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Abstract 
Amyotrophic Lateral Sclerosis is a neurodegenerative and lethal disease that causes death 3-5 years 

after diagnosis. A cure has not been developed yet. Researchers require more knowledge on the 

genetic architecture of the disease in order to develop a treatment. Up until now, variants in the DNA 

have been identified as a cause for ALS. To use more opportunities that lie in the field of genetics, 

DNA data of many patients and healthy controls has been gathered. An initiative that addresses this 

challenge is Project MinE, that aims to bring researchers, patients and other stakeholders together 

worldwide. They have created a database with many DNA profiles that could be used for ALS 

research. In the last decade, it became clear that the focus must be on the whole DNA sequence, 

instead of only protein coding genes. This other part has a regulatory function, which means that it 

has a major influence on the activity of protein coding genes. Next to this, not only variants that are 

common in a certain population, but also variants that are rare (but have a damaging effect) must be 

studied. A technique that can help to make sense of these topics, is machine learning. This Business 

Informatics thesis aims to compare the two machine learning frameworks “CADD” and “ExPecto” on 

their ability to predict gene expression effects from variants in regulatory DNA sequences. It is shown 

that the tools do not perform well on validation data of the GTEx and MPRA projects. Furthermore, 

the tools do not give any significant predictions for MinE data, when variants of patients and controls 

are compared. However, it is shown that the ExPecto framework, which was introduced in 2018, 

outperforms the state-of-the-art technique CADD in the validation phase. 
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Preface 
Before the first period of my thesis, I followed the course ‘Bioinformatics in Neuroscience’ as a 

preparation to my time at the ALS centre. In a very short time, all sorts of new terms, tools, data and 

visualisations were introduced to me. ALS was one of the central subjects of this course, so various 

researchers of this field came to give guest lectures. Also the data we worked with, was derived from 

ALS patients. The course was a valuable, but intensive, preparation to the thesis.  

ALS was a rather specific choice of interest for my research project. I first heard of this disease via the 

international Ice Bucket Challenge. In the last few years, the disease seemed to pop up via all sorts of 

ways. There were acquaintances who worked on ALS research and told about this, but I also saw the 

destructive effects from up-close.  

The fact that there is still a lot to discover, since there is no known cause or medicine, made me want 

to look into it more. On top of that, I discovered that the research group of the UMC was interested 

in using machine learning algorithms for finding genetic variants of interest. Since I follow the profile 

‘applied data science’ and because of my interest in machine learning, this seemed like the perfect 

way to broaden my knowledge. Furthermore, the MinE project was introduced to me, which is a 

remarkable initiative to bring different stakeholders together to gather genome sequences from 

patients and controls for data analysis purposes.  

This research could be of great value for my career in different ways. My current idea is to end up in 

the field of data science. What kind of role I will be playing in terms of programming (or not) is not 

yet clear to me, but I know that it is valuable to touch the technical side either way. It is also a great 

way to see my capability in learning a new domain in a rather short time. In the consultancy practice, 

it happens a lot that you get to work with different people and projects in various domains. A certain 

amount of flexibility is needed.  

I would like to thank Kevin Kenna for his inspiring ideas and his feedback during my time at the UMC 

Utrecht. His supervision and knowledge about genetic research have been essential for gaining new 

insights for my thesis. He has consistently kept me on the right track and he has given me the 

opportunity to learn a lot more about genetics, machine learning and statistical methods, which is 

valuable for my further career in the field of data science.  

Furthermore, I would like to thank my University supervisors Verónica Burriel and Matthieu Brinkhuis 

for their time and effort to read my thesis products and give their feedback. They have inspired me in 

showing how to do research in the Business Informatics field and how to set up such a thesis study in 

the right way.  
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1. Introduction 
In the summer of 2014, there arose a rather special hype for a good cause that gained popularity 

very fast. All over the world, people threw buckets of ice water on themselves. Everybody seemed to 

be involved, even former president Obama joined in august. This phenomenon was called the Ice 

Bucket Challenge. It was a clever way to raise awareness for ALS and to encourage people to donate. 

According to an article of July 2016 in the New York Times, a huge amount of 115 million dollars was 

raised. This was the start of the funding for many research projects, with among others the “project 

MinE”.  

The amount of money was satisfying an urgent need, because ALS is not solved yet. This means that 

the causes are not known and there is no cure, while it is a horrible disease. Symptoms that are seen 

often, are weakness of the muscles, difficulty with talking (dysarthria), difficulty with swallowing 

(dysphagia) and spasticity. Patients often have 3-5 years to live after the diagnosis. Eventually, the 

muscles of an ALS patient will not work anymore, due to the death of motor neurons.  

A collaboration between researchers and doctors worldwide was build up to gain new insights on the 

disease, which goes by the name “Project MinE”. The idea was to gather DNA data from 15.000 

patients and 7.500 controls, which makes it the largest ALS data project in history. Until now, 

approximately 50% of this goal is accomplished. A lot of money is needed to gather this data, 

because the technique “Whole Genome Sequencing (WGS)” is used. This is a way to sequence the 

whole human DNA string, so every little piece can be taken into account in disease research. 

Sequencing DNA was an expensive job up until a few years ago, when it was still thousands of dollars. 

Luckily, technical developments made the price drop to €100.  

With the data of Project MinE, researchers are able to find specific parts of the DNA sequence that 

are representative for having ALS. More specifically, the patients have certain genetic variants that 

cause the disease. For instance, a disruptive variant could appear in a gene. This causes a 

dysregulation in the production of proteins. In the year 2000, two influential people spoke about the 

promising possibilities of finding genetic risk factors. The director of the National Human Genome 

Research Institute said that diagnosis based on the DNA sequence could be realised in 10 years. 

Furthermore, U.S. president Clinton predicted that it would “revolutionise the diagnosis, prevention 

and treatment of most, if not all, human diseases” (1). Until now, these statements are not 

completely fulfilled yet, but genetics has certainly broadened the understanding of the architecture 

of diseases. Additionally, it serves as an inspiration for new personalised medication.  

Research on ALS is necessary, because the exact causes have not been found yet. There is also no 

medicine that can cure the patients. However, if the relevant variants and genes could be identified, 

then it helps to develop personalised medicine in the future. The technique that could be used for 

this, is called “gene therapy”, which targets a gene that possesses the disruptive effect.  

Until a few years back, research was mainly focussed on variants in a small part of the DNA 

sequence: the protein coding genes. However, the other 99% of the sequence, also called regulatory 

or non-coding DNA, contains a lot of disease risks. The influences of variants in this part are much 

harder to interpret, since they have an indirect effect on the production of proteins (2). In (3), which 

is a paper from 2006, the need for more knowledge on the non-coding regions is stated. Especially 

the underlying mechanisms that are responsible for a certain expression change. Researchers have 

been aiming to address this problem by developing several data analytics techniques, that are able to 

identify disruptive variants in regulatory regions. A technique that has been gaining popularity in 

many areas in the last years, is machine learning. This is also something which is used in the medical 

area more and more. It goes hand in hand with the increasing amount of data that can be gathered 
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and stored, which makes it interesting to invest in complex data analytics techniques. On top of that, 

the developments in computing power have helped the use of complex algorithms to analyse data.  

In ALS research, there is still much to learn about the genetic architecture and the effects of variants. 

While approximately 30 ALS genes have been found, it is not yet enough. These discoveries only 

explain a small percentage of all patients. Opportunities lay in rare variants in the regulatory regions. 

These variants could have a damaging effect on the expression of protein coding genes. They could 

alter it in such a way, that they contribute in the development of ALS. To explore this area more, 

various data analytics techniques will be used.  

This Business Informatics thesis study aims to use machine learning algorithms to identify common 

and rare variants in regulatory regions in ALS patients. The opportunity will be taken to apply and 

compare machine learning techniques to a real world case, with the goal of finding the most suitable 

option for ALS research. In section 1.1, the topic and motivation are further elaborated upon. The 

aim of the research is explained in 1.2. The document outline can be found in 1.3. 

 

1.1 Topic and motivation 
Up until a few years ago, research on the genetic causes of ALS have been mainly focused on 1% of 

the DNA: the protein coding regions. This was simply because the rest of it was seen as irrelevant. In 

2013 researchers found out that the 99% of the human genome that was considered ‘junk DNA’, 

actually consists of very relevant regulatory regions. They do not code for proteins themselves, but 

they are able to turn genes on or off. They could actually have an indirect effect on the 

transcriptional process. Because of this quite recent genomic discovery and the developments in 

genome sequencing, the effects of regulatory variants have not been studied extensively for ALS.  

On top of that, due to budget constraints of research groups, cheaper techniques like Genome Wide 

Association studies (GWAS) are used. They only take a part of the genomic variation into account. 

GWAS do provide less detailed information compared to using Whole Genome Sequencing (WGS). 

GWAS will look at a certain region that could be responsible for a SNP, while WGS will look at the 

whole genome. If one would combine this with machine learning, certain variants could be found 

that are responsible for activities in a gene and the resulting phenotype. Luckily, the price of WGS for 

one person has decreased significantly. Project MinE is focused on gathering DNA profiles with WGS 

as well.  

The UMC Utrecht contains a research department on Neurogenetics that, among others, specialises 

in ALS. Project MinE is an important initiative of this group. The UMC researchers have been using 

various machine learning techniques and other data analysis solutions to identify ALS genes. This 

department has some successful collaborations in finding ALS genes already, which is seen as a major 

accomplishment. Unfortunately, it is not yet enough to save people. New machine learning 

techniques are developed all over the world for the area of genetics and some could be of great 

impact to ALS research. This is the reason why ALS research groups need all hands on deck. More 

specifically, people from different areas are needed, like medical doctors, researchers, IT people and 

so on. A student with an Informatics background is able to understand data science techniques and 

apply them. However, a thorough understanding of the genetics area is required. 
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1.2 Research objective 
In the field of genetics, it is a challenging task to map the expression effects of variants. Especially 

because a large part of the DNA sequence is non-coding. However, there are tools that are able to 

predict these effects to some extent. 

This thesis aims to find the machine learning techniques that serve the goal of discovering disruptive 

effects of regulatory variants in ALS patients. Insights on the differences and similarities between 

tools will declare which tool serves the goal best. It will be a chance to learn from machine learning 

tools for this complex genetic problem. Finding new disruptive variants will serve as input for further 

ALS research. 

It is now known that ALS is caused by a combination of common and rare variants. Since rare variants 

are more difficult to identify than common variants, it is valuable to use tools that can detect both 

types. By studying the differences between patients and controls, the changes in gene expression 

effects can be found. This is not only an opportunity to find variants to keep an eye on in further 

research, but also to find the exact disruptive effects in gene expression.   

The aim is to bridge a gap that exists in ALS research. Until now, there is no literature on expression 

changes from variants in regulatory regions of ALS patients, while this opportunity is recognised by 

many scientists and described in a plethora of published papers, as is described further in this 

proposal.  

1.3 Document outline 
This thesis document has the goal to find the machine learning algorithm(s) that are able to find 

disruptive regulatory variants in ALS patients. This is done by documenting the discovery and 

comparison of the algorithms. Empirical research and the corresponding empirical cycle with its 

phases are explained in chapter 2. The empirical cycle is used as the method for this thesis. 

The theoretical background is given in the Research Problem Analysis in chapter 3. Chapter 3.1 is 

about Amyotrophic Lateral Sclerosis (ALS). First the disease itself is explained in 3.1.1 and then the 

research until now is explained in 3.1.2. Furthermore, important topics in genetics are explained in 

chapter 3.2. It begins with DNA in 3.2.1, then the transcription process in 3.2.2, then variants in 3.2.3, 

regulatory DNA regions in 3.2.4 and GWAS and WGA are discussed in 3.2.5. Chapter 3.3 elaborates 

on the machine learning tools that are available and the comparison between them (3.3.1). Then it 

moves on to the tools that have been chosen for this thesis: ExPecto in 3.3.2 and CADD in 3.3.2. The 

last part of the theoretical background is given in chapter 4 about scientific relevance, which gives a 

review on related works.  

Chapter 5 pays attention to the actual use of the two tools and the data that is required. Especially to 

the steps that must be taken to come to a result. 5.1 is about the setup of ExPecto and chapter 5.2 is 

about the setup of CADD. 

The validation of the two machine learning tools is described in chapter 6. First the GTEx analysis 

with ExPecto and CADD is presented in 6.1 and then the MPRA analysis with the same two tools in 

chapter 6.2.  

Next, the pre-processing steps for the actual MinE analysis is described in chapter 7, which is about 

the research execution. The results and insights are presented in the data analysis in chapter 8.  

Finally, chapter 9 provides the conclusions, chapter 10 the discussion and chapter 11 the future 

work.   
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2. Method 
The method of the thesis project will be described in this chapter. The aim of this research is to find 

the most suitable machine learning technique that gives insights on how variants disrupt the gene 

expression of ALS patients. Gene expression could also be called “activity”, since it encompasses the 

turning on-and-off-(or up and down) of a gene. Regulatory DNA sequences will be studied in 

particular. Machine learning techniques are able to give insights on this. Combining these topics 

together, resulted in the following main research question: 

How can machine learning algorithms predict the way that genetic variants 

disrupt the activity of regulatory DNA sequences in ALS patients? 

This chapter will describe empirical research and the corresponding empirical cycle with its phases.  

2.1 Empirical research  
For this research, certain guidelines are needed to structure the thesis project. In this case, the 

empirical cycle will be used, which is a method that is suited for information science research 

projects. It is described by Wieringa in (4). The empirical cycle is a problem-solving method, that is 

part of design science. This cycle is preferred, because this research does not involve a design 

problem. Algorithms that are already designed, are studied in a certain context. There are two major 

aspects of design science that must be clarified: the artefact(s) and the context. An artefact could be 

many things, like a method that is studied or an algorithm that is used. The context is what the 

artefact is designed for, like development or use of software.  

In this thesis project, the central artefacts are the tools that are studied. These tools are the ExPecto 

framework and the Combined Annotation-Dependent Depletion (CADD). They are tools that are 

designed for complex issues in bioinformatics. The problem context here is showing the disruptive 

effects of variants in regulatory DNA sequences of ALS patients.  

The empirical cycle aims to answer knowledge questions about an artefact in a certain context. An 

empirical research starts with defining the problem context according to a few questions. After 

defining the context, an empirical cycle can be initiated.  

2.1.1 Context 
The first three contextual questions of the checklist are about knowledge goals, improvement goals 

and the current knowledge. Knowledge goals will specify the problem statement and improvement 

goals will find possible solutions to the problem. The problem and possible solution are further 

elaborated on in the introduction of this proposal. The current knowledge will mainly come from 

published literature. This phase will clarify important topics for the thesis and it will discuss the need 

for new research. In this third part of the context design, an overview of the current knowledge is 

provided. The topics to be described will be the foundation for the sub questions. The sub questions 

that can be answered after this phase are: 

SQ1. How are genetic variants able to disrupt the activity of regulatory DNA sequences in 

ALS patients? 

a. What are genetic variants? 

b. What is gene activity? 

c. What are regulatory DNA sequences? 

d. What is ALS? 
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SQ2. What scientific research has been done on predicting effects of genetic variants in           

regulatory regions? 

a. What research has been done in ALS? 

b. How can the effects of genetic variants in regulatory regions be predicted? 

c. What are the obstacles in predicting effects of genetic variants in regulatory regions? 

SQ3. What ML tools are available to address this problem (predicting the expression effects 

of variants in regulatory regions) and how could they be compared? 

a. Why is machine learning important in identifying risk factors in ALS patients? 

b. What are the requirements for the ML tools? 

c. What existing ML tools fit the requirements?  

The answers to these knowledge questions are part of three major subjects: Amyotrophic Lateral 

Sclerosis (ALS), genetics and the machine learning tools. This can be found in the research problem 

analysis in chapter 3.  

2.2 Empirical cycle 
The empirical cycle (figure 1) consists of five phases, that can be executed subsequently until the 

knowledge goals are achieved. The five phases are: research problem analysis, research & inference 

design, validation, research execution, and data analysis.  

 

Figure 1. Empirical cycle (4). 

2.2.1 Research problem analysis 
The research problem analysis is answered by the knowledge questions 1, 2 and 3. It uses a 

combination of literature and the expertise of different ALS researchers of the neurogenetics UMC 

group. The problem analysis can mainly be found within these knowledge questions in chapter 3 and 

in the introduction chapter of this proposal.  

2.2.2 Research and inference design 
The research design is about the suitable setup. In this project, there will be made use of a sample-

based research. Generalization to a population happens when the researcher applies objects of study 

to samples of the population. Main concepts in this phase are the objects of study, the population, 

the treatment and the measurement.  
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The treatment encompasses the way in which the objects of study (machine learning tools) are 

applied to the population samples. Important features to study here are the data, the pre-processing 

steps that are needed and other requirements of the tools that will be used. Before starting with the 

machine learning tools, some skills need to be improved, like working with different genetic file 

formats and working with languages like Python and the Bash (for the terminal), which are not fully 

known to the student yet. These are necessary to implement the ExPecto framework. Accordingly, 

the following sub-question will be answered in this phase: 

SQ4.  What kind of data and pre-processing steps are required by the tools? 

ExPecto has not been used before on ALS data and might provide new insights on the disease. The 

data for this tool has to be gathered, pre-processed and analysed from scratch. CADD has already 

been used before on ALS data, but it will be used again, since it can be run with the same version of 

the data that will be available for ExPecto. A tool might also have a complementary function, but this 

is not known beforehand. This happens for instance, if both tools have the same quality and they 

highlight significant disruptive variants in ALS patients. 

 

Figure 2. The treatment design for the objects of study. Both tools are used on data of patients and 

controls. After getting results, the outcomes are compared to each other.  

Comparing the outcomes is made possible by the measurement design. The machine learning tools 

must provide an outcome that can be compared to one and other. They provide a score or a value 

that gives an indication about the effects of the variants. More specifically, a change in gene 

expression they might cause. The outcomes of tools will be compared with a statistical test. This is 

visualised in figure 2. 

The inference design is about drawing conclusions from the data analysis. This will clarify how the 

outcomes of the machine learning tools can be interpreted. The way in which the tools will gain 

information on variant effects in regulatory regions in ALS patients, needs to be checked.  

2.2.3 Validation 
For this research, it is of high importance that the answers to the knowledge questions are reliable. 

This could be accomplished by validating the research design. Literature and expert knowledge will 

help to design the research in a correct way to provide a sufficient background. In order to check if 
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the algorithms produce a reliable outcome, the tools (objects of study) must be validated. One of the 

main obstacles in algorithms that discover effects of regulatory variants, is the validation. Since this is 

a relatively new research field, there are not many datasets available to validate with. A way to do 

this, is testing them on variants that are known to have an expression effect. For this purpose, data 

from the GTEx project and data from experiments with Massively Parallel Reporter Assay (MPRA) can 

be used. These are initiatives to map expression effects of variants. The GTEx datasets and the MPRA 

datasets will not provide variants that are associated to ALS, because research in that field has not 

been published yet. However, there are other already known variants with their effects in these 

datasets, that will help the validation of the machine learning tools (5).  

The GTEx dataset and the MPRA dataset that will be used in the analysis, serve as labelled data. They 

both contain variants with the known expression effects (labels). ExPecto and CADD will give a 

prediction for every variant. These predictions are then compared to the actual expression effects. 

The quality is measured by the use of Receiver Operating Characteristic (ROC) curves. They result in 

an Area Under the Curve (AUC) and eventually a confusion matrix. These terms are further explained 

in the Validation chapter 6. 

Another way of validation that will be used, is testing the Objects of Study on samples of the larger 

data files first. Subsequently, the outcome data is checked on unexpected output that doesn’t fit the 

manuals of the tools. For instance, empty rows, columns and fields are checked or the number of 

rows that it had to produce.  

2.2.4 Research execution 
In this phase, the research is executed according to the design given in phase 2 of the empirical cycle. 

The data is gathered, the pre-processing steps are followed and the machine learning tools are used 

on 46 million variants of the MinE project to gain new insights about ALS patients. In this dataset, 

there are variants from patients, as well as controls. The information about what variant belongs to 

who, is not necessary until the Data Analysis phase. In chapter 5, an explanation is given on how to 

use the two machine learning tools. 

2.2.5 Data Analysis 
Conclusions could be drawn after the data analysis phase. The outcomes will be ordered, selected 

and visualised in plots to be able to interpret the data. Statistical tests are used to compare patients 

and controls within groups. They are also used to compare the outcomes of the two tools. In this last 

phase, it is very important to be able to interpret the outcome and to see if there are any insights of 

value for the research question. The analysis method used in this phase, is a gene burden analysis, 

which is able to give a statistical score to a gene, to see if it is differently expressed in ALS patients. 

Outcomes of these analyses were plotted in Manhattan plots.  

 SQ5. What predictions on expression effects are made by the machine learning tools?  

a. What was the validation performance of each tool? 

b. What variants in patients were significantly different from variants in controls in terms of 

expression effects? 

c. What are the conclusions when comparing the outcomes of the tools? 
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3. Research problem analysis 

3.1 Amyotrophic Lateral Sclerosis 
Amyotrophic Lateral Sclerosis (ALS) is a very destructive disease that, unfortunately, affects 1 to 2 

newly diagnosed people per population of 100.000 a year. ALS is lethal for all patients, because the 

right medication has not been developed. Prevention and curing therapy are not yet in sight, mainly 

because the causes remain largely unknown. After diagnosis, patients have only 3 to 5 years to live 

(6). Only 20% of the individuals affected with the disease, has familial ALS (fALS). Heritability is the 

cause of fALS, which indicates that it is manifested in more than one member of a family. The 

remaining percentage has a sporadic version of the disease (7). 

Research that tries to map the development of ALS cases worldwide, has predicted a relatively large 

increase of 69% from 222.801 in 2015 to 376.674 patients in 2040. This is mainly due to the ageing of 

population. In EU countries specifically, the number of patients will increase from 29.208 in 2015 to 

35.024 in 2040. The overall number could be seen as an underestimate, due to expected positive 

developments in research in the upcoming years (8).  

The developments in ALS research grow exponentially because of new techniques and insights. 

Hardiman et al. (2017) manage to give a proper review on the disease in terms of epidemiology and 

discoveries. This review is developed relatively recent and will be used to explain the area of ALS 

along with other relevant studies.  

3.1.1 Disease and phenotypes 
ALS patients develop several primary symptoms, like weakness of the muscles, difficulty with talking 

(dysarthria), difficulty with swallowing (dysphagia) and spasticity. ALS is not solely seen as a disease 

that causes motor dysfunction, but it is also responsible for cognitive/behavioural impairment. For 

instance, this impairment is reflected into a form of dementia. Frontotemporal dementia (FVD) has 

been linked to a mutation in gene C9orf72, which will be further elaborated on in chapter 3.1.2.  

When looking at the symptoms, ALS usually could be categorized in bulbar-onset or spinal-onset 

disease. The former version is expressed in the neck and head. It results in difficulty with speech and 

swallowing. In 25% of the cases, patients are diagnosed with bulbar-onset disease. Dropping things, 

falling and other signs of weakness of the muscles in limbs are an expression of spinal-onset disease. 

The latter is diagnosed in the majority of the patients.  

Muscle weakness, the symptom that ALS is most known for, occurs due to the death of upper and 

lower motor neurons. This happens in three highly influential places of the body: the brainstem, the 

motor cortex (part of the brain) and the spinal cord (6). Motor neurons are crucial cells for the use of 

muscles, since they deliver message from the central nervous system to the targeted muscle. People 

need them for every movement they make. Another characteristic is that there are different kinds of 

motor neurons. Every kind targets their own muscle type. A certain body movement involves the 

collaboration of several types of motor neurons to give the right commands (9).  

The exact causes of these symptoms remain yet unknown. However, research has shown the 

importance of genetics, environment and lifestyle for the development of the different phenotypical 

aspects of the disease. Genome Wide Association Studies (GWAS) have mainly been used to study 

the genetic architecture. An important outcome was that next to common variants, rare variants 

were responsible for ALS. This means that the occurred variants individually have a relatively small 

impact. They could be responsible for a certain phenotypic trait, and together they cause the disease 

(10). Genome-Wide Association Studies are actually more applicable for diseases with common 

variants, like Schizophrenia. This is why making use of Whole Genome Sequencing (WGS) is 
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important for ALS, which is a technique used in the MinE project. The topics in this paragraph will be 

explained further in chapter 3.2.  

Next to genetics, the environment and lifestyle might play a causal role, but not much has been 

proved about this aspect. Case-control studies have been showing insights for this. One observation 

is that a significant number of athletes within populations is affected. Another risk-increasing factor 

seems to be smoking (7). On top of that, other factors seem to be exposure to heavy metals and 

pesticides. Additionally, trauma is a risk factor, like head injury and bone fracture (11). 

3.1.2 Research on ALS 
Because of the major technical developments, like machine learning techniques and the increasing 

computer power, many new insights were gained in the medical area in the past ten years. 

Additionally, techniques to analyse DNA data also evolved. Whole Genome Sequencing (WGS), 

machine learning algorithms and supercomputers to analyse the data had a great impact on the 

discovery of ALS genes. Figure 3 shows the increase of discovered genes in the last ten years, 

comparing to the first years of research. Approximately 30 genes have been discovered thus far. They 

all have a certain impact in the development of the disease. In familial ALS, 4 genes account for 70% 

of the patients: SOD1, TARDBP, FUS and C9ORF72. The search for new responsible genes is essential, 

because they could be targeted in clinical trials. Otherwise, finding medication is like looking for a 

needle in a haystack. Familial and sporadic cases were showing an increasing overlap in genetic 

mutations over the years. This means that some ALS genes in sporadic cases, are also targets in 

familial cases (7,9). 

 

Figure 3: Discovery of ALS genes (11). 

When looking at the methods and techniques that provided insights in new ALS genes, it is clear that 

a wide range was used to make it possible. For instance in finding the gene TUBA4A, a technique 

called exome-wide rare variant analysis is used, where 1% of the human genome (protein coding 

part) is sequenced. This provided insight in a combination of rare variants in the gene TUBA4A of 

familial ALS patients versus controls (12).  

Another method is used to find the gene KIF5A, that has been identified quite recently in 2018. A 

Genome Wide Association Study (GWAS) is carried out to compare patients and controls. On top of 

that, a rare variant burden (RVB) analysis for patients and control is used. The GWAS resulted in 

finding a variant (rs113247976) in the KIF5A gene that causes a coding change (13).   



14 
 

Furthermore, gene C9orf72 was a very important discovery in 2011, since it addresses between 25% 

and 40% of the familial ALS cases and also a small percentage of the sporadic ALS cases. The genetic 

variant that causes disruptions in the gene, is located in a non-coding regulatory region (that is 

further elaborated upon in 3.2.4). The main technique that was used to find this variant, is 

Polymerase Chain Reaction (PCR). As pointed out in 3.1.1, C9orf72 is mentioned as a cause for 

frontotemporal dementia (FVD) (6,14).  

Two other genes that are involved in regulatory regions, are TARDBP and FUS. They are especially 

involved in the creation of non-coding RNA’s. TARDBP and FUS variants can cause a reduced 

expression of these RNA’s. Their downregulation has also been associated with motor neuron cells, 

which indicates that these cells are extra sensitive to these variants. Researchers have noticed the 

altered expression of non-coding RNA’s, which makes research in regulatory regions of ALS patients 

increasingly important (15). 

Now the question remains why the discovery of disruptive DNA regions is so important. 

Understanding the genetic basis of ALS will help to find a fitting therapy for patients. Pharmacists 

have to know where to start, in order to develop medication. That information comes from research 

groups. The genetic defects could serve as a roadmap for developing new therapies. Promising 

developments in gene therapy allow specialists to discover the effects of gene silencing and gene 

editing after targeting the disruptive genetic regions. This field is also known as personalized 

medicine or treatment (15).  

3.2 Genetics 
The differences between species are made possible through inheritance; the traits inherited from 

parents to offspring. For instance, this separates humans from a mouse in terms of characteristics. 

Differences between individuals of a single species are due to variants that are caused by genetics, 

gene expression and the environment. Genes are the components of heredity. A gene is part of the 

genomic sequence and can be located as a region in it. These regions could have various functions, 

like regulation or transcription or other sequences with a certain function (16). More about gene 

regions and their mutations will be explained in this chapter.  

Gregor Johann Mendel was the first person in history to run an experiment on heredity and write 

about it. He was an Austrian monk who experimented with pea plants in his garden from 1856 to 

1863. His interest was the inheritance of certain traits of the plants, like height and colour, to their 

offspring. He found out about the principle of inheritance through studying different generations of 

offspring. Mendel is therefore recognised as the founder of the field of genetics (16).  

Not all historic events in the field of genetics will be mentioned in this literature review, but there 

must be mentioned another major development that happened in 2003: The completion of the 

human genome sequence by the Human Genome Project. It is seen as a scientific breakthrough, 

because of the enormous amounts of research opportunities it made possible. The reference 

genome is a DNA sequence that does not belong to one person, but it can be seen as an average of 

the vast majority of the human population. It was realised by a large number of research groups all 

over the world (17).  

In the year 2007, one of the first DNA string of an individual was completely sequenced and 

compared with the reference genome. The individual was one of the people that discovered the 

structure of DNA in the 50’s: James Watson (18). In that time, this study was seen as a great 

accomplishment, while the costs were almost a million dollar and it took a few months to finish. 

Fortunately, the sequencing techniques are much more developed and cheap nowadays.  
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3.2.1 DNA 
The discovery of Deoxyribonucleic acid (DNA) could not simply be allocated to one or two scientists. 

It actually consisted of several scientific events and discoveries by different people in a period of a 

hundred years. One could see it as pieces of a puzzle, that was finalised by James Watson and Francis 

Crick in the 1950s. The first identification was done in the 1860s by Friedrich Miescher, who studied 

white blood cells (19).  

DNA is wrapped up in a cell in the structure of a double helix. The individual building blocks of DNA 

are called nucleotides and consist of four types: Adenine (A), Guanine (G), Thymine (T) and Cytosine 

(C). The double helix consists of two strands that are complementary in their sequence. Opposite of 

an A, there is a T and the C matches up with a T. The combination of the two letters is called a “base 

pair” (20). The whole human genome consists of more than 3 billion of these base pairs. This long 

sequence is unique to every human, due to genetic variants, which will be explained in sub-chapter 

3.2.3 (21). 

A closer look at the structure of DNA and how it is wrapped up, is provided in figure 4. The DNA 

string is hold together by bead-shaped proteins, called histones. Separate groups of eight histones 

have a part of the DNA string wrapped around it. These groups are called nucleosomes and they form 

the organisation of the chromatin. The chromatin is the collection of nucleosomes and the DNA 

between them. Mechanisms play the role in opening and closing the chromatin structure, to make 

gene expression possible, which is the major role of our DNA. Gene expression is explained further in 

this chapter. A long string of chromatin is the basis for a chromosome (22,23). 

 

Figure 4. Structure of DNA (21).  

The DNA in a cell is divided into 46 chromosomes that bind in pairs. At first, there are pairs of 

chromosomes 1 to 22 and there are two sex chromosomes X and Y. For a female, the sex 

chromosome pair consists of two times the X, while a male owns one X and one Y. Some of the 

chromosomes are longer than others, which allows them to contain more genetic information. Genes 

can be found on these chromosome strings. They are regions of nucleotides that have a specific 

function. They can be seen as a manual with tasks to be completed by a cell, in order to survive and 
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reproduce (21). The process of a gene which is translated into a useful product, is explained in the 

following sub-chapter.  

3.2.2 The transcription and translation process 
For a human body to be able to function and interact with its environment, the DNA transcription 

and translation process is essential (figure 5). This is a process that can be found in every cell and has 

proteins as outcome product. Proteins are the ‘builders’ of a cell and take care of the development 

and identity. The part of the genome that codes for proteins, is only 1% of all DNA, which revolves 

around approximately 20.000 genes (22). The other 99%, which was called “junk DNA” until recently, 

will be further elaborated on in part 3.2.4.  

The setting of the initial step of the transcription process is the nucleus, which is the core of the cell 

and can be seen as the command centre. Genes are specific parts in the DNA string and they consist 

of nucleotides. The gene body has two tails: 5’-end (start) and 3’-end (end). The region that belongs 

to a gene, can be found by its chromosome and its start- and end-position on this chromosome, for 

instance gene BRCA2 can be found on chromosome 13 (position 32.315.086 – 32.400.266). These 

positions indicate the sequence of nucleotides. Expression of a certain gene can only take place if the 

Transcription Start Site (TSS) is accessible and can be recognised by transcriptome factors. A TSS is 

located at the 5’ tail. The tails will provide information about where to start and where to stop 

coding. Coding information is relevant to come to the next product: pre-mRNA, which consists of 

exons and introns. These are developed after transcribing the whole gene body. Next, pre-mRNA is 

processed into mRNA through splicing, which removes the introns. mRNA only consists of exons that 

include the 5’UTR and the 3’UTR. For the next step, the mRNA is transported from the nucleus to the 

cytoplasm of the cell, where it is translated to proteins by an organelle called the ‘ribosome’. (22).  

 

Figure 5. The transcription and translation process (22). 

Gene expression is very important for a cell to function in the right way, since it influences the 

phenotypical, functional and developmental state. Examples of the responsibility of a gene, are the 

eye color and the skin color. If the gene expression is changed in a bad way and the function or 

phenotype of the cell is affected, this could result in conditions like cancer or an infection (22).  
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3.2.3 Variants 
The DNA sequence is unique to every human, this is due to variants, which are minor changes in the 

string of A’s, T’s, G’s and C’s. For instance, this explains why someone has blue eyes and another 

person has brown eyes. Variants (or mutations) could come in different forms, like a change (instead 

of an A, there is a G), a gap or a duplication. Most DNA disruptions will stay unnoticed or result in 

changes that are not dangerous or unpleasant. However, other disruptions could be disastrous and 

eventually cause diseases. The most likely reason for this is erroneous encoding of a protein. If the 

gene does not encode for the right building blocks (amino acids), the protein won’t work or it will 

work incorrectly (20).  

With thousands of genetic variants per person, it is likely to think that a part of them might be 

harmful and disrupt the transcription process. Diseases could be caused by common or rare variants. 

These are terms that say something about the frequency of the occurrence within a population. 

Common variants require large studies to reach statistical significance and are mostly found by 

Genome Wide Association Studies (GWAS). In the GWAS, they are called Single Nucleotide 

Polymorphisms (SNPs), which means a change in a single nucleotide (A, C, T, G) in a certain location 

on the chromosome. A SNP could have multiple alleles. These are the different nucleotides that were 

found for a SNP in populations. When a disease is caused by a single or multiple common variants, 

the SNPs are found in a large part of the population. In that case, one SNP is an important 

contributor to the disease. Statistical significance can be found when patient groups and control 

groups are compared (10).  

Rare variants are characterised by their relatively low frequency in a population. They are not able to 

be detected by population-based GWAS. The role of causal rare variants, can be seen as a group of 

variants that all have a small individual contribution to the development of the disease. They can be 

found by looking into a certain region of the genome. This region, that consists of one gene or several 

genes, is affected by the variants in terms of function disruption (10). 

3.2.4 Regulatory DNA regions 
Since finalizing the sequence of the reference genome, researchers have thought that a large part of 

the human DNA is just “junk DNA”. It was 2013 when this was proven to be otherwise. The junk DNA 

actually had a huge impact on protein coding genes, because it consists of regulatory regions. Genes 

can only be expressed when they are turned “on”. Expression means that a transcription and 

translation process is initiated. The regulatory regions have the power to upregulate or downregulate 

genes. Until a few years ago, research was mainly focused on the protein coding parts of the 

genome. Now regulatory regions have also gained interest, because variants in these regions could 

be large risk factors for a plethora of diseases (5).  

In cell-types or tissues, genes are expressed differently. Cells need to know what their tasks are and 

how to reproduce themselves. The regulatory sequences of the DNA turn the genes that are 

necessary for a specific cell-type or tissue on or off. It is a complex coordination function. This is the 

reason why research in different cell-types and tissues is needed when people want to see the whole 

spectrum of regulatory variants. A variant in a regulatory region can have a distinct effect in cells in a 

specific place in the body compared to another place. It is possible that one regulatory sequence is 

responsible for an expression effect in gene X in a tissue, while in another tissue, this same regulatory 

sequence is responsible for an expression effect in gene Y. An example is a variant in the regulatory 

sequence that has a lowered expression effect in gene X in blood cells, while this variant has an 

increased expression effect in the same gene in liver cells. Once again: it is important to do research 

on cell-types and tissues of interest if you want to find reliable insights (24). 
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The term “regulatory region” has been mentioned often in this report. This actually is a category for 

several regions that all have their own name and function. In (5), they are called promoters, 

enhancers, silencers and insulators. Their functions are illustrated in figure 6. Promoters are located 

just in front of the gene in the 5’ region. They activate the transcription process of a gene via the 

mechanisms Transcription Factors (TF) and RNA Polymerase II (RNAPII). A step in this process is the 

binding of RNAPII to the TATA-box, which is part of the promoter region. Enhancers can also have an 

influence on the transcription process through interacting with RNAPII. In contrast to promoters, 

enhancers could be thousands of base pairs away from the gene. Another characteristic is that they 

increase gene expression from a distance with the help of proteins called “activators”. These proteins 

bind the enhancer to the promoter region of a gene. This is possible because of the flexibility of the 

DNA string. Silencers are regions that decrease gene expression and could also be many base pairs 

away from their target. Proteins called “repressors” bind to the silencer region and cause this effect. 

Both activators and repressors are types of Transcription Factors. The fourth regulatory region is the 

insulator, which could form a barrier between different parts of the chromatin. For instance the link 

between the enhancer and promotor could be disrupted, so they can no longer interact with each 

other.  

The aforementioned mechanism “transcription factor” plays a central role in gene expression. They 

work together with proteins to turn genes on or off. Mutations in TF’s could have a major impact in 

developing diseases, because of the disruption of regulating gene expression. Approximately 30% of 

the human disease spectrum is caused by mutations in transcription factors (25).  
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Figure 6. The functions of enhancers, silencers, enhancers and promoters (5) 

In (26), the importance of the mechanisms of gene regulation for ALS is highlighted. Especially the 

role of the non-coding micro-RNA’s (miRNA) is referred to. In chapter 3.1.2, several ALS genes with 

mutations in their non-coding regions have been mentioned. The RNA molecules play their role in 

how these genes are expressed by binding to DNA sequences that are important to a certain gene. 

An estimated amount of 60% of protein-coding genes is regulated by miRNA’s. The outcome of 

different researches indicated that they are involved and downregulated in various 

neurodegenerative diseases, like Parkinson’s, Alzheimer’s and Huntington’s. Thus it is not surprising 

to see that dysregulation of miRNA’s also plays a role in Amyotrophic Lateral Sclerosis. The 

downregulation and upregulation of these RNA’s has already been proven to exist in human patients 

and in animal models with ALS.  

In addition to miRNA’s, the role of DNA methylation is also mentioned to be a disrupted regulatory 

factor in ALS patients. Methylation processes are key in changing the activity of DNA sequences. They 

interact with transcription factors and can influence the transcription process. In some of the 

promoter sequences of genes associated to the disease, changing methylation statuses have been 

reported in patients. It turns out to be majorly involved in transcriptional silencing of a gene. Next to 

methylation, researchers have shown that histone marks (also known as histone modifications) play 

their part in ALS gene regulation. Histones are able to activate or silence transcription. They have a 

small tail to which different molecules are bound, these are called the histone marks. They can 

regulate DNA accessibility chemical tags. When the tags are “flipped”, they can unwind DNA for the 
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transcription process of genes (20). With this ability, they can control if a gene is turned on or off and 

they regulate to what extent a gene is expressed, since this differs per cell type (27,28). In ALS mouse 

models, disrupted histone behaviour was found in the SOD1 gene (one of the ALS genes) in motor 

neuron cells (26).  

3.2.5 Sequencing the whole genome 
Since 2002, a technique called Genome Wide Association Studies (GWAS) has been the state-of-the-

art in finding genetic causes of traits and diseases. There are drawbacks in using this technique, 

especially because a lot of valuable information is left out. Whole Genome Sequencing (WGS) is a 

sequencing technique that is the foundation for more detailed studies, which will be further 

elaborated upon in this sub-chapter. It is also the technique that was used for retrieving data for this 

thesis study. The aim is to point out that using WGS goes a step deeper than using GWAS.  

GWAS is used to identify regions in the genome that are associated with a specific trait you are 

interested in, for instance height. Such a region is called a Quantitative Trait Locus (QTL). This is 

realised by identifying Single Nucleotide Polymorphisms (SNP). A SNP is a genetic variant that occurs 

in more than 1% of the population. At certain locations in the genome, there could be an A instead of 

a C, which makes it a SNP. Frequency of SNPs play a large role in GWAS, because the number of SNPs 

must vary enough between patients and healthy controls, so that they can be picked up. When a SNP 

pops up that is significantly different between patients and healthy controls, it is not ensured that 

this is the actual causal variant that is responsible for the trait of interest. This SNP could be related 

to a QTL (29,30).  

This is one of the main drawbacks in using a GWAS: it finds a location that is associated with the trait 

of interest, but not the exact causal variant. On top of that, it does not show what the expression 

effects of the variants are for a gene, when it is found in a regulatory region (24). 

Another option for finding disease risks is using the technique WGS. Instead of only sequencing at a 

million SNP positions, the whole human genome is sequenced. This makes it more possible to find 

rare variants, instead of finding only associations to risk variants. The key is to look at regions or 

groups of variants that cause a specific trait. It could also be that there are several variants found in a 

gene (31). 

The main differences between GWAS and WGS are being mentioned in (32). The first one is that WGS 

can take a broader range of variants into account than other sequencing techniques. This means that 

it can take common and rare variants into account, while GWAS is specialised in finding common 

variants. WGS is actually able to discover variants as disease-risks that are missed by alternative 

options. GWAS is only able to give an indication where the disruptive variant could be located. It 

does not give the precise information about the variant of interest and its effects. Furthermore, by 

using WGS, one could gain more details from non-coding regulatory regions.  

3.3 Algorithms and tools 
Evolvement of new technologies to sequence and analyse DNA is responsible for the discovery of ALS 

genes described in 3.1.2 (11). In 3.2.5, the difference between Genome Wide Association Studies 

(GWAS) and Whole Genome Sequencing (WGS) is explained. Project MinE addresses the WGS 

method, which makes more detailed analyses possible, since the whole genome is taken into 

account. There are a few important factors to be studied that could lead to interesting new insights. 

They are all in the field of genetics, because the genetic basis of ALS has to be understood better. The 

data of whole genomes of patients and controls makes it more achievable to find rare variants in the 

DNA. More specifically, a better understanding of variants in regulatory regions of ALS patients could 
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be promising and helpful in developing future treatments (15). During this thesis period, the focus 

will be on the disruptive expression effects of common and rare variants in regulatory regions in DNA 

sequences.  

Finding disruptive variants and predicting the effects of variants in the genome is difficult. Diseases 

could be caused by variants with a high frequency (common variants) and/or variants with a low 

frequency (rare variants). Quantitative genetics methods, like GWAS, focus mainly on variants with a 

high frequency. On top of that, it is difficult to predict transcriptional effects from noncoding parts of 

the genome. Since 2013, there is an increased interest in developing tools that predict the effects of 

variants in regulatory regions. In that year, researchers came to the conclusion that the largest part 

of the human DNA sequence did have an effect on the remaining part: the protein coding genes.  

A characteristic for regulatory sequences, is that they regulate gene expression. In chapter 3.2.4, the 

relevance of studying different cell-types and tissues of interest for finding reliable insights is pointed 

out. Regulatory regions could change (increase or decrease) gene expression in a specific cell-type 

(24). For instance, it is known that motor neuron cells are an important factor in ALS, so this could be 

a field of interest to address with tools.  

In this introduction of chapter 3.3, the requirements for finding variants with machine learning tools 

have been mentioned. At first, the tool has to take the whole DNA sequence into account, this means 

also the regulatory regions. Secondly, is must not discriminate between variants with a low and a 

high frequency. Accordingly, this is about common as well as rare variants. The next factor to look at, 

is the actual effect of the variant in terms of gene expression. Subsequently, studying different cell-

types and tissues is relevant for researching regulatory effects. On top of that, the input for a tool 

(retrieved from patients and controls within project MinE) must be variants with their positions and 

alleles. 

3.3.1 Comparison of tools 
With these requirements in mind, appropriate machine learning tools can be looked for. In (5), a set 

of techniques and methods is defined that are able to identify disease-associated variants in 

regulatory regions and show their effects. The prediction algorithms use information of the location 

of the specific variant. If there is an overlap between a variant and a regulatory region, there could 

be associated to a disease. They are all trained on a large amount of data and then tested to make a 

reliable classification.  

The first tool they mention is CADD, which uses logistic regression and was first introduced in 2014. 

An important characteristic of CADD is the creation of a “C-score” that gives an indication for the 

effect of the variant. The advantage is that this score can be utilised by other tools for the 

prioritisation of variants. The disadvantage is that it is not suitable for non-linear relationships, due to 

the limitations of the Support Vector Machine. CADD is often used as comparison for newer tools, 

since it has been the state of the art for a few years, just like in (33) and (34). Another tool that uses a 

Support Vector Machine, is DeltaSVM. Other supervised algorithms that are mentioned, are GWAVA 

with its random forest, FATHMM-XF, LINSIGHT with linear and probabilistic models, PRVCS with its 

composite statistics model, ARVIN with its random forest and DIVAN with its decision tree. Next to 

the supervised options, there are also some unsupervised alternatives, like Eigen (that uses 

unsupervised spectral learning) and GenoCanyon. Unsupervised tools that are able to detect non-

linear relationships are also mentioned. They use a technique called “deep learning”. For instance, 

the tools DANN and DeepSEA use neural networks.  
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A part of the tools (like GWAVA, FATHMM, GenoCanyon and CADD) must be accessed via a website. 

This means that nothing needs to be done via the command line. The scripts do not need to be run 

manually, which could be seen as a benefit, especially because no programming or tool knowledge is 

necessary. A drawback is that parameters cannot be altered and the user is not able to see what 

happens in the backend. It would be interesting to use tools from a website as well as from the 

command line. In the last option, there is a possibility to see and understand the process and code in 

much more detail.  

Furthermore, it would be interesting to see the prediction difference between supervised and 

unsupervised methods. For this study, CADD will be used as a comparison tool, since it has been a 

commonly utilised prediction method, it meets the requirements and it produces a score for every 

variant, which makes it convenient material for comparison. However, CADD uses a web entry form, 

where you must download your variants file in order to get results. Scripts cannot be accessed or 

modified by the user. It has been the state of the art for years, so it will be interesting to see what 

effect scores will be added to the variants, compared to other tools. Furthermore, when looking into 

the publications around CADD, it is made clear that a second version was released in 2018, explained 

in (35). They released the CADD framework with a whole new method and dropped the idea of the 

support vector machine, which was introduced in 2014 in (36). Currently, it uses a logistic regression 

model to score variants.  

The field of discovering expression effects of regulatory variants is rapidly evolving (5). Novel 

knowledge is gained with a fast pace through a plethora of researches. The gathering of new data is 

also helping to improve the developments in developing and training machine learning algorithms. 

This is why another quite new tool is introduced in this thesis study, named ExPecto. In (5), this 

machine learning framework is not mentioned, but its predecessor DeepSEA is. ExPecto has 

outperformed DeepSEA in finding variants that lead to a significant change in gene expression. It uses 

a combination of deep learning and linear models, to be able to pick up non-linear relationships (37).  

A repertoire of three machine learning tools is mentioned in (2), that address the effects of non-

coding variants: DeepSEA, CADD and gkm-SVM. The latter makes use of a support vector machine, 

just like CADD. It was introduced in 2015, but the framework was updated in 2016 (38). It can be 

used as input by the previously mentioned deltaSVM, which calculates the effect of sequence 

variants. Interested people can use the framework by installing the R package. The algorithm finds 

short sequences in the DNA that are responsible for the activity of enhancers. The gkm-SVM takes 

tissue specificity into account. However, the input that is available in Project MinE, is data in the form 

of variants that have been found in patients and controls. A certain transformation of the data would 

be necessary to use this tool, which is not in the scope of this thesis. 

The machine learning tools that have been mentioned, are included in table 1. Cadd and ExPecto 

have been selected for this thesis study and they are highlighted in yellow. 
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Model Year Includes 
rare 
variants 

Cell 
type 
specific 

ML technique VCF file 
as input 

Code 
available 

CADD 2014 
(update: 
2018) 

Yes No Logistic regression Yes No 

GWAVA 2014 Yes No Random Forest No No 

FATHMM-XF 2017 No No Linear regression Yes No 

LINSIGHT 2017 Yes Yes Probabilistic model No Yes 

PRVCS 2016 No No Composite statistics 
model 

Yes Yes 

ARVIN 2017 No Yes Random Forest No Yes 

DIVAN 2016 No No Decision Tree No Yes 

Eigen 2016 Yes No Unsupervised spectral 
learning 

No Yes 

GenoCanyon 2015 Yes Yes Unsupervised 
statistical learning 

No No 
(website 
also not 
available) 

DANN 2015 Yes No Deep neural network No Yes 

Gkm-SVM 2015 
(update: 
2016) 

Yes Yes Support vector 
machine 

No Yes 

DeepSEA 2015 Yes Yes Deep neural network Yes Yes 

ExPecto 2018 Yes Yes 1. Convolutional 
Neural Network  
2. Regularized linear 
models 

Yes Yes 

 

Table 1. Machine learning tools and their characteristics. 

3.3.2 Deep Learning Framework ExPecto 
In 2018 an interesting machine learning framework based on the technique of ‘deep learning’ was 

introduced by Zhou et al. The framework is called ExPecto and takes common and rare variants into 

account to predict the tissue and cell type specific effects. Frequency of variants will not cause bias in 

terms of finding only high frequency ones. The tool is able to predict effects from regulatory regions 

(that are 99% of the human genome), that could lead to new insights. For instance, these insights 

could be parts of the sequence that activate expression of certain genes in the brain tissue. This 

framework is validated by Zhou et al. by the use of results from GWAS studies.  

The necessary input for ExPecto is DNA-variant data in a VCF file. From there, the transcriptional 

effects of variants can be predicted. Frequency information about variants is not needed beforehand, 

because then the tool can take common and rare variants into account or even variants that have 

not been observed yet. Prediction of transcriptional effects is made possible because of the 

knowledge about transferred information from sequence to transcription. The DNA sequence 

actually encodes for a certain transcription outcome. 
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Figure 7. The ExPecto framework: CNN, spatial feature transformation, tissue-specific regularized 

linear models, in silico mutagenesis, human disease and trait insights (37). 

The creators of ExPecto have taken a few main steps to come to this revolutionary framework (figure 

7). They first used the technique of deep learning to find connections between regulatory regions, 

variants and their effects. This resulted in providing more information about a DNA sequence. Deep 

learning has been gaining popularity the last years, because of the opportunity to gather, store and 

analyse data faster and more data than before. Furthermore, it is a technique to use on raw, 

unstructured data like images, sounds or video. A deep learning model is trained on this data and 

tries to make sense of it by using different layers. There are three types of layers (figure 8) that can 

be found in a deep neural network: input layers, hidden layers and output layers. In every layer, 

there is an increased understanding of the data. This is achieved by the work of neurons, which are 

the circles in the figure. All neurons of a layer are connected to the neurons of the previous layer, just 

like in the brain and they can be seen as nodes for computations. A neuron or a group of neurons can 

represent a feature. In every layer, there are neurons that are more active in some parts of the data. 

This is the way to decide what is important for the desired outcome of the model. Weights are given 

to neurons/features that explain the data best. When features tend to a higher error, it is given a 

lower weight than a feature who decreases the error. Eventually the model has a meta 

understanding of the data and is able to classify new data (39).  

 

Figure 8. Deep learning neural network with an input layer, hidden layers and an output layer. 

The deep learning technique that is used by ExPecto, is a convolutional neural network (CNN). This is 

a popular algorithm, often applied in image recognition or speech recognition because of its ability to 

analyse data with multiple arrays. A CNN has many layers and tries to learn something about the 

features of the input data in every layer. These layers are called convolutional layers and pooling 



25 
 

layers. The aim is to find features and look for their similarities, so they can be “pooled” together by 

the pooling layer. This all contributes to an overall understanding of the data (39).  

To get an understanding of the DNA sequences, the framework needed information on transcription 

factors, histone marks and DNA accessibility for over 200 different cell types and tissues. More 

information on these three subjects can be found in chapter 3.2.4 about regulatory DNA regions. 

Transcription factors, histone marks and DNA accessibility will help the neural network to predict 

epigenomic effects. Epigenomics is the study of factors that change the way that genes are 

expressed. The DNA sequence itself is not changed, but the physical properties are altered. These 

alterations have an impact on whether a gene is more likely to be expressed or not (20). 

After the data has been learned by the neural network, a feature transformation method was used 

for dimensionality reduction. This resulted in spatial feature transformations. The approach was to 

give weights to regions with respect to their distance to the Transcription Start Site (TSS). More 

information on the TSS can be found in chapter 3.2.2. The ExPecto framework takes regions of 40 kb 

around a TSS into account, which can be seen on the left in figure 6. The region of 40 kb means a 

total of 40.000 base pairs (bp) and can be divided in 20.000 bp on the left of the TSS and 20.000 bp 

on the right of the TSS. A base pair means one letter (A, C, T, G) in the sequence in this case. If 40 kb 

is mentioned in this document, it is about the whole region around the TSS, while 20 kb is about one 

of the sides. ExPecto predicts the effects of variants in this so-called “promoter-proximal” region. 

This is a regulatory part of the DNA sequence, which has a large influence on a gene, it is also located 

just in front of the gene.  

With the transformed features, a tissue-specific prediction could be made for the expression level of 

every gene. For this last part, linear regression models are applied with a L2-regularization method. 

Regularization is used to give penalties to features that don’t add enough information to the desired 

outcome of a prediction model. Applying this method is of great significance in prediction problems 

with a large amount of features. The penalties help to prevent overfitting on the training data and to 

remove the unnecessary complexity, so the model gains efficiency. L1 (Lasso) and L2 (Ridge) are two 

popular regularization methods to use in predictive modelling. They compute the penalties in a 

different manner. L1 adds the sum of weights to the function parameters and L2 adds the squared 

weights to them (40). The outcome of the linear model is the predicted gene expression in specific 

tissues. During the training phase, sequences of chromosome 8 were kept out of the dataset. They 

were used to test the model accuracy after the training. The ExPecto model resulted in a 0.821 

Spearman correlation.  

Until now, measuring the effects of variants by ExPecto have not been mentioned extensively in 

published papers yet. The goal was to measure the gene expression level in specific tissues. A specific 

variant has a major impact on the outcome of this model, since it can change gene expression. The 

genetic code of an individual is modified and this can have an effect on the actual transcription 

process of a gene. In the model, the difference between the reference and alternative allele is taken 

into account to predict expression effects. The value that will be measured, is the log(fold change). 

This is a standard value to measure gene expression effects for two different alleles. It looks at RNA 

sequencing data for a specific allele. The log2 fold change is the one that is used often. This gives an 

indication how many times the original expression is increased or decreased by a disruptive variant. 

For instance, a doubling of the original fold change can be written as log2 fold change of 1 (41).  

3.3.4 Combined Annotation-Dependent Depletion (CADD) 
The second tool that will be used during this research is Combined Annotation-Dependent Depletion 

(CADD). This is a framework that went through major developments since 2014, when it was first 
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introduced in (36). At that time, CADD was still using a support vector machine as the central 

machine learning technique. In 2018, the next edition was presented in (35). This edition uses a 

logistic regression model.  

The framework has the goal to discover disease-risk variants in the whole DNA sequence (coding and 

non-coding). It has the power to add scores to every variant, that indicate the destructive effects for 

a person. To realise this, 60 annotations were taken into account while training the model. Machine 

learning was used to make a distinction between “new” and “old” variants, which is an idea based on 

evolution. The old variants, cover the ones that have survived in the human body since millions of 

years. To be more specific: since the split between chimpanzees and humans. The fact that they have 

survived for this long, makes them more pure than the novel variants. They have not been removed 

during the process of natural selection. In the CADD framework, such old variants are being called 

proxy-neutral. Generally, more recently arisen variation in the human genome, contains more 

deleteriousness, thus higher risk for disease. However, a large part of these new variants could very 

well be neutral. This second of variants are called proxy-deleterious (35).  

The CADD framework is visualised in figure 10. It consists of two main phases: The model-fitting in A 

and the variant scoring in B. In phase A, the logistic regression model is trained to be able to 

distinguish between proxy-neutral (old) and proxy-deleterious (new) variants. Most users will only go 

through phase B, which makes use of the trained model to add scores to their own data.  

Phase A needed evolutionairy genomic information to define proxy-neutral variants. These variants 

are the ones that appear in 95% - 100% of the human DNA sequences, but they do not occur in the 

sequence of the human-ape ancestor. The proxy-neutral variants are used to create a simulated set 

of proxy-deletorious variants. All variants are annotaded, which means that extra genomic 

information is added to separate the two sets of variants. This is used as input for training the logistic 

regression model and eventually to score variants. 

The CADD score is the final outcome for every variant, which is a combination of many different 

features. For instance, these features could be the context surrounding a certain sequence or the 

evolutionary constraint. The information comes from 60 annotations from several databases and 

projects, like ENCODE (42) and the UCSC genome browser (43). From these annotations, hundreds of 

numerical features were derived to realise a classification method.  

The CADD framework uses a logistic regression, which is a popular classifier. In this case, it is a 

dichotomous classification problem, which means that there are 2 classes (proxy-neutral and proxy- 

deleterious). The goal of the model is to assign a data point to one of the two classes. This can be 

realised by calculating the probability that a data point is a member of a class. The probability of 0.5 

is the decision boundary between the two classes. Parameters determine the outcome of the model. 

The maximum likelihood estimation is the method that is used to give the parameters the right 

values. These values must benefit the prediction accuracy (44).  

After training the logistic regression model, a prediction was made for approximately 9 billion 

possible variants of the human reference genome. A first edition of the CADD score is created. This 

gives an indication if a variant has the probability of being proxy-neutral or proxy-deleterious. If the 

latter is the case, a variant has a larger risk to be harmful. Positive values are proxy-deleterious and 

negative values proxy-neutral. The higher the value, the more risk a variant has to be deleterious. 

However, this raw score is not suitable for comparison to other tools that have the aim to score 

variants. For the sake of interpretability, a PHRED scaling method will be used for transformation. 

This scale involves normalising the scores for all the 9 billion variants. A scaled CADD score from 0 to 

10 indicates the bottom 90% of the raw scores. These are scores where the probability of a 
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deleterious effect is low. The scaled CADD score from 10 to 20 indicates the 90% to 99% of the raw 

scores. Lastly, a scaled CADD score of 20 and higher belongs to the top 1% of the raw scores. These 

variants have the highest change to be deleterious and thus have a higher disease risk.   

 

Figure 9. The CADD framework with the model-fitting in phase A and the variant scoring in phase B 

(35). 

3.3.5 Conclusion of ExPecto and CADD 
For this thesis study, the two tools CADD and ExPecto have been selected to highlight disruptive 

variants in regulatory regions. As shown in chapter 3.3.1, there were several candidates that were 

able to do this. However, many of them did not meet the set of requirements. CADD is a state-of-the-

art option that is often used to make comparisons with newer tools. ExPecto is a machine learning 

framework that has been introduced recently and it is also able to differentiate expression effects 

between tissues and cell-types. It is a challenge to compare the two tools, since their prediction 

output for variants is different. CADD gives a PHRED-scaled score that could begin at 0, but it might 

also be higher than 20. The higher the score, the more risk the variant has to have a disruptive effect 

on human. ExPecto gives an indication on the log fold change of a variant on gene expression, which 

is mostly centred around zero. The scores will most likely be between -2 and 2, which is another 

range than the score that CADD provides. The lower or higher the ExPecto score, the more disruptive 

the variant is. Scores that are around zero, will not cause a large change in gene expression. For 

instance, variants with -0.6 or 0.6 are more likely to be disruptive than variants with scores of -0.1 or 

0.1. Another difference is that ExPecto provides negative and positive scores and CADD only predicts 

positive scores.  

Despite the difference in output of the models, the idea is the same: predict disruptive variants in 

regulatory regions. To tackle the challenge of the difference in predictions in the validation phase 

(chapter 6), the outputs of both models are separated into two classes: non-disruptive (0) and 

disruptive (1), since that is the only information that counts. The validation phase is necessary to 

show the quality of the models and to compare them. However, they have already been trained and 

tested by the developers of the algorithms. The validation in this thesis study can be seen as an extra 

step and as a way to check the reliability. 
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4. Scientific relevance 
The relevance of epigenetics for ALS is explained in (45), which is a recently published paper from 

February 2019. The field of epigenetics covers the mechanisms (like DNA methylation, histone 

modifications and microRNAs) that play a role in gene expression. Evidence for the link between 

epigenetics and ALS is presented. However, there is a high need for more elaboration on the role of 

epigenetics in ALS. More specifically, the changes in gene expression need to be highlighted in ALS 

patients, since a thorough understanding remains yet undefined.  

Gene expression is studied in a lot of diseases and disorders. Next to the insights on variant effects 

for pathogenesis, there are also advantages for medicine research. For instance in (46), a group of 

researchers did an experiment on patients with bipolar disorder versus healthy controls to see the 

effects of medication. They found out that the medicine Lithium caused significant expression 

changes in 236 genes of patients comparing to healthy controls. Statistical differences between the 

groups were measured with Shapiro-Wilkinson and Mann-Whitney tests.  

Furthermore, the importance of studying the effects of rare and non-coding variants is recognised by 

various researchers. In (47), new low-frequency non-coding variants were identified that were 

related to Bone Mineral Density (BMD). The technique Whole Genome Sequencing is used to get a 

broader perspective of the possible variants.  

In this thesis study, tools are compared on predicted expression scores. This method is also seen in 

(34), where their tool GenoNet is compared to eleven other tools. Their interest was to find out if 

GenoNet performed well on predicting expression effects on tissue/cell-type level and on organism 

level. The tools were validated using test data and then compared on the metrics Area Under 

Receiver Operating Characteristic (AUROC), Area Under the Precision Recall curve (AUPR) and a 

Pearson correlation.  

Machine learning tools have been gaining popularity in the medical field in the last 10 years. A more 

complex technique, deep learning, is increasingly used to make sense of the regulatory parts of the 

DNA. For instance in (48) and (49), deep convolutional neural networks are presented as a solution. 

They aim to predict the expression changes that a specific variant causes. The expectation is that 

machine learning will have many more opportunities in the upcoming years, especially with the 

increasing computer power, increasing amount of data and new scientific discoveries. Insights on 

variants in non-coding areas of the DNA will help humanity to figure out the architecture of many 

diseases.  
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5. Set up 
This chapter will describe the setup of the machine learning models that are used in this thesis: 

ExPecto and CADD . This encompasses the environment where the tools are run and the process that 

belongs to it. A High Performance Computing (HPC) environment of the UMC Utrecht is used. When a 

task is simply too computationally intensive to run on a laptop, a HPC is an option to operate in. The 

student has her own private space on this environment and can store and run data and scripts on a 

supercomputer with Central Processing Units (CPU’s). There is also the opportunity to work with 

Graphics Processing Units (GPU’s). Currently, not many UMC researchers are working with GPU’s, so 

this environment is quite new and still in the experimentation phase. However, it does not withhold 

people from using them in their research.  

A Linux command line is used to communicate with the HPC. Scripts could be send from there and 

they have the opportunity to run for hours, days or even weeks. In the HPC environment where the 

data is stored and run, there is also the setup for Miniconda, which allows for the user to gather 

programming languages and libraries. The languages Python and R are used from here.  

5.1 ExPecto 
All the required scripts, data and pre-trained models for ExPecto, can be found on their GitHub. The 

whole folder was cloned in the HPC, because this thesis project is executed in there. The general 

pipeline of the ExPecto framework can be found in figure 10. This pipeline is based on the three main 

steps, that use three scripts: train.py, chromatin.py and predict.py.  

1. The linear models of ExPecto can be used to analyse new gene expression profiles for a 

specific tissue or cell type. This will result in an expression model. It also uses the learned 

information from the convolutional neural network. Expression level data is an appropriate 

dataset for this. There is data available from the MINE project that was used and trained. 

This dataset consists of gene expression levels for the motor neuron cells. Motor neuron cells 

are the main cell-type that is affected in the disease. Gene expression level data that was 

used as input, must belong to a person who doesn’t have ALS. The ExPecto model must train 

on “healthy” data, because then it can detect abnormalities in patient data later in the 

process. The script that is used for this, is train.py from the ExPecto Github folder. This first 

step is optional, since ExPecto is already trained on more than 200 cell types and tissues.  

However, if a user of ExPecto wants to add another relevant cell-type (like motor neurons), 

then the model can be trained on the user’s gene expression level dataset. 

2. The next step is to run the chromatin.py script on a VCF file. Variants of patients are 

gathered in a VCF file with their alternative allele and the reference allele. This is a preferred 

format of the script. The whole genome could be used for this, but that requires a lot of 

memory. First, the script was tested on the shortest human chromosome 22. There is a VCF 

file with variants of patients and controls combined. It contains approximately 2 million 

variants. Such a number of variants could still take a lot of time and memory to run. This is 

why the file was split up in smaller chunks. Test files are used to determine the optimal 

number of variants in such a chunk. The test files contain 10, 100, 1.000, 10.000 and 100.000 

variables. The time and memory that it took the HPC to run the files, can be found by using 

the command “qacct”.  

3. The output of ExPecto is an output file with the same columns of the VCF file, but then also 

the predicted expression effects. These effects are calculated by the log 2 fold change. This is 

a common measurement in the genetic area. This last step is done with the script predict.py. 

The input for this script are the VCF file, the expression models for every tissue (train.py), the 
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models from the convolutional neural network (chromatin.py) and a closest gene file. The 

latter is a file with the nearest gene to every variant.  

 

Figure 10. Pipeline of ExPecto Framework. 

5.2 CADD 
Compared to ExPecto, the CADD framework does not require programming knowledge, since it can 

be used by uploading a VCF file to their website https://cadd.gs.washington.edu/score. A file of at 

most 100.000 variants can be uploaded. The columns of the dataset that will be taken into account, 

are the CHROM, POS, REF and ALT. The outcome of the framework will be the raw CADD score and 

the PHRED-scaled CADD score for every variant. An extra possibility is to add the annotations to see 

how a certain score is generated.  

The ALS research group has the CADD scores for Single Nucleotide Variants of the Project MinE data 

already stored in the HPC. In the research execution, these SNV’s can be retrieved from the HPC for 

further analysis. However, the scores for indels are not yet calculated for project MinE data. Indels 

are a type of variant and they can consist of one or more letter(s) that are deleted or added at a 

certain place in the DNA. For instance, the reference allele is “TCTAA”, but a deletion resulted in an 

alternative allele of only “T”. A SNV is only one nucleotide that is changed, for instance a “T” to a “G” 

at a specific place in the genomic sequence (50,51).  

  

https://cadd.gs.washington.edu/score
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6. Validation 
Validation in this thesis project is necessary to see if the tools are set up in the right way. On top of 

that, it gives an indication for the comparison that will be made. After this phase, a conclusion could 

be drawn about reliability of the tools in terms of accuracy on predicting gene expression effects. 

This conclusion will be taken into account in the actual MinE data analysis.  

For the validation phase, two datasets are used to show the quality of the models ExPecto and CADD: 

GTEx data and MPRA data. Receiver Operating Characteristic (ROC) curves are used as a quality 

metric in the GTEx analysis, as well as in the MPRA analysis. It is a way to compare observations with 

predictions of the models. The ROC curve goes hand in hand with the Area Under the Curve (AUC) 

and eventually a final confusion matrix. As stated before, the gene expression change is a continuous 

variable. In order to create a ROC curve, the values of the observations and predictions need to be 

translated to two classes: low expression change and high expression change. The classes are 

denoted by 0 and 1.  

ROC curves and confusion matrices will be used in both analyses. First, the predictions from ExPecto 

and CADD for variants in the GTEx and MPRA datasets will be received. The expression changes from 

the GTEx and MPRA datasets can be seen as the observations. The ExPecto output, the CADD scores, 

the GTEx slope and the MPRA expression changes all indicate a slightly different perspective of gene 

expression changes. ROC curves are used to give insights about the quality of the models individually, 

but also to compare them to each other.  

Per dataset, the observations are divided into 2 classes: high effect variants (1) and low effect 

variants (0). There is no known threshold to divide the classes, so a threshold must be retrieved from 

the distribution of the data. After dividing the observations into classes, the ROC curves plot the True 

Positive Rate (sensitivity) and the False Positive Rate (1-specificity) of the observations and 

predictions against each other. The Area Under the Curve is a quality metric for the models. The most 

optimal threshold for the predictions column (of CADD or ExPecto) can be retrieved after creating 

the ROC curve. This threshold will divide the predictions also in two classes: high effect variants (1) 

and low effect variants (0). Finally, a confusion matrix can give more insights on the total true 

positives, true negatives, false positives and false negatives.  

6.1 GTEx  
Validating the tools can be done by using labelled data, where the expression effect of a variant is 

already given. One of the projects that provide this kind of data is Genotype-Tissue Expression 

(GTEx). Most of the data can easily be accessed through their website 

https://gtexportal.org/home/datasets. The main file to use for this thesis project is the 

GTEx_Analysis_v7_eQTL.tar.gz. In this file, there are two files for every tissue/cell-type: an 

*.egenes.txt.gz file and a *.signif_variant_gene_pairs.txt.gz file. Only the file with the significant 

variants with a p-value smaller than 0.05 is used. An important note is that these variants are 

expression Quantitative Trait Loci’s (eQTL’s). This means that they do not necessarily have to be the 

disruptive variants, but they might as well be connected to the variant of interest.  

The dataset will be pre-processed by using the dplyr package in R. The algorithms will be trained on 

the specific variants and produce an expression effect. These must be compared with the labels that 

are in the column “slope”, that were given by the GTEx project. In this way, the researcher is able to 

make a statement about the prioritization of the variants, given by different tools. This can be used 

for the reliability of the final results in this thesis study.  

https://gtexportal.org/home/datasets
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6.1.1 ExPecto and GTEx 
In the ExPecto paper (37), the use of GTEx data is mentioned as well. It is used to evaluate the 

ExPecto model on tissue specificity, by looking at the direction of expression change. A decreased or 

increased expression change prediction of ExPecto should match with the slope of GTEx expression. 

The tool is said to predict the right direction in 92% of the 500 GTEx variants with the biggest effect 

change. Furthermore, tissues and cell-types from other projects that were already tested individually, 

are brain cells, primary immune cells and blood cells. In this thesis project, Lymphocytes will be used 

to validate the ExPecto model. They are a sub-type of white blood cells and dysregulation could for 

instance lead to cancer. Lymphocytes are also related to the immune system.  In the GTEx data, the 

file with the significant variants of this cell-type is Cells_EBV-transformed_lymphocytes.signifpairs. In 

the ExPecto model-file for tissues and cell-types, there is also one column/model that is called 

“Cells.EBV.Transformed.Lymphocytes”, which will be used as comparison to the GTEx data.  

There are 287.278 variants to be analysed. Since CPU’s were used, the file had to be divided in 

chunks of 10.000 variants. By dividing the large file in smaller chunks, it will run faster. The chromatin 

representations were given with the script chromatin.py, which made nine models for different 

distances from the TSS. Furthermore, the closest gene file was created with BEDOPS. This tool can be 

used in the command line and it has several genomics oriented uses for research, among others the 

ability to assign variants to the closest gene (52). After comparing the closest BEDOPS genes to genes 

that were given to a variant by GTEx, it was discovered that there was a disagreement in this step. 

GTEx assigns genes to variants that are often more than 40 kb away from the TSS. The ExPecto model 

only looks at the closest genes. For the sake of comparability, a new gene file had to be created, that 

includes the given genes of GTEx. A file that contains genes with their TSS and additional information 

was extracted from the ENSEMBL website: 

ftp://ftp.ensembl.org/pub/grch37/current/gtf/homo_sapiens/. The new closest gene file was created 

in Rstudio with the following relevant columns: chromosome, variant position -1, variant position, 

reference allele, alternative allele, strand, ENSEMBL gene id and the distance to the TSS. A part of the 

closest gene file is visualised in figure 11.  

 

Figure 11. Part of Closest Gene File for ExPecto’s predict.py. 

The last step of ExPecto is the execution of script predict.py. As an input, it uses the Lymphocytes 

variant file, the nine models that were created by chromatin.py, the closest gene file and the 

modellist file for all tissues. The output is all the csv files for the jobs that were submitted, since the 

VCF file was split in parts of 10.000 variants. Eventually, the csv files are merged to make the analysis 

ftp://ftp.ensembl.org/pub/grch37/current/gtf/homo_sapiens/
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in Rstudio more interpretable. In R, the output csv file of ExPecto is merged with the GTEx file. This 

was done with the R-library sqldf, where data frames can be merged on the given columns.  

The measurement of similarity between the ExPecto effect sizes and the slope of the GTEx 

predictions, is done by comparing the columns “Cells.EBV.Transformed.Lymphocytes” and “slope”. 

The slope is the change in expression effect for a specific allele. After simply plotting the two columns 

individually, it gets clear that a large number of duplicates is present in the data. Only 198.373 

variants of 287.278 are unique. The dataset with unique variants will be used for the further analysis. 

Descriptive statistics of the GTEx slope and the ExPecto prediction in this dataset can be found in 

table 2. From these values, it gets clear that the range of the slope is more than four times larger 

than the ExPecto prediction. Next to that, there is a variation in the mean, since the latter is smaller 

and closer to zero.   

 Min. 1st Quartile Median Mean 3rd Quartile Max. 

GTEx slope -4.69935 -0.60806 0.35067 0.06545 0.66964 4.25463 

ExPecto  -1.1966295 -0.0000823 0 0.0000015 0.0000771 1.1419185 

 
Table 2. Summary data of the GTEx slope and the ExPecto predictions.  
 
First, the method of Zhou et al. is followed, which means that the direction of the GTEx slope is 

compared to the direction of the ExPecto prediction for every variant. This direction of expression 

change can be negative or positive. To see if both columns agree, a multiplication is used. The results 

are saved in a new column. Then, a transformation to TRUE and FALSE is made to make the results 

more interpretable and structured. When they don’t disagree, a “FALSE” is given in the new column. 

This means that the multiplied values were both negative or both positive. When there is a 

disagreement, a “TRUE” is given in the new column to the corresponding row. This means that one of 

the multiplied values was negative and one was positive. The following code is used to make this 

column: 

compare_posneg <- data.frame(AB = 

x4$slope*x6$Cells.EBV.Transformed.Lymphocytes) 

 

compare_posneg <- ifelse(compare_posneg > 0, FALSE, TRUE) 

 

x4 <- cbind(x4, compare_posneg) 

 

A summary (figure 12) of the column with FALSE and TRUE, shows that for only 40% of the variants, 

there is an agreement between GTEx and ExPecto on the direction of gene expression. This is without 

any filter, thus for all 198.373 variants. It is known that ExPecto is designed for variants that are in a 

range of 40.000 base pairs around a TSS. This means 20.000 base pairs on the left of the TSS and 

20.000 base pairs on the right of the TSS. This was further explained in chapter 3.3.2. Adding a filter 

(with R library dplyr) for an absolute distance above this threshold, shows an agreement in 37% of 

the variants. For instance, this could be a variant that is located 27.000 base pairs upstream or 

downstream (on the left or right) of the TSS. However, for variants within this range, the data shows 

an agreement of 50% (figure 13). For instance, this could be a variant that is located 1.400 base pairs 

upstream or downstream of the TSS. From here, the decision was made to analyse variants within 

the range of 40.000 base pairs, since this results in a higher accuracy.  
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Figure 12. GTEx and ExPecto agree on the direction of expression change in 40% of the total number 

of variants. 

 

 
 

Figure 13. GTEx and ExPecto agree on the direction in 37% of the cases (>20.000 base pairs from TSS) 

and in 50% of the cases (<20.000 base pairs from the TSS).  

Furthermore, another filter on the ExPecto predictions was added during this GTEx analysis, while 

still comparing the direction of the expression. It is interesting to see the difference in agreement in 

low or high predictions. The graph in figure 14 shows the increasing accuracy for higher predictions. 

For instance, in the filter of ExPecto predictions above 0.1 (443 variant in total), there is an 

agreement on the direction of expression effects in 63% of the cases. In predictions above 0.4 (29 

variants in total), there is an agreement on the direction in 79% of the cases. However, a note has to 

be made that the group sizes differ. The code that has been used for calculating the agreement is the 

following: 

X4 %>% filter(abs(dist)<20000) %>% 

group_by(abs(Cells.EBV.Transformed.Lymphocytes)>(0.4)) %>% 

summarise(mean(1-AB), n() 

 

Figure 14. ExPecto predictions on x-axis, with their responding accuracies on the distance on the y-

axis. 

Another way to compare the ExPecto predictions for variants to the GTEx slopes, is to divide the 

values in two groups: non-disruptive variants (0) and disruptive variants (1). This creates a chance to 

see if a variant is assigned to the same class by the observed and the predictions datasets. The 
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drawback, is that there is no exact threshold for the determination of a disruptive variant. If there is 

no clear partition in the data, the “mean” is another option to divide the set. The distribution of the 

absolute GTEx slope is visualised in Appendix 1. The absolute value is used, because there are also 

slopes with a minus number. Large positive numbers and low negative numbers of the slope column, 

both indicate a disruptive effect of the genetic variant.  

In the histogram of Appendix 1, the data is right skewed. This means that most data is located on the 

left of the distribution, but there is a long tail on the right with some high values. A clear partition in 

the data (for non-disruptive and disruptive variants) does not exist. A summary of the data column of 

the absolute GTEx slope can be found in table 3. The mean of the absolute value of the slope is 

0.6966, which will be used for creating an ROC curve.  

Min. 1st Quartile Median Mean 3rd Quartile Max. 

0.1422 0.5051 0.6357 0.6966 0.8246 4.6993 

 
Table 3. Summary data of the absolute GTEx slope column. 
 
A ROC curve can give insights on how the observations fit the predictions. A detailed explanation is 

given in chapter 6. The curve is created in R (code can be found in Appendix 2), with the mean of the 

absolute value of the GTEx slope as a threshold. It results in a plot of the specificity and the 

sensitivity against each other. The Area Under the Curve is a metric that gives insight on how precise 

the model is, when compared with the observation data. An AUC of 0.5 resembles a random model, 

which is the same as a tossing-coins experiment. Furthermore, the “pROC-package” in R, has the 

ability to choose the best threshold for the ExPecto predictions. This threshold will also divide the 

ExPecto column in two classes. From there, a confusion matrix can be calculated, which results in an 

accuracy metric of the model.   

The ROC curve for the ExPecto data in the GTEx analysis, can be found in figure 15. According to the 

curve, the ExPecto model has a very bad performance, when the observations are compared to the 

predictions. This could be concluded by the visual representation, as the curve is very close to the 

diagonal line. It is supported by an Area Under the Curve of 0.522, while an AUC of 0.5 resembles a 

random model.  
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Figure 15. ROC curve of ExPecto data in the GTEx analysis. 

 
The best absolute threshold for the ExPecto Lymphocytes column is 5.960464e-08. After finding this 

threshold, everything above this value, is assigned to the disruptive class (1). Everything below is 

assigned to the non-disruptive class (0). The confusion matrix can be found in table 4, which resulted 

in an accuracy of 41.06%.  

 0 1 

0 20097 17767 

1 99149 61360 

 
Table 4. Confusion matrix of the ExPecto GTEx analysis, with a predictions as rows and observations 
as columns.  
 
A possible explanation for the lack of similarity between the predictions and observations, is that the 

initial file with the closest genes was changed to other target genes. ExPecto takes variants into 

account that are relatively close to a Transcription Start Site, while the GTEx variants could be much 

further away from the gene. For the sake of comparability, the closest gene file that is required by 

the prediction phase of ExPecto, was changed into genes that were given by GTEx. This means that 

ExPecto might not have been able to predict the similar expression effects, since it was intended for 

variants within 20.000 base pairs on the left or 20.000 base pairs on the right from a TSS. However, it 

does give a prediction for variants outside this range, but they are more likely to be random guesses. 

Neural networks are not known for their ability to extrapolate, so predictions outside of the range of 

the training set, are less accurate.  

Another explanation is that the GTEx data consists of eQTLs. These do not necessarily have to be 

causal variants, but they could be connected to disruptive ones. ExPecto has a focus on the actual 

disruptive variants.  
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For the MinE data analysis, only variants within a range of 40.000 base pairs around a TSS of a gene 

will be used. This reduces the chances of ExPecto making random guesses.  

6.1.2 CADD and GTEx 
Next to ExPecto, the GTEx Lymphocytes data is also used for the validation of CADD. In the CADD-

GTEx analysis, it is not possible to compare the direction of the expression effects. CADD only 

produces a PHRED-score, which gives an indication about the deleteriousness of a variant. Low 

PHRED scores tend to be more neutral and high PHRED scores tend to be more disruptive.  

Table 5 shows summary data of the PHRED score. A transformation to absolute numbers is not 

necessary, since the scores don’t have negative values. The minimum value is 0.001 and the 

maximum value is 40. The data is right skewed, since the median of 2.733 is smaller than the mean of 

3.885.  

Min. 1st Quartile Median Mean 3rd Quartile Max. 

0.001 1.036 2.733 3.885 5.682 40 

 
Table 5. Summary data of the CADD PHRED score column.  
 

To give an idea about the performance of the predictions of CADD on the GTEx data, a ROC curve is 

made with the corresponding Area Under the Curve. The same mean of the slope is used: 0.6966, as 

with the ExPecto analysis. The ROC curve can be found in figure 16, where the specificity is plotted 

against the sensitivity. The performance of the model is remarkably close to an AUC of 0.5, which 

means that it is close to a random classifier.  

 

Figure 16. ROC curve of CADD scores in the GTEx analysis. 



38 
 

The best threshold for the CADD PHRED score, assigned by the function of the pROC library, is 

4.8995. Every score below this, is assigned to class 0 and everything above this, is assigned to class 1. 

Class 0 indicates non-disruptive variants and class 1 indicates disruptive variants. The confusion 

matrix can be found in table 6, which resulted in an accuracy of 55.15%. 

 0 1 

0 83109 55607 

1 33348 26288 

 
Table 6. Confusion matrix of the CADD GTEx analysis, with a predictions as rows and observations as 
columns.  
 
A reason for the bad performance of the CADD framework on GTEx data, could be the same as was 

already mentioned with the ExPecto GTEx analysis. The GTEx data consists of eQTLs, while the CADD 

scores are directly given to deleterious variants.  

Another reason is that the GTEx data is derived from the Lymphocytes set, which is a specific cell-

type. CADD does not give separate scores for cell-types or tissues, but it gives a general score of 

deleteriousness.  

The use of the mean of the GTEx slope as threshold for deciding to what class a variant belongs to, is 

debatable. Especially when it gets clear that the AUC improves when the threshold is scaled up. For 

instance with CADD, the AUC goes from 0.518 to 0.530 when the threshold of the GTEx slope is set to 

2, instead of the threshold 0.6966. 

6.2 Validating the ExPecto Set up 
Data to validate your own set up of the ExPecto framework is provided on their website. It is a file 

with 2.443.754 variants and their predictions for every tissue/cell-type. For this thesis research, the 

first 10.000 rows are extracted and put into a new file, called website_variants.vcf. Thereafter, the 

labels (predictions) were removed until only relevant information was left. This was given as input to 

the ExPecto model on the HPC, without training anything. Only predict.py was used for this validation 

step. The hypothesis is that the predictions of the ExPecto researchers are in line with the ones from 

the master student. A Pearson correlation helps to measure this assumption and a plot supports with 

a visualisation of the data. The two predictions for every tissue were merged into one data frame 

“compare_website”. A plot of the first tissue “Adipose Subcutaneous”, almost shows a straight line, 

with a Pearson correlation of 1. The visualisation can be found in figure 17. After calculating the 

Pearson correlation of the other tissues in Rstudio, the conclusion can be drawn that there exists a 

correlation of 1 for all of them. This means that the ExPecto framework makes the same predictions 

in the setup of the student, compared to the one from the researchers.  
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Figure 17. Observations on the Y axis versus predictions on the X axis.  

6.3 Validation MPRA dataset 
Next to the GTEx dataset, another available dataset with variants found by the Massively Parallel 

Reporter Assay (MPRA) technique, published in (53), will be used for validation in this thesis project. 

The paper describes a study on Genome-Wide Association Study (GWAS) variants in regulatory 

regions, that are likely to have an effect on gene expression. These variants are analysed by the 

MPRA technique and then, specific variants that had an altered gene expression as a result, were 

identified. This dataset is also not related to ALS, because there is no option with effects of variants 

in patients available. However, it is part of the Lymphoblastoid cell lines of subjects. The dataset 

“GSE75661_79k_collapsed_counts.txt.gz could be downloaded from the webpage 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75661. 

The gene expression changes are measured in cells of different subjects. Only data from subject 

NA12878 is extracted, since predictions for the same subject are also available in the ExPecto 

models. The goal is to use the MPRA data as observations and compare this with the predictions of 

ExPecto and CADD. Methods and metrics to see how the observations correspond to the predictions, 

are correlations, an ROC curve and a confusion matrix.  

The exact expression changes between two alleles in the Lymphoblastoid cell line of the subject have 

been reported. These changes will serve as validation for the models. If the MPRA dataset indicates a 

high expression change, there must also be predicted a high expression effect by ExPecto and CADD.  

The limitation of this dataset, is the uncertainty of the expression change direction. The reason for 

this, is that it is unclear which one of the two SNP alleles is the reference and which one is the allele. 

For every SNP, there is at least one reference and an alternative allele, denoted as A and B. As is 

stated before: it is unclear what allele belongs to A or B. This dataset is about the general expression 

change between the two alleles.  

Expression changes in five replicates of subject NA12878 are extracted from the original file. The 

experiment to measure changes is performed five times per allele. An example of this, can be found 

in table 7. Taking the average of these five replicates will have a more reliable effect than only using 

one column. 

 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75661
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Allele NA12878_r1 NA12878_r2 NA12878_r3 NA12878_r4 NA12878_r5 

rs11548103_RC_A 2050 1786 2405 2538 2241 

rs11548103_RC_B 2034 1885 2136 2630 2157 

rs2016366_A 352 478 463 548 509 

rs2016366_B 557 767 487 683 800 

 
Table 7. MPRA expression changes per allele, done in five experiments (column).  

Initially, this dataset consisted of 78.956 rows, which means that there were 39.478 allele pairs 

involved. After the pre-processing steps, which are elaborated upon in the next section, a final 

number of 27.138 rows was left. The goal was to create a file that can be used by ExPecto and CADD. 

In order to make this possible, the file must consist of five subsequent columns: chromosome 

(CHROM), position of the variant (POS), ID, reference allele (REF) and alternative allele (ALT). This is a 

simplified VCF file, since a VCF file could contain much more information about the variants, which is 

not necessary in this case. 

After receiving the ExPecto and CADD results, they were analysed in Rstudio. It was found, that 

ExPecto produced many outcomes where the distance, the closest gene and the expression change 

were unknown. The exact reason for this, was not found. However, for the comparison between 

ExPecto and CADD on the MPRA data, it is important that the same variants are used. This is why the 

ExPecto and CADD results will only contain values without NA’s (values that are empty/Not 

Available). This resulted in datasets of 10.235 rows for both tools. 

6.3.1 ExPecto MPRA validation 
The variants of the MPRA dataset are used as input for the ExPecto framework. ExPecto has 

predicted the corresponding gene expression changes for all rows. To show the performance of the 

model on the observation data, a ROC curve is used with its corresponding Area Under the Curve. 

First, the observation data (MPRA mean expression changes) has to be divided in two classes: non-

disruptive values (0) and disruptive values (1). In the distribution of this column, visualised in 

Appendix 1, there is no clear distinction in the data for these two classes. The data is right skewed, 

with most of the data located on the left of the distribution and some high values on the right. This 

results in a substantial difference between the median (164) and the mean (270.9). The summary 

data of the MPRA mean can be found in table 8.  

Min. 1st Quartile Median Mean 3rd Quartile Max. 

0 63.8 164 270.9 333 63925.4 

 
Table 8. Summary data of the MPRA means column.  

The mean of the MPRA column (270.9) is used to divide the variants into two classes: 0 and 1. This 

information is added as an extra column for the observation data. The ROC curve for the comparison 

of the MPRA observations and the ExPecto predictions, can be found in figure 18. The plotting of the 

specificity against the sensitivity resulted in an AUC of 0.546. 
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Figure 18. ROC curve of ExPecto ENCODE data in the MPRA analysis. 

The best corresponding threshold for the ExPecto predictions, assigned by the function of the pROC 

library, is 0.001937568. Every score below this, is assigned to class 0 and everything above this, is 

assigned to class 1. The confusion matrix where predictions and observations are compared, can be 

found in the confusion matrix in table 9. The accuracy of ExPecto on the MPRA data was 61.6%. 

 0 1 

0 5298 2267 

1 1663 1007 

 
Table 9. Confusion matrix of the ExPecto MPRA  analysis, with a predictions as rows and observations 
as columns. 
 

6.3.2 CADD MPRA validation 
The same 10.235 variants of the ExPecto MPRA validation, are used for the CADD validation. The 

mean of the MPRA column is used for dividing the variants of that column into two classes: 0 and 1. 

With these observation labels, a column is added that serves as input for the ROC curve. Specificity 

and Sensitivity of the MPRA data and the CADD scores are plotted in figure 19. The ROC curve results 

in an AUC of 0.505 
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Figure 19. ROC curve of CADD data in the MPRA analysis. 

The threshold of the CADD predictions, assigned by the function of the pROC library, is 0.937. Every 

score below this, is assigned to class 0 and everything above this, is assigned to class 1. The 

predictions and observations are compared in a confusion matrix (table 10). This resulted in an 

accuracy of 39.43%. 

 0 1 

0 1554 792 

1 5407 2482 

 
Table 10. Confusion matrix of the CADD MPRA  analysis, with a predictions as rows and observations 
as columns. 
 
With an AUC of 0.505 and an accuracy of 39.43%, the CADD framework has a rather disappointing 

performance on the MPRA data. The observation data that was used for this analysis, was retrieved 

from one cell-type: Lymphocytes. However, this could show that CADD is not able to make accurate 

predictions for one specific cell-type.  

6.4 Conclusion of validation 
ExPecto and CADD have been validated by using GTEx data and MPRA data. They are validated 

individually, but the performances have also been compared. The latter has been done by creating a 

threshold and extracting ROC curves.  

When analysing the distance of ExPecto’s prediction with the GTEx data, it is shown that there is 

more agreement between the two datasets, if the distance is smaller than 20.000 base pairs from the 

TSS. On top of that, ExPecto performs better on higher predictions. This could indicate that ExPecto 

annotates more random guesses to effects of variants it is not certain of.  
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Furthermore, the ROC curves show a bad performance of the models on the GTEx and MPRA 

observation data. The AUC’s are all just above 0.5. When choosing the most optimal threshold, the 

ExPecto model has the best performance on the MPRA data, with an accuracy of 61.6%. A summary 

of all AUC- and accuracy-values can be found in table 11.  

 GTEx MPRA 

 CADD ExPecto CADD ExPecto 

AUC 0.518 0.522 0.505 0.546 

Accuracy 55.15% 41.06% 39.43% 61.6% 

 
Table 11. AUC and Accuracy for the CADD and ExPecto models on the validation datasets. 
 
The validation on these two datasets serves as a quality check before using the models on the large 

MinE dataset. This MinE dataset contains the genetic variants of ALS patients and healthy controls. 

The interpretation of the gene expression changes of the variants in the GTEx dataset is more 

difficult to interpret than the MPRA variants. Because the GTEx variants are identified by GWAS, they 

could be linked to disruptive variants, but they do not have to be causal themselves. The MPRA 

variants, however, are more clear in terms of gene expression change. The gene expression with one 

allele is measured and then the gene expression resulting from another allele at the same spot is 

measured. For instance the expression of a gene with a G allele somewhere, which was changed to 

an A allele at the same spot. Then the change in gene expression was calculated. This could be seen 

as a more reliable validation method. ExPecto scores better on the MPRA dataset, compared to 

CADD.  
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7. Research execution 
After the validation of the models, the actual research execution is initiated. This encompasses the 

running of algorithms on Project MinE data, which includes data of patients and controls. In May 

2019, a new version of this data was released among the ALS group. This happens every once in a 

while, since a new batch of sample data is included. The research group strives for an increasing 

number of samples. This will make their analyses more reliable and additional conclusions could be 

drawn. For instance, new significant DNA regions of interest could pop up with a larger sample size.  

The MinE dataset is divided into chromosomes 1 to 22 and sex chromosomes X and Y. For every 

chromosome, there is a file that contains all the variants that occurred in controls and/or patients 

combined. Every row contains information on the chromosome, position, id, reference allele, 

alternative allele and a quality score for the variant. Thereafter, a column is included for every 

control and patient, to see the specific allele of an individual. Information on quantity and individuals 

is not needed until after running the models, since the models only predict a certain effect of a 

variant. After predicting the effects for every variant, another step is taken to see if a variant is 

specific to patients or controls.  

There are currently 158.644.898 variants in the MinE dataset. Samples have been collected from ALS 

patients and controls. Pre-processing steps were needed to make the 24 datasets suitable for the 

models. They are elaborated upon in chapter 7.1. 

7.1 Pre-processing of MinE dataset and running of ExPecto scripts 
The whole MinE dataset consists of a very large number of variants. This takes a lot of time to be 

analysed by the machine learning models. During the validation phase, it became clear that variants 

within a distance of 20.000 base pairs from the Transcription Start Site have more accurate ExPecto 

predictions than the ones further away. For the sake of uniformity and comparison, the choice is 

made to only take variants in 40 kb regions (20 kb upstream and 20 kb downstream the TSS) into 

account for both models (ExPecto and CADD). The benefits are a higher accuracy and also time saving 

in running the models. 

To select the MinE variants in certain regions, the TSSs of genes must be known. Fortunately, the 

ExPecto directory possesses a geneanno.csv file. This has information on the ENSEMBL genes, their 

position and their Transcription Start Site. For the regions, the CAGE_representative_TSS is used, 

since this is more accurate.  

1. In the command line, I used awk to get the third column (chromosome), the position 20.000 

base pairs downstream of the TSS and the position 20.000 base pairs upstream of the TSS. 

The three outcome columns were added to a new BED file, called “geneanno.40kb.bed”. The 

first 10 rows of this dataset is shown in figure 20. 

tail -n+2 geneanno.csv | awk -F "," '{print $3,$6-20000,$6+20000}' > 

geneanno.40kb.bed 

 

Figure 20. First 10 rows of the geneanno.40kb.bed file.  
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2. Since we are looking at 40 kb regions, there is a chance that some of them are overlapping. It 

will be more efficient to get the “unique regions”. An option to look for overlapping regions 

is the package “Bedtools”. This can be installed in the Miniconda environment via the 

following way: 

conda install -c bioconda bedtools 

3. Basically, Bedtools will merge overlapping regions. A prerequisite to use it, is sorting the 

regions file on chromosome and position. By using the awk-, sort-, and sed-commands, the 

first two columns will be sorted from chromosome 1 to chromosome X.  

tail -n+2 geneanno.csv | awk -F "," '{print $3,$6-20000,$6+20000}' | 

sort -k1,1 -k2,2n | sed 's/ /\t/g' > geneanno.40kb.sorted.bed 

4. Next, Bedtools was used to merge the regions and these were placed in the outcome BED file 

geneanno.uniqueb.sorted.bed. This file includes the chromosome and the start and end 

position of the region. It contains less rows than the 40 kb regions file, so there were 

overlapping regions. In total, the regions in the geneanno.uniqueb.sorted.bed file contains 

745.749.470 base pairs, which is approximately 1/6 of the whole human genome.  

~/miniconda3/bin/bedtools merge -i geneanno.40kb.sorted.bed > 

geneanno.uniqueb.sorted.bed 

5. After finding the regions where the focus is on, the corresponding project MinE variants must 

be found. This is done with another package suited for Python, called “Bcftools”. This was 

installed in the same Miniconda environment. To use the function, a VCF file is needed that 

contains all the variants of a chromosome, together with the regions file that was created in 

step 4. The function “view -R” is able to select variants in the specific regions. The first nine 

columns of the VCF file are selected and everything is placed in a compressed output file per 

chromosome. Only the first nine columns are selected, since the information on cases and 

controls is not needed to run the models. For chromosome 1, the example code is placed 

below.  

~/miniconda3/bin/bcftools/bcftools view -R 

/hpc/hers_en/mdegroot/ExPecto/resources/geneanno.uniqueb.sorted.bed  

/hpc/hers_en/projectMinE2/2019-02-

16/output/filtered/gvcfgenotyper.9600.2019-02-

16.chr1.filt.norm.vcf.gz | cut -f1-9 | bgzip > 

/hpc/hers_en/mdegroot/chromosomes/projectMinE.chr1.vcf.gz 

6. For every chromosome VCF file, the variants of the selected regions were gathered. The 

number of variants in the original files can be found in table 12. The total number of project 

MinE variants was 158.644.898. Additionally, the number of variants after assigning the 

specific regions can be found in table 12. After assigning the regions, there was a total of 

41.888.505 variants left in the chromosome files.  
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Chromosome Number of variants in 
original file 

Number of variants 
after specific regions 

Number after 
splitting multi-
allelic 

1 12.220.358 4.095.131 4.567.306 

2 13.206.321 3.049.493 3.372.139 

3 10.870.449 2.405.960 2.662.761 

4 10.595.453 2.103.637 2.322.263 

5 9.824.965 2.248.508 2.480.313 

6 9.295.027 2.153.376 2.382.865 

7 8.847.546 2.031.255 2.260.455 

8 8.461.379 1.911.995 2.108.966 

9 6.615.291 1.672.027 1.859.120 

10 7.387.298 1.792.438 1.995.297 

11 7.469.654 2.436.264 2.693.873 

12 7.273.499 2.331.682 2.592.328 

13 5.307.604 947.498 1.044.695 

14 4.934.522 1.414.794 1.576.896 

15 4.525.380 1.324.015 1.478.861 

16 5.149.003 1.442.087 1.617.720 

17 4.506.232 1.752.080 1.972.797 

18 4.190.539 571.731 636.853 

19 3.617.450 2.241.506 2.569.036 

20 3.420.313 1.170.925 1.306.443 

21 2.158.585 644.893 718.285 

22 2.108.752 920.224 1.037.209 

X 6.317.911 1.195.723 1.482.918 

Y 341.367 31.263 40.735 

Total  158.644.898 41.888.505 46.780.134 

 

Table 12. Number of variants in every chromosome file after three different steps.  
 

7. The input for CADD and ExPecto cannot contain multi-allelic variants. However, they can still 

be found in the files. Multi-allelic variants are a way to present more than one alternative 

allele for a specific reference allele. For instance at reference allele C on position 10447 on 

chromosome 1, an A and a T were both found as alternative alleles in patients and control. 

This is saved in one row, so only a comma separates the A and T. This one row must be 

separated in two rows, so there is one for alternative allele A and one for alternative allele T. 

An example can be found in table 13. With the following code, the multi-allelic variants were 

splitted, which resulted in a row for every allele. 

zcat 

/hpc/hers_en/mdegroot/chromosomes/chr1/FINALprojectMinE.chr1.vcf.gz 

| awk '{print $0"\t.\t.\t."}' | python 

/hpc/hers_en/kkenna/lib/process_gvcf/scripts/parseMultiAllelic.py - 

| cut -f1-5 | bgzip -c > 

/hpc/hers_en/mdegroot/chromosomes/chr1/split.FINALprojectMinE.chr1.v

cf.gz 
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Chromosome Position ID Reference Alternative 

chr1 10447 chr1:10447:C:A,T C A, T 

 

Chromosome Position ID Reference Alternative 

chr1 10447 chr1:10447:C:A C A 

chr1 10447 chr1:10447:C:T C T 

 
Table 13. The multi-allelic variants and the variants after splitting. 
 

8. After step 7, there is a VCF file for every variant. However, these contain millions of variants, 

which will take a long time to run. To do this faster, the VCF files are split into files of 100.000 

variants. Here is an example that was executed in the terminal for chromosome 1: 

zcat 

/hpc/hers_en/mdegroot/chromosomes/chr1/split.FINALprojectMinE.chr1.v

cf.gz | awk 

'NR%100000==1{out="/hpc/hers_en/mdegroot/chromosomes/chr1/analysis.s

plit.FINALprojectMinE.chr1."++i".vcf"}{print > out}' 

9. After splitting the chromosome files in smaller parts, the chromatin.py script was used to 

make predictions for more than 2000 chromatin features. The following job was therefore 

initiated on the HPC environment of the UMC. This is an example for chromosome 19, which 

consists of 26 separate files. A total of 432 hours and 35 Gigabytes were added to run the 

script. This was used on the CPU’s, but other parts were done via the GPU’s. By dividing the 

running of the data on both options, the running of scripts went a lot quicker. 

echo -e "cd /hpc/hers_en/mdegroot/ExPecto; 

/hpc/hers_en/mdegroot/miniconda3/bin/python chromatin.py 

/hpc/hers_en/mdegroot/chromosomes/chr19/analysis.split.FINALprojectM

inE.chr19.\${SGE_TASK_ID}.vcf.gz" | qsub -l "h_rt=432:00:00" -l 

"h_vmem=35G" -N Chr19ExPecto -o 

/hpc/hers_en/mdegroot/chromosomes/chr19/ -e 

/hpc/hers_en/mdegroot/chromosomes/chr19/ -t 1:26 

10. Next to the chromatin models of step 9, there is another input for the final prediction step 

11: the closest genes. For every variant in the VCF files of the chromosomes, there is a closest 

gene. This means the closest Transcription Start Site of a gene to a specific variant. The 

ExPecto Github directory contained a file (geneanno.pc.sorted.bed) with genes, their position 

on the DNA sequence and their TSS’s. This step is necessary, because then it will be known 

on what gene the variant has an influence. With the following code, a calculation is made for 

the variants of chromosome X: 

echo -e "cd /hpc/hers_en/mdegroot/ExPecto; 

/hpc/hers_en/mdegroot/miniconda3/bin/closest-features --delim '\t' -

-closest --dist <(zcat 

/hpc/hers_en/mdegroot/chromosomes/chrX/analysis.split.FINALprojectMi

nE.chrX.\${SGE_TASK_ID}.vcf.gz | awk '{printf \$1\"\\\t\"\$2-

1\"\\\t\"\$2\"\\\n\"}' | /hpc/hers_en/mdegroot/miniconda3/bin/sort-

bed - ) 

/hpc/hers_en/mdegroot/ExPecto/resources/geneanno.pc.sorted.bed > 

/hpc/hers_en/mdegroot/chromosomes/chrX/analysis.split.FINALprojectMi

nE.chrX.\${SGE_TASK_ID}.vcf.bed.sorted.bed.closestgene" | qsub -l 
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"h_rt=00:05:00" -l "h_vmem=0.1G" -N ChrXClosestGene -o 

/hpc/hers_en/mdegroot/chromosomes/chrX/ -e 

/hpc/hers_en/mdegroot/chromosomes/chrX/ -t 1:15 

11. After making the closest gene file as another input for the predict.py script, the final 

predictions can be generated by regularized linear regression models. These models calculate 

the exact gene expression for every variant in over 200 different cell types and tissues. The 

input files are the VCF files with the variants. In this example, there are 34 separate VCF files 

for chromosome 2. Secondly, there are closest gene files for alle these 34 files. Lastly, the 

calculated chromatin models of step 9 are added and also the cell type and tissue specific 

models. The output is a collection of 34 CSV files with a gene expression prediction for all 

variants of that specific chromosome.  

echo -e "cd /hpc/hers_en/mdegroot/ExPecto; 

/hpc/hers_en/mdegroot/miniconda3/bin/python predict.py --coorFile 

/hpc/hers_en/mdegroot/chromosomes/chr2/analysis.split.FINALprojectMi

nE.chr2.\${SGE_TASK_ID}.vcf.gz --geneFile 

/hpc/hers_en/mdegroot/chromosomes/chr2/analysis.split.FINALprojectMi

nE.chr2.\${SGE_TASK_ID}.vcf.bed.sorted.bed.closestgene --

snpEffectFilePattern 

/hpc/hers_en/mdegroot/chromosomes/chr2/analysis.split.FINALprojectMi

nE.chr2.\${SGE_TASK_ID}.vcf.gz.shift_SHIFT.diff.h5 --modelList 

/hpc/hers_en/mdegroot/ExPecto/resources/modellist --output 

/hpc/hers_en/mdegroot/chromosomes/chr2/output_chr2.\${SGE_TASK_ID}.c

sv" | qsub -l "h_rt=24:00:00" -l "h_vmem=10G" -N chr2Predict -o 

/hpc/hers_en/mdegroot/chromosomes/chr2/ -e 

/hpc/hers_en/mdegroot/chromosomes/chr2/ -t 1:34 

 

7.2 CADD predictions for variants 
The second machine learning tool (CADD) does not have a Github directory to clone and to use in the 

command line. Instead, CADD has a website where a VCF file can be uploaded. After a few hours, the 

CADD predictions are made for all variants in the file and can be downloaded from this same website. 

The ALS neurogenetics group of the UMC already had the CADD scores for Single Nucleotide variants 

(SNV’s), but not yet for the indels. This was explained in chapter 5.2. The scores for SNV’s had to be 

pulled from the UMC database, but the scores for the indels still had to be generated. The following 

steps were taken to get the CADD scores for indels: 

1. First, the indels were extracted from every chromosome VCF file. Column 4 and 5 of the VCF 

file are checked on the number of letters (alleles) and if they are not equal to one. Column 4 

contains the reference allele and column 5 contains the alternative allele. For instance, if 

column 4 contains the reference sequence TCC and the corresponding alternative sequence 

contains a T, then it is considered to be an indel. The following code was used to extract 

indels for chromosome Y: 

zcat 

/hpc/hers_en/mdegroot/chromosomes/chrY/split.FINALprojectMinE.chrY.v

cf.gz | awk 'length($4)!=1 || length($5)!=1' > 

/hpc/hers_en/mdegroot/CADD/indel.CADD.chrY.vcf 
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2. Next, the indels for all other chromosomes were extracted and the rows were counted. The 

number of indels per chromosome can be found in table 14.  

chromosome indels Files 100.000 

1 926.121 10 

2 655.794 7 

3 526.751 6 

4 440.881 5 

5 472.832 5 

6 473.832 5 

7 455.941 5 

8 384.929 4 

9 363.235 4 

10 402.436 5 

11 513.245 6 

12 535.516 6 

13 201.606 3 

14 319.758 4 

15 305.800 4 

16 324.583 4 

17 437.421 5 

18 132.199 2 

19 618.550 7 

20 267.445 3 

21 145.045 2 

22 222.221 3 

X 328.535 4 

Y 6.913 1 

Total: 9.461.589 95 

 
Table 14. Number of indels and number of files per chromosome.  
 

3. Furthermore, the indel files were separated in files of 100.000 indels (variants). This step was 

taken, because the CADD website takes files with a maximum of 100.000 variants. The 

following code was used in the command line: 

zcat /hpc/hers_en/mdegroot/CADD/indel.CADD.chrY.vcf.gz | awk 

'NR%100000==1{out="/hpc/hers_en/mdegroot/CADD/indel.CADD.chrY."++i".

vcf"}{print > out}' 

4. All 95 files were uploaded separately to the CADD website, so that the predictions could be 

made for all variants.  

 

 

  



50 
 

8. Data analysis 
In this chapter, the results of ExPecto and CADD are shown and analysed. ExPecto was used to 

predict gene expression changes for over 200 tissues and cell types. However, for this project, we 

focused further analysis on four cell-types. Three of them have been proven to be involved in the 

development of ALS: the frontal cortex (part of the brain), the spinal cord and stem cell derived 

motor neurons. As a negative control we also included a cell type that has not been implicated in the 

development of ALS: adipose subcutaneous (fat cells). The objective was to explore the impact of cell 

types on variant predictions. Furthermore, the ExPecto scores were also compared to the CADD 

scores. CADD does not have the ability to make a distinction between cell types, so the general 

scores were used.  

Our objective was to identify DNA variants with strong effects on gene regulation. Therefore only the 

highest predictions of both tools were important for this analysis (further explained in chapter 8.2 

about gene burden testing). By only importing the highest and most relevant scores in the database, 

the runtime was reduced significantly. The top 1% of prediction scores was taken into account. For all 

five files (ExPecto predictions across 4 cell types and 1 non-cell specific prediction by CADD), a 

threshold was calculated in R to find the top 1% of variants with the highest prediction values. These 

thresholds can be found in table 15. Variants above these threshold values were included in further 

analysis and imported into the database, because those variants have the highest ExPecto or CADD 

scores of the whole datasets. Variants below these threshold values were not included in further 

analysis. For instance, it does not make sense to look at a variant that has an ExPecto score of 

0.000001, which indicates a very small gene expression change. The difference in threshold scores of 

ExPecto (which are centered around zero) and the scores of CADD (threshold is higher than 20) is 

explained in chapter 3.3.5. The models have different ranges in their output predictions, this is why a 

CADD score can be much higher.  

FILE THRESHOLD TOP 1% PREDICTIONS 

MOTOR NEURONS 0.08142306 
FRONTAL CORTEX 0.05139208 
SPINAL CORD 0.05128547 
ADIPOSE SUBCUTANEOUS 0.0710034 
CADD 21.100 

 

Table 15. Thresholds of the ExPecto and CADD predictions, to make a separated set as input for the 

database.  

8.1 Preparation of the database  
In order to analyse the predictions of ExPecto and CADD, information had to be gathered in a 

database. In this environment, which was set up via the command line, several tables were included. 

A visualisation of the database with its tables can be found in figure 21. At first, the tables for the 

ExPecto predictions of the four different cell types were included: Motor Neurons, Frontal Cortex, 

Spinal Cord and Adipose Subcutaneous. Another file that was added as a table, is the CADD score file. 

In total, there were five tables with variants and their predicted gene expression changes. A “closest 

genes” file was added to the database which describes which genes are impacted by a given DNA 

variant. Information on which samples carry a given DNA variant can be found in table “dosage”. On 

top of that, the table “cohort” provides information on what sample is a patient and what sample is a 

healthy control. Lastly, the table “var” contained meta data for all variants combined, including the 

chromosome, position, reference allele and alternative allele.  
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Figure 21. Database with its tables necessary for the data analysis.  

8.2 Gene burden testing  
After organising all the tables in the database, a gene burden test was carried out. The idea of this 

test, is to find genes in patients that significantly differ from genes in controls. The steps that were 

carried out, are shown in figure 22. Variants that were linked to a gene, were counted per case and 

per control. As an example in the figure below, both cases and controls have fourteen variants that 

are linked to gene 1. The rows of variants in figure 22 are not a genomic sequence, but they were 

found in different spots in and around the gene. This is not a row of random alleles that was found in 

this order. It is just an example of variants that were close to a gene, and thus linked to this gene. All 

the letters are variants and they differed from the reference sequence.  

All the variants in of the MinE analysis (40 kb regions) have a certain prediction score that was saved 

in one of the five tables (ExPecto scores or CADD score). For this analysis, only the variants with high 

scores were relevant, since they are most likely to have a disruptive effect. Four disruptive variants in 

cases are identified in the example (yellow marks). Only one disruptive variant was identified in 

controls (yellow mark). These identified variants have high prediction scores and all the other ones 

have low prediction scores. The last letter of the row of variants is different, but these did not have a 

large expression effect change in both situations, so they are not highlighted. The outcome is a p-

value for a certain gene, which was calculated after comparing cases and controls.  

 
Figure 22. Gene burden testing. 

The commands that were used for the gene burden tests, can be found in Appendix 3. With the 

outcome files of the gene burden test, that contain the genes with their burden p-value, 

visualisations were made in R to gain more insights about significance and quality of the analysis.  
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8.3 Results 
The five outcome files of the gene burden tests still contained thousands of p-values. Manhattan 

plots were created in R, to help visualise and interpret these result. The Manhattan plot is a classic 

way to show significant variants in the genetics research field. The name of this plot is chosen, since 

it resembles the skyline with high buildings, which are the variants that are significant. The x-axis is 

organised by position in the genome and contains chromosomes 1 to 22. The y-axis indicates the -

Log10 of the p-value. In GWAS, a variant in the plot must be linked to a gene afterwards, which is 

very often a difficult task. For the gene burden testing performed in this thesis research, the variants 

were already linked to a gene. Every single dot in the Manhattan plots in this chapter indicates a 

certain gene. Because of the log-transformation, the small p-values become the highest values and 

are easier to detect in the plot. The threshold for significance within a given analysis is 2.5x10-6 

(bonferronni multiple testing correction for analysis of up to 20K genes).  

The code for pre-processing of data can be found in Appendix 4. The plots in this chapter were all 

created with the R language. The pre-processing and plotting required four different libraries: rvat, 

ggplot2, dplyr and sqldf. The gene burden files were loaded into R. Then, the header names were 

changed and added for further analysis and more clarity. Furthermore, the gene file was uploaded 

into R, since information about the genes (chromosome, start position, end position, strand and the 

ENSEMBL gene names) had to be added. The gene burden file was merged with the gene file with an 

sqldf-command. A Manhattan plot was created for ExPecto results on the four cell-types and for the 

CADD results.  

Manhattan plots for ExPecto results on cell-types Motor Neurons, Adipose Subcutaneous, Frontal 

Cortex and Spinal Cord can be found in figures 23, 24, 25 and 26. No genes with significant p-values 

have been found in these cell-types. All genes of the ExPecto cell types were on or under the border 

of value 3 on the y-axis, except for one gene in the plot of the Frontal Cortex. The protein-coding 

gene PPP1R1C (ENSEMBL gene id: ENSG00000150722) on chromosome 2 has the lowest p-value of 

0.0002965711. This gene has an altered expression in the Frontal Cortex, which is the result of 

disruptive genetic variants. A disruptive variant (with a high ExPecto score) linked to this gene, was 

found in 6067 cases versus 2294 controls.  

The p-values in the Manhattan plot for CADD (figure 27) were also not significant and almost all of 

them were under a 3 on the y-axis. There was one gene that was just above the value 3, but this p-

value was not lower (not more towards significance) than the best ExPecto gene. On thop of that, it 

was also not the same gene, since the one from CADD is located on chromosome 10. 
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Figure 23. Manhattan plot of ExPecto predictions for Motor Neurons. 

 

Figure 24. Manhattan plot of ExPecto predictions for Adipose Subcutaneous. 
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Figure 25. Manhattan plot of ExPecto predictions for Frontal Cortex. 

 

Figure 26. Manhattan plot of ExPecto predictions for Spinal Cord. 
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Figure 27. Manhattan plot of CADD scores. 

Next to the Manhattan plot, there is another visualisation method that gives information about the 

generated p-values: the quantile-quantile plot (QQ-plot). This is a visual representation of the quality 

of the outcome data, which needs to follow a certain desired distribution. Two substantial elements 

are needed for such a plot: the observed p-values and the values sampled from the theoretical null 

(uniform) distribution. The observed p-values are ordered and for every value, there is a 

corresponding distribution value. If the observed values are distributed exactly the same as the 

expected values, the dots will follow the diagonal line. However, some values may be more or less 

significant than the expected ones, so these dots are deviated from the line. The Lambda gives an 

additional indication of the quality of the data. A Lambda value close to 1 means that the data 

follows the distribution (54). High lambda values could reflect confounding of the gene burden test 

analyses by technical artefacts (DNA sequencing differences in cases vs controls) or biological 

stratification (differences in ancestry of cases vs controls). 

Figures 28-31 visualise the QQ-plots for the four cell-types of ExPecto predictions. All four plots show 

that the observed p-values reasonably fit the distribution of the expected values.. The motor neurons 

have the highest Lambda value of the ExPecto cell types: 0.98. This cell-type is followed by the 

Frontal Cortex, with a Lambda value of 0.94. The Adipose Subcutaneous and the Spinal Cord both 

have a Lambda of 0.9. These QQ-plots are a way to check the quality of the predictions, given by the 

Machine Learning tools. The lambda values of the ExPecto cell types show that the p-values for the 

genes follow the distribution and that the majority has high p-values that do not stand out. Only a 

small part of the data has lower p-values, which is how it is supposed to be. Figure 32 visualises the 

QQ-plot for the CADD scores, with a Lambda of 1.08. This could indicate a mistake in technical 

artefacts of the sequencing or biological stratification, in an early stage of the data retrieval. There 

are more high p-values in the CADD data table than expected.  
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Figure 28. QQ-plot of Motor Neurons.                                Figure 29. QQ-plot of Adipose Subcutaneous. 

 

 

Figure 30. QQ-plot of Frontal cortex.                                   Figure 31. QQ-plot of Spinal Cord. 
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Figure 32. QQ-plot of CADD scores. 
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9. Conclusion 
The goal of this research was to find the most suitable machine learning algorithm that could predict 

disruptive activities of variants in regulatory DNA regions of ALS patients. The following research 

question was chosen for this thesis:  

How can machine learning algorithms predict the way that genetic variants 

disrupt the activity of regulatory DNA sequences in ALS patients? 

To answer this research question, there were five sub questions formulated.  

 SQ1. How are genetic variants able to disrupt the activity of regulatory DNA 

sequences in ALS patients? 
Advanced techniques make the sequencing of DNA of individuals possible. The whole string consists 

of a long combination of the four letters A, C, T and G, that indicate the nucleotides. They are also 

called “alleles”. Every individual has his or her own unique DNA sequence. A large part of the 

sequence is identical in all humans, but a small part contains genetic variants. These variations in the 

DNA, could cause diseases like ALS, since they have an effect on the expression of genes. The genes 

are locations in the DNA that are a blueprint for the production of proteins. Other regions, called 

“regulatory regions”, can have an indirect effect on this process, since they regulate genes from a 

small or a large distance. It is important to detect variants in these regulatory regions, since they 

could have a disruptive effect on the human body.  

SQ2. What scientific research has been done on predicting effects of genetic variants 

in regulatory regions? 
ALS is a disease that is caused by genetic faults, which means in this case: a combination of many 

variants. In ALS research, the focus has been on variants in the protein coding gene regions for a long 

time, but answers could also be found in the regulatory regions. On top of that, research was 

focussed on finding common variants (that occur in more than 5% of the population), while ALS is a 

combination of common and rare variants. These rare variants are more difficult to find, since they 

occur in less than 1% of the population. A way to find these variants, is to look at the effect that a 

certain variant has on the gene expression, to see how disruptive it is. Eventually the effects of 

variants found in ALS patients, can be compared to the effects of variants found in controls.  

SQ3. What ML tools are available to address this problem (predicting the expression 

effects of variants in regulatory regions) and how could they be compared? 
Machine learning techniques that address these problems have been developed over time. These 

algorithms have the ability to find complex patterns in large DNA datasets. The datasets that are 

available for this thesis study, are files with genetic variants of ALS patients and controls, retrieved by 

the Project MinE. The first machine learning framework that was chosen for this study, is Combined 

Annotation Dependent Depletion (CADD), which is a tool that was first introduced in 2014. It has 

been the state of the art since than for calculating a (PHRED-scaled) score for variants, which gives an 

indication for the level of disruption. It uses logistic regression and it is often used as a comparison 

for other tools that have the same aim. The second tool is the machine learning framework ExPecto, 

that was more recently introduced in 2018. This makes use of a convolutional neural network in 

combination with linear regression and it calculates the log2 gene expression change of a genetic 

variant. In contrast to CADD, ExPecto is able to make tissue-specific predictions. Both tools are able 

to analyse regulatory regions, to analyse common and rare variants and to take genetic variants as 

input for the algorithms.  
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The two frameworks are already trained and validated, but for this thesis research, an extra 

validation step was added. The tools are validated on Lymphocytes datasets of the GTEx project and 

an MPRA project. In both datasets, gene expression changes are known for every genetic variant. The 

quality of the models individually and compared to each other, can be decided if their predictions are 

validated with the observation data. In order to make ROC curves, the predictions and observations 

had to be divided into to classes: high effect variants (1) and low effect variants (0). The results of the 

quality analysis can be found in table 16. In the GTEx analysis, ExPecto performs slightly better on the 

AUC, but CADD performs better in terms of the accuracy. In the MPRA analysis, ExPecto performs 

better on the AUC and on the accuracy. However, all performances were disappointing, since models 

with an AUC of approximately 0.5, are hardly able to discriminate between the positive and the 

negative classes. 

In the GTEx analysis, another individual validation step was taken for the ExPecto model. The GTEx 

slope was negative or positive, indicating the direction of the change of gene expression (increasing 

or decreasing). ExPecto also has this ability, so the observational directions could be compared with 

the predicted directions. A conclusion of this analysis, was that ExPecto could predict the direction of 

expression change better in regions of 20.000 base pairs (20 kb) from the Transcription Start Site of a 

gene. This is also what the ExPecto framework was designed for. The decision was made to work with 

40 kb regions around a TSS for the large project MinE analysis, since this results in more accurate 

predictions. 

 GTEx MPRA 

 CADD ExPecto CADD ExPecto 

AUC 0.518 0.522 0.505 0.546 

Accuracy 55.15% 41.06% 39.43% 61.6% 

 
Table 16. AUC and Accuracy for GTEx and MPRA analyses per machine learning framework. 

SQ4.  What kind of data and pre-processing steps are required by the tools? 
This sub question revolves around the pre-processing of the Project MinE data. DNA profiles of ALS 

patients and healthy controls have been gathered. These resulted in large files with genetic variants. 

For every chromosome, there is a VCF file with information about the variants, their position, alleles 

and other characteristics. With the knowledge of sub question 3, it was decided to only take variants 

within regions of 40 kb around the TSS’s of genes. Subsequently, the multi-allelic variants had to be 

split up. The machine learning tool both used simplified VCF files as an input. However, the large 

chromosome files with millions of rows had to be divided in smaller parts of 100.000 variants. 

SQ5. What predictions on expression effects are made by the machine learning tools?  
The frameworks CADD and ExPecto were used to make predictions on 46 million variants in 40 kb 

regions around the TSS, that were found in patients and controls in Project MinE. This resulted in a 

CADD score and an ExPecto log2 expression change for every variant. The next step was to do an 

analysis to compare effects of variants between patients and controls. This was done by a gene 

burden test, which is a way to find genes that were significantly different expressed in patients, 

compared to controls. First, all variants that were close to a specific gene were gathered. Then, only 

the variants with high predictions (high chance of being disruptive) were important for the further 

analysis. The last step was to calculate a p-value for every gene, by looking at the difference between 

variants with a high prediction value in patients and controls. Manhattan plots showed no significant 

genes for four ExPecto cell-type predictions and CADD predictions. The lowest p-value was found in 

the plot for the ExPecto scores in the Frontal Cortex. However, the p-value of this gene did not reach 

significance and it has not been mentioned in scientific research to be associated to ALS.  
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Research Question 
It was shown that there exist trained Machine Learning frameworks that are able to make a certain 

prediction on the effects of variants on gene expression. CADD and ExPecto are designed to identify 

disruptive variants, while taking common and rare variants into account. Additionally, they are both 

able to predict the effect of variants in regulatory regions, instead of exclusively looking into protein 

coding regions. 

The validation phase showed the predictive performance on the MPRA dataset and the GTEx dataset. 

In both datasets, there were variants included with their labelled gene expression effects, so these 

could serve as a validation method for CADD and ExPecto. ROC curves made clear that the two 

Machine Learning tools were hardly able to distinguish disruptive variants (class 1) from non-

disruptive variants (class 0). The Areas Under the Curves for both validation datasets were just above 

0.5, which means that they are close to the performance of a model that gives random predictions. 

However, ExPecto was able to show an overall better performance, compared to CADD.  

The GTEx dataset provided an extra validation method for ExPecto besides the gene expression, 

which was the direction of gene expression (up or down). After looking into GTEx variants within 40 

kb regions around the TSS, it was shown that ExPecto had an agreement with GTEx of 63% of the 

variants for ExPecto scores above 0.1. Furthermore, ExPecto had an agreement with GTEx of 79% for 

ExPecto scores above 0.4. The predictive performance increased with higher ExPecto scores. 

Unfortunately, CADD is not able to provide information on the direction of gene expression, so the 

two tools could not be compared on this metric.  

In the ALS data analysis with variants of Project MinE, there were no genes identified that were 

significantly different expressed in ALS patients, compared to healthy controls. In earlier research, 

there were genes identified that play a role in the development of ALS. These did not pop up in the 

large analysis of this thesis. However, if one of these genes had turned out to be significant, than it 

would have been another validation step to see that one of the Machine Learning tools (or both 

tools) was able to perform well.  

10. Discussion 
A remarkable result was the bad performance of CADD, since this framework has been the state-of-

the-art for years. At first, the validation phase was showing AUC’s of 0.518 for the GTEx analysis and 

0.505 for the MPRA analysis. Secondly, the CADD Manhattan plot for the MinE data didn’t show any 

signs of significance. A note has to be made, that the CADD framework is supposed to be for the 

whole DNA sequence. ExPecto has the limitation of taking only 40 kb regions around the TSS of a 

gene into account, so the decision was made to do the whole MinE analysis for this thesis on variants 

in these regions. Supposedly, it is not clear if CADD would have given other outcomes in the gene 

burden test, if the whole genome was taken into account. On top of this, the CADD framework 

produces general scores and is not made to be tissue-specific nor cell-type-specific. However, in the 

MPRA and the GTEx analyses, data was retrieved from a specific cell-type. The gene expression 

changes for a genetic variant, were only meant for this specific cell-type. This might show that CADD 

is not suited for predicting scores for one cell-type, instead of general effects for a variant. 

As has been mentioned, CADD and ExPecto did not perform well in the validation phase. A difficulty 

in the creation of the ROC curves, was deciding about the threshold of the two classes. These two 

classes divide variants in a non-disruptive group (0) and a disruptive group (1). There was no clear 

deviation in the distribution of the GTEx or MPRA observations. However, the data was skewed right, 

so the mean was taken as a threshold. The idea behind it, was that there were fewer observations 
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above this threshold, since there are fewer disruptive variants in the data than non-disruptive 

variants. However, when the threshold of the GTEx slope and the MPRA mean of gene expressions 

were scaled up, it was proven that the performance of CADD and ExPecto improved. For instance, 

there was a slight improvement in the AUC. This shows that different thresholds show different 

performances. Although the differences are small, this should be taken into account.  

The performance of CADD and ExPecto on the MinE dataset, only accounts for 40 kb regions around 

the Transcription Start Site of a gene. This means that a large part of the genome has been left out of 

the analysis, while this part could also be influencing expression effects. Some regulatory elements, 

like enhancers, are located thousands of base pairs away from the gene. A genetic variant in such a 

region, could disrupt gene expression from a large distance, further than 40.000 base pairs away. 

However, expanding the regions could also cause trouble, since more noise is added to the data. On 

top of that, the ExPecto framework was not designed to predict effects for variants in larger regions, 

so it would have resulted in non-reliable output.  

11. Future research 
This thesis study shows that there still exists a gap in research, in terms of finding the exact 

disruptive effects of genetic variants in regulatory regions. However, new tools that aim to solve this 

problem, are added every year. In the ALS research field, it is important to keep track of these tools, 

to see their advantages and their shortcomings. The UMC Utrecht ALS team has recently started a 

new research group that will focus more on creating new algorithms. These algorithms will address 

the gaps that exist in effects of genetic variants. The use of the ExPecto framework on ALS patient- 

and control-data, will help to clarify what is needed in new algorithms.  

One of the disadvantages of ExPecto, is that the framework is focused on a range of 40 kb around a 

TSS. It could be beneficial to look at even broader regions, since an enhancer (a regulatory part of the 

genome) is likely to be much further away from the gene. One tool that is capable of taking further 

regions of the genome into account, is Basenji. It uses a Dilated convolutional Neural Network (55).  

It is also interesting to compare new tools to the state of the art, like CADD, to see if they add any 

(new) value. CADD has been used in this thesis project, but there are other tools that address at least 

a part of the same problem as ExPecto and CADD. There are more machine learning options to find 

disruptive variants in regulatory regions, like the support vector machine gkm-SVM.  
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Appendix 1 
Histograms of GTEx slope and MPRA mean. The red line is the mean of the dataset. 

Histogram of GTEx slope 
hist(abs(roc_gtex_expecto$slope), xlab = "absolute GTEx slope", 

breaks = seq(0, 5, 0.05), main = "Histogram of GTEx slope") 

abline(v=mean(abs(roc_gtex_expecto$slope)),col="red") 

 

Histogram of MPRA mean expression changes 
hist(abs(roc_mpra_cadd$mean), xlab = "MPRA mean expression changes", 

breaks = seq(0, 65000, 10), main = "Histogram of MPRA mean 

expression changes") 

abline(v=mean(abs(roc_mpra_cadd$mean)),col="red") 
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Appendix 2 
The code in this appendix is used for creating the ROC curves for the GTEx analysis and the MPRA 

analysis. 

# ROC gtex expecto analysis 

library(pROC) 

roc_gtex_expecto <- x4[,c(6,16)] 

hist(abs(roc_gtex_expecto$slope), xlab = "absolute GTEx slope", 

breaks = seq(0, 5, 0.05), main = "Histogram of GTEx slope") 

abline(v=mean(abs(roc_gtex_expecto$slope)),col="red") 

roc_gtex_expecto$observation_class <- ifelse(test = 

abs(roc_gtex_expecto$slope) < mean(abs(roc_gtex_expecto$slope)), yes 

= 0, no= 1) 

# remove ugly padding 

par(pty = "s") 

roc_curve_gtex_expecto <- roc(roc_gtex_expecto$observation_class, 

abs(roc_gtex_expecto$Cells.EBV.Transformed.Lymphocytes), plot=TRUE, 

print.auc=TRUE, main="ROC curve ExPecto GTEx") 

coords(roc_curve_gtex_expecto, "best", ret = "threshold") 

# best threshold of expecto scores is 5.960464e-08 

# make class column based on threshold 

roc_gtex_expecto$expecto_class <- ifelse(test = 

abs(roc_gtex_expecto$Cells.EBV.Transformed.Lymphocytes) < 5.960464e-

08, yes = 0, no= 1) 

library(caret) 

confusionMatrix(table(roc_gtex_expecto$expecto_class, 

roc_gtex_expecto$observation_class)) 

 

# to put graphs to normal size again. 

par(pty = "m") 
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Appendix 3 
# Frontal gdb with 1% 

cut -f11 -d',' outputfrontal_combined.csv > scores.txt 

awk -F "," '{ if(($11 > 0.05139208) || ($11 < -0.05139208)) { print 

} }' outputfrontal_combined_filter2.csv > 

outputfrontal_combined_filter3.csv 

 

/hpc/hers_en/kkenna/lib/miniconda3/bin/Rscript 

/hpc/hers_en/kkenna/lib/miniconda3/lib/R/library/rvat/exec/rvat.R --

importAnno gdb=/hpc/hers_en/mdegroot/chromosomes/genome.gdb --

name=frontal2 --

value=/hpc/hers_en/mdegroot/chromosomes/gdb_frontalcortex/outputfron

tal_combined_filter3.csv --sep=, 

 

/hpc/hers_en/kkenna/lib/miniconda3/bin/Rscript 

/hpc/hers_en/kkenna/lib/miniconda3/lib/R/library/rvat/exec/rvat.R --

genVarSet --gdb=/hpc/hers_en/mdegroot/chromosomes/genome.gdb --

unitTable=frontal2 --unitName=gene --intersection=var --

output=/hpc/hers_en/mdegroot/chromosomes/gdb_frontalcortex/frontalco

rtex2.varSet.txt.gz 

 

# divide varset file in smaller bits.  

mkdir -p /hpc/hers_en/mdegroot/chromosomes/gdb_frontalcortex/split2 

 

zcat 

/hpc/hers_en/mdegroot/chromosomes/gdb_frontalcortex/frontalcortex2.v

arSet.txt.gz | awk 'BEGIN{FS="|";OFS="|"}{print $1,$2,"1"}' | awk 

'NR%100==1{out="/hpc/hers_en/mdegroot/chromosomes/gdb_frontalcortex/

split2/frontalcortex2.v2."++i".varSet.txt"}{print > out}' 

 

gzip 

/hpc/hers_en/mdegroot/chromosomes/gdb_frontalcortex/split2/frontalco

rtex2.v2.*.varSet.txt 

 

# do gene burden analysis on all files.  

echo -e "/hpc/hers_en/kkenna/lib/miniconda3/bin/Rscript 

/hpc/hers_en/kkenna/lib/miniconda3/lib/R/library/rvat/exec/rvat.R --

rvb --gdb=/hpc/hers_en/mdegroot/chromosomes/genome.gdb --

varSet=/hpc/hers_en/mdegroot/chromosomes/gdb_frontalcortex/split2/fr

ontalcortex2.v2.\${SGE_TASK_ID}.varSet.txt.gz --

varSetName=frontalcortex --cohort=df2v1 --pheno=pheno --

covar=pc1,pc2,pc3,pc4 --aggregationMethod=allelic --test=burden --

maxAF=0.001 --

output=/hpc/hers_en/mdegroot/chromosomes/gdb_frontalcortex/split2/fr

ontalcortex2.burden.\${SGE_TASK_ID}.txt.gz" | qsub -l 

"h_rt=24:00:00" -l "h_vmem=8G" -N frontalcortex2_burden -o 

/hpc/hers_en/mdegroot/chromosomes/gdb_frontalcortex/ -e 

/hpc/hers_en/mdegroot/chromosomes/gdb_frontalcortex/ -t 1:174 

 

zcat 

/hpc/hers_en/mdegroot/chromosomes/gdb_frontalcortex/split2/frontalco

rtex2.burden.*.txt.gz | gzip -c > 

/hpc/hers_en/mdegroot/chromosomes/gdb_frontalcortex/frontalcortex2.b

urden.txt.gz 
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Appendix 4 

Code for Manhattan and QQ-plots 
# R code for manhattan and qq-plot 

library(rvat) 

library(ggplot2) 

library(dplyr) 

library(sqldf) 

assoc=read.table(gzfile("/hpc/hers_en/mdegroot/chromosomes/gdb_front

alcortex/frontalcortex2.burden.txt.gz"),h=F,as.is=T,sep="|") 

names(assoc)=unlist(strsplit("varSetName|unit|pheno|covar|aggregatio

nMethod|test|case|ctrl|caseN|ctrlN|caseMean|ctrlMean|caseMeanGeno|ct

rlMeanGeno|caseSdGeno|ctrlSdGeno|OR|ORlower|ORupper|P",split="\\|")) 

genes=read.table("/hpc/hers_en/mdegroot/ExPecto/resources/geneanno.p

c.sorted.nochr.bed",sep="\t",h=F,as.is=T) 

names(genes)=c("CHROM","START","STOP","STRAND","unit") 

genes$POS=round((genes$START + genes$STOP)/2) 

 

assoc=sqldf("select * from assoc left join genes using (unit)") 

assoc$P[assoc$P<(10^-16)]=10^-16 

rvat::manhattan(assoc) 

rvat::qqplot(assoc$P[(assoc$case + 

assoc$ctrl)>3],case=max(assoc$caseN), control=max(assoc$ctrlN)) 
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