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Abstract

This thesis is about data quality and automation of retrieval, within the domain of ge-
nomic information systems. In recent years, large scale genomic studies have become
common due to lower cost and improved tools and software for analysis. With the relative
ease of performing these studies, the pool of genomic research data has grown massively,
to the point that information systems such as the GWAS Catalog and Ensembl are used
to collect, manage, and distribute study results. Researchers and practitioners have to
make sense of the data contained in these systems manually. This boils down to choosing
which data is relevant to them, and which data is not, with the end goal of generating
new knowledge. Apart from taking a lot of time, manual evaluation introduces errors.
Automation is necessary to reduce errors and save valuable time.

We explored the genetic information system domain using a bottom-up approach. The
SILE method was used as a framework. The study focusses on the Identification step
within this framework. An exploratory analysis was performed on the data contained in
both the GWAS Catalog and the Ensembl genome browser. With the knowledge gained
from this analysis, a solution is proposed to automate the selection process within these
information systems. This solution involves a combined classification and regression
model, ranking entries within the information system on relevance. We built these mod-
els by identifying relevant entries by hand and training the models on this manually
created data set. The models then provided the ability to identify relevant entries with
a high certainty in a, previously unseen, validation set.

It is shown that an understanding of the domain with regards to data quality, is key to
developing automated solutions. Important factors here are the difference in entries be-
tween phenotypes, and over time. Another important factor to consider is the difference
between theoretical ideal measures, and the availability of these measures in practice.
This study provides a basis for automation of relevant entry retrieval within the genomic
information system domain.
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Chapter 1

Introduction

Over the past decade, genome-wide studies have become a hallmark of the genetic re-
search field. When looking at the Google search interest, Genome-Wide Association
Studies (GWAS) and Next Generation Sequencing seem to have been at a plateau since
2010 (Figure 1.1). A similar trend can be seen in the amount of published molecular
databases in the Nucleic Acids Research database issue [23]. As an example, about a
hundred databases are added every year. Because the field is still relatively new there is
a large dispersion of knowledge. To remedy this problem several public general variant
databases are being developed, such as the GWAS Catalog [9] and the Ensembl database
[66]. They both have different thresholds for admittance in the database, different query
models, and different structures. The process of finding relevant information in these
databases is currently largely a manual one. Because of this, extra errors are introduced
and valuable research time is lost. A method based on Search, Identification, Load, and
Exploitation (SILE)!, developed by Leén at the PROS research center, aims to formal-
ize this process to reduce mistakes and quantify data and information quality [34]. In
another paper by Ledn, it is shown that when following a set method for finding impor-
tant entries the results vary over time, which means that knowledge of clinicians and
researchers is quickly outdated [45]. The retrieval of entries is a largely manual process
that is in dire need of automation. Variant databases often provide programmatical
access to the data contained in them. However, the filtering and analysis, after pulling
the data, are still done manually. Automation is complicated because the demands are
highly specific to the researched phenotype and the ultimate goal of the extracted in-
formation. At the moment no automated solution exists to determine relevant criteria
and extract entries with these criteria. The fact that often used information systems
source their information from all publicly available research induces more issues. The
organizations that publish these information system use criteria for determining wether
research should be included, but the criteria are often very minimal. The goal of these
criteria is to only exclude research that is lacking proper statistical basis, and it is up to
the user to further filter the results.

This filtering is an important step in the SILE method (Section 2.3), developed

"https://anleopa.github.io/SILEWebPage/
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Figure 1.1: Google search trend for GWAS and Nezt Generation Sequencing.

to formalize the process of information extraction from genomic information systems.
Formalizing this process not only reduces errors, it also opens up the possibility for
automation. The automated selection of measures and criteria when retrieving entries
is the next step in usability and efficient resource use in the field of genomic information
systems. To develop a useful automation solution the domain needs to be properly
understood, not only from a top-down perspective (SILE), but also from a bottom-
up perspective. We need to understand what kind of data we are dealing with, what
the distribution is of the data over different factors, and what data is missing. The
overarching question that we aim to answer is the following: How can data quality,
and by extension information quality, be improved when identifying relevant entries for
different phenotypes from established and public genomic information systems, in an
automated way?
This thesis is an account of the research towards increased data quality and automation
publicly available genomic information systems. We perform an exploratory analysis into
the fundamentals of the data contained in publicly available genomic information systems
and propose a solution to automatically retrieve relevant data from these systems. It is
a model-based solution that learns from manually extracted base data and extends to
unseen data. It can be used as a tool in the Identification step of the SILE method.
The next chapter will introduce the basic concepts in genetics research and gives a
relevant statistical background. Chapter 3 will state the problem along with the relevant
research questions. It also goes into the chosen research methodology. Chapter 4 will
account of the exploratory data analysis performed, as well as propose a treatment based
on this analysis. Chapter 5 will state the results obtained using the treatment, which
will be discussed in chapter 6.



Chapter 2

Background

2.1 Genetics

Genetics is a field of study concerned with hereditary traits and variation within species
[21], and specifically tries to answer two questions:

e what makes a species?
e what causes variation within a species?

A large part of the answer can be found within one of the building blocks of life; de-
oxyribonucleic acid (DNA). This large molecule, shaped like a double helix, is contained
within the cells of all known organisms. DNA contains the instructions for the function-
ing of all parts of the organism, encoded in nucleotides [24]. A nucleotide is a smaller
molecule that forms the building block of DNA and can be represented using a single
letter (A, C, T, and G). During the reproduction of cells, the strains of DNA are copied
to the new cells, essentially creating a copy of the original cell. This process also ensures
that DNA is copied (and recombined) from the parent(s) to offspring organisms. This
process is not perfect. Therefore, every time a copy is made local changes are introduced.
DNA can also slightly change under the influence of external factors (e.g. radiation).
These changes, called alleles, mutations, variants, or variations, depending on the con-
text and specific criteria, introduce variance between individual organisms, which can
lead to different species [17]. Studying them within one organism or a population! can
lead to new knowledge about phenotypes?, proteins and DNA itself. The following sec-
tions will explain the relevant parts of the genetics field to this research. Section 2.1.1
explains how and why alleles within a population are studied. Section 2.1.2 and 2.1.3
will go into how these alleles can be found. Section 2.1.4 will explain how the alleles can
influence the way you look and to which diseases you are susceptible. Sections 2.1.5,
2.1.6, 2.1.7, and 2.1.8 will go into some of the relevant nomenclature.

!Population: the group of organisms of one species living and interbreeding in one area.
2Phenotype: the external and internal trait of an organism (including physical appearance, biochem-
istry, and development).



2.1.1 More about variation

A variant is a change in the DNA present in the population. Usually, variants are based
on a reference genome or relative to the most common nucleotide. The most common
type of variation is the notion of single-nucleotide polymorphism (SNP). A SNP is a
change of the DNA on one specific base pair (a combination of A and T, or C and G)
of the string of molecules. A SNP has the constraint that it has to be present in a
substantial amount of the population, however, there is no consensus on the percentage.
An often used threshold is 5%, such as in the HapMap project [15]. More than 84 million
SNPs have been identified as of 2015 [58]. Every human has about 4 to 5 million of these
variations.

2.1.2 Reading the genome

Reading of the genome can be done in multiple ways. One way is to sequence the whole
genome, scanning all of the more than 3 billion base pairs. This was first done in the year
2000. Until recently, this method (called Whole Genome Sequencing, WGS for short),
was not cost-effective for most researchers. They relied, and continue to rely, heavily
on genetic micro-array technology. This technology allows for checking the existence of
specific variations within the DNA. Usualy, micro-array chips bind to about one million
positions in the genome. Statistical measures can be used to infer the presence of other
variations within the genome. In short; variations that lie close together are more likely
to be transferred from parent to child together. Using this knowledge, and the million
data points retrieved from the micro-array, one can infer the chance that a specific
variation is present. The following section goes into why this is useful when studying
large populations. Nowadays, the price sequencing the whole genome is going down
through the development of new techniques (Next Generation Sequencing [6]), allowing
researchers to upscale the amount of people that have their DNA sequences for academic
research, and in a practical setting.

2.1.3 How to study populations

As SNPs have the constraint to be present in a substantial part of the population they
are a prime target to be studied with statistical methods. A common way of finding
interesting SNPs is by performing a Genome-Wide Association Study (GWAS). A GWAS
usually has a high number of participants with, and without the researched phenotype.
Participants can run in the thousands, with studies sometimes having over a 100.000
participants [57, 65]. For each participant the genome is sequenced, and statistical
techniques are applied to the presence of variations and the expression of a certain
phenotype. This way a relation between the variation and the phenotype can be found.
The book chapter Genome-Wide Association Studies of Bush and Moore [12] goes into
more detail of how GWAS works.



2.1.4 Gene expression

A large part of the DNA encodes for proteins used in the functioning of the organism.
Simplified, a chunk of the DNA is transcribed to RNA, which in turn is translated to
a protein (Figure 2.1). A change in this part of the DNA can lead to a differently
functioning or broken protein. The variation of a part of the DNA does not necessarily
mean that the gene at that location will not function. Some variants may result in a
synonymous protein or a protein that functions similarly. Variants may also result in
a protein with reduced function. Broken proteins, non-existing proteins, or proteins
with reduced function can seriously affect the organism and lead to disease. Apart
from protein-encoding DNA, there are many other known and unknown ways DNA can
influence the functioning of an organism.

Ribosome

Polymerase

DNA

Protein

Figure 2.1: Simplified process of protein synthesis from DNA.

2.1.5 Pathogenicity

Pathogenicity refers to how disease-causing a variant is. An often-used standard for as-
signing pathogenicity to a variant is created by Richards et al. [51], where classifications
such as pathogenic, likely pathogenic, benign, likely benign, and uncertain are used. For
each category, different evidence criteria are supporting either a benign or a pathogenic
variant. An example of pathogenic evidence from this standard:

Null variant (nonsense, frameshift, canonical +1 or 2 splice sites, initiation
codon, single or multi-exon deletion) in a gene where the loss of function
(LOF) is a known mechanism of disease ( . . . ).

Strong evidence from the same standard for a variant being benign is:



Allele frequency is above 5% in Exome Sequencing Project, 1000 Genomes,
or ExAC.

It is important to note that although the above evidence criteria are objective, there are
other criteria which are not as objective and demand the judgment of professionals, e.g
the benign-supporting evidence:

Well-established in vitro or in vivo functional studies show no damaging effect
on protein function or splicing.

In general, the more different sources specify the same pathogenicity the more trustwor-
thy the result is. In Van Gijn et al. [59] it is shown that finding consensus can be quite
complex but possible in most cases.

2.1.6 Frequencies

In genetics, frequencies refer to the amount of the population that has a specific variant
[19]. Generally, it is reported in a factor or percentage and is relative to a specific
population, e.g. variant X has a frequency of 5% in the population of Northern Europeans
means that within the researched population of northern European descent, 1 in 20
carried the variant X in their DNA.

An often-used statistic is the Minor Allele Frequency (MAF) which refers to the
frequency of the second most common allele in a population3. It is interesting because
it is a measure of commonality. A high MAF (near 50%) means that a lot of people
carry the allele and it is thus very unlikely to be very impactful in a disease (given that
the disease kills or disables the organism), as highly pathogenic alleles naturally become
rare through natural selection. A low MAF variant, less than a few percents, is often
not of interest to researchers as most subjects will not carry the variant, and in a clinical
environment, a targeted remedy will only help a small number of patients. Statistically,
it is also important to find enough cases of the researched allele, which is more practical
with a higher MAF. The Risk (Allele) Frequency is another often reported statistic and
refers to the allele that induces an increased risk of developing a phenotype. It is often
reported on a 0%-100% range.

Usually, it is assumed that common variants result in less extreme or lethal phe-
notypes (or phenotypes that are expressed at a later age) as those will survive in the
population. Lethal and extreme phenotypes will often be weeded out by natural /sexual
selection and will thus be less common in the population. This makes that research
interest often lies in less common variants. However, as Gibson describes in Rare and
Common Variants: Twenty arguments, there are arguments against this trend as many
common variants can combine into an extreme or lethal phenotype [18].

3The frequency of the minor wvariant is the minor allele frequencies for heterozygous and
homozygous SNPs with reference to the frequency of all alleles at a particular SNP location
(https://www.ncbi.nlm.nih.gov/books/NBK44476/).



2.1.7 The chance of disease

Another important statistic is the chance of developing disease given the presence of a
variant. The odds ratio (OR, or risk ratio), is the relative probability of an organism
developing a specific phenotype when an allele is present. An OR < 1 means that the
presence of the allele lowers the chance of developing the phenotype, and an OR > 1
means the chance is increased relative to the dominant allele. OR = 1 means there is
no effect of the allele on the phenotype. When an odds ratio of 2 is reported, it indi-
cates that the researched minor allele doubles the chances of developing the phenotype,
relative to the dominant allele. It is important to note that this is only relevant within
a specific population.

The consequence of human error

Human mistakes in genetic screening can have dire consequences for the patient. Particularly bitter is the
case of Elisha Cooke-Moore who, after a yearly scan which indicated she had a strong chance of developing
breast cancer and other types of cancer, decided to have her breast and uterus removed [8]. Reportedly,
a nurse reviewed the results of a genetic test and concluded Cook-Moore suffered from a mutation in
the MLHI1 gene, leading to Lynch syndrome. This syndrome increases the chances of developing specific
kinds of cancers, among others breast cancer and cancer of the uterus. After independent surgeons, who
did not confirm the results of the test, performed the two invasive operations, Cook-Moore discovered

a mistake made by the nurse. The results of the test were negative, not positive as the nurse had determined.

Many things went wrong in this specific case; the results should have been interpreted by a trained
professional, a second opinion should have been given before any invasive operation, and the two surgeons
should have independently confirmed the results of the test and not blindly have operated. However,
the overarching lesson to be learned is that human judgment is fallible and that proper procedures and

guidelines are needed for a safe environment to practice genetic screening.

2.1.8 Genomic Information Systems

A genomic (or genetic) information system (GIS) is a repository for genomic data to be
used for clinical research or treatment. These repositories can contain a combination
of raw or annotated sequence data?, variant information®, protein information®, genetic
studies”®, and more. Many serve specific research purposes, while others are more gen-
eral. The analyses done on the data contained in these information systems are often
specific to a problem domain. Some genome browsers allow for generic analysis tools to
be run on their platform. All in all, they make for very complicated pieces of software
that are hard to compare to software used in other contexts. For this reason, genomic
information science is a research field within many academic institutions. Another fac-

*https://www.ncbi.nlm.nih.gov /sra
Shttps://www.ncbi.nlm.nih.gov/clinvar
Shttps://www.ncbi.nlm.nih.gov/protein
"https://www.ebi.ac.uk/gwas/
Shttps://www.ensembl.org/index.html



tor is that GISs often have to handle vast amounts of data. A data file coming off of
a sequencing machine can contain about 200GB of data [52]. To analyze this data (or
multiples of it), big data analysis and statistical techniques are needed.

A complicated landscape

A painfull case in genetic testing is reported by the Mayo clinic [1]. In this case, a 13-year-old received a
surgically implanted defibrillator which turned out to be unneeded. Many of his family members were told
they possibly had fatal heart disease, this also turned out to be false:

“To interpret a sequence where DNA letters differ from the reference human genome (...)
researchers scour public or proprietary databases to see if the misspelling® is disease-causing
or benign. Unfortunately, databases often disagree. And many misspellings once thought to
be dangerous - and still listed that way in databases - have since been determined not to be.
A recent study estimated that people have, on average, 54 mutations listed as pathogenic, of
which 41 are almost certainly not.”

This case provides a clear example of the precarious landscape clinicians and researchers walk in. Standard-

ization and automation can help prevent similar mistakes from being made.

“variant, allele, etc.

2.2 Relevant statistical background

To interpret and understand the results of our data analysis and modeling it is important
to have an understanding of some statistical concepts and definitions. An important
concept for this research is statistical modeling. When talking about modeling in general,
the goal is to create a representation of a part of the real world. Examples of things
that can be modeled in the real world are physical processes like gravity, heat exchange,
and fluid dynamics. These physical processes are studied to better understand the
world around us. But also non-physical processes can be studied. A company might
engage in business process modeling (BPM) to better understand what is going on
and where efficiencies and risks lie. Statistical modeling is a form of mathematical
modeling that usually aims to find the relation between dependent and independent
variables. A dependent variable, as the name suggests, is assumed to be dependent
on the independent variable(s). One of the benefits of statistical modeling is that the
influence of the independent variables can be shown. Many statistical models can also
be used to predict the dependent variable based on the independent variables. Both of
these characteristics will be used throughout this research. In this research, we will use
two different kinds of models. The first kind is a regression model and the second one is
a classification model.

Regression

When building a regression model we want to determine the influence of each of the
independent variables on the dependent variable. Often the influence of the independent
variables is assumed to be linear; the size of the independent variable corresponds directly
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to the size of the dependent variable. This so-called linear regression model generally
takes the following shape:

dependent = intercept + (in fluence * independent) (2.1)

Here the intercept is a base value off-setting the resulting value. It is equal to the
mean value of the dependent variable when the independent variable is 0. The influence
variable is the constant that we wish to determine. This is called the beta-coefficient (j3).
In a linear model, the independent variable is often used as-is. When the correlation
between the dependent and independent variable is not linear, a function can be applied
to the independent variable shaping it into a linear relationship, essentially performing
an exponential regression using lineair regression algorithms. In this research we assume
relationships to be linear or near-linear and will not consider exponential regression for
the sake of simplicity in the resulting model.

In many models, there are more independent variables. Each of these variables will
also have its beta-coefficient. The model is usually represented in the following shape:

y=(Q_BixXi)+e (2.2)

Note that the intercept is not explicitly written down. It hides in the sum, with X; =1
and the corresponding coefficient having the intercept value. Training algorithms aim
to find the best beta-coefficients to represent a specific data set, called a training set.
Usually, the best fitting coefficients do not fit the training data perfectly. The epsilon
(€) is a way to represent the error; how far is our model away from the truth. This error
can be explained by missing variables in the model, or by other factors such as noise in
the data or the relationship of the dependent and independent variable not being linear.
The error is generally unknown but can be approached given some extra information.
It is also key to measuring the performance of our model. A model with an error of
0 is a perfect model, it fits the given data perfectly. Any dependent variable that is
different between our training data and the predictions by our model incurs a value to
this epsilon. After training the model, several measures can be calculated. For each
coefficient (including the intercept) a z-value and a P-value can be calculated. They
are related to the trustworthiness of the found coefficients. The z-value is related to
the influence this particular independent variable had over the dependent variable. The
higher this value, the more influence the variable has on the outcome of predictions. The
P-value says something about the trustworthiness of this z-value. The lower the P-value
the more trustworthy the z-value is.

Classification

Another type of statistical model is a classification model. Such a model aims to classify
entries with predefined labels. The algorithm that creates this kind model out of training
data also tries to reduce the error between the data and the prediction that the model
would perform on this data. A specific type of classification model that is used in this
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research is a classification tree. A classification tree algorithm tries to find a split in the
data that reduces the total error the most, iteratively applying this to the created splits.
The resulting tree is then usually pruned to create a model that is not too complicated
and does not owverfit on the data. Overfitting occurs when a model is too tuned to the
training data and thus fails on other data because it is also fitted to the noise contained in
the training data. A classification model can be represented in many ways. An example
representation is shown in figure 2.2. It shows the root node at the top, with 100% of
the data (as no splits have occurred yet) and with a 50% male-female ratio. After an
initial split on the height variable being larger than 175cm, two groups are made. One
containing 35% of the data and consisting largely of males (represented in black). The
other side naturally contains 65% of the data and consists of mostly females. This right
node is split another time. This time the split occurs on the weight variable. If the
weight is over 75kg (and height < 175¢m) the data is categorized as male, otherwise as
female. Of course, these two variables are by no means enough to determine the sex of
a person (one could argue that two groups are not even enough to represent al sexes).
However, using these variables we can determine the sex with some confidence. The
quality of our model and our confidence of the model are directly related.

100%

D

Height > 175cm

yes | no
35% 65%
Male Weight > 75kg
yes | no
15% 50%
Male Female

Figure 2.2: An example of a classification tree that splits a group of people into two
different groups, male and female, using height and weight as variables.
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True condition

Total
population
Predicted | Positive True positive (TP) | False positive (FP)
condition | Negative | False negative (FN) | True negative (TN)

Positive Negative

Table 2.1: Structure of a confusion matrix. A confusion matrix compares the predicted
values with the real values in a data set.

Evaluating the models

To choose which models perform well and which do not a test set is often used. This test
set is usually taken from the same source as the test set and the right outcomes for the
dependent variable is known. When this is the case a prediction can be made using the
models on this previously unseen data which, can be compared to the actual outcome.
In order to determine how good a model perfoms on the test set, statisticians can use
many different methods of evaluation. An often used method is called the Root Mean
Square(d) Error, or RMSE. For a model M, and n observations in training set O, the
RMSE is defined as followed:

i predict(M, O;)?

RMSE(M,0) = \| - - (2.3)

In short, the RMSE takes the average of the difference between observations and the
value that the model would predict for that observation. The prediction is squared, and
subsequently square-rooted to make all errors positive; predictions higher or lower than
the observation are treated the same. The RMSE is often used to include or exclude
independent variables. The RMSE is mainly aimed at being a performance measure
in regression, not in classification. As we use both a regression and a classification
model, but want to compare them, we will use different measures in this research; true
positive and negative rate, sensitivity, positive and negative predictive value, accuracy,
and Fscore. They can be calculated with the help of a confusion matrix. Table 2.1 shows
the structure of a binary confusion matrix. A confusion matrix compares the prediction
of a model with true values and categorizes all entries in one of four categories. True
positiveness is the amount of entries that are predicted as true, which are also true in
reality. Fulse positiveness are entries predicted as false, but that are true in reality. It
is also referred to as Type I error. False negatives are values predicted as false, but that
are true in reality. It is also referred to as Type II error. The final category is true
negative. These are values predicted as false that are also false in reality. Naturally, a
perfect model maximizes true positiveness and true negativeness.

The other measures can be extracted from these basic values. Sensitivity (or recall,
equation 2.4) is related to the number of positive values being identified as positive. It
gives a quick view of how well positive values are predicted. Positive predictive value
(PPV, precision) and negative predictive value (NPV) can be used to determine how big

13



the distribution of the predictions are. A high PPV (equation 2.5) essentially means that
a relatively high amount of the results are relevant results, with the opposite for NPV
and irrelevant results (equation 2.6). Accuracy is related to the closeness of predicted
values to the actual values. High accuracy means that your predicted values will, on
average, be close to real values. The accuracy is the rate of properly predicted values,
as can be seen in equation 2.7. Another important measure is the Fyeore (equation 2.8).
It takes both the sensitivity and the positive predictive value into account is a good way
to determine the overall performance on the classification of positive examples.

. TP
sensitivity = ——— (2.4)
positives
TP
PPV = — 2.
v TP+ FP (2.5)
TN
NPV = —— — 2.
v TN+ FN (2.6)
TP +TN
accuracy = L (2.7)
population
PPV x sensitivit
Flreore = 2 i (2.8)

*
PPV + sensitivity

All these measures will be used in this research to compare our different models
and techniques. For the classification of relevant entries in the databases, both the true
positive rate as the true negative rate must be high. However, as we do not want to
miss relevant results by classifying them as negative, we give extra weight to NPV and
the Fscore'

The ProS research centre? is a central organization in the analysis and modeling
of genomic information systems [46, 32, 49]. In Smart Data for Genomic Information
Systems: the SILE method [34], they designed a framework to efficiently identify variants
related to the risk of suffering a disease with the overall goal of moving from the classical
Big Data concepts Volume, Velocity and Variety to Smart Data, which includes Veracity
and Value. In this context, Veracity is the different levels of quality your data can have.
Value refers to the clinical relevance for practitioners. The SILE method (Section 2.3)
was developed and combined it with their proposed Data Quality Methodology (Section
2.4) to ensure a high level of Veracity and Value in the obtained data.

2.3 SILE

The SILE method defines four levels that guide the process of information extraction
from genomic information systems to provide a systematic approach to answering ques-
tions specific to the genomic domain (Table 2.2). The concept of data quality is mainly
addressed in the Search and Identification levels.

“http://www.pros.webs.upv.es
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Level Description

Search Determination of the information context, required to solve a con-
crete need, as well as the selection of data sources from which to
extract information

Identification Determination of a reliable and relevant data set to be used to
populate a database which structure is delimited by the CSHG

Load Population of the database with the data identified in the previous
level

Exploitation Extraction of knowledge from the database by using tools to anal-

yse and interpret genomic data

Table 2.2: Levels of the SILE method as defined by Leén and Pastor [34].

2.3.1 Search

During the selection of sources in the Search level the main research goal has to be taken
into account in order to find the most relevant sources. As an example, in the work
of Leén [34, 33] the researchers tested the method on Early Onset Alzheimer’s Disease,
for this reason it was justified to include AlzForum'® in the set of repositories used,
aside from more general repositories such as ClinVar'', Ensembl*?, dbSNP'3, RefSeq',
NCBI-Gene' and PubMed'®, even though no programmatic interface to this database
is available. In other work of Ledén two phenotype specific repositories were excluded
because they were outdated [32], which is in violation of one of the basic dimensions
(Table B.1) in the Search level: Currency. Specifically, it violates the criterium of the
latest update being not older than one year. Other basic dimensions for search are
accuracy and completeness (see section 2.4).

2.3.2 Identification

Identification is the second level of the SILE method. It consists of identifying the avail-
able data and corresponding this with the attributes in the Human Genome Database
(HGDB) [50, 47]. The identification is a two-part level. At first, the most relevant and
accurate data needs to be found. Many of the attributes in the database may also be
present in other databases. This can be used to search and cross-reference the found
data. The second part of the identification is creating a correspondence between the
found data and the HGDB, as this is the destination for the found data. The database
is based on the Conceptual Schema of the Human Genome, which is part of the research
done by Reyes et al. [50].

Yhttps://www.alzforum.org
"https://www.ncbi.nlm.nih.gov/clinvar
2https:/ /www.ensembl.org/index.html
Bhttps://www.ncbi.nlm.nih.gov/projects/SNP
Y“https://www.ncbi.nlm.nih.gov /refseq
https://www.ncbi.nlm.nih.gov/gene

Y https://www.nchinlm.nih.gov/pubmed
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The goal of the Identification level is to construct a reliable and relevant data set for
diagnosis and treatment, or research purposes, depending on the target audience (Table
2.2). Leén and Pastor used the Data Quality Methodology to elect five relevant quality
dimensions. Section 2.4 goes into detail on how these dimensions were obtained.

2.4 Data Quality Methodology

Leén and Pastor propose a data quality methodology for genomic data [34]. The method-
ology consists of five phases: Dimension Description, Metric Description, Variable Selec-
tion, Minimum DQ criteria and D(Q Assessment. These phases guide the user through
the process of determining which dimensions are relevant and how to ensure these factors.

To determine which data quality dimensions are relevant (Dimension Description) for
investigating genomic information systems, Ledn et al. considered established literature
[48, 37] and applied this to the genomics domain. Wand and Wang [60] developed
a theoretical view of data quality using an ontological approach. They pose that an
information system is designed to represent the real world and that looking at the view of
the real world that is created by the information system and the view created by looking
at the real world directly will expose deficiencies in the quality of the underlying data. By
analysing mappings from information system to the real world and back they found four
data quality dimensions, namely completeness, lack of unambiguity, meaningfulness and
correctness. In Wang and Strong [61], another approach was taken. They investigated
the view of data consumers on data quality. Practitioners were surveyed in two rounds
and a data quality framework was developed on the resulting quality dimensions. Each
of the dimension was assigned one of four data quality categories; intrinsic, contextual,
representational or accessibility.

In earlier research Ledn et al. found the most common errors in different genomic
repositories [36]. Using this work they identified the relevant quality dimensions to
the genomics domain based on the above literature. They also assigned each step in
the SILE method to their relevant dimensions. For the Identification step the relevant
quality dimensions are:

e Accuracy: the degree to which data describes an object or event correctly

e Completeness: related to the full representation of data

Consistency: related to the degree of consistency in the representation of data
between systems

Believability: related to the credibility of data
e Relevancy: the degree of the helpfulness of data to the problem

Table 2.3 shows an example of quality metrics that can be chosen for the different
quality dimensions. It is important to note that not every implementation of the SILE
method uses the same metrics, they need to be chosen and adapted to the research at
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hand. Leén and Pastor [34] determined a set of minimum required and recommended at-
tributes in the different investigated repositories (Minimum DQ criteria). The existence
of these attributes ensures a high level of completeness in the data.

2.5 Information and knowledge quality

Information quality is defined as fitness for use [28, 29]. Ackoff [2] describes information
as follows: information consists of processed data, the processing directed at increasing its
usefulness. Bellinger, Castro and Mills [7] extend this definition as follows: information
embodies the understanding of a relationship of some sort, possibly cause and effect.
Using these descriptions one can easily infer the importance of data quality when aiming
for high information quality. Processing and relating data forms information, and the
correctness of the data determines in part the correctness of the information.

A similar relationship can be found between information quality and knowledge qual-
ity, however, this relationship is less obvious. Bellinger, Castro, and Mills [7] describe
knowledge as follows: knowledge is the application of data and information; answers
‘how’ questions (...) knowledge is the appropriate collection of information, such that
its intent is to be useful (...). Especially the appropriate collection and usefulness is
important. When a proper selection of data is made, and in turn a proper selection
of information, knowledge is gained. The extent to which information serves a specific
purpose is called the usefulness. When looking at variant extraction, the information
is useful when it contains the most amount of relevant entries and the least amount
of irrelevant entries. These two metrics are related to the sensitivity and specificity in
statistics.

Y"Minimum DQ criteria
Bhttp://www.hgvs.org

17



Dimension

Quality metric

Accuracy

M1: Review attributes liable to be error-prone. Syntactic errors
must be checked using controlled vocabularies and specific data
dictionaries.

Completeness

M?2: The minimum information required to be stored in the HGDB
is present. These attributes have been determined during Phase
IV of the DQ Methodology!”.

Consistency

M3: The information about the variations is defined by using stan-
dard vocabularies and verified ontologies to determine critical at-
tributes such as HGVS!'® expressions, pathogenicity or functional
effects.

M4 : There must be no conflicts in the clinical interpretation of
each variation.

Mb5: There must be no conflicts among databases related to the
structural characteristics of the variation.

Believability

M6: Each variation must have significant medical or genealogical
consequences and be reproducible (e.g. the reported consequence
has been independently replicated by at least one group, besides
the first group reporting the finding).

M?7: The relationship between the variation and the disease must
have at least one link to a published, peer-reviewed paper with
credible statistics and free access.

Relevancy

M8: The Minor Allele Frequency (MAF) of the variation must be
less than the frequency of the phenotype in the population.

M9: The inheritance pattern, penetrance and mechanism of the
variant must be consistent with the disease.

M10: The studies provided by the bibliography must have at least
500 participants and it is desirable that they are replicated.

M11: For pathogenic variants the Odds Ratio must me greater
than 1, and for protective variants the Odds Ratio must be less
than 1.

M12: For Genome Wide Association Studies (GWAS) the P-value
must me less than 5x107.

Table 2.3: The quality metrics in the Search level of the SILE method used in the work

of Leén [34].
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Chapter 3

Problem statement

3.1 The difficulty of extracting relevant information

Genomic information systems often have differing criteria for including or excluding data
and information, which forms the first line of defense for data quality. Often there might
also be additional statistics to let the researcher or practitioner decide which data to use
and which not to use. This is the second line of defense to ensure data quality. These
measures and criteria need to be determined by the user manually. This manual process
is time consuming, with the researcher needing to analyse the results multiple times,
adjusting the measures and criteria, and re-analysing the results. As Ledn et al. [36]
stated:

The lack of standards and strict enough quality controls to submit infor-
mation to databases drive to an inefficient management of multiple genome
databases and (is) time-consuming for scientists.

The lack of data quality in public genomic information systems is directly causing the
wrong results to be obtained from them and wastes time of researchers and practitioners.
Because the sourcing of genomic data in these information systems is out of the hands
of the users, it is important to properly understand the data quality within is systems.
When this is understood, automation can be build on top to reduce the error and time
consumed even more. The project aims to define information quality measures that
are needed in finding important entries using the SILE method. Leén performed an
extensive study into the quality aspect of genomic information systems [36, 34]. The
perspective of this work is mostly top-down, working from data quality definitions and
measures defined in literature down to criteria and thresholds for genomic information
systems. We will take a bottom-up approach to provide another perspective and discover
new aspects of variant retrieval, working from the data contained in genomic information
systems, analyzing it and moving towards applicable criteria and automation. We will
perform the Identification step of the SILE method on different phenotypes over time to
see the changes occurring in relevant information systems (1). The Identification step
will also be performed on different phenotypes to compare the differences between them,
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after which an extensive data analysis will be performed (2). Given the results of the first
two parts, the performance of the SILE method will be evaluated under varying criteria
to see how they can be improved. If needed, new criteria will be defined. After this,
an automated process is developed to adapt the quality criteria and increase the final
information quality (3). Section 3.2 will pose the main research question with relevant
sub-questions to guide the research.

3.2 Research questions

Many different factors potentially influence data and information quality in the genomic
domain. It is important to understand the data before we select measures and criteria
and build and automation framework. To focus and guide the research we pose the
following research question:

RQ: How can data quality, and by extension information quality, be improved
when identifying relevant entries for different phenotypes from established and
public genomic information systems, in an automated way?

The question consists of three main parts; improvement of data and information
quality, identification of relevant entries, and doing so in an automated way. The question
is also focussed on the domain established and public genomic information systems. As
this question consists of several parts we break it up into smaller sub-questions. These
questions fit into two of the three steps of the Design Science cycle, which is discussed
in section 3.3. SQ1 is related to the definition of data quality and its implementation
in a genomic information system domain. SQ2 to 4 seek to answer how we can identify
relevant entries in this domain. SQ5 is answered by the design of a treatment to the
problems found in the problem investigation using the results from the exploration in
SQ2 to 4.

3.2.1 Investigation

SQ1: What does data quality mean, given a genomic information context?

SQ1 aims to find out how data quality should be defined in general, and specified for a
genomic context. What does it mean to have a high or low data quality and how can it
be quantified? It is the main question that drives the investigation of the problem and
the domain.

3.2.2 Exploration and treatment design

SQ2: How much does the amount and quality of data, extracted from estab-
lished genomic databases, differ over time and between phenotypes?

SQ2 aims to quantify the problem researchers and clinicians face when selecting target
variations. This is done by looking at the amount and quality (as defined in SQ1) that
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differ over time and between phenotypes. The initial part will focus on the GWAS Cat-
alog and Ensembl, as they are two very well-known sources which have been researched
extensively. It is an initial exploration that will push towards the treatment design,
together with sub-questions 3 and 4.

SQ3: What are the factors that influence the quality of the extracted data?

To be able to design a treatment for the problem quantified in SQ2, multiple target
criteria need to be examined (SQ4). Answering SQ3 will lay the groundwork from a
literature perspective by quantifying what types of data are relevant.

SQ4: Which criteria for variant selection are relevant?

To design a treatment for the problem investigated in SQ1 it is important to find out
which criteria are relevant. The answer to this question can partly be found in the work
resulting from answering SQ3. It is important to note that a selection of the factors
found while answering SQ3 might not be implementable with a criterium. Some factors
might be very influential, but impossible to test for, or not compatible with current
databases.

SQ5: How can these criteria be adapted to every context in an automated
way to obtain the highest quality genomic data?

The last part is the actual treatment design and is related to the application in differ-
ent contexts in an automated way. Very little is known about the aspects related to
automizing criteria selection and application, especially in the genomics domain. If it
is possible to automate this part of variant selection it will greatly decrease the time it
takes researchers and clinicians to reach actionability.

3.3 Research methodology

The project revolves around an improvement problem as described by Wieringa [62].
The goal is to improve the design of a method given the context (software APIs, people,
processes, etc.), in a research environment. The nature of the project is exploratory. For
these reasons the Design Science framework developed by Wieringa is an appropriate
methodology. The design cycle will be followed (Figure 3.1). In this cycle, there are
three major steps, problem investigation, treatment design, and treatment validation.
The problem investigation revolves around creating a clear understanding of the problem
and its accompanying concepts. The treatment design aims to develop a treatment to
the problem defined during the investigation phase. Once a treatment is designed, a
validation is performed. After this validation, there are often adjustments to be made,
after which the cycle repeats. In this study, a validation in practice is not performed due
to time constraints. As a supplement to the design cycle, the research cycle checklist will
be used as a general checklist to ensure all parts of proper research have been addressed.

21



The Observational Case study was chosen as a methodology for the exploratory analysis.
The reason for this is that we have no influence over the studied objects (the public
genomic information systems), and that we do not aim to intervene in their operation.
The treatment that is proposed works on the results of the exploratory analysis, not
on the inner workings of the object of study. Hence, we believe that an Observational
Case study is the most appropriate basis to use as a checklist. The following sections run
through the checklist, describing each aspect of the research relevant to the Observational
Case study. The numbers indicate which step of the checklist (Appendix table A.1) is
described. Note that not all criteria are relevant to an Observational Case study, hence
some criteria are not addressed (e.g. 8).

Problem investigation

S

Treatment design

$Q2, $Q3, SQ4, SQ5

Treatment validation

Figure 3.1: Design cycle by Wieringa, with subquestions associated with the three steps.

Research context

The knowledge goal (1) is described in section 3.1: to improve information quality mea-
sures that are needed in finding important entries using the SILE method. The research
has an improvement goal, which is to be able to provide more relevant research entries
for researchers and clinicians. The project works on a part of the SILE method but is
not necessarily part of a bigger engineering cycle, it is a standalone project (2). The
current knowledge (3) is described in chapters 1, 2, and 3.

Research problem analysis

To ensure consistency in concepts the research will use the conceptual schema of the
human genome [47] as a basis (4). This will serve as a reference and a conceptual
framework of the problem context. All sub-questions posed in section 3.2 are open and
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exploratory and have no hypotheses to freely interpret the results obtained (5). We
expect that the questions will be answered descriptively, however, SQ2, 3, and 5 will
have large explanatory components. The population consists of the GWAS Catalog and
the Ensembl genome browser (6).

Research & inference design

The objects of study (7) will be the chosen genomic repositories relevant to the pheno-
types investigated. Only established repositories will be used, by using selection criteria
like the ones in [34]. The measurement design (9) for the project is fairly straight for-
ward. We measure the number of retrieved entries for sub-question 2. Repeatability
is an issue because repositories change over time and a repeat study can find different
amounts of entries. The aim is to find generalizations that are also valid for repeat
studies. For the sake of repeatability, all relevant resources and results will be shared
in an appendix or digitally. For sub-question 1, 2, 3 and 5 different quality criteria will
be developed. As this is part of the ongoing research the measures accompanying these
criteria are currently unknown. The inference design (10) of this project is also clear.
The study is performed on the whole of the population, namely all relevant public ge-
nomic repositories. As the study is performed on a per-phenotype basis the results only
represent that specific phenotype. However, if similar results are obtained from different
phenotype a generalization can be inferred.

3.4 Major milestones

To guide the time aspect of the research project, multiple milestones are defined. Table
3.1 outlines the milestones and the original approximate week of around the time of the
long proposal. It also states the actual week the work was finished. The description
includes reasoning why the implementation differed from the planning. The first mile-
stone (Scripts) intends to create a technical basis for the research. Automation of the
pipeline is needed to ensure consistency and to avoid human error. It will also speed up
the overall process. Scripts will be written in R. It is to be expected that scripts will
need adjustment later on, nonetheless the aim is to make them as robust as possible
in this initial development. Milestone two (Data Pulling) concerns the pulling, storing
and cleaning, of all relevant data for the research. As this is the first real use if the
scripts created earlier it is to be expected that some adjustments have to be made here.
The third milestone (Data Analysis) is the least defined, as the research is experimen-
tal. Statistical methods are used to find correlations and trend lines. An model will be
made of the data. After the analysis of the retrieved data, an automation framework
will be proposed and built in milestone four (Automation). For this, the analysis done
in the third milestone will be used. We will search for patterns and use the model to
find different important aspects of the data in genomic information systems. The final
milestone ( Writing) concerns the finishing of all written parts of the thesis project, as
well as a preparation for the final presentation and defense.
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Chapter 4

Exploration and treatment design

To design a treatment that will be valuable in practice we first need to explore the do-
main, especially the information systems used in for this research, the GWAS Catalog
and Ensembl. For sub-question 2 (amount and quality over time) an initial exploratory
data analysis is performed on the data present in these systems. The goal is to un-
derstand the data contained in these databases better and to quantify it. After the
exploration of time and phenotypes as differing factors, we focus on other factors, such
as risk frequency, P-value, and others, to answer sub-question 3 (factors that influence
quality of extracted data). For sub-question 4 (criteria for variant selection), we also
look into which criteria should be set. Furthermore, we figure out how they can be set
automatically to answer sub-question 5 (adapt criteria in an automated way).

4.1 Initial phenotypes

The phenotypes selected for the exploratory part are breast cancer, migraine, Alzheimer’s
disease, colorectal cancer, Crohn’s disease, and epilepsy. The reason for using these
phenotypes for the exploratory analysis is that they have been investigated before by
the PROS team one way or another, which improves the data set created for this research,
as there is already a lot of knowledge about these phenotypes within the research group.
Later, additional phenotypes are included.

Table 4.1 shows the number of found entries for the phenotypes included in this part
of the data analysis in each database. Already, it can be seen that there is a big difference
between the two databases. Ensembl has more entries included for all phenotypes. The
difference is especially visible with Alzheimer’s disease and Crohn’s disease. However,
these results also contain non-GWAS genetical studies. The completely unfiltered results
lie far apart for most phenotypes, but after filtering the results are more similar. The
basic filtering on non-existent values removed 1921 (of 4054, 47%) entries over all the
investigated phenotypes in the GWAS Catalog while removing 8504 (of 11320, 75%) of
the entries in Ensembl. After filtering there is on average a difference of 36% in the
number of entries between the two databases.
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Phenotype EFO # | GWAS Catalog | Ensembl
Breast cancer [10, 11] 0000305 720 (1409) 782 (2459)
Migraine [45] 0003821 235 (237) 266 (317)
Alzheimer’s disease [31] | 0000249 353 (1098) 493 (1090)
Colorectal cancer [32] 0005842 511 (540) 666 (4757)
Crohn’s disease [35] 0000384 264 (717) 553 (1103)
Epilepsy” 0000474 50 (53) 56 (1594)

Table 4.1: Number of found entries for each phenotype, with a basic filter checking for
non-existent values (unfiltered between brackets).

100 100

phenotype phenotype
== Breast cancer == Breast cancer

10

10 Migraine Migraine

== Alzheimer == Alzheimer
== Colorectal cancer

Crohn's disease

- == Colorectal cancer

percentage
!
percentage

Crohn's discase
== Epilepsy == Epilepsy

10 20 30 0 10 20 30 40
exponent exponent

(a) GWAS Catalog (b) Ensembl

Figure 4.1: Falloff graph of P-value: the percentage of entries remaining when using
a varying P-value threshold. On the X-axis we show the exponent of the threshold
used (p < 107"). The Y-axis shows the remaining percentage of entries found for the
phenotype after applying the filter.

Figure 4.1 visualizes the distribution of entries over P-values thresholds in the GWAS
Catalog and Ensembl. Both distributions look quite similar, although not equal. Epilepsy
has a strongly declining amount of entries in both databases, which indicates there are
no high P-value research results for the epilepsy phenotype. On the other hand, Crohn’s
disease has a very flat curve in both databases, with about 10% of entries having a
p <1071

Then it comes to Odds Ratio, figure 4.2 paints a different picture. It seems that
Ensembl contains a higher amount of high OR studies on Alzheimer’s disease phenotype.
This implies that when looking for entries with a high impact on the development of
Alzheimer’s disease Ensembl is the more appropriate data source.

! Currently no publication.

26



1004

percentage

10

25

20

OR

(a) GWAS Catalog

10 1's 30

phenotype

== Breast cancer

== Migraine

== Alzheimer

== Colorectal cancer
Crohn's disease

== Epilepsy

percentage

1004

10

10

20 25

OR

(b) Ensembl

30

phenotype

== Breast cancer

== Migraine

== Alzheimer

== Colorectal cancer
Crohn's disease

== Epilepsy

Figure 4.2: Falloff graph of Odds Ratio: the percentage of entries remaining when using
a varying Odds Ratio threshold. On the X-axis the threshold for the Odds Ratio is
shown (OR > x). The Y-axis shows the remaining percentage of entries found for the
phenotype after applying the filter.
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Figure 4.3: Retrieved unfiltered entries over 7 months in 2019. Further updates can be
seen on hittps://sites.google.com/view/variationscanner.
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4.2 Entries over time: the volatility of information systems

The amount of entries found is also measured over time. Figure 4.3 shows the number
of unfiltered entries in over 7 months. It can be seen that Ensembl performed an update
at the beginning of April®> and July® which is in accordance of their three-month update
cycle’. The GWAS Catalog states that it has a weekly update cycle®. However, when
looking at the number of entries found in the database the update cycle only seems to be
slightly faster than Ensembl. Over the 7 months of tracking entries, only three updates
have been observed. These updates were done at the beginning of May, at the end of
June, and at the beginning of August.

40

phenotype

=== Breast cancer
Migraine

== Alzheimer

percentage

== Colorectal cancer
204 Crohn's disease
== Epilepsy

RF

Figure 4.4: Distribution of risk frequency (RF) in the GWAS Catalog on different phe-
notypes. The amount of entries are binned with a resolution of 0.1 and reported as a
percentage of the total amount of non-empty values. The grey band shows the 95%
confidence interval.

The GWAS Catalog reports on the risk frequency through the API. To understand
the amount of the total population possesses the different stored entries, it is relevant
to plot the percentage of entries binned by risk frequency. The results of this operation
for the chosen phenotypes can be seen in figure 4.4. In general a slight decrease in
remaining entries when increasing the risk frequency bin. This is also shown in the
confidence interval. Such a decrease indicates that rare variants are represented more
often than more common variants. This can have a biological explanation, but can also
be explained by the interest of researchers in less common variants (section 2.1.6).

*http://www.ensembl.info/2019/04/09 /ensembl-96-and-ensembl-genomes-43-are-out/
S3http://www.ensembl.info/2019/07/03/ensembl-97-and-ensembl-genomes-43-have-been-released /
“https://www.ensembl.org/info/about /release_cycle.html
Shttps://www.ebi.ac.uk/gwas/docs/about, https://www.ebi.ac.uk/gwas/docs/faq#faq-A7
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4.3 Building a prediction model

For practitioners and researchers, it is important to know how to select relevant research
data from these databases. They need to know which factors influence the data quality,
and in the end, the information quality. A way in which relevant factors can be found is
by creating a data set with relevant and less relevant entries. By finding the difference
between these entries on specific measurements one can find which factors have more or
less influence on the relevancy (and thus the data quality). A good way of finding these
differences is by training prediction models on the data set. Prediction model algorithms
are made to find differentiating factors between datapoints. They need this information
to predict outcomes on unseen data. Relevant factors are weighed heavier than unim-
portant ones. The exact way in which this is done is different for different prediction
algorithms. We can use this weighting to find more relevant factors for practitioners and
researchers if clear factors exist. The predictive nature of these models can also be used
to make a relative estimate on how relevant the entries in the database are.

With this end goal in mind, a combined classification and regression model is de-
veloped. The base models are created from data retrieved from the GWAS Catalog
because of the ease of data extraction and the extent to which the returned data is
structured. Initially, two simple models were built to provide an initial starting point
to evaluate model performance. These baseline models work with the entries retrieved
for the late-onset Alzheimer’s disease (LOAD) phenotype as training data. The reason-
ing behind this is that there is an established set of core target genes used in LOAD
research. The Mayo Clinic, for example, reports the following genes as being important
in the development of LOAD: APOE, ABCA7, CLU, CR1, PICALM, PLD3, TREM2,
SORL16. The relevancy of these genes (among others) is supported by Agrawal [3, 30].
Both baseline models have several variables at their disposal, which can be seen in table
4.2. Section 4.3.1 talks about the first model created using linear regression. Section
4.3.2 shows how a classification model builds on the same data predicts with a higher
confidence. Afterward, these two models and the gained knowledge is combined into a
single relevancy model.

4.3.1 A linear model

The first model to be built on the LOAD data is a linear regression model. Linear
regression models are made by fitting lines to the different independent variables in
the data and determining their influence on the dependent variable. A reversal of this
process can be performed on newly observed data to predict the dependent variable. As
the dependent variable is binary (a variant is either on a gene or it is not) a logistical
binary regression is used. An advantage of using a regression model is that the resulting
predictions come in the form of a numerical value and not just simple classification. This
way the results can be ordered according to the likeliness of being a relevant gene.

Shttps://www.mayoclinic.org/diseases-conditions/alzheimers-disease/in-depth /alzheimers-genes/art-
20046552
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Variable Type Description
Py numerical | The exponent of the reported P-value (log;o(P)).
OR numerical | Reported Odds Ratio of the variant.
RF numerical | Reported Risk Frequency of the variant.
. . The total population (initial and replication summed)
populationNumber | numerical of the reported study.
. The type of population (initial or replication, combined
populationType class into distinct classes). Only used by classification model.
Table 4.2: Variables at the disposal of the two initial models.
Coefficient | Variable Value z-value | P-value
051 intercept —1.553 | —1.307 | 0.19121
P
B Pezp —9.364 x 1072 | —3.253 | 0.00114
B3 OR —7.328 x 1071 | —1.066 | 0.28629
B4 RF 4.135 x 1071 0.562 | 0.57408
Bs populationNumber | —2.216 x 1076 | —0.223 | 0.82360

Table 4.3: Logistical model coefficients of model A.

The first trained model (A) takes the following shape, with 3 being the coefficients
determined by the training algorithm and p; being the probability that observation ¢ is
a relevant observation:

Yi = B1+ B2 * Pegp + B3 OR + B4 x RF' + (5 * population Number + € (4.1)
(= —olw) (4.2)
exp(y;) +1

The coefficient values and their associated z-values and P-values can be read in table
4.3. Looking at the z-value for 84 and S5 it is immediately clear that they have relatively
little influence on the dependent variable. They also have a high certainty of being a
random occurrence, considering that they have high P-values. By taking these two
variables out of the model and retraining it we can simplify it without offering up much
power of the model.

Table 4.4 shows the simplified model. As can be seen, this model has higher z-values
and lower P-values for all coefficients, which because it is a simpler model as well indicates
we found a more appropriate model. By rescoring the entries in the training we can see
how much the two models A and B differ from each-other in predictive behavior. Both
models categorize the training data in the same way. The results of this categorization
can be seen in table 4.5. The True Positive (TP) rate of 13% is quite low, which means
the model is not very good at predicting target entries. The True Negative (TN) of 98%
looks more promising, but it has to be taken into account that the training data is fairly
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Coefficient | Variable | Value z-value | P-value
b1 (intercept) | —1.48843 | —2.177 | 0.029512
155 Pexp —0.09172 | —3.558 | 0.000374
B3 OR —0.67557 | —1.346 | 0.178 344

Table 4.4: Logistical model coefficients of model B. Coefficients 84 and (5 are removed
from this model because of the low z-values and high uncertainty.

True class

Logistic regression

Relevant | Irrelevant
Relevant | 5 3 8
Predicted class | Irrelevant | 34 173 207
39 176 215

Table 4.5: Confusion matrix of the prediction by the logistic regression model in table
4.4 (model B). It shows a True Positive rate of 13% and a True Negative rate of 98%.
The PPV is 63%, the NPV is 84%, and the Fieore is 21%.

unbalanced (82% of the data consists of negative/non-target examples). The weakness
of the model can be seen in the Fy.ore of 21%. It is an interesting model to use as part of
a more complicated model though, as the logistic regression model can be used to score
the entries. In contrast to a classification model, a (logistic) regression model assigns
distinct values to different entries.

4.3.2 A classification model

In an attempt to better classify entries as being relevant or irrelevant we build a clas-
sification tree on the same data model A and B used. For this, the R package RPart
is used, with a complexity parameter of 0.05. All other parameters are kept at default.
Figure 4.5 shows the resulting tree. In this model C, the P, is also identified as being
of great importance, separating 71% of the entries in the training data at the first split.
The remaining 29% is split into 5 separate bins by the variables RF and OR.

When creating a classification on the training data, this model C performs better
than model B, as can be seen in table 4.6. The model has a TP-rate of 67% with the
same TN-rate as model B, making for an Fs.ore of 75%. The PPV is also significantly
higher.

4.4 Improving our base models

The models already perform quite well on the data we provided, but there are improve-
ment points. In general, the more data is provided to a learning model, the better the
model will perform. Therefore, we extend the data set used for training with additional
phenotypes and data points. We also balance the data set so there is an equal amount
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Figure 4.5: Decision tree (model C) created using RPart (cp = 0.05) on the cleaned
Alzheimer’s disease entries (215) extracted from the GWAS Catalog.

Tr 1
Classification tree ue class

Relevant | Irrelevant
Relevant | 26 4 30
Predicted class | Irrelevant | 13 172 185
39 176 215

Table 4.6: Confusion matrix of the prediction by the classification tree (model C) in
figure 4.5. It shows a True Positive rate of 67% and a True Negative rate of 98%. The
PPV is 87%, the NPV is 93%, and the Fseore is 75%.

of positive and negative examples. There is an overrepresentation of negative examples.
To balance the data set we over-sample the positive data points. The work by Batista,
Prati, and Monard [5] shows that random over-sampling performs competitively to more
complicated sampling methods. As mentioned before, the entries are also binned in pre-
specified values by the classification model, which can be disadvantageous when trying
to rank the entries. Because this model performs the best on all measurements, this
model should be used despite this. To improve this model C, we combine it with model
B, the best regression model. As the real test for a model is to perform well on unseen
data we will also split the data set in two, using 25% of the data as a test set, with the
rest being used as training data. This split is performed at random, with a set seed for
repeatability. We do this so the data that we get our performance measures from are
not previously seen by the model, hence providing more realistic measurements.



4.4.1 Better base data

To increase the effectiveness of the two kinds of base models, more data is needed. In
basic terms; the more data a model has to learn on, the less likely it is to overfit and
thus behave badly on unseen data. More factors influence the amount of overfitting, but
an extensive data set is key. With that in mind, the base data set is extended. Apart
from including more Alzheimer target genes, more phenotypes are included; Parkinson’s
disease, breast carcinoma, amyotrophic lateral sclerosis (ALS), colorectal cancer, ankylos-
ing spondylitis (AS), prostate carcinoma and multiple sclerosis (MS). These phenotypes
have been chosen as they are all highly debilitating or deadly diseases, which makes them
prime targets for relatively expensive genetic research. They are also all very different
phenotypes when it comes to protein pathways and the development of the disease.

Table 4.7 shows the phenotypes with the established relevant genes, based on the
sources provided. Most of the sources are aimed at the general public because being
communicated to the general public through a national health institute indicates that
the gene is an established factor in the development of the disease. Parkinson’s disease
is a disease that affects the nervous system. It develops progressively, which means it
worsens over time until death or serious disability. Parkinson’s generally starts very mild
with symptoms such as slight tremor, impaired balance, or changes in speech. Affected
persons have a high chance of developing dementia and depression in later stages. Many
late-stage Parkinson’s diseased are bed-bound or chair-bound [20]. Where Parkinson’s
disease can be seriously debilitating, ALS is deadly. Also neurologic in nature, the disease
degrades all voluntary muscle movement over time. The patient usually ends up with
the inability to eat and breathe, after which they die. The life expectancy is normally
between 2 and 4 years after symptoms begin [22]. Breast carcinoma (cancer) is a disease
that disproportionally affects females, usually at an age over 50 [53, 56]. It is estimated
that 5-10% of cases are hereditary in nature, which makes it an interesting target for
genetic research. Prostate carcinoma (cancer), in contrast, is a form of cancer that by
definition only affects males. About 15% of diagnosed male cancer cases are prostate
cancer, with 7.9% in both sexes combined [63]. Colorectal cancer is a type of cancer
that is mostly caused by environmental factors. Genetics play a relatively small part in
the chance of developing the disease, it is considered a lifestyle disease [64]. This is in
contrast with for example breast cancer. It is, however, a very prevalent type of cancer,
and thus, every genetic insight is of help to a large group of patients. AS is believed to
be an autoimmune or auto-inflammatory disease which is known to be highly genetic in
nature [54]. It mainly affects the spine, but other parts of the body can be affected, such
as the pelvis, eyes, and bowels [38]. Although genetics are not completely responsible
for developing the disease, there is a genetic factor [39]. MS affects nerve cells in the
brain and spinal cord, which results in the inability of the nervous system to send signals
throughout the body [14]. Because of the all-encompassing nature of the nervous system,
symptoms can range widely per patient. Examples of symptoms include eye problems
(double vision or blindness), sensing issues and muscle weakness [44]. There is a genetic
component in MS, with siblings of affected individuals having a higher risk of developing
the disease themselves [16].

33



Positive/filtered
Phenotype (unfiltered) Relevant genes | Source
APOE, ABCAT,
. CLU, CR1,
Eiate On?itoflz)};elmer ° 41/186 (1139) PICALM, PLD3, | [13, 55]
Sease TREM2, SORLLI,
APP, PS1, PS2
S SNCA, UCHLI,
Parkinson’s disease 20/126 (263) LRRK2 [27, 42]
Breast carcinoma 3/621 (1412) BRCA1, BRCA2 | [25, 40]
SOD1, C9ORF72,
Amyotrophic lateral FUS, TDP43,
sclerosis (ALS) 2/72 (119) NEK1, TDP43, 4
UBQLN2, KIF5A
APC, MSH?2,
Colorectal cancer 1/469 (751) MLH1, PMS2, [26]
MSH6, PMS1
Ankylosing spondylitis (AS) || 13/74 (416) ELlAA_BI’L];)?f{RAPL [39]
. BRCA1, BRCA2,
Prostate carcinoma 1/510 (714) HOXB13 [43]
HLA-DRBI,
. . IL7R, CYP27BI,
Multiple sclerosis (MS) 17/187 (422) ILIRA, [41]
TNFRSF1A
Total 98/2245 (5236)

Table 4.7: Phenotypes used for extended data set. The unfiltered entries are the raw
entries that come from the GWAS Catalog API for the specified phenotype. These entries
are filtered for missing values, after which they are split into positive and negative hits.
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Chapter 5

Results

As shown in the previous chapter, both a classification and a regression model can
help in the selection of relevant entries in a genetic information system like the GWAS
Catalog. The amount of properly predicted entries, before optimization of the models,
is already above 80%. This can be very useful for fast filtering of entries. There are also
improvement points when it comes to the way we test the models, as well as the amount
of data they are trained on. This section shows the final models created, as well as the
combination of both models into one, capitalizing on the strong parts of both models.

5.1 Improved base models

When using the balanced and extended data set to retrain models B and C into the
models By and Co, we find the following results. Model By (Tables 5.1 and 5.2) performs
more balanced when looking at the True Positive and Negative rates, as well as the PPV
and NPV. This has to do with the balancing of the data set to contain a similar amount
of positive and negative examples, which in turn improves the Fy.... drastically, to
48%. It can be seen that the variables P.;,, OR and RF are included in this model.
The reasoning for adding the RF' variable back into the model was that it performed
with more confidence under this new data set and has quite a substantial influence in
the prediction. Model Cy (Table 5.3 and Figure 5.1) also performs more balanced and
turns out to have an Fyeore of 84% which is very promising. As can be seen, the model
is slightly more complex than the original model. This has to do with the reduced
complexity parameter cp. It was found that this reduced complexity parameter (which
will make the model more complex) makes the model perform better with our new
training set.

5.2 Combining models

To improve the power of the model on classifying the database entries the two models
are combined. The theory behind this is that even though the classification model
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Coefficient | Variable | Value z-value | P-value

b1 (intercept) | —0.875872 —8.606 2x 10716
o Peap —0.025588 | —9.717 [ 2x 10716
03 OR 0.188361 | 0.033578 | 2.03 x 108
B4 RF 0.302575 2.213 0.0269

Table 5.1: Logistical model coefficients of model Bs.

Logistic regression True class
Relevant | Irrelevant
Relevant | 201 69 270
Predicted class | Irrelevant | 360 492 852
561 561 1122

Table 5.2: Confusion matrix of the prediction by the logistic regression model, retrained
on the extended and balanced data set (Bg). It shows a True Positive rate of 36% and
a True Negative rate of 88%. The PPV is 74%, the NPV is 58%, and the Fyeope is 48%.

. . True class
Classification tree Relevant | Irrelevant
Relevant | 514 150 664
Predicted class | Irrelevant | 47 411 458
561 561 1122
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Table 5.3: Confusion matrix of the prediction by the classification tree, retrained on the
extended and balanced data set (C2). It shows a True Positive rate of 92% and a True
Negative rate of 73%. The PPV is 77%, the NPV is 90%, and the Fy.ope is 84%.
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Figure 5.1: Decision tree (model Cs) created using RPart (¢p = 0.01) on the extended
and balanced data set extracted from the GWAS Catalog.

performs better on our measurements, all the entries are binned into distinct groups.
The regression model can rank the entries within these groups because it predicts distinct
values for different inputs. Because the classification models perform better we want to
give this model preference in prediction. This can be accomplished by giving this model
more weight in the final prediction. Equation 5.1 shows the way in which this is done,
with wy being the weight for model X, and predictionx ; being the prediction by model
X on entry 1.

relevancy; = wps * predictionps ; + wca * predictioncs ; (5.1)

Intuition tells us that the weight factors w have to be set so that the dominant factor
will be model Cs, with model By only influencing the entries that are binned together
by model C5. The added effect of combining the two models is that entries that are
binned distinctly but close together, and are thus very similar, can still be re-ordered
by model Bs. Naturally, we want to max out all the measures when balancing the two
models. However, we give extra weight to the Negative Predictive Value and the Fycore, as
maximizing them will insure less, possibly interesting entries will be marked as irrelevant.
To proof our intuition we constructed table 5.4, which shows the measurements for
different balances of the two base models. The influence is the relative weight of model
B> on the final outcome. As described in the table an influence of 50% or less for the
Bs model is favorable for our specific use-case.
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Influence | thp | tNR [ PPV | NPV | F-
By score
5% 91% 78% 80% 89% 85%

10% 91% 78% 80% 89% 85%
15% 91% 78% 80% 89% 85%
20% 91% 78% 80% 89% 85%
25% 91% 78% 80% 89% 85%
30% 91% 78% 80% 89% 85%
35% 91% 78% 80% 89% 85%
40% 91% 7% 80% 89% 85%
45% 91% 7% 80% 89% 85%
50% 91% 7% 79% 89% 85%
55% 91% T6% 79% 89% 84%
60% 92% 6% 79% 90% 85%
65% 92% 5% 79% 90% 85%
70% 91% T76% 79% 90% 85%
75% 85% 8%  80%  84% = 82%
80% 5%  81% 80% 6% 1%
85% 64%  84% 80% T0%  71%
90% 46%  88% T9%  62%  58%
95% 44%  89% 81%  61%  57%

Table 5.4: The critical measurements of the combined model under a changing influence
of the logarithmic model. For the True Positive rate (TPR), the Negative Predictive
Value (NPV), and the Fsqore we can see a sharp drop-off in performance with and
influence of over 70%. The Positive Predictive Value (PPV) does not change significantly
across all influence percentages and can be ignored when balancing the influence factors
(in essence, the models are very similar in this measurement). The True Negative rate
(TNR) suffers quite a bit under lower influence factors, although it goes up slightly again
below 50%. Seeing these numbers, and taking into account that we give extra weight
to the NPV and Fscore (section 2.2), a balance of 50% or less in favour of model By is

advisable.
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Chapter 6

Conclusions & Discussion

The research project conducted for this thesis lays the groundwork for automated variant
retrieval. The domain has been explored from a literary standpoint as well as by data
analysis. Different solutions to automated data retrieval have been created and tested in
an academic environment. This chapter will go into the conclusions to this research and
discusses several points and limitations which have to be addressed if a similar solution
is to be deployed in more practical settings.

6.1 Meaning of data quality

One of the fundamentals of this project is the way we can define data quality. An
important aspect is that the context is critical. A question posed at the beginning of
this project is:

What does data quality mean, given a genomic information context?

The answer to this question consists of two parts. At first, a general definition for
data quality is given, after which it is applied to the context of genomic information. As
described in section 2.4, the amount of quality in data is related to the amount in which
data represents the real world. High data quality means the data describes the real
world well. There are multiple ways to measure this descriptiveness, called data quality
dimensions. The Data Quality Methodology specifies the dimensions relevant for the
SILE method and gives a selection of minimum and recommended quality metrics, all
in the context of genomic information systems. The increase in data quality leads to
higher information quality, which in turn ensures higher usefulness and an increase in
the knowledge we can gain from the data. One way to specify usefulness is the amount
of relevant and irrelevant entries in the filtered data set. Expert knowledge is needed to
determine if entries are relevant in the reduced data set. Reducing the data set before
introducing experts to the process reduces the valuable time spent filtering through
heaps of entries.

There is however the complication of missing data. Many entries in the Ensembl
database and GWAS catalog miss information on critical measurements such as Risk
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Factor and Odds Ratio. There are two practical solutions to this problem when working
with both logistic regression models, as well as classification trees. One involves ignoring
the missing information by rejecting the entries when training a model. The downside
to this is a major reduction of the usable data points. As can be seen in Table 4.7, over
half of the entries are expected to be thrown out when using this method. However,
these entries can contain valuable data. Another, as of yet untested method, could be
to either give sensible values to the missing data points, for logistic regression, or to
treat them as a special class when using a classification tree approach. There is a risk
in adding information manually this way, as it might introduce biases that are hard to
mitigate.

6.2 Difference over time and between phenotypes

To fully understand the data stored in the genetic information system, different metrics
need to be quantified. The second question posed is related to the differences between
different phenotypes and over time.

How much does the amount and quality of data, extracted from established
genomic databases, differ over time and between phenotypes?

This second sub-question explores two major dimensions, researched phenotype, and
change over time. As can be seen in section 4 the first dimension is of big importance
when assessing quality criteria. For some phenotypes, it can be problematic when se-
lecting for high P-value and high Odds Ratio entries, while for other phenotypes it can
be essential to weed out less interesting results. A final solution needs to take these (and
additional) factors into account.

The second dimension, that of change over time, is a relevant factor. In earlier
research, it was concluded that there is at least a substantial amount of change over
time. We have shown the frequency of this change. We have also concluded that the
stated update-cycle is not always followed by the GWAS Catalog. As long as no clear
update schedule is communicated, a solution providing information to researchers and
practitioners needs to check for updates frequently, and track which entries have changed.
The fact that aside from additions to the database there were also a major amount of
deletions (e.g. in the GWAS Catalog, Crohn’s disease) means that variants are wrongly
categorized at first, or filters were adjusted. Although the retrospective adjustment is
good for the overall quality, it also shows the volatility of obtained results. This is
something an automated solution needs to deal with.

6.3 Relevant factors contained in the databases

For an automated solution to work, we need to find factors that influence the quality
of the extracted data, which in turn influences information quality and relevance to
practitioners and researchers. Sub-question 3 addresses this need for knowledge:
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What are the factors that influence the quality of the extracted data?

Of the tested factors the P-value stood out as being a very certain factor of importance,
with a fairly high, negative, influence on the resulting value. This means that a low
P-value coming from a research entry means the results of that study are more relevant.
This is no surprising result in and of itself, but it is interesting when combined with the
knowledge that the Odds Ratio and Risk Frequency each have a much lower influence
on the relevancy of entries. This means that from the researched factors, P-value has
the most influence. However, the Odds Ratio and Risk Frequency remain influential,
which can also be seen in the classification trees that were trained. The algorithm chose
to include these factors as the second, third, fourth, and fifth split. The population size,
in turn, does not seem to have much significance in both models. A possible reason for
this is that the population size is already reflected in the P-value and that this variable
does not add much additional information.

There is a possibility that there are more influential factors stored in the papers en-
tered in the database, or from different open sources. More research should be performed
into extracting these factors in an automated way. Examples of this are; the technology
the study was performed on, the background and previous research of the associated
researchers, and the amount times the study was cited.

6.4 Which criteria are relevant?

We investigated hard criteria for the found factors with sub-question 4:
Which criteria for variant selection are relevant?

These hard criteria can best be found using the classification models. They have hard
thresholds that represent the difference between relevant and irrelevant results. When
looking at model C, it is easy to see that the most influential factor, the P-value has a
criterion of 10783 ~ 5% 10~?. Values higher than that are excluded with high certainty.
This is interesting because the P-value threshold for GWAS studies is often set at 5x107%.
This result can be interpreted in multiple ways. On one hand, the values are fairly
similar, especially given that the result was obtained from a model build on a limited
sub-set of the available data. Omne could also say that although a standard is used,
research is scrutinized in a way that favors higher P-values, and thus does not follow the
standard blindly. In model C5 this distinction is not as clear as P-value is not the initial
split here. However, also there the P-value contributes substantially, being the second
chosen split.

The Odds Ratio is the initial split on model Cy. It sets a threshold of 1.1, entries
smaller than this are not considered to be relevant results for most phenotypes. The
Risk Frequency plays a large role in model C and a medium-large role in model Cs. It
is hard to set a hard threshold on this value as it differs much per occurrence in the
two trees. It can be seen as more of a conditional requirement under influence by the
P-value and OR.
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6.5 The development of an automated solution

The second part of this research, after the exploratory analysis, consists of the develop-
ment of an automated solution:

How can these criteria be adapted to every context in an automated way to
obtain the highest quality genomic data?

Manual search through all entries for the phenotype researched is becoming less of an
option as the amount of entries increases. The solution proposed mitigates this problem
by creating a model on the database entries already considered relevant by established
researchers and institutes. We created a data set of 2245 entries, spread across eight
phenotypes, containing 98 entries marked as relevant. We built two base models using
logistic regression and classification which were combined to create a more balanced final
model. This final model performed well on Negative Predictive Value, which means it
does not mark relevant results as irrelevant often. This is very important when trying to
identify possible research opportunities. It performs slightly worse on Positive Predictive
Value, which means that a slightly higher amount of irrelevant results are marked as
relevant by the model. This is the preferable balance as it is better to perform limited
manual filtering after automatic selection than losing valuable entries. Overall, the
combined model performs with an F.ore of 85% given the right balance between model
BQ and CQ.

There are ways to improve these scores, mainly by extending the data set and tuning
the models. We believe that this model is a good basis to use in a practical implemen-
tation. It will not replace the practitioners’ expert knowledge but can greatly speed up
the task of finding relevant research.

6.6 The future

We now have a clearer image of what data quality means in the genetics domain and
when retrieving research entries. The data contained in the repositories need to be
reduced and evaluated according to criteria found in this research project. It is possible
to automate this process to a large extent, which allows for more frequent updating of
existing knowledge. This will help practitioners and research make more appropriate
decisions that are in line with up-to-date biological mechanisms and knowledge. It is
also shown that each potential factor and criteria needs to be understood not only from
a perspective of theoretical data quality but needs to be investigated from a statistical
point of view to determine which criteria will be useful.

Although the proposed solution is grounded in literature, and by performing the
exploratory analysis we gained a good understanding of the domain, the solution is not
completely validated. An implementation in a practical environment is needed to prove
the usefulness to end users. When talking about the improvement that automation can
give there are usually two factors to consider; speed and quality. Improving the speed of
a process by automation means that humans that operate as part of the project spend
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less time on menial tasks and can potentially spend more time on tasks that ask for
a level of expertise. Some automation projects aim to provide a better quality in the
intermediate or final product. Machines and computers can often perform a task more
precise than human hands and minds. However, the more complicated a task becomes,
the harder this is.

The implementation of automated retrieval methods like the one proposed here can
improve the retrieval process on both factors. It already performs many times faster than
humans ever could when it comes to learning what measures and entries are relevant.
It can perform an analysis of a phenotype within the GWAS Catalog in mere seconds
as opposed to weeks or months for humans. There is still room to improve in the
quality department, when looking at the measures we evaluated. However, there are
no performance measures of humans known. The algorithm might already outperform
humans in its current implementation. When combined with a human performing a final
check on the retrieved results, an overall improvement in the quality of retrieved entries
is inevitable, while also maintaining an advantage of speed. Future research includes
validation in a practical setting with both genetics researchers as well as practitioners
in the genetics field.

The challenge for future research lies in experimentation with different kinds of mod-
els and learning algorithms, as well as tuning the ones proposed in this solution. There
will also be plenty of opportunities in the field of natural language processing to extract
more information from published research than currently contained within the public
databases.
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Appendix A

Checklist Observational Case

Study

Step Check
Knowledge | What do you want to know?
goal(s) Is this part of an implementation evaluation, a problem investiga-
tion, a survey of existing treatments, or a new technology valida-
tion?
Improvement| If there is a higher-level engineering cycle, what is the goal of that
goal(s) cycle?
If this is a curiosity-driven project, are there credible application
scenarios for the project results?
Current State of the knowledge in published scientific, technical and pro-
knowledge fessional literature?
Available expert knowledge?
Why is your research needed? Do you want to add anything, e.g.
confirm or falsify something?
Theoretical framework that you will use?
Conceptual | Conceptual structures? Architectural structures, statistical struc-
framework | tures?
Chance models of random variables: Semantics of variables?
Validity of the conceptual framework? Clarity of definitions, un-
ambiguous application, avoidance of mono-operation and mono-
method bias?
Knowledge | Open (exploratory) or closed (hypothesis-testing) questions?
questions Effect, satisfaction, trade-off or sensitivity questions?
Descriptive or explanatory questions?
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6 | Population | What is the architecture of the elements of the population? In
predicate which ways are all population elements similar to each other, and
dissimilar to other elements?
Chance models of random variables: Assumptions about distribu-
tions of variables?

7.1 | Acquisition | How do you know that a selected entity is a case? How do you
of Objects | know it satisfies the population predicate?
of Study Validity of OoS.

7.2 | Construction| What is the analytical induction strategy? Confirming cases, dis-
of a sample | confirming cases, extreme cases?

Validity of sampling procedure.

9 Measurement] Variables and constructs to be measured? Scales, chance models.

design Data sources? People (e.g. software engineers, maintainers, users,

project managers, politically responsible persons, etc.), primary
data (e.g. source code, log files, bug tracking data, version man-
agement data, email logs), primary documents (e.g., project re-
ports, meeting minutes, organization charts, mission statements),
etc.
Measurement instruments? Interview protocols, questionnaires,
video recorders, sound recorders, clocks, sensors, database queries,
log analyzers, etc.
What is the measurement schedule? Pretests, posttests? Cross-
sectional or longitudinal?
How will measured data be stored and managed? Provenance,
availability to other researchers?
Validity of measurement specification.

10.1 | Descriptive | How are words and images to be interpreted? (Content analysis,
inference conversation analysis, discourse analysis, analysis software, etc.)
design How are words and images to be interpreted? (Content analysis,

conversation analysis, discourse analysis, analysis software, etc.)
Validity of description design.

10.3 | Abductive What possible explanations can you foresee? What data do you
inference need to give those explanations? What theoretical framework?
design Internal validity.

10.4 | Analogicin- | What is the intended scope of your generalization?
ference de- | External validity.
sign
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11 | What has | What has happened during selection? Did the cases eventually
happened? | selected have the architecture that was planned during research
design? Have there been any unexpected events during the study?
What has happened during analytical induction (i.e. sampling)?
Could you study the kinds of cases that you originally planned?
What has happened during measurements? Data sources actually
used, response rates?

Table A.1: Checklist when performing an observational case study by Wieringa [62].
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Appendix B

Quality dimensions search level

Dimension

Description

Believability

M1: The information stored in the database must be manually
curated or reviewed by experts. This type of database has proved
to be less error-prone than those which use algorithms to annotate
the information.

M2: There are quality controls to ensure the correctness of the
submitted information (e.g. submission forms, automated control
of HGVS expressions, etc.).

Relevancy

Ma3: The database contains enough information and is useful to de-
termine the required data, according to the attributes determined

by the CSHG.

Reputation

M4: The database must be maintained or supported by inter-
national or well-known national research centers, institutions or
associations.

Currency

M5: The database must be active and frequently updated as well
as provide enough information about it; e.g. the date of the last
update and the database version.

Accessibility

M6: The information must be public and freely accessible.

MT7: The database must provide mechanisms to download the
search results.

MS: It is highly recommended that the database provides ways to
allow programmatic access to the information stored.

Table B.1: The quality dimensions in the Search level as defined by Leén and Pastor

[34].
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