
master thesis jurriaan parie

performance of sampling methods

on deterministic bayesian

networks

msc mathematical sciences

utrecht university

supervised by:

prof. dr. gerard barkema

department information

and computing sciences

utrecht university

dr. frank phillipson

department cyber

security and robustness

tno

December 22, 2019

Abstract

�e performance of the recently introduced prune sampling algorithm [1] is char-
acterised for various types of Bayesian networks and is compared to conventional
sampling methods like Gibbs sampling, backward sampling, likelihood weighting, and
SampleSearch. A procedure is devised to obtain the performance of sampling methods
in the limit of in�nite simulation time, extrapolated from relatively short simulations.
�is approach was used to conduct an experimental analysis to compare the accuracy,
rate of convergence and the time consumption of the sampling methods. It is shown
that Markov chains created by prune sampling always converge to the desired posterior
distribution, also for networks where conventional Gibbs sampling fails. In addition, it
is demonstrated that prune sampling outperforms Gibbs sampling – arguably the most
widely used MCMC inference technique – at least for one class of BNs. �ough, this
tempting feature comes at a price. In the �rst implementation of prune sampling, the
procedure to assign an initial con�guration to a BN is rather time intensive. A solution
to mitigate this drawback is implemented and reviewed.

In total 72 experiments are conducted on 12 di�erent BNs. Our conclusion is that, being
devised speci�cally to deal with determinism, prune sampling thwarts its expectations.
Particularly in its accuracy on the deterministic class of Grid BNs. Prune sampling
shows consistently fast performance on all types of small BNs. However, on this type
of BNs its accuracy is seriously inadequate. On all other BNs, prune sampling shows
serious shortcomings in terms of all three performance indicators. Hence, overall it
needs to be concluded that prune sampling is not a competitive sampling method in
comparison to established (MCMC) sampling methods.

Part of this thesis is preliminary published on ArXiv as Prune sampling: a MCMC inference technique for
discrete and deterministic Bayesian networks [1]

Contents

1 Introduction 4
1.1 Bayesian networks and inference . 4
1.2 Goals and approach of this research project 4
1.3 Overview of the thesis . 5

2 Bayesian network inference 6
2.1 Bayesian networks . 6
2.2 Inference . 8

3 Approximate inference methods 9
3.1 Sampling . 9
3.2 Approximate inference . 10
3.3 Forward and backward sampling . 10
3.4 Likelihood weighting . 13
3.5 Sample search . 15
3.6 Markov chain Monte Carlo simulation 16

3.6.1 �eoretical motivation . 16
3.6.2 Metropolis sampling . 17
3.6.3 Gibbs sampling . 19

4 Prune Sampling 22
4.1 Background: MC-SAT algorithm . 22
4.2 Notation and de�nition . 22

4.2.1 Regularity and reversibility . 26
4.3 Practical implementation . 28

4.3.1 Generate initial states . 28
4.3.2 Sampling from the pruned network 29

5 Performance indicators 31
5.1 Notation . 31
5.2 Accuracy: the average Hellinger distance 32
5.3 Rate of convergence . 33
5.4 Time consumption . 37

6 Results 39
6.1 Experiments . 39
6.2 Pitfalls of Gibbs sampling . 39

6.2.1 Simple deterministic network 40
6.2.2 Block shaped network . 41

2

6.3 Performance on Benchmark Bayesian networks 43
6.3.1 Accuracy on real world Bayesian networks with 0% available

evidence . 44
6.3.2 Accuracy on real world Bayesian networks with 25% available

evidence . 45
6.3.3 Accuracy on Grid Bayesian networks 46

6.4 Rate of Convergence . 50
6.5 Time consumption . 51

7 Improving prune sampling 54
7.1 Exhaustive listing of all feasible states in a pruned network 54
7.2 Hybrid forward sampling . 56

8 Conclusion 60
8.1 Accuracy . 60
8.2 Rate of convergence . 61
8.3 Time consumption . 61

A Appendix 62

3

Chapter 1 Introduction

�is thesis is about Bayesian network inference. In particular, it is about the perfor-
mance of various approximate inference sampling methods on deterministic Bayesian
networks. Below, a brief overview of the conducted research is given.

1.1 Bayesian networks and inference

A Bayesian network (BN) is a probabilistic model that represents a set of random
variables and their conditional dependencies. One could represent a BN graphically
by considering a directed acyclic graph where the set of nodes is induced by the set of
random variables and where the set of edges is given by the conditional dependencies
between these random variables. Assuming that instances fall into one of a number of
mutually exclusive and exhaustive classes, discrete BNs are used to model probabilistic
relationships. As an illustration, BNs model genetic linkage [2], causal reasoning [3]
and defence systems [4]. For all of these models BNs are used to answer probabilistic
queries about variables and their relationships. �e BN framework entail the tempting
feature to make use of updated knowledge of the state of the network’s variables. �e
task of computing the posterior distribution of the BN, given certain evidence is called
inference. Conducting brute force exact inference on BNs is o�en too computationally
intensive. On the other hand, approximate inference methods have di�culties to
guarantee an adequate level of convergence and o�en perform poorly in the presence
of deterministic relations in the BN [5, 6, 7]. In order to deal with those challenges a
plethora of di�erent inference strategies have been developed [3, 5, 8, 9].

1.2 Goals and approach of this research project

In order to improve the reliability of approximate inference methods, at TNO a new
Markov Chain Monte Carlo (MCMC) approximate inference method named prune
sampling was created. In this research project, the performance of the �rst implemented
version of prune sampling on discrete and deterministic BNs is characterised. In addition,
a procedure is devised to obtain the performance of MCMC sampling methods in the
limit of in�nite simulation time, extrapolated from relatively short simulations. �is
approach is used to conduct a study to compare the accuracy, rate of convergence and the
time consumption of prune sampling with four conventional sampling methods: Gibbs
sampling, backward sampling, likelihood weighting and SampleSearch. In addition,
drawbacks of prune sampling are discussed and suggestions are made how those can be
resolved. Note that results of this study are summarized in the paper Prune sampling: a
MCMC inference technique for discrete and deterministic Bayesian networks [1].

4

1.3 Overview of the thesis

In chapter 2, the theoretical framework of BNs is introduced and the task of BN
inference is described. Chapter 3 discusses in detail multiple popular approximate
inference techniques and their limitations. In chapter 4, prune sampling is introduced
and its theoretical justi�cation and implementation is elaborated on. Consecutively
in chapter 5, the performance indicators which are used to characterise the sampling
methods are presented. In chapter 6, the experimental test results of prune sampling
in comparison with the four other inference methods are reported and interpreted. In
chapter 7, one signi�cant drawback of prune sampling is discussed in greater detail and
a solution to this shortcoming is implemented and reviewed. Chapter 8 concludes this
thesis and proposes suggestions for further research.

5

Chapter 2 Bayesiannetwork inference

�e theoretical framework of this study consists of two main concepts: the Bayesian
network (BNs) model and the task of doing BN inference. In this chapter those two
main concepts are introduced.

2.1 Bayesian networks

First, the BN representation and its corresponding probabilistic methodology is de�ned.

De�nition 2.1 (Bayesian network). A Bayesian network (BN) structure G is a Directed
Acyclic Graph (DAG) whose nodes represent random variables X = (X1, . . . , Xn).
Let PaXi denote the direct parents of Xi in G and NDXi denote the variables in the
graph that are non-descendants of Xi. �en, G encodes the following set of conditional
independence assumptions, called the local independencies, which is denoted by Il(G):

for each variable Xi: (Xi ⊥⊥ NDXi |PaXi).

In other words, the local independencies state that each node Xi is conditionally
independent of its non-descendants given its parents [5, p. 57].

Consider a state spaces composed solely of discrete-valued random variables. For all
variables Xi in the BN, a state xi ∈ Val(Xi) can be assigned. Here, Val(Xi) denotes
the set of values that a random variable Xi can take. �e conditional probability
distribution P (Xi|PaXi) is displayed in a Conditional Probability Table (CPT), where∑

i∈{1,...,n}

P (xi|PaXi) = 1.

So, a BN exists of a graph with a collection of local probability distributions given in
CPTs. Together, these local probability distributions give the joint probability distribu-
tion on the BN. �e symbol X ⊆ X is used to denote the set of all random variables
in a BN, while X denotes an assignment of values to the variables in this set. For
convenience, a state (or con�guration) of a BN is denoted as x = (x1, . . . , xn) and
P (x) denotes the probability of the BN having this state x. Next, the event called
determinism is de�ned [5, p. 158].

De�nition 2.2 (Deterministic relation). �ere exists a function f : Val(PaXi) →
Val(Xi), such that

P (xi|PaXi) =

{
1 xi = f(PaXi)

0 otherwise,

6

i.e. the CPT contains one of more zeros.

A state x is considered to be feasible if each unique CPT-entry that corresponds to this
state is strictly positive.

De�nition 2.3 (Feasible state). A feasible state of the BN is a state x such that P (x) >

0.

�e sample space Ω is de�ned as the set containing all possible (not necessarily feasible)
states of a BN. All of the above introduced concepts come together in the following
example.

Example 2.4. Consider the Rain-Sprinkler BN in Figure 2.1. In this model, one could
consider the event of grass (g) being wet as a results of two causes: a sprinkler (s) or
rain (r). It is supposed that the rain has a direct e�ect on the usage of the sprinkler. All
three variables have two possible values, Tr (for true or on) and F (for false or o�). From
the CPTs it becomes clear that when it rains, the sprinkler is usually not turned on, i.e.
P (sTr|rTr) = 0.01. �e counter intuitive state of the BN, that the grass is wet given it
is not raining and the sprinkler is o�: x = (rF, sF, gTr), is excluded by the deterministic
relation P (gTr|rF, sF) = 0. Once considering the �xed (topological) ordering of the
variables (R,S,G), the joint probability function is given by

P (R,S,G) = P (G|R,S)P (S|R)P (R). (2.1)

To the Rain-Sprinkler BN queries can be given like: ‘given the grass is wet, what is the
probability that it is raining?’. �is probability can be computed by using Bayes’ rule,
i.e.

P (R = rTr|G = gTr) =
P (R = rTr, G = gTr)

P (G = rTr)
=

∑
S∈{T,F} P (R = rTr, S,G = gTr)∑
R,S∈{T,F} P (R,S,G = gTr)

.

(2.2)

More background concerning the mathematical representation of BNs and its method-
ology can be found in [5], chapter 3; [9], chapter 2; [3], chapter 2.

Sprinkler Rain

Grass wet

rTr 0.2
rF 0.8

rTr rF

sTr 0.01 0.4
sF 0.99 0.6

rTr, sTr rTr, sF rF, sTr rF, sF

gTr 1 0.8 0.9 0
gF 0 0.2 0.1 1

Figure 2.1: BN structure and corresponding CPTs are used to model the event of grass
being wet (g) as a results of two causes: either a sprinkler (s) is on or it is raining (r).

7

2.2 Inference

�e task to answer ‘what is P (R = rTr|G = gTr)? ’ is called inference. Two approaches
exist to compute this probability: exact or approximate methods. It is described below
how one could answer such queries by computing the exact probability.

When values of variables are known, or are given, this set E ⊂ X is called evidence.
Now, one can formulate the main goal of inference mathematically as: given a set
of evidence E = e and nodes of interest X ⊂ X , such that E ∩ X = ∅, what is
the probability distribution P (X|E = e)? Answering this type of questions is called
inferring unobserved variables. One can write P as the posterior probability distribution
of interest, with reduced CPTs according to the evidence nodes. In the next example,
the Rain-Sprinkler BN is revisited to illustrate this type of inference.

Example 2.5. Again, consider the BN from Figure 2.1. It is shown how the question
in Example 2.4 – what is P (R = rTr|G = gTr)? – could be computed explicitly.
Using the expansion for the joint probability function from Equation 2.1 and the
conditional probabilities from the CPTs, one could evaluate each term in the numerator
and denominator of Equation 2.2. As such, one can evaluate for example

P (R = rTr, S = sF, G = gTr)

= P (G = gTr|R = rTr, S = sF)P (S = sF|R = rTr)P (R = rTr)

= 0.8 · 0.99 · 0.2
= 0.1584.

All those calculations together yield

P (R = rTr|G = gTr)

=
0.00198rTr,sTr,gTr + 0.1584rTr,sF,gTr

0.00198rTr,sTr,gTr + 0.288rF,sTr,gTr + 0.1584rTr,sF,gTr + 0.0rF,sF,gTr

=
891

2491
≈ 0.3577.

Hence, the probability that it is raining, given the grass is wet is approximately 36%.

�e procedure described in Example 2.5 is called exact marginalization. It illustrates that
in order to do inference, there is not always need for an explicit joint distribution. On
more complex BNs, exact marginalization is vulnerable for the exponentially blow up
of the number of computations that need to be executed. In general, all exact inference
methods – variable elimination, clique tree propagation, recursive conditioning et cetera
– have to perform a number of computations that are exponential in the network’s
tree-width (a measure for graph complexity). To dwell on those concepts is out of the
scope of this thesis. More details can be found in [5], chapter 9; [9], chapter 4.
One way to avoid the exponential blow up is to consider approximate inference methods.
In the next chapter, it is discussed how sampling techniques are used to approximate
probability distributions on a BN.

8

Chapter 3 Approximate inference
methods

Due to its combinatorial nature exact inference is NP-complete [10]. For this reason,
academics have been working on �nding e�cient approximate inference methods. Most
of the developed methods rely on simulations: repeatedly sample values are drawn
from BN nodes to generate representative samples of the variables in the Bayesian
network. �en, based on relative frequencies of the sample values probabilities of
interest are estimated [11, 12, 13, 14, 15]. In doing so, researchers try to �nd methods that
converge quickly to the exact result and to characterize the convergence properties of
the simulation algorithms. In this chapter, various sampling and simulation techniques
from all classes and their limitations on (deterministic) Bayesian networks are discussed.

3.1 Sampling

In general, sampling aims to approximate the probability distribution as de�ned by the
CPTs. As discussed in chapter 2, reproducing the entire state space Ω is generally not
applicable due to computational limitations. Instead, a set of BN con�gurations S ⊂ Ω,
called samples, is generated. �e probability distribution P̃ on S is an approximation
of the probability distribution P on Ω. �e aim of approximate inference sampling
methods is to mimic Ω as good as possible by S, such that P̃ is similar to P . When
a set of samples has exactly the same distribution as the real state space, this set of
sample is called a complete uniform.

As discussed in section 2.1, our main interest is to sample from a �nite discrete distri-
bution which is de�ned below.

De�nition 3.1 (Sampling). It is known that: given the state x of its parents, the
distribution of node Xi on a BN is denoted by

P (Xi|Pa(Xi) = x).

Now, suppose |Val(Xi)| = M . �en, with probability p1, . . . , pM one of theM possible
states is assigned to variable Xi. Note that

∑M
m=1 pm = 1 and that these probabilities

pm are the column CPT-entries of variable Xi. Sampling from such a distribution can
be done by partitioning the interval [0, 1) in M smaller intervals of the form

[0, p1), [p1, p1 + p2), [p1 + p2, p1 + p2 + p3), . . . , [1− pM , 1).

Subsequently, a random number generator could be used to generate a random number
r0 in the interval [0, 1). �e unique smaller interval in which r0 is found yields the

9

sampled state.

�is procedure (to assign states to nodes in a BN) is the basis of all sampling methods in
this thesis. Before discussing techniques how to generate samples, it is �rst explained
how inference can be conducted on a given collection of generated samples.

3.2 Approximate inference

Suppose one has a collection of 6 Independent and Identically Distributed (IID)) samples
of the Rain-Sprinkler BN. Let Rain (R) be our variable of interest and consider the
topological ordering (R,S,G). �e collection is given by

x(1) = (R(1) = rF, S
(1) = sTr, G

(1) = gTr)

x(2) = (R(2) = rTr, S
(2) = sF, G

(2) = gTr)

x(3) = (R(3) = rF, S
(3) = sTr, G

(3) = gTr)

x(4) = (R(4) = rF, S
(4) = sTr, G

(4) = gF)

x(5) = (R(5) = rTr, S
(5) = sTr, G

(5) = gTr)

x(6) = (R(6) = rF, S
(6) = sF, G

(6) = gF).

�en, approximate inference is based on the relative frequencies (counting) of the
sample values. So, the probability of R = rTr can be estimated as

E[1R=rTr] = P (R = rTr) ≈ P̃6(R = rTr) =
1

6

6∑
t=1

1R(t)=rTr
=

2

6
,

where 1R=rTr is the indicator function of the event R = rTr. In general, for a variable
of interest X with T ∈ N (total number of i.i.d. samples), the probability of X = x can
be approximated by

E[1X=x] ≈ P̃T (X = x) =
1

T

T∑
t=1

1X(t)=x.

�e above introduced indicator function 1 is a function that indicates if an event of
interest occurs or not. Note that the 6 samples from example 3.2 is an approxima-
tion of the entire state space and therefore does not share the same distribution, i.e.
P (R = rTr) = 0.2 6= 2/6.

A straight-forward technique to generate samples is forward sampling and is discussed
in the next section.

3.3 Forward and backward sampling

Forward sampling is de�ned by the following procedure.

10

Algorithm 1 Forward sampling
function Forward sampling(BN)

Let N = (X1, . . . , Xn) be a topological ordering of X .

for i = 1, . . . , n do
Xi ← sample xi from P (xi|PaXi) . See De�nition 3.1

end for

return x = (x1, . . . , xn)
end function

�e above forward sampling algorithm is applied on the Rain-Sprinkler BN in the
following example.

Example 3.2. Consider the BN in Figure 2.1 with (topological) ordering (R,S,G).
Forward sampling starts with sampling a state for node R according to the uncondi-
tioned probability distribution (CPT). Suppose it turns out that R = rF. �en, node S is
sampled from the conditional probability P (S|R = rF). Suppose this turns out to be sTr.
�en, nodeG is sampled according to the conditional probabilityP (G|R = rF, S = sTr).
Let’s say this state becomes gTr. In this manner, forward sampling returns the sampled
state x = (rF, sTr, gTr).

A drawback of forward sampling is that any available evidence is not taken into ac-
count. Suppose that the following evidence is given: S = sF. �en, the generated
sample in Example 3.2 turns out to be infeasible. One could come up with a quick
�x by simply removing all infeasible BN states from the generated samples. �is is
called rejection sampling. However, a problem arises when evidence occurs with low
probability. In this case, a huge amount of samples needs to be generated in order to
re�ect the true BN probability distribution, since a large amount of samples are rejected.

Backward sampling deals with available evidence in a more sophisticated way. Instead of
sampling according to a �xed topological ordering, backward sampling starts sampling
back from given evidence nodes. �is is repeated until a state is assigned to all parent
nodes of the evidence nodes. Any remaining nodes are sampled according to forward
sampling. �is procedure is illustrated in the following example.

Example 3.3. Consider the binary BN in Figure 3.1. Suppose the value of node D is
observed to be DF and consider the backward sampling order to be (D,B) and the
forward sampling order to be (E). Joint values of stateB andC are denoted as BTr, CTr;
BTr, CF; BF, CTr and BF, CF. �e procedure of backward sampling starts at the evidence
node. Since D = DF, the state of parent nodes B and C is sampled from the second
row in D’s CPT according to the normalized sampling distribution displayed in Table
3.1. �e constant

c1 = dTr,Tr,F + dTr,F,F + dF, Tr,F + dF,F,F

normalizes the probabilities to sum to 1. Suppose the sampling steps chooses joint state
BF, CTr and sets the states of those nodes to those values. Next, node A is sampled

11

P (B,C|D = DF) BTr, CTr BTr, CF BF, CTr BF, CF

DF
dTr,Tr,F
c1

dTr,F,F
c1

dF,Tr,F
c1

dF,F,F
c1

Table 3.1: Sampling distribution normalized by constant c1 = dTr,Tr,F +dTr,F,F +dF, Tr,F +
dF,F,F

given thatB = BF. �e normalized sampling distribution is given in Table 3.2. Suppose

P (A|B = BF) ATr AF

BF
aTr,F
c2

aF,F
c2

Table 3.2: Sampling distribution normalized by constant c2 = aTr,F + aF,F

that the sampling procedure picks out A = ATr. Finally, forward sampling is used to
assign a state to node E taking into account that C = CTr. Note that forward sampling
does not normalize the sampling distribution since the CPT entries do already sum up
to 1. �e distribution is displayed in Table 3.3 and suppose ETr is selected [16].

P (E|C = CTr) ETr EF

CTr eTr,Tr eTr,F

Table 3.3: Sampling distribution for forward sampling

A

B C

D E

ATr aTr
AF aF

ATr AF

BTr bTr,Tr bF,Tr
BF bTr,F bF,F

ATr AF

CTr cTr,Tr cF,Tr
CF cTr,F cF,F

BTr, CTr BTr, CF BF, CTr BF, CF

DTr dTr,Tr,Tr dTr,F,Tr dF,Tr,Tr dF,F,Tr
DF dTr,Tr,F dTr,F,F dF,Tr,F dF,F,F

CTr CF

ETr eTr,Tr eF,Tr
EF eTr,F eF,F

Figure 3.1: BN with available evidence: D = DF

In Example 3.1, backward sampling generates the sample (ATr,BF,CTr,DF,ETr). For
general purpose, the pseudo code of backward sampling is given in Algorithm 2 .
Even though backward sampling mitigates the rejection problem, it could still be
di�cult to generate enough feasible samples within a reasonable amount of time. A
di�erent way of making use of available evidence is discussed in the next section.

12

Algorithm 2 Backward sampling
function Backward sampling(BN, E)

Let NB ⊆ X be a ordering of the backward sampling nodes
Let NF ⊆ X be a ordering of the forward sampling nodes.

for Xi ∈ NB do
Set Xi = xi according to evidence
Xi ← sample xi from P (xi|PaXi

)

c . See De�nition 3.1
. c is a normalization constant (see Example 3.3)

end for

forXi ∈ NF do
Xi ← sample xi from P (xi|PaXi)

end for

return x = (x1, . . . , xn)
end function

3.4 Likelihood weighting

�e idea of rejection sampling is cumbersome: numerous samples con�icting with the
given evidence are generated and are subsequently rejected without contributing to
the estimator. In contrary, likelihood weighting (LW) sampling makes – like backward
sampling – use of available evidence in a more ingenious way.

�e basic idea of likelihood weighting is to assign weights to node con�gurations that
correspond to the likelihood of the evidence accumulated throughout the sampling
process. �is idea is illustrated in the following example in greater detail.

Example 3.4. Consider again the Rain-Sprinkler BN in Figure 2.1 with (topological)
ordering (R,S,G) and assume that the following evidence is available: S = sTr. A
naive sampling technique would set S = sTr and would sample R and G from the
initial CPTs, the so-called the prior distribution. In doing so, the expected number of
samples with R = rTr would be 0.2. �is con�icts with the posterior distribution that
takes into consideration the available evidence and implies that the expected number of
samples with R = rTr conditioned on S = sTr is 0.01. Hence, this approach falls short
to identify that posterior probability of R = rTr is lower when one observes S = sTr.

One way to resolve this miscalculation, is to assign weights to the generated samples.
Consider the sample x = (R = rTr, S = sTr, G = gTr) is generated. �en, the
weight wx is assigned to the likelihood that the sample would occur given the available
evidence S = sTr. Which equals the the product of the CPT entries

wx = P (S = sTr|R = rTr) (3.1)
= 0.01. (3.2)

Accordingly, the sample x′ = (rF, sTr, gTr) yields wx′ = 0.4. �is process generates
weighted particles and the conditional probability that R = rTr given S = sTr is given

13

by

P (S = sTr|R = rTr) ≈
0.01

0.01 + 0.4
≈ 0.024.

Algorithm 3 describes the procedure of LW. In general, the conditional probability of
event A given B can be estimated using a collection of samples S

P (A|B) ≈
∑

x∈S wx · 1A,B(x)∑
x∈S wx · 1B(x)

=

∑
x∈S wx · 1B(x)∑

x∈S wx
,

where the la�er equality follows from the fact that event B (the evidence) is �xed.
Note that without available evidence likelihood weighting equals forward sampling.
Moreover, likelihood weighting is an improvement of forward sampling since LW does
not necessarily reject samples (unless its weight is zero).

Algorithm 3 Likelihood weighting sampling
function LW-sampling(BN, E)

Let N = (X1, . . . , Xn) be a topological ordering of X .

w ← 1

for i = 1, . . . , n do
if Xi /∈ E then

Xi ← sample xi from P (xi|PaXi) . See De�nition 3.1
else

Set Xi = xi according to evidence
w ← w · P (xi|PaXi)

end if
end for
return x = (x1, . . . , xn), w

end function

A drawback of LW sampling is the occurrence of a near deterministic relation. �is is
illustrated in the following example.

Example 3.5. Consider the BN in Figure 3.2. Suppose that available evidence is given:
B = 1. Hence, it holds that A = 1 or A = 2 both with probability 0.5. If LW sampling
is applied to determine the conditional probability P (A|B = 1), due to the prior
distribution of A numerous samples will be created with A = 0. Since these samples
are incompatible with the evidence zero weights are assigned to those samples, i.e.
rejection. On average only 2/10.000 samples are generated either withA = 1 orA = 2.
�is drawback could make LW on this type of BNs ine�cient and time-consuming to
�nd an accurate estimate of the true posterior distribution.

14

A B
A = 0 0.9998
A = 1 0.0001
A = 2 0.0001

A = 0 A = 1 A = 2

B = 0 1 0.5 0.5
B = 1 0 0.5 0.5

Figure 3.2: BN with a near deterministic relation poses di�culties for likelihood
sampling

Example 3.5 demonstrates a major drawback of sampling methods in general: if the
proposal distribution is not close enough to the true posterior distribution, the sampling
processes is not working well in terms of accuracy and e�ciency. An approach to
deal with this challenge is so-called Markov chain Monte Carlo simulations, which is
discussed in section 3.6.1. But �rst, a method is introduced that deals with the inabilities
of both backward sampling and likelihood weighting sampling.

3.5 Sample search

Gogate and Dechter devised SampleSearch to prevent samples to be rejected by zero
weights in deterministic BNs [17]. Algorithm 4 gives the pseudo code of SampleSearch.
Rather than rejecting a sample as soon as its weight becomes zero and restarting the
sample process, SampleSearch goes back and reassigns variables until one �nds a
state that has a non-zero weight. Basically, SampleSearch starts sampling according
to a certain topological ordering. If SampleSearch visits an evidence node where the
probability of the evidence is 0 given the values previously assigned to the variable’s
parents, SampleSearch backtracks the previous variable in the topological ordering,
excludes the value that was previously assigned, renormalizes the conditional distribu-
tion and chooses a di�erent value. What if all the values within a domain are excluded?
SampleSearch backtracks further, until all variables have been assigned a value that is
compatible with the evidence [18]. To put it brie�y, SampleSearch guarantees that all
generated samples have non-zero weights.

Even more interesting for the scope of this thesis, the SampleSearch algorithm is devised
to deal with BNs with a substantial amount of deterministic relations. However, the
SampleSearch approach – performing a search when a sample is not compatible with
the evidence – has two problems:

1. search results in bias

2. search is computational intensive.

�is �rst drawback can be addressed by an adjusted weighting. It can be shown that an
alternative weighting scheme can be realized that guarantees asymptotically unbiased
samples [17]. However, this comes with the price of extra computational time.

In existing literature, various sampling techniques are combined with SampleSearch,
for example Backward SampleSearch (BSS) and BSS with backjumping, which jumps

15

Algorithm 4 SampleSearch sampling
function SampleSearch sampling(BN, E)

Let N = (X1, . . . , Xn) be a topological ordering of X .

for i = 1, . . . , n do
Xi ← sample xi from P (xi|PaXi) . See De�nition 3.1
if (x1, . . . , xi) violates E then

Xi ← sample xi from P (xi|PaXi)

else
Continue

end if
end for
return x = (x1, . . . , xn)

end function

back to the node with the highest index in the sampling order that has bearing on
the con�ict that was encountered [18]. However, a plethora of di�erent methods have
been developed to generate representative samples. Giving a complete overview of all
developed methods is out the scope of this thesis. For an overview of a wide selection of
approximate sampling techniques and their limitations one can turn to [5], chapter 12;
[9] chapter 4. In the next section, a last method is discussed that proves to be e�ective
to get close to the true posterior distribution during the sampling process.

3.6 Markov chain Monte Carlo simulation

Markov chain Monte Carlo (MCMC) sampling methods are a di�erent class of methods
than discussed in the previous sections. MCMC sampling methods are characterized by
the generation of a sequence of samples. �is sequence is created such that subsequent
sequences are generated from distributions that provably get increasingly closer to the
desired posterior distribution. In this section, some theoretical background is given
about MCMC sampling methods and advantages and disadvantages of MCMC inference
techniques are discussed.

3.6.1 �eoretical motivation

Consider a collection of samples as in Section 3.2. Suppose that sample x(t) with t ≥ 1

is not created step-by-step but that sample x(t+1) is constructed by modifying sample
x(t). Repeating this modi�cation process yields a Markov chain (x(t))t∈N0 , i.e. in the
context of BNs a Markov chain could be seen as a random walk over the states of
variables in the BN. Hence, repeating this process many times is therefore called a
Markov chain Monte Carlo (MCMC) simulation. Due to the clever way of modifying
samples, MCMC methods construct a Markov chain such that, although the �rst sample
may be generated from the prior distribution, successive samples are generated from a
distribution that provably gets closer and closer to the desired posterior distribution.

16

It could be shown [5, p. 517] that P̃T → P as T →∞. In order to use this tempting
feature of MCMC methods, it needs to be guaranteed that a limiting process of the
Markov chain exists and is unique. Since only Markov chains on �nite state spaces are
considered, from the theory of Markov chains it is known that if a Markov chain is
regular and reversible with respect to a distribution π, then π is a unique stationary
distribution. �ese notions are de�ned below more formally.

De�nition 3.6 (Regular or ergodic Markov chain). A Markov chain is said to be regular
if there exists some number H ∈ N such that for every state x,x′ the probability of
ge�ing from x to x′ ∈ Val(X), denoted as (x→ x′), in exactly H steps is > 0.

De�nition 3.7 (Transition model). A Markov chain is de�ned through the state space
Val(X) and a transition model T that de�nes for allx ∈ Val(X) a next-state distribution
over Val(X). A transition model speci�es for each pair x,x′ the probability T (x→ x′).

De�nition 3.8 (Reversible Markov chain). A �nite-state Markov chain T is called
reversible if there exists a unique distribution π such that for all states x and x′

π(x)T (x→ x′) = π(x′)T (x′ → x). (3.3)

Equation 3.3 is known as the detailed balance equation.

De�nition 3.9 (Stationary distribution). A distribution π is a stationary distribution
for a Markov chain T if

π(x′) =
∑

x∈Val(X)

π(x)T (x→ x′). (3.4)

Not all Markov chains satisfy the reversibility condition. A method that guarantees the
construction of a reversible Markov chain with a particular stationary distribution is
Metropolis sampling.

3.6.2 Metropolis sampling

Metropolis sampling samples from a proposal distribution T Q that de�nes a transition
model over the state space. In contrary to the sampling methods discussed in section
3.4-3.5, Metropolis sampling does not keep track of weights. Instead, randomly a pro-
posed transition is accepted or rejected along with a probability that corrects for the
resulting error.

In the context of BNs, Metropolis sampling follows the procedure below.

De�nition 3.10 (Metropolis sampling).

• Select an initial state x(0) for the BN generated by, for example, forward sampling;

• for each iteration 0 < t ≤ T : the transition model T Q de�nes a distribution over
possible successor states of x in Val(X) from which one candidate sample x′ is
selected randomly. �e choice of the proposal distribution can be arbitrary as
long as it results in a regular Markov chain;

17

• the proposed transition (x→ x′) is either accepted or rejected. �e acceptance
probability is denoted by A(x→ x′). So, the transitional model of the Markov
chain is given by

T (x→ x′) = T Q(x→ x′)A(x→ x′), where x 6= x′

T (x→ x) = T Q(x→ x) +
∑
x′ 6=x

T Q(x→ x′)(1−A(x→ x′));

• given a proposal distribution T Q, the detailed balance equation from (3.3) can be
used to determine the acceptance probability γ. Since,

π(x)T Q(x→ x′)A(x→ x′) = π(x′)T Q(x′ → x)A(x′ → x)

it follows that

γ = A(x→ x′) = min

[
1,
π(x′)T Q(x′ → x)

π(x)T Q(x→ x′)
A(x′ → x)

]
;

• generate a uniform random number u ∈ [0, 1]

– if u ≤ γ then x(t) = x′;
– if u > γ then x(t) = x(t−1).

�e above construction allows us to produce a Markov chain for an arbitrary stationary
distribution. �ough, it does not guarantee convergence to the desired distribution,
since the constructed Markov chain is not necessarily regular. �is property does not
follow directly from Metropolis sampling. An example in which Metropolis sampling
constructs a non-regular Markov chain is given in [5, p. 514].

In the next example, Metropolis sampling is applied on the Rain-Sprinkler network.

Example 3.11. Reconsider the BN in Figure 2.1. Suppose that no evidence is available
and that the initial state is

x(0) = (R(0) = rTr, S
(0) = sF, G

(0) = gTr).

�en, R(1) is selected according to the distribution P (R(1) = rTr) = P (R(1) = rF) =

0.5. Repeating this for S and G, one could �nd a candidate state

x′ = (R′ = rTr, S
′ = sF, G

′ = gF).

�e acceptance probability γ = A(x(0) → x′) is computed by

γ =
P (R′ = rTr, S

′ = sF, G
′ = gF)

P (R(0) = rTr, S(0) = sF, G(0) = gTr)
=

0.0396

0.1584
= 0.25.

�en, x(1) = x′ is accepted if the uniform random number u ∈ [0, 1] is smaller than
0.25, otherwise x(1) = x(0).

18

By repeating this procedure a collection of T samples of the BN can be generated. On
this collection of samples approximate inference techniques, as described in section 3.2,
can be applied. Metropolis sampling with a particular choice of proposal distribution is
widely used and is discussed in the next subsection.

3.6.3 Gibbs sampling

Gibbs sampling [19] is one of the most popular MCMC methods to date. In this
subsection, the connection between Metropolis and Gibbs sampling is discussed and it
is shown how regularity and reversibility of a Markov chain could break down due to
the appearance of deterministic relations in the BN.

De�nition 3.12 (Gibbs sampling). As does Metropolis sampling, Gibbs sampling
starts with an initial assignment x(0) to all variables in the BN generated by, for
example, forward sampling. Starting from x(0) it performs 0 ≤ t ≤ T so-called
Gibbs iterations, T ∈ N. One single Gibbs iteration resamples all i = 1, . . . , n vari-
ables in the BN by �xing all but one variable. Resampling the i-th variable in the
t-th Gibbs iteration is done by sampling from the distribution P (Xi|x(t)

−i), where
x
(t)
−i = (x

(t)
1 , . . . , x

(t)
i−1, x

(t−1)
i+1 , . . . , x

(t−1)
n) for i = 2, . . . , n − 1. A�er T samples are

generated according to this procedure, all one-variable marginals can be estimated by
the following quantity

P̃T (xi) =
1

T

T∑
t=1

P (xi|x(t)
−i). (3.5)

It could be shown, that in the limit of in�nite samples, P̃T (xi) will converge to P (xi)

if the underlying Markov chain is regular and reversible [20].

�e procedure for Gibbs sampling is given in Algorithm 5.

Algorithm 5 Gibbs sampling

function Gibbs sampling(BN, E, x(0))
Let N = (X1, . . . , Xn) be a topological ordering of X .

for t = 1, . . . , T do
x(t) ← x(t−1)

for each Xi ∈ X do
Sample x(t)i from P (Xi|x(t)

−i) . See De�nition 3.1
end for

end for
return x(0), . . . ,x(T)

end function

In the next example, Gibbs sampling is applied on the Rain-Sprinkler network.

19

Example 3.13. Reconsider the BN in Figure 2.1. Suppose no evidence is available and
the following initial state is given

x(0) = (R(0) = rTr, S
(0) = sF, G

(0) = gTr).

For each Gibbs iteration, all unobserved variables are resampled, one at a time, in
a predetermined order, say (R,S,G). So, �rst R(1) is sampled from the distribution
P (R|S(0) = sF, G

(0) = gTr), which equals

P (R = rTr|S(0) = sF, G
(0) = gTr)

=
P (rTr, sF, gTr)

P (sF, gTr)

=
P (rTr, sF, gTr)

P (sF, gTr|rTr) + P (sF, gTr|rF)

=
0.1584

0.00198 + 0.288

≈ 0.5462.

Hence, P (R = rF|S(0) = sF, G
(0) = gTr) ≈ 0.4538. Suppose R(1) = rF is sampled,

Gibbs sampling continues with resampling S(1) from the distribution P (S|R(1) =

rF, G
(0) = gTr), obtaining for example S(1) = sTr. Finally, sampling G(1) from

P (G|R(1) = rF, S
(1) = sTr) could result in gTr. �en, the result of the �rst Gibbs

iteration is the sample x(1) = (R(1) = rF, S
(1) = sTr, G

(1) = gTr). �is process can be
repeated to generate a collection of samples.

As mentioned before, Gibbs sampling could perform poorly in the presence of deter-
ministic relations [5, 6, 7]. In the next example, this phenomenon is illustrated.

Example 3.14. Consider the BN in Figure 3.3. Suppose the initial con�guration is
given by x(0) = (A(0) = 0, B(0) = 0) – shortened (0, 0) – and suppose no evidence is
available. In the �rst Gibbs iteration, one resamples both unobserved variables, one at a
time, in the orderA,B. So, one �rst samplesA(1) from the distribution P (A|B(0) = 0).
According to the CPT, with probability 1 this turns out to be A = 0. Consecutively,
one samples B(1) from the distribution P (B|A(1) = 0). Which always returns B = 0.
As a consequence, the Markov chain created by Gibbs sampling behaves like

(0, 0)→ (0, 0)→ (0, 0)→ . . . ,

yielding that x(i) = (0, 0) for all i ≥ 0. Hence, inference based on Gibbs sampling
returns P (A = 0) = 1. However, the true distribution for A equals P (A = 0) =

P (A = 1) = 0.5.

20

A BA = 0 0.5
A = 1 0.5

A = 0 A = 1

B = 0 1 0
B = 1 0 1

Figure 3.3: BN with a deterministic relation. �e state of B equals the state of A with
probability 1.

When no deterministic relations are present in a BN, it could be shown [6] that Gibbs
sampling generates a regular and reversible Markov chain (and therefore converges
to the desired posterior distribution). �ough, as illustrated in Example 3.14, when
deterministic dependencies are present in a BN, regularity and reversibility could break
down and the estimation given in Equation (3.5) does not always converge to P (xi).

Many solutions have been proposed in the past to address this problem [6, 20]. So do
we: at TNO a MCMC method is devised that always converges to the desired posterior
distribution, especially in the presence of deterministic relations. �is method is called
prune sampling.

21

Chapter 4 Prune Sampling

Prune sampling is a MCMC sampling method that always converges to the correct
posterior distribution, even when deterministic relations are present in the BN. �is
chapter starts with the source of inspiration for prune sampling : the more generic
MC-SAT algorithm. �en, mathematical notation and de�nitions to describe prune
sampling are introduced. Next, a theoretical motivation and proof are presented why
prune technique always generates a regular and reversible Markov chain with respect
to the desired distribution. �is chapter concludes with a discussion about the practical
implementation of the prune sampling algorithm.

4.1 Background: MC-SAT algorithm

As chapter 3 concluded, many solutions have been proposed in the past to address the
problem of trapped Gibbs samples in a subset of the state space. Notable examples
are Sample Search, GiSS [20] and slice sampling methods [21, 22, 23]. �e MC-SAT
algorithm [6] is a special case of slice sampling and exploits the strategy of auxiliary
variables in the more general framework of Markov logic networks (MLNs). Poon
and Domingos show that (on MLNs) MC-SAT is a sound MCMC algorithm, meaning
it generates a Markov chain which is regular and reversible, even in the presence of
deterministic relations.

To use MC-SAT for BN inference, a BN needs to be converted to a so-called weighted
Satis�ability Problem (SAT). �is has two drawbacks. In the �rst place, an explicit
translation of a BN to a weighted SAT problem is memory intensive. Secondly, the
graphical dependencies of BNs are lost when the BN structure is translated to a SAT
problem. In order not to su�er from these drawbacks, key strengths of the MC-SAT
algorithm – the construction of a random sample space – is brought to the �eld of BN
inference. In doing so, one preserves the compact and graphical structure of BNs. To
explain these ideas best, �rst some mathematical notation and de�nitions about prune
sampling need to be introduced.

4.2 Notation and de�nition

�e key idea of prune sampling is straight-forward: in order to be able to select a sample
of the state space uniformly, the exhaustive listing of all feasible states of the original
BN is impossible (due to excessive memory and time consumption, as described in
Section 2.2). �ough, the exhaustive listing of all solutions of a randomly pruned BN is
possible and still assures a sample to be chosen uniformly from the entire state space.
In order to characterise this concept and to explain how prune sampling generates

22

samples completely uniform, the following notation is introduced.

Given a BN structure G with n variables and corresponding CPTs. For i = 1, . . . , n,
let li be the index of the labels of the CPT-entries corresponding to variable Xi, so
1 ≤ li ≤ |Val(Xi)| · |Val(PaXi)|. �en,

C := {k(li) : ck(li) is an entry in the CPT of variable Xi, for 1 ≤ i ≤ n} (4.1)

denotes the collection of all CPT-labels of G. Here, k is an abbreviation of the name
of variable Xi. �e next example contributes to a be�er understanding of the slightly
complex notation.

Example 4.1. �e collection of CPT-labels C of the BN in Figure 3.3 contains 6 labels:

• 2 labels for the CPT of node A:

– A(1) = P (A = 0)

– A(2) = P (A = 1)

• 4 labels for the CPT of node B

– B(1) = P (B = 0|A = 0)

– B(3) = P (B = 1|A = 0)

– B(2) = P (B = 0|A = 1)

– B(4) = P (B = 1|A = 1).

For completeness, the set with all CPT-labels in the BN is given by

C = {A(1), A(2), B(1), B(2), B(3), B(4)}.

So, a state x of the BN corresponds to a unique collection of n CPT-entries. �e
collection of CPT-labels k(li) corresponding to such a state is denoted by Cx. Accord-
ingly, state x = (A = 0, B = 0) of the BN presented in Figure 3.3 corresponds to
Cx = {A(1), B(1)}. In general, one should observe that for the probability the BN
takes a speci�c state is the product of the CPT entries, i.e. for i = 1, . . . , n:

P (x) =
∏

k(li)∈Cx

ck(li).

Let C denote an arbitrary collection of CPT-labels. �en, the set of possible (not
necessarily feasible) states that correspond to these CPT-labels is given by SC . �e
above introduced notation and de�nitions are the foundations for the concept pruning.

De�nition 4.2 (Pruning around state x). Let Cp
x be the subset of C that is constructed

by adding each CPT-label k(li) ∈ C \ Cx with probability 1− ck(li) to the set Cp
x and

with probability ck(li) not. �e collection Cp
x contains the pruned CPT-labels.

�e next example illustrates the pruning technique on the BloodPressure BN.

23

Kidney

BloodPres.

Lifestyle

Measurement

Sports

kb ��0.5
kg 0.5

lb 0.5
lg 0.5

kb, lb kb, lg kg, lb kg, lg

bn ��0.1 ��0.2 ��0.2 0.9
be 0.9 0.8 0.8 ��0.1

lb lg

sn 0.8 ��0.2
sy 0.2 ��0.8

bn be

mn 0.9 ��0.1
me ��0.1 0.9

Figure 4.1: Pruned version of the BloodPressure network around the boldfaced initial
state x(0) = (kg, lb, be, sy,me). Note that the lower the value of the CPT-entry, the
higher the probability that the index gets pruned. One should observe that SCnp

x(0)

contains two feasible states: (kg, lb, be, sy,me) and (kg, lb, be, sn,me).

Example 4.3. Consider the BN in Figure 4.1. Pruning around the boldfaced initial
state x(0) = (kg, lb, be, sy,me) could yield the non-crossed indices

Cp
x(0) = {K(1), L(2), BP (4), BP (5), BP (6), S(1),M(1)}.

For the sake of completeness, in this example the above labels correspond to:

• K(2) = P (K = kg)

• L(2) = P (L = lg)

• BP (4) = P (BP = bn|K = kg, L = lg)

• BP (5) = P (BP = be|K = kb, L = lb)

• BP (6) = P (BP = be|K = kb, L = lg)

• S(1) = P (S = sn|L = lb)

• M(1) = P (M = mn|B = bn)

Note that the lower the value of the CPT-entry, the higher the probability that the
label gets pruned. �e collection of CPT-labels that do not get pruned is given by
Cnp
x := C \ Cp

x. In the situation of Example 4.3, SCnp
x(0)

exist of two feasible states:

• (kg, lb, be, sy,me);

• (kg, lb, be, sn,me).

Having introduced these concepts, one should note three things

1. Cp
x is a random set;

2. Cx ⊂ Cnp
x and x ∈ SCnp

x
;

3. the probability of generating Cp
x and Cnp

x is given by∏
k(li)∈Cp

x

(1− ck(li)) ·
∏

k(li)∈Cnp
x \Cx

ck(li).

24

Due to pruning the CPT-labels, the number of feasible states in the pruned BN is
much smaller in comparison to the number of feasible states in the original BN. �is
signi�cant decrease of the number of feasible states makes prune sampling practically
applicable. Assuming that su�cient memory is available, a breath �rst search approach
can be used to list all feasible states of the pruned BN. From this collection one can
easily draw a state uniformly to select the next sample.

De�nition 4.4 (Uniform sampling over a set of states). As de�ned before, SCnp
x

is the
set of (feasible) states corresponding to the CPT-labels which are not pruned. A uniform
distribution over a set is de�ned as U(·). In doing so, the uniform distribution over the
states in SCnp

x
is denoted as

U(SCnp
x

)(y) =
1

|SCnp
x
|
,

which represents the probability of uniformly sampling state y from SCnp
x

.

Conducting these steps – pruning, sampling uniformly, selecting a new sample – gen-
erates a sequence of samples that is able to visit the entire state space. �is process is
called prune sampling of which the pseudo-code is provided in Algorithm 6. �e algo-
rithm takes as input a BN structure G with corresponding CPTs, an initial con�guration
x(0) and an integer T for the number of samples to be generated. �e algorithm starts
from the initial sample x(0) and for t = 1, . . . , T it prunes around x(t−1) to obtain
Cnp
x(t−1) . �en, the next sample x(t) is chosen from U

(
SCnp

x(t−1)

)
. Finally, the algorithm

adds the new sample x(t) to the set S . �is process yields a collection of T samples of
the BN on which approximate inference techniques can be performed.

Algorithm 6 Prune sampling algorithm

function PruneSampling(BN, x(0), T)
S ← {x(0)}
for t← 1 to T do
Cp
x(t−1) ← Prune around x(t−1)

. See De�nition 4.2
Cnp
x(t−1) ← C \ C

p
x

x(t) ∼ U(SCnp
x

)

S ← S ∪ x(t)

end for
return S

end function

Note that with strict positive probability Cnp
x(t−1) contains all non-zero indices in C.

�is implies that SCnp
x(t−1)

contains all feasible states of the BN. Hence, with positive
probability a transition is possible from an arbitrary feasible state x to another arbitrary
feasible state y, i.e. that prune sampling generates a regular Markov chain. A theoretical

25

proof that the Markov chain generated by prune sampling satis�es the conditions for
regularity and reversibility is presented in the next subsection.

4.2.1 Regularity and reversibility

In order to transform state x to state y one should prevent to prune labels that corre-
spond to state y. �is asks for the following notion.

De�nition 4.5 (Pruning around state x and y). Let Cp
{x,y} be the subset of C that is

constructed by pruning around x or pruning around y such that none of the labels
corresponding to x and none of the labels corresponding to y is contained in Cp

{x,y}.
�e collection of CPT-labels that do not get pruned is given by Cnp

{x,y} := C \ Cp
{x,y}.

�e above de�nitions and notation provide a theoretical framework to prove the
following theorems.

�eorem 4.6. Prune sampling generates a regular Markov chain.

Proof. For each two states x and y there are �nitely many ways, h = 1, . . . ,H ∈ N,
to create a pruned collection Cp

{x,y},h and a non-pruned collection Cnp
{x,y},h. So, x can

make a transition to y by sampling from U(SCnp
{x,y},h

). �e transition probability to
transform x to y is given by

Th(x→ y) :=

 ∏
k(li)∈Cp

{x,y},h

(1− ck(li))

 ·
 ∏
k(li)∈Cnp

{x,y},h\Cx

ck(li)

 · U(SCnp
{x,y},h

)
(y)

(4.2)

=

 ∏
k(li)∈Cp

{x,y},h

(1− ck(li))

 ·
 ∏
k(li)∈Cnp

{x,y},h\Cx

ck(li)

 · 1

|SCnp
{x,y},h

|
.

Equation 4.2 speci�es the probability of pruning certain CPT-labels around x, such
that none of the CPT-labels corresponding to y are pruned. �is is multiplied by the
probability that y is uniformly sampled from the states corresponding to the CPT-labels
that were not pruned.

�e total transition probability of going from state x to y is therefore given by

T (x→ y) =

H∑
h=1

Th(x→ y). (4.3)

Hence, prune sampling generates a regular Markov chain.

�eorem 4.7. Prune sampling generates a reversible Markov chain.

26

Proof. In order to verify reversibility it needs to be showed that the transition probability
according to prune sampling satis�es the detailed balance equation

P (x)T (x→ y) = P (y)T (y→ x),

which equals

P (x)

(
H∑
h=1

Th(x→ y)

)
= P (y)

(
H∑
h=1

Th(y→ x)

)
.

So, it is su�cient to show that

P (x)Th(x→ y) = P (y)Th(y→ x), (4.4)

for h = 1, . . . ,H . �e following computation shows that Equation (4.4) holds

P (x)Th(x→ y)

=
1

Z
· P (x) ·

 ∏
k(li)∈Cp

{x,y},h

(1− ck(li))

 ·
 ∏
k(li)∈Cnp

{x,y},h\Cx

ck(li)

=

1

Z
·
∏

k(li)∈Cx

ck(li) ·

 ∏
k(li)∈Cp

{x,y},h

(1− ck(li))

 ·
 ∏
k(li)∈Cnp

{x,y},h\Cx

ck(li)

=

1

Z
·

 ∏
k(li)∈Cp

{x,y},h

(1− ck(li))

 ·
 ∏
k(li)∈Cnp

{x,y},h

ck(li)

=

1

Z
·

 ∏
k(li)∈Cp

{x,y},h

(1− ck(li))

 ·
 ∏
k(li)∈Cy

ck(li)

 · ∏
k(li)∈Cnp

{x,y},h\Cy

ck(li)

=
1

Z
·

 ∏
k(li)∈Cp

{x,y},h

(1− ck(li))

 · P (y) ·

 ∏
k(li)∈Cnp

{x,y},h\Cy

ck(li)

= P (y)Th(y→ x),

where Z = |SCnp
{x,y},h

|.

Hence, prune sampling generates a reversible Markov chain with respect to the desired
stationary distribution P .

�epreceding two theorems are themain result of this thesis: prune sampling
always generates a regular and reversible Markov chain. Hence, prune sam-
pling always converges to the desired stationary probability distribution.

27

In the next section, the implementation of the prune sampling algorithm is discussed.

4.3 Practical implementation

In order to implement the prune sampling algorithm two non-trivial steps are required:

1. to generate an initial state of the BN;

2. to sample uniformly over the pruned BN, i.e. sampling from the distribution
U(SCnp

x
).

In this section, it is explained how those requirements can be met and it is discussed
how the MC-SAT algorithm deals with these challenges.

4.3.1 Generate initial states

To create an initial state, all unobserved variable nodes in the BN need to get assigned
a state. To meet this need, MC-SAT works with local search SAT solvers [6]. �e most
straight-forward implementation of the prune sampling algorithm generates an initial
state based on the commonly used forward sampling method (Algorithm 1). Since
forward sampling is driven by CPT-entries, it is likely that a generated initial state
of the BN ends up in a state with high probability of occurrence. �is bias can be
a disadvantage of this initialization method. For example, when Gibbs sampling is
trapped, then the initial state of the BN decides in which subset of the state space Gibbs
sampling will get trapped. To obtain more diversity in generated initial states of the
BN, one could consider random forward sampling.

De�nition 4.8 (Random forward sampling). Suppose forward sampling is applied but
instead of sampling variable Xi from P (Xi | PaXi), a random sample is chosen from
the set with merely non-zero probability states {xi : P (Xi = xi | PaXi > 0}.

Random forward sampling is illustrated in the following example.

Example 4.9. In random forward sampling it is only relevant to know whether a
CPT-entry is zero (0) or non-zero (?). For example, in the Rain-Sprinkler BN from
Figure 2.1 the CPT of variable Grass wet is reduced to

rTr, sTr rTr, sF rF, sTr rF, sF

gTr ? ? ? 0
gF ? ? ? ?

.

Table 4.1: In order to select a CPT-entry, the random forward sampling approach is
only interested whether an entry is zero (0) or non-zero (?). Consecutively, from all ?
CPT-entries it selects one entry uniform randomly.

28

Random forward sampling is only concerned whether a CPT-entry is zero or non-zero.
In doing so, it samples a non-zero CPT-entry uniformly random. In this fashion, random
forward sampling generates more diverse initial states than regular forward sampling.
However, regarding MCMC simulations it feels intuitively smart to start sampling
from an initial state with a high or the highest probability since this could be close
to the desired posterior distribution. �is challenge is known as �nding the so-called
maximum a priori (MAP) estimate or most probable explanation (MPE).

Since random forward sampling chooses CPT-entries uniform randomly, it is not the
ideal approach to �nd a MAP estimate. However, random forward sampling does not
su�er from the bias which comes along with regular forward sampling. So, a trade-o�
exists between bias and �nding a MAP initialization. Based on this observation, the
idea comes to mind to combine random and regular forward sampling to bene�t from
the advantages of both approaches. �is approach is hybrid forward sampling and is
de�ned below.

De�nition 4.10 (Hybrid forward sampling). Consider a hybrid approach in which at
each variable Xi (with probability p) a state is assigned according to regular forward
sampling or (with probability 1− p) a state is assigned according to random forward
sampling.

In chapter 6 and 7 various experiments are conducted to test the performance of both
regular and hybrid forward sampling initialization methods. In the next subsection,
an implementation of the uniform sampling phase in the process of prune sampling is
presented.

4.3.2 Sampling from the pruned network

In order to generate states nearly uniform, MC-SAT uses an intelligent heuristic based
on a weighted SAT problem [24]. But, in contrast to prune sampling MC-SAT does
not generate states completely uniform. In this subsection, it is explained how prune
sampling generates its candidate states completely uniform. In addition, the algorithmic
implementation and the forthcoming drawbacks are discussed.

Due to exhaustive listing of all feasible states of the pruned network – determining
the set U(SCnp

x
) explicitly by regular forward sampling – prune sampling guarantees

completely uniform sampling. In order to guarentee completely uniform sampling, the
exhaustive enumeration of all feasible states of the pruned network is unavoidable.
For this reason, on large BNs with large pruned networks, it could be the case that
one still runs into memory problems. To reduce this computational e�ort, another
sampling heuristic method should be developed. �ree suggestions are given which
could provide such a solution:

1. an easy to implement solution is hybrid forward sampling with a �xed amount of
generated feasible states of the pruned BN. One could consider a generated set V
with predetermined �xed size of candidate samples. Subsequently, a sample from

29

V is chosen randomly. �e size of V can be interpreted as a trade-o� between
uniformity and computational e�ort;

2. Wei, Erenrich and Selman show in [24] that one can exploit ideas from random
walk based methods to obtain e�ective near-uniform sampling;

3. a more intelligent heuristics to obtain completely and near-uniform samples from
the pruned BN could be the simulated annealing approach as suggested in [24].

�e above suggestions are discussed in greater detail in the chapter 7. First, experiments
are conducted to compare the performance of prune sampling to other conventional
sampling methods.

30

Chapter 5 Performance indicators

In this chapter, three performance indicators are discussed that are used to characterise
sampling methods. �e three performance indicators are: accuracy, rate of convergence
(ROC) and time consumption. Additionally, a procedure is presented to determine the
rate of convergence of MCMC sampling methods in the limit of in�nite simulation
time, extrapolated from relatively short simulations.

5.1 Notation

First, additional mathematical notation is introduced to describe the process of approx-
imate inference in more detail.

Consider the one-marginal probability from a CPT of interest as the expected value of
a random variable Y , i.e. µ = E[Y]. �is random variable can be estimated by using
approximate sampling methods. Approximate sampling methods generate a collection
of simulations on which inference statistics can be conducted (as described in section
2.2). Such a collection of simulations with size N is denoted by Y = {y1, . . . ,yN}. In
the experimental analysis conducted in chapter 6, all simulations consist of T = 25.000

samples. One such a sample is denoted by yi(s) with 1 ≤ s ≤ T and ys ∈ Y . A
so-called mean trace plot displays the probability that a value is assigned to the variable
of interest as a function of the number of samples. A mean trace plot with N = 1 and
N = 100 simulations is shown in Figure 5.1 and 5.2 respectively.

Figure 5.1: Mean trace plot shows the convergence of the posterior distribution
generated by Markov chains according to the SampleSearch algorithm.

31

Figure 5.2: N = 100 simulations of T = 25.000 samples generated by SampleSearch.
All simulations in this collection converge to the same posterior distribution.

�is mathematical notation introduced in this section is used to introduce the three
performance indicators.

5.2 Accuracy: the average Hellinger distance

�e �rst performance indicator is accuracy. In this section, approaches are discussed to
quantify the accuracy of sampling methods. At �rst, a justi�cation is given for the use
and e�ectiveness of (MCMC) sampling methods.

If the posterior distribution converges correctly, one can estimate the variable of
interest Y easily by averaging over all simulations in the collection, i.e. µ̂N (t) =
1
N

∑N
s=1 ys(t), especially for the last sample (t = T). �e main justi�cation for this

type of approximation are the laws of large numbers. Assume that µ = E[Y] exists and
that y1, . . . ,yN are IID. �en, the weak law of large numbers states that

lim
N→∞

P
(∣∣µ̂N − µ∣∣ ≤ ε) = 1,

holds for any ε > 0. Moreover, the strong law of large numbers tells us that the absolute
error |µ̂N − µ| will eventually get below ε and will always stay there

P
(

lim
N→∞

∣∣µ̂N − µ∣∣ = 0
)

= 1.

Both laws of large numbers tell us that (MCMC) simulation methods will eventually
get arbitrary close to the probability of interest. However, the accuracy depends both
on the number of simulations N and on the number of samples T . No clear guide-
lines exist for how largeN and T need to be to guarantee a certain level of accuracy [25].

32

In order to characterize the accuracy of an approximate sampling method, a widely
used approach to quantify the di�erence between the true and estimated posterior
probability distribution is the average Hellinger distance.

De�nition 5.1 (Average Hellinger Distance). �e Average Hellinger Distance (AHD)
quanti�es the closeness of two probability distributions. In the case of discrete proba-
bility distributions P and Q with binary variables (for all i ≥ 1: |Val(Xi)| = 2), the
AHD is de�ned as

H(P,Q) =
1√
2

√√√√ 2∑
j=1

(
√
pj −

√
qj)2.

Note that the maximum distance H(P,Q) = 1 occurs when for all i: pi = 1 and qi = 0

or vice versa.

In order to use the AHD as a measure for accuracy, it is required that the exact value
µ of the marginal of interest is known. If this value is known, one of the probabil-
ity distributions of the AHD equals this constant value, i.e. Q = µ. �e exact value
can be learnt by making use of an exact inference algorithm (if computationally feasible).

In the case of calculating an overall AHD score for a collection of N simulations for a
binary marginal of interest, the below approach is followed:

1. Find the exact probability of the marginal by using an exact inference algorithm
(if computable). Note that the exact probability is denoted by µ;

2. Calculate for all ys ∈ Y , for all t ∈ ys(t), the AHD between the probability in
this sample and the exact probability, i.e. �nd for 1 ≤ s ≤ N and for 1 ≤ t ≤ T
H(ys(t), µ);

3. Average for every t-th step the N AHD values, i.e.

AHDY(t) =
1

N

N∑
i=1

H(ys(t), µ).

Note that the AHD at t = T is the main AHD score of interest. However, the
above procedure keeps track of the AHD scores for all 1 ≤ t ≤ T such that the
development of the AHD score as a function of the number of samples can be
plo�ed.

In chapter 6, the AHD is used to quantify the accuracy of all �ve approximate sampling
methods. In the next section, the rate of convergence as a performance indicator is
discussed.

5.3 Rate of convergence

�e Rate of Convergence (ROC) is the second performance indicator by which sampling
methods are characterised. A procedure is presented to obtain the ROC of sampling

33

methods in the limit of in�nite simulation time, extrapolated from relatively short
simulations (T = 25.000).

First, one should recognize that a typical characterisation of a collection of (MCMC)
simulations is the standard deviation at sample t: σ2(t) = 〈y2(t)〉 − 〈y(t)〉2, where

〈y(t)〉 =
1

T

T∑
t=1

ys(t) and 〈y2(t)〉 =
1

T

T∑
t=1

(ys(t))
2 for 1 ≤ t ≤ T .

If one considers Var(ys(t)) = ct <∞, for all ys ∈ Y and for all 1 ≤ t ≤ T , it follows
from the unbiasedness of 〈y(t)〉 that

σ2(t) = Var(〈y(t)〉) =
ct
t
.

�is tells us that that σ2 decreases with the number of samples t, which can be wri�en
as

σt ∝
1√
t
.

To emphasize that the rate of convergence is of order t−1/2 and to de-emphasize σ,
one can write ROC = O(t−1/2) as t → ∞ [25]. Figure 5.3(a) shows that, based on
the collection of N = 100 simulations from Figure 5.2, σ(t) is indeed proportional
to t−1/2. Hence, one could consider σ2(t) = α/

√
t with α ∈ R+. Note that, in con-

trary to ct, α is independent of t and is therefore a feature of the entire collection of
(MCMC) simulations. Or to put it di�erently, the proportionality constant α quanti�es
the ROC of the (MCMC) sampling technique that belongs to the convergence class
O(t−1/2). �erefore, di�erent (MCMC) sampling techniques can be characterised by
their ROC and are therefore a useful performance indicator to compare various methods.

Next, a procedure is introduced to determine this constant α for a collection of (MCMC)
simulations. First of all, log σ(t) can be plo�ed versus log t. �e result is shown in
Figure 5.3(b) and straight away a candidate proportionality constant α′ can be ��ed to
the asymptotic linear behavior of log σ(t) (orange dashed line). Both, in Figure 5.3(a)
and (b), α′ = 0.38. �ough, on the interval 100 < t < 101, it can be seen that σ(t) (the
blue line) does not behave as t−1/2 (the orange dashed line). Ideally, in determining α
for the asymptotic convergence of a (MCMC) method, this non-representative region
is not taken into consideration. �is region can be ignored in a sophisticated way. In
order to do so, an auxiliary polynomial expansion is introduced such that

σ2(t) =
α√
t
(1 + β1t

−δ + β2t
−2δ + β3t

−3δ + . . .) . (5.1)

Due to the prospect of over��ing, Equation 5.1 is reduced to

g(t) = σ2(t)
√
t ≈ α(1 + βt−δ) = f(t). (5.2)

34

(a) �e standard deviation σ2(t) of a col-
lection of 100 SampleSearch samples (from
Figure 5.2) decreases as t−1/2, subject to
the number of samples t. Hence, this sam-
pling method belongs to the convergence
class O(t−1/2).

(b) Plo�ing the log of the standard devi-
ation – log σ2(t) – versus the log of the
number of samples – log t – yields a lin-
ear function, which can be approximated.
Using this plot, a rough estimate of α′ (can-
didate value forα) can be made. In this plot,
α′ = 0.38 is taken and hence 0.38/

√
t de-

�nes the orange line.

(c) To determine α with greater precision,
the interval [100, 101] from Figure 5.3(b)
needs to be ignored. �is can be done by
introducing a polynomial expansion to ap-
proximate the linear log plot as σ2(t)

√
t ≈

α(1 + βt−δ) (blue line). α turns out to be
the intersection with the y-axis. Hence, ap-
proximating this function linearly (orange
line), one can retrieve (for δ = 0.90) that
α ≈ 0.40.

Figure 5.3: Asymptotic behavior of the standard deviation of (MCMC) sampling
methods can be used to characterise the rate of convergence.

35

One should note that g(t−δ) in Equation 5.2 is a linear function of which α is the
intersection with the y-axis. Based on the collection of N = 100 SampleSearch simula-
tions from Figure 5.2, in Figure 5.4 g(t−δ) is plo�ed for δ = 0.4, . . . , 0.9. From Figure
5.4, δ = 0.9 is considered to be the transformation with the most linear appearance.
So, a linear function f – the orange line in Figure 5.3(c) – is �t to g(t−δ) in order to
determine the intersection with the y-axis, i.e. the proportionality constant α. �e
result is depicted in Figure 5.3(c) and it turns out that α ≈ 0.40.

Figure 5.4: Linear appearance of g(t−δ) for di�erent values of δ.

�e transformation from the number of samples t to t−δ can be regarded as a multi-
plicative inversion. Since t is multiplicatively inversed by t−δ according to parameter
δ, the right side of the plot in Figure 5.3(b) is displayed at the le� side of Figure 5.3(c).
Besides, where the intervals [100, 101], [101, 102], [102, 103], [103, 104] in Figure 5.3(b)
on a logarithmic scale are of equal length (equidistant), the projection of those intervals
in Figure 5.3(c) is not equidistant. �e ratio of the lengths of those intervals is unequally
distributed and depends on the value of δ, i.e. the interval [100, 101] is represented
more prominently as δ increases. In this manner, the interval [100, 101] on which the
double log plot does not appear to be linear (in Figure5.3(b)), is stretched out such that
it becomes more linear (in Figure5.3(c)). �e already linear appearing intervals (when t
is large) are downgraded in appearance. In this manner, the value of α can be estimated
more carefully.

�e multiplicative inversion of the intervals [100, 101], . . . , [103, 104] to the interval
[0, 1] according to δ = 0.1, . . . , 0.9 are displayed in Figure 5.5.

36

Figure 5.5: Multiplicative inverse t−δ of the border points of the intervals t ∈
[100, 101], [101, 102], [102, 103], [103, 104] for δ = 0.1, . . . , 0.9. �e interval [100, 101]
is represented more prominently as δ increases. Hence, the value of α on this interval
could be estimated more carefully.

�e above procedure to characterize the ROC of a (MCMC) sampling method in the
limit of in�nite simulation time, extrapolated from relatively short simulations is
summarized:

• generate a collection of N (MCMC) simulations, as in Figure 5.2;

• determine the standard deviation σ2(t) between the N simulations for every
sample t, as in Figure 5.3(a);

• plot log σ2(t) versus log t, as the blue line in Figure 5.3(b);

• determine a candidate proportionality constant α′ by ��ing α′/
√
t to the above

log plot, as the dashed orange line in Figure 5.3(b);

• plot g(t−δ) as in Equation 5.2 for various values of 0 < δ < 1, as in Figure 5.4;

• select a δ for which the multiplicative inversed interval [100, 101] has the most lin-
ear appearance and �t a linear function f (the orange line in Figure 5.3(c)) to this
inversed function (the blue line in Figure 5.3(c) to approximate the intersection
with the y-axis (α);

• adjust α′ to α.

In the next section, the last performance indicator is discussed.

5.4 Time consumption

�e third performance indicator is time consumption. In order to characterise di�erent
(MCMC) sampling methods in terms of time consumption, common grounds need to

37

be found to compare di�erent methods.

�is is done by measuring what amount of samples a (MCMC) method needs to achieve
a certain level of closeness in the collection of N = 100 simulations, i.e. for what is
the smallest t ∈ (0, 25.000) such that σ2(t) ≤ 0.01?

With the knowledge about the ROC proportionality constant α for di�erent (MCMC)
methods (as discussed in section 5.3), the amount of samples a method needs to achieve
σ2 = 0.01 can be calculated, namely

0.01 = σ2(t) =
α√
t
. (5.3)

So, if Gibbs sampling is used on, for example, the Asia BN with 0% evidence available,
where α turns out to be 0.52, one needs

0.01 =
0.52√
t

=⇒ t =

(
0.52

0.01

)2

= 2.704 samples (5.4)

to achieve σ2 = 0.01. Hence, it is su�cient to measure the amount of time it takes for
Gibbs sampling to generate this number of samples, including the generation of an
initial state of the BN at the start. �e time consumption is measured by making use of
the time library in Python.

As illustrated in Example 3.14, (MCMC) approximate inference methods do not always
converge towards the same probability distribution. In such a case, no t ∈ (0, 25.000)

such that σ2(t) ≤ 0.01 and no ROC constant α exists. Hence, the ROC and time-
consumption are not relevant to characterise for those sampling method.

38

Chapter 6 Results

In this chapter the performance of prune sampling is compared to four conventional
sampling methods. First, details are given about the context and conditions for the
experimental research. �en, the main pitfall of Gibbs sampling is demonstrated by
various experiments. Consecutively, for 3 BNs from 4 benchmark domains with an
increasing amount of deterministic relations, the performance of the sampling methods
in terms of accuracy, rate of convergence and time consumption are characterised.

6.1 Experiments

Prune sampling is compared to four widely used sampling methods (backward sam-
pling, likelihood weighting, SampleSearch and Gibbs sampling) on three performance
indicators (accuracy, rate of convergence and time consumption). Since pruning is
devised to deal with deterministic relations in BNs, experiments are conducted on BNs
with gradually increasing rates of determinism. �e sampling methods are used to
approximate one-variable marginals on small, medium and large BNs from four bench-
mark domains: simple deterministic-, block shaped-, Grid- and real world BNs. GeNIe
decision modeling so�ware is used to customize BNs in .xdsl format to conduct
experiments on. Prune sampling is implemented in Python such that BNs created in
GeNIe can be used as input. It turned out that the implementation of Gibbs sampling
from the Python PyMC package is unreliable. Instead, all four sampling methods dif-
ferent than prune sampling are used from the ProbCog GitHub repository: a toolbox
for statistical relational learning and reasoning from the Technical University Münich
[26]. It is noteworthy that the input format of BNs for the ProbCog so�ware is .xml.
Hence, a tool needs to be used to transform BNs forma�ed in .xdsl to a BN in .xml
format. All BNs used in this study can be found for free online in the UAI or bnlearn
Bayesian network repository. Results are created without thinning 1 and if a burn-in
period 2 is used, this can be mentioned from the starting number of the ‘number of
samples’ at the x-axis. �e experiments are conducted on an Intel(R) Core(TM) i5-5300
CPU 2.30GHz core machine with 8 GB RAM, running operating system Windows 10.

6.2 Pitfalls of Gibbs sampling

As illustrated in Example 3.14, the Markov chain generated by Gibbs sampling can
get trapped in a subset of the state space when deterministic relations are present in
a BN. In this section, this phenomena is investigated in greater detail. �e accuracy

1thinning: in order to decrease auto-correlation between the samples one could use only every q-th
generated sample

2burn-in period: throwing away the �rst r iterations at the beginning of a MCMC simulation

39

of Gibbs and prune sampling is compared on various deterministic BNs and so-called
block-shaped BNs. Eventually, it is shown that prune sampling is able to move around
the entire state space in all circumstances on all BNs when Gibbs sampling is not.

6.2.1 Simple deterministic network

Figure 6.1 displays the convergence of the mean of variable A according to samples
generated by Gibbs and prune sampling. �e horizontal red and green line represent
the trapped chains generated by Gibbs sampling, i.e. displaying P (A = 1) = 0

and P (A = 1) = 1 respectively. �e converging blue and orange lines indicate the
approximations of Markov chains generated by prune sampling. Example 3.14 elaborates
on the cause why Gibbs sampling fails to converge. Why prune sampling is able to
converge to the correct distribution follows from the next example.

Example 6.1. Without loss of generality, let’s consider the initial state to be x(0) =

(0, 0). Following the pruning procedure from Algorithm 6 one obtains

• Cx = {A(1), B(1)}.

• Two cases can occur, both with probability 0.5, either

– A(2) does get pruned, which results in: Cp
x(1) = {A(2), B(2), B(3)}

– A(2) does not get pruned, which results in: Cp
x(1) = {B(2), B(3)}

• Following this structure of case distinction, the non-pruned sets could become

– A(2) does get pruned: Cnp
x(1) = {A(1), B(1), B(4)} (1)

– A(2) does not get pruned: Cnp
x(1) = {A(1), A(2), B(1), B(4)}. (2)

• Now, feasible states can be determined from which the next state will get sampled
uniformly

– (1) gives: SCnp
x

= {(cA(1) = 0, cB(1) = 0)}

– (2) gives: SCnp
x

= {(cA(1) = 0, cB(1) = 0), (cA(2) = 1, cB(4) = 1)}.

• From (1), with probability 1, one �nds feasible state (0, 0). From (2), with prob-
ability 0.5, one �nds either feasible state (0, 0) or (1, 1). Hence, the probability
to get from state (0, 0) to (0, 0) is given by

Q((0, 0)→ (0, 0)) = 0.5 · 0.5 + 0.5 · 1 =
3

4
.

�is implies that prune sampling is able to make a transition from (0, 0) to (1, 1) and
the other way around from (1, 1) to (0, 0). In Figure 6.1, it can be seen that prune
sampling – from both initial states (0, 0) and (1, 1) – is able to move around the entire
state space freely, i.e. it is able to converge to the correct mean. �e horizontal line at

40

(a) 250 samples prune vs Gibbs (b) 10.000 samples prune vs Gibbs

Figure 6.1: Illustration of superior performance of prune sampling . Due to the de-
terministic relation in the BN given in Example 3.14, Gibbs sampling is trapped
in the chain (0, 0) or (1, 1). Hence, doing inference on these Gibbs samples yield
P (A = 0) = 0 or P (A = 0) = 1 (red and green line). As a consequence of the regular
and reversible Markov chain generated by prune sampling (blue and orange line), this
Markov chain is able to move around the entire state space and therefore converges
to the correct probability distribution P (A = 0) = 0.5.

0.5 represents the exact probability of variable A = 0.

�e above addressed problem is known as bad mixing. �e colloquial term mixing is
used in the �eld of MCMC simulations to indicate whether a Markov chain is able to
visit the whole state space or not. Techniques to improve mixing of MCMC methods
have been proposed [21, 23, 27]. For example, one could sample (according to the normal
Gibbs sampling procedure) two or more variables at the same time from their joint
distribution conditioned on all other variables. �is is called blocked Gibbs sampling.
�e pairwise deterministic relations between nodes would disappear. �ough, blocked
Gibbs sampling is not the solution to all its limitations. As will be discussed in the next
subsection.

6.2.2 Block shaped network

Simple deterministic networks are not the only class of BNs that prevent Gibbs sampling
of converging to the correct posterior distribution. �e following example provides a
di�erent class of BNs that results in trapped Markov chains.

Example 6.2. Consider the BN X1 → X2 → . . .→ Xn, where each Xi ∈ {0, 1, 2, 3}
for 1 ≤ i ≤ n. LetX1 be uniformly distributed and for i ≥ 2 let eachXi be conditionally
distributed according to a so-called block-shaped distribution, of which the CPTs of all
variable Xi for 2 ≤ i ≤ n adhere to the structure of Table 6.1. Due to the structure of
its CPTs, this type of BNs is called a block-shaped BN. If one applies Gibbs sampling on
such a block-shaped BN, the Markov chain would not converge to the correct posterior

41

Xi−1 = 0 Xi−1 = 1 Xi−1 = 2 Xi−1 = 3

Xi = 0 0.5 0.5 0 0

Xi = 1 0.5 0.5 0 0

Xi = 2 0 0 0.5 0.5

Xi = 3 0 0 0.5 0.5

.

Table 6.1: Block shaped CPT

distribution. To understand why, one should observe that only two possible initial
states are possible, either

• X(0)
1 ∈ {0, 1};

• X(0)
1 ∈ {2, 3}.

SupposeX(0)
1 = 0 and consider the �xed (topological) order (X1, . . . , Xn). In this case,

Gibbs sampling returns

x(0) = (X
(0)
1 = 0, . . . , X(0)

n = 0), i.e. X(0)
i = 0 for 1 ≤ i ≤ n.

A�er each iteration Gibbs sampling is able to make the move from block {0, 1} to
{2, 3} or the other way around, i.e. P (X

(t+1)
1 |X(t)

2 = 0, . . . , X
(t)
n = 0) could select

X
(t+1)
1 ∈ {0, 1} or X(t+1)

1 ∈ {2, 3} both with probability 0.5. �ough, in both cases
X

(t+1)
i is trapped again either in {0, 1} to {2, 3} for i ≥ 2. So, despite the fact that

Gibbs sampling is able to change blocks, the posterior distribution P (X2) converges to
0.5 instead of P (X2) = 0.25.

In Figure 6.2, the red and green line represent the Markov chain generated by Gibbs
sampling being trapped in block {0, 1} or {2, 3} respectively. �ey both �nd P (Xi =

0) = P (Xi = 1) = 0.5 and P (Xi = 2) = P (Xi = 3) = 0.5 respectively. In the
same Figure it can be seen that the Markov chain generated by prune sampling – the
blue and orange line – is again able to move freely around the entire state space and
therefore converges, for i ≥ 2, to the correct probability P (Xi = j) = 0.25, where
j ∈ {0, 1, 2, 3}.

42

(a) 50 samples prune vs Gibbs (b) 10.000 samples prune vs Gibbs

Figure 6.2: Prune sampling can be superior to Gibbs sampling, even in the absence
of deterministic relations. A non-deterministic block shaped CPT – as presented in
Table 6.1 – can prevent a Markov chain generated by Gibbs sampling of visiting the
entire state space. In this example, being trapped in the subset {0, 1} or {2, 3} both
yield the probability 0.5 of assigning 0, 1 or 2, 3 to variable Xi (red and green line
respectively). Prune sampling generates a Markov chain that is regular and reversible
and therefore can move around freely through the whole state space. Hence, prune
sampling converges to the uniformly probability 0.25 of assigning value 0, 1, 2 or 3 to
variable Xi (blue and orange line).

6.3 Performance on Benchmark Bayesian networks

In this section, results are presented about the performance of prune sampling in
comparison to the four other sampling methods on benchmark BNs. Experiments are
conducted on BNs with various rates of determinism. Since prune sampling is developed
to deal with deterministic relations, it is expected that prune sampling performs best
on this type of BNs. Besides, experiments are run as well on real world BNs, with and
without available evidence. As such, prune sampling is tested both as a specialized
method for deterministic BNs and as an all-round sampling method that is able to deal
with more generic BNs.

First, experiments are conducted on real-life BNs without any evidence available. Con-
secutively, experiments are run on the same real-life BNs with 25% available evidence.
Lastly, experiments are conducted on so-called Grid BNs, which consist either for 25%
or for 50% of deterministic relations. Grid BNs are introduced formally in section 6.3.3.
For all experiments it holds that Markov chains are allowed to iterate T = 25.000 steps.
One such a simulation is repeated N = 100 times.

�e class real-life BNs consist of three types of BNs: the small BN (8 nodes, 18 parame-
ters) Asia [28], the medium BN (37 nodes, 509 parameters) Alarm [29] and the large
BN (76 nodes, 574 parameters) Win95pts [30]. �e terminology ‘small’, ‘medium’ and
‘large’ BNs is inspired by the Bayesian network repository on www.bnlearn.com.

43

6.3.1 Accuracy on real world Bayesian networks with 0% available evidence

On the Asia, Alarm and Win95pts BNs with 0% available evidence, samples are generated
to query the CPTs of respectively Dyspnea, BloodPressure and Problem1. Since prune
sampling is devised to deal with deterministic relations, it is not expected that prune
sampling will be the best performing sampling method on this class of BNs.

(a) Asia 0% evidence

(b) Alarm 0% evidence (c) Win95pts 0% evidence

Figure 6.3: Mixed performance of prune sampling – in terms of accuracy – on real
world BNs without available evidence. Since prune sampling is devised to deal with
deterministic BNs, underperformance of the pruning technique on these type of
general-purpose networks can be expected.

Figure 6.3 shows the performance of Gibbs sampling, backward sampling, likelihood
weighting, SampleSearch and prune sampling. On the small Asia BN prune sampling is a
competitive sampling method and reaches approximately 0.008 AHD (a�er T = 25.000

iterations, averaged over N = 100 simulations). Despite prune sampling beats back-
ward sampling, likelihood weighting and SampleSearch on the Asia BN, Gibbs sampling
does outperform prune sampling .

Structural underperformance of prune sampling is visible on both the Alarm and
Win95pts BN. For all sample 2.500 ≤ t ≤ 25.000 prune sampling has a higher AHD

44

than all other (MCMC) sampling methods. For the Win95pts BN, the posterior distri-
bution of prune sampling even diverges to P(Problem1 = True) = 0.585 where the
other sampling methods converge towards the exact probability 0.541053.

6.3.2 Accuracy on real world Bayesian networks with 25% available evidence

On the same real-world BNs as in the previous subsection, now experiments are
conducted in which 25% of the nodes in the BN have a �xed state, i.e. evidence is
available for those nodes in the network. For the same queries as before, the ability of
prune sampling to deal with available evidence is tested.

(a) Asia 25% evidence

(b) Alarm 25% evidence (c) Win95pts 25% evidence

Figure 6.4: Compared with the results in section 6.3.1, prune sampling starts to become
more competitive in terms of accuracy as more evidence is available. �ough, on the
Win95pts BN prune sampling underperforms signi�cantly.

Figure 6.4 displays the performance of the sampling methods on the Asia, Alarm
and Win95pts BNs with 25% evidence available. On the Asia BN all �ve sampling
methods show strong performance: on average (averaged over N = 100 simulations,
for T = 25.000 iterations) all methods reach at least 0.006 AHD. On the Alarm BN,
the generated samples have more di�culties to reach high accuracy. �ough, prune

45

sampling starts to become competitive and even outperforms backward sampling,
likelihood weighting and SampleSearch which are somehow stuck around 0.03 AHD.
However, again strong underperformance of prune sampling becomes clear on the
Win95pts BN. Prune sampling reaches approximately 0.024 AHD. In contrast, the other
four methods reach at least 0.013 and Gibbs sampling even achieves less than 0.005

AHD.

6.3.3 Accuracy on Grid Bayesian networks

�e next class on which prune sampling is tested is the so-called Grid BNs. �is type
of BNs is developed by Sang, Beame, and Kautz [31] in order to create benchmark
problems that are intrinsically hard due to their rigid structure and many deterministic
relations. Due to these characteristics, this is the class of BNs on which prune sampling
is expected to perform best.

�e variables of a n×n Grid BN are denoted byXi,j , where 1 ≤ i, j ≤ n. Each variable
Xi,j has parents Xi−1,j and Xi,j−1, for 2 ≤ i, j ≤ n. So, X1,1 is a source variable and
Xn,n is a sink variable. �e query of interest is to compute the marginal probability of
the sink variable Xn,n. �e deterministic ratio is the fraction of the nodes in the BN
that have solely deterministic relations in its CPT. An example of a Grid 3× 3 BN with
(an approximately) 50% determinism is displayed in Figure 6.5.

Figure 6.5: Example of a Grid 3× 3 BN with (approximately) a 50% deterministic ratio.

46

Experiments are conducted on Grid 3 × 3, 5 × 5 and 8 × 8 BNs, both with 25% and
50% deterministic ratio. As explained in Example 3.14 and illustrated by experiments
in Example 6.2, one should take into consideration that Gibbs sampling could be in-
competent to deal with Grid BNs due to the presence of deterministic relations. �is
scenario unfolds in all mean trace plots in Figure 6.6. For all Grid 3× 3, 5× 5 and 8× 8

BNs, both with 25% and 50% deterministic ratio, Gibbs sampling fails to converge to
the correct posterior distribution. Depending on which subset of the state space Gibbs
sampling is locked in, it converges to di�erent incorrect posterior distributions.

In Figure 6.7 the performance of the other (MCMC) sampling methods – without Gibbs
sampling – is shown. Note that due to the absence of Gibbs sampling, prune sampling
is plo�ed in blue. It becomes clear that, in contrary to our expectations, on none of
the Grid BNs prune sampling is a competitive sampling method compared to the other
sampling methods. Backward sampling, likelihood weighting and SampleSearch all
tend to converge towards 0.01 AHD on all six Grid BNs. On the Grid 3× 3 BNs, prune
sampling is rather competitive in the sense that its AHD is close to the other AHDs,
i.e. approximately a 0.002 to 0.003 di�erence in AHD. On the Grid 5 × 5 BNs, the
di�erence in accuracy widens further: approximately a 0.004 to 0.006 di�erence in
AHD. On the 8× 8 BNs, prune sampling performs far below expectation by reaching
approximately only 0.045 AHD. In contrary, all other (converging) methods reach at
least 0.01 AHD.

In the next section, the performance of the sampling methods in terms of the rate of
convergence is presented.

47

(a) 100 Gibbs simulations on the Grid
3×3 BN with 25% determinism fail to con-
verge to the correct posterior probability:
0.8373

(b) 100 Gibbs simulations on the Grid
3×3 BN with 50% determinism fail to con-
verge to the correct posterior probability:
0.8719

(c) 100 Gibbs simulations on the Grid
5 × 5 BN with 25% determinism fail to
converge to the correct posterior probabil-
ity: 0.5678

(d) 100 Gibbs simulations on the Grid
5 × 5 BN with 50% determinism fail to
converge to the correct posterior probabil-
ity: 0.5780

(e) 100 Gibbs simulations on the Grid
8 × 8 BN with 25% determinism fail to
converge to the correct posterior probabil-
ity: 0.5731

(f) 100 Gibbs simulations on the Grid
8 × 8 BN with 50% determinism fail to
converge to the correct posterior probabil-
ity: 0.5310

Figure 6.6: Failure of Gibbs sampling on deterministic Grid BNs. Due to being trapped
in di�erent subsets of the state space, the collection of 100 Gibbs iterations diverges to
di�erent posterior distributions.

48

(a) Grid 3× 3 network 25% determinism (b) Grid 3× 3 network 50% determinism

(c) Grid 5× 5 network 25% determinism (d) Grid 5× 5 network 50% determinism

(e) Grid 8× 8 network 25% determinism (f) Grid 8× 8 network 50% determinism

Figure 6.7: Underperformance of prune sampling – in terms of accuracy – on all Grid
BNs. Since prune sampling is devised to deal with determinism and either 25% or 50%
of these BNs’ CPTs consist of deterministic relations, this performance is far below
expectation.

49

6.4 Rate of Convergence

Following the procedure as presented in section 5.3, the proportionality constants of
the ROC of the sampling methods on all 12 benchmark networks can be computed. �e
collections of samples which are used to create the accuracy plots in Figure 6.3, 6.4 and
6.7 are used to �nd those ROC values. For collections generated by Gibbs sampling that
diverge on Grid BNs, the proportionality constants of the ROC are omi�ed. �e result
is presented in Table 6.2.

Sampling method
Bayesian
network Gibbs Prune Backward Likelihood SampleSearch

Asia ev0 0.52 0.81 0.51 0.49 0.48
Alarm ev0 0.43 0.79 0.48 0.49 0.49
Win95pts ev0 0.48 0.59 0.48 0.46 0.51
Asia ev25 0.47 0.77 0.50 0.48 0.48
Alarm ev25 0.40 0.49 0.52 0.46 0.45
Win95pts ev25 0.45 0.50 0.46 0.46 0.48
Grid 3x3 det25 x 0.56 0.36 0.37 0.39
Grid 5x5 det25 x 0.54 0.46 0.50 0.51
Grid 8x8 det25 x 0.50 0.47 0.47 0.45
Grid 3x3 det50 x 0.62 0.33 0.34 0.32
Grid 5x5 det50 x 0.55 0.48 0.49 0.51
Grid 8x8 det50 x 0.53 0.51 0.51 0.48

Table 6.2: ROC proportionality constants of prune sampling are always higher than the
proportionality constants of backward sampling, likelihood weighting, SampleSearch
and Gibbs sampling (if it converges). For collections generated by Gibbs sampling
that diverge on Grid BNs, the proportionality constants of the ROC are omi�ed. It
can be concluded that samples generated by prune sampling always converge slower
to a stationary posterior distribution.

From the above Table it stands out that the ROC proportionality constants of prune
sampling are always higher than the proportionality constants of backward sampling,
likelihood weighting, SampleSearch and Gibbs sampling (if it converges). Hence, prune
sampling convergences always slower to a stationary posterior distribution. Instead,
on the real-world class BNs without available evidence, there is no single sampling
methods that achieves a consist higher ROC over other sampling methods. For the
real-world class BNs with 25% available evidence, Gibbs sampling achieves consistently
the highest ROC proportionality constant. For all Grid BNs, backward sampling and
SampleSearch perform best in terms of a low ROC, i.e. fast convergence.

As illustrated in Figure 5.3(b), the (MCMC) sampling methods for BNs used in this
thesis belong to the convergence classO(t−1/2). �erefore, all collections generated by

50

Figure 6.8: Due to being trapped in a certain subset of the state space, Gibbs sampling
converges to di�erent posterior distributions as displayed in Figure 6.6. �erefore,
the double log plot of the number of samples (t) versus the standard deviation in the
collection of samples (σ2(t)) can not be characterised as being part of the O(t−1/2)
convergence class.

the sampling methods on all 12 BNs converge along the orange dashed line in Figure
5.3(b), except Gibbs sampling on the Grid BNs. In line with the divergence as showed
in Figure 6.6, an example of a double log plot of the number of samples (t) versus the
standard deviation in the collection of samples (σ2(t)) for Gibbs sampling on the Grid
5× 5 BN with 25% deterministic ratio is shown in Figure 6.8.

In the next section, the sampling methods are reviewed in terms of time consumption.

6.5 Time consumption

In this section, the time consumption of various sampling methods are characterised.
As discussed in section 5.4, the ROC results from Table 6.2 can be used to determine
for distinct sampling methods how many samples t are needed to reach σ2(t) < 0.01

within a collection of N = 100 simulations (see Equation 5.3-5.4). So, conducted
experiments measure what time a sampling method needs to generate this speci�c
amount of samples. �is procedure provides us with a generic way to compare time
consumption amongst various sampling methods.

First of all, it should be noted that Gibbs sampling is only taken into account if the
posterior distribution generated by the sampling method converges, i.e. a common
pitfall of Gibbs sampling is to diverge on deterministic networks like Grid BNs. Besides,
once the smallest t ∈ (0, 25.000) is known for a sampling method of interest such that
σ2(t) < 0.01, the denoted amount of time consumed (in seconds) is an average of 10

times repeated procedures to generate t samples. �e results are presented in Table 6.3.

51

For all small BNs – Asia with 0% and 25% available evidence and Grid 3 × 3 with
25% and 50% determinism – prune sampling is the fastest sampling method. �is is
remarkable since from Table 6.2 it is known that prune sampling, on all types of BNs, has
the lowest ROC. �erefore, prune sampling needs more samples t to reach σ2(t) < 0.01

on a collection of N = 100 simulations than all other sampling methods. Hence, one
can deduce that prune sampling is an extremely fast sampling methods on small BNs,
i.e. when |SCnp

x
| stays small. As such, prune sampling becomes a signi�cantly slower

sampling method on medium and large sized BNs, i.e. as |SCnp
x
| increases.

Sampling method
Bayesian
network Gibbs Prune Backward Likelihood SampleSearch

Asia ev0 1.37 0.53 1.20 1.56 1.68
Alarm ev0 1.83 3.56 1.81 1.69 1.32
Win95pts ev0 2.62 49.85 2.09 1.52 975.89
Asia ev25 1.43 0.41 1.73 1.43 1.05
Alarm ev25 1.25 2.83 1.43 1.25 1.22
Win95pts ev25 2.02 40.03 1.73 1.79 717.94
Grid 3x3 det25 x 0.75 1.37 1.36 1.44
Grid 5x5 det25 x 2.68 1.50 1.19 1.56
Grid 8x8 det25 x 543.73 1.63 1.23 1.63
Grid 3x3 det50 x 0.73 1.12 1.12 1.11
Grid 5x5 det50 x 2.42 1.48 1.44 1.60
Grid 8x8 det50 x 105.17 1.43 1.31 1.68

Table 6.3: Time consumption (in seconds) of sampling methods to reach σ2(t) = 0.01
with a collection of N = 100 simulations. Prune sampling is the fastest sampling
method on all small sized BNs. On all medium sized BNs and on large Grid BNs, prune
sampling is the slowest sampling method. On large real-world BN, only SampleSearch
is a slower sampling methods than prune sampling. In general, likelihood weighting
tends to outperform other sampling methods on medium and large Grid BNs.

On the medium sized BNs – Alarm with 0% and 25% available evidence and Grid 5× 5

with 25% and 50% determinism – prune sampling is the slowest sampling method. On
the large sized real-world BNs – Win95pts with 0% and 25% available evidence – prune
sampling is a rather slow sampling method but not as exceptional as the very slow
appearance of SampleSearch. On the large sized Grid 8×8 BNs – both with 25% and 50%
determinism – prune sampling is by far the slowest sampling method. �e discrepancy
between fast and slow performance of SampleSearch on the large real-world BNs and
the Grid BNs can be explained by the fact that SampleSearch is devised speci�cally
to deal with deterministic BNs and not necessarily for real-world BNs. In addition,

52

from Table 6.3 it can be observed that likelihood weighting tends to outperform other
sampling methods in terms of time consumption on medium and large Grid BNs. On
the medium and large size real-world BNs there is no sampling methods that stands
out.

As mentioned before in section 4.3.2, exhaustive enumeration during the uniform
sampling step on pruned large BNs can result in excessive time consumption of prune
sampling. �is is a results of the exponential blow up of |SCnp

x
|, which is discussed in

greater detail in the next chapter.

53

Chapter 7 Improving prune sampling

�e results regarding time consumption presented in section 6.5 reveal that prune
sampling is a fast method on small BNs, but a slow method on medium and large sized
BNs. In this chapter, an idea is presented to reduce the excessive time consumption
of the pruning technique on large BNs. First, the cause of the lengthy computation
process is elaborated on. �erea�er, an adjusted version of prune sampling that is less
computational intense is implemented and tested.

7.1 Exhaustive listing of all feasible states in a pruned network

�e main reason of prune sampling’s excessive time consumption on large BNs is the
exhaustive listing of all feasible states in a pruned network. As discussed in section
4.3.2, this exhaustive listing – i.e enumerating the set SCnp

x
explicitly – can become com-

putational intense for large BNs. �is presumption is con�rmed by the experimental
results in chapter 6. In this section, more light is shed on the distribution of the set size
of SCnp

x
.

Prune sampling is a time-intensive sampling method due to extreme outliers of |SCnp
x
|.

Figure 7.1 displays a histogram of |SCnp
x
| based on 2.400 iterations of prune sampling

on all real-world benchmark BNs. �ose 2.400 iterations are randomly chosen from
25.000 samples generated by prune sampling on the Asia, Alarm and Win95pts BNs
both with and without available evidence.

�e key insight from Figure 7.1 is that although the vast majority of set sizes is located
at the very le� of the histograms, the maximum value of the set sizes is an extreme
outlier on the right. �e size of the largest set tends to increase excessively as the BN
gets larger. For example, on the small sized Asia BN the average of |SCnp

x
| is 2.3, the

median set size is 2 whilst the maximum set size is 16. On the medium sized Alarm BN,
the average is 63.4, the median is 34 and the maximum set size is 2.218 (35 times the
average set size). On the large sized BN Win95pts, the average is 426.6, the median
is 50 and the maximum set size is 34.125 (83 times the average set size). Sets with
a high number of feasible states need more time to be constructed than sets with a
low number of feasible states. Hence, incorporating those those extreme large sets in
the listing process causes the lengthy computation time of prune sampling on large BNs.

When evidence is available for a BN, more CPT-entries are �xed. Hence, the number
of feasible states in a pruned network of this type of BNs tend to be less than for BNs
without available evidence. �is becomes evident in the histograms of real-world BNs
with 25% available evidence, which are displayed in Figure 7.1(d)-(f). On this class

54

(a) Asia 0% evidence
max. set size 16

(b) Alarm 0% evidence
max. set size 2.218

(c) Win95pts 0% evidence
max. set size 34.125

(d) Asia 25% evidence
max. set size 8

(e) Alarm 25% evidence
max. set size 505

(f) Win95pts 25% evidence
max. set size 2.662

Figure 7.1: Histograms of the number of feasible states in a pruned network based
on 2.400 out of 25.000 randomly chosen iterations of prune sampling on all real-
world BNs with both 0% and 25% evidence available. As the size of the BNs (nodes
and parameters) increases, the maximum value of |SCnp

x
| increases excessively. �e

computation time for the set of 34.125 feasible states on the Win95pts BN with 0%
available evidence takes 83 times longer than average and therefore captures a large
part of total time consumption. As the amount of available evidence increases, more
CPT-entries are �xed during the generation of feasible states. Hence, the number of
feasible states in a pruned network drops and the maximum value of |SCnp

x
| decreases.

�ough, the largest set still contributes excessively to the time consumption of prune
sampling.

of BNs the maximum set size of SCnp
x

is lower. On the Asia BN with 25% evidence
available, the average set size drops from 2.71 to 1.95, the median stays 2 and the
maximum set size drops from 16 to 8. On the Alarm BN with 25% evidence available,
the average drops from 63.4 to 22.01, the median drops from 34 to 12 and the maximum
set size drops from 2.218 to 505. On the Win95pts BN with 25% evidence available,
the average drops from 409.43 to 176.76, the median raises from 50 to 108 and the
maximum set size drops from 34.125 to 2.662. Since |SCnp

x
|, for BNs with 25% available

evidence, is in (almost) all aspects lower than the set sizes with 0% available evidence,
the computation time of prune sampling on the former class of BNs is lower than the lat-
ter class. �is is con�rmed by the results about time consumption presented in Table 6.3.

For the Grid 3x3, 5x5 and 8x8 BNs with 50% determinism the same histograms of set
size |SCnp

x
| are displayed in Figure 7.2. For the three BNs respectively, one �nds an

average set size of 3, 17 and 794, a median set size of 3, 14 and 609.5 and a maximum
set sizes of 14, 130 and 8.157. �is distribution is less sca�ered than real-world BNs.
So, more medium sized sets SCnp

x
exist. �ose sets are more time-intensive to generate

55

(a) Grid 3x3 50% det.
max. set size 14

(b) Grid 5x5 50% det.
max. set size 130

(c) Grid 8x8 50% det.
max. set size 8.157

Figure 7.2: Histogram of the number of feasible states in a pruned network based on
2.400 out of 25.000 randomly chosen iterations of prune sampling applied on Grid
3×3, 5×5 and 8×8 BNs with 50% determinism. For this class of BNs, the distribution
of |SCnp

x
| is less le�-centered and therefore the average set size tends to be higher

than on the real-world BNs. As a result prune sampling needs more time to generate
samples for Grid BNs.

and are the main cause for excessive overall time consumption. �is is re�ected in the
time-consumption of prune sampling on Grid BNs, as displayed in Table 6.3.

Exhaustive listing of all feasible states of a pruned network is essential to choose
the next state of a BN completely uniform. �is, in its turn, is essential for prune
sampling to guarantee convergence. However, as illustrated in this section, the explicit
enumeration of all feasible state of a pruned network during every iteration of prune
sampling becomes rather time intensive as BNs become larger. In order to turn prune
sampling into a faster sampling method on large BNs, one could consider to curb |SCnp

x
|

up to an arbitrary set size to save computation time. �is approach can be interpreted
as a trade-o� between accuracy and computational. �is idea and its implementation is
discussed in the next section.

7.2 Hybrid forward sampling

In this section, an approach is discussed, implemented and tested to mitigate excessive
time consumption of prune sampling on large BNs. As illustrated in the previous section,
the extreme computation time of prune sampling is caused by the exhaustive listing
of all feasible states in a pruned network. An adjusted version of prune sampling that
makes use of Hybrid Forward Sampling (HFS) is introduced to limit the amount of
listed feasible solution to a pre-determined amount.

�e core idea to limit the computation time of prune sampling for large BNs, is to
limit the size of set SCnp

x
to an arbitrary pre-determined �xed amount |V |. �e size of

V ⊂ SCnp
x

can be regarded as a trade-o� between complete uniformity (see subsection
4.3.2) and computational e�ort. Besides, the existing prune sampling implementation –
used to create the results in chapter 6 – makes use of regular forward sampling (see
de�nition 4.8) to �nd feasible states in a pruned network. As discussed in section 4.3.1,
regular forward sampling could generate biased samples. To avoid this bias, adjusted

56

HFS prune sampling is used to generate candidate states of the BN. Subsequently, from
this reduced set V a state of the BN is randomly chosen to be the next sample.

Taking into account the results regarding time consumption results from Table 6.3
and the set size statistics from the previous section, there is no need to reduce the
fast computation time of prune sampling on small BNs. For medium sized BNs, time
consumption is neither excessive and experiments on this type of BNs are only con-
ducted in order to signify the trade-o� between accuracy (complete uniformity) and
computational e�ort. On this class of BNs, experiments are conducted with the adjusted
HFS prune sampling method with |V | = 10, 100. �e adjusted prune sampling method
is expected to provide most added value on large BNs. For this type of BNs, experiments
are conducted with the adjusted HFS prune sampling method with |V | = 100, 1.000.

�e selection for the the maximum set sizes of V are based on the distributions of the
set size |SCnp

x
| as given in section 7.1. Our main interest is to what extent this adjusted

version of prune sampling reduces its time consumption on large BNs and the e�ects
on its accuracy. Since is this adjusted version HFS is used, it can be expected that more
near-uniform samples are amongst the feasible states and hence the set tends to be
less biased. So, increasing accuracy is expected due to HFS. However, curbing the size
of |SCnp

x
| to |V | deteriorates the uniformity principle of prune sampling . Hence, |V | is

expected to be the main parameter to tune accuracy of the adjusted HFS prune sampling
method, i.e. accuracy is expected to increase as |V | increases.

�e results of the adjusted HFS prune sampling technique, in terms of accuracy, are
presented in Figure 7.3. It turns out that adjusted HFS prune sampling on all type of
medium and large BNs is inferior to Gibbs sampling and regular prune sampling. �is
result emphasizes the importance of exhaustive listing of all feasible states in a pruned
network. From the accuracy plots in Figure 7.2, it becomes clear that limiting the set
size of SCnp

x
e�ects the accuracy of the pruning technique drastically.

Some additional insights can be gained from these results. A rather remarkable obser-
vation is that for all BNs displayed in Figure 7.3, except the Win95pts BN with 25%
available evidence, adjusted HFS prune sampling with |V | = 10 is just as accurate as
adjusted HFS prune sampling with |V | = 100 or with |V | = 1.000. On the Win95pts
BN with 25% evidence available, adjusted HFS prune sampling with |V | = 100 even
performs be�er than adjusted HFS prune sampling using |V | = 1000. �is is in contrast
to our expectations, since it is expected that adjusted HFS prune sampling will be more
accurate as |V | increases. �is causality is not present in the results and hence the pre-
sumed trade-o� between computational e�ort and uniformity should be reconsidered.

57

(a) Alarm 0% evidence (b) Win95pts 0% evidence

(c) Alarm 25% evidence (d) Win95pts 25% evidence

(e) Grid 5x5 50% determinism (f) Grid 8x8 50% determinism

Figure 7.3: Consistent underperformance of adjusted HFS prune sampling. �is ad-
justed version of prune sampling curbs |SCnp

x
| to an arbitrary size |V |. �is prevents

exhaustive listing of large SCnp
x

and therefore saves substantial computation time.
However, limiting this set’s size comes with a price: next states of the BNs are chosen
less uniform randomly. Adjusted HFS prune sampling can therefore be seen as a
trade-o� between uniformity (accuracy) and computational e�ort.

58

Sampling method
Bayesian
network Prune Prune hybrid 10 Prune hybrid 100 Prune hybrid 1000

Alarm ev0 3.56 2.19 3.12 x
Win95pts ev0 49.85 10.97 27.36 44.19
Alarm ev25 2.83 1.93 2.59 x
Win95pts ev25 40.03 9.75 22.56 34.45
Grid 5x5 det50 2.42 1.38 2.06 x
Grid 8x8 det50 105.17 19.96 51.44 87.62

Table 7.1: Time consumption of adjusted HFS prune sampling to reach σ2(t) = 0.01.
As a consequence of limiting the set size of V to 10, 100 or 1.000, adjusted HFS prune
sampling is a less time-intensive method than regular prune sampling on medium and
large sized BNs. �ough, this advantage is outweighed by a signi�cant disadvantage:
due to the capped set size of |V |, samples are chosen signi�cantly less uniform
randomly. Hence, adjusted HFS prune sampling is less accurate than regular prune
sampling.

�e results of the adjusted HFS prune sampling technique in terms of time consumption
are presented in Table 7.1. Again, as in section 6.5, it is measured what time it takes to
generate t ∈ (0, 25.000) samples such that σ2(t) < 0.01. For all versions of adjusted
HFS prune sampling with either |V | = 10, 100 or 1.000, the adjusted pruning technique
is faster than regular prune sampling. �e most time is gained when V is small. As |V |
increases, the time consumption of adjusted HFS prune sampling increases too.

It should be noted that on large BNs the time gain for adjusted HFS prune sampling
with |V | = 1.000 is rather low. Compared to regular prune sampling on the Win95pts
BNs, reducing time by approximately 10% is not that signi�cant since even adjusted
HFS prune sampling with |V | = 10 is not close to the faster other sampling methods
(see Table 6.3). A rational for this could be that the initialization step of the pruning
technique is quite lengthy. So, adjusted HFS prune sampling saves time by dismissing
the largest sets SCnp

x
. �ough, it still needs a signi�cant amount of time by �nding an

initialization of the BN.

To conclude, the implemented HFS prune sampling method showed unexpected and
poor performance, both in terms of accuracy and time consumption. It is highly
peculiar that the accuracy of adjusted HFS prune sampling is (almost) invariant for
the set size |V |. Besides, the time gain of adjusted HFS prune sampling turned out to
be insu�cient to compete with the fastest sampling methods like backward sampling,
likelihood weighting and SampleSearch. So, the gains in terms of time consumption
are outweighted signi�cantly by the loss in accuracy. Hence, adjusting prune sampling
by making use of HFS to limit |SCnp

x
| turns out to be unfruitful.

59

Chapter 8 Conclusion

In this thesis, the performance of the recently introduced prune sampling algorithm [1]
is characterised and is compared to conventional sampling methods. �is is done by an
experimental analysis. Five di�erent sampling methods are evaluated in terms of three
performance indicators (accuracy, rate of convergence and time consumption) on 12

distinct Bayesian networks. In total 60 experiments are conducted with regular prune
sampling and 12 experiments are ran with an adjusted version of prune sampling. For
each performance indicator conclusions are given regarding the performance of prune
sampling.

8.1 Accuracy

Prune sampling turns out to be a broadly applicable but inaccurate approximate (MCMC)
sampling method. On all types of BNs, both deterministic and real-world BNs, prune
sampling always converges to the desired posterior distribution. �is is noteworthy
since convergence to the correct posterior distribution is not trivial. For example, on
deterministic BNs, the widely used Gibbs sampling methods fails to converge to the cor-
rect posterior distribution and converges to di�erent incorrect posterior distributions.
Prune sampling is devised in order to guarantee convergence to the correct posterior
distribution, but its convergence is clearly not as accurate as other sampling methods if
they do converge correctly. So, in terms of accuracy prune sampling outperforms Gibbs
sampling on so-called block-shaped and deterministic BNs, but it is not competitive
compared to other (MCMC) sampling methods like backward sampling, likelihood
weighting and SampleSearch.

A reason for the weak accuracy of prune sampling can be the deviation amongst various
approximations generated by the sampling method. Figure A.1 in Appendix A displays
N = 100 simulations of T = 25.000 samples generated by prune sampling on the
Grid 8x8 BN with 50% determinism. Note that in comparison to N = 100 simulations
of T = 25.000 samples generated by SampleSearch (as displayed in Figure 5.2) the
collection of prune sampling has larger deviations amongst its individual samples. A
reason for this deviation could be that T = 25.000 samples is rather a small amount
for the pruning method. It could be true that as T is chosen to be larger than 25.000,
the samples generated by prune sampling get more close to each other as a function
of T and hence that the AHD with respect to the one-marginal variable of interest
gets smaller. Some additional and conclusive notes about prune sampling’s rate of
convergence are given the next section.

60

8.2 Rate of convergence

Prune sampling converges relatively slow to the desired posterior distribution. As a
result of Table 6.2, it becomes evident that on eleven out of twelve BNs prune sampling
converges as slowest to the desired posterior distribution (se�ing aside the failure of
Gibbs sampling on deterministic BNs). �is observation is in line with the hypothesis
from the previous section. Since prune sampling tends to have the slowest rate of
convergence, it might hold that T = 25.000 is too small for the pruning technique
to generate Markov chains that are able to compete with the accuracy of the other
established (MCMC) sampling methods. In an early phase of this research, experiments
were conducted with T = 10.000. It quickly became clear, due to the large deviation
amongst the simulations, that T = 10.000 was too small to obtain the performance of
prune sampling in the limit of in�nite simulation time, extrapolated from those short
simulations. For that reason, further experiments were conducted with T = 25.000

but there seems to be a strong rationale to evaluate the accuracy of prune sampling for
T > 25.000.

8.3 Time consumption

In terms of time consumption, prune sampling is the fastest method on all small BNs.
However, as the size of the BNs grows, prune sampling becomes a slower (MCMC)
sampling method. As can be seen in Table 6.3, prune sampling is the slowest method
on all medium BNs and except SampleSearch the slowest method on all large BNs. �e
cause of this mixed performance can be found in the fact that all feasible states in a
pruned network are computed (see section 7.1). A solution to mitigate this drawback of
prune sampling is proposed, tested and reviewed in section 7.2. �is adjusted version
of prune sampling limits the enumeration of all feasible states in a pruned network in
order to save computation time. However, this comes with a price: curbing the set size
of candidate feasible states does not guarantee complete uniformly sampling from the
reduced sample space. �erefore, this adjusted version of prune sampling is (even) less
accurate than regular prune sampling. In this respect, this adjusted version of prune
sampling can be seen as a trade-o� between accuracy and time consumption. But as
discussed in section 8.1, regular prune sampling can not a�ord a deterioration of its
performance in terms of accuracy.

To conclude, being devised speci�cally to deal with determinism, prune sampling
thwarts its expectations. Particularly with its performance on deterministic Grid BNs.
Prune sampling is consistently fast on all types of small BNs. However, on this type of
BNs its accuracy is again signi�cantly inadequate. On all other BNs, prune sampling
shows serious shortcomings in terms of all three performance indicators. Hence, overall
it needs to be concluded that prune sampling is not a competitive sampling method in
comparison to established (MCMC) sampling methods.

61

Appendix A

Figure A.1: N = 100 simulations of T = 25.000 samples generated by prune sampling
on the Grid 8x8 BN with 50% determinism. Note that in comparison to N = 100
simulations of T = 25.000 samples generated by SampleSearch (as displayed in Figure
5.2) the collection of prune sampling has larger deviations amongst its individual
samples. Hence, the AHD (measure for accuracy) of the one-marginal variable of
interest tends to be larger for prune sampling than for SampleSearch.

62

List of acronyms and notation index

Acronyms

AHD Average Hellinger Distance
BN Bayesian network
CPT Conditional Probability Table
DAG Directed Acyclic Graph
HFS Hybrid Forward Sampling
IID Independent and Identically Distributed
MCMC Markov chain Monte Carlo
MLN Markov Logic Network
ROC Rate of Convergence
SAT Satis�ability Problem

Notation

C a collection of (arbitrary) CPT-labels
H number of steps needed to make a pruned collection Cp

{x,y},h and a non-pruned
collection Cnp

{x,y},h, such that x can make a transition to y

N total number of MCMC simulations
P probability distribution over the BN, induced by its CPTs
SC all feasible states of the BN which could be created from C

T total number of samples
V set of predetermined �xed size, contains feasible states generated by HFS
Xi variable in a BN
Y random variable to be estimated by MCMC simulations
Cnp
x set with non-pruned CPT-labels, the BN is pruned around the state x

Cp
x set with pruned CPT-labels, the BN is pruned around the state x

Cx CPT-labels corresponding to state x of the BN
C set with labels of all CPT-entries of all variables in the BN
Ω state space, all possible (not necessarily feasible) states of a BN
U(·) uniform distribution over a set
E set of evidence
x set of assigned values to random variables
yi individual sample in the collection of samples, i.e. yi ∈ Y

63

δ parameter in the polynomial expansion of g(t) = σ2(t)
√
t, used to tune the convex-

and concaveness of g(t)

γ acceptance probability in Metropolis sampling
µ̂ estimation of µ by N MCMC simulations
⊥⊥ symbol for independence
X set of random variables
x′ candidate sample
x(t) sample of a BN at step t
A acceptance probability of proposed transition in MCMC simulation
Cnp
{x,y},h h-th step in creating a set with non-pruned CPT-labels Cnp

{x,y}, such that x can
make a transition to y

Cp
{x,y},h h-th step in creating a set with pruned CPT-labels Cp

{x,y}, such that x can make a
transition to y

Cnp
{x,y} set with non-pruned CPT-labels, the BN is pruned around the states x and y

Cp
{x,y} set with pruned CPT-labels, the BN is pruned around the states x and y

G Bayesian network structure, a directed acyclic graph
Il(G) local independencies of G
N topological ordering of nodes in the BN
S set with all samples generated by a sampling method
T Q proposal distribution in MCMC simulation
T transition model
X set of all variables in the BN
Y collection of samples generated by a sampling method
? non-zero CPT-entry
NDXi non-descendants of variable Xi

PaXi direct parents of variable Xi

Val(Xi) values that a random variable Xi can take
P̃ estimation of probability distribution P
ck(li) CPT-entry corresponding to label k(li)

f linear function ��ed to the simpli�ed polynomial expansion g plo�ed in terms t−δ
g(t) simpli�ed polynomial expansion of σ2(t)

√
t

h indexation of the number of steps needed to make a pruned collection such that x
can make a transition to y, 1 ≤ h ≤ H

i indexation of variables in a BN, 1 ≤ i ≤ n
k(li) label of all entries in the CPT corresponding to variable Xi

k used to denote the abbreviation of a variable name in a BN
li indexation of the entries in the CPT of variable Xi, 1 ≤ l ≤ V al(Xi)

m indexation of V al(Xi), i.e. the number of column entries in the CPT corresponding
to variable Xi

64

n total number of variables in a BN
t indexation of samples, 1 ≤ t ≤ T
wx assigned weight to sample x according to likelihood weighting
xi assigned value to random variable Xi

α′ candidate proportionality constant during the procedure to determine the ROC α

α quanti�es the proportionality constant of the MCMC sampling technique that
belongs to the convergence class O(t−1/2), used as indicator of the ROC

βi coe�cients in the polynomial expansion of the standard deviation σ2(t)
µ expected value of Y
σ2(t) standard deviation of a (MCMC) simulations at sample t

65

References

[1] Frank Phillipson, Jurriaan Parie, and Ron Weikamp. Prune Sampling: a MCMC
inference technique for discrete and deterministic Bayesian networks. arXiv
preprint arXiv:1908.06335, 2019.

[2] Maáyan Fishelson and Dan Geiger. Optimizing exact genetic linkage computations.
Journal of Computational Biology, 11(2-3):263–275, 2004.

[3] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible
inference. Elsevier, 2014.

[4] F Phillipson, ICL Bastings, and N Vink. Modelling the e�ects of a CBRN defence
system using a Bayesian belief model. 2015.

[5] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and
techniques. MIT press, 2009.

[6] Hoifung Poon and Pedro Domingos. Sound and e�cient inference with prob-
abilistic and deterministic dependencies. In AAAI, volume 6, pages 458–463,
2006.

[7] Vibhav Gogate and Rina Dechter. SampleSearch: importance sampling in presence
of determinism. Arti�cial Intelligence, 175(2):694–729, 2011.

[8] Nasser M Nasrabadi. Pa�ern recognition and machine learning. Journal of
electronic imaging, 16(4):049901, 2007.

[9] �omas Dyhre Nielsen and Finn Verner Jensen. Bayesian networks and decision
graphs. Springer Science & Business Media, 2009.

[10] Gregory F Cooper. �e computational complexity of probabilistic inference using
Bayesian belief networks. Arti�cial intelligence, 42(2-3):393–405, 1990.

[11] Judea Pearl and H Gener. An improved constraint propagation algorithm for
diagnosis. In International Joint Conference on AI, Milano (Italy), pages 1105–1111,
1987.

[12] Robert Fung and Kuo-Chu Chang. Weighing and integrating evidence for stochas-
tic simulation in Bayesian networks. In Machine Intelligence and Pa�ern Recogni-
tion, volume 10, pages 209–219. Elsevier, 1990.

[13] RD Shachter and M Peat. Simulation approaches to probabilistic inference for
general probabilistic inference on belief networks. Proceeding• of the Fi�hWorhhop
on Uncertainty in Arti�cial Intelli gence, Detroit, Michigan, 1989.

66

[14] R Martin Chavez and Gregory F Cooper. A randomized approximation algorithm
for probabilistic inference on Bayesian belief networks. Networks, 20(5):661–685,
1990.

[15] Michael Shwe and Gregory Cooper. An empirical analysis of likelihood-weighting
simulation on a large, multiply connected medical belief network. Computers and
Biomedical Research, 24(5):453–475, 1991.

[16] Robert Fung and Brendan Del Favero. Backward simulation in Bayesian networks.
In Uncertainty Proceedings 1994, pages 227–234. Elsevier, 1994.

[17] Vibhav Gogate and Rina Dechter. Samplesearch: a scheme that searches for
consistent samples. In Arti�cial Intelligence and Statistics, pages 147–154, 2007.

[18] Dominik Jain, Klaus Von Gleissenthall, and Michael Beetz. Bayesian logic networks
and the search for samples with backward simulation and abstract constraint
learning. In Annual Conference on Arti�cial Intelligence, pages 144–156. Springer,
2011.

[19] Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Transactions on pa�ern analysis and
machine intelligence, (6):721–741, 1984.

[20] Deepak Venugopal and Vibhav Gogate. GiSS: Combining Gibbs sampling and
SampleSearch for inference in mixed probabilistic and deterministic graphical
models. In AAAI, 2013.

[21] Julian Besag and Peter J Green. Spatial statistics and Bayesian computation.
Journal of the Royal Statistical Society. Series B (Methodological), pages 25–37, 1993.

[22] P Damlen, John Wake�eld, and Stephen Walker. Gibbs sampling for Bayesian
non-conjugate and hierarchical models by using auxiliary variables. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 61(2):331–344, 1999.

[23] WR Gilks, S Richardson, and DJ Spiegelhalter. Interdisciplinary statistics. Markov
chain Monte Carlo in practice, 1996.

[24] Wei Wei, Jordan Erenrich, and Bart Selman. Towards e�cient sampling: exploiting
random walk strategies. In AAAI, volume 4, pages 670–676, 2004.

[25] Art B. Owen. Monte Carlo theory, methods and examples. 2013.

[26] D Jain. Probcog toolbox, 2011.

[27] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of
Markov chain Monte Carlo. CRC press, 2011.

[28] Ste�en L Lauritzen and David J Spiegelhalter. Local computations with probabili-
ties on graphical structures and their application to expert systems. Journal of the
Royal Statistical Society. Series B (Methodological), pages 157–224, 1988.

67

[29] Ingo A Beinlich, Henri Jacques Suermondt, R Martin Chavez, and Gregory F
Cooper. �e ALARM monitoring system: a case study with two probabilistic
inference techniques for belief networks. In AIME 89, pages 247–256. Springer,
1989.

[30] Bruce Abramson, John Brown, Ward Edwards, Allan Murphy, RL Winkler, et al.
A Bayesian system for forecasting severe weather. International Journal of Fore-
casting, 12(1):57–71, 1996.

[31] Tian Sang, Paul Beame, and Henry Kautz. Solving Bayesian networks by weighted
model counting. In Proceedings of the Twentieth National Conference on Arti�cial
Intelligence (AAAI-05), volume 1, pages 475–482. AAAI Press, 2005.

68

	Introduction
	Bayesian networks and inference
	Goals and approach of this research project
	Overview of the thesis

	Bayesian network inference
	Bayesian networks
	Inference

	Approximate inference methods
	Sampling
	Approximate inference
	Forward and backward sampling
	Likelihood weighting
	Sample search
	Markov chain Monte Carlo simulation
	Theoretical motivation
	Metropolis sampling
	Gibbs sampling

	Prune Sampling
	Background: MC-SAT algorithm
	Notation and definition
	Regularity and reversibility

	Practical implementation
	Generate initial states
	Sampling from the pruned network

	Performance indicators
	Notation
	Accuracy: the average Hellinger distance
	Rate of convergence
	Time consumption

	Results
	Experiments
	Pitfalls of Gibbs sampling
	Simple deterministic network
	Block shaped network

	Performance on Benchmark Bayesian networks
	Accuracy on real world Bayesian networks with 0% available evidence
	Accuracy on real world Bayesian networks with 25% available evidence
	Accuracy on Grid Bayesian networks

	Rate of Convergence
	Time consumption

	Improving prune sampling
	Exhaustive listing of all feasible states in a pruned network
	Hybrid forward sampling

	Conclusion
	Accuracy
	Rate of convergence
	Time consumption

	Appendix

