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Abstract

Computer simulations are used to generate realistic sample configurations of crystalline and
polycrystalline graphene. This is done using an empirical potential, and structural evolution via
bond transposition moves. In particular, the project focuses on efficient simulation techniques,
such as the FIRE algorithm for energy minimization, parallelization, and further algorithmic
improvements. With these improvements we studied the discontinuous evolution of the structure
of stretching polycrystalline graphene: occasionally a small increase in stretching force induces
an avalanche-like displacement. We experimented with techniques to study this behavior which
could enable new ways of studying polycrystalline quasi-two-dimensional materials.
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Introduction

Carbon is found in all known life forms and is all around us, from pencils to petroleum and plastics
to steel. The versatility of carbon makes it a promising ingredient in nanomaterials. One of these
nanomaterials is graphene, a single layer of carbon atoms arranged in a honeycomb lattice, see Figure
1.1, which has drawn a lot of attention with its extraordinary properties and proposed applications.

Graphene has many useful mechanical properties, from high friction resistance to extreme flexi-
bility [2] and is said to be the strongest material in the world [3]. It is however most renowned for its
electrical properties. Electrons in graphene exhibit linear dispersion relations allowing them to move
through the material as if they are massless [4]. This ease of motion makes graphene and excellent
electrical and thermal conductor, exhibiting ballistic transportation even at room temperature [5, 6].
Bilayered graphene has even been reported to be superconducting when the layers are twisted relative
to each other by a small angle [7]. Its excellent thermal conductivity [8] and mechanical properties
make it very friction resistant and an ideal material for high-pressure contacts.[9].

Extraordinary properties as described above are not exclusively for monocrystalline graphene.
Topological defects ripple and buckle the graphene out-of-plane [10, 11], see Figure 1.1, changing
its mechanical and electrical properties [12]. Controlled addition of defects or impurities can turn
graphene into a semiconductor despite its excellent conductivity [13, 14]. The need for research into
polycrystalline graphene is twofold: to explore the landscape of properties and applications, and to
improve techniques for synthesizing graphene. Techniques for producing graphene are still developing
and large samples are still polycrystalline [15]. Checking the quality of a graphene sample can be
tedious as most experimental techniques detect lattice defects directly, such as scanning tunneling
microscopy (STM) [16, 17], transmission electron microscopy (TEM) [18, 19] and atomic force mi-
croscopy (AFM) [20, 21]. Some indirect methods of detection are inelastic tunneling spectroscopy
(IETS) [22, 23], neutron scattering[24], X-ray absorption spectroscopy [25, 26] and Raman spec-
troscopy [27, 28]. These indirect methods measure the phonon spectrum or vibrational density of
states (VDOS) [29, 30]. By theoretically studying vibrations in graphene we hope to further improve
the capability of these indirect techniques. In particular we will further investigate the vibrations
that accompany the crackling of polycrystalline graphene while it is being stretched and relaxed [31].

Computer simulations are used to generate realistic sample configurations of crystalline and poly-
crystalline graphene and to simulate vibrations and calculate the vibrational density of states. The
graphene sheet is modeled by a continuous random network (CRN) [32] on which Wooten, Winer and
Weaire bond transpositions [33] are performed. The energy and molecular dynamics (MD) [34, 35]
are calculated using the empirical potential obtained by Jain et al. [36], based on the Kirkwood and
Keating potentials [37, 38]. The graphene sample is then minimized with the very effective FIRE al-
gorithm [39]. Relaxed and minimized configurations are investigated by calculating their vibrational
density of states and other properties.

Efficient simulation techniques and algorithmic improvements are investigated to which could lead
to new methods of studying polycrystalline quasi-two-dimensional materials. An significant speedup
is achieved by implementing improved data structures and program optimization techniques like par-
allelism using OpenMP [40, 41].
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Chapter 1

Graphene

Graphene is a single layer of carbon atoms arranged in an hexagonal lattice, see Figure 1.1(a). It was
first isolated in 2004 by Novoselov et al. [42] and the first two-dimensional crystal observed in nature
[43]. The carbon atoms are connected by covalent sp2 bonds, a hybridization of 2s and 2p orbitals.
Each atom has three sp2 orbitals and the corresponding bonds repel each other, leading to angles of
2π/3 between them. The resulting hexagonal monocrystalline graphene has many useful properties
such as excellent electrical and thermal conductivity [4, 5, 6]. Bilayered monocrystalline graphene
has even been reported to be superconducting when the layers are twisted relative to each other by a
small angle [7].

Techniques for synthesizing graphene are still developing and most larger samples are polycrys-
talline [15] i.e. contain topological defects and grains of different sizes. Topological defects lead to
ripples which buckle graphene out-of-plane [10, 11], see Figure 1.1, changing its mechanical and elec-
trical properties [12]. Controlled addition of defects and impurities can lead to new useful properties
and applications. For instance graphene semiconductors, which are smaller and more heat resistant
[13, 14]. To fully explore the possibilities, a theoretical framework is needed. However, most methods
in theoretical solid-state physics rely on the crystalline periodicity to simplify the math and obtain
any results, which is missing in polycrystalline materials. Lacking this periodicity and the associated
methods we turn to computer models to simulate and calculate properties.

(a) (b)

Figure 1.1: (a) A sample of pristine graphene. (b) A graphene sample with four point defects (red).
The defects buckle the graphene out-of-plane.

3



1.1 Generation of polycrystalline graphene configurations

A good theoretical representation of polycrystalline graphene is a continuous random network (CRN)
[32], first introduced by Zachariasen [44]. A graphene configuration of N atoms is represented by
a graph G = (V, E) of N vertices V and 3N/2 edges E where each vertex has three edges. A very
powerful operation that obeys this requirement is the bond transposition proposed by Wooten, Winer
and Weaire [33], see Figure 1.2. These transpositions can introduce and remove point defects in
graphene, but also move defects and grain boundaries around. Such a small yet powerful operation
is ideal for Monte-Carlo methods and allows for a more physically realistic exploration of graphene
configurations, see section 2.2.

(a) (b) (c)

Figure 1.2: A Wooten-Winer-Weaire bond transposition forming a Stone-Wales defect. (a) Pristine
graphene with consecutive bonds selected for transposition. (b) Selected bonds are rearranged ac-
cording to the bond transposition. (c) After relaxation, the configuration contain a Stone-Wales
defect.

Polycrystalline configurations can be generated by performing bond transposition on a pristine graphene
configuration, see Figure 1.1. Performing random bond transpositions on a pristine hexagonal lattice
however, does not necessarily generate a physically realistic configuration. For instance, grains do
not form very naturally when starting from a pristine monocrystalline lattice. To generate unbiased
random configurations that adhere to statistical physics, random two-dimensional periodic Voronoi
diagrams [45] are generated using random seeds. Which are then structurally relaxed and subjected
to random bond transpositions with a Boltzmann distributed Metropolis criterion 2.2 until thermal
equilibrium is reached, see Figure 1.3.

(a) (b) (c)

Figure 1.3: A polycrystalline grahpene configuration generated from a random Vonoroi diagram
subjected to random WWW bond transpositions. (a) A random two-dimensional periodic Voronoi
diagram with N = 500 vertices. (b) Configuration after structural relaxation of the Voronoi diagram
by the FIRE algorithm, see section 2.1. (c) The configuration near thermal equilibrium at T = 300
K.
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The internal energy of a configuration is calculated using an empirical potential (1.1) obtained by
Jain et al. [36]. This potential is based on the Kirkwood and Keating potentials [37, 38] with an
additional out-of-plane term to model three-dimensional deformations.
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Where rij is the length of the bond from atom i to atom j in Ångström, θi,jk the angle between the
bonds connecting atom i to neighboring atoms j and k in radians (rad) and ri,jkl the distance from
atom i to the plane spanned through the positions of its neighboring atoms j, k and l in Å. Parameters

d = 1.420 Å

α = 26.060 eV/Å
2

β = 5.511 eV/Å
2

γ = 0.517 eV/Å
2

(1.2)

were empirically obtained by Jain et al. [36] using DFT with techniques from the Vienna ab initio
Simulation Package (VASP) [46, 47] and a Van der Waals functional [48] for solids formulated by
Dion et al. [49]. Properly fitting a classical potential to quantum mechanical calculations reduces
computational costs and simplifies the mathematics while maintaining good accuracy. This particular
potential has already been used in several papers [31, 50, 51, 52] and compared to other potentials
[53, 54, 55].
The internal energy (1.1) has three distinct types of energy contributions
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also known as two-, three- and four-body interactions respectively. The bond energy represents the
covalent sp2 bonds deviating from their ideal length of 1.42 Å, much like a spring. The angle energy
represents the bonds repelling each other, leading to ideal angles of 2π/3 between them. Notice that
pulling an atom out of the plane with respect to its neighbors, makes the sum of the three angles
smaller, but this effect is not enough to account for the energy levels observed in the DFT computations
[36]. The plane energy represents the observed additional energy in out-of-plane deformations. To
get an idea how these different energy contributions are distributed throughout the configuration, we
assign each atom local energies
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(1.4)

where i, j, k are the neighbors of atom i. The positions of the carbon atoms in our model are restricted
to 0 ≤ x < Lx, 0 ≤ y < Ly. As such, the atoms find themselves in a box with infinite height with
periodic boundary conditions in both the x and y direction. The graphene configuration will be
placed such that it connects with itself at the box’s periodic boundaries. To stretch the graphene an
additional strain energy term is added

U =
3
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where the strain parameter ε (eV/Å
2
) allows a stretching force to be applied. Note the atoms only

interact with this strain energy indirectly, distributing the strain forces among the bonds.
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1.2 Dynamic evolution

Dynamics lay at the heart of any physical theory. The ability to predict how a system evolves and
behaves is what defines our physical understanding. To turn the graphene model described in the
previous section into a physical model, requires forces to dictate the motion of the atoms. Since the
energy potential (1.5) is a classical approximation, we turn to classical mechanics and the relation
F = −∇U to derive these forces.

Introduce vector rij pointing from atom i to atom j, and vector ni normal to the plane through
the neighbors of atom i, then with some geometry we have the following expressions

r2
ij = ‖rij‖2 = rij · rij ‖rij‖ =

√
rij · rij ni = (rik − rij)× (ril − rij)

θi,jk = arccos

(
rij · rik
‖rij‖ ‖rik‖

)
r2
i,jkl =

(rij · ni)2

‖ni‖2
=

(rij · ni)2

ni · ni
.

(1.6)

These expressions make the derivation of local forces easier, see Appendix A. The bond energy leads
to forces parallel to the bond

Fbond
i =

3α

4 d2
(rij · rij − d2)rij

Fbond
j =− 3α

4 d2
(rij · rij − d2)rij

(1.7)

visualized in Figure 1.4.

Figure 1.4: Visualization of forces due to two-body interactions between atoms i and j. Derived from
the gradient of the bond energy (1.4).

The angle energy, representing bond repulsion, leads to forces in the plane spanned by the two bonds
involved

Fangle
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] (1.8)

as shown in Figure 1.5.
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Figure 1.5: Visualization of forces due to three-body interactions between atoms i, j and k. Derived
from the gradient of the angle energy (1.4).

The out-of-plane potential pushes the central atom straight down, normal to the plane through its
neighbors, leading to forces

Fplane
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ni

Fplane
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(
rij · ni
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)2

(rij − rik)× ni.

(1.9)

and its neighbors in the opposite direction, as shown in Figure 1.6. See Appendix A for full derivation.

Figure 1.6: Visualization of forces due to four-body interactions involving atom i and its neighbors j,
k and l. Derived from the gradient of the out-of-plane energy (1.4).

To stretch or relax the graphene configuration, the box’s periodic faces are also allowed to move.
Each is given the same mass as a single carbon atom and the forces acting on them arise from all the
bonds crossing the periodic boundaries and the strain energy −εLxLy in (1.5). Note that moving the

box’s faces does not move the atoms, only their relative positions change. The forces Fbond
i , Fangle

i

and Fplane
i derived above will change, but do not pull on the box. Only forces acting on neighbors

are contributing. If rij crosses the periodic boundary, then Fbond
j , Fangle

j and Fplane
j act on that face,

because from atom i’s point of view it is atom j that moves when the face changes position. The total
forces on the box’s faces are

F box
x =

∑
〈i,j〉

cij,x
(
Fbond
j + Fangle

j + Fplane
j

)
· x̂ + εLy

F box
y =

∑
〈i,j〉

cij,y
(
Fbond
j + Fangle

j + Fplane
j

)
· ŷ + εLx

(1.10)
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where

cij,x =


1 if rij crosses x-periodic boundary in the positive direction

−1 if rij crosses x-periodic boundary in the negative direction

0 otherwise

cij,y =


1 if rij crosses y-periodic boundary in the positive direction

−1 if rij crosses y-periodic boundary in the negative direction

0 otherwise.

(1.11)

With all the forces formulated, Newton’s equations of motion can be employed to evolve the graphene
configuration. A graphene configuration of N atoms can be represented by a weighted undirected
graph G = (V, E) of N vertices V and 3N/2 edges E where each vertex has three edges. Vertices
represent carbon atoms with a position, velocity and force acting on it. The weights of the edges
represent bond lengths. Let us define the following global vectors

R =
(
r1,x , r1,y , r1,z , r2,x , r2,y , r2,z , ... , rN,y , rN,z , Lx , Ly

)
V =

(
v1,x , v1,y , v1,z , v2,x , v2,y , v2,z , ... , vN,y , vN,z , Vx , Vy

)
F =

(
F1,x , F1,y , F1,z , F2,x , F2,y , F2,z , ... , FN,y , FN,z , F

box
x , F box

y

) (1.12)

then for each graphene configuration G, these three global vectors represent a physical state. All
bodies in our model have the same mass and the equations of motion is therefore the same for every
object. The whole system can thus be evolved dynamically by the following differential equation

F = m
d2

dt2
R (1.13)

where m is the mass of a carbon atom 12.0107 u. There are no exact solutions for many-body systems
like this, but the solution can be approximated by taking small time steps, see Algorithm 1 in section
2.1. Algorithms can now be designed to generate graphene samples and simulate their dynamics.
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Chapter 2

Algorithm Design

Algorithms are recipes of instructions designed to obtain a result. Usually to find or calculate a solu-
tion to some kind of optimization problem or simulate a system for analysis. Algorithms are such an
important part of society that multiple fields of study dedicate special attention to them. Algorithms
in their most fundamental form are studied in mathematics and computer science. Analytic solutions
are rare in physics and almost all physics is build upon perturbation theory, which is the mathematical
study of approximations. There is even a branch of physics called computational physics, dedicated
to numerical calculations and simulations.

In the previous chapter we introduced our computer model for graphene and its dynamics. This
chapter will cover the various algorithms implemented to simulate the molecular dynamics and per-
form structural relaxation. Minimization of the energy will be achieved by the FIRE algorithm [39]
and bond transpositions, see Figure 1.2, will be performed by the WWW algorithm [33]. Algorith-
mic improvements suggested by Barkema et al. [56] are discussed, followed by our own proposed
improvements at the end of this chapter.

2.1 Molecular Dynamics and Structural Relaxation

Simulation of complex systems is often involves approximating the evolution with small consecutive
increments. By taking small steps higher order corrections are relatively small, often simplifying the
calculates. The equation of motion (1.13) derived from the potential (1.5) for instance, is too complex
for polycrystalline configurations to be solved analytically. Taking small time steps ∆t approximates
the continuous change of the physical state

R =
(
r1,x , r1,y , r1,z , r2,x , r2,y , r2,z , ... , rN,y , rN,z , Lx , Ly

)
V =

(
v1,x , v1,y , v1,z , v2,x , v2,y , v2,z , ... , vN,y , vN,z , Vx , Vy

)
F =

(
F1,x , F1,y , F1,z , F2,x , F2,y , F2,z , ... , FN,y , FN,z , F

box
x , F box

y

)
.

With every time step the latest forces are calculated and the positions and velocities updated, leading
to Algorithm 1. Note that this algorithm uses the midpoint method, also known as the modified Euler
method [57]. The calculation of the forces, part (3), is computationally the most expensive part of
the molecular dynamics, using around 95% of the computation time. The molecular dynamics (MD)
is then use in combination with the Fast Inertial Relaxation Engine (FIRE) developed by Bitzek et
al. [39] to minimize the energy and structurally relax the configuration.

The FIRE algorithm, see Algorithm 2, is designed with simplicity in mind. Many minimization
techniques are plagued by either getting stuck in local minima or overshooting the desired minimum.
Attempts to remedy this situation often lead to complicated measures and checks. The FIRE algo-
rithm uses a more physical approach. To void getting stuck in local minima FIRE uses the inertia
already present in the molecular dynamics. Atoms moving down the potential can overcome small
energy increases using their momentum. To avoid overshooting the minimum of the configuration as
a whole, the algorithm stops all motion whenever the potential energy increases (V · F > 0). Addi-
tionally the algorithm also mixes the velocities with the forces to steer the dynamics slightly more in
the right direction, see part (5) of Algorithm 2.
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Algorithm 1: Molecular Dynamics

input : starting positions Rinit and velocities Vinit of graphene configuration G at t = tinit

output : final positions Rfinal and velocities Vfinal of graphene configuration G at t = tfinal

(1) R = Rinit; V = Vinit; F = −∇U(Rinit);
t = tinit; ∆t = ∆tinit;

(2) while t < tfinal −∆t do

R = R + ∆tV + ∆t2

2m F;
Fold = F;

(3) F = −∇U(R);
V = V + ∆t

2m (F + Fold);
t = t+ ∆t

(4) Rfinal = R + (tfinal − t)V + 1
2m (tfinal − t)2F;

Fold = F;
F = −∇U(Rfinal);
Vfinal = V + 1

2m (tfinal − t)(F + Fold);

Algorithm 2: FIRE [39]

input : starting positions Rinit of graphene configuration G
output : relaxed positions Rrelax of graphene configuration G

(1) R = Rinit; V = 0; F = −∇U(R);
α = αinit; ∆t = ∆tinit; nstep = 0;

(2) while Fmax > Frelax do

R = R + ∆tV + ∆t2

2m F;
Fold = F;

(3) F = −∇U(R);
V = V + ∆t

2m (F + Fold);
nstep = nstep + 1;

(4) if V · F < 0 then
V = 0;
α = αinit; ∆t = fdec ∆t; nstep = 0;

else
(5) V = (1− α)V + α|V| F̂;

if nstep > minstep then
α = fα α;

(6) if finc ∆t > ∆tmax then
∆t = ∆tmax;

else
∆t = finc ∆t;

Rrelax = R;

Parameters ∆tinit = 0.1, fα = 0.99, finc = 1.1, fdec = 0.5 and nstep = 5 are obtained from [39].
As with the Molecular Dynamics algorithm, the computationally most expensive part of FIRE is the
calculation of the forces, part (3) of Algorithm 2. A graphene configuration is considered relaxed
when Fmax ≤ Frelax, where Frelax ∈ {10−5, 10−6, 10−7, 10−8} depending on the required accuracy and

Fmax = max
{
|F1,x| , |F1,y| , |F1,z| , |F2,x| , |F2,y| , |F2,z| , ... , |FN,y| , |FN,z| , |F box

x | , |F box
y |

}
. (2.1)

10



2.2 Wooten-Winer-Weaire Algorithm

The algorithms in the previous section dynamically evolve and relax graphene configurations at fixed
topology. Exploration of polycrystalline configurations requires this topology to evolve as well. These
configurations are modelled by a continuous random network and represented by a graph G with
the explicit requirement that each atom has three covalent bonds at all time. The Wooten-Winer-
Weaire bond transposition [33], see Figure 1.2, obeys this condition. This simple yet powerful bond
transposition is ideal for Monte-Carlo methods. Wooten, Winer and Weaire therefore proposed an
algorithm attempting random WWW bond transpositions with a Boltzmann distributed Metropolis
criterion. The idea is to propose a random WWW bond transposition, calculate how much the
potential energy would be lowered by this transpositions, then accept or reject it with Metropolis
probability

Paccept = min

{
1 , exp

(
Upre − Upost

kBT

)}
(2.2)

where kB is the Boltzmann constant and T the temperature in Kelvin. This Metropolis criterion
accepts any transposition that lowers the potential energy, but also allows for transpositions that
increase the energy. The Boltzmann weight makes the occurrence of these unfavorable transpositions
in accordance with thermal fluctuations and statistical physics. Any transposition forming a triangle
however, is automatically rejected as they are considered unphysical. Let Ti1i2i3i4 denote the bond
transposition that changes the bonds (i1, i2), (i2, i3), (i3, i4) into (i1, i3), (i2, i3), (i2, i4). Then Ti1i3i2i4
is the inverse of Ti1i2i3i4 and the complete WWW algorithm can be formulated by Algorithm 3.

Algorithm 3: WWW [33]

input : initial graphene configuration Gpre and its relaxed positions Rpre

output : permuted graphene configuration Gpost and its relaxed positions Rpost

R = Rpre;
Upre = U(R);
Accepted = False;

(1) while Accepted = False do
NoTriangle = False;

(2) while NoTriangle = False do
NoTriangle = True;
pick a random bond transpositions Ti1i2i3i4 ;
perform Ti1i2i3i4 ;
if Ti1i2i3i4 created a triangle then

perform Ti1i3i2i4 ;
NoTriangle = False;

(3) relax the structure using FIRE (Algorithm 2);
Upost = U(R);

(4) P = min
{

1 , exp
(
Upre−Upost

kBT

)}
;

pick a random number p ∈ [0, 1);
(5) if p < P then

Accepted = True;
else

R = Rpre;
perform Ti1i3i2i4 ;

Rpost = R;

The while-loop, part (2) of Algorithm 3, searches for a transposition that does not introduce a tri-
angle to the configuration. The found transposition is then performed and the new configuration is
relaxed. Its energy is compared to the initial energy by the Metropolis criterion in parts (4) and
(5). The relaxation in part (3) is unsurprisingly the most expensive part of the algorithm. Note that
Algorithm 3 will continue attempting transpositions until it has successfully performed one.
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2.3 Avoiding complete relaxation

The relaxation of the configuration after a transposition is computationally very expensive. Code
optimization and parallelization can improve the situation, but it does not address the wasting of
computational resources. Every rejected transposition is accompanied by a complete relaxation of
the proposed configuration, which is then simply discarded. Worse still is that more and more trans-
position attempts will be rejected as the system gets closer to thermal equilibrium. To remedy this
waste of computational resources, Barkema et al. [56] have proposed an improved FIRE algorithm,
see Algorithm 4, where the relaxation is discontinued if it seems like the relaxation is not going to
result in an accepted transposition. The improved algorithm inverts the Metropolis criterion by first
picking a random number p ∈ [0, 1) and then calculate for which values of Upost the criterion would
accept. The highest energy that results in an accepted transposition is then used as a threshold

Uthres = Upre − kBT ln(p). (2.3)

If during relaxation the potential energy crosses the threshold energy Uthres then the transposition is
going to be accepted. The objective is thus to detect as early as possible when it is not going to cross
the threshold. The earlier this can be determined, the more resources will be saved. Barkema et al.
proposed estimating the final potential energy by

Upost ≈ Uapprox = U(R)− cf |F|2 (2.4)

where cf is a fitted parameter. This estimation is however only valid when the configuration is already
close enough to its minimum. What constitutes ’close enough’ is hard to determine. Let Fclose be
the positive value such that when |F|2 < Fclose the approximation (2.5) is accurate. If Fclose is small,
then it will barely save any resources. When Fclose in Algorithm 4 is too large, the approximation
will no longer be valid which can lead to false negatives, introducing a bias to the decision making.
A bias can significantly speedup the algorithm, but it destroys the Boltzmann statistics of the bond
transpositions, rendering our algorithm unphysical.

Algorithm 4 does indeed speedup significantly by approximation 2.5, but further investigation
also shows it becomes quite bias, only accepting transpositions that lowered the energy significantly.
The bias can be countered by lowering Fclose, but this forfeits the speedup which no longer comes
anywhere near the speedup reported [56]. The failure of this method in our model is probably due to its
differences in material. Barkema et al. applied the improved method to sillium, a three-dimensional
amorphous material. This material does not have long-range effects like buckling graphene does,
making the method less suitable for graphene. We propose lowering the approximated energy by a
system-size dependent constant

Uapprox = U(R)− cf |F|2 − δEfN (2.5)

to reduce the frequency of false negatives. This adjustment forces the algorithm to fully relax the
configurations that lower the energy only by a small abound, while still allowing the early rejecting of
obviously unfavorable transpositions. What speedup is achievable with this more cautious estimate
is unfortunately not yet known and values for cf and δEf still have to be fitted. Another proposed
algorithmic improved is to perform only a local relaxation around the attempted bond transposition
[58], and based on the energy reduction decide to reject or continue with full relaxation.

Besides interrupting the relaxation one could also attempt to improve the transposition selection,
part (2) of Algorithm 3. Analyzing the configuration beforehand might suggest which transpositions
have a higher chance of lowering the energy. The introduction of a bias in the transposition proposal
is current being investigated by Federico D’Ambrosio at Utrecht University.
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Algorithm 4: FIRE with threshold [56]

input : starting positions Rinit of graphene configuration G and threshold energy Uthres

output : relaxed positions Rrelax of graphene configuration G and Boolean valued pass

(1) R = Rinit V = 0; F = −∇U(R);
α = αinit; ∆t = ∆tinit; nstep = 0;

(2) while Fmax > Frelax do

R = R + ∆tV + ∆t2

2m F;
Fold = F;

(3) F = −∇U(R);
V = V + ∆t

2m (F + Fold);
nstep = nstep + 1;

(4) if |F|2 < Fclose and Uapprox > Uthres then
break; (discontinue)

(5) if V · F < 0 then
V = 0;
α = αinit; ∆t = fdec ∆t; nstep = 0;

(6) else
V = (1− α)V + α|V| F̂;
if nstep > minstep then

α = fα α;
(7) if finc ∆t > ∆tmax then

∆t = ∆tmax;
else

∆t = finc ∆t;

(8) if U(R) < Uthres then
Rrelax = R;
pass = True;

else
Rrelax = Rinit;
pass = False;
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Chapter 3

Crackling Polycrystalline Graphene

Polycrystalline graphene naturally buckles out-of-plane forming an three-dimensional structure. On
a membrane these deformations are severely limited, but when isolated graphene shows a landscape
of structures and mechanical properties. One of these interesting properties is the discontinuous
transitions in its structure when under continuously increasing or decreasing strain. A very small
change in the stretching force can induce a significant change the preferred structural configuration.
These sudden changes cause displacements which in turn create vibrations through the system, akin
to avalanches. The discontinuous evolution of a polycrystalline graphene configurations recently
published by D’Ambrosio et al. [31], are investigated further.

3.1 Discontinuous evolution indicators

The graphene configuration under investigation featuring both point and line defects is shown in
Figure 3.1. The discontinuous transition in Figure 3.1 is one of the more visually striking, most
transitions are barely noticeable by looking at the configurations directly. Several parameters are
thus introduced to monitor the evolution closely and distinguish the different types of transitions.
In analogy with crumpled a sheet of paper and for simplicity, the discontinuous transitions will be
referred to as crackles from here on.

(a) (b)

Figure 3.1: (a) The polycrystalline configuration from [31] when fully relaxed used for the generation
of all figures in Appendices B and C. It consists of N = 3200 atoms hosting both point and line
defects. (b) The lowest energy configuration just before (blue) and after (red) one of the discontinuous
transitions. The structural difference is clearly visible, some regions moved up while others moved
down. The energies of these configurations are −251.24 eV (blue) and −252.27 eV (red).

A stretching force is applied to the sample in all directions by increasing the strain parameter ε

in the potential (1.5). A strain cycle consists of slowly increasing from ε = 0 eV/Å
2

to ε = 0.1 eV/Å
2
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in steps of δε = 0.0001 eV/Å
2
, fully relax and back to ε = 0.1 eV/Å

2
again. With every step, 3000 in

total, the FIRE algorithm finds the minimum energy configuration. All these configurations can then
be investigated using energy calculations and structural parameters. We can monitor sudden shifts
using the non-affinity parameter [56]

A =
〈(ri − ri,A)2〉

LxLy
(3.1)

where ri,A is the expected position of atom i if the configuration simply scaled with the expansion due
to stretching. Any sudden dislocations will rapidly increase this parameter, as shown in Figure 3.2.
The non-affinity parameter does not detect any sudden changes in area spanned by the sheet, nor does
it indicated what kind of displacement took place. The area parameter L = LxLy and out-of-plane
deviation

σz =
√
〈(zi − z̄)2〉 (3.2)

partially balance these shortcomings. The hysteretic behavior is clearly visible in the distribution of
the spikes. The first round of increasing strain show a distinct pattern compared to the second round
of stretching after full relaxation.

Figure 3.2: Evolution of the non-affinity parameter during a strain cycle at fixed topology. The
stretching force on the sample of N = 3200 atoms, shown in Figure 3.1, is slowly increased and
decreased. Small changes in the stretching force occasionally cause significant displacement. These
displacements cause spikes in the non-affinity parameter differential δA, indicating crackles. The
hysteretic behavior is also cleary visible, as the spikes are very different during the second round of
increasing strain.

Another good indicator crackles is the potential energy (1.5) as shown in Figure 3.3. The size
of the spike is a good indicator how energetic the crackle is. Note that a strong spike in the non-
affinity parameter differential does not guarantee an energetic release of vibrations. The discontinuous
evolution of the other parameters can be found in Appendix B. The various parameters together reveal
substantial variety in crackle profiles: Some crackles show a lot of displacement, but release relatively
little energy (crackle 14), while others do the reverse (crackle 4). Crackles can also convert energy
between the different types (1.3), see for instance crackles 1 and 17 in Appendix B.
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Figure 3.3: Evolution of the potential energy during a strain cycle at fixed topology. The stretching
force on the sample of N = 3200 atoms is slowly increased and decreased. Small changes in the
stretching force occasionally cause significant displacement. These displacements cause vibrations
leading to spikes in the energy differential δU , as additional energy is lost to dissipation. These spikes
can also indicate how energetic the crackle is.

3.2 Vibrational Density of States

The vibrational density of state is the spectrum of vibrations or phonons of a material, indicating how
many excitation have roughly the same frequency. Experimental techniques like inelastic tunneling
spectroscopy (IETS) [22, 23], neutron scattering[24], X-ray absorption spectroscopy [25, 26] and Ra-
man spectroscopy [27, 28] measure the VDOS. These (spatial) frequencies are theoretically obtained
by calculating the eigenvalues of the Hessian of the potential (1.5). These values are then converted
to spatial frequency (cm−1) and convoluted with a Gaussian of width σ = 14 cm−1 to smoothen the
plot.

Figure 3.4: Small graphene configurations (N = 680) with increasing numbers of Stone-Wales defects
(0-5). The buckling increases significantly with a higher density of defects. The VDOS of some of
these samples are shown in Figure 3.5, demonstrating how defects influence the VDOS.
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The VDOS of small samples with increasing numbers of Stone-Wales defects, see Figure 3.4,
demonstrate that defects influence the VDOS significantly. The Stone-Wales defects lower and shift
the L’ and L peaks to higher frequencies, while red-shifting the Raman-active modes G. A new peak
starts to form on the right-hand side of L, indicating a possible splitting of the L mode into separate
modes. Defect detection in graphene by analyzing the VDOS has been demonstrated experimentally
[59].
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Figure 3.5: VDOS of graphene configurations of N = 680 atoms. Pristine graphene has two sharp
peaks L’ and L. Added Stone-Wales defects reduce the L and L’ peak magnitudes and shifts them to
higher frequencies, while red-shifting the G modes. A new peak starts to form on the right-hand side
of L, indicating a possible splitting of the L mode into separate modes.
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Figure 3.6: VDOS of pristine graphene (N = 3200) under increased strain ε (eV/Å
2
). Stretching

pristine graphene blue-shifts the peaks while barely reducing the peaks magnitude. The low frequency
out-of-plane modes L’ and L are most affected.
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The stretching of graphene in general leads to higher frequency vibrations, see Figure 3.6. Note that
the L and L’ peaks are barely change in magnitude. While continuously stretching the polycrystalline

configuration of Figure 3.1 from ε = 0 eV/Å
2

to ε = 0.1 eV/Å
2

leads to increased peak magnitude, see
Figure 3.7. This result may seem counterintuitive at first, but it is actually the effect of Stone-Wales
defects in reverse, see Figure 3.5. Stretching polycrystalline graphene flattens the configuration, see
parameter σz Appendix B, which reduces the prevalence of defects and thus increases the magnitude.
The individual crackles can also be investigated using the VDOS. Some crackles are accompanied
by significant displacements, which can in turn change the VDOS. Appendix C shows how every
numbered crackle affects the VDOS.
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Figure 3.7: VDOS of a polycrystalline graphene configuration with N = 3200 atoms, during a strain

cycle. Fully relaxed at the start (blue) and maximally stretched (red) at ε = 0.1 (eV/Å
2
). The

out-of-plane modes L and L’ are more prevalent in a strained polycrystalline sample.
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Chapter 4

Program Optimization

Program optimization is the process of improving code to increase performance and use less resources.
This can for instance be achieved by reducing needles flop operations, more efficiently structuring the
data and code parallelization. Distinguishing between algorithmic improvements and implementation
improvements can be difficult, as both involve lists of instructions to be executed. The subtle differ-
ence lays in the purpose of the instructions: An algorithm instructs one how to obtain a result, while
the implementation instructs a computer how to perform the algorithm. A program performing the
FIRE relaxations, see Algorithm 2, can be improved by calculating the forces F = −∇U(R) faster,
but any changes to its parameters or if-statements are considered algorithmic improvements.

Numerical projects in computational physics can quickly grow out of proportion, driven by ambi-
tious complexity and accuracy goals. Some physical phenomenon only appear at scales that require
very large numbers of particles, such physical systems are usually many orders of magnitude larger
than can be simulated in a reasonable amount of time. To approximate large systems and avoid
boundary effects, simulations often employ periodic boundary conditions. This technique does how-
ever have limitations and simulations with large system sizes are still in high demand. Most simple
algorithms in computational solid state physics feature only nearest neighbor interactions. This sig-
nificantly lowers the algorithmic complexity, often growing linearly O(N) with the system size N .
The empirical potential (1.5) used in our model is no exception. This chapter introduces concepts
in computing that influence the performance of numerical code and discusses possible improvements.
Introductions to parallel algorithms and OpenMP are included. It also shows that parallelization
and source code optimization can lead to a speedup upto 7.5 times faster when run on a Intel Core
i5-8250U.

4.1 Computer architecture

The most essential parts of a general purpose computer are its CPU’s to perform logical and computa-
tional operations, memory devices to store data and instructions, and external devices to interact with
other computers or humans. The CPU or central processing unit is a piece of hardware that takes in
data words and performs basic operations like addition, multiplication or comparisons as instructed.
These data words and instructions are fed to the CPU from memory. In general computers have their
memory divided into three tiers: main memory drive, dynamic random access memory (DRAM) and
cache memory (SRAM). The main memory drive, usually a hard disk drive (HDD) or solid state drive
(SSD), is a very large but relatively slow memory drive where all programs and data are stored. The
DRAM or working memory is a medium sized with relatively quick access, used to store the programs
and data that are currently in use. From here the instructions and data are distributed to the caches,
which are much smaller, but very fast, pieces of memory closer to the CPU’s.

The cache memory is divided into three levels: L1, L2 and L3, with L1 closest to the CPU as shown
in Figure 4.1. Note that L1 is explicitly (and physically) separated into memory for the instructions
and memory for the data on which the CPU is to perform its operations. To get a sense of scale,
in most personal computers the main memory is several hundreds of gigabytes while the working
memory only 4 to 8 gigabytes. The L3 cache typically ranges from 4 upto 50 megabytes, with L2 only
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a few megabytes and L1 usually 256 kilobytes or less.
The bottleneck for computation is the transfer of information to and from the different pieces of

memory. Using the caches efficiently, filling them with the right data at the right time and reduc-
ing the communication between can result in significant speedup. Luckily the operating system and
compiler take care of the details at the hardware level. However, the way a program and its data are
organized can still have a large impact.

Figure 4.1: Schematic architecture of a general dual-core computer. L1, L2 and L3 are caches.

4.2 Data structure

Data structures are methods of organizing and managing the storage of information. Data can be
represented abstractly and stored in many different ways. Depending on the application it might
be important to have quick and easy access to data or have it compressed or encrypted for commu-
nication. Famous examples are hash functions and Lempel-Ziv-Welch compression [60, 61]. On the
machine level any information is represented as a sequence of 1’s and 0’s called bits, stored somewhere
in the memory. The memory address of such a sequence is also represented by a sequence of 1’s and
0’s. A data word is a fixed-sized piece of data that acts as the basic data unit for a computer. When
a computer uses data words of k bits, it is called an k-bit computer. Historically computers were
developed for all sorts of values of k, but over time the byte (8-bits) became standard. Computers
have since grown from 8-bit to 64-bit. These binary sequences only have meaning when there is
consensus on what they represent. An international standard has been developed by the IEEE to
represent numbers by either 4 bytes (single precision) or 8 bytes (double precision). Natural language
are represented using a character map, mapping sequences of bits to characters in human languages.
Standards like ASCII and Unicode are designed to enable worldwide digital communication.

Most programming languages work with basic data types int, float and their double precision
counterparts long, double to represent integers and real numbers respectively. With bool represent-
ing Boolean values (True or False) and char for natural characters. Additionally there is the pointer

type to store memory addresses. These basics data types can be organized in sequences, a form of
data structure, which are often treated like objects or types in and of themselves. A sequence of
integers or floats is often called an array, while sequences of characters are known as strings. Note
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that an array of pointers is also possible. All these data types are collectively called classes.
Object-oriented programming languages allow the declaration of custom classes. For instance one

can declare a complex class to represent complex numbers or a fraction class to represent fractions.
This makes coding very flexible and often easier to read, behind the scenes however, the data is still
represented by the basic data types.

4.3 Source code improvements

Source code is a collection of instructions and statements, formulated in a programming language,
that defines a program. Each programming language has its own syntax dictating how instructions
should be written. Source code must adhere to the syntax, or the associated compiler cannot translate
it to machine code. This machine code is a list of instructions written in machine language, the lowest
level of software, telling the hardware what to do. Compilers have grown increasingly complex and
smart to optimize the machine code while adhering to the source code. Despite these improvements
behind the scenes it still follows the instructions in the source code, this obligates the programmer
to write decent source codes. This section discusses several techniques from ‘The C++ Programming
Language’ [62] and ‘Using OpenMP’ [41] that were used to improve our source code’s performance.

4.3.1 Improved data structure

Data structures can significantly impact a code’s performance. Simulations often use large amounts
of data that need to be accessed and updated over many iterations. Quick access to data is therefore
essential. The original code by Federico D’Ambrosio was written in an object-oriented style. The
atoms and bonds in a graphene sample were represented by custom classes Atom and Bond. The Atom

class contained all information concerning the atom: position, velocity, total force acting on it, which
atoms are its neighbors, which bonds connect to its neighbors, etc. The Bond class similarly contained
all information concerning the bond: direction, length, which atoms it connects and whether or not
it crosses the periodic boundaries of the box. The graphene configuration is then represented by an
array of N Atom’s and an array of 3N/2 Bond’s. This object-oriented approach makes the code more
readable and easily adjustable. If one wanted to add the property of spin to atoms, one could easily
do so without having to reconsider the existing code. This data structure has however its downsides.
The array of atoms has the following structure in the memory:

pos vel force neighbors bonds ... pos vel force neighbors bonds ... pos ...

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Atom 1

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Atom 2

←−−−−−−−

The algorithm however only needs a few physical quantities at each step, updating the positions only
requires the current positions, velocities and forces. To perform calculations on these variables they
have to be moved to the L1 caches near the processors. The required quantities are however not stored
together, but distributed among the Atom’s. The computer will either have to gather the desired vari-
ables before sending them to the cache, or it simply moves the entire Atom to the cache, dragging
along useless information. Where the latter is especially costly as the transfer of data between mem-
ory components is proportionally very slow. Much more efficient is bundling each physical quantity
i.e. an array of positions, an array of velocities, etc. The computer can then easily fetch the required
information and move it to the caches, reducing the traffic between the memory components.

4.3.2 Pointers

Pointers are data types containing memory addresses. Computers use them to keep track of where
data is stored and receive instructions where to move data to. Most programming languages allow
the use of pointers in source code, enabling the programmer to use them as well. Pointers can be
used to quickly access a piece of memory repetitively, or easily refer to larger amounts of data without
having to make a copy. They can be an elegant and powerful tool in coding. Improper use of pointers
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however, can lead to overflow and memory leaks. In C and C++ pointer syntax is as follows:

datatype var; declares a variable of data type datatype named var.

datatype *p; declares a pointer named p pointing to a variable (or list variables)
of data type datatype.

p = &var; sets the pointer equal to the address of variable var.

*p gives the value of the variable stored in memory pointed to by p.

Code using pointers affluently can make it harder to comprehend and can also reduce its performance.
Let us consider the following code

int var;

int *p;

p = &var;

var = 1;

*p = 1;

where the last two lines of code both assign the value 1 to integer variable var. The second line is
slightly slower as it makes the computer fetch the address stored in p before it goes to the location of
var.
The original code used lists of pointers containing the locations of values representing the positions,
velocities and forces acting on the atoms. An understandable choice considering the data structure
problem described in section 4.3.1. Updating positions and velocities was thus done similarly to the
following example code

double *pos_pointers[n];

double *vel_pointers[n];

double *force_pointers[n];

for( int i = 0 ; i < n ; i++ ){

*pos_pointers[i] += *vel_pointers[i] * dt + (1.0 / mass) * dt * dt * *force_pointers[i];

}

where n = 3N + 2, three directions for each atom plus two for the box’s sides. With the improved
data structure, where each physical quantity is stored in a designated array, the following code

double positions[n];

double velocities[n];

double forces[n];

for( int i = 0 ; i < n ; i++ ){

positions[i] += velocities[i] * dt + (1.0 / mass) * dt * dt * forces[i];

}

is equivalent. Besides looking more clean-cut, it is also more readable for compilers. Over the years
compilers have been developed that can optimize code behind the scenes without loss of generality.
To achieve such improvements the compiler needs as much information about the code as possible.
Pointers however obscure some of the information as they merely contain addresses and no information
about the size of the object. The abstract nature of pointers limits the compiler’s ability to optimize.

4.3.3 Cache misses

A processor requires data to process otherwise it will stand idle waiting for instructions. Cache misses
are instances where the processors idles because it needs to fetch data from a higher level memory
location. Cache misses are costly because the transfer of information is relatively slow and the CPU
will meanwhile be idle. To reduce communication and the occurrence of cache misses, data in the
cache needs to be used to their maximal potential.

Large arrays may not fit inside the limited memory of an L1 cache. Code looping over such large
arrays moves consecutive portions one by one to the CPU for processing. Multiple such loops involving
the same array may result in portions going needlessly back and forth multiple times. Merging these
loops into a single loop can improve the situation and incidentally reduce overhead costs. For example
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double positions[n];

double velocities[n];

double forces[n];

for( int i = 0 ; i < n ; i++ ){

positions[i] += velocities[i] * dt + (1.0 / mass) * dt * dt * forces[i];

}

for( int i = 0 ; i < n ; i++ ){

velocities[i] += forces[i] * dt;

}

can be rewritten as

double positions[n];

double velocities[n];

double forces[n];

for( int i = 0 ; i < n ; i++ ){

positions[i] += velocities[i] * dt + (1.0 / mass) * dt * dt * forces[i];

velocities[i] += forces[i] * dt;

}

making sure the entries of forces are used for both updating the positions as well as updating the
velocities, while they are still located in the cache.

Information is moved to and from the caches in bulk, whole lines of memory at once. When
a variable is moved to the cache, its neighboring variables are moved along with it. Arrays are
consecutively stored sequences of variables on the hardware level, making them ideal to take advantage
of this mechanism. In the languages C and C++ a matrix is merely an array with an additional
structure: pointers referring to regular intervals of row length. A matrix with rows of length n is
stored consecutively on a single line of memory in the following way:

M[0][0] M[0][1] ... M[0][n-1] M[1][0] M[1][1] ... M[1][n-1] M[2][0] ...

↑ ↑ ↑
M[0] M[1] M[2]

Where M[0], M[1], M[2], etc., are pointing to the start of each row. The order in which code loops
over row or column indices can have significant impact, for example

double matrix[n][n];

double sum = 0.;

for( int i = 0 ; i < n ; i++ ){

for( int j = 0 ; j < n ; j++ ){

sum += matrix[i][j];

}

}

is faster than

double matrix[n][n];

double sum = 0.;

for( int i = 0 ; i < n ; i++ ){

for( int j = 0 ; j < n ; j++ ){

sum += matrix[j][i];

}

}

because the latter strides through the array. This drags neighboring variables along to the cache
without using them once arrived.
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4.3.4 Flop costs

Flops are a measure of computational cost, not in terms of physical time, but in relative operation
cost. One flop is often defined as the computational cost of an addition of two floats on a CPU.
For simplicity multiplications are also considered one flop each, while division cost four flops. Writing
code in a flop reducing style is an easy yet effective way to achieve adequate performance. For example

double positions[n];

double velocities[n];

double forces[n];

for( int i = 0 ; i < n ; i++ ){

positions[i] += velocities[i] * dt + (1.0 / mass) * dt * dt * forces[i];

velocities[i] += forces[i] * dt;

}

can be rewritten as

double positions[n];

double velocities[n];

double forces[n];

double over_mass = 1.0 / mass;

double dt2 = dt * dt;

for( int i = 0 ; i < n ; i++ ){

positions[i] += velocities[i] * dt + over_ mass * dt2 * forces[i];

velocities[i] += forces[i] * dt;

}

ensuring the expensive division is not performed n times, while the introduction of dt2 also saves a
flop every iteration. More sophisticated flop cost reductions may employ mathematical equivalences
like

sin
(
arccos(x)

)
=
√

1− x2

which can transform

double a,b;

double x,y,z;

x = a / b;

y = std::acos( x );

z = std::sin( y );

into

double a,b;

double x,y,z;

x = a / b;

y = std::acos( x );

z = std::sqrt( 1.0 - x * x );

where the std::sin costs about 14 flops, while std::sqrt costs 6 flops with an additional 2 flops for
the calculation of its argument 1.0 - x * x [63].

4.4 Parallelization

Parallelization is the art of running a program on multiple processors simultaneously to obtain max-
imal performance. Most computers nowadays have multiple processors, usually 2 or 4, while spe-
cialized servers can have hundreds or thousands. Huge variety in parallel computers and networks
makes portability and algorithm design a challenge. Abstract parallel computer models were devised
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to investigate parallel algorithms from a theoretical perspective. Special parallel libraries like Multi-
coreBSP and OpenMP have been developed to make parallel code exportable. Parallel programs are
harder to optimize and more easily plagued by deadlock and nondeterministic behavior. Proficiency
in parallel coding takes practice and regularly reading up on the latest developments. This section
will introduce several concepts in parallel computing based on ‘Parallel Scientific Computing’ [40] and
‘Using OpenMP’ [41]. Short code segments demonstrate how one can remedy the subtle adversities
that occur in parallel coding.

4.4.1 Parallel computer models

Parallel computers come in roughly two models: shared memory and distributed memory. In a shared
memory parallel computer the CPU’s are assumed to have quick access to a relatively large piece
of memory with nearly equal access times, see Figure 4.2. The architecture in Figure 4.1 is also
considered a shared memory parallel computer. Distributed memory parallel computers are assumed
to have both instructions and data distributed over its cells or cores, see Figure 4.3, either due to the
lack of a shared memory (networks) or relatively slow access (supercomputers). In the distributed
memory model communication is considered so expensive that most of the algorithm design revolves
around finding distributions that minimize the communication. Distributed memory algorithms are
considered more general as any shared memory computer can be turned into a distributed memory
computer by partitioning its memory.

Figure 4.2: Schematic architecture of a shared memory parallel computer. All cores are expected to
have very limited internal memory and have roughly the same access time to the shared memory.

A software thread is a sequence of instructions to be executed. Every piece of software has
its own software thread, which are scheduled by the operating system for execution. The computer
switches between all the software threads at high frequency, making it seem like multiple programs run
simultaneously. The ability to handle multiple software threads is called multi-threading. A hardware
thread is a CPU or processor where a software thread can be executed. A computer with multiple
hardware threads can genuinely execute multiple software threads simultaneously. Some CPU’s consist
of multiple processors closely integrated, sharing resources and appearing to the operating system as
multiple hardware threads. This close integration enables the threads to quickly use each other’s
resources when one idles, increasing the overall efficiency of the CPU. The ability for a single CPU to
run multiple hardware threads is called hyper-threading.
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Figure 4.3: Schematic architecture of a distributed memory parallel computer or network of computers.
Cores are assumed to have memory with a very fast access time nearby and very slow access to the
other processors and their memory.

In parallel coding threads are organized in teams, each member with its own set of instructions,
synchronizing with their team members to share information. Thread teams can be organized in
two major styles: Bulk Synchronous Parallel (BSP) where all threads synchronize collectively for
communication sessions, making it one team. Or nested threading, where threads can fork into teams
of threads which only synchronize with their team members. Each team is headed by a master thread,
which started the fork, and after execution the other team members will merge with the master thread
again. Note that non-master threads can also fork and become masters of their own team. BSP is a
distributed memory model, while most nested threading models are shared memory models.

Our parallel code uses OpenMP, an application programming interface (API) for shared memory
parallelism. While OpenMP supports nested threading, our code uses a single team of threads that
synchronize in bulk.

4.4.2 Distributions

Distribution of work is an essential part of the parallel algorithm design. The goal is a distribution
with a balanced workload and minimal communication both in amount and number of synchroniza-
tions. With such an distribution processors work efficiently with little idle time. Finding the optimal
distribution is a field of study in and of itself. Algorithms containing large loops often distribute the
loop iterations among threads. Let p be the number of parallel threads and n the number of iterations,
then the block distribution maps iterations to threads using

i 7→
⌊
i

b

⌋
with b =

⌈
n

p

⌉
, 0 ≤ i < n (4.1)

where b is the block size, visualized in Figure 4.4. Other prevalent distributions are the cyclic distri-
bution

i 7→ i mod p with 0 ≤ i < n (4.2)

and the block-cyclic distribution

i 7→
⌊
i

b

⌋
mob p with b <

⌈
n

p

⌉
, 0 ≤ i < n. (4.3)

The block-cyclic distribution with block size b = 2 is also known as the bicyclic distribution.
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Block distribution :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cyclic distribution :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Block-cyclic distribution :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4.4: Three common distributions visualized for a loop of size n = 16 distributed
over p = 4 threads.

The most optimal distribution often still requires communication between threads. To do this safely
all threads should synchronize, share data, synchronize again and continue. Synchronizations however,
lead to idle time and can be slow if processors are relatively far apart. It is therefore essential to keep
the number of synchronizations to a minimum. Some parallel computers have limited bandwidth
between the processors making the communication itself very expansive as well. Note however that
the cost of a communication session is dictated by the maximum amount of data words received or
send by any single processor, not the total amount of communication by all processors.

4.4.3 How OpenMP works

OpenMP is an application programming interface (API) that supports parallel programming in
Fortran, C and C++, the latter will be used for our examples. It includes a collection of library
routines and compiler directives to make regular code parallel. OpenMP is designed for the shared
memory model and supports nested threading. The main syntax revolves around declaring parallel
regions, sections of code to be executed by all members of a thread team. Parallel regions are stated
by an directive and followed by clauses. The first thread to arrive at this directive forks into a team
of threads. Each member of this team executes the code inside the parallel region and merges with
the master thread at the end. Directives are preceded by #pragma a special kind of environment to
provide information to the compiler. OpenMP has several directives, but our code examples only use
three of them:

omp parallel Starts a parallel region where every threads executes the block.

omp master Creates a block that only the master thread will execute.

omp barrier Creates a barrier where all team members wait for each other.
This directive must be encountered by all team members or the
others will wait forever resulting in deadlock.

The omp parallel directive needs clauses to function, in particular it needs to know which variables
are ‘shared’ or ‘private’. A shared variable will be accessible to all threads, the others will be affected
if a thread changes it. Every processor will technically still work with a copy, but it will share changes
to it with the other threads and fetch the latest version when necessary. Private variables are hidden
from the other threads. Each thread will have to initialize its private variables before using them.
Private variables are not automatically initialized, even if it was declared and initialized before the
parallel region. The program will not check if the threads have the same private values and these
values will not be available after the parallel region has been executed.

Clauses follow the directive to inform the compiler about variables and methods to be used in the
parallel region. The status of variables is passed on to the compiler by the following clauses:
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default(none) Instructs the compiler not to automatically assume
data-sharing. The programmer will have to provide
explicitly which variables are private or shared.

private(list) States that the variables in list are private.

shared(list) States that the variables in list are shared.

OpenMP also provides essential built-in functions to manage the thread teams. Particularly useful
functions are:

int omp get max threads() Returns the maximum number of threads available for
the next parallel region. If called in the sequential part
of the code, it will return the number of hardware threads.

omp set num threads(int) Sets the number of threads to be used in a parallel region
to int. If this number exceeds the available hardware
threads, it continues to create software threads.

int omp get thread num() Returns a number ranging from 0 to m− 1 indicating
the thread’s identity within a team of m threads. Where
thread number 0 is the team’s master thread.

Parallel code is best structured in blocks, making it more readable and easier to adjust. Directives
and build-in functions create these block as demonstrated in the following example code:

double data[n];

int i,j,k;

int tid;

//Initial sequential part of the program.

omp_set_num_threads(p);

#pragma omp parallel default(none) shared(n,data)\

private(i,j,k,tid)

{

tid = omp_get_thread_num();

//This part is executed by every thread.

if(tid == 3){

//Only executed by thread 3.

}

#pragma barrier //All threads wait, thread 3 may arrive later.

#pragma omp master

{

//Only executed by the master thread (thread 0).

}

//This part is executed by all threads again, thread 0 may lag behind.

}

//Final sequential part of the program. Any changes to i,j,k inside

//the parallel region will not effect the i,j,k in this part. Changes

//to data[n] inside the parallel region will be present.
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4.4.4 Racing conditions

Race conditions are situations where a program is sensitive to uncontrolled changes in the timing of
instruction executions. Sequential programs rarely encounter racing conditions, but parallel programs
need special care to avoid them. The most notorious race condition is the deadlock, where the program
gets stuck because a thread is waiting for something that never arrives, or two threads are blocking
each other’s way. Synchronizations are essential to maintain coherence during execution.

The frequency at which processors operate fluctuates slightly. It may even slow down significantly
when too much thermal energy builds up. As mentioned in section 4.4.1 processors quickly switch
between software threads. The threads from other program are generally not equally distributed,
which makes some processors take longer to perform their parallel tasks. Slight changes in execution
time can lead to shared variables not being updated in time. These subtle uncontrollable changes are
the main source of nondeterministic behavior, to remedy this behavior the code needs to be written
in a robust style. Synchronizations are the most effective defense against this type of race condition.
A variable may also be corrupted when updated by two threads simultaneously, or its copy gets
corrupted because the variable was being updated by another thread during the copying process. The
potential corruption of data in this way is called a data race.

As discussed in section 4.2, data types float and double represent real numbers in computing.
These representations are inherently of finite precision, thus if two floating-point numbers differ too
much, accuracy may be lost during computation. In particular, when very large and very small floating
point are added or subtracted, it may simply return the largest one. While addition is mathematically
commutative, in computing the result may depend on the order of summation. Consider for instance
the parallel summation

double data[n];

double sum = 0.;

double localsum = 0.;

int i,tid;

int b = std::ceil( (double)n / (double)p );

int nstart,nstop;

omp_set_num_threads(p);

#pragma omp parallel default(none) shared(n,b,data,sum)\

private(i,tid,nstart,nstop,localsum)

{

tid = omp_get_thread_num();

nstart = tid * b;

nstop = std::min( n , nstart + b );

localsum = 0.;

for( i = nstart ; i < nstop ; i++ ){

localsum += data[i];

}

sum += localsum;

}

where the local sum is added to the total sum whenever the thread finishes. The order of summation is
thus not guaranteed and there is even risk of data race. To fix these issues and guarantee deterministic
behavior, the local sums should be lined up before adding them together:

double data[n];

double localsums[p];

double sum = 0.;

double localsum;

int i,tid;

int b = std::ceil( (double)n / (double)p );

int nstart,nstop;
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omp_set_num_threads(p);

#pragma omp parallel default(none) shared(n,b,data,sum,localsums)\

private(i,tid,nstart,nstop,localsum)

{

tid = omp_get_thread_num();

nstart = tid * b;

nstop = std::min( n , nstart + b );

localsum = 0.;

for( int i = nstart ; i < nstop ; i++ ){

localsum += data[i];

}

localsums[tid] = localsum;

#pragma omp barrier

#pragma omp master

{

for( i = 0 ; i < p ; i++ ){

sum += localsums[i];

}

}

}

Where the summation is always performed in the same order. All summations in our code are
performed in this or similar ways to avoid racing conditions. The final sum however, may differ from
the sequential version, as the order in parallel is different from the sequential order of summation.

4.4.5 Cache coherence

Some parallel computers have a special mechanism to avoid memory consistency problems, ensuring
the L1 caches have the latest versions of variables. An example of such an cache coherence mechanism
is the use of ‘state bits’ which flag a line of memory as outdated whenever something has been altered.
The other processors are notified and will fetch the latest version of that line before using any variables
from this memory line. Flagging the entire line however can lead to unnecessary fetches of variables
that remain unchanged. This needless sharing and fetching of data is called false sharing. False
sharing can be avoided by separating reading and writing operations. Variables can then safely be
used without risk of using an outdated value. Let us first parallelize the code from section 4.3.4 using
the block distribution (4.1).

double positions[n];

double velocities[n];

double forces[n];

double over_mass = 1.0 / mass;

double dt2 = dt * dt;

int i,tid;

int b = std::ceil( (double)n / (double)p );

int nstart,nstop;

omp_set_num_threads(p);

#pragma omp parallel default(none) private(i,tid,nstart,nstop)\

shared(n,b,positions,velocities,forces,over_mass,dt,dt2)

{

tid = omp_get_thread_num();

nstart = tid * B;

nstop = std::min( n , nstart + b );

for( i = nstart ; i < nstop ; i++ ){

positions[i] += velocities[i] * dt + over_ mass * dt2 * forces[i];

velocities[i] += forces[i] * dt;

}

}
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Where the += operation reads the variable and writes the update value back to the same variable.
This flags the variable and those sharing its line of memory as outdated for other processors. Reading
and writing is separated by introducing temporary arrays oldpositions and oldvelocities.

double positions[n];

double oldpositions[n];

double velocities[n];

double oldvelocities[n];

double forces[n];

double over_mass = 1.0 / mass;

double dt2 = dt * dt;

int i,tid;

int b = std::ceil( (double)n / (double)p );

int Nstart,Nstop;

omp_set_num_threads(p);

#pragma omp parallel default(none) private(i,tid,Nstart,Nstop)\

shared(n,b,positions,oldpositions,velocities,oldvelocities,forces,over_mass,dt,dt2)

{

tid = omp_get_thread_num();

nstart = tid * b;

nstop = std::min( n , nstart + b );

for( i = nstart ; i < nstop ; i++ ){

oldpositions[i] = positions[i];

oldvelocities[i] = velocities[i];

}

#pragma omp barrier

for( i = nstart ; i < nstop ; i++ ){

positions[i] = oldpositions + oldvelocities[i] * dt + over_ mass * dt2 * forces[i];

velocities[i] = oldvelocities[i] + forces[i] * dt;

}

}

Note the for-loops are separated by a synchronization for additional safety.
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4.5 Results

The previous sections introduced various concepts in computing and discussed the issues that can
occur. Example codes demonstrated bad practices in parallel coding and how to improve the various
situations. This final section discusses the improved performance all these consideration have achieved
in our parallel code. The success of parallelization in computer science is measured by the speedup
gained and how scalable the algorithm is. Speedup and efficiency are defined by

Sp =
Tseq

Tp
, Ep =

Tseq

p Tp
(4.4)

respectively, where p is the number of processors and Tseq, Tp the sequential and parallel computation
times respectively. Note that the speedup compares multi-processor computation times with the
sequential time, not Tp=1! Theoretically one expects

1 ≤ Sp ≤ p (4.5)

but sometimes superlinear speedup is achieved by more efficient use of the caches. Efficiency reflects
the parallel code’s ability to scale with increasing numbers of processors p, compared to the ideal
linear speedup.

The computation times are obtained by performing the FIRE algorithm, see Algorithm 2, on a
graphene samples of different sizes. Each relaxation is performed 10 times to reduce the impact of
fluctuations in the computers performance. Different numbers of processors lead to different orders of
summation, which can change the number of iterations in the while-loop of part (2). The measured
computation times reported in Table 4.1 are rescaled accordingly. All measurements are produced on
a Intel Core i5-8250U at a clock speed of 1.60 GHz integrated in a HP laptop with 8 GB of DRAM
with speed 2400 MHz and the 64-bit Windows 10 operating system. The Intel Core is an 64-bit
quad-core with multi-threading and hosts a total of 8 processors. The measurements are assumed to
be normally distributed random variable. Computing times can then be compared using the following
approximation

σ2
S ≈

σ2
a

µb
+
µ 2
aσ

2
b

µ4
b

− 2ρ σaσb
µa
µ3
b

with S =
Ta
Tb

where Ta ∼ N
(
µa, σ

2
a

)
, Tb ∼ N

(
µb, σ

2
b

)
(4.6)

where ρ is the correlation between Ta and Tb. The uncertainty in computation times T originates
from random fluctuations in the hardware’s performance, thus there are no correlations (ρ = 0).

The sequential speedup in Table 4.1 shows a slight increase with system size N , but not signifi-
cantly. An weighted average

Sseq =

∑
N S

N
seqσ

−2
SN
seq∑

N σ
−2
SN
seq

with σ2
Sseq

= 1
/∑

N

σ−2
SN
seq
. (4.7)

suffices to extract the speedup achieved by source code improvements. The source code improvements
discussed in section 4.3 lead to an average speedup of 1.6401(55), making our improved sequential
code 64% faster!

The parallel speedup is extracted from the computation times in Table 4.1 using (4.6). The results
are visualized in Figure 4.5 where the plumes are one standard deviation of uncertainty. Improved
performance with increasing system size N and number of processors p in clearly visible. Note that
for N=100 parallelization does not pay off, as the overhead costs are too high in proportion to the
computational gain, this is also reflected in its low efficiency shown in Figure 4.6.

The main goal of this research project was to improve the code for maximal performance. A
significant speedup opens the door to larger system sizes and generation of more data, enabling more
future research. The total speedup achieved by the methods discussed in this chapter is visualized in
Figure 4.7. Running on 8 processors, the improved code performs the FIRE algorithm upto 7.6 times
faster than the original sequential code, accomplishing our main goal.
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Figure 4.5: Speedup achieved by the parallel code with respect to our improved sequential code, based
on the average rescaled computation times of 10 executions of the FIRE algorithm for samples with
N atoms, see Table 4.1. The plumes are one standard deviation of uncertainty. The speedup barely
improves due to parallelization for small system sizes, but scales well for large system sizes N ≥ 5000.

Figure 4.6: Efficiency of the parallel code for several system sizes N . Efficiency reflects how well
the parallel code speeds up, with increasing numbers of processors p, compared to the ideal linear
speedup. Results are based on the average rescaled computation times of 10 executions of the FIRE
algorithm for samples with N atoms, see Table 4.1. The efficiency displayed here is very common in
parallel computing. An efficiency above 0.5 is considered good scalability.
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Figure 4.7: Speedup achieved by the parallel code with respect to the original code, based on the
average rescaled computation times of 10 executions of the FIRE algorithm for samples with N atoms,
see Table 4.1. The improved code is significantly faster and scales very well.

Computation times :

N 100 500 1000 5000 10000

Torigin 0.2128(20) 4.428(14) 16.999(55) 357.18(77) 622.9(23)

Tseq 0.1217(19) 2.718(12) 10.314(33) 217.0(43) 374.9(87)

Tp=1 0.1902(43) 2.957(21) 10.849(43) 220.4(28) 376.53(74)

Tp=2 0.1445(68) 1.7145(95) 6.14(22) 116.13(27) 198.30(46)

Tp=4 0.1296(67) 1.459(55) 4.63(19) 87.62(85) 143.7(12)

Tp=6 0.1295(16) 1.13(11) 3.35(23) 59.89(65) 102.15(38)

Tp=8 0.1247(50) 0.8810(72) 2.744(63) 47.49(29) 81.33(62)

Sequential speedup :

N 100 500 1000 5000 10000

Sseq 1.617(28) 1.6292(91) 1.6481(75) 1.646(32) 1.661(39)

Parallel speedup :

N 100 500 1000 5000 10000

Sp=1 0.692(19) 0.9190(78) 0.9507(48) 0.985(23) 0.996(23)

Sp=2 0.911(47) 1.585(11) 1.679(61) 1.869(37) 1.891(44)

Sp=4 1.016(54) 1.863(70) 2.228(58) 2.477(54) 2.608(64)

Sp=6 1.017(19) 2.41(23) 3.07(22) 3.624(81) 3.670(86)

Sp=8 1.056(45) 3.085(29) 3.759(87) 4.570(93) 4.61(11)

Table 4.1: Average rescaled computation times (in seconds) of 10 executions of the FIRE algorithm for
samples with N atoms. For the computation times the programs from top to bottom are: the original
code by Federico D’Ambrosio, our improved sequential code and the parallel code with increasing
number of processors p. Produced on an Intel Core i5-8250U at clock speed 1.60 GHz.
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Conclusions

Polycrystalline graphene naturally buckles out-of-plane forming an three-dimensional structure. Ap-
plying a continuously increasing or decreasing stretching force on a sheet of polycrystalline leads to
discontinuous structural evolution. A very small change in the stretching force can induce a significant
change the preferred structural configuration. These sudden changes cause displacements which in
turn create vibrations through the system. We expect these vibrations to be experimentally observ-
able and carry information about the structure of the material. Performing a cycle of stretching and
relaxing on a sample can return it to a different state then before, clearly an hysteretic behavior. Con-
tinuous application of stress to polycrystalline graphene changes the shape of its ridges and vertices,
which can be consequential for the electronic and mechanical properties.

This behavior originates from the embedding of a two-dimensional material in a three-dimensional
space and should therefore be pertinent in other polycrystalline two-dimensional materials as well.

The program optimization through implementation improvements and parallelization was very
successful. The improved code show good scaling and is upto 7.6 times faster on 8 processors when
run on an Intel Core i5-8250U. This significant speedup will enable more research in the future.
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Appendix A: Forces

Two-Body Interaction

The two-body interactions arise from the covalent bonds preferring an ideal length of d = 1.42 Å. The
potential energy associated with deviation from this ideal distance is

U2 =
3

16

α

d2

(
r2
ij − d2

)2
=

3

16

α

d2

(
rij · rij − d2

)2
(A.8)

where rij is the bond length between atoms i and j in Å. Let us define the gradients

∇i =

(
d

drxi
,
d

dryi
,
d

drzi

)
ri = (rxi , r

y
i , r

z
i ) (A.9)

where xi, yi, zi are the spatial coordinates of atom i, to analyze how U2 changes with variation in
the position of the atoms involved, which leads directly to the forces acting on said atoms. Since
rij = rj − ri we find

∇i(rij · rij) =∇i [(rj − ri) · (rj − ri)] ∇j(rij · rij) =∇j [(rj − ri) · (rj − ri)]

=∇i(ri · ri − 2 ri · rj + rj · rj) =∇j(rj · rj − 2 rj · ri + ri · ri)
=∇i(ri · ri)− 2∇i(ri · rj) =∇j(rj · rj)− 2∇j(rj · ri)
=2 ri − 2 rj =2 rj − 2 ri

=− 2 rij =2 rij

(A.10)
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Three-Body Interaction

The three-body interactions arise from the atoms preferring their covalent bonds distributed equally
with angles of 2π/3 between them. The associated potential energy is

U3 =
3

8
β d2

(
θi,jk −

2π

3

)2

(A.12)

where θi,jk is the angle between the two bonds going from atom i to neighboring atoms j and k in
radians (rad), which can be expressed as

θi,jk = arccos

(
rij · rik
‖rij‖ ‖rik‖

)
= arccos

(
rij · rik√

(rij · rij)(rik · rik)

)
. (A.13)
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Since this expression is already quite complicated, we first calculate its gradients before we look at
those of the whole U3. The first step is to use the chain rule to circumvent the arccosine function

∇θi,jk =∇arccos
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)
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−1√
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then with the explicit gradients below, we can rewrite the three-body forces on the next page.

∇i(rij · rik) =∇i [(rj − ri) · (rk − ri)]

=∇i[ri · ri − ri · (rj + rk) + rj · rk]

=∇i(ri · ri)−∇i[ri · (rj + rk)]
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=− rij − rik

∇j(rij · rik) =∇j [(rj − ri) · (rk − ri)]

=∇j [rj · (rk − ri)− ri · (rk − ri)]
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Four-Body Interaction

The four-body interactions arise from the covalent bonds being of type sp2, which are planar, leading
to an additional energy penalty for an atom sticking out of plane compared to its three neighbors.
This additional energy penalty is expressed by the potential energy

U4 = γ r2
i,jkl (A.17)

where ri,jkl is the distance between atom i and the plane spanned through the three neighbors j, k, l.
This distance squared can be expressed as

r2
i,jkl =

(rij · ni)2

‖ni‖2
=

(rij · ni)2

ni · ni
ni = (rik − rij)× (ril − rij) (A.18)

where ni is the normal vector to the plane through the neighbors of atom i. First we observe that ni
is independent of ri and remind ourselves of the following mathematical identities

∇i[ri · (rj × rk)] = rj × rk

∇j [ri · (rj × rk)] = rk × ri

∇k[ri · (rj × rk)] = ri × rj

(A.19)

leading to the following gradients
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∇j(ni · ni) = 2(rik − ril)× ni ∇j(rij · ni)2 = 2(rij · ni)[ni + (rik − ril)× rij ]

∇k(ni · ni) = 2(ril − rij)× ni ∇k(rij · ni)2 = 2(rij · ni)(ril × rij)

∇l(ni · ni) = 2(rij − rik)× ni ∇l(rij · ni)2 = 2(rij · ni)(rij × rik)

(A.20)

from which we derive the four-body forces
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Appendix B: Strain Cycle

The discontinuous evolution of stretching polycrystalline graphene can be traced using various param-
eters. This appendix shows how the internal energy and its three components (1.3) evolve during a
strain cycle. The evolution of structural parameters non-affinity A, area L and out-of-plane deviation
σz discussed in Chapter 3 are displayed below. A graphene sample of N = 3200 atoms is stretched,

fully relaxed and stretched again in small steps δε = 0.0001 eV/Å
2

where δP is the change in param-
eter P each step. The non-affinity parameter clearly shows sharp spikes that indicate discontinuous
changes in the structure of the graphene, as earlier demonstrated by D’Ambrosio et al. [31]. The
other two structural parameters show more ‘noise’ but still feature spikes. Note that a large δA spike
does not guarantee an equally large spike in the other two parameters.

Discontinuous evolution of non-affinity parameter A during a strain cycle.

Discontinuous evolution of area spanned by box’s sides Lx and Ly during a strain cycle.

Out-of-plane deviation of atoms with respect to average z during a strain cycle.
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The discontinuous evolution of the internal energy and its components during the stretching are
shown below. The ‘noise plumes’ are bigger for the bond energy indicating that most of the energy
is stored in bonds during stretching. Notice that crackles have large differences between the three
energy components. Crackle 4 for instance, has a very small spike in plane energy despite its large
spike the total internal energy. Some crackles are not very energetic in themselves, but transform
energy between the different types, for example crackles 1 and 17.

Discontinuous evolution of internal energy U int during a strain cycle.

Discontinuous evolution of bond energy Ubond during a strain cycle.

Discontinuous evolution of angle energy Uangle during a strain cycle.

Discontinuous evolution of out-of-plane energy Uplane during a strain cycle.

All parameters clearly show hysteretic behavior in their discontinuous evolution: The spikes in the
first stretching are always distinct from those in the second. Notice how crackle 14 stands out in the
structural parameters A, L and σz while barely noticeable in the energy evolutions.
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Appendix C: VDOS of Crackles

The discontinuous evolution during a straining cycle [31] can be interpreted as the crackling of
graphene. Several of these ‘crackles’ are discussed in Chapter 3. This appendix features figures
comparing the VDOS just before and after a crackle has occurred. Note that some crackles shift the
peaks to the left or right, while others barely change the VDOS at all.
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Crackle 7 Crackle 8
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Crackle 15 Crackle 16
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