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Abstract

A full description of the superstring demands the choice of an N = 2 supercon-
formal field theory with central charge ¢ = 9. Kazama-Suzuki models provide
examples of such superconformal theories. We show that the D-branes of the
most prolific Kazama-Suzuki model (the Grassmannian model) form a category
finite on objects. We furthermore prove that this category admits a notion of
tensor product and thus a monoidal structure. In the process we summarize
the definitions and results from category theory, semisimple Lie algebra rep-
resentation theory, Kac-Moody Lie algebras, Virasoro representation theory,
coset models, superstring theory and boundary conformal field theory which
are needed to understand the results. We assume knowledge of bosonic string
theory at the level of a first graduate course in string theory and familiarity
with the basic definitions of Lie algebra and representation theory.
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1 Introduction

The classical bosonic string can be described by the so called Polyakov ac-
tion, which is invariant under conformal transformations: conformal symmetry is
a gauge symmetry of the system. The Polyakov action is the action of D free scalar
fields, interpreted as the components of the embedding of the worldsheet on the
D-dimensional spacetime (see e.g. the review [Ton]).

Denote by T' the energy-momentum tensor of the Polyakov action. One can show
that the modes L, of T' form a Virasoro algebra with central charge ¢ = D [BLT].
Demanding the quantum string theory to also be conformally invariant — and thus
the Weyl anomaly to vanish — implies D = ¢ = 26 [BBS].

Now, the equations of motion for the bosonic open string imply that each endpoint
of a bosonic open string must satisfy either the Neumann (N) boundary condition
— the endpoint can move freely — or the Dirichlet (D) boundary condition — the
endpoint must lie on a certain spacetime hypersurface. The two endpoints of an
open string can satisfy different boundary conditions, so that we are left with 4
possibilities: NN, RR, RN and NR boundary conditions.

A spacetime hypersurface to which an endpoint of an open string is restricted
is called a D-brane. So a Dirichlet boundary condition is specified by a D-brane.
Furthermore, a possible interpretation of a Neumann boundary condition is that
there is a spacetime-filling D-brane, so that in fact the D-branes fully characterize
the boundary conditions of the theory, even when Neumann boundary conditions are
present [BBS].

The D-brane structure of a theory determines its gauge symmetries [Zwi]. Com-
paring these with the gauge symmetries of the Standard model one can conclude
if the theory is realistic. This means that we can use D-branes to study string
phenomenology.

Now, two possible generalizations of the Virasoro algebra are the N = 1 and
the N = 2 superconformal algebras. The fermionic string — or superstring — can be
described by the so called Ramond-Neveu-Schwarz (RNS) action, which is invariant
under N = 1 superconformal transformations [BBS]. The RNS action adds D free
fermionic fields to the Polyakov action. As in bosonic string theory, the equations
of motion force the string to satisfy a number of boundary conditions. The bosonic
fields still obey Neumann or Dirichlet boundary conditions, so that D-branes are still
an integral part of the theory. The boundary conditions for the fermionic fields are
discussed in §7.

In the case of the superstring, demanding the Weyl anomaly to vanish leaves
us with ¢ = 15. So the superstring must be a ¢ = 15 CFT. A common ansatz is



that we can separate the superstring in two conformal field theories (CFTs): the
external and the internal CFTs, with central charges 6 and 9, respectively (see [Gre]
and references thereof). One usually interprets the external CFT as describing a
free string propagating in Minkowski space, and the internal CF'T as corresponding
to a non-linear sigma model on a (6-dimensional) Calabi-Yau manifold [BLT], so
that in particular spacetime is 10-dimensional and the 6 non-observed dimensions
are compactified.

However there are other (more general) possibilities. Namely, one may use other
internal CFTs (which need not have a geometrical interpretation), as long as they are
N = 2 superconformal theories with central charge ¢ =9 [Gepl] (this claim will be
analyzed in §7). Kazama Suzuki models [X52] are an example of such theories, and
understanding them may allow us to investigate if taking them as internal CFTs is
the right choice. In particular it is important to look into the D-branes in Kazama-
Suzuki models.

In this text we will analyze the categorical structure of D-branes of the most
common (and thus well-studied) Kazama-Suzuki model: the Grassmannian model.
Namely, we will see how one can construct a category of D-branes of the Grassman-
nian model. Furthermore, we investigate how one can develop a notion of tensor
product of D-branes, which gives a monoidal structure to the category of D-branes.

Although D-branes are important to understand by themselves, there is at least
one other reason to study their categorical structure: there is a conjectured corre-
spondence between D-branes of a CFT and the solitons of a Landau-Ginzburg model
(see [BI, Noz, Cam] and references thereof). One can use category theory to try to
prove this conjecture as an equivalence of categories. A first step towards this end
in the case of the Grassmannian model is to construct the theory of D-branes of the
Grassmannian model and study a few of its basic properties, so that this thesis can
be seen as that first step.

A third motivation for the contents of this text is simply to see one instance of
category theory being applied to physics (another interesting one being, for example,
the categorical treatment of topological quantum field theories as in [Koc]).

This topic demands familiarity with many concepts which are not part of the
standard curriculum of a Master’s program in theoretical physics, both from math-
ematics, physics and mathematical physics. Hence most of the sections have the
goal of introducing the necessary concepts and results to understand §9, where we
construct the category of D-branes of a Grassmannian model and define a suitable
monoidal structure — which is the main goal of this thesis.

The structure of this text is the following:

e §2 introduces the basic ideas from category theory which will be needed in the



rest of the text. Since Master students of theoretical physics are usually not
familiar with this topic, a clear and self-contained exposition is warranted, and
that is what I aimed for.

e In contrast, physicists deal with semisimple representation theory since the
bachelor days, albeit rather informally. For this reason, and so that the thesis
is not overextended, I included §3 on semisimple representation theory in the
form of a short review of the topic, and focusing on the concepts which are
directly relevant to us.

e Kazama-Suzuki models are examples of the so-called coset models, of which
any kind of mathematical understanding must include the study of untwisted
affine Kac-Moody algebras and their unitary irreducible representations. This
is discussed in §4, while in §5 we build up to coset models and their conformal
weights (which will be essential when constructing the category of D-branes).

e §6 starts with a refresher on two-dimensional conformal field theory and fol-
lows with a discussion on N = 1 and N — 2 superconformality (also in two
dimensions). The main goal of that discussion is to motivate the introduction
of the N =1 and N = 2 superconformal algebras. Full mathematical rigor was
not aimed for.

e §7 gives an overview of superstring theory and connects it with Kazama-Suzuki
models. Here we assume that the reader is familiar with bosonic string theory,
at the level of a first course in string theory. I did not aim for mathematical
rigor in this section, as that would be far beyond the scope of this thesis.

e The generalization of the concept of D-brane to Kazama Suzuki models (and
to the so-called (two-dimensional) rational conformal field theories (RCFTs)
in general) is discussed in §8. Again full rigor was not aimed for, for the same
reasons as in §7.

e The construction of the monoidal category of D-branes is reserved to §9. It
consists of two parts: first I define the category itself, and afterwards I come up
with an appropriate notion of tensor product. A version of the Schur’s lemma
for the Virasoro algebra is derived in the process.

The contents of every proof environment are original. Furthermore, the entirety
of §9 is original.



2 Category Theory

2.1 Categories, functors and natural transformations

Categories can be seen as a generalization of groups, and, like groups, them too are
prolific in mathematics and physics. Roughly speaking, a category is a mathematical
structure composed of a collection of “objects” connected by “arrows”, which can
be composed with each other. I will briefly discuss these concepts, define them and
give examples. Much more can be found in [ML, Awo, Lei, AHS, Sim].

“Objects” can be mathematical objects such as sets, groups, vector spaces or
topological spaces, with “arrows” being mathematical entities such as functions,
group homomorphisms, linear maps or continuous maps, respectively.

In these examples, the arrows are functions preserving whatever structure the
objects have. Although many categories have arrows of this nature, this need not be
the case.
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For example, a group G can be seen as a category with a

single object % (which can be anything) and whose arrows

are the elements of G, their “composition” respecting the 92

same rules as the group multiplication. In particular, the Q

identity arrow plays the role of the neutral element of the .

group, and every arrow g has an inverse ¢! such that the
composition of g with ¢g=! is the identity arrow. Q
g1-g2

It is in this way that the notion of category can be seen as a generalization of that
of a group [Awo]. We will come back to this example after giving a more rigorous
definition of category.

Remark 2.1. Since we want to have categories with large “collections” of objects,
the objects of a category may not form a set. For example, we know that we cannot
have the set of all sets due to Russel’s paradox, so that in particular if we want to be
able to speak of a category of sets we need some appropriate notion of “collection”
of all sets That notion is called class, and generalizes the concept of set.

For our purposes, one can treat class exactly as one treats sets. For the curious
reader, a short discussion on this can be found in the Appendix 11.1 and comple-
mented with [AHS].

Definition 2.2. A category C consists of a class Obj(C) of objects (denoted A, B,C, . ..)
and a class Hom(C) of arrows (denoted f, g, h,...) such that:



C1) To each arrow is assigned an object dom(f) (the domain of f) and an object
cod(f) (the codomain of f). The arrow is then denoted f: dom(f) — cod(f).
The class of all arrows with domain A and codomain B is called the hom-set
between A and B, and is denoted Hom(A, B).

C2) For every two arrows f, g such that cod(f) = dom(g), there is an arrow

go f: dom(f) — cod(g)

called the composition of f and g. In other words, for all objects A, B, C' there
is a map o: Hom(B, C) x Hom(A, B) — Hom(A, C)

C3) For every object A there is a distinguished arrow id4 € Hom(A, A) (called the
identity arrow of A) such that f oids = f for every arrow f: A — B and
ida o g = g for every arrow g: C' — A.

C4) (Associativity:) For all f: A— B, g: B— C, h: C — D, we have
ho(gof)=(hog)of

Remark 2.3. Notice that the identity arrow of an object A is unique: if ¢ and j are
identity arrows of A, then in particular ¢ o j = 7, but also i o j = ¢, by definition of
identity arrow.

Since an arrow is the categorical generalization of structure-preserving maps, then
the categorical incarnation of isomorphism is not hard to guess:

Definition 2.4. Let f: A — B be an arrow in a category C. We say that f is an
isomorphism if there is an arrow g: B — A in C such that go f = id and fog = idp.
Then g is called the! inverse of f and is denoted f~!.

There is also a notion of “homomorphism between categories”.

Definition 2.5. A functor F': C — D between two categories C and D is a pair
(Fy, F1) of maps

Fy: Obj(C) — Obj(D), Fi: Hom(C) — Hom(D)
such that for all arrows f: A — B, g: B— C'in C:
F1) Fi(f): Fo(A) = Fo(B)

'If there is an inverse, it is unique.



F2) Fi(go f) = Fi(g) o Fi(f)
F3) Fi(ida) = idp(a
From now on we will omit the subscripts, i.e we will denote both Fy and F} by F.

We can take these ideas further and consider “homomorphisms between functors”.
They are called natural transformations, and are defined such that they preserve the
internal structure (i.e. the composition of arrows) of the categories involved.

Definition 2.6. Let F,G: C — D be two functors between the categories C and D.
A natural transformation between F,G is a family p = {uc}coeconje of arrows of D
such that for every arrow f: C' — C’ of C the diagram (called naturality square)

Fe) 22 p(eny
Mcl I leld

a) 22 (e

commutes (in D). We write p: F' = G, and ue is called the component at C
of u. A natural isomorphism is a natural transformation whose components are
isomorphisms.

2.2 Subcategories

It is common to come across categories which are embedded in other categories.
Coming back to the example of a group G as a category, then subgroups of G can
be seen as categories themselves. Another example is the category Ab of abelian
groups which sits inside the category Grp of groups. Let’s formalize this concept:

Definition 2.7. A category D is a subcategory of a category C if the objects of D
are objects of C, the arrows of D are arrows of C, the identity arrows of the objects
in D are the identity arrows of those objects in C, and the composition of arrows in
D is just the restriction of the composition of arrows in C.

Given any subclass S of the class Obj(C) of all objects in a category C, there is
a natural subcategory of C whose objects are precisely the elements of S. Its arrows
are simply all the arrows in C between the objects in S. Such a subcategory is called
a full subcategory:

Definition 2.8. A subcategory D of C is a full subcategory if for all A, B € Obj(D), Homp(A, B) =
Hom¢(A, B).
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Figure 1: Illustration of the usual process to construct the full subcategories of a
category.

Given its importance in the rest of the text, we will illustrate the procedure
described above of obtaining full subcategories of a subcategory:

The original category is depicted in the first diagram, and the others are some
of its full subcategories. Black dots represent the objects that we keep from the
original category, while white dots are the objects that we do not include in the full
subcategory. Notice that each full subcategory is fully specified by simply saying
what objects we want to keep from the original category.

2.3 Some important Categories

We shall list some categories to illustrate the definitions above. Some will be
relevant for our discussion of monoidal categories and the like.

(a) Set is the category whose:

e objects are sets.

e arrows are maps.
A full subcategory of Set is the category FinSet of finite sets.

(b) Vecty is the category whose:
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e objects are vector spaces over K.

e arrows are linear maps.

Sometimes we omit K if it is clear from context.
An important full subcategory of Vect is the category FinVect of finite vector
spaces.

(c) If g is a Lie algebra, Rep(g) is the category whose:

e objects are g-modules.

e arrows are intertwiners (g-module homomorphisms).

This category will show up later in this text.

2.4 Products

We must define the product of two categories [Sim], since it will play a role in
the definition of monoidal category:

Definition 2.9. Let C and D be two categories. The product category C x D is the
category whose objects are the ordered pairs (C, D), with C' € Obj(C), D € Obj(D)
and whose arrows are the pairs of arrows (f,g) where f : A — B is an arrow of C,
g: R — S is an arrow of D and:

(A, R) Y2 (B, 5)
The composition of arrows is the obvious one: (f,g)o (f'.¢') = (fo f',go4d).

Remark 2.10. We can take ordered pairs since the product of classes is well-defined,
just like with sets.

Remark 2.11. Notice that, given an object (A, B) of the product category C x D,
the arrow id4 x idg € End((A, B)) is an identity arrow for (A, B) (trivial to check).
By the uniqueness of the identity arrow (see Remark 2.3) we have id4 gy = id4 X idp.

We now turn to the product of two objects of a category. This can be defined by
generalizing the Cartesian product of objects of Set (for details, see [L.ci]), resulting
in the following definition:

11



Definition 2.12. Let D be a category and X,Y € Obj(D). A product of X and Y
is a tuple (P, p1, p2) where P € Obj(D) and

P x phy

such that, for any diagram

A
N
X Y
in D there is an unique arrow A = P of D such that

A

;
f ; g

N

X Y
commutes. pi, pe are called projections.

Remark 2.13. Products are unique up to isomorphism. We thus speak of the
product of X and Y.

2.5 Monoidal Categories

We now want to give some extra structure to categories. For example, we can
give our category some kind of multiplication that mimics the multiplication in a
monoid, which is a set M together with an associative map - : M x M — M and
an (identity) element e € M such that me = em = m (Vm € M). In other words,
a monoid is a group whose elements need not have inverses. Roughly speaking, a
monoidal category is a category with a monoid-like structure. Hence we can think
of a monoidal category as a categorification of the notion of monoid [T'V]: there
is a product ® acting on the objects of the monoidal category (as opposed to the
elements of a monoid) with properties which are analogous to the properties of the
monoid multiplication.

This type of category is ubiquitous in physics and mathematics, with the usual
tensor products (e.g. between vector spaces, Hilbert spaces or representations) often

12



constituting the monoidal structure of the corresponding categories. This justifies
why we use the notation ® for the “monoidal product”, and indeed we call it tensor
product.

Definition 2.14. A bifunctor on the category C is a functor C x C — C, where X is
the product of categories from Definition 2.9.

Remark 2.15. If we fix one argument of a bifunctor F': C x C — C we obtain a
functor C — C [ML], i.e. if A is an object of C then F(A,—) and F(—, A) are
functors.

Definition 2.16. A monoidal category is a category M together with a bifunctor
®: MxM — M on M called tensor product and an object 1 € M called the identity
object such that:

M1) There is a natural isomorphism
a: (idy ®idy) ® idy = idy ® (idy & idyy)
called the associator.
M2) There are natural isomorphisms
ri(—)®1l=idy

and
[1:1®(-) = idy

called right unitor and left unitor respectively?.

M3) The pentagon identity holds. i.e. the diagram

(A B)®C)® D

(A® B) ® (C ® D) (AR (B®0)®D
QA,B,C®D QA,BRC,D

A® (B® (C® D)) <

A® ((B®C)® D)

ida®ap.c,D

2The notation (—) ® 1 has an hopefully obvious meaning: it denotes the functor ®(—,1): M —
M induced by the tensor product (see Remark 2.15).

13



commutes in M.

M4) The triangle identity holds. i.e. the diagram

QA1,B

(A®1)® B . A® (10B)
AR B

commutes in M.

Remark 2.17. The pentagon and triangle identities may seem mysterious. Before
we move on, let us just remark that the pentagon identity comes from demand-
ing compatibility between the associator and the tensor product, while the triangle
identities arise from demanding the associator and the right and left unitors to be
compatible. For more details, see [ML].

Example 2.18. Set with the Cartesian product

The tensor product on arrows is the Cartesian product of maps: (f,¢g)(x) =
(f(x),g(z)). The identity object can be any chosen singleton, which we denote {x}.
The components of the associator are the “obvious” bijections (isomorphisms in Set)
aspc: (Ax B)xC — Ax (BxC), ((a,b),c) — (a,(b,c)). Similarly, the right
and left unitors have as components the bijections r4: A x {x}, (a,*) — a and
la: {x} x A, (x,a) — a, respectively. (It is not hard to show that M1) and M2) are
satisfied by checking that a,r and [ are natural isomorphisms (by checking that they
obey the naturality square in Definition 2.6), and it is also a trivial matter to check
that both the pentagon and the triangle identities hold).

Example 2.19. Vect with the Vector Space Tensor Product

The tensor product on arrows is the usual tensor product of linear maps. The
identity object is the vector space K. Similarly to Set, the associator components are
the “obvious” vector space isomorphisms given by apyw (1 ®v) @w) = u® (v w),
with u, v, w basis elements of U, V, W, respectively. The unitors are also the obvious
ones, again analogously to the case of Set.

Example 2.20. Rep(g) with the Tensor Product of g-modules
The identity object is the trivial representation K. The associator and the unitors
are analogous to the ones in Vect.

14



3 Semisimple Lie algebras

In this section, we will summarize the main results from the representation theory
of (finite dimensional) semisimple Lie algebras that we will need. For more details,
see for example [Hum?2, FS2) FH, BDI, Coo, Hall, EW].

Recall that a Lie algebra g is a vector space equipped with a bilinear antisymmet-
ric map [-,-]: g X g — g which satisfies the Jacobi identity [X, [Y, Z]] + [Y, [Z, X]] +
[Z,[X,Y]] = 0. This map is called the Lie bracket. The Lie algebra is said to be real
if the underlying vector space is real, and complex if the underlying vector space is
complex?.

Example 3.1. Let W be a complex vector space with a basis {L,,, m € Z}.
Equipped with the Lie bracket given by

[Lm7 Ln] = (m - n)Lm+n (1)

W is a (infinite-dimensional) Lie algebra called the Witt algebra [BP].
Let C K be a complex one-dimensional vector space. The vector space W & C K
together with the Lie bracket given by

[Lins L] = (m — 1) Ly + m+n S (2)

is the Lie algebra Vir known as the Virasoro algebra [BP].

Every Lie group G has an associated Lie algebra g, whose vector space is the
tangent space at the identity 7.G and with Lie bracket [X,Y] = ad(X)(Y) =
Ad,o(X)(Y). The elements of a chosen basis {1} of g are called its generators.
The Lie bracket is completely determined by its action on the generators, which can
be written [T T%] = f®T¢. The coefficients fo are called the structure constants
of the Lie algebra with respect to the chosen basis.

The direct sum g, ® g, of two Lie algebras g,, g, is the Lie algebra whose un-
derlying vector space is the direct sum of the vector spaces of g, and g,, and with
Lie bracket given by [X; @ X, Y1 @ Y| = [ X1, V1|1 @ [Xs, Ya|o, where [-;-]; and [+, ]2
denote the Lie brackets of g; and g,, respectively.

The center Z(g) of a Lie algebra g is the set of elements X € g which commute
with all elements of g. In particular, if [g,g] = 0 then Z(g) = g and g is said to be
abelian.

3The underlying vector space may be a vector space over a field other than R or C, but those
cases will not be relevant for us.
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A Lie subalgebra of g is a vector subspace b of g that is also a Lie algebra when
equipped with the same Lie bracket as g, which holds iff [h, h] C b. If furthermore
[h, 8] C b, then b is said to be an ideal of g. The trivial ideals of g are {0} and g itself.
Non-trivial ideals are said to be proper. A non-abelian Lie algebra with no proper
ideals is said to be simple. A Lie algebra is semisimple if it is finite-dimensional
and is a direct sum of simple Lie algebras. Semisimple Lie algebras can also be
characterized by the fact that any element X € g can be written as X = [Y, Z] for
some Y, Z € g, i.e. the Lie bracket is surjective.

Example 3.2. Some of the Lie algebras familiar to physicists are semisimple. For
example sl,(C) is semisimple for n > 2 and s0,,(C) is semisimple when n > 3. On
the other hand, gl,,(C) is not semisimple for any value of n. [Hall].

For Lie algebras there are standard bases (the Cartan-Weyl bases), meaning that
there is also a standard form for the structure constants. Working on one of these
bases turns out to be very useful to analyse the structure of semisimple Lie algebras.
A Cartan-Weyl basis for g is composed by generators of the Cartan subalgebra g,
and step operators, and there is one of these step operators for every root of g. We
will briefly review what each of these all-important concepts are.

3.1 Cartan subalgebra

Until the end of this section, g is a complex semisimple Lie algebra.

Definition 3.3. An element X of g is ad-diagonalizable or semisimple if the map
ady = [X,—] € End(g) is diagonalizable.

It turns out that, if the base field of g is algebraically closed (like C), then there
are ad-diagonalizable elements in g. By finite dimensionality, there is a maximal set
of linearly independent ad-diagonalizable elements. If those elements commute, then
by definition they span what we call a Cartan subalgebra of g:

Definition 3.4. A Cartan subalgebra of g is a Lie subalgebra of the form
g0 :=spanc{H'|i = 1...,7} (3)

where {H'} is a maximal set of linearly independent, commuting, ad-diagonalizable
elements of g. The integer r = dim g, is the rank of g.

All Cartan subalgebras are conjugated®, and in particular have the same dimen-
sion. We thus talk of the Cartan subalgebra.

4Two Lie subalgebras b, b, of the Lie algebra g of a Lie group G are conjugated if there is
g € G such that Ad(g)(h;) = hy. Recall that Ad(g) € Aut(g), and thus preserves dimension.
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3.2 Roots and the Cartan-Weyl basis

Recall from your courses in Quantum Mechanics and Linear Algebra that, if two
operators commute, then they are simultaneously diagonalizable. Also, if A, B € g
and [A, B] = 0, then [ad, adg] = 0. This will be important for what comes next.

By definition, for every hy, hs € g, we have [hy, ho] = 0. Then [ady,, ady,] = 0, so
that g is spanned by n = dim g elements y; which are simultaneous eigenvectors for
all ady, h € g, t.e.

Vi=1...n,Vh € go,adn(y;) = [h,y;] = a; (h)y (4)
for some «,;: gy — C. This map turns out to be linear, so that o, € gg.

Definition 3.5. Each nonzero «,, is called a root of g. The set of all roots (with
respect to a chosen basis {y;} of g of simultaneous eigenvectors of all ady, h € g,) is
denoted ® and is called a root system.

We can write
s=09Pa. (5)
acd

with g, := {x € g|Vh € gy, [h, 2] = a(h)z}: since a runs through all the roots, then
all the elements of the basis {y;} of g are in some g,,, namely each y; is in g, .

Notice that g, in this notation coincides with the Cartan subalgebra, by max-
imality. Equation (5) is called the root space decomposition of g relative to the
Cartan subalgebra g,. This decomposition tells us that there is a basis B of g com-
posed of the {H'} that span g, together with the elements E* € g, which satisfy
[H', E*] = a(H*)E~. These operators E* are called ladder operators. So we write

B={H%}, ,U{E% o (6)

This is called the Weyl-Cartan basis.
The name “root” is also used for something slightly different:

.....

E“ of ady: is called a root vector (or simply root) of g relative to the basis {H'} of
Bo-

Note that a root vector is simply the coordinate representation of o € g with
respect to the basis {H'} of g,.
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The Killing form, long roots and positive roots

An inner product is a symmetric, non-degenerate® bilinear map. It is useful
to define an inner product on g. The Killing form x: gxg +— C, defined by
k(x,y) = tr(ad, oad,), is an inner product. Thus it is in particular non-degenerate.
It turns out that its restriction to g, is also non-degenerate. But we know that a
non-degenerate bilinear map acting on a vector space can be used to construct an
isomorphism between the vector space and its dual.

In particular, the Killing form induces an inner product (-, -) on g, which in turn
means we have a notion of length of a root. A root with maximal length is called a
long root, and is usually denoted ).

If the Lie algebra g is the Lie algebra of a compact group (we say that g is
a compact Lie algebra), then its Killing form is negative. This has the important
consequence that in the case of a compact algebra we can use the Gram-Schmidt
procedure to obtain a basis {T*} which is orthonormal with respect to the Killing
form (i.e. k(T® T?) = §*?).

It turns out that we can take the real span spang(®) of the roots to be isomorphic
to R". Since g is finite dimensional and the roots span gj = g, < g, then there are
only finitely many roots. Thus one can construct a hyperplane in the root space
spang(®) which contains no root. Fixing such a plane divides the root system into
two parts, which we label ®,. The roots in &, and ®_ are said to be positive
and negative, respectively, and the corresponding ladder operators F, are called
raising and lowering operators, respectively. We can thus rewrite the root space
decomposition (5) as

g=9_Dgr D9y (7)

where g, = span{E,|a € ®,}. This is called the triangular decomposition of g.

3.3 The Cartan matrix

A simple root is a positive root which cannot be obtained by linear combination
of other positive roots with positive real coefficients. They will be denoted by o
and their set by ®,. It turns out that there are exactly r simple roots, and ®, spans
the root space: spang(®,) = spang(®). Furthermore, spany(®;) 2 @,

It is natural to ask if the set @, of simple roots is an orthogonal basis of the root
space. The answer is no [['52], and how much it strays away from orthogonality is

Si.e. for all z € g, the kernel of x(z, —) is trivial.
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captured by the Cartan matriz: an r X r matrix A with entries

o (a a0

AT = 210, a0)) (®)
where (-, -) is the inner product induced by the Killing form. It turns out that the
entries of the Cartan matrix are actually integers, sometimes called Cartan integers.

These matrices have some characteristic properties, and any matrix with such
properties will be called a Cartan matrix [BDIK].

The classification of simple Lie algebras reduces to the classification of Cartan
matrices, because from a Cartan matrix we can obtain the corresponding semisimple
Lie algebra by Serre’s construction (see, for example, [BDI]).

A generalization of the Cartan matrices are used to construct infinite-dimensional
generalizations of simple Lie algebras, called Kac-Moody algebras. We will discuss
this later.

3.4 Highest weight representations

We will briefly review how the highest weight representations®of semisimple Lie
algebras are defined, starting with the case of sl(2) for motivation. ~More details
can be found in [F52].

Highest weight representations of sl(2)

Recall from your Quantum Mechanics courses that sl(2) = sly(C) is the Lie
algebra of 2 x 2 traceless matrices with complex entries, and it is spanned by

() EeG (Y o

[H EY]|=2E*, [H E|=-2E", [E",E|=H (10)

so that

Let (m, V') be a finite dimensional irreducible representation of sl(2). By finite
dimensionality, there is a maximum of the spectrum (i.e. the set of eigenvalues) of
7(H), which we denote by A. The eigenvalues of w(H) are called the weights of ,
and accordingly A is the highest weight, and the corresponding eigenvectors are the
highest weight vectors.

6In Appendix 11.2 I included a refresher on the definitions of representations, modules and
related basic concepts.
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Let vy be a highest weight vector for this representation. We can obtain all
other eigenvectors of 7w(H) with different eigenvalues (up to rescaling) by acting on
va with 7(E~)"™ [F'H]. This string of eigenvectors must of course be finite, and its
length is equal to the dimension of the representation. It turns out (see [I'52]) that
{length of the string} = dimV = A+1 and A € N, the spectrum of 7(H) thus being

(A, —A+2,...,A—2A} (11)

Since 7 is irreducible, then w(H) is diagonalizable [I'H]|. Thus we can write

A
V=P W (12)
A=—A
A=Xe2Z
where each V) is the eigenspace of the eigenvalue A\, and is one-dimensional. The V)

are called weight spaces.

Remark 3.7. For the case of angular momentum in Quantum Mechanics, one can
identify E* = J* and H = J°, and also j = 4 and m = 4. Notice that this means
that m € {—j,—j+1,...,7 — 1,7}, as we already know from Quantum Mechanics.

Highest weight representations of semisimple Lie algebras

Let (7, V) be a representation of g. A weight space of the module V' with weight
A € g; is a subspace of the form

Vi ={veV|VH € gy, n(H)(v) = A\(H)v} (13)

Notice that this generalizes the notions of weight and weight space from the sl(2)
theory (it is easy to see that the Cartan algebra of s(2) is CH).
A highest weight is a weight A such that

Yo € Vi, Va € ., m(E,)(v) =0 (14)

the elements of V), are called highest weight vectors. If V' has a highest weight, then
(m, V) is said to be a highest weight representation.

Remark 3.8. Highest weight representations of simple Lie algebras are important
in part because all finite-dimensional representations of simple Lie algebras are in
fact highest weight representations.

Physicists have one extra reason to study highest weight representations. Namely,
even when one wants infinite-dimensional representations of simple Lie algebras or
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of infinite-dimensional representations of generalizations of simple Lie algebras (Kac-
Moody algebras), one is usually interested in the highest weight representations be-
cause in most physical applications we can take —H to generate a (one-dimensional)
Cartan subalgebra, where H is the Hamiltonian of the physical system. Hence de-
manding finite positive energy is equivalent to demanding the existence of a highest
weight.

4 Kac-Moody Algebras

Remark 4.1. It can be terribly confusing to try to understand what is a Kac-Moody
algebra by looking at the literature, as it seems each writer is talking about different
things. There is a unifying general concept behind it all, which comes from the
theory of Cartan matrices and their generalizations — I will briefly state the main
ideas here, for context. If you do not care about that, just skip to §4.1.

In string theory physicists only care about a particular type of Kac-Moody alge-
bras (the so-called untwisted affine algebras) which has a concrete construction, with
no mention to Cartan matrices. These are the focus of this section. More details are
to be found in the references cited along the section.

We mentioned in §3 that to a semisimple Lie algebra g corresponds a Cartan
matrix, and that g can be recovered from the Cartan matrix by the so-called Serre’s
construction.

The generalized Cartan matrices are defined by relaxing some of the properties
of the Cartan matrices. Kac-Moody algebras generalize semisimple Lie algebras, and
are obtained by applying Serre’s construction to a generalized Cartan matrix [I<ac].

The generalized Cartan matrices can be separated in three disjoint classes, de-
pending on certain properties they can have [BDI], [F'S2]. This means that Kac-
Moody algebras are also separated in three classes, namely: finite-dimensional Kac-
Moody algebras, affine Kac-Moody algebras and indefinite Kac-Moody algebras. The
finite-dimensional Kac-Moody algebras are old news: they are the semisimple Lie
algebras. The indefinite Kac-Moody algebras are not very common in physics. The
important ones for us are a subset of the affine Kac-Moody algebras, called the
untwisted affine algebras, since they are prolific in theoretical physics, particularly
in String theory and Conformal field theory, and will play a key role in the coset
construction discussed in §5.

21



Generalized Cartan matrices

lSerre’s construction

Kac-Moody algebras

/ l W})es

Finite Affine Indefinite

/ Two types

Twisted

There is an explicit way to obtain an untwisted affine algebra from a simple Lie
algebra, and it is in this form that these algebras appear in physics. We will now
summarize how this explicit realization of untwisted affine algebras is constructed,
and what their highest weight unitary irreducible representations look like. These
representations will be crucial in the study of the Kazama-Suzuki models.

4.1 Untwisted affine Kac Moody algebras and loop algebras

In order to construct an untwisted affine algebra g explicitly (without recurring
to Cartan matrices), we first take a semisimple Lie algebra g and construct its loop
algebra” g. Then, we perform a central extension, obtaining a Lie algebra g = g®C K.
Finally, the extension of g by a derivation d leaves us with an untwisted affine algebra
g=g®Co.

Simple Lie algebra g

Loop algebra g
Central extension

Current algebra g

Derivation extension

N

Untwisted affine Kac-Moody algebra g

(We will come back to this diagram later in this section).
It will be important to understand what these steps are comprised of, so that one
can discuss the representation theory of untwisted affine algebras later on.

"In the physics literature, it is common for writers to say “Kac-Moody algebra” when they
really mean loop algebra, untwisted affine algebra or current algebra (defined in §4.1.3).
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4.1.1 Loop algebras

We start by defining the ring of Laurent polynomials using the terminology of
[MPP] and [Hal2].

Definition 4.2. The ring of complex Laurent polynomials over one indeterminate is
the ring (C[t,t7!], +,-) where C[t,t7!] is the set of formal sums

Clt,t™ ] = {Z a;t’ | a; € Cand only a finite number of a; are nonzero},  (15)
jez

where ¢ is an i.ndeterminateg. The addition is givgn by Zjez a;t! + Z? bt =
> jez(a; +bj)t) and the multiplication by > ., a;t - Y0 bit) = Y7, 5> (a; +
br.—;)t".

We can now construct the loop algebra associated with a simple Lie algebra,
which can be seen as a simple Lie algebra whose coefficients are in the ring of Laurent
polynomials, as we will see shortly. It is not hard to check that this is indeed a Lie
algebra [FMS].

Definition 4.3. Let g be a simple Lie algebra. Its loop algebra is the Lie algebra
whose underlying vector space is ¢ = C[t,t7!] ® g, and with Lie brackets given by
[t" @ T tm @ T = "™ ® [T?, T], where the T® are the generators of g.

Example 4.4. Recall the standard basis { H, E*} of sl5(C) in (9). The matrices

o (t™ 0 o (0™ me (00
tH_<O _tm), i _(0 0), g _(tm O) (16)

form a basis of the Lie algebra sly(C[t,t7']). There is an obvious isomorphism
sly(Clt, t71]) = 5l5(C) given by "X +— t™ @ X for all X € sl,(C) [MPP].

This illustrates the fact that we can think of a loop algebra of a Lie algebra g as
the Lie algebra g with Laurent polynomials as coefficients.

Remark 4.5. The Cartan subalgebra of g is C[t,t7!] ® b, where b is the Cartan
subalgebra of g [Sen].

Notation 4.6. Following the notation in the physics literature, we often write 7/ :=
" ® T

8For more on formal sums and indeterminates see [Hal2]. For us, it suffices to think of ¢ as a
symbol or placeholder which can be summed and respects the power rules of complex numbers.
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4.1.2 Central extensions

Loosely speaking, an extension of a Lie algebra g by the Lie algebra ¢ is a Lie
algebra g such that g and £ are both subalgebras of g. More concretely [DIKBTIK]:

Definition 4.7. An extension of the Lie algebra g by the Lie algebra £ is a Lie
algebra g together with Lie algebra homomorphisms k& and A such that the sequence

0-t5gdg—0 (17)

is exact?. We usually simply say that g is the extension, and omit the homorphisms.
The extension is central if imk C Z(g).

The central extensions which will be relevant for our purposes are one-dimensional
central extensions:

Definition 4.8. A one-dimensional central extension of a Lie algebra g is a central
extension (17) such that £ is one-dimensional and g = g @ ¢.

Of course in this case we can write £ = C K where K is a nonzero element of €.
It turns out that we can construct a one dimensional central extension by using a
“2-cocycle” of g [DKBTK]:

Definition 4.9. A 2-cocycle of a Lie algebra g is a bilinear antisymmetric map
¢: g xg— gsuch that ¢(z, [y, 2]) + &(y, [2,2]) + &(z, [z, y]) = 0.

Proposition 4.10. Let g be a Lie algebra with Lie brackets [-,-],. If there is a 2-
cocycle ¢ of g, then there is a one-dimensional central extension g C K of g, with
the Lie bracket given by

[z @ pK, y & vK] = [2,y]; ® ¢(z,y) K (18)

Remark 4.11. In this case the exact sequence (17) reads
05CK L5 gaCK g0 (19)
where k(uK) = 0@ pK and Az, uK) = z, where p € C and = € g. It is easy to

check that this sequence is a central extension of g. More details can be found on
§18.2 of [DKBTK].

9A sequence A 5 B 225 C 25 D 24 F s exact if ima; = kera;q foralli=1,..., 4.
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4.1.3 The universal central extension of a loop algebra

Let g be a Lie algebra. There is a universal one-dimensional central extension
t — g — g of the loop algebra g, meaning that for any other one-dimensional central
extension ¥ — g’ — g there are maps ®, ¥ such that the diagram

0 > £ > g > g > 0
lé lxp lid
0 > ¢ > g > g > 0

commutes [DIKBTIK]. In this sense g has a unique central extension.
Recall from §4.1.1 that a one-dimensional central extension of the loop algebra g
can be constructed using a specific 2-cocycle ¢ of g. From [DIKBTK]:

Proposition 4.12. Let g be a simple Lie algebra and g its loop algebra. Define the
map ¢: gxg— g by

Y™ QT " @ T") = Mgk (T, T) (20)

where the t™ @ T are generators of C[t,t™ Y ® g, x,y € g and & 1is the Killing form
ing. Then ¢ is a 2-cocycle of g.

Notation 4.13. We will often write simply 7% for 7)Y & K and K for 0 @ K.

We know from §3 that we can choose a basis {1} of g such that x(T¢,T?) = §*°.
Hence using (18) and (20) one sees that the central extension g of g is the Lie algebra
with underlying vector space g = g ® C K and with commutation relations

[Ta Tb] _ fab Te D mK(sabémjin

m’ T n ctm+n

[T, K] =0 (21)
We will follow the physics literature and call g the current algebra of g.

Remark 4.14. The Cartan subalgebra of g is C[t, ¢t '|®h @ K, where b is the Cartan
subalgebra of g [Her]. Notice that this Cartan subalgebra!® is infinite-dimensional,
which creates difficulties for the study of the representation theory of g. This is the
motivation for physicists to extend g by a derivation [GO], ending up, as we will see,
with a finite dimensional Cartan subalgebra.

10We have not defined Cartan subalgebras for non-semisimple Lie algebras. This will be done in
4.2. See also footnote 11.
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4.1.4 The explicit realization of an untwisted affine Kac-Moody algebra

We still need to perform another extension, called an “extension by a derivation”.
First of all, we must say what we mean by derivation [DIXBTK]:

Definition 4.15. Let g be a Lie algebra. A derivation of g is a linear map 0: g — g
such that §[x, y] = [0z, y| + [z, dy] for every x,y € g.

Definition 4.16. Let g be a Lie algebra with Lie brackets |-, -|; and § a derivation
of g. The extension of g by the derivation J is the Lie algebra with underlying vector
space is g @ K 4§ and Lie brackets given by [z @ ud,y & vd] = [z, ylg + pé(y) — vé(x).

This is indeed a Lie algebra, and is also an extension in the sense of §4.7 [C(C].
For more on extensions by derivations see [DIKBTI].

Now, if we want to extend the central extension g of the loop algebra g of a
simple Lie algebra g by a derivation, we must first of all find a derivation of g. From
[DKBTK, FMS]:

Proposition 4.17. Let g be a simple Lie algebra and § = C[t,t™ 1| @ g® CK the
central extension of its loop algebra. Define the map 0: g — g by

5(P(t)®:c69a[():d];—it>®x€90 (22)

where P(t) € C[t,t '],z € g and o € C. Then ¢ is a derivation of g.

It turns out that the derivation extension by ¢ of the central extension of g (where
g is a simple Lie algebra) is an untwisted Kac-Moody algebra [C'C], which we will
denote by g. Schematically:

Simple Lie algebra g

Loop algebra g = C[t,t7'| ® g
Central extension
Current algebra g=g@® CK

Derivation extension

Untwisted affine Kac-Moody algebra g =g@ C§
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Remark 4.18. The derivation § does not commute with the generators t" ® T for
n # 0 (in fact [0,t" @ T = nt" @ T* [FMS]), and this has the effect of shrinking
the Cartan subalgebra of g: the Cartan subalgebra of g is b= (1eh)®CKaeCo
[F'MS]. Compare with Remark 4.14.

Since by definition the weights are just the eigenvalues of the generators of the
Cartan subalgebra, from Remark 4.18 we have the following:

Conclusion 4.19. The weights of a representation © of g can be written (A, k,n),
where A is a g-weight, k is the eigenvalue of 7(K) and n is the eigenvalue of 7(J)
[Fuc2, FMS, CC].

4.2 Unitary irreducible representations of Affine Kac-Moody
algebras

Notation 4.20. In this section, ¢ is a Kac-Moody algebra and g is an untwisted
affine algebra, with g a semisimple Lie algebra.

Just like semisimple Lie algebras, every Kac-Moody algebra has a so-called tri-
angular decomposition n_ @ h@n, [Kac]. In the case of g we write n_ @ h @,
instead.

Such decompositions are defined in full generality in [MPP]. We will not delve
into such deep waters, since understanding the proper general definition of triangular
decomposition is irrelevant for our purposes: we just need to know that there is a
special decomposition n_ & § dn, of .

The concept of Cartan subalgebra which we found in the semisimple case can also
be broadened to general Lie algebras. We include the definition of Cartan subalgebra
of a general Lie algebra for completeness'! [Hum?2]:

Definition 4.21. Let [ be a Lie algebra and h be a subalgebra of [.

b is nilpotent if L™ = 0 for some n € N'2.

Furthermore, the normalizer of b in [ is a subalgebra N;(h) of [ defined by N((h) =
{z € l][z,b] S b}.

A Cartan subalgebra of [ is a subalgebra b of [ which is nilpotent and is its own
normalizer in [.

1Tn the physics literature one rarely if ever sees the Cartan subalgebra defined for non-semisimple
Lie algebras. This does not bring problems because usually one can get away with thinking of Cartan
subalgebras as they were defined for the semisimple Lie algebras.

12By definition, L® = L and L* = [L, L*~!] for i > 0.

27



Now, Lie algebras with triangular decomposition n_ & h &n, always have the b
as the Cartan subalgebra [MPP]. We are therefore allowed to talk of weights in the
case of a Kac-Moody algebra, which are defined as in the semisimple case. More
information about the general picture can be found in [MPP].

One more concept from the theory of Lie algebras is necessary before we tackle
the representation theory of Kac-Moody algebras [Lor, Bek]. We will introduce it as
notation:

Notation 4.22. Let [ be a Lie algebra with a basis {T"};c;cn. Let 7 be a represen-
tation of [. Denote

U(l) :=span{T"T™ ... T% | iy < iy <...ip and k € N*} (23)

(where as is current practice we omit 7, so that T* := 7(T%)).

This is a particular instance of a much more general object called the universal
enveloping algebra [Hum 1, Hum?2]. However, to simplify the discussion, we take U ([)
to be just a notational artifact.

We are finally in a position to define highest weight modules in the context of
Kac-Moody algebras. The following follows the conventions of [[<ac| and [MPP].

Definition 4.23. A (Kac-Moody) highest weight €-module with highest weight A € b*
is a £-module V' containing a nonzero vector v € V' such that:

ny-v=>0
H-v=A(H)v (VH €b) (24)
Un_) - v=V

The vector v is called a highest weight vector.

Definition 4.24. Let M(A) be a highest weight €-module. M (A) is said to be a
Verma module if every highest weight £-module with highest weight A is a quotient!?
of M(A).

Remark 4.25. For each A € h* we can define a Verma module M(A), and it is
the unique Verma module with highest weight A up to isomorphism [lKac]. Every
Verma module M (A) has a unique proper maximal submodule J(A), and the quotient
L(A) :== M(A)/J(A) is the unique irreducible highest weight ¢-module with highest
weight A [IKac]. Notice that this implies in particular that all irreducible highest
weight €-modules are of the form L(A) for some A € h*. This means that there is a
bijection between b* and the set of all irreducible highest weight €-modules.

BQuotient modules are defined in Appendix 11.2.
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Remark 4.26. Recall from Conclusion 4.19 that for an untwisted affine algebra g
we can denote the elements A € h by \ = (A, AMK), A(d)), where X is an element
of gi. Hence we can label irreducible highest weight g-modules with such triples. It
turns out [Fucl] that we can set n = 0. Hence we can label the g-weights (and thus
also the irreducible g-modules) by pairs (A, k).

We will only want to use unitary representations. There is a simple condition for
a highest weight irreducible g-module (A, k) to be unitary [GO]:

Proposition 4.27. Let g be a simple Lie algebra. The irreducible representation
(A k) of g=g®CK & CJ¢ is unitary if and only z'f?p—'; €Zand k> -A >0, where
Y is a long root of g.

Notation 4.28. A unitary representation as in Proposition 4.27 is usually denoted
(A, i—';) i—’; is called the level of the representation, and is often also denoted by k.
Notation 4.29. We are frequently interested in the unitary irreducible highest
weight representations with a certain fixed level. Denote by g, the family of unitary
irreducible highest weight g-modules with level k.

5 Highest weight irreducible representations of the
Virasoro algebra

Coset models are unitary highest weight irreducible Vir-modules. The Grassman-
nian model is a Kazama-Suzuki model, which in turn is a coset model. In this section
we go through the necessary concepts from representation theory of the Virasoro al-
gebra which are necessary to understand highest weight irreducible V¢r-modules and
coset models in particular.

5.1 Highest weight representations of the Virasoro algebra

Just like semisimple Lie algebras and Kac-Moody algebras, the Virasoro algebra
has a so-called triangular decomposition n_ & h@n,. We already mentioned in §4
that Lie algebras with a triangular decomposition have the Cartan subalgebra b, so
that we can talk of weights of a representation of the Virasoro algebra, which are
defined as in the semisimple and the Kac-Moody cases.

Remark 5.1. The fact that the Virasoro algebra has a triangular decomposition
turns out to be the reason why its representation theory resembles the representation
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theory of semisimple Lie algebras and Kac Moody algebras [FF'52], since one can still
define concepts like highest weight representations and Verma modules [MPP].

The exact form of the triangular decomposition of the Virasoro algebra turns out
to be important, so we will define it here. Again, more details about the general
picture can be found in [MPP].

Definition 5.2. The triangular decomposition of the Virasoro algebra is the triple
(n_,bh,ny), where n_ = spanc{L,,,m < 0}, ny = spanc{L,,,m > 0} and h =
spanc{Lo @ 0,0 & C}. Notice that

Vir=n_@®bhdn, (25)

Definition 5.3. A Vir-module V is called a highest weight (Virasoro) module with
highest weight (c,h) € C if there is a nonzero vector ¢ € V (called highest weight
vector) such that:

Ly-v=hv, C-v=cv, U(n_)(v)=V (26)
Remark 5.4. Notice that U(n_) =span{L_;, ... L_;,,k € N*} (see 4.22).

Remark 5.5. Of course the pair (¢, h) is not, strictly speaking, a weight in the usual
sense. But we can identify it with the weight A = h®& 04+ 0® ¢ € h*, and define

~

h(Lo) = h and ¢(C') = c. We can use (26) to see that this A is a highest weight:

~

(Lo®0)-v=:Lo-v=hv=h(Ly) + ¢0) =A(Ly @ 0)v,
0eC)-v=C-v=co=A0®C)v, (27)
Un_)v)=V

Remark 5.6. In other contexts (as for example for Kac-Moody algebras [[<ac]) one
would usually also demand in the definition of highest weight representation that
ny -v = 0. However for Vir this is unnecessary since the two last conditions in (26)
already imply ny - v =0 (see (3.12d) of [KRR]).

5.2 Virasoro Verma modules

There are different (but analogous) definitions of Verma module in different con-
texts. Verma modules are crucial to understand the representation theory of semisim-
ple Lie algebras [IHall], Kac-Moody algebras [[<ac] and the Virasoro algebra [[KRR],
and take slightly different forms in each case.
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Physicists are usually introduced to Verma modules in the context of conformal
field theory [BP], where one wants to understand the representation theory of the
Virasoro algebra. This is also the context which interests us, although we will follow
the definitions and conventions of the mathematics literature, instead of the physics
literature, since the former better serves our purposes. More concretely, we will
follow the conventions in [[XRR].

Definition 5.7. A (Virasoro) Verma module M(A) is a highest weight module of
Vir with highest weight A and highest weight vector v such that the vectors of the

form
L,ZkL,“(U), 0<i <. <1 (28)

are linearly independent.

Remark 5.8. In particular, this definition implies that Verma modules are infinite
dimensional.

Remark 5.9. In the physics literature, the highest weight vector of a Verma mod-
ule is called a primary state, and the elements of the type (28) are said to be its
descendants [FMS] (ppl57, 177). The name primary state comes from the fact that
primary states are related to the primary fields (whose definition we will recall in
§6.1) through the state-operator map of CFT [IFMS].

Remark 5.10. Let M(A) be a Verma module. Then every highest weight Vir-
module with highest weight A is a quotient of M (A) (see page 23 of [[KRR]). This
property is actually the defining property of Verma modules in other contexts (e.g.
in Definition 4.24).

The existence of Verma module was shown on page 23 of [[KRR].
Lemma 5.11. For every pair (c,h) € C, there exists a Verma module M (c, h).

Using Remark 5.10, we can adapt the proof of uniqueness of Kac-Moody Verma
modules in [[Kac] to the Virasoro algebra case. We start with a useful Lemma.

Lemma 5.12. Let g be a Lie algebra and V, W be g-modules of the form V =
OaegsVa, W = Daeg; Wi (ie. V and W are gy-diagonalizable). If i : V — W is a
g-module homomorphism, then VX € g, ¥(Vy) C W,.

Proof. Let A € gy, v € V) and H € g,. Then H - v = Av. By the properties of
g-module homomorphisms (intertwinners), we have H - ¢(v) = ¥(H - v) = ¥ (\v) =
Ap(v). Since H was arbitrary, then ¢ (v) € Wy. This shows that ¥(Vy) C W,. O
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Proposition 5.13. For every pair (c, h), there is a unique Verma module M (c,h)
up to isomorphism.

Proof. Existence was asserted in Lemma 5.11. Let us show uniqueness. Let M (c, h)
and Ms(c, h) be two Verma modules. In particular, both are highest weight Vir-
modules with highest weight (c, ).

Using Remark 5.10, M (¢, h) is a quotient of Ms(c, k). The quotient map o1 : Ma(c, h) —
M (c, h) is a surjective homomorphism of Vir-modules. Indeed: surjectivity is obvi-
ous by the definition of quotient map and quotient space. Linearity comes from how
scalar multiplication and addition are defined on the quotient space M;(c,h):

a] = lav], [v]+[w]:=v+w], withaeC and v,w € Ms(c,h)

and compatibility with the action is established by the definition of quotient module,
for which: T - [v] := [T - v] for all " € Vir. This shows that ¢o; is a surjective ho-
momorphism of Vir-modules. Since Verma modules are Viry-diagonalizable [[KRR]
we can use Lemma 5.12 to conclude that go1(Msy) C M;y. But Verma modules have
finite-dimensional weight spaces [[{RR], so that we can use the rank-nullity theorem
to see that dim M (c, h), = dim Ms(c, h,) — dimker go; < dim Ms(c, h),.

Now, we have another quotient map q2: M;(c, h) — Ms(c, h). Repeating the argu-
ment above for this map we see that dim Ms(c, h), < dim M;(c, h),.

In conclusion, dim Ms(c, h), = dim M;(c, h), for every A and thus also Ms(c, h), =
M;(c, h),. Hence Ms(c, h) = Mi(c, h). O

Remark 5.14. From Proposition 3.3(c) of [[{RR], the Verma module M (c, k) has a
unique proper submodule J(¢, h), and the unique irreducible highest weight module
with highest weight (¢, h) is precisely the quotient

M(c,h)

Ve, h) = e )

(29)
This means in particular that there is a one-to-one relationship between the pairs
(¢, h) and the irreducible highest weight Vir-modules.

5.3 The GKO (or coset) construction

In physics, one is usually interested in representations of the Virasoro algebra
which are not only highest weight and irreducible, but also unitary. For example in
string theory this ensures that the Hamiltonian is hermitian [Ton].

It is easy to see that unitarity implies that ¢ and h are non-negative real numbers
[KRR]. Now, there is an unitary irreducible highest-weight representation of Vir for
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each pair (¢, h) with ¢ > 1 and h > 0, but the only values of ¢ and h for which we
may have a unitary irreducible highest weight representation when ¢ < 1 are [F'0)S]:

6
Czl—m7 mEZZQ (30)
[(m + 1)p —mg]* — 1
dm(m + 1)

h= , p=1,.m—1, qg=1,...,p (31)
(In particular, for each fixed value of the central charge there are finitely many
unitary irreducible highest-weight representations, each corresponding to a different
value of h). These results come from imposing the non-existence of ghosts. See [F()5]
and [BP] for more details.

To construct all the possible (¢ < 1,h > 0) unitary highest weight irreducible
representations of the Virasoro algebra, we do the following [GIKO]:

e Consider a level N and a level 1 irreducible highest weight families of represen-
tations of the untwisted affine algebra su(2) with the same representation space.
Set g = su(2)®su(2) and take the representation of the untwisted affine algebra
g = su(2) @ su(2) to be the direct sum of the aforementioned representations
(see the Appendix 11.2). We denote such representation by su(2)y & su(2);.
This induces [GIKO] a level N +1 representation of the untwisted affine algebra
b of the diagonal subalgebra h = {z @ z | = € su(2)} = su(2) of g.

e Now, every unitary highest weight representation 7 of an untwisted affine alge-
bra [ (for a simple Lie algebra [) induces a unitary highest weight representa-
tion Vir(l) of the Virasoro algebra through the so-called Sugawara construction
[FMS]. The resulting representation is called a WZW model [F\NIS]. Tts repre-
sentation space is the same as the one of the representation w. We denote the
generators of such representation by L! =~ and they are constructed using the
generators T¢ of [ as follows:

dim [

L= 55 0 3 T T (32)

a=1 meZ

where (3 is a normalization factor [GKO].

If [ is actually semisimple, the Sugawara construction still holds, now with
generators [GO)]

L, =L (33)
i=1
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where the I; are the simple components of [ and Ll is given by (32). The
representation space in this case is the direct sum of the representations spaces
V; of the representations 7; of the simple components'*.

e Therefore in our case we have two representations of the Virasoro algebra:
Vir(g) and Vir(h). We now construct a third unitary highest weight irreducible
representation of the Virasoro algebra, by defining its generators K,, by

K,:= L% —L" (34)

This is the so-called coset representation of g and h. This construction (the
coset or GKO construction) can be carried out for any simple compact Lie
algebra g and a subalgebra . We denote it by 9 /6, g /f) or G /.

Notation 5.15. We can also make the levels of the representations used more

explicit. For example, back to the su(2) case, the coset construction yields the
su(2) N Ssu(2)1

representation — Dvis

e We chose specifically these g and h because these coset representations turn
out to cover all possible values (30) of the central element ¢ < 1, thus ex-
hausting the list of all unitary highest weight irreducible representations of the
Virasoro algebra with central element ¢ < 1 [GIKO]. Interestingly, these also
cover all possible highest weights h(c < 1) in (31). Hence the GKO construc-
tion provides us with unitary highest weight irreducible representations of the
Virasoro algebra, and if we choose g and b appropriately we actually obtain all
the unitary highest weight irreducible representations.

Remark 5.16. Notice that a coset model W has a certain central charge ¢
and a conformal dimension & which belongs to the finite series of possible values (31).
Conformal field theories with a finite number of unitary highest weight irreducible
representations (for each value of ¢) are called Rational Conformal field theories
(RCFTs)' [BP]. Hence 222 5 5 RCFT. It turns out that all coset models

Su(2) N1
are RCFTs [FMS].

14Gee the Appendix 11.2 for the definition of the direct sum of representations of a Lie algebra.
151t is known that CFTs with this property must have rational central charges, thus justifying
the name “Rational” [BP].
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5.4 The conformal weights in a coset model

It will prove useful to know how the conformal weights of a coset model g / b can
be written in terms of the conformal weights of the WZW models constructed from
(the chosen representations of) g and 6, and how the latter are themselves expressed
in terms of (the chosen representations of) § and b.

Recall from §4 that the highest weight irreducible representations of an affine
Kac-Moody algebra are labelled by pairs (A, k), where A is the highest weight of a
highest weight g-module and £ is an integer called the level.

Also recall from §5.3 that the Sugawara construction still makes sense when one
starts from semisimple Lie algebras g = €D, g; (not only simple Lie algebras). So the
first thing we have to do is see how the conformal weight of the Vir(g) WZW model
is written in terms of the conformal weights of the WZW models Vir(g;).

Proposition 5.17. Let g, and g, be simple Lie algebras. Let hy be the highest
weight of Vir(g,) and hy be the highest weight of Vir(gy). Then the WZW model
Vir(g, © g,) has highest weight h = hy + hs.

Proof. We have L{ |h) = h|h), where |h) is the highest weight state of Vir(g, & g,).
But L} |h) = (L§' + L) |h) = (hy + ho)|h), where the last equality comes from
the fact that the representation space of Vir(g, @ g,) is the tensor product of the
representation spaces of Vir(g,) and Vir(g,) and thus have highest weight state
|h) = |h1) @ |ha). O

The way that the conformal weight hﬁ’k of a WZW model Vir(g) of an affine un-
twisted algebra g with a chosen highest weight representations (A, k) can be written
in terms of A, k and g is well known [FMNS, DJ]:

A2 +2A - p,

hA,k —
9 2(k+9)

(35)

where p, is the Weyl vector defined by

p:%Za (36)

acdy

(where @ is the set of positive roots, as usual), and g is the so-called dual Coxeter
number, which can be written g = %cg, where ¢g is the eigenvalue for the quadratic
Casimir operator in the adjoint representations. The definitions and properties of
these objects will not be relevant for this text, so we will say nothing else about
them. More can be found in [F'52] or [F'MS].
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Equation (35) together with Proposition 5.17 gives us a recipe to obtain the
expression of the conformal weight of WZW models of the form Vir(g = @, g;),
where the g, are simple Lie algebras. We still have to connect this with the coset
construction. Again we simply present a well-known result ['VS], [DJ]:

Proposition 5.18. Let g be a semisimple Lie algebra and b be a Lie subalgebra
of g. Denote by hy,y the conformal dimension of the coset model g /b, by hy the
conformal dimension of the WZW model Vir(g) and by hy the conformal dimension
of the WZW model Vir(h). There is a unique n € Z such that hy /4 = hg — hy +n.

If g and b are simple Lie algebras, then hy and hy are given by (35). If not, one
uses Proposition 5.17 to reduce the problem to the simple case.

Notation 5.19. It is often useful to keep the levels k and r of the representation
of g and b fixed, while letting A and A take on any possible value (respecting the
usual restrictions — as discussed in §4). We denote (the family of) coset models of
this type by g, /b,. It is customary to refer to g, /b, as a coset model, although
this is technically incorrect. We will adopt this convention, keeping in mind that we
are actually talking about a family of cosets, not a single coset.

Notice that Proposition 5.18 means that there is a bijection j between the set §
of all conformal weights of the coset model g / h and the quotient S/ Z. The elements
of S/Z can be written h mod 1, where h € S. From now on we will say that the
elements of j(.S) are the conformal weights, so that using Proposition 5.18 we can
write

he/y = hy —hy mod 1 (37)

6 Conformal and superconformal field theory in
two dimensions

In this section, we will briefly review the main concepts of two-dimensional con-
formal field theory (CFT) that are relevant for this text, and follow with a quick look
into superconformality as defined in [BLT]. §6.1 is just a refresher of some results
from CF'T which are discussed in a first string theory course, so that familiarity with
the topic is assumed. More details can be found for example in [BP]. In contrast, I
do not expect the reader to be familiar with the ideas in §6.2 and §6.3. Nonetheless,
the topic of superconformality is much deeper than what is discussed here, and these
sections only have the function to motivate the definitions of the N =1 and N = 2
superconformal algebras.
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6.1 Conformal field theory in two dimensions
Conformal transformations and the Virasoro algebra

A conformal transformation is a coordinate transformation x +— ' which pre-
serves the metric up to a positive scalar factor, i.e. ¢’ = Ag, where A(x) > 0 for all
x.

In the two dimensional case (with coordinates (z° z')), and after introducing
complex coordinates z = 2° + iz! and z = 2% — iz, it turns out that an infinitesi-
mal transformation z — z + €(z, Z) in two dimensions is an infinitesimal conformal
transformation exactly when €(z, Z) = €(z) is a holomorphic function (in some neigh-
borhood of z). Similarly for Z.

Under the assumption that €(z) is a meromorphic function (only has isolated
singularities), one may write down a Laurent expansion around any point — and one
conveniently chooses that point to be z = 0. The algebra of the infinitesimal two-
dimensional conformal transformations is then extracted in the usual way, and one
concludes that it is a Lie algebra with the generators [, = —2""10,, (n € Z) and
Lie bracket [l 1] = (m — n)ly1n. This is precisely the Witt algebra from Example
3.1, which is an infinite-dimensional Lie algebra. Again, the same can be done for Zz,
leaving us with another copy of the Witt algebra whose generators are denoted I,,,
and furthermore [l,,, [,,] = 0.

Now, one should actually expect the Hilbert space of a conformally invariant
system to be in a representation of the central extension of the Witt algebra — i.e.
the Virasoro algebra from Example 3.1 — instead of simply being in a representation
of the Witt algebra.

To explain the exact reasoning behind this assertion is out of the scope of this
thesis, but the main idea is that the state space of the system is not really a Hilbert
space, but rather a (complex) Hilbert space modulo C\{0} — a projective Hilbert
space — because multiplying a Hilbert space vector |1) by a complex number A # 0
does not change the physical state, by the basic principles of Quantum Mechanics.
This means that what we actually want is a so-called projective representation of
the Witt algebra on this projective Hilbert space.

However, it is much nicer to work with Hilbert spaces than with projective Hilbert
spaces, and fortunately this is still possible, since to work with projective represen-
tations of the Witt algebra turns out to be equivalent to working with (standard)
representations of its central extension: the Virasoro algebra. For more on this the
reader is advised to consult for example [DIKBTK].
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The energy-momentum tensor

Now, back to the case of general arbitrary dimension D, given a theory with an
infinitesimal conformal symmetry z# — x* 4 €(x) one must have a Noether current
Ju- We can define' the energy-momentum tensor of the theory by j, = T,,€”, and
it is straightforward to check that T'is traceless v.e. T} = 0.

In the two dimensional case (again using the complex coordinates z, Z), traceless-
ness actually implies that T, = T:, = 0, and the non-vanishing components of the
stress-energy tensor are T..(z,%) = T..(2) = T(2) and T:s(2,2) = Tez(2) =: T(2).
T(z) is said to be the chiral or holomorphic part of the stress-energy tensor, while
T(%) is called the anti-chiral or anti-holomorphic part of the stress-energy tensor.
One usually only discusses the holomorphic part, since anti-holomorphic part is iden-
tical.

It is possible to perform a Laurent expansion of T'(z) as follows:

T(z) =Y 2z "L, (38)

nezZ

or to invert it and write .
L, =— ¢ dz2""'T(2) (39)
21
and the L, generate a (representation of the) Virasoro algebra with some central

charge c € C.

Primary fields

There is a special type of field which transforms under conformal transformations
as a tensor would. These are the primary fields. Concretely, a field ¢(z,2) is a
primary field if it transforms under a conformal transformation z — f(z) according
to the transformation rule

R N AN AR e (40

The primary fields are intimately related (through the so-called state-operator map)
to the primary states — and thus to the Verma modules — of the Virasoro algebra of

the CFT (see §5).

16The usual way of defining the energy-momentum tensor as proportional to the variation of the
action with respect to the metric turns out to agree with this definition — see for example [Ton]
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Concrete connection with string theory

Finally, to make a concrete connection with bosonic string theory, let us mention
that the modes of the energy-momentum tensor coming from the action of one free
boson generate a Virasoro algebra with central charge ¢ = 1, so that the Polyakov
action (which can be seen as the action for D free bosons [BLT]) gives rise to a
Virasoro algebra with central charge ¢ = D.

On the other hand, the action of one free fermion, which (as we will see in §7)
plays an important role in fermionic string theory, is a CFT with ¢ = %

6.2 N = 1 superconformal transformations in two dimen-
sions

The most natural way to define superconformal transformations is using (m,n)
supermanifolds, which are essentially manifolds with m real coordinates and n Grass-
mannian coordinates [Alil. N is the number of Grassmannian coordinates that we
introduce for each real coordinate. So for the N = 1 case we extend the coordinate
space of the worldsheet from a two-dimensional space to a (2,2) superspace, so that
the coordinates are not (z,Z) anymore, but we have instead (z, z,6,0). Concepts
like derivation still make sense in superspace [Ali], so that we have super-derivatives
D, D (defined by D = 9y + 00, and D = 9 + 00s).

We defined conformal transformations in §6.1. Recall from bosonic string theory
that a conformal transformation on a 2-dimensional manifold with coordinates (z, 2)
can also be defined to be a map ¢ : U — ¢(U), (2,2) — (2/,Z') such that 0z = 0
and 0z = 0 (i.e. the first component of ¢ is holomorphic and the second one is
anti-holomorphic) [BP]. In particular 0 = %—ia’ and 0' = 220.

Similarly, a superconformal transformation is a map in a (2,2) supermanifold is
a map ¢ whose “unbared” components are holomorphic, while the “bared” ones are
anti-holomorphic, and the super-derivatives D, D transform similarly to the deriva-
tives of the conformal transformation [BLT]:

_ D = (DD’

(2,0,2,0) = (#(2,0),0(2,0),%(2,0),0(2,0)) and {D _ (D) D (41)

Recall from §6.1 that in CFT the energy-momentum tensor is the 2-dimensional
2-tensor whose components 7,3 are such that the Noether current j* corresponding
to the translational infinitesimal symmetry z — z + ¢(x) can be written j, = T,z¢”.
The Noether current of an infinitesimal conformal transformation z — z + €(2)
can, surprisingly enough, be written in terms of the energy-momentum tensor as
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well: j, = 0 and j; = T'(2)e(z) (and similarly for the anti-holomorphic current j)
[Ton]. For this reason, the energy-momentum tensor is often said to be the conformal
current.

Something similar happens in the superconformal case. Suppose we have a sys-
tem with 2-dimensional superconformal symmetry. In this case, an infinitesimal
superconformal transformation has two infinitesimal parameters &, €. If we set € to
zero we are left with an infinitesimal conformal transformation, while if we set & to
zero then we obtain an infinitesimal transformation which we call a supersymmetry
transformation [BLT]. Similarly to the conformal case described above, the Noether
current corresponding to the conformal symmetry is the energy-momentum tensor
T'(z), while the Noether current for the supersymmetry is denoted G(z). Naturally,
the modes L, of T'(z) are defined as in CFT and again generate a Virasoro algebra.
The modes G, of G(z) come from its expansion and can be written

21

G, =2 ]{ d—Z,G(z)z”% (42)

All together, these modes, together with the modes of T(z), generate the N = 1
Super Virasoro algebra, characterized by the commutation relations [B5, BL/T]:

[Lma Ln] = (m - n)Lm+n + % (m3 - m) Om-tn
(L, G| = (%m — r) Grir (43)
{G’r‘; Gs} = 2L7‘+S + ﬁ (47"2 — 1) (5,,«4_5

6.3 N = 2 superconformal transformations in two dimen-
sions

The advantage of using the superspace formulation to define N = 1 superconfor-
mal symmetry is that generalizing the definition of superconformal transformation
for N = 2 is straightforward. In this case we extend the coordinate space of the
worldsheet to a (2, 4) superspace, so that the coordinates are now (2,6, 6, z, £, £). We
focus on the holomorphic part (z,6,0). There are two super-derivatives D and D,
corresponding to @ and 6, respectively. An N = 2 superconformal transformation ¢
is a natural generalization of the N = 1 superconformal transformation:

o o D = (D§)D’
#(2,0,0) = (7(2,0,0),0(2,0,0),0(z,0,0)) and {D _ (b#)D' (44)

and similarly for the anti-holomorphic coordinates.
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It turns out [BLT] that the infinitesimal N = 2 superconformal transformations
(again ignoring the anti-holomorphic coordinates) have four infinitesimal parameters
(&, €, €, a), corresponding to one infinitesimal conformal transformation, two infinites-
imal supersymmetric transformations and one infinitesimal U (1) transformation, re-
spectively. The Noether currents of the symmetries corresponding to the first three
transformations are T'(z), G*(z) whose modes are:

d d 1
Ln= § 522"TQ), Ghug = § 322" HG4 () (45)

271 211

so that )
_ —n—2 — —%—7‘
T(z) = E 2 "Ly, G(z)= 5 E 2 G, (46)
nez reZ+a

(where a depends on the monodromy of G [GSW1]) and the current J(z) of the
U(1) symmetry has the modes:
dz
—z

2" J (%) (47)

I =
21

Together they form an algebra called the N = 2 Super Virasoro algebra:

[Lm7 LTL] = (m — n)Lm+n —|— ﬁ (m3 _ m) 6m+n
(L, Jn] = —1nJmin
[ N e
[Jma Jn] = gmém-‘rn

[Lm? G7:"L::I:a:| = (%m -—n+ (1) G7:|r:L+n:|:a

m-+a?

{G;ﬂv G:ﬂz} = {G;nfav G;,a} =0

1
{G+ G;_a} =2Lpin+ (m—n+2a) i + g {(m +a)® — Z—J Omtn
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The last four equations can be rewritten in another useful way by setting r, s € Z +a:
+ -
[Jn, GF] = £G7,

(L GE] = (5 —7) G (48)

m+r

{G:_, GS_} = 2LT‘+S + <T — S)J'I‘-i-s + g (7’2 _ i) (S»,‘+570
{Gr,G:} =0

Remark 6.1. Every N = 2 superconformal algebra A with generators {L,,, G, J,}
has an N = 1 subalgebra generated by {L,,, G, = GTMFTG;} with the same central
charge as A'". We say that this is the standard N = 1 subalgebra of A.

7 Superstrings and Kazama Suzuki models

Bosonic string theory is not a realistic theory because of at least two reasons: it
contains tachyons (particles with imaginary mass) and it has no fermions. One way
to fix these two problems at once is to demand our theory to be supersymmetric by
introducing fermionic fields in an appropriate manner. This procedure extends the
conformal symmetry of the bosonic string to a superconformal symmetry, and the
resulting string theory is called superstring theory. In what follows, we will briefly
review the basics of superstring theory, with the ultimate goal of understanding why
Kazama-Suzuki models are important to analyze. More details can be found for
example in [GSW1, GSW2, BBS, Pol, BLT].

There are different (and equivalent) approaches to superstring theory. We will
only discuss one of them: the commonly named Ramond-Neveu-Schwarz (RNS)
superstring. We start with a summary of the RNS superstring, and briefly discuss
how after the so-called GSO projection we are left with theories with no tachyons
and N = 1 spacetime supersymmetry (see the Appendix 11.3). These are the Type
ITA and Type IIB superstrings, which are the ones which concern us'®.  Finally,
we include a short discussion on why these theories must include a ¢ = 9 N = 2
superconformal field theory (SCFT) on the worldsheet, and how so-called minimal
models and Kazama-Suzuki models are candidates for this SCF'T.

17This simple and yet important result is alluded to in [B3S] but I did not find a proof. So I
decided to show it in the Appendix 6.3

18Tt turns out that there are five superstring theories: Type I, Type IIA, Type IIB and two het-
erotic theories. The heterotic superstring theories cannot have D-branes [BP]. Type I superstring
theory does have D-branes [BBS], but including a discussion of this theory would extend this text
too much.
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7.1 The RNS superstring

There are two common ways to integrate supersymmetry in the string: the
Ramond-Neveu-Schwarz (RNS) formalism and the Green-Schwarz (GS) formalism,
which turn out to be equivalent in ten-dimensional Minkowski spacetime [BBS].
In the RNS superstring there is manifest worldsheet supersymmetry (i.e. two-
dimensional superconformal symmetry in the sense of §6.2, while in the GS su-
perstring there is manifest spacetime supersymmetry. We will summarize the RNS
superstring.

The RNS superstring action

From bosonic string theory we know that the Polyakov action S, of the bosonic
string (in conformal gauge) is the action of a free field theory in two dimensions
with D scalar fields X#(o, 1), where p = 0,1,...,D — 1 and D is the dimension
of spacetime [BL'T, GSWI, Ton]. These scalar fields are the components of the
embedding X : ¥ — M of the string worldsheet ¥ into the spacetime M.

The most straightforward way to include such fermionic fields in the string ac-
tion is by keeping it a free theory. Following this rationale, we add the action!®
[BP][GSW1]

1 —
Sp=—5- 2o (—i)T" p*0, 0, (49)
m

of D free fermionic fields ¥#(o, 7) in 2 dimensions to the Polyakov action. The p*
are 2-dimensional matrices satisfying the 2-dimensional Clifford algebra {p%, p°} =
_2,701,5 .

More precisely, the fields U™ u are 2-dimensional Majorana spinors, i.e. we can

write [Wei
H N\ ¥ H
wo () w0 () (%)

and one furthermore assumes that (U*),—  p—1 transforms in the vector represen-
tation of SO(1,D —1).
We end up with the RNS superstring action

1 _
S=—5 / A0 (0, X, 0°X" — 0" p"0, V) (51)

YFollowing the conventions of [G5W1], we use units in which the string tension 7T is set to 1.
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Boundary conditions

Just like in bosonic open string theory, also in fermionic open string theory setting
0S5 = 0 forces some boundary terms to vanish, leading to boundary conditions on
the fields (Neumann or Dirichlet boundary conditions in the bosonic case). In the
open superstring case, the bosonic fields X* still obey the same boundary conditions
— thus leaving us with Neumann and Dirichlet boundary conditions, just like in
bosonic string theory — while the fermionic fields must satisfy [GSW 1]

(0, 7) = (0,7) and ¢ (m,7) =" (7, 7) (52)
The choice ¢! (7, 7) = +¢" (7, 7) is called the Ramond (R) boundary condition, while
the choice ¢/ (7, 7) = +¢" (m, 7) is the Neveu-Schwarz (NS) boundary condition. It
turns out [Zwi, GSW 1] that this leads to the mode expansions

(o, 7) Z ble —ir(m=2)  and Yt (o, 1) Z bhe ' (r+o) (53)

reZ+a TGZ +a

\/§

where a = 0 in the R case and a = 1/2 in the NS case.
For the closed string the vanishing of the boundary terms implies instead

P(o,71) =Yt (o +m,7) and ¢ (o,7) =Y (0 +7,7) (54)

meaning that we must have parity (Ramond (R) boundary condition) or anti-parity
(Neveu-Schwarz (NS) boundary condition) in both components of the fermionic fields
W#, Hence we have 4 different boundary conditions for the closed superstring, de-
noted R-R, NS-NS, NS-R and R-NS.

N =1 superconformal symmetry in the superstring

The RNS superstring (51) is invariant under the infinitesimal transformations
[GSW1]

X! =€eU!  JUF = —p0“XVe (55)
where € is a constant infinitesimal Majorana 2-dimensional spinor. These are called
infinitesimal supersymmetry transformations, and indeed the modes F,,,n € Z (G,,r €
Z +1) of the R sector (NS sector) of the Noether current .J of this infinitesimal sym-

metry, together with the modes L,, of the energy momentum tensor 7" form an N = 1
superconformal algebra (43) with generators {L,,, F,,} ({Lm,G,}).
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Spectrum

After choosing the boundary conditions, finding the mode expansions of the
fermionic fields and quantizing the theory, one can apply the operators coming from
the quantization of those modes to the vacuum state to find the spectrum of the
theory: the states and their masses. It turns out that the excited states in the NS
sector are bosons, while the ones in the R sector are fermions.

Furthermore, the ground state of the open string of the NS sector is a tachyon,
which we must get rid of [BBS]. There are also gravitinos [[U], [BBS], which being
the gauge particles of supersymmetry demand by consistency that the theory be
spacetime supersymmetric.

GSO projection

In order to make the spectrum realistic, we truncate it in a controlled (and
consistent with modular invariance at one and two loops) way through the GSO
projection, which consists of keeping only the states of the RNS open superstring
spectrum containing an odd number of fermions in the NS sector and similarly (with
some technical caveats) for states in the R sector, although in the R sector one can
choose to truncate the states in two distinet ways [BBS] — the details do not concern
us here. The GSO projection thus “projects out” the open superstring tachyon, since
it is precisely the ground state of the NS sector, which has no fermionic excitations.
After the GSO projection we are left with an equal number of bosons and fermions
at each mass level [BBS]. This is good news, since it is a necessary condition for
spacetime supersymmetry. To actually prove spacetime supersymmetry one usually
uses the GS formalism. We will leave it at that.

For the closed string spectrum, the GSO projection is done for both left and right
movers. On R sectors we can again choose if we want to project out the positive or
the negative G-parity states. We get different theories depending on these choices:
types ITA and IIB, whose NS-NS sectors coincide, while the NS-R, R-NS, R-R sectors
differ.

7.2 Why do we care about representations of the N = 2
superconformal algebra?

The N = 2 superconformal algebra in the RNS superstring

As described in [BS] the RNS string has a hidden N = 2 superconformal algebra
with generators {L,,, G, J,}, and its standard N = 1 subalgebra (see Remark 6.1)
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is precisely the N = 1 superconformal algebra generated by the modes of the currents
of (55). The value of @ € R in the N = 2 superconformal algebra (48) dictates the
boundary conditions of the currents, and in particular the case a = 0 corresponds to
the R sector while the case a =  corresponds to the NS sector [BLT].

Denote 7 :=a — 3. The N = 2 superconformal algebras (48) for different values
of n € R are all isomorphic [Gre]. In particular the Ramond and the Neveu-Schwarz
superalgebras are isomorphic. This induces a map (called the spectral flow) from the
states in a representation of the n = 0 superalgebra onto the states in a representation
of the n superalgebra. This map is parametrized by 7.

Since bosons live in the NS sector and fermions live in the R sector, then the
spectral flow by n = % is a candidate for spacetime supersymmetry operator. It
turns out [Gre] that this is exactly the case, meaning that the existence of N = 2
worldsheet supersymmetry implies the existence of N = 1 spacetime supersymmetry.

This is the “algebraic counterpart” of the GSO projection [B5].

The usual argument leading to compactification in bosonic string theory

In bosonic string theory, when gauge fixing in the Polyakov path integral the
Fadeev-Popov method makes it so that the full action must have a ghost action
added the Polyakov action [GSW1, Ton]. The ghost action forms a CFT with central
charge —26. Since the Polyakov action forms a CFT with central charge D (with
each boson contributing with 1 for the central charge) and the total central charge
must me zero to cancel the Weyl anomaly, then we must have D = 26. From these
dimensions, 22 are not observed, and thus must be “compactified”. This is where
the compactification formalism comes about.

Generalizing the argument?

There is an important caveat here: although one originally obtains the ghost ac-
tion by applying the Fadeev-Popov method to the Polyakov path integral [GSW 1][Ton]

7 = / DyDX e~ oyl Xl (56)

the exact form of the Polyakov action is not used in determining the ghost action.
The only properties of the Polyakov action that one used in the Fadeev-Popov method

20 The rest of this section (§7.2) expands on the arguments in [Ath, Gep2, Gepl] in favor of the
necessity to look for N =2 CFTs. These arguments seemed too poor in details to me, so I try here
to provide what I think to be a more complete story.

46



is the Weyl invariance and the reparametrization invariance, since the Fadeev-Popov
method aims precisely at gauge fixing these gauge symmetries|Ton|. Therefore?!, if
instead of the Polyakov action we chose to start with some other string action Ssring
with Weyl and diffeomorphism invariance, we would end up with the same ghost
action after gauge fixing, and thus with a contribution of —26 to the total central
charge?2.

Thus in this more general case one does not necessarily have D = 26. In fact, we
can have for example a 4-dimensional Polyakov action with central charge ¢ = 4 and
some other ¢ = 22 conformally symmetric action whose fields need not be embeddings
as in the Polyakov action. So in this case the bosonic string action can be written

Sbosonic = 5%24 + SC:22 (57)

where S is the 4-dimensional version of the Polyakov action.

Back to the superstring

In fermionic string theory, the ghost action is an N = 2 superconformal field
theory with central charge ¢y, = —15 [BS]. Again, instead of the RNS action we
could have started with any N = 2 superconformal superstring action S, and the
value of ¢, would be the same?! since the Fadeev-Popov determinant only depends
on the symmetries it is fixing.

Now we want S to have at least 4 embeddings (corresponding to the four observed

spacetime dimensions), so again we live part of the RNS untouched. We thus set
S = 860 4+ 50 (58)

where S%%¢ is the 4-dimensional version of the RNS superstring, which has ¢ = 6
since each boson-fermion supermultiplet contributes with 3/2 to the total central
charge. I should stress that N = 1 and the N = 2 superconformal algebras coming
from the RNS action have the same central charge (see Remark 6.1). S°=9 (the
internal action) can be any action with N = 2, ¢ = 9 superconformal symmetry.
Therefore, if we want to understand the internal action, we should study ¢ = 9,

N =2 SCFTs.

21This is the justification of why we can start with a different action - and thus different CFTs
- and still assume the same central charge, which is missing in the references in the footnote 20.

QZSStrmg also has conformal symmetry since, just as in the Polyakov action, it is a consequence of
Weyl invariance together with diffeomorphism invariance: if the action is invariant under rescalings
of the metric (Weyl transformations) and under reparametrizations, then it is also invariant under
reparametrizations which rescale the metric (conformal transformations).
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Remark 7.1. We demand the entire action to be N = 2 supersymmetric in order
to ensure N = 1 spacetime supersymmetry|[Gepl].

Remark 7.2. The compactification procedures (and the Calabi-Yau compactifica-
tion in particular) arise from the specific case where one assumes that the internal
action is a non-linear sigma model [BLT].

The simplest examples of N = 2 SCAs are the so-called N = 2 minimal models
[BLT][Gepl], which have 0 < ¢ < 3. Gepner [Gep?2] constructed ¢ = 9 representations
of the N =2 SCA by tensoring N = 2 minimal models.

There are also models with ¢ > 3, the Kazama Suzuki models being one (family
of) example(s). Some Kazama Suzuki models are ¢ = 9, N = 2 SCAs and are
therefore good candidates for internal N = 2 SCF'T of the superstring.

7.3 Minimal models

Recall from §5 that, for unitary irreducible highest weight Vir-modules, the pos-
sible central charges smaller than 1 are in the discrete series (30). Similarly, in N = 2
superconformal representation theory we have that the possible central charges for
the unitary irreducible highest weight representations with 0 < ¢ < 3 are in the
discrete series [DVPYZ][BP]*3

3k
= k>1
¢ k42’ - (59)

Using the GKO method with g = su(2), @ u(1)s and h = u(1),4o one gets exactly
these central charges (and also the correct conformal dimensions) [DVPYZ]|[BP],
meaning that these coset models provide explicit constructions for all possible unitary
representations of the N = 2 SCA with ¢ < 3. These are the so-called minimal
models.

Gepner [Gep2] constructed ¢ = 9, N = 2 superconformal representations by
taking the tensor product of » minimal models with central charge ¢; in such a way
that [BP]

T

- 3k
;Ci:;kiwzg (60)

28In [DVPYZ)], ¢ = 3cs.
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7.4 Kazama-Suzuki models

As we discussed above, in Gepner models one superposes many minimal models to
form a ¢ =9, N = 2 SCA. Besides being aesthetically unappealing, the reducibility
of these models causes technical problems in the heterotic string [I[<52].

In [KS2] and [KS1], Kazama and Suzuki find other (i.e. non-minimal) N = 2
SCAs, some of which have ¢ = 9 (so that one does not have to superpose models).
To do this, they use a variation of the GKO method applied to so-called super-Kac
Moody algebras [I[{'T], obtaining N = 1 SCAs. Some of these are actually N = 2
SCAs. They find the conditions for which one of these N = 1 SCA isa N = 2
SCA. It turns out that these conditions mean exactly that the coset ¢/u is a Kahler
manifold [[XS1, Noz].

We will not need to delve into these concepts because there is a way to reduce
the construction of Kazama-Suzuki models to the already familiar GKO construction
(without the need to deal with super Kac-Moody algebras). Concretely, a “Kazama-
Suzuki coset” % can be written as a “GKO coset” ¢x502di=dimg - dimb), [BF, Noz,

H
1£52]. We will adopt this last convention for the remainder of this text.

7.5 Primary states in KS models

As explained in the end of §7.4, a Kazama-Suzuki model can be seen as a GKO
coset of the type %0(2(1)1.
From now on we shall focus on a specific Kazama Suzuki model called the (n, k)

Grassmannian model:

SU(n+ 1), x SO(2n),
SUM) k41 X U(D)n(nt1) (ktnt1)

Grass(n, k) := (61)

Where n, k € ZT.

Remark 7.3. The central charge of the Grassmannian model Grass(n, k) is ¢ =
ni’;’il > 1 [Noz]. It is easy to see that ni’é’il =9 <= n = % Hence
for example Grassmannian models Grass(15,4) and Grass(9,5) have ¢ = 9. This
means that there are Grassmannian models which are candidates for internal CFT

of the superstring.

Recall from Remark 5.14 that to each Verma module corresponds a unique ir-
reducible highest weight Vir-module. Since from Remark 5.9 there is a bijection
between Verma modules and primary states, the trivial but crucial conclusion is that
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there is a one-to-one relation between primary states and irreducible highest weight
Vir-modules.

Now, from section 5 we can label uniquely an irreducible highest weight Vir-
module my a pair (¢, h). This is of course still true for the representations in a coset
model g, / b, (with g = €D, g; and h = €P, b, semisimple Lie algebras, as usual). But
from the coset construction, ¢ and h can be written in terms of the highest weights
A; and \; of the simple components of g and . Hence we can label the primary states
by (Aiy \i).

In the specific case of the Grassmannian model Grass(n, k), one denotes by A,
A, m and s the highest weights of su(n 4 1)k, su(n)k41, W(1)n(t1)(kn+1) and s0(2n);,
respectively. For more details on these highest weights and the conditions they must
satisfy to be acceptable labels, see for example [Noz|, [BF] and references thereof.
These details will not be relevant for our discussion.

8 D-branes in a general RCFT

We want to start by generalizing boundary conditions which arise in open bosonic
string theory (Neumann and Dirichlet) to general RCFTs (and thus in particular for
coset models). These may not have an explicit lagrangian.

The search for a more intrinsic way to describe boundary conditions gives rise to
boundary conformal field theory and to the boundary state formalism [B3P]. Boundary
states are the generalization of D-branes to a general RCFT [BP], although the
former need not have the geometrical interpretation of the latter. We can use the
names boundary state and D-brane interchangeably, but we will mostly stick with
the first.

In open string theory the worldsheet Y is not an infinitely long cylinder but an
infinitely long strip, hence it is a two dimensional manifold with boundary?* which
we can actually cover with a single chart 3 — H? taking one of the edges of the strip
to the negative real axis and the other edge to the positive real axis (see Figure 2).

24The definition of an n-dimensional manifold with boundary is similar to the definition of an
n-dimensional manifold, with the crucial difference that the latter is locally H" (where H™ is the
n-dimensional upper half space) as opposed to being locally R™ [Tu].
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o= o=l

o

Figure 2: Chart from the infinite strip (the open string worldsheets) to the upper
half-plane H?. Taken from [BI].

8.1 Boundary conditions in terms of the bosonic currents in
the free boson CFT

Recall® that the free boson CFT has an extended (4.e non-conformal) U(1) sym-
metry with currents j(z) = 10X (z, 2), j(2) = i0X(z, 2), called bosonic currents. One
can use the map in Figure 2 to determine how the Neumann (N) and Dirichlet (D)

conditions look like in terms of the charges j,,j, of the bosonic currents. It turns
out that [BP]:

(NN) 0,X|oz0=0,0,X|per =0 <= j,—jn=0,n€Z (62)
_ 1

(ND) 05Xlo=0 = 0,0:X]oor =0 = ju—jn=0,n € Z+5 (63)
- 1

(DN) 0, Xp=9 = 0,0, X]o=r = 0 <= jn+jn=0,n € Z+7 (64)

(DD) ;X |50 =0,0:X|oer =0 <= ju+jn=0n€Z (65)

and this implies (writing 7" and 7T in terms of the j, j) [BP]:
L,—L,=0 (66)

Notice that the equation (66) implies that the conformal symmetry is broken from
two Virasoro algebras to one, and equations (62)-(65) mean that the U(1) current
symmetry (the extended symmetry for the free boson) is similarly broken.

25This is usually covered in an introductory string theory course. You can also see this derived
in [BP].
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8.2 The open-closed string duality and Boundary states

The one-loop open string worldsheet can be represented as follows:

------------- Y
]

-
10

i
~
~_ 7

T

Figure 3: The one-loop open string worldsheet (on the left) can be conformally
mapped to a disk, which is diffeomorphic to the cylinder. A detailed discussion of
this can be found on §23.2 of [Zwi].

where the dashed lines represent the incoming and the outgoing open strings.

Since string theory is invariant under both conformal and diffeomorphic transfor-
mations of the worldsheet, we can simply take the one-loop open string worldsheet
to be the cylinder, which is usually parametrized as in Figure 3, so that we can thing
of an open string propagating along the cylinder.

Figure 4: Depiction of the open-closed worldsheet duality. Taken from [BP].
To gain insight into boundary conditions, it is useful to use the open-closed world-

sheet duality (also called loop-channel-tree-channel equivalence), which relates the
worldsheet of the one-loop worldsheet for the open string (a disk with a disk cut out,
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hence a cylinder) with the tree-level worldsheet for the closed string by switching the
coordinates o and 7. See Figure 4.

This allows us to use the boundary state formalism, where D-branes are seen
as states of the Hilbert space of the closed string, satisfying some conditions called
gluing conditions, and by inspecting Figure 4 we see that they can be interpreted as
geometrical objects which emit and absorb closed strings [B1.1T](§4.3, §6.5), [BP].

The intuition is that the information about how the boundary of the open string
propagates (in the open string picture) is recorded (in the closed string picture) in
certain closed string states |a), |5) with the string lying on the first and second
D-branes, respectively?S. The open-closed string duality provides the mathematical
rigour. See [BP] for more details.

\

ﬁ
) 16)

Figure 5: Depiction of the boundary states coming from the open-closed worldsheet
duality.

In summary, the boundary states are the subset of states of the closed string
respecting the so called gluing conditions (which are the result of expressing the open
string boundary conditions in the closed string picture using the open-closed string
duality) and the Cardy condition, which ensures that the open-closed worldsheet

26This is just the picture to have in mind.
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duality holds. We leave the latter for later, and discuss the boundary conditions
now.

8.3 Gluing conditions in the free boson CFT

In the bosonic open string, a Neumann condition at ¢ = 0 in the open string
translates to
0. X|,—0 |Bn) =0 (67)

on the closed string, while a Dirichlet condition at ¢ = 0 on the open string translates
to
Oy X|r=0|Bp) =0 (68)

on the closed string.

If we again want to rewrite this in terms of current charges (Laurent modes), we
have to expand the currents in these new coordinates (of the closed string). One
easily obtains (§6.2.1 of [BP]):

(Jn+Jn)|Bn) =0, neZ (69)

and B
(Jn—Jn)|Bp) =0, neZ (70)

for the Neumann and Dirichlet boundary conditions (at oopen, = 0, i.€. Teosea = 0),
respectively. These conditions describing how the current modes act on the boundary
states are the so-called gluing conditions.
Furthermore, again using the fact that we can write the energy-momentum tensor in
terms of the currents, one can prove that

(Ln — L_y)|Bpn) =0 (71)

So from (69) and (70) we see that the two U(1) symmetries break to a diagonal
U(1), and from (71) the two conformal symmetries also break, leaving us with a
diagonal U(1) symmetry and a diagonal conformal symmetry.

The next step is to generalize these results.

8.4 Boundary conditions and boundary states in a general
RCFT

To generalize what we saw in §8.1 for the conformal symmetry breaking in the
bosonic open string to a general BCFT, we impose the boundary condition that there
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is no energy-momentum flowing through the real axis, i.e. 739 = 0 at the boundary.

This implies (see (2.21) of [BP]) that T'(z) = T'(Z) whenever z = z, and it generalizes
equation (66). Hence we demand L, = L, at z = Z, meaning that at the boundary
the conformal symmetry is not two copies of the Virasoro algebra anymore, but a
single Virasoro algebra (the diagonal subalgebra generated by {L, ® L,}). In the
case of the bosonic open string, demanding T'(z) = T(z) when z = Z is equivalent to
demanding that the bosonic fields obey Neumann or Dirichlet boundary conditions
- see §6.1 of [BP].

The symmetry breaking that we saw in §8.3 for the boundary states of the bosonic
CFT is generalized to a general RCFT case by using the gluing conditions [Zub, BP]:

(Ln—L_.,)|B) =0 (72)
(Wi = (~1m,)) [B) =0 (73)

where the W/, Wi are the Laurent modes of the extended symmetry (the non-
conformal part of the total symmetry algebra A @ A), with conformal weight h;.
The map €2 is an automorphism of A, called a gluing automorphism.

Remark 8.1. In the bosonic case i = 1 and W,, = j,,. Also, Q2 = id4 for Neumann
boundary conditions, while for Dirichlet boundary conditions €2(j,) = —j, (compare
(73) with (69) and (70)).

8.5 Gluing conditions for the N = 2 superconformal algebra

As we saw in 6.3, in the case of N = 2 superconformal algebra the chiral symmetry
algebra is generated by {L,, J,,, G;", G}, so that the extended symmetry is generated
by {J., G}, G }. Using the identity as the gluing automorphism and the fact that
the supergenerators are primary fields with conformal dimension % [BP], we get the
boundary conditions [BLT]:

~L_,)|B)=0
(Jo+J_n) |B) =0 (74)
; [B) =0

where n = +1 or n = —1. These are called B-type boundary conditions. Setting
instead €2 to be the usual outer automorphism of the N = 2 super Virasoro algebra
((12.108) of [BLT]), we get:

55



(L, —L_,)|B)=0

(Jo —J_n) |B) =0 (75)
(G —inGZ,) 1B) =0
(67 —nG",) 1B) =0

These are the A-type boundary conditions. We will only consider the B-type bound-

ary conditions from now on?7.

8.6 Ishibashi states and the Cardy condition

The next natural question is: what states satisfy equations (74)? This has been
answered (for the particular case of RCFTs?) by Ishibashi [Ish1] for the B-type
boundary conditions: the solution are the Ishibashi states |B;)) (and their linear
combinations), where i € [ labels the highest weight representations of the symmetry
algebra A, which, since we are restricting ourselves to RCFTSs, has a finite number
of highest weight representations (|| < oo) [BP]. So there are finitely many linearly
independent Ishibashi states (solutions of the gluing conditions). A proof that they
indeed satisfy the gluing conditions can be found in [BLT].

The form of the Ishibashi states |B;)) depends on the automorphism Q. So, for
example, in the bosonic string we have different Ishibashi states for the Dirichlet and
for the Neumann conditions. This is well illustrated in §6.2.1 of [BLT].

The boundary states must be linear combinations of Ishibashi states. But not
all linear combinations of Ishibashi states are boundary states. As was said above,
boundary states not only have to satisfy the gluing conditions, but also have to ensure
the loop-channel-tree-channel equivalence. This leads to a restriction on the coeffi-
cients of the linear combination of Ishibashi states known as the Cardy condition.
The details of this condition are of no consequence for our argument, so the curious

2TThe reason why I decided to leave out the A-type boundary conditions is because their treat-
ment is more involved than the one for B-type boundary conditions. More concretely, although the
Ishibashi states of §8.6 can be used in the A-type case (see [Noz] and references thereof), it is not
clear to me how. In contrast, the original construction of the Ishibashi states [[sh1] is clearly aimed
at the B-type boundary conditions.

Z8This does not work for every RCFT [Gab, BP], but only for a special class of CFTs of which
the KazamaSuzuki models are a part of (see [BF, LW] and references thereof). The details of this
discussion would lead us far astray, and are inconsequential to our analysis.
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reader is advised to consult [Car] and [Zub] for more. For us, it is the following
remark that matters:

Remark 8.2. Consider a Grassmannian model Grass(n, k). Being a coset model,
it is in particular a RCF'T. Its Ishibashi states can be labelled as the primary states
[BP, Ishl, Ish2, F'S1], so that we write them as |A, A\, m, s)). Also, these labels obey
the same selection rules and identification as the primary state labels. It turns out
[BP, BL'T] that the boundary states are also labelled like the primary states. Hence
there is a one-to-one correspondence between primary states and boundary states.

9 Categorical structures in boundary states

Recall that our goal is to understand the categorical structure of the boundary
states of the Grassmannian Kazama-Suzuki model (61). So the question is: what
category can we construct whose objects are precisely the boundary states of the
Grassmannian model? And what properties does this category have?

9.1 The category BSG

We saw in §8.6 that there is a bijection between the set of primary states of
the Grassmannian model and the set of its boundary states. We also saw that the
primary states of the Grassmannian model are in a one-to-one correspondence with
the irreducible highest weight (HW) Vir-modules which arise from the Grassmannian
model. Schematically, then:

{Boundary states of Grass(n,k)} = {Primary states of Grass(n, k)}
& {Irreducible HW Vir-modules from Grass(n,k)}
C {Irreducible HW Vir-modules} (76)
C {Vir-modules} = Obj(Rep(Vir))

This means that we can identify the boundary states with a subset of the irre-
ducible HW representations of the Virasoro algebra. We know what subset this is:
from the discussion in §5 and Remark 7.3 we see that the irreducible HW repre-
sentations of the Virasoro algebra from Grass(n, k) are precisely the V (e, h) with

31k and h given by (37) adapted to the Grassmannian case (more on this

€=
later).
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In this view, the natural arrows of the category we want to construct are clear:
they must be Vir-module homomorphisms (also called intertwinners). Thus we will
take our category to be the full subcategory of Rep(Vir) whose objects are precisely
the irreducible HW Vir-modules coming from the Grassmannian model, so that the
arrows will be inherited from the category Rep(V'ir).

Hence it will help to answer the following question: what intertwinners are there
between HW irreducible Vir-modules? The arrows of our category will be of this
form. If the HW irreducible Vir-modules were all finite-dimensional, then we could
use Schur’s Lemma as usually stated (see below) to deduce which intertwinners are
there between them. However, we know these modules are infinite-dimensional (see
Remark 5.8), so this is not an option.

But we can try to show a result similar to Schur’s lemma for the case of the
Virasoro algebra. The "usual” Schur’s lemma is (adapted from [Hall]):

Theorem 9.1. (Schur’s lemma) Let V' and W be finite-dimensional, irreducible
complex g-modules, with g a Lie algebra, and ¢: V — W a g —module homomor-
phism. Then:

(i) If V and W are not isomorphic as g-modules, then ¢ is the zero map.

(ii) If V and W are isomorphic as g-modules, then ¢ = ol where « is a complex
number and I is the identity map.

The proof of the first statement does not use the fact that the modules are finite
dimensional or that the field is C (see the first part of the proof of the Schur’s lemma
on page 95 of [Hall]), so that it is also valid in our case. On the other hand, the
second statement hinges on these assumptions (again, see [Hall]). We can write a
slightly more general version of the Schur’s Lemma (by altering the second statement
in Theorem 9.1 using the Schur’s lemma on page 33 of [MPP]) which will be useful
for us:

Theorem 9.2. (Generalized Schur’s lemma) Let V' and W be irreducible g-
modules over a field K, with g a Lie algebra, and ¢: V — W a g —module homomor-
phism. Then:

(i) If V and W are not isomorphic as g-modules, then ¢ is the zero map.

(ii) Suppose V and W are isomorphic as g-modules and let o be a vector space
endomorphism on V. If o commutes with my(g) and it has an eigenvector,
then o = al for some o € C.
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Since ¢ commutes with 7y by definition of g-module, this implies:

Corollary 9.3. In the conditions of Theorem 9.2, If ¢ has an eigenvector in 'V, then
¢ 1s a complex multiple of the identity map.

Remark 9.4. Theorem 9.1 follows from Theorem 9.2 because in the finite dimen-
sional case and with K algebraically closed ¢ always has an eigenvector in V' [MPP].

Notice that, if we manage to show that the intertwinners between Virasoro highest
weight representations have eigenvectors, then we can use the above results to write
a version of the Schur’s lemma for the Virasoro algebra.

Lemma 9.5. Let V' be a highest weight Vir-module with highest weight vector v and
highest weight A = (h,c), and ¢: V — V be a Vir-module endomorphism. Then v
15 an eigenvector of ¢.

Proof. Recall from Definition 5.3 that U(n_)(v) = V and (Lo@®C)(v) = (hv)®(cv) =
Av. Furthermore, it is clear that all the elements in U(n_)(v) non-collinear with v
have weights smaller than h (and so in particular different from h), since the ele-
ments of n_ are precisely the lowering operators. Since Vir-module homomorphisms
preserve weight spaces (Lemma 5.12), then ¢(v) € Vi, so that ¢(v) = av for some
a e C. ]

We arrive at a “Schur’s lemma for Vir”:

Theorem 9.6. (Schur’s Lemma for the Virasoro algebra) Let V and W be
two irreducible Vir-modules and ¢: V' — W a Vir-module homomorphism. Then:

(i) If V and W are not isomorphic as Vir-modules, then ¢ is the zero map.
(ii) If V and W are isomorphic as Vir-modules then ¢ = af for some a € C.

Proof. Immediate using Lemma 9.5, Theorem 9.2 and Corollary 9.3. O]

In other words: Hom(V,W) = {Oyw} for V= W, and End(V) = CI. Since
from Remark 5.14 for each pair (¢, h) there is a unique irreducible highest weight
representation V' (c, h) of Vir (and every irreducible highest weight representation is
of this form), then we can conclude that V = W iff V.= W. This gives us a complete
characterization of the arrows of our category.

Hence we can finally define the category explicitly:
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Definition 9.7. The Category of boundary states of the Grassmannian model Grass(n, k)
(denoted BSG(n, k) or simply BSG) is the category whose objects are the irreducible
highest weight Vir-modules V. ) with ¢ = ni’fgil and h of the form (37), and whose
hom-sets are:

{OVW}7 (Ca h‘) 7£ (07 h/)

End(V(c,h))=CI, (c,h)=(c,h) (77)

H0m<‘/(c,h)7 ‘/(c,h’)) = {
We will frequently write (c, h) instead of V. ) from now on. We will also often omit
the subscript of the zero maps.

We cannot draw the entire category in general since there is one object for each
h and different Grassmannian models will have different numbers of possible values
for h, but let’s draw the arrows between 3 selected objects, to visualize the category.

/9\

(c, h)\ 0
\ (c, ")
&

Remark 9.8. Coset models have a finite number of primary fields (page 806 of
[F'MS]), and thus also a finite number of primary states. Since a Grassmannian
model Grass(n, k) is a coset model, then it has a finite number of primary states,
and therefore the category BSG(n, k) has a finite number of objects.

(¢, 1)

v
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9.2 BSG is a monoidal category
9.2.1 The altered Cartan product of objects

An apparently obvious choice for a tensor product in BSG is the usual tensor
product ® of Lie algebra modules (see Appendix 11.2). But this immediately presents
a difficulty: we know that the tensor product of irreducible modules is in general not
irreducible [IF'H], and thus in particular Obj(BSG) is not closed under ®. There is
another product which avoids this problem and shares many of the properties of ®
called the Cartan product[l27].

Definition 9.9. Let g be a finite-dimensional Lie algebra. Furthermore, let V}, and
V.. be irreducible highest weight g-modules. Their Cartan product is V;, ©@ V, = Vj,o,.,
where V}, . is the unique highest weight g-module with highest weight h + 7 in the
weight space decomposition of the tensor product V,, ® V.

We see that the Cartan product was originally defined with finite-dimensional
representations in mind. Unfortunately, although its definition can be immediately
extended to infinite-dimensional Lie algebras, the resulting product does not preserve
irreducibility anymore. To see why, note that the definition of the Cartan product
uses the following facts about representations of finite-dimensional Lie algebras ['52]:

(i) Given two irreducible highest weight representations V,, and V, of a finite-
dimensional Lie algebra, the weights of V;, ® V. are of the form h' + ' where b’
is a weight of V}, and 7’ is a weight of V.

(ii) In the conditions of (7), the multiplicity of v + A’ is multy, (A’ )multy, ('). In
particular, multy, v, (h + r) = 1.

And irreducibility is preserved by the Cartan product due to [F52]:

(iii) In the conditions of (7), the highest weight representations Vj . are all irre-
ducible. In particular, V},, is irreducible.

Remark 9.10. We see that (iii) implies that Vj, ® V, is irreducible, so that indeed
the Cartan product takes irreducible highest weight representations into irreducible
highest weight representations (in the finite-dimensional case).

Unfortunately, while (i) and (ii) are still true for (possibly infinite-dimensional)
Lie algebras which, like Vir (see §5), have a triangular decomposition [['52], (iii) is
not guaranteed to hold. So in order to define a Cartan product of irreducible highest
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weight Virasoro modules which preserves irreducibility, we instead use the fact that
there is a unique irreducible highest weight Virasoro module V' (¢, h) for each pair
(c,h) € C*.

This allows us to define a product of irreducible highest weight Vir-modules
analogous to the Cartan product.

Definition 9.11. Let V (¢, h) and V (¢, r) be irreducible highest weight Vir-modules.
Their pseudo-Cartan product is V (e, h) ® V(c,r) = V(e,h +1).

Remark 9.12. Note that we do not add the central charges because our goal is to
come up with a product that is to be used in a specific Grassmannian model, in
which all representations have the same central charge.

Notation 9.13. We will often write h or V}, instead of V' (¢, h) when it is clear from
the context.

By construction, the pseudo-Cartan product maps each pair of irreducible high-
est weight Vir-modules to an irreducible highest weight V2r-module. But this is not
enough. We must check if it maps each pair of irreducible highest weight Grassman-
nian Vir-modules to an irreducible highest weight Grassmannian Vir-module. If it
does, then Obj(BSG) is closed under the pseudo-Cartan product.

Recall from (37) that the highest weight of a coset model g /b is

hg/b = hg — hh mod 1 (78)

From now on we omit the “mod 1”.
In the case of a Grassmannian model Grass(n, k), we have g = su(n+1)®so0(2n),

h = su(n) ®u(l). (FI‘O)I(Il Pro)position 5.17 we know that hy = hsﬁ;fn—&—l) + hj’al(%) and
A k+1 m,n(n+1)(k+n+1
hh = hsu( ) + hu(l :
Also recall from (35) that
A2 +2A-p
hpt = —————= 79
g 2(k +g) (79)

for g semisimple, with A a highest weight of the g-module and k the chosen level.

Definition 9.14. For a chosen Grassmannian model Grass(n,k), an admissible
conformal dimension is a conformal dimension h such that V(c = niﬁil,h) is an
irreducible highest weight Vir-module Grass(n, k).
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We see that a conformal dimension of the coset model Grass(n, k) (and thus any
admissible conformal dimension) must be of the form:

_ 1Ak 5,1 A k+1 m,n(n+1)(k+n+1)
B= B s+ R — WAL —

50(2n SU(n) 1)
_ A+ 2N psue | 5°+ 25 pson) (80)
2(k + Count1)) 2(1 + Co(2m))
A2+ 2) - psum) m? +2m - py()

D 2(k+ Tt capm) 2+ D)k +n+1) + )

Now notice that h = h(A, A, s, m). Hence the sum of two weights can be written

A+ AP+ 2+ AN) - psumsn)
2(l€ + Csu(n+1))
(s+8)+2(s+5) psoen  (A+X)*+2(A+N) - psu) (81)
2(1 + Cso(Qn)) 2(1{3 +1+ Csu(n))
_(m+m')? +2(m + ) - puq Fe(A A m, s, NN, m ')
2n(n+1)(k+n+ 1)+ cy)]

=h(A+ AN X+ N, s+ m+m')+eANs,m AN N s m)

h(A N, s,m) + h(AN, N, s, m') =

where the extra term e(A, A, s,m, N, X', s',m’) is given by

AN 5.5
kE+ Counyr) 1+ Coo(2n)
AN m-m’

+ +
20k + 14 cauny)  2[n(n+1)(E+n+1) + )]

e(AM, N, s,m, N N ' m') ==

(82)

Therefore h(A, A, s,m) + h(A',X,s’,;m’) is not an admissible conformal weight,
because of the extra term. If we subtract the extra term away, however, we simply
get the admissible conformal weight h(A + A", A+ N, s+ s',m +m/).

Notation 9.15. From now on, we often write A and A’ for (A, \, s,m) and (A, X, s',m’),
respectively. Furthermore, we often denote the extra term by? e(h,r) instead of
e(A,\"), whenever h := h(A) and r := h(A').

This discussion suggests the following definition for an altered Cartan product:

29In general there can be A # A such that h(A) = h(fX), so when writing e(h,r) we actually
make a choice. But the argument that follows is independent of this choice.

63



Definition 9.16. Let V}, and V, be irreducible highest weight Vir-modules. Their
altered Cartan product is V,, MV, = Vi c(nr)-

Remark 9.17. We know that Obj(BSG) is closed under the altered Cartan product
because, from the discussion above, if h and r are admissible conformal dimensions,
sois h+r —e(h,r).

9.2.2 The altered Cartan product of arrows

If we want to use the altered Cartan product to give a monoidal structure to
BSG, we must extend it to a bifunctor. In particular, the altered Cartan product

must be such that for any two arrows h ER r, b L 1 we have:

hLnrwLry=nar 2 = (83)

=h+h"—e(h, 1) IRy e(r,r")
There are so little arrows in BSG that this restriction almost completely deter-
mines the altered Cartan product of arrows. Indeed, it is clear from (83) and 9.7
that:

(84)

SRS = 0, h+h—elh,n)#r+r —e(rr)
al, h+h" —elh,h)=r+71"—e(r )

for some o € C.
We make the simplest choice: a = 1:

Definition 9.18. Let h i> r and A/ f—/> r" be two arrows of BSG. Their altered
Cartan product is given by (84) with a = 1.

9.2.3 The identity object

We just saw that we have a good candidate for tensor product of objects in a
putative monoidal structure on BSG. Such a structure needs another ingredient:
the identity object. There is a natural candidate.

Lemma 9.19. V(c = ni’éil,h = 0) =: Vg is an object of BSG. Furthermore, if

h € Obj(BSG), then e(h,0) = e(0,h) = 0.

Proof. From (80) it is clear that h(0,0,0,0) = 0. This shows that h = 0 is an
admissible weight, or in other words that V4 is in Obj(BSG). We now use (82) to
see that e(h,0) = e(A,0,0,0,0) =0 and (0, h) = €(0,0,0,0,A) hold trivially. O
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Looking at the Definition 9.16 of the altered Cartan product, it is now clear that
the unit object should be V,. Namely, since the Cartan product of V}, and V, is
simply Viyr—e(hr), €(0,h) = e(h,0) = 0 and furthermore Vj, =V}, iff h = A/, then the
unit object can be taken to be Vj.

9.2.4 Properties of the altered Cartan product

Before proving that (BSG, X, ;) is a monoidal category, we must show that the
altered Cartan product is a bifunctor, and also prove some properties of the altered
Cartan product which will make our life much easier.

Lemma 9.20. The altered Cartan product is a bifunctor.

Proof. Let f x f': (h,h') = (r,r") and g x ¢': (r,7") — (s,§') be two arrows of the
product category BSG x BSG. We want to show that F1), F2) and F3) from 2.5
are satisfied.

F1) X(f x f)= fRf': hKK — r X' by construction of X.

F2) W ((gx g)o(fx[f)=W((gof)x(g0of)) = (g0f)HW(g o f)and from
the Definition 9.18 we have

0 h+h,—€(hh,)7§5+5’_e(ssl)
IE / ! — 9 5 , 85
e lfELe D {I’ h+h'—e(h,h) =s+s —e(s,s) (85)
On the other hand:
(g x ¢)oB(f x f)=: (9B g") o (f B f)
(000, r+7 —e(r,r)#s+s —e(s,s)
and h+h' —e(h,h') #r+1" —e(r )
Ool, r+1"—e(rr)#s+s —ess)
— and h+h' —e(h, W) =7 +71"—e(r, 1) (86)

Io0, r+71" —e(r,r)=s+s —e(s,s)

and h +h —e(h,h') #r+1r" —e(r,r)
Io0, r+1" —e(r,r)=s+s —e(s,s)
\ and h+h' —e(h,h') =r+1r" —e(r,r)

B {O, h+h —elh, ) # s+ —e(s,d)

I, h+h —e(hh)=s+5 —e(s,s)
Hence K ((g x ¢') o (f x f") =®(g x ¢") oR(f x ')
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F3) Using Remark 2.11 we see that X(id ) = M(idy, ¥ idy ) =: id, Widy . From

Definition 9.18 we have idy, X idy = I :=idh + h' +e(h,h') = idpgp .

Lemma 9.21. The altered Cartan product is associative on objects.

[

Proof. Let h,h',h" € Obj(BSG). We want to show that (hX A )X A" = KK (R'KA").

First, notice that

(hRKH)RE = (h+ 1 —e(h, 1)) KK
—h+ W+ 0 —e(h, 1) —e(h+h —e(h, W),

On the other hand:

W (W RE) =h& (W + K — el 1)
—h+ W+ B — (W, B —e(h, W + K —e(k, 1))

But
e(h,h') +e(h+nh —e(h, ), h")=en h")+e(h,h' + 1" —e(h',h"))
Indeed: (denoting 7 := h(A + A'))

e(h,h)+e(h+h' —e(h,h"),h") =e(h,h') + e(r,h")

AN s N AN

k+ Csu(n+1) 1+ Cso(2n) 2(k +1+ Csu(n))
n m-m/

2In(n+1)(k+n+1)+ Cu(l)]

(A—{—A/)-A// (s—{—s’)-s” ()\‘f‘)\/)')\//
+ _

k+ Csu(n+1) I+ Cso(2n) Q(k +1+ Cﬁu(n))

"

(m+m')-m
2n(n+1)(k+n+ 1)+ cy)]

(87)

(83)

(89)

(90)

where in the first equality we used that h + h’ — e(h,h’) = r by construction of K.
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Also: (denoting 7’ := h(A’ + A"))

e(h, ") +e(h, i + 1" —e(h,h")) = e(h,h") +e(h,r")

A_A// S'S” )\.A//

= - +

E+ oy 14 Coozn) 20k + 1+ coum))
m - m//

+ 91
2n(n+1)(k+n+ 1)+ cy)] (1)
A-(A/—i—A”) 8-(8’4—8”) /\'()\/_’_/\//)
k+ Csu(n+1) 1+ Cso(2n) 2(k +1+ csu(n))

+ m - (m/ + m//)
2in(n+1)(k+n+1) + )]

By inspection, (90) and (9.2.4) coincide. This concludes the proof. O

Lemma 9.22. hX0=h=0KX h.

Proof. By definition, h 0 = h+ 0 —e(h,0). But e(h,0) = e(h(A), h(0,0,0,0)) from
the proof of Lemma 9.19. Hence

A-0O -0
e(h,0) = — S
k+ Csu(n+1) 1+ Cso(2n)
A-0 m -0
+ + =0 92
2(k + 1—|—Cﬁu(n)) 2[n(n+ 1)(k+n+ 1)+Cu(1)] (92)
Thus h X 0 = h. The argument for 0 X h = h is identical. O

Because of these properties (which tell us that the altered Cartan product satisfies
the characteristics typical of a monoid “on the nose” (and not just up to isomorphism)
the associator, the left unitor and the right unitor are trivial, so that we are now in
a position to easily prove the most important result of this section.

Before doing that, we will show that the altered Cartan product is also associative
on arrows. This will be helpful for the proof that the BSG theorem is monoidal.

Lemma 9.23. The altered Cartan product is associative on arrows.

Proof. Let f: h — K, g:r = ', k: s — s be three arrows in BSG. Notice that
fRg: hXKr - KXr' and gRk: rKs— 1" Ks. Thus

0, (hRr)Ks#(MKWRr)Rs

I, (hBr)Rs=(KRr)Ks (93)

(fﬁg)ﬁk:{
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and

0, hX(rXs)#hX (' Xs

FR(gRE) = ) Z IR (94)
I, hX(rXs)=nrK ({1 Xs)

Since h X (r X s) = (hXr)Xs, then (93) and (94) coincide. O

9.2.5 BSG is monoidal

We are finally ready to prove the main result of this text.
Theorem 9.24. The tuple (BSG,X,1:=0:=V}) is a monoidal category.

Proof. From Lemma 9.20 the altered Cartan product X is a bifunctor on BSG. We
now have to show that M1), M2), M3) and M4) of 2.16 are satisfied.
M1) The associator must have components of the form

apnrs: (hXr)Xs—hX(rXs), h,rse Obj(BSG) (95)

From Lemma 9.20 we have (hXr)Xs = hiX(rKs) =: hiXrXs. Set ap s = idpmms for
every h,r,s € Obj(BSG). We must check that a = (aprs)nrscobjBsa) is @ natural
isomorphism. Since its components are clearly isomorphisms (with inverses equal to
themselves), then we just need to show that the naturality square

ARrRs — 2% Ry RS

ah,r,sl lah/_’,r/ys/

/ / /
h&T&SW}h Xr'Xs

commutes for all arrows f: h — b/, g: r — ', k: s = s’. (Notice that we used the
associativity of the altered Cartan product on both objects and arrows to write the
naturality square). Since the components of a are just the identities, it is immediate
that the naturality square commutes, meaning that a is a natural transformation.

M2) We want to define appropriate components for the right and left unitors.
They must be of the form r,: A0 — h, [,: 0K h — h. Lemma 9.22 suggests that
the identity maps can be used as components of the right and left unitors. Define
rp, = idy and I, = idy, for every h € Obj(BSG). Again these are isomorphisms
(trivially). Because of Lemma 9.22, the naturality squares for r and [ are identical,
and are simply:



where f: h — h' is an arrow in BSG. It is again trivial to see that these natural
squares commute, meaning that r and [ are natural transformations, and thus natural
isomorphisms.

M3) Because the associator components and the (left and right) unitor compo-
nents are just identity arrows, the pentagon identity holds trivially. To see this, first
notice that the pentagon identity in this case is given by the diagram

hAXrXsXt
CLV wldt
hiXrXsXt hiXrXsXt
Ap,r st ap rRs,t
hXlrXsXt < : hiXrXsXt
zdh&ar,s,t

which indeed commutes:

(tdpXay 1) © apymst © (apr s Xidy)
= (idp, M idymsme) © idpzrmsme © (idpmrrs M idy)
_ (idy Rid, R id, R idy) o (idy R id, ¥ id, & id,) (96)
o (idy R id, X id, K idy)
= id;, Xid, Xid, X id,

where in the second and third equalities the bifunctoriality of X. On the other hand:

Ahr st © OpRr st = 1ApgrRsst © dpxrRswt
— (idy Rid, R id, R id,) o (idy R id, Rid, Kid)  (97)
=id, Xid, Xid, X id;

This shows that the pentagon identity holds.
M4) The only thing left to show is that the triangle identity holds i.e. that the
diagram

(h® 1)K s e s h X (1Ks)
Thm %h&ls
hX s
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commutes for all 7, s € Obj(BSG). Just notice that

(Zdh X lr) Oap1r = (Zdh X Zdr) @) idhgr

= (idy, K id,) o (id, K id,) (98)
This completes the proof [

10 Conclusion and Outlook

We were able to construct a (finite) category BSG of D-branes of a Grassmannian
model by using the fact that they can be seen as the representations arising from said
model, and taking the arrows to be all the intertwiners between those representations.
We then proved a generalization of the Schur’s Lemma for Virasoro modules, which
revealed the surprising simplicity of the category BSG. Finally, we were able to
construct a tensor product in this category by altering the Cartan product, which
serves as tensor product of other representation categories. Thus we ended up with
a monoidal category BSG.

Further properties of this category could have been explored, if time had allowed,
and are left for possible future work. Some of these seem quite immediate, although
a formal thorough proof would still be necessary. Namely" the category BSG seems
to be braided, semisimple and Ab-enriched. It may also be worth checking if BSG
can be made into a tensor category (and thus in particular also a ribbon, K-linear,
abelian, rigid category). One can even attempt to keep going and try to show that
BSG is a fusion category, or even a pre-modular category. Besides its mathematical
interest, exploring these properties give us a better understanding of the D-branes,
and furthermore can bring us closer to showing the correspondence with a Landau-
Ginzburg model [Cam]. The roadmap one can follow if one decides to go down this
path is in the Appendix 11.5.

Another possible continuation of this work is to extend the treatment to other
Kazama-Suzuki models. In fact, it seems that the strategy we adopted in construct-
ing the category BSG would be effective for other Kazama-Suzuki models, since we
did not use anything specific to the Grassmannian model. Also the formulation of
the altered Cartan product seems to invite generalization to other Kazama Suzuki
models, if only one adjusts the extra term e to each particular case.

30Skip the rest of this paragraph if you are not familiar with the category theoretical concepts
referred to. It would be impractical to include all their definitions here. All of them can be found
in [EGNO].
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It is also worth noting that we only treated B-type boundary conditions, and one
could try to extend this treatment to A-type boundary conditions.

From the geometrical point of view, there are a few interesting natural questions
which I was not able to answer, to wit:

e What is the geometrical interpretation of the arrows of BSG?

e What is the geometrical interpretation of the altered Cartan product of D-
branes?

Although both questions only make sense if the boundary states of the Grassmannian
model have a geometrical meaning (which in principle needs not be the case), there
seem to be some ways to attribute geometrical meaning [Sta] to boundary states of
Kazama-Suzuki model. This is still an unexplored topic for me, so again I simply
leave these questions for future work.

Finally, one can use the results of this thesis as a starting point to an eventual
proof of the CFT/LG correspondence in the case of the Grassmannian models, as
mentioned in the introduction. This correspondence — illustrated e.g. in [BI] —
can be used by string theorists to obtain information about a CFT (in our case a
Grassmannian model) by studying the corresponding Landau-Ginzburg model.

11 Appendix

11.1 A foundational remark

A set can be defined [Hal3] as a mathematical object which satisfies a list of
axioms called the ZFC axioms, so a generalization of set can be done accordingly.
Let’s see how without going into the details.

A class is defined by the axioms it satisfies, which are a modification of the ZFC
axioms and mimic these when possible, so that one can often deal with classes as if
they were sets. In particular it still makes sense to form products, intersections and
unions of classes. A set can then be seen as a class that is an element of some other
class. A proper class is a class that does not belong to any other class.

One of the neat things about classes is that we do not get a paradox by considering
the class of all sets. This class must clearly be proper though, otherwise we would
get Russel’s paradox again.

Now, the origin of Russel’s paradox is the ZFC axiom of specification, which
allows us to define a set as a subset of a pre-existing set by specifying a property that
all the elements of the new set must have. One of the axioms in the definition of class
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(which generalizes the axiom of specification from set theory) says that statements
defining a class by some common property of its elements are not allowed to have
quantifiers running over proper classes, only over sets. In particular, we cannot define
the class of all classes, and this implies that we do not run into Russel’s paradox for
classes.

We see that we can take the category of all sets, whose objects form a proper
class Obj(Set).

Taking this one step further, notice that we still can not define a category of
all categories: we can not speak of the class of all categories, since some of these
categories will be proper classes. The notion of a conglomerate comes to the rescue:
it is a generalization of class, just like class is a generalization of set.

We can keep going and generalize conglomerates, and then generalize that, and so
on. In this text we do not deal with the category of categories or any other category
whose objects do not form a class, so our definitions will use classes (as opposed to
conglomerates or other more general concepts).

The above is of course a very incomplete version of the story, but it is already
more than what I found in most introductory category theory textbooks. To know
more, see for example [AHS].

11.2 Modules and representations

Let’s start by quickly reviewing basic definitions which should have been encoun-
tered by physics Master’s students. More can be found in [Hum?2, '52].

A linear map ¢: g; — g, between Lie algebras is a Lie algebra homomorphism if
O([z,y]) = [o(x), ¢(y)].

A representation of a Lie algebra g over K is a pair (7, V'), where 7: g — End(V)
is a Lie algebra homomorphism and V' is a vector space over K. It is common practice
to call 7 itself the representation. An important example is the adjoint representation
ad: g — End(g), given by ad(x)(y) = [z,y]. The vector space V is also called
representation in many texts, although a better name for it is representation space.

Let m: g — End(Vj) and my: g — End(V3) be two representations. A linear
map ¢: Vi — Vi between Lie algebras is an intertwiner (or homomorphism of rep-
resentations) between 7 and my if ¢(¢1(x)(v1)) = Po(z)(P(v1)) for all x € g and
V1 € ‘/1

Consider two representations m: g — End(V}) and mp: g — End(1%) of a Lie
algebra g. Their direct sum is the representation m @ m: g — End(V; @ V%)
given by ((m @ ma)(x)) (v1 @ v2) = mi(x)(v1) @ ma(x)(v2). Their tensor product is
the representation m ® mo: g — End(V] x V3) given by ((m ® m)(x))(v; ® vg) =
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Wl(ff)(U1> QU2+ V1 ® WQ(ZE)(UQ).

There is another way to look at representations, which is common to find in the
mathematical literature and is often more natural and useful. We look briefly at it
now, following [Hum?2, EW].

Let g be a Lie algebra. A vector space V' together with a bilinear map -: g xV —
V is a g-module if [z,y] - v=2-(y-v) —y-(x-v) for all z,y € g and v € V. The
map - is called the (left) action of g on V. A submodule of a g-module V is a vector
subspace W of V' which is invariant under the action of g.

An important construction is the quotient module. Let V' be a g-module and W
be a submodule of V. There is an action of g on the quotient vector space V/W
given by

z-(v+W)=(x-v)+W, Vereg VeV

making V/W a g-module called a quotient module.

It is easy to see the connection between g-modules and representations of g: if
m: m — End(V) is a representation of g, then (x,v) — z - v := 7(x)(v) is defines an
action on V', i.e. V is a g-module. Conversely, if V' is a g-module with an action -,
then we can define a representation 7 of g by setting 7(z)(v) = x - v.

Hence we can speak of representations and modules of a Lie algebra interchange-
ably, and one can think of a g-module simply as the representation space of a repre-
sentation of g.

All concepts defined for representations of g carry over to the g-modules. In par-
ticular, homomorphisms of g-modules can be seen as intertwiners of representations
of g, and one can take direct sums and tensor products of g-modules, which can also
be interpreted as direct sums and tensor products of representations of g.

11.3 Spacetime supersymmetry

Recall from Quantum Field Theory that the Lorentz algebra is generated by the
operators M* [Sre] (the angular momentum operator J is given by J; = L€, M7*
and the boost operator K by K; = M,y). The Poincaré algebra adds translations
to the mix through the momentum operator P*, and has the commutation relations
[BLOT]:
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[PWP,,]:O
1
)

1
i (M, Mpo] = upMos — Nuo Myp — NupMpuo + Nve My,

(M, Byl = 1up Py — 0 P (100)

It is natural to ask what are the most general possible spacetime symmetries of
a quantum field theory: maybe Nature realizes these symmetries.

The so called Coleman-Mandula theorem [C')M] states that in a generic quantum
field theory the most general spacetime continuous symmetry of the S-matrix is
the Poincaré algebra — assuming the S-matrix is non-trivial, i.e. the theory has
interactions. However, Haag, Lopuszanski and Sohnius [°H] proved that it is possible
to extend it to a super Lie algebra®'in a non-trivial way (see [Ber] for a discussion
on this).

The simplest such extension is the N' = 1 super-Poincaré algebra which extends
(100) by [FVP]:

(@0 @} = =5 ()l P (101)
[Myuy, Qo] = —% (V)2 Qs (102)
[Pm Qal =0 (103)

In a A = 1 supersymmetric theory the supersymmetry generator spinor compo-
nents (), do not commute with J3, and thus change the spin of the states they act
on. It turns out that Q takes bosons of spin j to fermions with spin j — % [Ait]. Such
pairs of bosons and fermions are said to be superpartners.

11.4 The N = 1 superconformal subalgebra of an N = 2 su-
perconformal algebra

Claim 11.1. Every N = 2 superconformal algebra A with generators {L,,,GF, J,}

has an N = 1 subalgebra generated by {L,,G, = Gi;f;} with the same central
charge as A. We say that this is the standard N = 1 subalgebra of A.

31Roughly speaking, a super Lie algebra is a vector space V which decomposes into two subspaces
Vo and V; whose elements are said to be even and odd respectively, together with an operation [-, -]
respecting a modified version of the Lie bracket axioms, in such a way that even elements commute
while odd elements anti-commute. The details of this construction will not matter for us. See [Ali]
for more.
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Proof. We just have to show that (43) holds. We have:

GH+G. Gf+G;

GnGl={=7"—5"}
=S (GG} +{G G
= % <2Lr+s + (T - S)Jr+s + g(?“2 - i)ér-&-s,o) (104)

1 c 1
+§ <2Ls+r + (S - T)Js—l—r + 3(82 - 1)55—&-7“,0)

1
=207 + %5r,—s(7’2 + 5% — 5)

— oL 4 %&,_5(4702 —1)

Furthermore:
(sG] = 3L, GF + G5
=5 (5 =G + (5 =G, (105)
= (5 ~ )G
This proves the claim. ]
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11.5 Categorical Roadmap

C
y wﬂfts areabelian groups
Monoidal ADb — enriched
+braiding . . +3 zero object
l—&-all objects have left and right duals lJra all finite biproducts
Braided Rigid Additive

+Every arrow has kernel
and cokernel
+Monos are kernels
and epis are cokernels 4 Hom-sets are
vector spaces

+twist compatible
with duality

Ribbon Abelian
+® is bilinear
on morphisms .
K — linear
+Locally finite
+indecomposable ~
+End(1)=K Multitensor
+finite
+semisimple

> Fusion

/

Pre — modular

>+S—matrix is non—degenerate

Modular

76



Acknowledgements

I would first like to express my gratitude to my supervisors Ana Ros Camacho
and Stefan Vandoren, who gave me the opportunity to work in a topic standing in
the intersection between theoretical physics and pure mathematics, as I desired.

I also want to thank my colleagues Marc Barroso, Paris Tzitzimpasis, Riges Aliaj,
Yannik Zimmermann and Yuki Hamano for valuable discussions that directly im-
pacted my understanding of the physical aspects of my thesis and/or for helping me
making sure that this thesis is understandable by physics Master students. Further-
more, I am grateful for the colleagues I shared the Master’s room with, and made
the writing of my thesis a pleasant journey.

Finally, I thank my good friends Adam, Esther and Luis Fernando, who helped
me preserve my sanity, and of course my girlfriend Luisa, who is an unstoppable
force and always brightens up my days.

Most of all, I want to thank my parents, without whom this entire adventure
would have been impossible.

7



References

[AHS]

[Ait]

(Al

[Ath]

[Awo]
[BBS]

[BDK]

[Bek]

[Ber]

[BF]

Jiti Adamek, Horst Herrlich, and George E Strecker. Abstract and con-
crete categories. The joy of cats. 2004.

Ian JR Aitchison. Supersymmetry and the MSSM: An Elementary intro-
duction. arXiv preprint hep-ph/0505105, 2005.

Rogers Alice. Supermanifolds: theory and applications. World Scientific,
2007.

Panos Athanasopoulos. Relations in the space of (2, 0) heterotic string
models. 2016.

Steve Awodey. Category theory. Oxford University Press, 2010.

Katrin Becker, Melanie Becker, and John H Schwarz. String theory and
M-theory: A modern introduction. Cambridge University Press, 2006.

GGA Baéuerle and EA De Kerf. Lie algebras, Part 1: Finite and infi-
nite dimensional Lie algebras and applications in physics. North-Holland,
Amsterdam, 1990.

Xavier Bekaert. Universal enveloping algebras and some applications in
physics. Technical report, 2005.

Matteo Bertolini. Lectures on supersymmetry. Lecture notes given at

SISSA, 2015.

Nicolas Behr and Stefan Fredenhagen. D-branes and matrix factorisa-
tions in supersymmetric coset models. Journal of High Energy Physics,
2010(11):136, 2010.

Nikolai Nikolaevich Bogolubov, Anatoly A Logunov, AI Oksak, and
[ Todorov. General principles of quantum field theory, volume 10. Springer
Science & Business Media, 2012.

Ralph Blumenhagen, Dieter Liist, and Stefan Theisen. Basic concepts of
string theory. Springer Science & Business Media, 2012.

Ralph Blumenhagen and Erik Plauschinn. Introduction to conformal field
theory: with applications to string theory, volume 779. Springer Science
& Business Media, 2009.

78



[CM]

[Coo]

[DJ]

[DKBTK]

[DVPYZ]

[E7]

[EGNO]

Alexander Belavin and Lev Spodyneiko. N= 2 superconformal algebra
in NSR string and Gepner approach to space-time supersymmetry in ten
dimensions. arXiw preprint arXiw:1507.01911, 2015.

Ana Ros Camacho. Matrix factorizations and the Landau-
Ginzburg/conformal field theory correspondence. arXiv preprint
arXiv:1507.06494, 2015.

John L Cardy. Boundary conditions, fusion rules and the Verlinde for-
mula. Nuclear Physics B, 324(3):581-596, 1989.

Roger Carter and Roger William Carter. Lie algebras of finite and affine
type, volume 96. Cambridge University Press, 2005.

Sidney Coleman and Jeffrey Mandula. All possible symmetries of the S
matrix. Physical Review, 159(5):1251, 1967.

Paul P Cook. Connections between Kac-Moody algebras and M-theory.
arXiwv preprint arXw:0711.3498, 2007.

David C Dunbar and Keith G Joshi. Characters for coset conformal field
theories and maverick examples. International Journal of Modern Physics
A, 8(23):4103-4121, 1993.

Eddy A De Kerf, Gerard GA Bauerle, and APE Ten Kroode. Lie algebras,
Part 2: Finite and infinite dimensional Lie algebras and applications in
physics. Elsevier, 1997.

P Di Vecchia, JL Petersen, M Yu, and HB Zheng. Explicit construction
of unitary representations of the N= 2 superconformal algebra. Physics
Letters B, 174(3):280-284, 1986.

Michael Eastwood et al. The cartan product. Bulletin of the Belgian
Mathematical Society-Simon Stevin, 11(5):641-651, 2005.

Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. Ten-
sor categories, volume 205. American Mathematical Soc., 2016.

Karin Erdmann and Mark J Wildon. [Introduction to Lie algebras.
Springer Science & Business Media, 2006.

William Fulton and Joe Harris. Representation theory: a first course,
volume 129. Springer Science & Business Media, 2013.

79



[FMS]

[FQS]

[FS1]

[FS2]

[Fucl]

[Fuc?]

[FVP]

[Gab]

[Gepl]

[Gep2)]

Philippe Francesco, Pierre Mathieu, and David Sénéchal. Conformal field
theory. Springer Science & Business Media, 2012.

Daniel Friedan, Zong-an Qiu, and Stephen H Shenker. Conformal invari-
ance, unitarity and two-dimensional critical exponents. Phys. Rev. Lett.,
52(EFI1-83-66-CHICAGO):1575-1578, 1983.

Stefan Fredenhagen and Volker Schomerus. D-branes in coset models.
Journal of High Energy Physics, 2002(02):005, 2002.

Jirgen Fuchs and Christoph Schweigert. Symmetries, Lie algebras and
representations: A graduate course for physicists. Cambridge University
Press, 2003.

Jiirgen Fuchs. Affine Lie algebras and quantum groups: An Introduction,
with applications in conformal field theory. Cambridge university press,
1995.

Jiirgen Fuchs. Lectures on conformal field theory and Kac-Moody alge-
bras. In Conformal Field Theories and Integrable Models, pages 1-54.
Springer, 1997.

Daniel Z Freedman and Antoine Van Proeyen. Supergravity. Cambridge
university press, 2012.

Matthias R Gaberdiel. Boundary conformal field theory and D-branes.
Lectures given at the TMR network school on Nonperturbative methods in
low dimensional integrable models, Budapest, pages 1521, 2003.

Doron Gepner. Lectures on N= 2 string theory. PUPT-1121 Lectures at
Spring School on Superstrings, Trieste, Italy, 1989.

Doron Gepner. Space-time supersymmetry in compactified string theory
and superconformal models. In Current Physics—Sources and Comments,
volume 4, pages 381-402. Elsevier, 1989.

P. Goddard, A. Kent, and D. Olive. Unitary representations of the Vi-
rasoro and super-Virasoro algebras. Communications In Mathematical
Physics, 103(1):105-119, 1986.

Peter Goddard and David Olive. Kac-Moody and Virasoro algebras in
relation to quantum physics. International Journal of Modern Physics A,
1(02):303-414, 1986.

80



[Gre]

[GSW1]

[GSW2

[Hall]

[Hal2]

[Hal3]
[Her]

[Hum1]

[Hum?2]

[Ish1]

[Ish2]

[Kac]

[Koc]

Brian Greene. String theory on Calabi-Yau manifolds. arXiv preprint

hep-th/9702155, 1997.

Michael B Green, John H Schwarz, and Edward Witten. Superstring
theory: volume 1, Introduction. Cambridge university press, 2012.

Michael B Green, John H Schwarz, and Edward Witten. Superstring
theory: volume 2, Loop amplitudes, anomalies and phenomenology. Cam-
bridge university press, 2012.

Brian Hall. Lie groups, Lie algebras, and representations: an elementary
introduction, volume 222. Springer, 2015.

Frederick Michael Hall. An introduction to abstract algebra. CUP Archive,
1966.

Paul R Halmos. Naive set theory. Courier Dover Publications, 2017.
David Hernandez. An introduction to affine Kac-Moody algebras. 2006.

James E Humphreys. Representations of Semisimple Lie Algebras in the
BGG Category O, volume 94. American Mathematical Soc., 2008.

James E Humphreys. Introduction to Lie algebras and representation
theory, volume 9. Springer Science & Business Media, 2012.

Nobuyuki Ishibashi. The boundary and crosscap states in conformal field
theories. Modern Physics Letters A, 4(03):251-264, 1989.

Hiroshi Ishikawa. Boundary states in coset conformal field theories. Nu-
clear physics B, 629(1-3):209-232, 2002.

Luis E Ibanez and Angel M Uranga. String theory and particle physics:
An introduction to string phenomenology. Cambridge University Press,
2012.

Victor G. Kac. Infinite-Dimensional Lie Algebras. Cambridge University
Press, 3 edition, 1990.

Joachim Kock. Frobenius algebras and 2-d topological quantum field the-
ories, volume 59. Cambridge University Press, 2004.

81



[KRR]

[KS1]

[KS2]

[KT]

[Lei]

[Lor]

[LW]

[ML]

[MPP]

[Noz]

Victor G Kac, Ashok K Raina, and Natasha Rozhkovskaya. Bombay
lectures on highest weight representations of infinite dimensional Lie al-
gebras, volume 29. World scientific, 2013.

Yoichi Kazama and Hisao Suzuki. Characterization of N=2 supercon-
formal models generated by the coset space method. Physics Letters B,
216(1-2):112-116, 1989.

Yoichi Kazama and Hisao Suzuki. New N=2 superconformal field theories
and superstring compactification. Nuclear Physics, Section B, 321(1):232—
268, 1989.

Victor G Kac and Ivan T Todorov. Superconformal current algebras and
their unitary representations. Communications in Mathematical Physics,

102(2):337-347, 1985.

Tom Leinster. Basic category theory, volume 143. Cambridge University
Press, 2014.

Nick Lord. Lie groups and Lie algebras (chapters 1-3), by N. Bourbaki.
Pp 450. DM 98. 1989. ISBN 3-540-50218-1 (Springer). The Mathematical
Gazette, 74(468):199-201, 1990.

Wolfgang Lerche and Johannes Walcher. Boundary rings and N= 2 coset
models. Nuclear Physics B, 625(1-2):97-127, 2002.

Saunders Mac Lane. Categories for the working mathematician, volume 5.
Springer Science & Business Media, 2013.

Robert V. Moody, Arturo Pianzola, and Arturo Pianzola. Lie algebras
with triangular decompositions. Wiley New York, 1995.

Masatoshi Nozaki. Comments on D-branes in Kazama-Suzuki models and
Landau-Ginzburg theories. Journal of High Energy Physics, 2002(03):027,
2002.

Oskar Pelc and LP Horwitz. Generalization of the Coleman—Mandula the-
orem to higher dimension. Journal of Mathematical Physics, 38(1):139—
172, 1997.

Joseph Polchinski. String theory: Volume 2, superstring theory and be-
yond. Cambridge university press, 1998.

82



[Sen]

[Sim]

[Sre]
[Sta]

[Ton]

[Wei]

[Zub]

[Zwi]

Prasad Senesi. Finite-dimensional representation theory of loop algebras:
a survey. Quantum affine algebras, extended affine Lie algebras, and their
applications, 506:263-283, 2010.

Harold Simmons. An introduction to category theory. Cambridge Univer-
sity Press, 2011.

Mark Srednicki. Quantum field theory. Cambridge University Press, 2007.

Sonia Stanciu. D-branes in Kazama-Suzuki models. Nuclear Physics B,
526(1-3):295-310, 1998.

David Tong. Lectures on string theory. arXiv preprint arXiv:0908.0333,
20009.

Loring W Tu. An Introduction to Manifolds. Springer, 2011.

Vladimir G Turaev and Alexis Virelizier. Monoidal categories and topo-
logical field theory, volume 322. Springer, 2017.

Timo Weigand. Introduction to string theory. Skrip Wintersemester, 12,
2011.

Jean-Bernard Zuber. CFT, BCFT, ADE and all that. arXiv preprint
hep-th/0006151, 2000.

Barton Zwiebach. A first course in string theory. Cambridge university
press, 2004.

83



	Introduction
	Category Theory
	Categories, functors and natural transformations
	Subcategories
	Some important Categories
	Products
	Monoidal Categories

	Semisimple Lie algebras
	Cartan subalgebra
	Roots and the Cartan-Weyl basis
	The Cartan matrix
	Highest weight representations

	Kac-Moody Algebras
	Untwisted affine Kac Moody algebras and loop algebras
	Loop algebras
	Central extensions 
	The universal central extension of a loop algebra
	The explicit realization of an untwisted affine Kac-Moody algebra

	Unitary irreducible representations of Affine Kac-Moody algebras

	Highest weight irreducible representations of the Virasoro algebra
	Highest weight representations of the Virasoro algebra
	Virasoro Verma modules
	The GKO (or coset) construction
	The conformal weights in a coset model

	Conformal and superconformal field theory in two dimensions
	Conformal field theory in two dimensions
	N=1 superconformal transformations in two dimensions
	N=2 superconformal transformations in two dimensions

	Superstrings and Kazama Suzuki models
	The RNS superstring
	Why do we care about representations of the N=2 superconformal algebra?
	Minimal models
	Kazama-Suzuki models
	Primary states in KS models

	D-branes in a general RCFT
	Boundary conditions in terms of the bosonic currents in the free boson CFT
	The open-closed string duality and Boundary states
	Gluing conditions in the free boson CFT
	Boundary conditions and boundary states in a general RCFT
	Gluing conditions for the N=2 superconformal algebra
	Ishibashi states and the Cardy condition

	Categorical structures in boundary states 
	The category BSG
	BSG is a monoidal category
	The altered Cartan product of objects
	The altered Cartan product of arrows
	The identity object
	Properties of the altered Cartan product
	BSG is monoidal


	Conclusion and Outlook
	Appendix
	A foundational remark
	Modules and representations
	Spacetime supersymmetry
	The N=1 superconformal subalgebra of an N=2 superconformal algebra
	Categorical Roadmap

	Acknowledgements

