifically look for images that do not contain these objects within an environment. This could
reduce the focus on background images without needing manual supervision.

Finally, in our approach, we did not consider objects being blocked by other objects that are also
labeled on maps. For instance, there are maps that show the shape of buildings, this information
could be used to better filter which labels are visible. For example, if a street gully is behind a row
of houses it will probably not be visible to the camera.
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9 Appendix

9.1 Preliminary Research

To get some insights into the results we could achieve using labels from maps to label images, we
first performed four experiments using an existing method. For this, we used Zhou peak response
mapping method as it seemed to get good results, allowed for instance and semantic segmentation
had a simple approach and had code publicly available.

9.1.1 A Single Roadside Object Class

We started by adding one single roadside Class to the existing example model of Zhou et al; (13).
For this object, we chose a street light as this is a very distinct object present in a large number of
street view images. To allow this object to be added we modified the existing model to allow it to
output an additional label i.e we changed to model from of 20 objects labels to 21 object labels.

These 20 pre-existing classes come from the 2012 VOC (61) training set. Which are also used
to train the model, for the street light we added 500 training images and 100 validation images
situated on street lights present in Utrecht. We ran training with the same parameters as Zhou et
al. did.

For the creation of our training images, we used a FOV angle of 90 degrees and a distance range
of 10 meters. As these parameters seem to allow for some noise in the measurements of the BGT
maps and street view images.

When training we that the the validation set converges really quickly to a loss of 0.06, see Figure 54.

Figure 54: loss experiment 1
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Figure 55: Class response map experiment 1 street light

When looking at our result, we find a classification F-score of 1.0 and an accuracy of 1.0 for the class
street lights. However, when we then look at the CAMs of these street lights we find something
different, see Figure 55.

Instead of finding the street lights it seems to focus on the car masks and a bit on the horizon.
This result was expected as the car mask is clearly visible in every street light image. Furthermore,
there are no negative examples also containing the car masks making it a unique feature for each
image labeled as a street view image. Since this mask is clearly visible and occupies a large section
of the images it becomes easily detectable resulting in the 100 % accuracy. This is actually not
desirable as when we would include a street view image that doesn’t include a street light is would
still be labeled as such. To solve this we proposed to add more street view classes. This should
then give negative examples for the horizon and the car present in the image, which would then
force the network to look for the other objects present in the images.

9.1.2 Multiple Roadside Object Classes

For the second experiment, we added four more street view classes and removed the Imagenet
classes present in our first experiment. Resulting in a dataset consisting of five different street view
classes. The five street view classes are: Street lights, ABRI (the name for a shelter at a bus stop),
Trees, Electrical utility cabinets, and garbage bins. These objects were chosen as they are a diverse
set of differently sized objects. Furthermore, every class has 500 training images and 100 validation
images resulting in a training set of 2500 images and a validation set of 500 images. It should be
noted that every image is only labeled for one class and objects in the background of the classes
are disregarded.

For this experiment we can see a clear difference in performance (see Table 31). Our model in this
experiment seems to actually learn the appearance of the object (see Figure 56). Although there
are still some issue’s with tree’s and street lights (see Figure 57)

We hypothesize this is because these objects are often present within the background of the other
objects and since these other images are takes as negatives it is unable to fine-tune itself. This would
explain our lower accuracy within these classes and also why ignores certain versions of street lights.
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confidence > 0.5 Sum Street light Abri Garbage Can Tree Utility cabinet
true pos 381 59 83 86 72 81
false pos 96 12 6 27 25 26
false neg 119 41 17 14 28 19
true neg 1904 388 394 373 375 374

recall 0.76 0.59 0.83 0.86 0.72 0.81
precision 0.80 0.83 0.93 0.76 0.74 0.76
f-measure 0.78 0.69 0.88 0.81 0.73 0.78
accuracy 0.91 0.89 0.95 0.91 0.89 0.91

Table 31: Results on validation set with a confidence > 0.5

Figure 56: CAM able to localize objects
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Figure 57: CAM not able to localize objects
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Figure 58: Finding multiple occurrences of ABRI’s

Figure 59: Finding multiple occurrences of Garbage cans

The other three objects, (Abri, Garbagecans, Utility cabinets), seem to do a lot better, even finding
multiple of these objects within one image even though they only been trained on image-wide
objects occurring per image, see figures 58, 59.

This supports our hypothesis as ABRI, Garbage-cans, and Utility cabinets are scarce objects com-
pared to trees and street light meaning they are less likely to be in the background of other images
where they would be used an incorrect negative example while training.

9.1.3 Adding Background Objects

In the third experiment, we proposed adding a view-cone to allow for the labeling of objects within
the background of the image I.E. see figure 60.

This view-cone consists of two parameters a FOV (field of view) and a range. FOV corresponding
to the horizontal FOV of the image and a range that determines the length of the cone. The view
cone is then also split into two sections a closer section where map labels are seen as correct labels
and a further section where labels present are seen as hard. This is added as the objects further
away have a decreased possibility of being visible, e.g. a building or other objects might be blocking
a direct line of sight to our object. We therefore label these objects as hard which the model then
ignores when training.

To be able to compare our previous results to the results of this experiment we also use the validation
set containing multiple labels on the model resulting from experiment 2.
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Figure 60: Example of a view-cone, Smaller Cone indicates the labeled objects bigger Cone indicates
all objects that are consider hard

For this experiment, we set the view cone FOV to the same FOV as the images I.E. 90 °. The range
of the view-cone is set at a range of 55 meters where after 20 meters labels are considered hard.

Our third experiment shows an dramatic decrease in performance for all objects (see Table 33). This
is as the problem has greatly increased in difficulty as the model now has to predict multiple labels
for each image. Furthermore, as we’re taking into account background objects our classes in the
2500 images are no longer balanced. Certain objects are more often present within the background
of images, see table 32. Explaining why trees and street lights still attain adequate performance.
This large class imbalance could be downscaled a bit by using a weighted training I.E. when setting
weights using the loss more prevalent objects are taking into account less to less prevalent objects.
However, we still require a large set of negative images to be able to localize the correct objects
which are a problem in the case of trees and street lights.

9.1.4 Balancing Datasets

The reduce the effect of the large class in balance we investigated used class weights to reduce
they over-focused of certain classes over others. By weighting the classes we see a large increase in
performance (see table 33). Furthermore, street lights are able to be found with the CAM showing
that adding the view-cone helped in the ability to localize the object (see Figure 61).
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training validation
Utility cabinets 527 108

Utility cabinets hard labels 35 6
Utility cabinets negative labels 1938 383

Street light 1322 280
Street light hard labels 458 85

Street light negative labels 720 133
GarbageCan 509 103

GarbageCan hard labels 3 1
GarbageCan negative labels 1988 388

Tree 1573 305
Tree hard labels 328 67

Tree negative labels 599 125
abri 532 104

abri hard labels 19 4
abri negative labels 1949 384

Table 32: number of images with certain label

Objects Experiment 2 Experiment 3 Experiment 4
Street light 0.36 0.72 0.74

Abri 0.52 0.04 0.84
garbage Can 0.35 0.095 0.74

Tree 0.49 0.54 0.81
Utility Cabinet 0.66 0 0.68

Average 0.46 0.50 0.77

Table 33: Different performance of the different models on the multi label verification set.

Figure 61: Street light are now able to be found by the CAM.
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9.2 Resnet Versus VGGnet

In this section, we describe our investigation in the performance of Resnet 50 versus the performance
of VGGnet for the classification of objects within the automatically created street view dataset.

Within the PRM method proposed by Zhou et al (13) Resnet showed better performance then the
VGGnet, we seek to investigate if these results hold when not using the PRM method but only the
CAM method as proposed by Zhou et al; (34) on our dataset.

Both models where first pre-trained on Imagenet (44), after which the pre-trained models were
trained on a small dataset consisting of 2500 images and 5 classes generated by our automatic train-
ing set creation method proposed in section 4.1. Using a batch size of 16 images, and with images
sized 512 pixels by 512 pixels both models trained for 24 epochs. As the classes are unbalanced a
weighted cross-entropy loss was used.

Our results show that both models loss seem to diverge relatively quickly as illustrated in Figure
62. VGGnet taking slightly longer than the Resnet 50 network. This is also reflected in the Fscores
on the validation set per class as illustrated in Figure 63. Here we see VGGnet struggling for a
longer time to learn to less prevalent classes requiring 17/18 epochs to learn the last two classes.

While the Resnet 50 network has a lower total average performance at the start of training as
illustrated in Figure 64, this is mainly as the network learns all the different classes at the same
time, where VGGnet instead first learn the most prevalent classes, I.E. Tree and Street light,
resulting in a higher Fscore at the start of training. However, if we instead look at the average
precision of all the classes we see our Resnet 50 network outperform the VGGnet network illustrated
in Figure 65.
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(a) Resnet 50 loss

(b) VGGnet loss

Figure 62: Loss of both networks
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Figure 63: Fscores per class

Figure 64: Average Fscore on validation set
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Figure 65: Fscores averaged on classes
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9.3 Street View And Lidar Availability In The Netherlands
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Figure 66: Dutch roads where street view images are available
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Figure 67: Dutch roads where depth information images are available
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9.4 Map Objects

Class name are represented by their dutch names as they are also labeled as such in maps.

9.4.1 DTB objects

Object amount Object amount Object amount
hoogtepunt 1124343 reclamebord/zuil 3740 overstapconstructie geleiderail 410
boom 798639 reddingsmiddel 3363 snuffelpaal 341
verlichtingsobject 255984 verkeersbord met kabel 3183 verdrijfpijl links 276
kolk 236510 luidspreker 3140 luchtkoker 262
verkeersbord zonder kabel 144624 tv /camera 2811 meteorologisch instrument 217
meerpaal 106911 picknicktafel 2618 schoorsteen 192
hectometerpaal/bord 82356 navigatielicht 2325 gashouder 192
put(deksel) 79874 zonnepaneel 2048 windzak 179
bolder 55370 verdrijfpijl rechts 2043 pompstation 178
kast/huis 54059 mast 1865 dukdalf 164
bermbeschermingsblok 31168 drukknoppaal 1753 watermolen 147
verfsymbool 27876 brandblusser 1507 pijlmarkering rechtd/rechtsaf/linksaf 122
wegwijzer zonder kabel 25469 hoogspanningsmast 1323 pijl rechtsaf/linksaf 120
verkeerslicht 20160 mottobord 1320 radar 113
pijlmarkering rechtsaf 18430 zinkerbord zonder kabel 1255 pomp 102
dijkpaal 17468 aankondigingsbord met kabel 1124 molen 100
prullenbak/vuilnisbak 16711 pijlm rechtdoor/rechtsaf 1109 roodlichtcamera 97
matrixbord 16558 bewegingswerktuig 1091 uitwateringssluis 70
verklikker transportleiding 15606 ornament 1088 informatiebord praatpaal 66
bank(zit) 13990 bushalte 1087 dijk of kustwachttelefoon 57
trap 12512 brandkraan bovengronds 1037 zinkerbord met kabel 57
aankondigingsb zonder kabel 10874 pijlm rechtdoor/linksaf 996 tank 49
silo 10136 antenne 986 laadpaal 47
pijlmarkering rechtdoor 9995 praatpaal 807 schakelstation 47
pijlmarkering linksaf 8677 peilput 695 rioolput(zonder inlaat) 42
bolbaken 6998 peilschaal 671 schepenteller 5
pijler 6465 kabelbord zonder kabel 659 kabelbord met kabel 2
wegwijzer met kabel 4920 kilometerraaibord 641
camera (algemeen) 4782 brandput 527
naambord 4382 telefooncel 452
meerstoel 4145 sein 432
slagboom 3870 dynamisch route info paneel 417
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9.4.2 BGT-objects

Object amount Object amount Object amount
kolk 2550088 abri 12654 dijkpaal 482
lichtmast 1983625 geleideconstructie 11953 zendmast 474
inspectie / rioolput 1266851 boomspiegel 9400 laagspanningsmast 418
afsluitpaal 509430 betaalautomaat 8404 scheepvaartbord 395
verkeersbord 229045 kunstobject 7881 drinkbak 359
verkeersbordpaal 197055 telecom kast 7634 fietsenkluis 340
brandkraan / put 170810 waarschuwingshek 7051 debietmeter 336
waardeOnbekend 126200 haltepaal 6710 flitser 315
speelvoorziening 105821 bloembak 6494 hoogtemerk 313
fietsenrek 105265 drukknoppaal 5554 telpaal 285
afvalbak 94533 zonnepaneel 5494 praatpaal 285
waterleidingput 87745 reclamebord 4952 zand/ zoutbak 197
bank 83727 openbare verlichtingkast 4486 sirene 189
afval apart plaats 52847 slagboom 4364 GMS sensor 180
CAI kast 50652 plaatsnaambord 4028 fontein 175
drainageput 49824 poller 4001 GMS kast 149
elektrakast 48237 pomp 3552 lichtcel 131
straatnaambord 48137 camera 3476 openbaar toilet 120
verkeersregelinstallatiepaal 39584 reclamezuil 3445 rooster 67
meerpaal 36246 brievenbus 3254 radar detector 55
hectometerpaal 35872 portaal 3109 dynamische snelheidsindicator 54
wegwijzer 30758 picknicktafel 3024 wildrooster 36
lichtpunt 25130 grensmarkering 2764 weerstation 30
gasput 24015 waterstandmeter 2630 straalzender 24
bolder 20806 gaskast 2291 radarmast 24
informatiebord 18616 verkeersregelinstallatiekast 2272 molgoot 20
container 18118 herdenkingsmonument 1630 windmeter 17
benzine / olieput 16756 telefooncel 1313 hoogtedetectieapparaat 6
rioolkast 13962 telkast 1188 balustrade 2
verklikker transportleiding 13681 betonning 875
vlaggenmast 13655 parkeerbeugel 779
bovenleidingmast 13028 wegmarkering 536

9.5 Results
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Learning rate 0.01 0.005 0.001
CAM Thresshold 0.3% 0.2% 0.1% 0.3% 0.2% 0.1% 0.3% 0.2% 0.1%

0.0 0.53 0.53 0.53 0.53 0.53 0.53 0.51 0.51 0.51
0.1 0.33 0.33 0.28 0.33 0.34 0.28 0.29 0.28 0.25
0.2 0.17 0.18 0.15 0.19 0.2 0.17 0.15 0.15 0.11
0.3 0.09 0.1 0.09 0.06 0.08 0.07 0.07 0.07 0.05
0.4 0.03 0.04 0.02 0.02 0.02 0.01 0.01 0.03 0.01
0.5 0.01 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 35: Comparison simple mask generated on NON CAM loss model add layer, Fscores at
different IOU thresholds

Object 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Traffic light 0.64 0.3 0.18 0.09 0.03 0.0 0.0 0.0 0.0 0.0
Barrier post 0.58 0.08 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Utility cabinet 0.57 0.36 0.36 0.15 0.1 0.0 0.0 0.0 0.0 0.0
Traffic sign 0.61 0.07 0.03 0.01 0.0 0.0 0.0 0.0 0.0 0.0

Manhole 0.48 0.23 0.19 0.15 0.08 0.08 0.04 0.0 0.0 0.0
Barrier/Gate 0.94 0.63 0.12 0.06 0.0 0.0 0.0 0.0 0.0 0.0
Street gully 0.3 0.3 0.22 0.17 0.17 0.13 0.04 0.0 0.0 0.0

Electronic freeway sign 0.81 0.4 0.16 0.08 0.04 0.04 0.0 0.0 0.0 0.0
Bicycle stand 0.29 0.29 0.29 0.29 0.29 0.0 0.0 0.0 0.0 0.0

Street name sign 0.08 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Garbage Can 0.68 0.49 0.38 0.15 0.11 0.08 0.04 0.04 0.04 0.0
Street light 0.75 0.32 0.17 0.06 0.02 0.0 0.0 0.0 0.0 0.0

Camera 0.29 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bench 0.75 0.52 0.48 0.44 0.37 0.26 0.11 0.04 0.0 0.0

Roadside protection block 0.77 0.13 0.07 0.04 0.0 0.0 0.0 0.0 0.0 0.0
Information sign 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Public play equipment 0.62 0.22 0.22 0.22 0.22 0.0 0.0 0.0 0.0 0.0
Hectometer post 0.42 0.32 0.21 0.11 0.0 0.0 0.0 0.0 0.0 0.0

Ladder 0.67 0.67 0.53 0.53 0.53 0.13 0.13 0.0 0.0 0.0
Roadsign direction Arrow 0.67 0.17 0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 36: The performance of the bounding simple method using the CAM generated by the
Relative CAM loss model
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IOU 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Average 0 +0.03 +0.02 +0.03 +0.04 +0.01 +0.01 +0.0 +0.0 0

Traffic light +0.01 +0.05 +0.06 0 0 0 0 0 0 0
Barrier post -0.09 -0.03 0 -0.02 0 0 0 0 0 0

Utility cabinet +0.08 +0.09 +0.18 +0.06 +0.1 0 0 0 0 0
Traffic sign -0.01 -0.06 -0.03 0 0 0 0 0 0 0

Manhole -0.02 +0.01 +0.02 -0.02 -0.01 +0.08 +0.04 0 0 0
Barrier/Gate 0.01 +0.07 -0.07 +0.06 0 0 0 0 0 0
Street gully +0.03 +0.12 +0.13 +0.08 +0.08 +0.08 0 0 0 0

Electronic freeway sign +0.01 +0.27 +0.12 +0.04 +0.04 +0.04 0 0 0 0
Bicycle stand +0.04 +0.04 +0.04 +0.04 +0.04 -0.25 0 0 0 0

Street name sign +0.08 0 0 0 0 0 0 0 0 0
Garbage Can -0.02 +0.1 +0.06 -0.09 +0.04 +0.01 -0.03 +0.04 +0.04 0
Street light -0.02 -0.08 -0.01 +0.01 +0.01 -0.01 0 0 0 0

Camera -0.08 0 0 0 0 0 0 0 0 0
Bench 0 +0.02 +0.05 +0.05 +0.12 +0.15 0 0 0 0

Roadside protection block 0 -0.03 -0.03 -0.03 -0.03 0 0 0 0 0
Information sign -0.15 -0.15 -0.15 -0.15 -0.08 -0.08 0 0 0 0

Public play equipment +0.28 -0.01 +0.01 +0.12 +0.22 0 0 0 0 0
Hectometer post -0.27 -0.03 +0.04 +0.11 0 0 0 0 0 0

Ladder +0.17 +0.17 +0.13 +0.33 +0.33 +0.13 +0.13 0 0 0
Roadsign direction Arrow -0.08 +0.01 -0.05 -0.05 -0.05 0 0 0 0 0

Table 37: Performance increase when using the relative CAM loss method
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