
Efficient Generation of Discrete Random Variates

Bram van de Klundert

December 16, 2019

Abstract

In this paper we look at some of the fastest algorithms to generate
discrete random variates. All of these algorithms support updating the
rate of an event after the data structure has been build. As part of
this study we propose extensions for the Table method and for the Alias
method which allow these algorithms to perform updates on events. We
show that using these extensions the Table method can be updates in
O(∆r) time. We also show that the Alias method can do updates bounded
by C ·rave in O(1) amortized time, where rave is the average rate of events
in the data structure.

To back up these theoretical results an experimental evaluation of the
algorithms was executed. In this evaluation we scale the number of events,
average rate of events and variance of the rate of events to see how each
of the algorithms react to these changes.

1 Introduction

Generating discrete random variates is a common problem in simulations. It
occurs in many fields including but not limited tot biochemistry [6] and chem-
istry [2]. This problem has been studied thoroughly. This resulted in a num-
ber of good algorithms for this problem like the Rejection method [7], Table
method [3], Square histogram method [10] and the Alias method [9]. This last
one allows us to generate variates in O(1) time after O(n) preprocessing time
which is clearly optimal.

Maurer [5] studied a variant where we generate variates without replacement.
For this problem they developed their own algorithm namely the Differential
Search Tree method. They mention that the tree based method by Wong and
Easton [11] can be used for the same problem. They also suggest that the Table
method could possibly be adapted to allow for updates.

There is another variant of this problem which has been studied a lot less. In
this variant the probabilities of each event can change. This variant thus requires
algorithms to allow for updates, additions and removals of events. Many of
the current algorithms used to generate discrete random variates do not allow
for these operations. Two algorithms that do allow for updates are the ones
proposed by Matias et al. [4] and the Rejection method.

1



In this paper we propose two extensions to existing algorithms. First, we
extend the Table method to allow for updates to happen on the data structure.
The resulting updates can be done regardless of the number of existing events
in the data structure. The time required to complete the update scales with
the size of the update i.e., the difference between the old and new rate of the
updated item.

The second extension is for the Alias method. By forgoing the guarantee
of getting an event by pulling two random numbers we can do updates of size
O(n) in constant time.

To back up the theoretical results of these algorithms we implemented our
algorithms and a some of the fastest known algorithms. We used these to run a
number of experiments to show how these algorithms scale. In these experiments
we not only look at the number of events, but also the average rate and variance.

2 Problem description

Given is a set of N distinct events e0, . . . , en with their associated probabilities
p0, . . . , pn. We want to sample from these events such that the probability of
getting event ei is equal to pi. This version of the problem has been well studied.
Using the Alias method proposed in Walker [9] this can be done in O(1) time
after building the data structure in O(n) time.

The problem we will be focusing on in this paper differs from the above
definition in two points. We will be using rates to describe the probabilities
of the events on our data set. The rate ri of some event ei is defined as pi =
ri/rtot where rtot =

∑N
i=1 ri. For example: consider three events A, B and C.

pA = 50%, pB = 20% and pC = 30%. A representation of these probabilities
in rates could be rA = 5, rB = 2 and rC = 3. However rates can be more
flexible than that, because if we want changes in the rates to have a smaller
impact on the probabilities we can chose to represent these probabilities with
the rates rA = 25, rB = 10 and rC = 15. In this second example each point
of rate corresponds to 2% of the total, where in the first example each points
represented 10%. Using rates instead of probabilities has two large advantages.
First rates are integers, as such we do not have to worry about slight errors
due to floating points. More importantly, the rate of any event can be changed
without having to normalize all other rates. When we are using probabilities
they always have to sum to 1. So whenever we change the probability of some
event we have to normalize all other probabilities. Using rates circumvents this
issue.

The second difference is that we have some extra requirements for our data
structures. In the original problem the algorithms only have to generate a variate
while respecting the probabilities of each variate. For the data structures in this
paper we require that they support the following operations:

• Select an element, where each element gets selected with a probability
proportional to its rate.

2



• Change the rate of an element.

• Add an element to the data structure.

• Remove an element from the data structure.

Of these requirements we will mainly be focusing on the first two, as adding
and removing an element both require that we can change the rate of an event in
the data structure. This gives us three benchmarks to compare the algorithms:
build time, generation time and update time.

3 Algorithms

3.1 Rejection

The Rejection method [7] is one of the oldest algorithms for generating discrete
random variates. It is also the simplest of the algorithms we look at in this
paper.

The Rejection method works by selecting one of the events at random. We
then check if we accept this chosen event. If we do not accept it we restart.

For this algorithm we just need a list of all events with their rates.

Algorithm 1 Generating an variate using the Rejection method

1: procedure GenerateVariate
2: while TRUE do . Repeat until we select a variate.
3: Select an index i at random
4: Get an uniform random number R between 0 and 1
5: if R ≤ ri/rmax then . Check if we accept the variate.
6: return i
7: end if
8: end while
9: end procedure

3.1.1 Generating a variate

To generate an variate using the Rejection method we select an index from the
list of events at random. We then check if we reject that variate by calculating
its acceptance probability. If we reject the variate we to back to the first step
and try again. To calculating the acceptance probability for some event i we
use the formula ri/rmax where rmax is the largest rate in the data structure.

Due to the possibility to endlessly reject variates the algorithm never ter-
minates in the worse case. We can determine a worse case expected time by
assuming we always select the variate with the lowest rate. In this case the
probability of accepting will be rmin/rmax which gives us rmax/rmin expected

3



number of attempts before we accept the event. As such we can generate an
variate in O(rmax/rmin) expected time.

Due to the acceptance probability the performance of the Rejection method
depends a lot on the distribution of the rates of the events we are generating.
D’Ambrosio et al. [1] have shown that the Rejection method is expected to run
in constant time if the events follow an non-decreasing rate distribution.

3.1.2 Updating variates

Updating the rate of an event for the Rejection method is done by changing the
rate in the internal array of rates. This can obviously be done in O(1) time.

When doing updates there is one more thing we have to do: Find the new
largest rate in the data structure. If the largest rate increases we can simply take
the new rate and use that as maximum rate. When the largest rate decreases
we have two ways to handle it: first we can ignore any decreases in rmax. The
advantage of this is that we do not have to spend time finding the next largest
rate. This has the downside that the maximum rate will never decrease, which
will result in an larger expected number of tries before we accept an event.
The second solution is to search for the new largest rate whenever we lower the
largest rate in the data structure. While this keeps rmax at the lowest possible
values, searching for the largest rate in the data structure takes O(n) time. To
mitigate this large cost we could run this update once every n updates such that
we still end up with a O(1) amortized expected update time.

For our experiments later in the paper we chose to ignore reductions to the
maximum rate. Due to the setup of the experiments the downside of this choice
does not come up during the experiments.

3.2 Alias

The Alias method was proposed by Walker [9] and is closely related to the
Rejection method. In the Alias method we also pick one of the indexes at
random and check if we accept them. The difference comes when we reject the
event. In the Alias method we precompute an alias for each index. If we reject
an event we select this alias instead of restarting.

This is accomplished by computing n blocks. Each of these blocks contains
two events, an event and their alias. As we have n blocks each of these represents
an rate equal to average rate (rave) over all events.

As an example assume we have 3 variates A, B and C. A has a rate of 70,
B a rate of 20 and C a rate of 30. In the Alias data structure we would have
3 pairs, where each pair has a rate of 40 (rtot/n). To form these pairs we only
have one option: AB, AC and AA. To balance out the probabilities the first
pair AB has a 20/40 = 50% chance to select A and a 50% chance to select
B. Similarly AC has an 25% chance to select A and 75% chance to select C.
Finally there is also a block which only contains rate from A thus has a 100%
chance to select A.

4



Figure 1: We build the Alias structure from three events. A with rA = 70, B
with rB = 20 and C with rC = 30. We first take B and complete block 1 using
weight from A. After that we take C and finish the block with some weight
from A. After this step we are left enough rate from event A to fill the last
block.

3.2.1 Data structure

In the Alias method we keep track of three things for each block: Which event
is in the block, the alias of the block and the probability of accepting the event
if we select the block. As such the data structure consist of three arrays of size
n.

To fill these arrays we use Algorithm 2 proposed by Vose [8] which takes
O(n) time. For this algorithm we split our events into 3 groups. An under full
group containing all events with rate less than the block size. An over full group
with all events which have more rate than the block size. The last group consists
of events with rate equal to the block size. We start with the last group, as these
are equal to the size of a block we can simply add these events as their own
blocks. For the remaining blocks we take an event from the small list and add
it to an block. Then we take an event from the big list and fill the remaining
space in the block with that event. We then check if the remaining rate of the
event is larger or equal to the block size. If it is we return it to the over full
group. Otherwise we put it in the under full group.

This algorithm works perfectly in theory where we have infinite precision on
floating point numbers. Unfortunately this is not the case when we implement
this using most programming languages. The main thing that can go wrong is
events which are exactly the block size being assigned to the small list on line
3 and 12. To prevent this we need to slightly modify the algorithm. On line 6
we change the condition of the while loop to check if both the small and big list
have items left. If the big list ever empties before the small list we have at least
one small item with size blocksize. In this case we need to add items from the
small list to the data structure.

3.2.2 Generating variates

Generating an variate using the Alias method similar to the method for the
Rejection method. We start by selecting an event ei at random. We then check
if we accept this event by generating an uniform random number between 0 and

5



Algorithm 2 Building the Alias data structure

1: procedure buildAlias(events)
2: blockSize← ave(events)
3: Fill small with all events e with re < blockSize
4: Fill big with all events e with re > blockSize
5: Add a block for each event e with re = blockSize
6: while small is not empty do
7: b← big.pop() . Pop the last element of big.
8: s← small.pop() . Pop the last element of small.
9: Add the rate of s to an new block b

10: Add b as alias for block b
11: Reduce the rate of b by blocksize− rs
12: if rb < blockSize then . Check if b is larger than the block size.
13: small← b . If not add b to small.
14: else
15: big ← b . Otherwise add b to big
16: end if
17: end while
18: . All remaining items in big should be of size blockSize.
19: while Big is not empty do
20: g ← big.pop()
21: Add a block for event g
22: end while
23: end procedure

6



1, if that number is smaller than ri/rave we accept it. If we reject the variate
we simply return the corresponding alias.

3.2.3 Updating

The main downside of the Alias method is that there is no known way to effi-
ciently update one of the variates in the data structure. This is due to the fact
that all blocks in the Alias data structure have to be the same size. Whenever
we change the rate of one of the variates we would increase or decrease the size
of one block. To correct for this we would have to re balance all other blocks. If
we have to modify all blocks we might as well rebuild the entire data structure
which takes O(n) time.

Reducing the time bound on accepting an variate in O(1) to O(1) expected
time it is possible to update the Alias method. To do this we make it possible for
the alias to be rejected. This allows us to lower the amount of rate in a block of
the Alias method without having to rebuild the entire structure. Because blocks
do not have to be completely filled now we can also add weight to a variate by
creating a new block and partially filling it. The downside of both these updates
is that they increase the expected time use to generate a variate.

The probability of restarting added by each update depends on the number
of events in the data structure. Increasing weight adds uncertainty of at most 1
block, by adding a block of rate 1. Removing an item can add more uncertainty,
but on average it will remove rave weight, which is equal to the size of one block.
This means that in the expected worse case scenario after 1

2n updates, we have
to on do on average two attempts before we generate an variate. Thus if we
rebuild every 1

2n updates we can generate variates in O(1) expected time.
This extended Alias algorithm has some nice properties.

Theorem 1. Given a data structure for the Alias extended algorithm, we can
increase or decrease the rate of a single event in this data structure in O(C)
amortized worse case time as long as the change of rate is bounded by C · rave
where where C is some constant and rave is the average rate of events in the
data structure.

Proof. For increases in rate this is easy to show. The data structure has blocks
of size rave. So we can add a rate of C · rave by adding C blocks to the data
structure.

Decreases require the following observation: After building the data struc-
ture the average number of block an containing a given event has an upper
bound of 2. This follows from the facts that there are n blocks and each block
contains at most 2 events. There for right after we build the data structure
we have to alter an average of 2 blocks to do the maximum possible decrease
in rate. After this each update can add at most C block to the data structure
which we can remove in an equal amount of time.

7



Algorithm 3 Updating the Alias Enhanced data structure

1: procedure updateAlias(e, newWeight)
2: ∆r ← events[e]− newWeight . Calculate the change in rate
3: if ∆r > 0 then . The weight is increasing
4: while ∆r > blockSize do
5: . Add blocks till ∆r can be contained in one block.
6: Add a full block b of event e
7: Add block b to the list of block containing e
8: ∆r ← ∆r − blockSize
9: end while

10: . Add the remaining rate in ∆r as another block.
11: Add a block b of event e with re = ∆r
12: Add block b to the list of block containing e
13: else if ∆r < 0 then . The weight is decreasing
14: . Repeat until we removed all rate in ∆r.
15: while ∆r < 0 do
16: Get a block b containing e
17: if ∆r > the rate of event e in b then
18: Reduce ∆r by the rate of e in b
19: Remove event e from b
20: Remove event b from the list of event containing e
21: else . ∆r is smaller than the rate of e in b
22: Reduce the rate of e in b by ∆r
23: ∆r ← 0
24: end if
25: end while
26: end if
27: end procedure

8



3.3 MVN

A very promising data structure was proposed by Matias et al [4]. This data
structure splits all events into ranges. Each range i consist of events with rate
in [2i−1, 2i). The size of this range was chosen such that the largest rate in the
range was at most two times the size of the smallest range. This way we can
use the Rejection method to select one item in the range in constant expected
time.

By stacking these ranges in multiple layers we create a forest of trees in which
we can search very quickly. We can build this forest in O(n) time. With the
modification this data structure also allows for O(log∗ n) updates and generation
of variates. In the remainder of the paper we will be using the abbreviation MVN
to refer to this algorithm.

3.3.1 Constructing the forest

The MVN data structure consists of an forest of trees, a list of root nodes for
each level and a list of the weight of level. While we construct the forest we add
all root nodes to the correct lists.

To build the trees we start form the bottom on level 0. Level 0 contains all
events in the data structure. To build level 1 we group the level 0 events in
ranges. Range i contains all events with rate within [2i−1, 2i). Each of these
ranges gets a rate equal to the sum of the rates of all events in the range. To
create level 2 ranges we do the same but on the ranges of level 1. There is one
exception: If a range only has one child we consider it a root node and do not
use it to build the next level. Instead we add the root node to the list of root
nodes for this level and add the rate of this range to the rate of this level.

By repeating the above steps we end up with a number of trees, each repre-
sented by a root node.

Algorithm 4 Generating an variate using the MVN method

1: procedure GenerateVariateMVN
2: Select a level L based on the total rate of that level
3: Select a root node Node from level L based on the rates of the root node.
4: while Node.level > 0 do . Repeat until we reach level 0.
5: Uniformly select a range Cr from the children of Node
6: Get an uniform random number R between 0 and 1
7: if R ≤ rCr/rNode then
8: Node← Cr
9: end if

10: end while
11: return The event index of Node
12: end procedure

9



3.3.2 Query

To generating a random event from the data structure we have to go through
three steps. We will look at these steps in further details later in this section

• Select a level.

• Select a tree from the level.

• Walk down the tree to select an event.

For the first step we select one of the levels where the probability of selecting
a level depends on the rate of all the trees in that level. This means that the
probability to select level i is equal to the sum of the rate of all root nodes
on level i divided by the total rate of the data structure. The easiest way to
implement this is by selecting a uniform random number between 0 and rtot.
We can than loop over all levels, check if the rate of the level is lower than the
random number. If it is we select that level. When the random number is larger
than the rate of the level we subtract the rate of the level from the random
number and move on to the next level.

Once we have a level we do the same to select a root node. But this time
we want to select some tree t from level l. The probability of selecting t is rt /
rl. We can use the same strategy to select the root node as we did for selecting
a level.

The final step is to traverse the tree until we reach one of the variates. To
do this we will use the Rejection method on each level of the tree to select one
of the children until we get to on of the events at level 0. Because each range ri
has a limit on the rate of the ranges that can be inside it of [2i−1, 2i) we know
that the largest value in the range can at most be twice as large as the smallest
one. This property allows us to select a child at random in O(1) expected time
using the Rejection method. As the depth of the trees is bounded by log∗ n we
can generate one of the variates in O(log∗ n) time.

3.3.3 Update

Whenever we change the rate of an event or range there are six possible situa-
tions:

• The rate of the event stays within the same range as it was before the
update.

• The rate of the event changes such that it falls its outside current range
and there exist some range that can now contain it.

• The rate of the event changes such that it falls its outside current range
and there is no range that can contain it.

• The range was a root node and after the update it rate does not fall within
another range.

10



• The range was a root node and after the update the rate does fall within
another range.

• The range was a root node but its last member was removed.

Whenever we update an range we also have to update both the range that
used to contain it and the range that now contains it. This way the rates of
all ranges stays up to date. In the worse case we split at every over the log∗ n
levels of the tree, resulting in an (2log

∗ n) expected worse case update time.
Whenever we change the rate of a root node or add/remove a root node we

have to update the list of root nodes on a level and the associated rate of the
level.

3.3.4 Getting down to O(log∗ n)

With the implementation of the update as described in the update section an
update requires O(2log

∗ n) expected worse case time. The main cause of this
time bound is the possibility of ranges changing parents. Whenever an range
switches from one parent to another we create two update paths we have to
follow upwards.

To improve this Matias et al. proposed that we introduce two tolerances in
the algorithm. First, when we determine if a root has the correct parent we
use the bounds [(1 − b)2i−1, (2 + b)2i−1) for range ri. In this formula b has a
value 0 ≤ b < 1. This will allow the algorithm some slack before we have to
move a range to a different parent. The second addition is a change to how we
determine if a range becomes root node. In the original algorithm any range
with only 1 child is a root node. We change the requirement to become a root
node to having less than d = 1/2((2+b)/(1−b))22c where c is some non negative
integer.

By introducing these extra tolerances we can drastically change the number
of expected steps required in each update. The base algorithm is equivalent to
setting b = 0 and c = 0. In their paper Matias et al. show that by increasing
these tolerances to b = 0.4 and c = 2 we can improve the time bound for
generating and updating an event to O(log∗ n) amortized expected time.

These modifications also have a downside, in the paper they mention that
these modifications add a 1/b multiplicative factor to the generation time due
to the increased bounds for the Rejection method. Similarly there is an log d
additive factor added to the generation time due to a larger number of root
nodes. They suggest that for practical purposes, where the worse case time is not
essential, an implementation can use the original algorithm or only implement
the change to the maximum size of a root node.

For out experiments we compare both the algorithm without tolerances (b =
0 and c = 0) and with the suggested tolerances (b = 0.4 and c = 2)

11



Figure 2: This figure shows the data structure from the Table method containing
three events A, B and C. rA = 55, rB = 23 and rC = 112. Before each line
of the lookup table there is the total rate of that level. Level 1 has a total rate
of 80. For each of the events on each level we have a linked list containing the
indexes of all item of the given event on that level.

3.4 Table Method

The Table method was proposed by Marsaglia [3]. It is based on the idea that
we can pick an element from an array in O(1) time. We can use this to build
a lookup table to generate random variates. To do this we create an array of
size rtot =

∑N
i=0 ri. To this array we add elements such that event ei has ri

elements.
To generate a random variate we start by generating an uniform random

number r between 0 and rmax. We then lookup the event we generate by
looking at index r in our lookup table.

The obvious downside to this setup is that is requires an array of size rtot. In
his paper Marsaglia aims to resolve this issue by compressing the data structure.

3.4.1 Compressing the lookup table

To improve the space requirement on the data structure we can compress the
lookup table. To this end we will group items into multiple levels. Where items
on higher levels represent more rate. We do this using Algorithm 5

Algorithm 5 Compressing the the lookup table

1: l← 0
2: while There is an event with more than 10 items at level l do
3: Remove 10 items from an event e
4: Add 1 item of e to level l + 1
5: if There are no events with more than 10 items at level l then
6: l← l + 1
7: end if
8: end while

This algorithm leaves us with a lookup table with log10 rmax levels. Each

12



item at level l represents 10l times in the original lookup table. By doing this
we reduce the size of the lookup table from rtot to log10 rmax · 9 items.

When building the actual data structure we do not actually want to build
the original lookup table. Instead we will directly determine how many items
we want on each level. To determine the number of items for a given event e
on level l we need to find the number of items of size 10l. Its important to note
that we should exclude those that fit on level l + 1, with an value of 10l+1. To
accomplish this we use the formula bre mod 10l+1c

To generate an variate from this new data structure we can use Algorithm
6. In this algorithm we select an position in the lookup table at random. We
then check each level if that level contains that index. Finally when we reach
the right level we select the item from the level.

Algorithm 6 Generate a variate using the Table method

1: ur ← random() . Get a uniform random value between 0 and 1.
2: rscaled ← ur · rtot . Scale it using the total rate.
3: l← The highest level of the data structure
4: while rscaled > levelWeigth[l] do . Find the correct level.
5: rscaled ← rscaled − levelWeigth[l]
6: l← l − 1
7: end while
8: return levelItems[l][rscaled/10l] . Return the event from the lookup table

Theorem 2. Given an compressed lookup table with maximum rate rmax we
can generate an variate from this table in O(log rmax) time.

Proof. When generating a variate we have to, in the worse case, look at all levels
of the data structure to see if they contain our random index. Checking if the
level contains a certain index takes O(1) time. We do this check for each of the
log10 rmax levels. Thus we can find the correct level in O(log rmax) time.

After we find the correct level we have to select the correct index form the
array on this level. This also takes O(1) time.

Thus in total we spend O(log rmax) time to generate an variate.

Up till this point we have always taken for granted that each level increase
the rate of each item by a factor 10. There is no reason to restrict ourselves to
using 10 as base factor for the Table method. By changing the base factor of
the data structure we can influence the size of each level and total number of
levels of the data structure. If we take B as base for our data structure each
level can have up to B − 1 items. The number of layers of the data structure is
equal to blogB rmaxc.

3.4.2 Update

In Marsaglia [3] only the static problem of generating variates is considered. We
have developed an extension to this data structure that allows us to modify the

13



Figure 3: This image shows part of the data structure from Fig 2. We only show
the lookup table on level 0 and the index arrays from A and C. It shows what
happens if we lower the rate of A by one. The last item from A gets replaced
by and item from C as it happens to be the last in the lookup table.

rate of any event in O(log ∆r) amortized expected time where ∆r is the change
in rate of the update.

When doing updates to the Table method we have to add and remove a
number of items for a given event. To do this efficiently we need to be able to
quickly find items of that event. Secondly we need to remove items in the middle
of an list. To solve the first point we maintain an linked list of indices of items
for each event on each level. This way we can, given an event and level, find an
item to remove in O(1) time. The second point is solved by using a simple trick.
If we want to remove an item in the middle of an list we move the last item in
the list to that location. Then we remove the last item. As removing the last
index only takes O(1) time this allows us to remove any element in the array
in O(1) time. The second solution does add some complications for our linked
list of indices as we now have need some way to quickly update the linked list.
To find the index of an item on the linked list we store an reference to the list
item with each item. This way we can quickly find the item in the linked list
we have to update.

These modifications result in Algorithm 7. All the linked lists for together
store one item for each item in the data structure. Thus the linked list uses
O(n log rmax) space. For each level the new or old rate is in we can add or
remove up to B − 1 items. As the number of levels is equal to 1 + logB rmax.
An update can take at most O(log rmax) time.

Theorem 3. Given an compressed update table with the modifications in Al-
gorithm 7 we can do an update of size 1 on a single event in O(1) amortized
time.

For the proof of this result we will first need to show that we can do in-
crements and decrements of weight 1 in constant time. Following that we will
introduce an modification for the Table method that will allow us to combine

14



Algorithm 7 Updating the Table method

1: procedure UpdateTable(e, newWeight)
2: updateDepth← the highest level we have to update
3: for i← 0 . . . updateDepth do . Loop over all levels
4: newLevelWeight← the new rate of e on level i
5: newLevelItems← the difference in items of e on level i
6: if newLevelWeight > rl,e then . We have to add items.
7: for j ← 0 . . . newLevelItems do . Do newLevelItems times.
8: Add an item to the lookup table on level i for event e
9: Add the item to the list of items for event e

10: end for
11: else . We have to remove items
12: for j ← 0 . . . abs(newLevelItems) do
13: Get an item from e at depth i
14: Remove the item from the list of items of event e.
15: Remove the item from the lookup table.
16: end for
17: end if
18: Update the weight of the level
19: end for
20: end procedure

these two proofs such that it will work for all updates of size 1.

Lemma 1. Given an compressed update table with the modifications in Al-
gorithm 7 we can process an increase in rate of 1 on a single event in O(1)
amortized time.

Proof. To show this we will be using the accounting method. We take the price
of adding or removing one item from the data structure as 1 coin. We will pay
2 coin whenever we add an item to the data structure, one to add the item, the
other as a down payment for later. Assume we start with an empty table. After
adding 9 items the 10th item will overflow the level. Here we will use our saved
up 9 coins to remove all 9 items we have added on level 0 so far. Following this
we will add 1 item to level 1 and do a down payment of 1 coin. Because we
always put down a coin whenever we add an item on any level removing the
item is always free. This way any increase of 1 takes 2 coins. which shows that
it takes O(1) amortized time.

The proof that we can do decreases in O(1) amortized time is similar to the
one of Lemma 3.4.2.

Unfortunately we can construct a situation where every update is expensive.
For this we need a lookup table where level 0 contains B − 1 items of event ei.
If we add 1 item to event ei we will trigger an expensive step. After this step

15



the number of items of ei at level 0 is 0. We can now cause another expensive
step by removing 1 item from ei. We can repeat this process indefinitely.

To prevent two successive updates of size one from triggering an expensive
step we can increase the number of items of e can exist on level l. Let us
look at what happens after we do an expensive step if we double threshold on
the number of items allowed on a level. This means that a level can have up
to 2B − 1 items of any given event. After we do an expensive step due to a
decrement we are left with B − 1 items on the level. Doing an increment at
this point only increase the number of items to B. We need B more increments
before we trigger another expensive step.

Doubling the capacity of our levels does bring some more complications with
it. First of all we cannot calculate the exact number of items that should be
on a level after an update as that would limit the number of items that can
exist on the level to B − 1. Instead of the absolute number of items we look at
the difference in rate. From this difference we calculate the increase/decrease of
items on each level. The second complication is that level l− 1 can now contain
more rate than 1 item of level l. This can cause complications when removing
weight from level l. Imagine the follow scenario: We have 2 items of event e on
level l. We also have B + 3 items on level l − 1. If there is an update which
removes 3 items from level l we not only have to check the levels above l but also
those below l. This strange update where we have to check if the levels below l
contain enough weight to create another item at level l can only happen at the
highest level of an event. If there was some higher level that contains weight we
could simply do an expensive update and reduce the weight of that level. The
second condition for this update to happen is if we remove more rate than the
total rate on the highest level of the event. It is thus impossible to trigger this
update when doing updates of size 1, but any implementation of this algorithm
will have to be able to do this update.

All of these changes combined result in Algorithm 8.
Now that we can do updates of size 1 in O(1) time we can improve the

general time bound for updates. To do this we have to make the observation
that an update of size ∆r can cause an increase or decrease of at most 1 on level
(logB ∆r) + 1. As we can do any updates of size 1 in O(1) amortized time our
time bound only has to look at the updates to levels logB ∆r and below. So we
can do updates in O(log ∆r) time.

4 Experiments

Beside giving an overview of available algorithms and contributing some of our
own we want to compare these algorithms. For our experiments we have imple-
mented a number of algorithms: MVN, MVN with tolerances, Table method,
Rejection method, Alias method and Alias method with enhancement. We will
be comparing these algorithm on time to build the data structures, time to
generate a variate and time to update the rate of an event.

To ensure consistency between experiments all algorithms will be using the

16



Algorithm 8 Updating the Extended Table method

1: Determine the change in rate ∆r
2: if ∆r is positive then
3: while ∆r >blockSize do
4: Add a block of event e and probability = 1.
5: end while
6: Add a block of event e and probability = ∆r/blockSize
7: else
8: while ∆r < 0 do
9: Find a block b which contains rate of e

10: if The rate of e in b >∆r then
11: Reduce the rate of e in b by ∆r
12: ∆r ← 0
13: else
14: Remove e from block b
15: Increase ∆r by the rate of e in b.
16: end if
17: end while
18: end if

same data sets of rates for the experiments. These data sets are randomly
generated using an uniform distribution. To reduce the influence of a lucky
data set we run each of the experiments with 10 different seeds. This way each
algorithm will be run on the same 10 data sets.

As some of the algorithms use random numbers we run each of the exper-
iments 10000 times for each data set. This serves two purposes: First of all
it reduces the impact of spikes in cpu load on the running time. Secondly it
reduces the influence of some random seed.

For each of the experiments we will be looking at the scaling of algorithm
on three parameters: The number of events in the data structure, the average
rate of events and the variance in rate of the events. To manipulate the average
rate of events we scale the minimum and maximum rate by the same amount.
To manipulate the variance we start with all variates with a fixed rate. Each
following experiment will have a bigger difference between the minimum and
maximum rate. By scaling the minimum and maximum values by the same
amount we maintain the same average rate.

The first set of experiments will look at the time required to build the data
structure. As all of the algorithms are bounded by O(n) running time while
setting up the data structure we will be scaling N this experiment linearly. We
do the same for the average rate and variance.

The second set of experiments aims at comparing the time required to gen-
erate variates. To see some difference between algorithms we will be scaling the
number of events exponentially. This allows us to see some difference between
algorithms which scale logarithmic and those that are constant. The average

17



rate and variates are still scaled linearly.
The last set looks at the time required to change the rate of events. The

scaling for these will be the same as those for the generation time.
The algorithms were implemented in python 2.7. To time the running time of

each algorithm we used the timeit module. As this module disables garbage col-
lecting we can our experiments in batches of 100 runs of the algorithm. After 100
runs we restarted the program to clean up old memory. The implementation of
the algorithms is available on https://github.com/randoomed/DiscreteRandomVariates.
The computer used for the experiments was an Lenovo g505 laptop running
Ubuntu 18.04. This laptop has an A4-5000 CPU with 4gb memory.

5 Results

5.1 Building

For our first set of experiments we look at the time required to build our al-
gorithms and how this scales based on the number of events. The build times
for the algorithms are shown in fig 4a. Clearly the both the Table method and
Extended Table method take more time to build than the others. This was
expected based on the theoretical running time of O(N · rave). As the range for
rates for this experiment was 1−10000 this adds on average an 5000x multiplier
to the running time. We included Fig 4b to show the details on the scaling
on the other algorithms. The first thing that really stands out in this figure is
that the Rejection method takes nearly no time to build. When building the
Rejection method we only copy the array of events instead of building our own
internal data structure. As this is an very common operation it is most likely
implemented in a very optimized way in the compiler resulting in a very quick
operation. The last interesting observation we can make from this graph is that
the MVN algorithm with tolerances out performs the MVN algorithm without
tolerances. This increase in performance is due to ranges have a lower threshold
to become a root node.

Figure 5 shows the build time but this time when we scale the average rate
of the events. The lowest average was 6 where the events could have a rate
between 1 and 11. The highest average was 50, with an minimum value of
45 and maximum of 55. Figure 5a clearly shows that the Table method scale
linearly with the average rate until the average reaches 15 after which it slows
down. After 15 every 2 steps add 10 to the average which is exactly equal to
the base. This way it only adds on average one item to each event. The next
slowdown would probably happen around an average rate of 100. The only other
algorithm that changes with an increase in rate is the MVN algorithm. With
a higher average all events consolidate into one or two ranges. This slightly
speeds up the algorithm.

Our final experiments on build times scales the variance of the rates. The
average rate during all the runs was 5000. The minimum and maximum values
scaled from 0 away from the average up to 4500 away from the average.

18



(a) The Table method and Extended
Table method are significantly slower
than the other algorithms.

(b) Most other algorithms scale at a
similar rate with the Rejection method
being the only exception. while the
Rejection method still scales with the
number of items, it does so very slowly.

Figure 4: This figure shows the time required to build the data structures for
each of the algorithms. The X-axis show the number of events in the data
structure. The Y-axis show the average time in seconds used to build the data
structures. The Table method is significantly shower to build due to it scaling
with the rate of the events. The Rejection method on the other hand

(a) The Table method scales with the
average rate of events. At an average
rate of 15 the scaling slows down due
to the fact that a rate of 10 only using
one item. If this graph was extended
we would see another slowdown around
an average of 100.

(b) The other algorithms do not
scale significantly with the average
rate. The MVN algorithm gets slightly
faster due to more events being com-
pacted in a single range at higher rates.

Figure 5: These figures show the time required to build the data structured.
The x-axis shows the average rate of events in the data structure. The maximum
value of an event was 5 higher than the average, the minimum rate was 5 below
than the average.

19



(a) The Table method is significantly
slower than other algorithms at build-
ing, but it does not scale with the vari-
ance in rate. The large increase in
speed at variance= 0 is due to this
point being exactly at 5000. this only
adds 5 items to the data structure for
each event.

(b) The Alias method builds very
fast at 0 variance. This is be-
cause each event fills exactly 1 block.
The MVN algorithm becomes slightly
slower when the variance increases.
With a high variance the algorithm has
to create more ranges to contain all
events.

Figure 6: These figures show the time required to build the data structured.
The x-axis shows the average rate of events in the data structure. The maximum
value of an event was 5 higher than the average, the minimum rate was 5 below
than the average.

Mostly, the Alias algorithms and Table methods got an large increase in
speed with an variance of 0. For the Alias algorithms this was because all items
were equal to the average so each event turned into a block. The Table method
preforms well at 0 variance because it only has to add 5 items to the level
representing a rate of 1000 for each event.

The MVN algorithms seem to suffer a bit when the largest and lowest values
are far apart. This causes the algorithm to make some extra ranges slowing the
build time down.

5.2 Generating

The second set of experiments looks at the time required to generate an variate
from the various data structures. The first of these experiments examines how
the generation time scale based on the number of events in the data structure.
In this experiment we can see that the MVN algorithm is the slowest to generate
an variate. It also scales faster with the number of events than any of the other
algorithms. That the MVN algorithm scales worse than the others corresponds
to the theoretical result. In the second experiment on generating variates we
look at scaling based on the average rate. While none of the algorithms scale
directly based on the average rate the Rejection method actually becomes more
efficient. While the variance of the rates does not change, the percentage differ-
ence between the maximum and minimum value decreases. The Table method
also shows a small improvement in efficiency as the average rate grows. This
can be explained by more of the rate being concentrated in the highest level of

20



Figure 7: This graph hows how the time required to generate a variate scales
with the number of items in the data structure. The Y-axis show the time
required to generate 100 variates in seconds. The X-axis shows the number of
items in the data structure, note that this axis follows an exponential scale. The
MVN algorithms scale the worse of the algorithms.

the data structure. When an variate is generated we check the data structure
from high to low, so when more of the rate is in the higher levels we select a level
faster. The MVN algorithm also shows some interesting spikes. These spikes
generally correspond to powers of two. At these average rates the events get
split over multiple ranges. This effect is reduced when we use tolerances with
the MVN algorithm. The final experiment that looks at generating variates look
at the variance of rates. The two interesting results again come from the MVN
and Rejection algorithms. The Rejection algorithm suffers from an increase in
variance. The MVN algorithm has a similar problem where, when the rates
have a high variance, the algorithm has to make a lot of ranges to encapsulate
all variates.

We want to end this section with a general note on the performance of the
Alias Enhanced algorithm. All experiments were ran right after generating the
data structure. This gives it a performance similar to the original Alias algo-
rithm. In a later section we will look how the algorithm scales as more updates
are done before generating the variates. The speed at which the data structure
degrades depends on the number of events in the data structure. Figure 10
shows the average generation time for data structures with 5, 10, 15 and 20
events. The X-axis shows the number of updates done before generating the
variate. From this graph we can see that the generation time scales linearly
with the number of updates done.

21



Figure 8: The graph shows how the time required to generate a variate scales
with the average rate of the events. The MVN, Rejection and Table method all
get a slight improvement in efficiency when the average rate increases while the
variance stays the same.

Figure 9: The generation time of the Rejection method and MVN scale with
the variance in rate. For the MVN algorithm we see large spikes when a new
power of two gets included in the range of possible rates. The Rejection method
suffers from the difference between rmin and rmax increasing.

22



Figure 10: The Alias Enhanced data structure degrades as more updates are
done on the data structure. This graph shows the generation time of the Alias
Enhanced data structure after a certain number of updates. Each line represents
a different number of items in the data structure. The graph clearly shows that
if the data structure contains more items the impact of updates is lower.

5.3 Updating

For our last set of experiments we look at updating the events in the data
structure. Just like the previous experiments we compare the algorithms based
on their running time and how they scale with the number of events, average
rate and variance of the rates. The graph in Figure 11 shows the results when
we scale the number of events. From this graph its clear that the Table method
is significantly slower than the other algorithms. The Table method shows a
slight increase in running time up to N = 2560. We suspect this is due to the
test method. In the experiment we ran batches of 100 updates on the same data
structure before restarting. As the number of events increased the chance for
an update to create new arrays to fit the new data also increased. We suspect
this bump would vanish if we increased the number of updates per batch. The
MVN method shows an more interesting trend. It became more efficient as the
number of event increased. We think this happens because less ranges have to
be created when an update happens as these ranges already exist. When an
range already exists we only have to add the lower range/event.

For the experiment where we scale the average rate of events we ran two
experiments. The first experiment scaled the average rate between 6 and 50,
the second look at the average rates between 1000 and 10000. Both experiments
show similar results. Like before the Table method is quite a bit slower than
the others. This experiment also clearly shows that the Table method scales
logarithmic with the average rate of events. The MVN algorithm shows some
peeks. If we look closer at the data we notice that these peeks generally match

23



Figure 11: This graph shows how the time to do an update on the data structure
scales with the number of events. The MVN algorithm becomes more efficient
due to more ranges already existing. Thus less ranges have to be created and
deleted. The increase on the Table method is most likely due to a similar effect
where it becomes more likely that an update happens on a level that does not
exist yet for an event, thus requiring us to build the data structure on that level
for that event.

an average of a power of two. This can be a problem because it makes it more
likely for an event to switch from one range to another. Thus requires the
algorithm to look at more ranges.

The last parameter we look at is the variance of the updates. In practice this
means that the difference in rate for the update increases. The only algorithm
that responds to this change is the Table method. The Table method seems to
scale linearly with the size of the update.

6 Conclusions

We proposed two extensions to algorithms for generate discrete random variates
where the distribution does not change over time. Both of these algorithms can
compete with the fastest known algorithms in terms of theoretical time scaling.

To really compare our extended algorithms to some of the fastest known
solutions for this problem we implemented them. We also build implementations
for the Rejection method and MVN algorithm. Using these implementations we
ran a number of experiments comparing the build, update and generation time
for these algorithms on the same data set.

The Rejection method was by fast the fastest of the algorithms to be build
and to update due to the simplicity of these operations. It does however suffer
a bit when the relative variance of the rate of the event increases.

24



(a) This graph shows the effect when
we scale the average update from size
5 to size 50. With nice peeks around
15 and 30 − 35

(b) This graph shows the scaling from
1000 to 10000

Figure 12: These figures show how the algorithms scale with the average rate
of an update. The Table method scales according to a logarithmic function as
more levels are changed. The MVN algorithm shows peeks around the powers
of two where more events switch ranges.

Figure 13: The graph shows how the running time of updates to the algorithms
scale with the variance of possible rate values in updates. The Table method is
the only algorithm that scales with an increase in variance. A higher variance
results in on average larger updates. This hurts the running time of the Table
method.

25



In our experiments the MVN algorithm shows a very consistent all round
performance requiring around the same time to generate variates as for updates.
While its generation time was slightly slower than the other algorithms it was
faster to build and update than most.

The extension to the Table method managed to out perform the MVN algo-
rithm in generation time. Unfortunately due to the the algorithm using items
to represent rate it was rather slow to build and update as it had to do a rela-
tively large amount of operations. In our experiments the Table method without
modifications to get O(∆r) update time out performs the one with this modifi-
cation. While its a nice theoretical result, the modification makes the algorithm
more complicated. This extra logic reduces the practical running time of the
algorithm in favor of more consistency. We do not recommend implementing
this modification when using the Table method.

The experiments show that our extension to the Alias method can, in an
optimal situation, out perform any of the other algorithm in terms of generation
time. At the same time it can also be updated and build in time similar to
the other algorithms. It does however suffer an increase in generation time if
multiple updates are done on the algorithm before generating an variate. We
think this weakness can be resolved with further research by improving the
way updates done. By filling up empty space in blocks updates might actually
improve the generation time.

7 Future research

We believe that the Alias Enhanced algorithm can be further improved. In this
paper we used a very basic update scheme that, while being fast, also increased
the number of empty space in the algorithm. As the algorithm restart anytime a
blank space is selected while generating an variates this reduces its performance.
By improving the update scheme we expect it to be possible to reduce the impact
of updates such that the algorithm will never have to rebuild its data structure.

It would also be interesting to see how the algorithms in this paper respond
to different probability distributions. For the Table method we shortly looked
at the case where updates were always of size one. Both of these subjects
might show interesting results. This research might take the form of theoretical
analysis similar to the work of D’Ambrosio et al. or might be the result of
experimental research like in this paper.

References

[1] F. D’Ambrosio, H. L. Bodlaender, and G. T. Barkema. Dynamic sampling
from a discrete probability distribution with a known distribution of rates.
2019. Unpublished paper.

[2] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions.
Journal of Physical Chemistry, 81(25):2340–2361, 1977.

26



[3] G. Marsaglia. Generating discrete random variables in a computer. Com-
munications of the ACM, 6(1):37–38, 1963.

[4] Y. Matias, J. S. Vitter, and W. C. Ni. Dynamic generation of discrete
random variates. Theory of Computing Systems, 36(4):329–357, 2003.

[5] P. M. Maurer. Finite random variates using differential search trees. In
Proceedings of the Summer Simulation Multi-Conference, SummerSim ’17,
pages 28:1–28:12, San Diego, CA, USA, 2017. Society for Computer Simu-
lation International.

[6] A. Slepoy, A. P. Thompson, and S. J. Plimpton. A constant-time kinetic
Monte Carlo algorithm for simulation of large biochemical reaction net-
works. Journal of Chemical Physics, 128(20):1–8, 2008.

[7] J. von Neumann and G. E. Forsythe. Various techniques used in connection
with random digits. National Bureau of Standards, Applied Math Series,
38(12):36–38, 1951.

[8] M.D. Vose. A linear algorithm for generating random numbers with a given
distribution. IEEE Transactions on Software Engineering, 17(9):972–975,
1991.

[9] A.J. Walker. An efficient method for generating discrete random variables
with general distributions. ACM Transactions on Mathematical Software,
3(3):253–256, 2002.

[10] J. Wang, W. W. Tsang, and G. Marsaglia. Fast generation of discrete
random variables. Journal of Statistical Software, 11(i03), 2004.

[11] C. K. Wong and M. C. Easton. An efficient method for weighted sampling
without replacement. SIAM Journal on Computing, 9(1):111–113, 1980.

27


