
Utrecht University - Faculty of Science

Master’s thesis

Improving communication in the Dutch multi-agency
emergency healthcare

Applying Enterprise Integration Patterns to cross communication barriers

Author: Daily supervisor:

Hugo Helder Christian Snijder

j.h.helder@students.uu.nl christian@ambusuite.nl

1st Supervisor 2nd Supervisor:

Wouter Swierstra Inge van de Weerd

w.s.swierstra@uu.nl g.c.vandeweerd@uu.nl

This thesis is submitted in fulfillment of the requirements for the degree of Master of

Science

in

Business Informatics

November 28, 2019

Abstract

In this study it was investigated what architectural

design could facilitate an optimal information deliv-

ery in the emergency healthcare, what resulted in

a communication infrastructure for the emergency

healthcare sector. With this communication infras-

tructure communication between disciplines in the

emergency healthcare can be achieved, exchanging

information in ways that was not possible before.

It was identified that information in the emer-

gency healthcare sector is often not shared between

these disciplines, thus the objective was to enable

inter-enterprise communication between these disci-

plines. Upon investigation of the emergency health-

care sector, it became clear that little to none IT-

solutions to enable such inter-enterprise communi-

cation are available but are gravely needed to re-

solve the challenges that the emergency healthcare

sector are plaguing nowadays. Challenges consist

of but are not limited to insight in bed capacity,

insight in medical history for ambulance staff on lo-

cation, and transfer of medical information from the

dispatch center, ambulance, and emergency depart-

ment to the General Practitioner’s (GP) records

[26].

The result of this study is therefore a commu-

nication infrastructure for the emergency health-

care to enable inter-enterprise communication. The

communication infrastructure is created and im-

plemented based on Rozanski’s guidelines for soft-

ware architecture design [31]. The implementation

served as an evaluation of the architectural design.

The evaluation showed that the followed method-

ology yielded the expected software architecture,

with a notable role for the perspectives, that in iter-

ations revisited the created viewpoints and adapted

them according to the validation results. Thanks

to that minimal trade-offs between the design and

the implementation were found. The application of

Enterprise Integration Patterns proved to provide

a solid foundation for a from-theory derived practi-
cal approach to incorporate communication infras-

tructures in software architecture. An analysis of

the implementation showed that the implementa-

tion satisfies the requirements as provided by the

stakeholders, demonstrating that integration can

take place as they have desired.

Preface

At the start of this project, I had no notion of the challenges the emergency healthcare sector is facing

nowadays and how this public sector is plagued by failing IT-systems, insufficient communication systems

and self-centered healthcare disciplines that do not communicate with each other. AmbuSuite, an IT-vendor

supplying the emergency healthcare sector with among others electronic trip forms (for ambulances) and

hospital software knew this as no other. When I started looking for an internship for my master thesis I

was looking for a company where I could make an impact with my master thesis and could do something

for the society, as this always was my personal interest. AmbuSuite had seen the communication problems

in the multi-agency emergency healthcare sector and were looking for ways to improve it drastically. As an

intern in AmbuSuite I could help by researching the communication problems in the emergency healthcare

sector and provide an implementation of an IT-solution that enables communication between all healthcare

professionals. Now, at the end of this project, I can finally present all efforts of my research of the healthcare

sector, it problems regarding communication and an IT-solution in the form of a master thesis. It has been

quite a journey and I am proud of this achievement. I would like to take the opportunity to thank some

people that have been involved in this journey with me. First and foremost, I would like to thank Christian

Snijder, lead developer at AmbuSuite and my daily supervisor, without whom I would not have been able to

successfully complete this project. He has kindly devoted his time, was always reachable and involved, and

through meetings and feedback, helped improve the quality and analysis of this research. His expertise on

the emergency healthcare sector was of great value and his involvement in this project is highly appreciated.

I would like to thank my first and second supervisor at the university, Wouter Swierstra and Inge van de

Weerd, for granting me this opportunity for this project. They were always available for feedback where

necessary and their advice lifted this project to a greater level. Without their thorough analysis and critical

mindset I would not have spotted some anomalies in my thesis myself. I would like to thank my friends,

who have supported me on this journey by listening to my stories and having discussions on the content and

research opportunities. Among them was Rick de Boer, who I would like to thank for reading my manuscript

and providing excellent feedback. For one I have my special thanks, Kim Stienstra, for always being there

for me and helping me out from her expertise as researcher at Utrecht University. Her involvement and

support meant the world to me. With the support of all these special people and with extensive effort, I

have managed to perform and write about the biggest research project in my life thus far captured in the

thesis laying in front of you; the creation of an inter-enterprise communication infrastructure in the Dutch

emergency healthcare sector.

1

Glossary

This glossary provides an overview of the most frequently used abbreviations and acronyms used in the

healthcare sector. The first five items are the five main emergency healthcare disciplines.

Dispatch Center or Alarm Room (Dutch: meldkamer, MKA).

General Practitioners Post for night hours (GPP, Dutch: huisartsenpost, HAP).

General Practitioners as first line care (GP, Dutch: huisarts).

Ambulance care that provide the first treatments on location at emergency incidents.

Emergency Department: a clinical department for a central organized emergency shelter that is available

24 hours a day and 7 days a week, accessible for all medical specialist emergency care for patients of all

ages (ED, Dutch: spoedeisende hulp, SEH) [10].

Multi-agency healthcare: the combination of aforementioned disciplines in the emergency healthcare

sector and the communication between them (Dutch: ketenzorg).

LSIV: National System Incidents and Vehicles (Dutch: Landelijke Server Incidenten en Voertuigen).

LSDV: National System Digital Pre-announcement (Dutch: Landelijke Systeem Digitale Vooraankondig-

ing).

GMS: Integrated Dispatch Center System (Dutch: Gentegreerd Meldkamer Systeem). Refers to the systems

used by the dispatch centers.

(Computer) system: software elements that are required for specification or design according to a par-

ticular set of requirements and the required hardware to run those software on [31].

Architecture of a system: the set of fundamental concepts or properties of the system in its environment,

embodied in its elements, relationships, and the principles of its design and evolution [31].

2

Contents

Preface 1

Glossary 2

1 Introduction 7

1.1 Emergency care market description and figures . 8

1.2 AmbuSuite . 9

1.3 Research method . 9

1.3.1 Problem investigation . 9

1.3.2 Treatment design . 10

1.3.3 Treatment validation . 10

1.3.4 Treatment implementation . 10

1.3.5 Treatment evalutation . 10

2 Literature review 10

2.1 Stakeholder investigation . 10

2.2 Scenarios . 11

2.3 Message content . 12

2.4 Requirements analysis . 13

2.4.1 Unified messaging . 15

2.4.2 Reliable communication . 15

2.4.3 Provisioning and monitoring . 15

2.4.4 Dynamic scaling . 16

2.4.5 Flexible services . 16

2.4.6 Secure communication . 16

2.4.7 Integration with other tools . 16

2.5 Architectural elements . 16

2.6 Architectural viewpoints . 16

2.7 Architectural perspectives . 17

2.7.1 Security . 17

2.7.2 Performance and scalability . 17

2.7.3 Availability and resilience . 18

2.7.4 Evolution and maintainability . 18

2.8 Event Driven Architecture . 19

2.9 Micro services . 19

2.10 Enterprise Integration Patterns . 19

2.11 Message Oriented Middleware . 20

2.11.1 Message broker . 21

2.11.2 Message queues . 21

2.11.3 Dead letter channel pattern . 21

3

2.11.4 Event message pattern . 22

2.11.5 Message store . 22

2.12 Messaging as a Service . 22

2.13 Cloud-based integration . 22

2.14 OAuth2.0 . 22

3 Architectural description 23

3.1 Relation between viewpoints . 23

3.2 Context viewpoint . 24

3.2.1 Scope . 24

3.2.2 Design rationale . 24

3.3 Functional viewpoint . 26

3.3.1 Design rationale . 26

3.3.2 Design decisions . 26

3.3.3 External interfaces . 28

3.4 Information viewpoint . 29

3.4.1 Design rationale . 29

3.5 Concurrency viewpoint . 31

3.5.1 Design rationale . 31

4 Viewpoint validation 31

4.1 Security . 31

4.2 Performance and scalability . 31

4.3 Availability and resilience . 32

4.4 Evolution and maintainability . 32

5 Implementation 33

5.1 Key decisions . 33

5.2 RescueTrack . 35

5.3 Use case: providing real-time ETAs . 35

5.4 Implementation process . 35

5.4.1 RescueTrack adapter . 35

5.4.2 API Management service (APIM) . 36

5.4.3 AmbuAPI . 37

5.4.4 Service bus . 37

5.4.5 Database application . 38

5.4.6 Hospital viewer . 38

5.5 Implementation trade-offs . 38

5.6 Impact analysis . 38

4

6 Evaluation 39

6.1 Methodology reflection . 39

6.2 Literature reflection . 39

6.3 Engineering cycle reflection . 40

6.4 Implementation validation . 41

6.4.1 Unified messaging . 41

6.4.2 Reliable communication . 41

6.4.3 Provisioning and monitoring . 41

6.4.4 Dynamic scaling . 41

6.4.5 Flexible services . 42

6.4.6 Secure communication . 42

6.4.7 Integration with other tools . 42

6.5 Impact . 42

7 Conclusion and discussion 43

7.1 Scientific implications . 43

7.2 Limitations . 45

7.3 Future work . 46

8 Appendix 49

8.1 Technology stack AmbuSuite . 49

8.2 Inductive open coding . 49

8.3 Perspective traceability . 50

8.4 APIM Policy . 53

8.5 API technical functions . 54

List of Figures

1 Engineering cycle, adapted from [38]. 10

2 Ideal communication in the multi-agency emergency healthcare [23]. 13

3 Reality about communication in the multi-agency emergency healthcare [13]. 14

4 The OAuth authorization flow [12]. 23

5 Context diagram of the communication infrastructure’s environment. 25

6 Functional diagram of the communication infrastructure. 27

7 Entity Relation Diagram of the communication infrastructure. 30

8 Process flow diagram of the communication infrastructure. 32

9 Information process flow of the implemented treatment. 36

10 APIM process flow . 37

11 Architecture core concept relations, derived from [31]. 52

5

List of Tables

1 Requirement traceability table . 24

2 Codes . 50

3 Perspective traceability . 51

6

1. Introduction

Healthcare professionals located in the emergency

healthcare disciplines (dispatch center, general

practitioners post, general practitioners, ambu-

lances, emergency department) indicate that com-

munication between them is in dire need of opti-

mization [23][32][36]. They actively contribute ev-

ery day towards improvement in the patients’ safety

and quality of healthcare received, and each disci-

pline alone is able to provide adequate care within

their focus area (e.g. ambulance). However, infor-

mation about the patients and provided care is not

carried over to other disciplines (e.g. emergency

department) and each discipline starts again with

retrieving information from the patient. There are

little to none IT-solutions available that support the

communication between the disciplines [29], and as

of today, walls between these disciplines have hardly

been torn down yet [1]. As a result, each discipline

suffers from the same communication problems:

1. Critical patient information is often missing:

often emergency physicians have to make crit-

ical decisions about patients based on insuf-

ficient information under time pressure. Pa-

tient’s and medical records are missing, are in-

complete or do not arrive in time.

2. Patient’s medical records do not arrive on time

to support emergency physicians’ decisions, the

information delivery speed is insufficient.

3. Overhead on the present communication struc-

tures, because synchronous methods such as

calling are used between healthcare profession-

als as other systems are proven to be inade-

quate for communication.

4. Patient’s medical records do not transcend the

disciplines’ boundaries, for instance, when a

patient is transferred to the emergency depart-

ment, the patient’s medical records, treatment

information and trauma assessments are not

[15].

Workarounds for these communication problems are

calling and oral description of a patient’s traumas,

records and assessments; an overhead at the expense

of 36 million euro for the extra assessments and

treatments that are performed because of missing or

incomplete information [26]. And 1735 unnecessary

deaths in 2017 because of missing medical informa-

tion [30]. The quality of the emergency healthcare

can be improved significantly when patient, medi-

cal, allergy and treatment records are available on

time, correct and complete. At the moment, how-

ever, that still is not the case [1][36]. In daily prac-

tice this situation raises the following challenges

when it comes to information sharing across mul-

tiple disciplines: insight in bed capacity, insight in

medical history for ambulance staff on location, and

transfer of medical information from the dispatch

center, ambulance, and emergency department to

the General Practitioner’s (GP) records [26]. Infor-

mation Technology (IT) holds the promise to de-

liver and coordinate that information, thus to re-

lieve emergency physicians from the burden of mak-

ing decisions based on unsuitable medical records.

Unfortunately, the involvement from many parties

supplying IT-systems resulted in a fragmented IT-

landscape where IT-systems are built for discipline-

specific use cases [29]. These systems tend not

to communicate nor integrate with systems from

other disciplines, where integration between disci-

plines could provide solutions for the current chal-

lenges in multi-agency healthcare. Continuing the

old ways (by applying aforementioned workarounds

on these complex challenges) only accumulates the

work load on already pressurized emergency physi-

cians. Therefore, instead of oral information trans-

fer, information that has been entered in a sys-

tem once, should be transferred to other IT-systems

(from other disciplines) when needed. For this, IT-

systems in the emergency healthcare sector require

system integration.

Integration of IT-systems to share information is

traditionally done on application level according to

7

the Enterprise Application Integration architectural

principals (EAI) [33]. Each application is connected

individually to any other application in or outside

the discipline, with the advantage that each appli-

cation can be integrated directly, point-to-point, in

a cost-effective manner. However, with the huge

number of IT-systems present in multi-agency emer-

gency healthcare, the number of connections to have

fully meshed point-to-point connections is given:(
n

2

)
=

n(n− 1)

2

The number of connections and its complexity

grows quadratically as each new system contributes

n-1 connections.

The traditional integration approach of using

point-to-point integrations is therefore not an op-

tion to consider, but instead a different architec-

tural approach should be undertaken to achieve the

desired information exchange. What this architec-

tural approach should consist of is researched with

the following research question:

RQ1: What architectural design can facilitate an

optimal information delivery in the Dutch

multi-agency emergency healthcare?

1.1. Emergency care market description and
figures

The multi-agency emergency healthcare market

consists of five disciplines: the dispatch center, Gen-

eral Practitioners Post (GPP), General Practition-

ers(GP), ambulance care, and the emergency de-

partment. Figures for these disciplines are as fol-

lows [2][23]:

1. Dispatch center: 21 dispatch centers (will be

reduced to 10 in the coming years) employ 414

people.

2. GPP: 122 locations, often these are located in

hospitals. These are open outside the regular

working hours of GPs.

3. GP: 8879 GPs are working in the Netherlands,

with multiple GPs working on one location.

4. Ambulance care: ambulances are organized in

25 Ambulance regions, in total containing 725

ambulances with 2218 staff.

5. Emergency department: 101 emergency de-

partments exist (always located in a hospi-

tal). Also considered as emergency depart-

ments are gynecologists and heart emergency

department, but the difference is that only

known patients can arrive there.

In a year there are more than 7 million contact mo-

ments with patients in the emergency healthcare.

From those contact moments are 4 million done by

the general practitioners, and 2 million are treated

at the ED. Ambulances made 1350.000 emergency

trips to transport traumatized patients.

The dispatch center radios the ambulance

through the P2000 (analog) or C2000 (digital) sys-

tem, where it uses a Integrated Dispatch Center

System (IDCS) to communicate with all ambu-

lances from each region. Ambulance staff enters

this information manually in the electronic trip form

(increasingly using integration with the IDCS) and

enrich it with trip and patient information. Pa-

tient information consists of, but is not limited to,

situation assessment, trauma assessment, primary

survey, and where necessary, a secondary survey.

There is a great variety in automated support, the

presence of many protocols and standards1 and re-

quired registered information [23].

When a patient arrives at the emergency depart-

ment the staffs’ approach differs based whether the

patient is stable or unstable. If the patient is un-

stable a team assembles ten minutes before the am-

bulance arrives. Team is provided specific instruc-

tions for each of them individually, and tasks are

distributed so that everyone’s exact task is known.

Also the personnel is continuously updated about

the treatment process, the patient’s stability and

provided with the necessary equipment. If the

1Nictiz enlists 164 healthcare standards

https://www.nictiz.nl/overzicht-standaarden/

8

patient is stable only one staff member will indi-

cate where to drop off the patient. In both cases

SBAR(R)2 method is used where the ambulance

personnel fills the hospital staff orally in about the

patient.

1.2. AmbuSuite

The research is an applied scientific study at Am-

buSuite, a company enlisting 10 employees. Am-

buSuite core business evolves around providing

applications for the emergency healthcare sector,

specifically:

1. AmbuForms: a electronic trip form used in am-

bulances by emergency staff on location. The

application runs on iPads that each of the staff

caries around. Information filled in on the

iPads is send to AmbuSuite’s servers.

2. AmbuView: a viewer at the Emergency De-

partment in hospitals providing information

about ambulances, their estimated times of ar-

rival (ETAs), and patients’ information. ETAs

are either filled in by ambulance personnel or

is calculated by rough estimations from Bing

Maps.

3. AmbuFlow: back office system for trip billing.

Trip information is pulled from AmbuForms,

from which an invoice is created that can be

send to insurance providers.

4. AmbuReports: Data Analytics Insight Appli-

cation: enables data analysis on trip data to

support business decisions and trip planning.

In 2018, AmbuSuite provided 41% of the Dutch

ambulance market with AmbuForms, a figure that

is being expended at the moment. From the 90

emergency departments, 49 departments in 35 hos-

pitals use AmbuView. AmbuSuite offers a GPS-

connection from the ambulance for the hospitals,

but only 14 departments use it because of the

greater price tag. The same applies to the eSpoed

connection that enables patient’s medical record

2SBAR(R): situation, background, assessment, recom-

mendation, (repeat).

transfer, because of the price tag the adoption rate

is slow.

1.3. Research method

To answer the research question, the steps I take

are based on the engineering cycle (figure 1) [38].

1.3.1. Problem investigation

I first performed a problem investigation by study-

ing literature (section 2) to discover:

1. The stakeholders present in the modern Dutch

multi-agency emergency healthcare that are di-

rectly responsible for the patient treatments

and safety. To discover these stakeholders I

study specialized emergency healthcare jour-

nals.

2. The requirements each of these stakeholders

have for adequate communication. As pre-

sented in the introduction the communication

between healthcare professionals in the multi-

agency emergency healthcare sector is in dire

need for optimization, and each of the, in pre-

vious steps discovered, stakeholders could have

various requirements regarding multi-agency

communication. To discover these require-

ments I study specialized emergency healthcare

journals, following the coding approach as de-

scribed below.

3. The architectural elements that could adhere to

the stakeholders’ requirements for digital com-

munication. Based on the previously discov-

ered requirements I conducted a literature re-

view to discover architectural elements (a fun-

damental piece from which a system can be

constructed [31]) with which an design can be

made that enables multi-agency communica-

tion. For this I study software architecture to

discover elements that adhere to one or more

requirement. A selection of the discovered el-

ements will be made if they fit one or more

requirements, but non-fitting elements are left

out.

To obtain the requirements the studied journals

9

Fig. 1: Engineering cycle, adapted from [38].

were coded to the method that went as follows [21]:

1. Segmenting: determine meaningful units of in-

formation in the journal articles. Meaningful

information is set as information that provides

an (partial) answer meant to solve the afore-

mentioned communication problems. Other

parts are neglected and omitted.

2. Open coding: up until saturation, all mean-

ingful pieces of information are coded with one

code word that is unique for the type of infor-

mation per unit.

3. Axial coding: to prevent duplicates a process

of deduplicating is executed. Duplicates are

merged into one code and are categorized. Fi-

nally, the categories are provided with a de-

scription of the content of the code.

4. Selective coding: in the last step, relations be-

tween categories are determined to provide a

foundation for an interpretation of the require-

ments.

1.3.2. Treatment design

Second, I design a treatment based on the architec-

tural elements I found in the literature study. All

these fundamental pieces from which a system can

be constructed are combined into an architectural

description (section 3). An architectural description

communicates the key aspects of the architecture to

the appropriate stakeholders and as such forms a

system’s design [31].

1.3.3. Treatment validation

Third, I perform a validation on the architectural

description using Rozanski’s perspectives (section

4), that use a set of closely related quality require-

ments. All previously created viewpoints are revis-

ited, validated and if the validation brings up qual-

ity requirements that are not incorporated in one of

the viewpoints, these are changed accordingly [31].

1.3.4. Treatment implementation

Fourth, I implemented the treatment based on the

architectural description, using a partner integra-

tion as a field-test for the implementation (section

5).

1.3.5. Treatment evalutation

Fifth, I evaluate the implementation on the method-

ology used, reflect on the literature and revisit the

requirements whether they are satisfied with the im-

plementation (section 6).

2. Literature review

This sections encompasses the three parts of the

literature study: the stakeholder investigation, the

requirements elicitation, and the architectural ele-

ments study. Each parts uses previously discovered

knowledge to build upon in their respective litera-

ture study. Rather than using the traditional ap-

proach of collecting functional and non-functional

requirements, the approach from Rozanski [31] is

used. This does entail the collection of functional

requirements for the system architecture, but pre-

defined architectural perspectives are used to adapt

existing viewpoints to incorporate quality proper-

ties (section 4).

2.1. Stakeholder investigation

A stakeholder in the architecture of a system is an

individual, team, organization, or classes thereof,

10

having an interest in the realization of the system.

As such, stakeholders drive the direction of the

architecture and make the fundamental decisions

about the scope, functionality, operational char-

acteristics and structure. Therefore, the principle

hold that architectures are solely created to meet

stakeholders needs [31]. As stated in the introduc-

tion each discipline in the emergency healthcare sec-

tor faces similar communication problems, and the

challenges faced regard inter-enterprise communica-

tion. Therefore, the identified stakeholders are the

healthcare professionals in the emergency health-

care disciplines: the triagist at the dispatch center;

the general practitioner at the General Practitioners

Post (GPP), the general practitioner (GP), the am-

bulance nurse, and the emergency physicians at the

emergency department (ED). Each of them are the

actors within one of the aforementioned disciplines

(depicted in figure 2 with their optimal communi-

cations). Their daily job is as follows:

Triagist at the dispatch center: The triagist is

often the first contact for many of the emer-

gency incidents. Their daily job is to perform

traige on the incoming emergency incidents and

determine its severity. Often experienced emer-

gency physicians or ambulances nurses work

there because of their field experience and abil-

ity to quickly assess a situation’s severity while

under time pressure.

General practitioners at GPP: These general

practitioners are the first-line care for evening

and weekend hours, often used for emergency

assessments for which not directly an ambu-

lance is required. The GP will often still call an

ambulance when necessary because when pa-

tients go the GPP in the night, their situation

is often more severe than usual and as such,

often cannot wait until the next morning.

General practitioner: First-line care for all pa-

tients that are not in severe danger and require

an ambulance, but for milder complaints. As

such, GPs often contain extensive records of

patients, information that is relevant in emer-

gency situations.

Ambulance nurse: ambulance staff that is called

in emergency situations and for patient trans-

port. They are often the first ones to arrive

at an incident and provide the first care. If

necessary, they transport the patient(s) to the

hospital.

Emergency physicians at ED: physicians that

work at the emergency department and pro-

vide emergency treatments for severely injured

patients. An emergency physician alone is a

separate profession is as such on duty in an

emergency department, but heart specialists

and other profession-specific surgeons will be

present for unstable patients as well.

Each of these stakeholders encounter emergency

situations and communicate with each other in var-

ious ways. Where all stakeholders and their com-

munications are depicted in figure 2, precise walk-

troughs of the emergency scenarios with the mes-

sage contents are discussed in the next sections.

2.2. Scenarios

The scenarios below describe all the different real-

life situations in which emergency incidents can oc-

cur. These situations are the description of the

various day-to-day situations in which aforemen-

tioned stakeholders encounter emergency situations

and are derived from [23]. The scenarios are di-

vided into four parts based on who initiated the

emergency incident. Each of the four scenarios en-

compasses various ways in which it can play out,

depending on the severity of the emergency situa-

tion.

First scenario: initiated by the GP or the triagist

from the GPP.

1. GP who refers a patient to the ED, GP calls

Dispatch center for ambulance.

11

2. GP/triagist on GPP refers patient to ED.

Second scenario: initiated by family or other rel-

atives from the patient.

1. From family or other relatives calling 112 (dis-

patch center), transport to ED.

2. Dispatch center provides medical advice.

3. Dispatch center advises going to a GPP.

Third scenario: initiated by bystanders.

1. Bystanders call 112 (dispatch center), trans-

port to ED.

2. Bystanders call 112 (dispatch center), ambu-

lance only provides medical care.

3. Bystanders call 112, ambulance provides med-

ical care and advises GP visit.

4. Bystanders call 112 (dispatch center), dispatch

center provides medical advice.

Fourth scenario: initiated by the patient.

1. Patient shows up at ED and goes to the hospi-

tal for treatment.

2. Patient shows up at ED, triagist refers him/her

to GPP.

2.3. Message content

In each of the scenarios as described above the

stakeholders communicate with each other. What

they communicate and what messages are ex-

changed in each scenario are detailed here. How-

ever, the communication in the emergency health-

care sector is complex in nature, often contains feed-

back loops and involves many parties (figure 2). As

AmbuSuite core business involves information deliv-

ery and processing for ambulances, the scope is nar-

rowed down to the parties dispatch center, GP, am-

bulance care, and emergency department, with their

respective communications lines. This removes the

communication with the GPP and for instance the

direct communication between the emergency de-

partment and the GP. Important to note is that

communications between the dispatch center and

ambulances are mostly verbal. The same applies

for most communications with the GPs. Content of

the messages send are in order (the numbers match

the message numbers in the figure):

5. Dispatch center pre-announcement. This mes-

sage announcement only happens in case of

severely injured patients or big incidents, as it

is not the usual way of communication because

usually the ambulance decide to which ED to

bring the patient to, whether or not based on

patients preferences. Contents of the message

are personal patient data, incident data, and

alert data (including triage). Alert data is cre-

ated when a dispatch center notes incident in-

formation; the caller; impact of the incident;

its urgency; and the severity of the injuries ac-

cording to the dispatch center’s centralist.

6. Dispatch center command to drive for ambu-

lances. This message happens always and is

meant to support the verbal order provided by

phone with patient and incident data. Con-

tents of the message are personal patient data;

incident data; alert data (including triage);

destination data; and urgency rating code.

7. Professional patient record summary for the

ambulance. This message’s purpose is to in-

form ambulance staff optimally about patient

to provide adequate care. Contents of the mes-

sage are unprocessed messages resulting from

assessment and previous emergency situations;

episodic list; moment of contacts in the last

ten days; medication data from the last four

months; measurements performed on the pa-

tient in last ten days; summaries of correspon-

dence in the last ten days; family medical his-

tory; treatments; and additional social data.

8. Ambulance arrival announcement to ED. This

message is sent after initial anamnesis (medical

history check) performed by ambulance staff

on the incident location and notifies the hos-

pital that a patient is incoming. If the ETA is

known, it is send as well.

9. Intervention message, can be repeated as often

as required, from small messages as ETA up-

12

Fig. 2: Ideal communication in the multi-agency emergency healthcare [23].

dates to patient assessments or medical records

update (see next item).

10. Transfer message. The patient is transferred

to the ED, and communication from the am-

bulance is closed. Contents of this message

are data regarding the patient; incident; alert

(including triage); trip; departure; destination;

SBAR(R); medication; infuse; primary and sec-

ondary assessment survey; work diagnosis; pa-

tient placement; and appendices.

12. Patient identification from ED to the ambu-

lance. This message is send when ambulances

did not receive patient information from the

dispatch center, GP or the patient itself, and

patient identification can be provided this way.

Contents of the message are trip identification;

patient identification; patient diagnoses; and

remarks from the patients transfer or treatment

(e.g. from ED to ambulance).

13. Ambulance report to GP. This message is send

in case the ambulance staff performs medical

treatment on the patient after anamnesis. A

report of the treatment is send to the GP if

this is the last medical treatment (no patient

transport to a ED). Purpose is to inform the

GP about the emergency situation and the pro-

vided medical treatment. Contents of the mes-

sage are the reason of the message; diagnosis;

and medical advice provided to the patient. In

an appendix the anamnesis; physical examina-

tion; and intervention are detailed.

2.4. Requirements analysis

This section dives into the requirements that pre-

viously discovered stakeholders have for commu-

nication in the daily scenarios as detailed above,

when they want to communicate the information

as specified in the message content section. To re-

cap, the stakeholders where as follows: the triagist

13

Fig. 3: Reality about communication in the multi-agency emergency healthcare [13].

at the dispatch center; the general practitioner at

the General Practitioners Post (GPP), the general

practitioner (GP), the ambulance nurse, and the

emergency physicians at the emergency department

(ED). The communication problems these stake-

holders are facing (as stated in the introduction)

are the following:

1. Critical patient information is often missing

2. Patient’s medical records do not arrive on time

3. Overhead is present in current communication

4. Medical records do not transcend the disci-

plines’ boundaries

These communication problems result in the follow-

ing challenges: insight in bed capacity; insight in

medical history for ambulance staff on location; and

transfer of medical information from the dispatch

center, ambulance, and ED to the GP’s records

[26]. These challenges require system integration

and cannot be solved anymore with oral or written

information transfer [1][29].

As all the stakeholders face similar communica-

tion issues, in the technical specification the stake-

holders can be grouped together since all stake-

holder share a common goal: sending and receiv-

ing messages. In this case, the content of the mes-

sage is subordinate to the message itself, i.e. for

a communication medium the content of the mes-

sage is less relevant than the communication infras-

tructure. Therefore, the stakeholders involved in

the technical specification are grouped as message

senders and message receivers. Other stakeholders

involved in the technical specification are the devel-

opers that implement the architectural design; sys-

tem maintainers for system evolution; system ad-

ministrators that operate the system during run-

time; and communicators that create documenta-

tion and market features.

As can be seen in figure 3, many communication

lines that had been present in figure 2 are in re-

ality not there. Instead of digital communication,

14

communications between many of the stakeholders

are mostly verbally, by email, and even writing.

As this type of communication becomes outdated

and insufficient to solve the aforementioned chal-

lenges, stakeholders want to be able to send and re-

ceive messages between them to face the challenges

head-on. The stakeholders’ requirements were col-

lected from an exhaustive study of specialized medi-

cal journals. To obtain the requirements the studied

journals were coded according to the open coding

method (section 1.3.1). The coding process resulted

in categorized set of requirements: unified messag-

ing; reliable communication; provisioning and mon-

itoring; dynamic scaling; flexible services; secure

communication; and integration with other tools

[2][15][23][26][28][29][36]. The list of literature used

can be found in the appendix, along with the used

codes (section 8.2). Each of the discovered require-

ments is further detailed below.

2.4.1. Unified messaging

Unified messaging holds that any type of health-

care message can be send through one communi-

cation infrastructure, that one system can connect

with other tools and handle the messaging between

them. In such a system, direct communication with

each system is not desired, but instead the mes-

sage provider should be decoupled from the message

sender. A communication infrastructure that con-

nects systems and acts a message broker between

parties can enable such a decoupling from sender

to receiver, one system can drop of a message and

forgets about it.

In addition, the communication infrastructure

should be able to broadcast messages. For instance,

in scenario eight it is desired to perform an hospi-

tal availability check, a broadcast message that is

send to multiple hospitals can check for the beds

available and return the results. Each of the stake-

holders however, is only interested in a few types of

messages. For instance, an emergency department

wants to receive data from an incoming patient and

the ambulances ETA, but is not interested in ETAs

from all ambulances or all patients that are being

transported to other hospitals. These parties would

prefer to only receive a selection of the messages and

filter irrelevant messages. This will also improve the

security as only data meant for the selected party

is send to that party, and others cannot see any of

the sensitive information.

Also, messages in the communication structure

should be able to contain all kinds of information

in messages regardless of the content nor the reason

a message is send (section 2.3). I.e. an ambulance

arrival announcement to ED should use the same

message structure as a professional patient record

summary for the ambulance or an ambulance’s ETA

update. Finally, for both the sender and the receiver

it is desired that the message format is compatible

with each other. Less business logic is then neces-

sary to translate and transform incoming messages.

2.4.2. Reliable communication

A patient’s medical information is time-critical so

information should be published to subscribed par-

ties as soon as available, which opts for an event-

driven approach. The message delivery must be

resilient to ensure that messages are delivered for

a second time even when it fails once. It should

also be idempotent (message should be processed

without changing it characteristics). Finally, the

emergency healthcare runs 24/7 and as such should

the communication infrastructure have a high avail-

ability and up-time to ensure that messages can be

delivered at any time.

2.4.3. Provisioning and monitoring

Provisioning is defined as the configuration of con-

nected systems, providing users with access to

data and resources. It refers to all enterprise-

wide information-resource management involved

and should therefore have the functionality to grant

access to authorized resources. System administra-

tors should be able to monitor the system and in-

tervene where necessary, e.g. when messages are

15

not received. In addition, when the communica-

tion infrastructure is not performing as desired, logs

should be available for analysis.

2.4.4. Dynamic scaling

Requests for the communication infrastructure

should be load balanced and scalable to handle

peak hours. Dynamic scaling also regards beside

throughput and response time the number of mod-

ules that can be added, the communication struc-

ture should be able to scale up and out.

2.4.5. Flexible services

The communication infrastructure should be flexi-

ble in the variety of systems that it can communi-

cate with, and not exclude systems because it does

not support the used message format or structure.

As healthcare professionals use a wide variety of

systems many systems should be able to use the

communication infrastructure [1][29].

2.4.6. Secure communication

Secure communication is a must have because of

the sensitive nature of the sector that deals with

a lot of personal medical data. As sensitive pa-

tient information is sent over digital communica-

tion channels, no data leaks or unauthenticated ac-

cess should be possible. In addition, only desig-

nated parties should be able to obtain access to the

data send over the communication infrastructure,

and only the data that is meant for them to see.

2.4.7. Integration with other tools

The communication infrastructure should be able to

expose data trough an API that handles the autho-

rization and authentication of users. In that way,

existing applications can be integrated by writing

adapters that transform messages and connect sys-

tems with the communication infrastructure.

2.5. Architectural elements

This section builds upon previously discovered

stakeholders and their requirements regarding com-

munication among them in the daily scenarios they

encounter. The discovered requirements are used

as a guiding principle when studying the literature

reviewing architectural elements. Elements that do

not fit into one of the requirements or cannot act

as a fundamental system element are left out, the

ones that do fit are used for the system architec-

ture design in section 3. An architectural element

is defined as a fundamental piece from which a sys-

tem can be constructed and can therefore vary from

design patterns to complete architectures [31]. It

possesses the following key attributes: a defined set

of responsibilities, defined boundaries, and a set of

clearly defined interfaces. The latter defines the ser-

vices that the elements provides to the other archi-

tectural elements

2.6. Architectural viewpoints

It is not desirable and not even possible to in-

clude all details for an architecture in one single all-

encompassing architecture model. Instead, complex

systems should be represented in a way that is man-

ageable and comprehensible by a range of business

and technical stakeholders. Rozanski provides an

approach to avoid a monolithic design but capture

the architectural design from several directions si-

multaneously. With this approach the architectural

design is partitioned into a number of separate but

interrelated viewpoints, each of which describes a

separate aspect of the architecture [31]. A view-

point is only a partial representation of an archi-

tecture, and therefore, the entire sets of viewpoints

is necessary to understand the complete architec-

ture. Considerations when creating a viewpoint re-

gard the scope (what structural aspects are repre-

sented), element types (what types of elements are

categorized), audience (which stakeholders is the

viewpoint targeted at), audience expertise (level of

technical understanding), and level of detail.

For several scenarios viewpoints are already pre-

defined. A viewpoint is formally defined as a collec-

tion of patterns, templates and conventions for con-

structing one type of viewpoint. It defines the stake-

holders whose concerns are reflected in the view-

16

point and the guidelines, principles and template

models for constructing its viewpoints [4][31]. Ar-

chitectural viewpoints provide a framework for cap-

turing reusable architectural knowledge, in such a

way that separation of concerns is guaranteed be-

cause the focus is separately on independent aspects

of a system. In addition, as different stakehold-

ers have different concerns, addressing them can be

done with the help of different viewpoints. This re-

sults in a reduced complexity for a designed archi-

tectural viewpoint. To avoid fragmentation, only

viewpoints that address significant concerns for the

system are included. Four core viewpoints are listed

below [31]. The functional, information and con-

currency viewpoints characterize the fundamental

organization of the system, where the context view-

point provide insight in the environment the system

acts in.

Context viewpoint: describes the relationships,

dependencies, and interactions between the

system and its environment (the people, sys-

tems, and external entities with which it in-

teracts). It concerns the system scope and its

responsibilities, identifies (nature of) external

entities, external interfaces, completeness, con-

sistency and coherence.

Functional viewpoint: describes the systems

run-time functional elements, their responsibil-

ities, interfaces and primary interactions, and

is as such the foundation for other viewpoints.

Information viewpoint: describes the way the

systems stores, manipulates, manages, and dis-

tributes information. This viewpoint develops

a complete but high-level view of static data

structure and information flow.

Concurrency viewpoint: describes the concur-

rency structure of the system and maps func-

tional elements to concurrency units to identify

the parts of the system that can execute con-

currently and how this is coordinated.

2.7. Architectural perspectives

There is an inherent need to consider quality prop-

erties (e.g. security) in each architectural viewpoint

as considering what a system does is only part of the

story, and that how the system provides it services

is crucial as well. An architectural perspective re-

visits the created viewpoints with a quality property

(e.g. security) in mind, to assess and review the ar-

chitectural models to ensure that the architecture

exhibits the required properties. As such, an ar-

chitectural perspective is defined as a collection of

architectural activities, tactics, and guidelines that

are used to ensure that a system exhibits a partic-

ular set of related quality properties that require

consideration across a number of the system’s ar-

chitectural viewpoints [31].

The most important perspectives for large infor-

mation systems are: security; performance and scal-

ability; availability and resilience; and evolution and

maintainability [17][31].

2.7.1. Security

The security perspective copes with controlling ac-

cess for system resources, regarding almost the com-

plete system. It handles a system’s user identifica-

tion and authentication; control different classes of

access at varying levels of granularity; and maintain

secret information. When designing a system ar-

chitecture sensitive resources are identified together

with their potentials threats and its mitigations.

This can result in partitioning and restricting parts;

new security hardware; new operational procedures,

certification, backups procedures.

2.7.2. Performance and scalability

The performance and scalability perspective copes

with the throughput, response time, predictability

etc. from a system; as well as the ease of the system

distribution and duplication. Performance ensures

the system continues running when the number of

users, transactions or complexity increases. The

way that hardware is configured, how resources are

allocated and how software is written all influences

17

performance.

System scalability is defined as the system’s abil-

ity to cope with increased load, with load not being

one-dimensional [17]. Load can be expressed in pa-

rameters such as requests per second, read/write

ratio, simultaneously active providers, etc. Perfor-

mance in case of online systems is then the response

time (time between client sending a request and re-

ceiving a response). Response time can be mea-

sured in percentile in two ways: what is the per-

formance impact when a load parameter increases,

or how much resources need to be increased when

increasing load parameter to keep the same perfor-

mance. As response time is different each time of

request, it is a distribution rather than a single num-

ber as outliers occur in practice. Performance can

be maintained by scaling machines up (using more

powerful machines) or scaling out (distributing the

load across multiple machines). Designing a scal-

able architecture to handle load evolves around the

assumption of future load.

2.7.3. Availability and resilience

The availability and resilience perspective copes

with ensuring a system’s availability and deals with

failures that could affect this. How the prevention

of failures is organized is expressed in a system re-

liability indicator, what for the most part is proper

error handling (many critical bugs are actually be-

cause of poor error handling [40]) and ensuring that

systems do not fail completely. On a larger scale,

reliability evolves around systematic errors within

the system, such as runaway processes, corrupted

responses, and cascading failures [11]. The pesky

characteristic from these systematic errors is that

they often lie dormant for a long time until they

are triggered by a unusual set of circumstances and

input. Careful thinking about assumptions and in-

teractions in the system can avoid a lot of the dam-

age, as well as thorough testing; process isolation;

allowing processes to crash and restart; measuring,

monitoring, and analyzing system behavior in pro-

duction [17].

Reliability among distributed machines is more

difficult to realize as with each single machine added

that has P chance of failure, that when failing in-

dependently, the probability of data loss is PN . So

for any desired reliability R and any single-node fail-

ure probability P some replication N can be picked

that PN < R [19]. The fundamental problem be-

hind distributed system failure is that faults caus-

ing failures are replicated over multiple nodes or

machines as they are distributed, therefore system

failures are not independent but rather cascading.

In other words, if one bug is on one machine, it is on

others as the software runs on all the machines in

a distributed system. Part of the difficulty is that

code-complexity increases when coping with mul-

tiple machines, e.g. when dealing with hardware

degradation that result in slower disk access times,

which probability increases when more machines are

added. Distributed systems typically require more

configuration and more complex configuration be-

cause they need to be cluster aware and have to

deal with timeouts. This configuration is, of course,

shared; and this creates yet another opportunity to

bring everything to its knees [19]. Another major

difficulty of distributed systems are monitoring the

systems and configuration management, what is dif-

ficult to execute in smaller organizations.

2.7.4. Evolution and maintainability

The evolution and maintainability perspective

copes with future expansion of the system and the

ease of maintenance after the initial system’s de-

ployment. Preferably a system is designed with

evolution in mind, that allows for easy extension of

the system when required, without requiring ma-

jor code rewrites or refactoring. Maintainability

evolves around the ability to maintain the system

after initial deliverance, such as fixing bugs, keep-

ing the system operational, investigating failures,

modifying it for new use cases, etc. It is often over-

looked but is nevertheless important as the major-

18

ity of the costs are in the ongoing maintenance [17].

Software can be designed in such a way that main-

tainability can be improved by emphasizing three

principles: operability (ease of system operation),

simplicity (reducing system complexity), and evo-

lution (systems’ ability to cope with changes in the

feature).

2.8. Event Driven Architecture

An event-driven architecture consists of event

senders that generate a stream of events, and event

receivers that listen for the events. An event is an

observable change in the state of an IT system; it

can be triggered both by real world events, such

as presence detection, timeouts etc. or by internal

events like the reception of a message(e.g. a com-

mand) or the completion of a task [9]. Events are

delivered in real-time, thus receivers can respond

immediately to events as they occur. Senders are

decoupled from receivers and a sender has no knowl-

edge about which receivers are listening. Receivers

are also decoupled from each other, and every re-

ceiver can unless otherwise arranged see all of the

events. In the first interaction, the occurrence of an

event (a notable thing that happens inside or out-

side your business) can trigger the invocation of one

or many services. Those services may perform sim-

ple functions, or consist of entire business processes

[37].

2.9. Micro services

Many business applications store redundant data

along with implementing redundant functionality,

where other systems could benefit as those func-

tions are exposed and available as a service to

other systems [14]. Micro services are a variant

of the service-oriented architecture (SOA) architec-

tural style that structures an application as a col-

lection of loosely coupled services. In a micro ser-

vices architecture, services are fine-grained and the

protocols are lightweight. The benefit of decompos-

ing an application into different smaller services is

that it improves modularity. This makes the ap-

plication easier to understand, develop, test, and

become more resilient to architecture erosion. Ser-

vices can be deployed independently, not consider-

ing each technology stack, libraries or frameworks.

A major element of the micro service approach

is the service discovery, where service look up at

the API gateway is used to find the endpoint for a

service. The gateway forwards the call to the appro-

priate services on the back-end. The API gateway

can aggregate the responses from several services

and return the aggregated response, as well as han-

dling authentication, logging, SSL termination, and

load balancing.

A team can update an existing service without

rebuilding and redeploying the entire application.

Services are responsible for persisting their own

data or external state. It parallelizes development

by enabling small autonomous teams to develop,

deploy and scale their respective services indepen-

dently. It also allows the architecture of an individ-

ual service to emerge through continuous refactor-

ing, enabling continuous delivery and deployment.

2.10. Enterprise Integration Patterns

As application rarely live in isolation, integration

solutions are heavily used nowadays. But inte-

grated systems face a few fundamental communica-

tion challenges that networks are unreliable as they

come with communication links that can cause de-

lays or interruptions and are slow in communication

compared to a local method call [14]. Also, any two

applications are different and require interfaces to

interact, that are subject to change time as well.

And changes in one application might effect more

applications than just the integrated solution when

applications are tightly coupled. For integrated sys-

tems to communicate, multiple styles of communi-

cation can be applied and integrated in one solution

simultaneously. However, messaging is more imme-

diate than file transfer, better encapsulated than

a shared database, and more reliable than remote

procedure invocation. Using messaging allows for

19

allow asynchronous communication, where integra-

tion can be achieved between a n-number of appli-

cations with the use of a common message channel

[14].

For asynchronous messaging two principles are

important: send and forget, and store and forward.

The send and forget principle allows the sender to

create a message, send it to the message channel

and continue doing other work. In other words, no

application lock is created while waiting for some re-

sponse, the sender can be confident that the receiver

will eventually receive the message. The second

one, store and forward, the message is first stored

on the senders’ system, before being transmitted.

This allows for separation of concerns by delegating

the responsibility of delivering data to the messag-

ing system. Where asynchronous messaging offers

numbers of advantages such as remote communica-

tion, multiple platform/language integration, vari-

able timings, reliable communication and thread

management, it is also facing challenges from which

some are inherent to the asynchronous model. They

are among others: a complex programming model

as it uses event handlers that respond to incom-

ing messages; sequences issues as message channels

guarantee delivery, but not when it will be deliv-

ered; facing synchronous scenarios where the gap

between synchronous and asynchronous communi-

cation is bridged; and performance, as the store and

forward principle adds some overhead.

Asynchronous messaging has a number of pro-

gramming implications as the send and forget ap-

proach allows the application to continue working

after sending the message, where it otherwise would

be blocked waiting for the callback. First, no sin-

gle tread of execution exists anymore, but multiple

threads enable sub-procedures to run concurrently.

It can greatly improve performance by ensuring that

sub-processes are making progress while others are

waiting, but makes debugging more difficult. Sec-

ond, the asynchronous nature of incoming messages

mandates that message handling happens upon ar-

rival, which can interrupt the tasks the receiving

system was working on. Third, using asynchronous

messaging mandates that sub-processes run inde-

pendently from each other, but that requires a caller

that can combine the results from different pro-

cesses together, even when they are out of order.

Fourth, developers have often little control over the

participating applications, which is a fairly limiting

constraint, and standardization of communication

protocols and message formats is hard. Distributed

programs makes governing applications harder, as

they are often spanning the entire enterprise.

2.11. Message Oriented Middleware

Message-oriented middleware (MOM) is software

or hardware infrastructure that supports sending

and receiving asynchronous messages between dis-

tributed systems. MOM allows application modules

to be distributed over heterogeneous platforms and

reduces the complexity of developing applications

that span multiple operating systems and network

protocols. The middleware creates a distributed

communications layer that insulates the application

developer from the details of the various operating

systems and network interfaces. APIs that extend

across diverse platforms and networks are typically

provided by MOM. This middleware layer allows

software components that have been developed in-

dependently and that run on different networked

platforms to interact with one another. Applica-

tions distributed on different network nodes use the

application interface to communicate. In addition,

by providing an administrative interface, this new,

virtual system of interconnected applications can be

made reliable and secure. MOM provides software

elements that reside in all communicating compo-

nents of a client/server architecture and typically

support asynchronous calls between the client and

server applications.

20

2.11.1. Message broker

Messaging-oriented middleware relies on using a

message broker, which is an intermediary module

that takes incoming messages from applications and

perform some action on them. It mediates commu-

nication among applications, minimizing the mu-

tual awareness that applications should have of each

other in order to be able to exchange messages, ef-

fectively implementing decoupling. Features of a

message broker might consist of:

1. Translating messages from the formal messag-

ing protocol of the sender to the formal mes-

saging protocol of the receiver.

2. Transform messages to an alternative represen-

tation.

3. With message aggregation multiple incoming

messages are combined in a larger message,

sometimes involving pre-processing such as

message translation and transformation.

4. Decomposing messages into multiple messages

and sending them to their destination, then re-

composing the responses into one message to

return to the user.

5. The headers of the incoming messages are in-

spected for the destination and are then routed

to the correct destination.

6. Provide content and topic-based message rout-

ing using the publish–subscribe pattern.

7. Other tasks can consist of message validation,

buffering, providing reliable storage, guaran-

teed message delivery, invoking web services to

retrieve data, and responding to events or er-

rors.

2.11.2. Message queues

Message brokers use message queues for asyn-

chronous communication, meaning that the sender

and receiver of the message do not need to interact

with the message queue at the same time. Messages

placed onto the queue are saved until the recipient

retrieves them. Message queues have implicit or ex-

plicit limits on the size of data that may be trans-

mitted in a single message and the number of mes-

sages that may remain outstanding on the queue. In

a message queue messages can be grouped into cat-

egories according to the publish-subscribe pattern.

Message senders publish messages into these cate-

gories, and when receivers express interest in one of

more of these categories, senders can subscribe to

receive these messages. In this way, messages are

not send directly to receivers, but instead to a pool

of consumers where receivers can subscribe to. This

enables even further decoupling of message senders

and receivers as messages are published in a cate-

gory and not send directly to a receiver anymore.

A publish-subscribe pattern has the disadvantage

that, if handled improperly, the pile of undelivered

messages can pile up, what in turn can cause load

surges. In addition, a message is removed from the

queue once it is received. Synchronous conforma-

tion of a task execution cannot be directly provided

anymore, and the non-persistent nature of the mes-

sage queue disables direct control over system tasks.

To partially counteract the non-persistent nature

of the message queue and improve task handling the

publish-subscribe pattern can be extended with the

function that sent messages are not disposed/lost

upon reception, but upon confirmation. Messages

send in the message queue are processed, send, ac-

knowledged or confirmed, and only then deleted.

This ensures that information-critical messages are

always received and read by the receiver, or after

several retries found in the dead letter.

2.11.3. Dead letter channel pattern

The dead letter channel is the place for undeliver-

able messages, where messages send in the message

queue end up when the receiver cannot receive the

message after several retries. The message queue

cannot return the message as the sender is no re-

ceiver and cannot detect deliveries. The dead letter

channel offers a place to store invalid or undeliv-

erable messages, where system administrators can

inspect a message and check the errors, while in-

21

forming the system maintainers in the process.

2.11.4. Event message pattern

An event is a message that notifies other compo-

nents about a change or an action that has taken

place. An event’s message content are typically less

important, as such they can have an empty mes-

sage body, their occurrence tells the observer to re-

act. In a push model it could occur that an event is

a combined document/event message, but its only

useful when receivers want the content, otherwise

large messages will be ignored (if only event is use-

ful) and will cause overhead.

2.11.5. Message store

A duplication from the message that is send over the

messaging channel is send to another channel to be

stored in a database. The method of fire-and-forget

will not slow down messaging, only increase the net-

work traffic because a second message is send. Not

all types of messages are necessary to store and from

the relevant document messages not all information

may not be necessary to be stored too. The ad-

vantage of this pattern is that it enables message

logging, useful when the message content is impor-

tant to preserve, e.g. when the same information

needs to be shared with other receivers later on.

2.12. Messaging as a Service

Distributed systems are less robust than single sys-

tems as reliability in distributed systems is harder

to realize (section 2.7.3) because failures in soft-

ware are replicated over machines. In turn, adding

more machines increases the probability of failures

[17]. A solution for this is Messaging as a Service

(MaaS), effectively outsourcing the messaging in-

frastructure to prevent any of the concerns that

trouble in-house Software as a Service (SaaS) so-

lutions such as availability, resilience, performance

and scalability. When outsourcing the messaging

infrastructure, the typical messaging problems with

networks, clocks and timing issues that occur as

well as independent system failure are up to the

specialized cloud provider’s system administrators.

Messaging as a service resolves aforementioned is-

sues for the end-user as well as counteracts the non-

deterministic nature of systems (the same operation

does not necessarily return the same result, based

on e.g. system response time and throughput). Fur-

ther advantages can include elastic/on-demand re-

source allocation, a guaranteed minimum level of

reliability, existing management tools, flexible ser-

vices, and adapters for integration with other tools

[20].

2.13. Cloud-based integration

Integration Platform as a Service (iPaaS) consists

of four pillars: API management, orchestration of

business processes and workflows, a service bus for

messaging, and the event grid for notifications [20].

Moving API management to the cloud enables the

connection between cloud and on-premise applica-

tions with other applications. As most applica-

tions expose their functionality through APIs, with

cloud-based API management the number of invo-

cations, authentication, speed, usage pattern anal-

ysis and documentation can be created and con-

trolled. Results from the called APIs can be sent to

other applications using the service bus (a message

queue) that enables asynchronous messaging as a

service. When a message is received, an event grid

can notify the sender that a new messages has ar-

rived. In this way it is avoided that receivers have to

poll the service bus on a fixed time interval. The re-

ceiver registers an event handler for the event source

it is interested in. Event Grid then invokes that

event handler when the specified event occurs. Fi-

nally, orchestration of business processes and work-

flows combines data from different sources to create

one workflow, whereby acting as a singular instance

of a software solution that is presented to end-users.

2.14. OAuth2.0

The authorization code grant type is used to ob-

tain both access tokens and refresh tokens and is

optimized for confidential clients. Since this is a

redirection-based flow, the client must be capable

22

Fig. 4: The OAuth authorization flow [12].

of interacting with the resource owner’s user-agent

(typically a web browser) and capable of receiving

incoming requests via redirection from the autho-

rization server.

The flow illustrated in Figure 3 includes the fol-

lowing steps [12]:

(A) The client initiates the flow by directing the re-

source owner’s user-agent to the authorization

endpoint. The client includes its client identi-

fier, requested scope, local state, and a redirec-

tion URI to which the authorization server will

send the user-agent back once access is granted

(or denied).

(B) The authorization server authenticates the re-

source owner (via the user-agent) and estab-

lishes whether the resource owner grants or de-

nies the client’s access request.

(C) Assuming the resource owner grants access, the

authorization server redirects the user-agent

back to the client using the redirection URI

provided earlier (in the request or during client

registration). The redirection URI includes an

authorization code and any local state provided

by the client earlier.

(D) The client requests an access token from the

authorization server’s token endpoint by in-

cluding the authorization code received in the

previous step. When making the request,

the client authenticates with the authorization

server. The client includes the redirection URI

used to obtain the authorization code for veri-

fication.

(E) The authorization server authenticates the

client, validates the authorization code, and en-

sures that the redirection URI received matches

the URI used to redirect the client in step (C).

If valid, the authorization server responds back

with an access token and, optionally, a refresh

token.

3. Architectural description

This section encompasses the treatment design,

build upon previously discovered stakeholders, their

requirements and fitting architectural elements.

The treatment design is a set of procedures that

documents an architecture in a way its stakeholders

can understand and demonstrates that the architec-

ture has met their concerns, thereby effectively and

consistently communicating the key aspects of the

architecture to the appropriate stakeholders [31].

The deliverables do not only encompass the archi-

tectural models, but also the scope definition, con-

straints and design principles. Finally, this results

in a documentation of the architecture that is called

an Architectural Description (AD). To trace the

links between the requirements and the, from the

literature derived, architectural elements Table 1

provides an overview of each architectural element

linked with the requirement it fulfills.

3.1. Relation between viewpoints

All elements in an Architectural Description (AD)

are linked with each other (figure 11). An archi-

tecture comprises architectural elements, has a sys-

tems can be documented by an AD. The AD itself

documents the architecture for the stakeholder that

has specific concerns. In addition, an AD comprises

view(points) that addresses these concerns. Finally,

23

Requirement
Requirement

Number

Architectural

Element

Element

Section

Unified Messaging 2.4.1

Enterprise Integration patterns

Messaging oriented middleware

Message broker

Message queues

2.10

2.11

2.11.1

2.11.2

Reliable Communication 2.4.2

Dead letter channel

Message store

Messaging as a service

2.11.3

2.11.5

2.12

Provisioning and monitoring 2.4.3 Messaging as a service 2.12

Dynamic Scaling 2.4.4 Micro services 2.9

Secure Communication 2.4.6 OAuth 2.0 2.14

Integration with other tools 2.4.7

Event-driven architecture

Event message

Cloud-based integration

2.8

2.11.4

2.13

Table 1: Requirement traceability table

perspectives shape the view(points) that form the

foundation of the AD.

3.2. Context viewpoint

The context viewpoint describes the relationships,

dependencies, and interactions between the system

and its environment (the people, systems, and ex-

ternal entities with which it interacts). It concerns

the system scope and its responsibilities, identifies

(the nature of) external entities, external interfaces,

completeness, consistency and coherence [31].

3.2.1. Scope

The scope of the architectural description is framed

by the research question what architectural de-

sign can facilitate an optimal information delivery

in the Dutch multi-agency emergency healthcare.

One of the stakeholders’ requirements to achieve

optimal information delivery is unified messaging

(section 2.4.1), therefore the architectural design

should encompass an communication infrastructure

that satisfies that demand. Other requirements re-

garded the demand for dynamic scaling; flexible ser-

vices; secure communication; and integration with

other tools; any communication infrastructure de-

signed should meet those demands. Communication

should be asynchronous and support broadcasting

to interested parties; support scaling up and out;

usable on any device; and support integration with

other existing tools. The integration should be han-

dled by external adapters that transform messages

and connect systems with the communication in-

frastructure.

3.2.2. Design rationale

The context diagram provides a high-level overview

of the system and its environment, showing the

stakeholders and how they interact with the sys-

tem. The communication infrastructure is depicted

in the middle (figure 5) with the connecting enti-

ties, whether internal or external, surrounding it.

As the gateway (API) is part of the communication

system, it is not depicted here, but in the functional

viewpoint. The existing structure with information

extraction from the LSIV and the dispatch center is

kept intact as it suffices. Where this usually feeds

into AmbuForms directly, it uses the communica-

tion structure first as a medium to post messages

and to store them in databases. The incident and

24

Fig. 5: Context diagram of the communication infrastructure’s environment.

25

vehicle information that are retrieved from the LSIV

and the the dispatch center are stored in individ-

ual databases separating incidents and vehicles from

each other, maintaining the current database struc-

ture. AmbuSuite’s current applications (depicted

in orange) are replaced by generic names to indi-

cate that these are replaceable applications. Outgo-

ing data is send to many interested parties, such as

the electronic patient dossier (EPD) and the LSDV,

both obligated by the Dutch government.

3.3. Functional viewpoint

The functional viewpoint describes the systems run-

time functional elements, their responsibilities, in-

terfaces and primary interactions, and is as such the

foundation for other viewpoints. The created func-

tional architecture model (FAM) has a significant

impact on the system’s quality properties such as

ability to change, its ability to be secure, and its

run-time performance.

3.3.1. Design rationale

As can be seen in figure 6, an authorization mod-

ule contains an identity provider that handles token

issuing, and can verify tokens for each message or

event that users want to send through the message

broker. After buffering, both event messages and

document messages are send through the messaging

queue, that determines based on topic subscriptions

which receiver wants to receive a specific message.

An event invoker is watching the message queue un-

til it fires (indicating a new message has arrived)

and then wakes the receiver, that pulls the messag-

ing queue to retrieve the new message. This avoid

polling for new messages and thus unnecessary re-

quests. As the micro services approach dictates, dif-

ferent functionalities are separated from each other

in separate services. The authentication module is

separated from the messaging service, since the au-

thentication module only needs to be contacted in

case the issued token has been expired.

3.3.2. Design decisions

Each design decision that has been made to create

the functional architecture model is specified below.

The literature from where these design decisions are

based on can be found in Table 1 for traceability

purposes.

1. An event driven architecture forms the foun-

dation for the sector architecture, intended to

support massive concurrency demands for a

wide range of applications. In event-driven

architecture, applications are constructed as

a set of event-driven stages separated by

queues. This design allows services to be well-

conditioned to load, preventing resources from

being over-committed when demand exceeds

service capacity. Decomposing services into a

set of stages enables modularity and code reuse

[37].

2. The micro services architecture style form the

basis for the modules such as the authentica-

tion module as this enables fine-grained ser-

vices and lightweight protocols. All modules

are accessible through one public API only.

3. A messaging queuing service with a publish/-

subscribe pattern is used. On this pattern an

extension is made to ensure delivering of mes-

sages by only deleting them upon conforma-

tion instead of reception. Topics are used so

that receivers are only receiving the messages

for which they are subscribed on. In this way

the asynchronous remote communication can

separate applications’ responsibilities; distinct

platforms can be integrated with each other;

and an increased reliability as application can

exist independently [14].

4. A dead letter channel is used to catch messages

that are cannot be delivered. To avoid mes-

sage congestion in the queue a message is after

a couple of retries send to the dead letter chan-

nel, where the errors can be checked by system

administrators.

26

Fig. 6: Functional diagram of the communication infrastructure.

27

5. An event invoker is used to enable instant noti-

fications for receivers. Instead of traditionally

relying on polling for new messages, the event

invoker sends a notification when a new mes-

sage arrives. Event handlers are registered per

receiver and are invoked upon action from the

provider.

6. Event messaging is used for event notifications,

useful to avoid empty document messages that

are used as notification and contain as such

empty bodies. Event messages are useful for

status updates on e.g. ambulances’ locations

and reduce system load as the messages are rel-

atively small.

7. To achieve integration the client should com-

municate with the REST API gateway that

acts as an entry point for clients and forwards

calls from clients. The message broker in the

API can relay the requests to back-end ser-

vices where necessary (such as the authenti-

cation module). It can aggregate or decom-

pose messages where necessary, and provide

content and topic-based message routing using

the publish-subscribe pattern. The API decou-

ples the clients from services, an function such

as logging and load balancing is handled by

the API. With the use of an API it is avoided

that for each partner a separate integration is

required and that the communication infras-

tructure needs to consider the many existing

databases, data formats, other APIs etc.

8. The Emergency Care information standard

is used to ensure compatible data exchange

with third party software vendors, intended

to standardize information exchange in the

Dutch multi-agency emergency healthcare (sec-

tion 3.3.3).

9. For the correct functioning of other applica-

tions such as data analytics software and back-

office systems (e.g. for invoicing and health

insurance providers) incoming messages are

stored in databases. The message broker cre-

ates a copy of the incoming message that is

stored in two databases, incident and vehicle.

In this way the current database structure and

logical separation of to entities is maintained.

In addition, when third-party software vendors

are using the API an use case can arise where

the time-interval for the reception of messages

is greater than is desired for a message queue.

For instance, when data analytics software is

using the API for data extraction there might

be no need for real-time updates but only e.g.

only once a day. This intervenes with the non-

persistent nature of messaging queues, that

will congest if messages remain undelivered for

most of the day. Therefore, the message store

pattern is used. Event messages are not saved

individually, but will update the corresponding

entity (e.g. ETA) if applicable. This is a func-

tional design decision, however, because the

databases are apart from the communication

infrastructure they act as a receiver. Therefore,

these databases are depicted in the context di-

agram (figure 5.

10. A device registry is used to keep a list of all

connected devices to the API. A provisioning

API is used to enable new devices to register

themselves.

3.3.3. External interfaces

An important part of a functional architecture de-

sign are the external interfaces as they define and

handle the data flow and event consumption and

emission. Interface definitions considers both the

interface syntax (the structure of the data or re-

quest) and semantics (its meaning or effect).

The structure of data used in the healthcare sec-

tor is since the eighties defined by the Health Level

7 standard (HL7), with version three released in

2005. HL7, as developed by the HL7 foundation,

is an ISO 27932 standard for supporting health-

care work flows, its messages and clinical document

28

structure [3][5]. Many existing legacy systems use

this standard, and is adapted and maintained for

the Dutch healthcare market by Nictiz. However,

it has become too complex, too inconsistent and

and not adaptable enough for the increasing variety

of platforms, such as web and mobile phones [6].

To counteract this problem, the HL7v3 adoption

for the Dutch market was revised into the eSpoed

guideline [23]. This guideline formed the basis for

the information standard Emergency Care (Dutch:

Acute Zorg) [24]. The aim is to standardize infor-

mation exchange and speed up the process as inter-

mediate translators are not necessary anymore for

communication. Agreements are made between the

parties within the multi-agency emergency health-

care that data should be made electronically ex-

changeable, allowing for easier integration of emer-

gency healthcare systems [25]. With this informa-

tion standard it is standardized what information

is included in the electronic information exchange,

the data structure format and the entity relation-

ships in between [18]. However, the standard is not

adopted by every emergency department yet, and

in spite of scoping down the required data entities,

the minified set is still large and complex (figure 7)

[27].

To provide an overview of the content the follow-

ing 24 data subjects 3 can be found in the data set:

personal patient data, WID check, incident data,

initial alarming message, trip data, retrieval data,

destination data, mechanisms (e.g. car), working

diagnoses, measurements values, treatments, pa-

tient placement, primary survey, secondary survey,

distance consultancy, agreements with patients, ap-

pendices, approval data (e.g. from relatives), com-

ment data, referrer data, triage data, GP data,

data from observations, and diagnose data from the

emergency department.

However, the specification of the information

3The complete data set including diagrams can be found

here

standards still does not specify any semantics (i.e.

the technical standards) for information exchange.

This allows for possible variations (and thus frag-

mentation) in the chosen technical communica-

tion implementation among different information

providers (e.g. among ambulances), where incorpo-

rating a convectional interface definition could lower

the risk of fragmentation. REST is such an defined

and widespread architectural style that ensures in-

teroperability between computer systems on the in-

ternet. When a request over HTTP is made the

response can contain a payload with e.g. a JSON

file that contains the message to be transmitted,

formatted according to the style as defined in the

Emergency Care information standard.

3.4. Information viewpoint

The information viewpoint describes the way the

systems stores, manipulates, manages, and dis-

tributes information. This viewpoint develops a

complete but high-level view of static data struc-

ture and information flow.

3.4.1. Design rationale

The Entity Relationship Diagram (ERD) provides

information about the data that is processed by

the communication infrastructure, in this case the

emergency care payload that attached to a message

and send over the messaging queues. The LSIV and

the GMS are the two main sources of emergency

trip information (the LSIV provides vehicle infor-

mation, the GMS incident information). The data

format these parties use is also used as the mes-

sage format that combines information from both

sources into one message with the Trip entity as

main entity (figure 7). The complete message is

send to back-office systems and hospital viewers,

where information about incoming ambulances is

displayed for emergency departments’ staff. Car-

dinalities are all one to one, to avoid clutter these

are not included in the diagram (except for incident

to patient, which is one-to-many because multiple

patients can be transported at once).

29

http://decor.nictiz.nl/pub/acutezorg/acutezorg-html-20190418T175310/dataset.html

Fig. 7: Entity Relation Diagram of the communication infrastructure.

30

In the ERD diagram the entity ”end of trip” is

displayed twice. This is caused by the fact that both

the ambulance staff and the emergency department

(ED) staff have to close the trip and thus both pro-

duce a data entity ”end of trip”. The former closes

their trip when the patient is being transferred to

the ED, where the latter occurs when the patient is

placed on the ED and their staff confirms and finish

the transfer.

3.5. Concurrency viewpoint

The concurrency viewpoint describes the concur-

rency structure of the system and maps functional

elements to state modules to identify the parts of

the system that can execute concurrently, and how

this is coordinated.

3.5.1. Design rationale

The concurrency viewpoint (figure 8) is captured in

a state model diagram, a process flow diagram to be

exact. The process flow provides an overview of the

message flow and the states the message sender can

move between when they offer a message to the com-

munication infrastructure. There are some points of

possible failure, e.g. when the sender is not autho-

rized to send messages. Upon successfully meeting

the message and sender requirements, the message

is accepted, copied to a database and simultane-

ously send to the receiver. When reception fails, a

dead-letter channel ensures that messages are not

deleted.

4. Viewpoint validation

treatment validation is performed by applying per-

spectives on all of the previously created viewpoints.

Perspectives are a set of closely related quality re-

quirements (e.g. security) and are used to validate

whether the previously designed viewpoints adhere

to these quality requirements [31]. When these

models do not validate (i.e. they do not adhere

to the quality requirement) they are changed ac-

cordingly. The changes that are made to make each

of the viewpoints valid are described below, the up-

dates made to the viewpoints can be found included

in previous section.

Each perspective addresses a list of concerns

where a viewpoint should be checked for whether

the viewpoint adheres to that perspective [31]. Each

of these concerns are applicable for each viewpoint,

and with these concerns in mind the viewpoints are

checked if these concerns are addressed. Architec-

tural activities describe then how apply the miti-

gations when the specific concern has not been ad-

dressed yet. This application results in a change in

the respective viewpoint. Finally, a provided check-

list is used to cross off every common misconception

or pitfall from the list [31].

4.1. Security

The security perspective is applied to the functional

view by adding an authentication provider to the

messaging system that checks the authentication of

each incoming message before authorizing the mes-

sage to be send. This authentication model uses

the OAuth2.0 protocol to verify incoming messages

and issues an access token once a provider has been

verified (section 2.14). When tokens are expired the

identity needs to be confirmed again, what can be

done with a refresh token or re-authentication. The

result of applying this perspective and the result-

ing addition of an authentication provider can be

found in the functional diagram (figure 6) and in

the process flow diagram (figure 8).

4.2. Performance and scalability

To enhance performance and scalability the au-

thentication module is separated from the messag-

ing system as the micro services approach dictates.

Whenever it requires to scale up or scale out, that

can be done independently from other services. Not

always authentication is required, for instance when

authentication happened previously and only a re-

fresh token is send. At first, a transformation

adapter was integrated, but applying the perspec-

tive showed that it is not feasible to support all mes-

sage formats and structures. The adapter was soon

31

Fig. 8: Process flow diagram of the communication infrastructure.

be expected to grow into one monolithic adapter, for

that reason the responsibility for message transfor-

mation was moved to adapters from external parties

that connect with the API. The result of applying

this perspective can be found in the functional di-

agram (figure 6) and in the process flow diagram

(figure 8).

4.3. Availability and resilience

For a communication infrastructure that serves as

communication middleware between systems from

many parties it is essential to guarantee 24/7 avail-

ability and to maintain the system in that way that

it is resilient against (un)planned down-time and

has disaster recovery in place. Continuous present

backup systems, high-availability clusters, load bal-

ancing systems, virtualized machines, dockerized

system installations and extra VM’s on servers in

different locations in combination with extensive

monitoring and management can prevent a lot of

the aforementioned (un)planned downtime or sys-

tem failures [31]. However, this will require an ex-

tensive investment to setup and configure all this

hardware and software, which is a great challenge

for an on-premise setup. Guaranteed 24/7 avail-

ability is, however, necessary due to the nature of

the emergency healthcare sector, where critical mes-

sages are send 24/7 and systems need to function

at every moment of the day.

4.4. Evolution and maintainability

Evolution copes with the system’s possibility to

change when necessary, e.g. when requirements

or the environment change. Four dimensions of

change need to be considered for a system in gen-

eral: functional evolution, integration evolution,

platform evolution, and growth. Functional evo-

lution adds functions to the system itself. Integra-

tion evolution occurs when the system needs to con-

nect new partners that are (found to be) vital for

the business that would or cannot access the API.

Platform evolution occurs when other platforms are

used instead of the original one where the system

was developed for. Growth occurs when more users

are using the system and its API, and thus sending

more data through the communication structure.

All these four dimensions occur regularly, and are

therefore important to consider. Functional evolu-

32

tion is made easier because of the modular design

where the adapters and authentication modules are

separated from the communication infrastructure.

Integration evolution is possible for the same rea-

son, modular designed adapters handle integration.

For platform evolution different hardware and/or

software is required that needs to be installed and

managed, adding to the operational expenses. The

communication infrastructure can change platforms

as the design is platform-independent. When grow-

ing, it needs to be anticipated when e.g. extra

servers and/or extra hardware such as load balanc-

ing systems are required when scaling out, and this

needs to be managed at run-time as well. For both

applies that they cannot foreseen at initial design

(only a forecast) and form uncertainties when de-

veloping and deploying the system.

5. Implementation

The designed treatment as described in the archi-

tectural description is implemented here. It is de-

scribed which key decisions are made for the treat-

ment implementation and in which context the im-

plementation takes place. Also, a walk-through is

provided of the entire implementation process, de-

scribing each of the applications that are created

or configured. Finally, it analyses any trade-offs

between the implementation and the architectural

description, and analysis the impact of the imple-

mentation in AmbuSuite.

5.1. Key decisions

Where many options for implementing the designed

architecture are possible, it is decided to remain

close to the existing technology stack within Am-

buSuite (appendix section 8.1), allowing for easier

adoption from the implementation decisions than

when e.g. a different technique is used. Then, both

a different technique must be learned and the exist-

ing functionality must be changed by the develop-

ers, putting an increased burden on the team where

this can be avoided. It is, however, checked if the

technologies in the existing technology stack are suf-

ficient to implement the communication infrastruc-

ture, and are expanded upon where it ought to be

necessary.

1. Applying the perspectives on the viewpoints

made clear that the implementation of the com-

munication infrastructure must to be available

24/7 and be resilient due to the nature of the

emergency healthcare sector. It also made clear

that extensive measures in among others opera-

tions and management must be taken to guar-

antee availability, resilience, performance and

scalability. However, it is to expensive to main-

tain an on-premise server park with extensive

monitoring for a small-sized team as Amub-

Suite. For that reason, Azure is chosen host

the communication infrastructure, to migrate

existing applications where necessary and as

such create a Integration Platform as a Ser-

vice (iPaaS) solution (section 2.13). When us-

ing iPaaS, platform evolution and growth are

taken care of as platform evolution is managed

by Azure (both software and hardware) and

the applications are operating in docks or in

virtual machines. Growth is easier when oper-

ating from the cloud as it is easier to scale up

or out with pay-per-usage pricing models.

2. In the light of the design choice to use a messag-

ing queue 3.3.2, the Azure Service Bus is chosen

to serve as the messaging queue service as is not

desirable to design a messaging service from

scratch [14]. Designing from scratch would dif-

ferentiate from the team’s core focus and writ-

ing applications that cannot match the perfor-

mance from solutions already available in the

market when it comes to among others avail-

ability, reliability and response time. The ser-

vice bus is used to send messages between ap-

plications, both internal as external, to adhere

to the send and forget principle. The service

bus uses a publisher/subscribe pattern (section

33

2.11.2, where applications can subscribe them-

selves on published messages regarding their in-

terest.

3. As security system development is a function

that requires extensive security knowledge, it

is not desired to develop an security implemen-

tation of e.g. OAuth but rather use an exist-

ing solution [31]. Therefore, with the use of

Azure Active Directory (AD), an off-the-shelf

OAuth2.0 authentication module is ready to

use. AD also retains logs of connected devices

and takes care of user management.

4. Application adapters retrieve information from

external sources (such as the LSIV) that use

legacy systems and are not data complaint.

These adapters are independent web jobs with

the single purpose to retrieve information from

external sources, perform mapping to Am-

buSuite’s data model, and finally send it over

the service bus. These adapters are placed in

Azure Service Fabric that enables the simplifi-

cation of micro services development and appli-

cation life cycle management, as well as reliable

scaling. However, if they do not require ex-

tra software to run (e.g. SDKs) then they are

placed within Azure Functions, thus enabling

serverless computing.

5. Daily monitoring is performed by Azure Appli-

cation Insights. This application provides di-

rect insight in the daily usage of application,

generates error logs and performs monitoring

on critical applications’ functioning.

6. The Azure Application Programming Interface

Management service (APIM) is used to ex-

pose endpoints from applications to third par-

ties. The advantage of using APIM is that

most of the authentication is handled by Azure

services, much of the complexity abstracted,

and API-calls can be executed relatively easily.

APIM can provide a layer around endpoints in

existing applications and can expose these end-

points to the outside world without providing

information about the applications behind the

API. As such it forms an easy accessible ab-

straction layer around those endpoints as only

API-keys are necessary for authentication (sec-

tion 5.4.2).

7. To meet the quality property requirement of

throughput, the message header is required to

contain flags that indicate the message body

format and token type. If they are not match-

ing the desired type that the subscriber expects

(e.g. data structure of the message is different)

the message is declined. With the use of an au-

thorization header, throughput (defined as the

amount of workload a system is capable of han-

dling in a unit time period [31]) is increased as

no invalid or unauthorized messages are being

processed.

8. To save incoming messages from the messaging

queue a copy of message is made and saved in

Azure SQL database. This database acts as an

access point for applications that do not require

information immediately.

9. To remain close to AmbuSuite’s technology

stack that is developed in .NET, applications

are written in C# and use the model-view-

controller architectural pattern.

These key decisions made may enable the setup

of the communication infrastructure. However, to

field-test whether the communication infrastructure

meets the desired user and performance require-

ments when put to use, an integration with a Am-

buSuite partner can provide insight about whether

it meets users’ demands and performs as intended.

For this test the software vendor RescueTrack is

integrated with the communication infrastructure

to field-test the performance regarding an accurate

ambulance ETA at emergency departments [36].

34

5.2. RescueTrack

RescueTrack4 is a software vendor from Germany

that provides hardware and software for emergency

services (police, fire department, ambulances, heli-

copters, dispatch centers and hospitals. Software for

the dispatch centers evolves around critical emer-

gency service planning, trip scheduling and resource

management. In hospitals, it handles patient man-

agement and transport ordering. As it supplies

the entire emergency healthcare it is an important

player in Germany. As their business contains over-

lap with AmbuSuite only the navigation unit for

emergency services (specifically: ambulances) is in-

teresting as with that device GPS locations are

logged and transmitted in real-time. This real-time

transmission allows for Estimated Time of Arrivals

(ETAs) that are not estimated, but accurate to the

second.

5.3. Use case: providing real-time ETAs

The use case where RescueTrack’s real-time ETA

updates provides a solution for is the scenario of

distributing workloads of emergency physicians over

incoming patients [36]. At the moment this distri-

bution is based on the ambulances ETA, but this

ETA is often inaccurate. Teams of emergency de-

partments’ staff often continue with their busy work

when a patient does not arrive at the estimated time

as they want to avoid waiting time for existing pa-

tients awaiting treatment. When emergency depart-

ment’s staff is gathered for the arrival of a patient,

the average waiting time for patients already be-

ing treated at the emergency department increases

with 16 minutes [22]. Each arrival of a patient is

therefore a costly manner and interruptions should

therefore be timed as accurate as possible. However,

patients arrive on average 4:17 minutes later at the

emergency department (SD: 7:23), but 25% arrive

2:44 minutes earlier [36]. As such, arriving patients

often face an incomplete or no team to accommo-

date them as the teams are respectively disbanded

4https://rescuetrack.de/

or not complete yet, creating a patient safety prob-

lem at the emergency department. The patients

present at the emergency department risk a safety

problem because adequate care is lacking, and the

incoming patient risks a safety problem as no team

is present upon arrival. Therefore, to optimize the

staff’s workflow and guarantee patients’ safety, the

ambulance’s ETA should therefore be accurate to

the minute.

In a pilot in Noord-Brabant, ambulances are

provided with RescueTrack’s navigation units that

transmit GPS-locations in real-time. From these lo-

cations a ETA can be calculated, that is made avail-

able through the RescueTrack API. These ETAs are

send to the hospitals in that region that are also in-

cluded in the pilot. The test only comprehends the

functional testing of the communication infrastruc-

ture and not the impact at the emergency depart-

ment’s staff 5.

5.4. Implementation process

The implementation process of the communica-

tion infrastructure breaks apart in six different in-

stances, with some instances part of the commu-

nication infrastructure and some part of the inte-

gration with AmbuSuite’s application suite. The

order of the applications as described below follows

the information flow from the source to the hospi-

tal viewer application (figure 9). The information

process flow branches at the moment a copy of the

message is made and saved in the central database

storage.

5.4.1. RescueTrack adapter

An adapter is created as a .NET console applica-

tion and placed on Azure Service Fabric to retrieve

data from RescueTrack, the first partner from Am-

buSuite that is going to use the communication in-

frastructure. The adapter is not part of the com-

munication infrastructure, but is created to inte-

grate the partner RescueTrack and assist in the

5An intervention study will be done at Radboud UMC to

test the impact on the hospital teams.

35

https://rescuetrack.de/

Fig. 9: Information process flow of the implemented treatment.

first use case. Usually, these adapters are meant

to be written by developers from external parties,

but for this use case is developed by AmbuSuite

instead. The adapter polls for data on the Rescue-

Track REST end-point, specifying the ambulance

number and trip number. Based on this informa-

tion, the identified ambulance is returned in combi-

nation with the requested mission data. For this

use case the adapter extracts the ETA from the

mission data and serializes the array to JSON. Fi-

nally, an HTTP-client is instantiated containing the

API-key for the Azure API management service; a

data-format specifier; and APIM’s web-URL. If the

transmission succeeded it returns an OK-status.

5.4.2. API Management service (APIM)

Within Azure, Microsoft’s APIM is used to expose

the designed APIs. The advantage of using APIM

is that most of the authentication is handled by

Azure services with much of the complexity hidden

away. On conceptual level the information flow (fig-

ure 10) starts when a request from an external party

is received. Their request package arrives at APIM,

that authenticates the subscription key and finds

its connected products (a product is a composition

of APIs that is offered, including quota and rate

limits). It returns which APIs the external party

has access to, and from those APIs, its available

operations. Once the request is authenticated, the

APIM authorizes itself against Azure Active Direc-

tory (AAD). Because APIM has been registered ini-

tially as trusted Azure Service, it is able to obtain

an access token for the specified resource by authen-

ticating itself against AAD. Upon success it receives

from AAD an access token with the correct audience

for the specific resource in combination with a re-

fresh token (the OAuth 2.0 approach is used here).

As good security practice preaches, these creden-

tials with which these tokens are retrieved are re-

freshed on quarterly basis by Azure. The request

URI is then changed to the back-end app URI with

the obtained access token included in the request’s

authentication header (type bearer). The request

is forwarded to the back-end the request and exe-

cuted (for instance a POST operation at the Flow

API) and the result is routed back to the request-

ing party. All this time, the only authentication

method the external party uses is the subscription

key (this can be configured with an optional OAuth

implementation). The only URI that is visible to

the requesting party is an AmbuSuite’s URI or a

custom domain.

When setting up an APIM service an initial reg-

istration in Azure Key Vault is required for au-

thentication against AAD. In the Key Vault the

36

Fig. 10: APIM process flow

APIM service is registered with a service principal

and all permissions available. These permissions de-

tail which operations (such as GET or POST) the

APIM is allowed to perform. Within the APIM in-

terface, existing API applications hosted on Azure

can be imported, either exposing a back-end API

application or a HTTPS endpoint (REST/SOAP).

Once the API is imported an XML-based policy de-

fines its behavior (see the appendix section 8.4 for

an example). Policies in APIM can be used for a

wide variety of tasks, including handling the au-

thentication between APIM and the back-end by

requesting access tokens from AAD. In this case his

is done by using managed identities where APIM it-

self will request an access token for the specified re-

source. The obtained access token is sent as bearer

token in an authorization header to the API app.

The created policy can be placed in one of the two

available scopes, within this context of this API ei-

ther the API scope or the operation scope. If the

policy is applied to the API scope, the content of

the policy applies to all operations in the API. In

contrast, when a policy is applied to one operation,

it is applicable to that operation only.

5.4.3. AmbuAPI

The RescueTrack adapter has send the data about

the ambulance’s ETA to the APIM, that acted as

an intermediate layer between the adapter and the

back-end API application. APIM has forwarded

the call to the back-end, where the API applica-

tion (.NET Core MVC) AmbuAPI is exposed as a

REST end-point and is listening for incoming re-

quests. Two POST operation for this use case are

present 6, one that posts the entire trip to the hospi-

tal viewer, and one generic operation that updates

the trip with any information that had come in.

Both POST operations call the function Message-

BrokerAsync to perform two main functions. First,

the received data is saved in the MVC’s view con-

text. ASP.NET core MVC does not use model bind-

ing, and only depend on the data provided when

calling into it. In this way a chunk of the request

can be rendered instead of a complete response. The

view context uses session state management to track

updates on a model’s entity state while the applica-

tion is being used, using local application storage to

persist data across requests from a client. The par-

tial request is then send over a web-socket to update

the hospital viewer application. In that way essen-

tial information is forwarded as soon as it is received

as a web-socket offers a lightweight connection for

communication. Second, the same request data is

attached to a message, with the body formatted in

JSON. The message broker initializes the service

bus and offers the message to the service bus.

5.4.4. Service bus

The Azure service bus is a cloud-based messaging

queue (section 2.11.2) that receives messages from

the AmbuAPI application and sends these messages

to the database. The service bus acts in this way

as a load balancing service for the database; avoids

application locks on tables in the database; provides

a better foundation for scaling and evolution; and

enables separation of concerns. The service bus sup-

ports two-way communication (writing and reading

the database) and uses event-invokers at the bus’s

end-point to avoid frequent queries on the database

and useless service bus polling. With the event-

6The API comprehends more functions, see appendix sec-

tion 8.5

37

invoker, the listener in the database application can

avoid frequently polling the service bus for data

updates or requests. Vice versa, the service bus

does not have to query the database periodically

for changes, but only when events are invoked that

indicate data changes, efficiently supporting a sig-

nificantly higher volume of concurrent messages.

5.4.5. Database application

The database application manages an Azure SQL

database service and act as the worker for all

database operations. It receives information from

the service bus upon invocation and sends mes-

sages to the service bus when information from the

database needs to be shared, where for it queries the

database. The database application is the applica-

tion that distributes all incoming information over

the two databases (vehicle and incident) to create

logical separation. This separation is used to reduce

the amount of duplicate data that is stored, and the

database worker queries both databases for infor-

mation where requested. The database application

keeps track of the database information in an index

in addition to the databases’ indices to improve the

speed of input/output operations. Furthermore the

application provides caching for recent trips (Redis

cache) where the trip has not been closed yet (which

can be seen in the trip status) to further speed up

the process of reading and writing trip information

to the database. The application is designed to be-

come the future central database where the existing

databases are centralized into and saves information

compliant to the Emergency Care standard (section

3.3.3).

5.4.6. Hospital viewer

The hospital viewer is in this use case the already

existing application AmbuView (written in Angu-

lar), used in emergency departments in hospitals

to display incoming ambulances ambulances, their

estimated times of arrival (ETAs), and patients’ in-

formation. Existing applications that require in-

tegration come with legacy functions, in this case

the hospital-viewer requires a web-socket to receive

data. The API application AmbuAPI has imple-

mented the web-socket as well to avoid a rewrite of

the viewer.

5.5. Implementation trade-offs

There is one trade-off made in the implementation

compared to the architectural design of the com-

munication infrastructure. The message buffer as

visible in figure 6 is removed as a separate entity

because it is included in the service bus. The Azure

service bus solution offers a messaging queue in

combination with buffering, end-points etc. and re-

moves thus the need for an extra message buffer

object to be included in the communication infras-

tructure.

5.6. Impact analysis

To implement the aforementioned decisions (section

5.1) made for the integration of the communication

infrastructure within AmbuSuite’s applications, an

impact analysis of AmbuSuite’s application land-

scape highlights where changes are necessary. In its

current state AmbuSuite’s applications are strongly

coupled with sometimes multiple dependencies on

each other. Or in case of AmbuReports, there are

no communication lines, and data is transferred to

AmbuReports by a table copy between databases.

In order to support the new communication in-

frastructure, the current communication lines from

each application need to be rewritten so that mes-

sages are first routed trough the service bus be-

fore providing or retrieving information from each

other (1). The same applies for the adapters, which

are now directly linked to one of the applications.

These adapters are moved to Azure Service Fabric

to enable scalable micro services development and

application life cycle management (2). Incoming

data from these adapters is routed over Azure Ser-

vice Bus (3) before arriving where needed. These

adapters (and other applications) save incident and

vehicle information in databases decoupled from

applications, save for temporary local storage and

38

caching (4). The service bus is used for communi-

cation between the applications and the databases.

The communication infrastructure is event-driven,

and incoming information is send immediately to

each respective application. To save database wait-

ing times, a copy from the message that is send over

the service bus is send to the database (5), so that

applications from external partners can use the API

(6) to retrieve that information as well. With this

implementation the non-persistent nature of the ser-

vice bus is avoided. With this construction in place,

AmbuSuite can act as a medium or adapter to pass

through information that comes directly from the

LSIV/GMS. Also, AmbuReports is connected to

Azure Service bus to retrieve information directly

from the propriety databases (7), thereby replac-

ing the database copy operations. For information

exchange with external parties the standard Emer-

gency Care is used (8), that differs from the internal

data format used.

The impact analysis section lists more items more

than this infrastructure’s implementation encom-

passes. With this implementation the communi-

cation infrastructure is created, but existing Am-

buSuite’s applications are not completely connected

yet. Changes required for further integration are

placed on the road map and scheduled for next

year.

6. Evaluation

In this section the process evaluation reflects on the

architectural design process and whether it yielded

the expected results. It consists of a methodology

evaluation; a consistency check against the litera-

ture whether the literature provided in-practice ap-

plicable theory; and an implementation evaluation.

Finally, it is assessed to what extent the implemen-

tation solves the communication problems that are

present in the emergency healthcare.

6.1. Methodology reflection

The methodology to design an architectural design

consisted of creating viewpoints and applying per-

spectives on the models resulting from these view-

points, based on [31]. This methodology was recom-

mended opposed to creating one monolith architec-

tural design, but instead capturing the design from

multiple directions. Each of the directions captured

a separate aspect of the architecture, and as such re-

sulted into four viewpoints, including corresponding

four models. As the implementation is according to

design, expect for one element (the message buffer,

see below) it can be stated that the methodology for

designing architectures yielded the expected results

with minimal trade-offs between the design and the

actual implementation. The focus during design

time was put on modularization, with distinct ap-

plications for different functionalities, each of them

with a clearly defined task as the micro services ap-

proach dictates. As such, the created applications

were loosely coupled with each other and high in co-

hesion. As can be seen in the architectural descrip-

tion (section 3), the application of the perspectives

had a significant impact on the design because of

the applied availability and resilience perspective.

In the application of this perspective it became clear

that AmbuSuite could not fulfil the availability and

resilience requirements alone therefore the decision

was made to transition to a cloud service provider

(section 5.1). Revisiting the models with a (set of)

quality requirements enabled continuous revisions

of the created models by iterating over them again

each time with a new set of quality requirements.

These continuous revisions contributed towards the

minimal trade-offs between design and implementa-

tion, thus avoiding the common pitfall of architec-

tural erosion (occurs when the architecture’s imple-

mentation drifts away from its requirements [31]).

6.2. Literature reflection

Enterprise Integration Patterns (EIP) formed the

cornerstone of the literature section as these pat-

39

terns describe the communication possibilities be-

tween enterprises. Enterprise Integration Patterns

heavily rely on messaging middleware to enable

inter-enterprise communication with the main ad-

vantage that messaging enables the send and for-

get principle. That principle incorporated the loose

coupling between systems, making an approach

such as enterprise application integration avoidable.

Enterprise Integration Patterns are reusable forms

of solutions for design problems, describing why a

particular situation causes problems, and how the

components of the pattern relate to each other to

give the solution. A pattern as such encapsulate

knowledge that can be reused in situations, pro-

viding a generic approach that can be applied on

various situations, allowing for a different outcome

each time. Applied within the context of the created

communication infrastructure Enterprise Integra-

tion Patterns provided knowledge regarding what

treatment to use (messaging over remote procedure

calls, file transfer or shared databases). Also, it pro-

vided knowledge regarding the advantages and pos-

sible pitfalls regarding messaging (e.g. separation

of concerns and multiple platforms integration ver-

sus a complex programming model and synchronisa-

tion issues) allowing for a proper consideration and

trade-off analysis of which communication medium

to choose. Furthermore, along with the patterns

tactics were provided for implementation so that

good practices were followed and common pitfalls

avoided. For instance, the provision of code high-

lighted code structure that explained the usefulness

of cleaning up resources manually to avoid synchro-

nization problems with asynchronous operations. In

short, applying the Enterprise Integration Patterns

provided good reusable knowledge and a practical

approach for designing a communication infrastruc-

ture between enterprises.

6.3. Engineering cycle reflection

There is a discrepancy between what Wieringa’s en-

gineering cycles prescribes and how certain treat-

ment steps are executed, based on two accounts [38].

First, the software architecture design methodology

uses perspectives as a validation of created models

belonging to the viewpoints [31]. Wieringa, how-

ever, describes validation as the investigation of the

effects of the interaction between a prototype and

a model of the problem context and of comparing

these with requirements on the treatment [38]. The

validation step of the engineering cycle should thus

have consisted of a theory of the prototype’s in-

teraction within the problem context. This theory

exists in section 5.6, but is made after the propri-

ety choices for the implementation are made and

is rather analyzing the impact of the implemen-

tation than the architectural design. The reason

for this is that Rozanski provided a valid valida-

tion approach with the use of perspectives, where

validation practices and methodologies were listed

for usage. These validation practices and method-

ologies were specifically designed for software archi-

tecture design and form a coherent whole in com-

bination with the viewpoints. In addition, using

this validation approach yield validations that are

directly applicable on the designed models, result-

ing in changes that that affect the functionality and

behavior of the designed communication infrastruc-

ture. Therefore, the validation method from Rozan-

ski was favored over Wieringa’s. A table tracing the

perspectives with the full-filled criteria can be found

in the appendix (table 3).

Second, the treatment evaluation is found to be

insufficient as no field test results are in yet and is

therefore as such not complete. A treatment evalu-

ation would normally consist of the investigation of

a treatment as applied by stakeholders in the field,

but consists here of reflections on the methodologies

and literature used [38]. In this evaluation, there is

the benefit of hindsight that enables aforementioned

reflections, but the results from the tests with stake-

holders in the field are not in yet (section 6.5 for

more).

40

6.4. Implementation validation

The implementation of the communication architec-

ture is used as an practical validation of the archi-

tectural design. Only one trade-off was found, that

the need for a message buffer was removed with the

use of Azure Service bus that already came with a

message buffer included (section 5.5). A use case

for a field-test was found in the partner implemen-

tation of RescueTrack with a pilot launched in fall

2019. To test whether it behaves as desired the im-

plementation is checked against the requirements.

To recap, the requirements are as follows: uni-

fied messaging; reliable communication; provision-

ing and monitoring; dynamic scaling; flexible ser-

vices; secure communication; and integration with

other tools.

6.4.1. Unified messaging

The requirement of unified messaging is met be-

cause of the use of a messaging queue with a pub-

lish/subscribe pattern that also supports any mes-

sage type. A messaging queue enables information

transfer between systems without requiring integra-

tion, and as such avoids high coupling between sys-

tems. In turn, this allows for all types of system

to communicate with each other, including the op-

portunity to send any type of message. The only

limitation with the message type is that the mes-

sage format needs to be specific for the Azure ser-

vice bus, otherwise the service cannot extract rout-

ing information. The payload however, can be any

format as desired, but JSON is preferred. To main-

tain uniformity, XML (WDSL/SOAP) code exam-

ples for adapters to transform messages to JSON are

provided. In addition, the API exposes the service

bus’s functions and as such, enables system integra-

tion with the service bus.

6.4.2. Reliable communication

The requirement of reliable communication is met

by hosting the messaging queue on Azure. The

cloud service provider removes the need for infras-

tructure considerations, and provides a minimum

availability and up-time percentage. Any infras-

tructure failure of any kind is taken care of by

Azure, and if some of the hardware fails, Azure

dynamically swaps servers, communication lanes or

even entire server parks. As the up-time is guaran-

teed, communication in the respect of hardware is

therefore reliable considered reliable. In addition to

that, the dead-letter channel on the Azure service

bus and the message acknowledge function (section

2.11.2) ensure that in case of software failure, mes-

sages are guaranteed to be saved and can be deliv-

ered later on.

6.4.3. Provisioning and monitoring

Provisioning was defined as providing users with ac-

cess to data and resources, referring to all informa-

tion management systems involved. The require-

ment of provisioning is met by using the Azure ser-

vice bus and the creation of an API that enables

the access to available resources. The database

whereto information is copied upon reception pro-

vides data availability and access for users, even

when the timing of accessing the data differs. The

requirement of monitoring is met by using Azure

Application Insights, that provides in depth infor-

mation about performance; throughput; response

time; general availability; and up-time. This en-

ables in-depth analysis of performance bottlenecks

or any failures. Average of 50 requests is 2.56 sec

to finish the request, with the note that this is

measured on a test-server, production environments

tend to be equipped with better hardware and are

as such faster. The request start at retrieving data

from the RescueTrack server, applying transforma-

tion on the format (XML/SOAP to JSON), sending

the information through APIM management con-

sole where it is saved in the database. The database

takes up most of the time with 1.12 seconds to pro-

cess the results.

6.4.4. Dynamic scaling

The requirement of dynamic scaling is met by us-

ing a cloud service provider that supports pay pay-

41

per-usage pricing models. Scaling up (adding more

hardware to a machine to improve performance) or

scaling out (adding more machines) is done through

the Azure portal. It can even be done automat-

ically, dynamically when the situation requires in

e.g. peak hours. The communication infrastructure

is modular by design, with separate services for au-

thentication and transformation.

6.4.5. Flexible services

The requirement of flexible services is met by not

requiring any specific type of system integration be-

cause of the use of an API in front of the messag-

ing services. Adapters that are written can connect

to the API, but there are no requirements for the

adapters since they are written by external devel-

opers. This approach enables flexible services as

any type of system can integrate an adapter that

connects with the communication infrastructure’s

API. In this way it is avoided that communication

can only take place between a selected number of

systems.

6.4.6. Secure communication

The requirement of secure communication is met

by the adaption of an OAuth-based authentication

provider. The authentication provider mandates

that adapters first obtain an access token and man-

ages in this way who gets access to which resources

(e.g. to which APIs or databases access can be

granted). In this way only authorized users can be

granted access to sensitive resources such as medi-

cal patient data. Azure is certified with the neces-

sary certifications guarantee the safety of that data.

With the use of the Azure service bus, secure com-

munication is guaranteed as well.

6.4.7. Integration with other tools

The requirement of tool integration is met by pro-

viding a REST API. Developers from external par-

ties can after permission write adapters that in-

tegrate their system with the communication in-

frastructure and have documentation and support

provided. Integration with these adapters is rela-

tively easy as only a provided API-key and a man-

aged identity are required to communicate with the

APIM.

6.5. Impact

The architectural design and its implementation are

effective once it solves the communication problems

the emergency healthcare is facing nowadays. To

recap, the main communication problems they are

facing (as stated in the introduction) are the follow-

ing: critical patient information is often missing; pa-

tient’s medical records do not arrive on time; over-

head is present in current communication; and med-

ical records do not transcend the disciplines’ bound-

aries. Unfortunately, within the current stage of

the field test it is hard to state whether the present

potential to solve these communication problems is

fulfilled. In any case, integration is made possible to

break through the boundaries that are located be-

tween the emergency healthcare disciplines and en-

able inter-enterprise communication (figure 3). The

field test with RescueTrack has not yet been com-

pleted, but preliminary results show enthusiastic

responses from the ambulances staff that find the

software easy to use, complete and fast. This holds

however, that treatment evaluation cannot be fully

completed yet as the evaluation from the stakehold-

ers in the field is lacking. In the hospital the use

case for the field test was the distribution of emer-

gency physicians’ workloads over incoming patients.

This field test provided the hospitals with techni-

cal foundation for a communication infrastructure

that enabled displaying real-time updates on the

ambulances’ ETAs. However, to measure the im-

pact that an real-time ETA has on the distribution

on emergency physicians’ workloads an separate in-

tervention study will be done at Radboud UMC.

Measuring the effect on a team is outside the scope

of this research and no expertise to perform such a

measurement is available.

42

7. Conclusion and discussion

This chapter concludes the thesis and summarizes

all findings by answering the main research question

which is stated as follows:

RQ1: What architectural design can facilitate an

optimal information delivery in the Dutch

multi-agency emergency healthcare?

The research question explored what architec-

tural design could facilitate an optimal delivery

and resulted in a communication infrastructure for

the emergency healthcare. An implementation was

made for the architectural design in combination

with a field-test with the partner RescueTrack.

Where results of this field test are not available

yet, the implementation served as a practical val-

idation of the created architectural design with al-

most no trade-offs found. The architectural design

that could facilitate an optimal information delivery

consisted of a communication infrastructure that in-

cluded a messaging queuing system, adapters and

an API. To ultimately create the architectural de-

sign an approach based on the engineering cycle

first investigated the literature to discover the stake-

holders present in the emergency healthcare market;

their requirements regarding inter-enterprise com-

munication; and software architecture for architec-

ture design [38]. Next, a treatment was designed

that comprehended a communication infrastructure

based on Rozanski’s guidelines for software archi-

tecture design [31]. The validation of the designed

treatment with the application of perspectives took

place according to the same guidelines. An imple-

mentation was created that integrated RescueTrack

with AmbuSuite, for which a field test was setup.

Also, the implementation served as an evaluation

of the architectural design. The evaluation showed

that the followed methodology yielded the expected

results, with a notable role for the perspectives, that

in iterations revisited the created viewpoints and

adapted them according to the validation results.

Thanks to that minimal trade-offs between the de-

sign and the implementation were found. The ap-

plication of Enterprise Integration Patterns proved

to provide a solid foundation for a from-theory de-

rived practical approach to incorporate communi-

cation infrastructures in software architecture. An

analysis of the implementation showed that the im-

plementation satisfies the requirements as provided

by the stakeholders, demonstrating that integration

can take place as they have desired. As previously

noted (section 6.5) it is too early to tell whether the

communication infrastructure can fulfil its potential

of enabling inter-enterprise communication in the

emergency healthcare sector. Where the technical

foundation has been laid out, results of the field-

test still have to show if communication between the

ambulance and the emergency department has been

improved and how emergency department teams are

effected (more on this in future work). Foremost,

this study provides technical means for communi-

cation in multi-agency emergency healthcare, now

it is up to users to integrate their systems with the

communication infrastructure.

7.1. Scientific implications

Inter-enterprise communications are still fairly new,

and a literature gap exists on this topic as no re-

search is available that connect the fields of enter-

prise collaboration/communication and enterprise

architecture. Companies must manage the increas-

ing technological complexities while they add value

to business processes through the strategic align-

ment between business and IT. At the same time,

companies must achieve integration and coordinate

their processes with their partners in the sector or

supply chain in the pursuit of efficiency [35]. This

study shows that regardless of the legacy systems

present integration between enterprises is possible

by offering a generalistic communication infrastruc-

ture. Instead of only theorizing such a concept, an

implementation showcases the practical validation

of such a communication infrastructure. The the-

43

ory of designing the communication infrastructure is

based on two theoretical methodologies, the Enter-

prise Integration Patterns (EIP) methodology and

software systems architecture methodology.

Enterprise integration patterns offer patterns

that encapsulate reusable knowledge and act as a

template for problem-solving, and EIP focuses on

offering templates for enterprise software integra-

tion. The application of these patterns offers insight

for other researchers how these patterns can be used

in inter-enterprise communication, both in the ar-

chitectural design process as the result in the imple-

mentation. Knowledge can be obtained by study-

ing the applied patterns and how they attempt to

resolve the communication problems between enter-

prises.

The software systems architecture methodology

is more hardened in practice as the aim was to de-

liver a practical approach for software system de-

sign [31]. Other researchers can examine the soft-

ware design methodology and how its resulting sys-

tem design yields the expected results in the imple-

mentation according to design with minimal trade-

offs. Knowledge can be obtained by studying the

applied viewpoints and perspectives and analyzing

how these are applied.

The implementation shows that both methodolo-

gies are suitable for use in practice and yield valid,

usable results. If researchers are investigating how

inter-enterprise communication problems can be re-

solved (with an IT-solution) they find practical val-

idations of two tested methodologies with evalua-

tions discussing the practical advantages and disad-

vantages. Often methodologies are not field-tested,

e.g. from the engineering cycle the implementation

step is skipped [38], resulting in a gap between the-

ory and practice.

Other researchers can use this study to inves-

tigate what methodologies (enterprise integration

patterns and software systems architecture) are val-

idated and work in practice when used to design

software architecture. They can also learn how to

solve communication problems as the communica-

tion infrastructure in a more general sense can be

applied to other use cases as well, e.g. to other

(non-medical) sectors that suffer from legacy sys-

tems that need to share information. Therefore,

the architectural design is not healthcare specific

and is generalizable to other domains. Web ser-

vices are an ideal implementation platform for inte-

grating disparate legacy systems because they are

platform-independent (especially when using soft-

ware as a service models). Enterprise integration

patterns (EIP) represent achievable design solutions

that may be used to construct these enterprise in-

tegration solutions [34].

What was unknown until this point was how

inter-enterprise communication could be realized

as many differences between enterprises exists re-

garding their data formats, interfaces, legacy sys-

tems [14]. Attempts have been undertaken, but

are mostly focused within an enterprise and not be-

tween enterprises [39]. Adaptions in larger com-

panies also struggle with security and hindering

business process characteristic for larger compa-

nies. With the rise of cloud computing, delivering

infrastructure as a service to facilitate integration

and information sharing trough web-services have

been made easier [7]. This study therefore shows

that inter-enterprise communication is an achiev-

able goal to strive after, helped by the use of infras-

tructure as a service model that simplified imple-

menting technical ways for inter-enterprise commu-

nications.

With the implementation created the question

rises whether the patterns, architecture and im-

plementation are not designed for cloud computing

specifically, and Azure in specific. Designing data-

intensive applications [17] stated that designing dis-

tributed systems is quite difficult and off-the-shelf

solutions are the most viable. The same applied

for Enterprise Integration Patterns (use an exist-

44

ing messaging queue) and software systems archi-

tecture (do not design security facilities yourself),

where in the beginning the intentions was to de-

velop everything in-house [14][31]. With especially

the availability and resilience perspective applied on

the architectural design, it became clear that be-

sides in-house developing even in-house hosting was

not viable. Therefore the decision was made to use

Azure as a hosting platform, also because Microsoft

is certified according to data protection regulations.

Other cloud service providers do lack some of the re-

quired healthcare certifications and were therefore

not an option as data security is rigidly enforced by

Dutch legislation.

Certifications for data regulations are important

in the (emergency) healthcare domain as patient’s

medical information is sensitive data. Data is there-

fore stored in European data center and is not

meant to leave Europe, according to the GDPR.

Furthermore, data is not exposed unless partners

have signed agreements with AmbuSuite and are

certified according Dutch certification programs for

data protection in healthcare. Even then, only the

bare minimum of data is send to the partners, where

possible removing medical data and all other data

that is not relevant for the business functioning of

AmbuSuite’s partners. Even AmbuSuite itself can-

not access (medical) data easily but data is often

masked. The trade-off for ensuring the least amount

of data sharing is that sometimes data can be made

available to help the patient, but is not allowed by

law to use that data. Or, when a partner is in-

sufficiently certified, that these partners are not al-

lowed to receive any data anymore, effectively pre-

venting them from proper functioning. These prac-

tices are results of the certification processes and

apply as such for each party that stores or transfers

data within the healthcare sector. The data stor-

age methodology is therefore, besides some minor

details, the same for each party.

7.2. Limitations

Limitations of this study are mostly related to the

field wherein this study was conducted. The emer-

gency healthcare is often described as ”being in its

infancy”, visible in the lack of integration of any

kind, not necessarily technical alone but also in the

lack of cooperation between disciplines [29]. It was

also visible in the lack of information present in

the emergency healthcare sector, that encompasses

the communication problems that has been studied

here, but also the information about the disciplines

available in literature and documentation. There-

fore it was problematic to find relevant literature as

some literature was available in Dutch, but scare.

Or literature was available in English, but was not

applicable on the Dutch market. Sometimes papers

has been locked behind (pay)walls of UMCs, a re-

sult of the second limitation: the independence of

each emergency healthcare discipline. Each disci-

pline can function as a stand-alone unit and be self-

sufficient, being able to provide adequate care in

their discipline. However, there is little to none in-

centive to share information with other disciplines,

where this since the seventies is a topic of improve-

ment from the government [8]. This is partly the

result of the current financing structure in the emer-

gency healthcare, where each discipline is financed

separately. Therefore, there is no financial stimu-

lation to share information as it does not benefit

the discipline itself. Alas, patient safety is subordi-

nate in some cases to information sharing, e.g. in

the case of Nationaal Schakelpunt, a nation wide

switching relay to access medical records between

GPs and medical specialists. Most of the debate

revolved around who was the owner of the medi-

cal data as holding the information was related to

financing [30].

The other reason why there is little to no incen-

tive to share information is the workload and time

pressure that is present in the emergency health-

care, sometimes there is no time to even write down

45

information and patient information is shared orally

during treatments of transfer. For instance, the bur-

den on ambulance care has increased with introduc-

tion of the GPP since they increasingly rely on am-

bulance care outside offices hours [16]. Therefore

time is scare for ambulance staff to share informa-

tion properly as they barely have time to write in-

formation down and trauma assessments forms are

extensive forms to fill in.

Finally, the treatment evaluation could not be

fully completed yet as the evaluation from the stake-

holders in the field is lacking. The field test is still

ongoing and only the first informal response is re-

ceived that users find the software easy to use, com-

plete and fast. However, this is only an initial result

and not a valid statistical result to perform a treat-

ment validation on. As such, the treatment evalu-

ation is incomplete and evaluates only the method-

ologies used and

7.3. Future work

Now that the technical foundation for a communi-

cation infrastructure has been created, field tests

on a bigger scale and in different use cases can ex-

pand on the current field test with RescueTrack.

Use cases can comprehend a wide variety of disci-

plines, e.g. the desired integration with the GPs,

that can have the most intermediate effect as pa-

tients medical records are provided to emergency

physicians [8]. As one of the identified communica-

tion problems regarded the missing medical records,

integration with GPs could be first area to expand

in. More studies can be done in the same area to

integrate the Nationaal Schakelpunt, the switching

relay that can access medical records on demand,

but patient data remains in the GPs own systems.

As such, it avoids the vital question of data owner-

ship, as who owns the data is a hot debate in the

medical world [30].

With faster communication available the collabo-

ration in pre-hospital care (the provided treatments

before going or arriving at the emergency depart-

ment) can be intensified, which can improve the

quality and safety of hospital care. The more infor-

mation is already known (e.g. medical records, or

hospital availability), the more can be anticipated

on adequate patient care. More treatments can be

provided before or during the trip to the hospital,

thus relieving the burden on hospitals. Future work

can expand on this topic.

A future study that is already mentioned (section

6.5) is the intervention study planned by Radboud

UMC to measure the effect of an accurate ETA on

an emergency department’s team and the potential

optimization of the emergency physicians’ workload

distribution. In this study the impact of a real-

time ETA on an emergency department team will

be measured, because at the moment other activ-

ities are abandoned in favor of incoming patients,

who arrive often later than estimated. The only

roughly available ETA estimation removes therefore

patient care, where an accurate estimation instead

can improve the workflow of emergency physicians

[22].

Another future study that is going to take place

is the integration of emergency departments’ bed

availability. Right now, ambulance staff just use

their experience to choose a hospital to deliver their

patient to, and call whether there are beds available.

Ambulances can show up at emergency departments

who have a patient stop, or pass a nearby hospital

because the bed availability is unknown. An exter-

nal party has created an portal that have the hospi-

tals availability presented, and integration with that

party can resolve that problem by showing an emer-

gency department’s availability in the trip form.

References

[1] Kjeld Harald Aij. “Ketendenken”. In: Wie

vraagt wordt beter! Springer, 2017, pp. 74–80.

[2] Dirk Alkema. “”O, komt u voor mij?””. In:

Vakblad van Ambulancezorg 4 (2018), pp. 25–

27.

46

[3] Johan Groen Anneke Goossen-Baremans.

Meetbare kwaliteit van zorg in Nederland.

Aug. 2016. url: https : / / www . hl7 . nl /

phocadownload/Whitepapers/Whitepaper%

20 - %20Meetbare % 20kwaliteit % 20van %

20zorg % 20in % 20Nederland % 20v1 . 6 . pdf

(visited on 04/24/2019).

[4] IEEE Standards Association. IEEE 42010-

2011 - ISO/IEC/IEEE Systems and software

engineering - Architecture description. Oct.

2011. url: https://standards.ieee.org/

standard / 42010 - 2011 . html (visited on

04/25/2019).

[5] George W Beeler. “HL7 Version 3 - An object-

oriented methodology for collaborative stan-

dards development”. In: International Jour-

nal of Medical Informatics 48.1-3 (1998),

pp. 151–161.

[6] Duane Bender and Kamran Sartipi. “HL7

FHIR: An Agile and RESTful approach to

healthcare information exchange”. In: Pro-

ceedings of the 26th IEEE International Sym-

posium on Computer-Based Medical Systems.

IEEE. 2013, pp. 326–331.

[7] Rajkumar Buyya, Chee Shin Yeo, and Sriku-

mar Venugopal. “Market-oriented cloud com-

puting: Vision, hype, and reality for deliv-

ering it services as computing utilities”. In:

2008 10th IEEE International Conference on

High Performance Computing and Communi-

cations. Ieee. 2008, pp. 5–13.

[8] Roeland Drijver. “Continuiteit in de acute

zorg”. In: Huisarts en wetenschap 49.11

(2006), pp. 810–811.

[9] Luca Filipponi et al. “Smart city: An event

driven architecture for monitoring public

spaces with heterogeneous sensors”. In: 2010

Fourth International Conference on Sensor

Technologies and Applications. IEEE. 2010,

pp. 281–286.

[10] Menno MI Gakeer et al. “Landelijke on-

twikkelingen Nederlandse SEHs: aantallen en

herkomst van patienten in de periode 2012-

2015”. In: Nederlands Tijdschrift Voor Ge-

neeskunde 160 (2016).

[11] Haryadi S Gunawi et al. “What bugs live in

the cloud? a study of 3000+ issues in cloud

systems”. In: Proceedings of the ACM Sympo-

sium on Cloud Computing. ACM. 2014, pp. 1–

14.

[12] Dick Hardt. “The OAuth 2.0 authorization

framework”. In: (2012).

[13] HL7-affiliation. Betere gegevensuitwisseling in

de spoedzorgketen. Feb. 2019. url: https :

/ / www . informatieberaadzorg . nl /

binaries / informatieberaad - zorg /

documenten / publicaties / 2019 / 2 /

15 / presentatie - consultatiesessie -

ambulancezorg - nederland - woensdag -

6 - februari - 2019 / 190206 _ 01 _

Presentatie_+Ambulancezorg.pdf (visited

on 07/02/2019).

[14] Gregor Hohpe and Bobby Woolf. Enter-

prise integration patterns: Designing, build-

ing, and deploying messaging solutions.

Addison-Wesley Professional, 2004.

[15] TFM Hooghiemstra. “Transmurale ict in de

zorg: stapsgewijze invoering is nabij”. In: Zorg

en Financiering 4.3 (2005), pp. 13–29.

[16] T Jansen et al. “Tussen ambulance en huis-

arts: ontwikkeling in de spoedeisende am-

bulancezorg en het draagvlak voor de ver-

pleegkundig specialist acute zorg in Zuid-

Holland Zuid.” In: (2016).

[17] Martin Kleppmann. Designing data-intensive

applications: The big ideas behind reliable,

scalable, and maintainable systems. ” O’Reilly

Media, Inc.”, 2017.

47

https://www.hl7.nl/phocadownload/Whitepapers/Whitepaper%20-%20Meetbare%20kwaliteit%20van%20zorg%20in%20Nederland%20v1.6.pdf
https://www.hl7.nl/phocadownload/Whitepapers/Whitepaper%20-%20Meetbare%20kwaliteit%20van%20zorg%20in%20Nederland%20v1.6.pdf
https://www.hl7.nl/phocadownload/Whitepapers/Whitepaper%20-%20Meetbare%20kwaliteit%20van%20zorg%20in%20Nederland%20v1.6.pdf
https://www.hl7.nl/phocadownload/Whitepapers/Whitepaper%20-%20Meetbare%20kwaliteit%20van%20zorg%20in%20Nederland%20v1.6.pdf
https://standards.ieee.org/standard/42010-2011.html
https://standards.ieee.org/standard/42010-2011.html
https://www.informatieberaadzorg.nl/binaries/informatieberaad-zorg/documenten/publicaties/2019/2/15/presentatie-consultatiesessie-ambulancezorg-nederland-woensdag-6-februari-2019/190206_01_Presentatie_+Ambulancezorg.pdf
https://www.informatieberaadzorg.nl/binaries/informatieberaad-zorg/documenten/publicaties/2019/2/15/presentatie-consultatiesessie-ambulancezorg-nederland-woensdag-6-februari-2019/190206_01_Presentatie_+Ambulancezorg.pdf
https://www.informatieberaadzorg.nl/binaries/informatieberaad-zorg/documenten/publicaties/2019/2/15/presentatie-consultatiesessie-ambulancezorg-nederland-woensdag-6-februari-2019/190206_01_Presentatie_+Ambulancezorg.pdf
https://www.informatieberaadzorg.nl/binaries/informatieberaad-zorg/documenten/publicaties/2019/2/15/presentatie-consultatiesessie-ambulancezorg-nederland-woensdag-6-februari-2019/190206_01_Presentatie_+Ambulancezorg.pdf
https://www.informatieberaadzorg.nl/binaries/informatieberaad-zorg/documenten/publicaties/2019/2/15/presentatie-consultatiesessie-ambulancezorg-nederland-woensdag-6-februari-2019/190206_01_Presentatie_+Ambulancezorg.pdf
https://www.informatieberaadzorg.nl/binaries/informatieberaad-zorg/documenten/publicaties/2019/2/15/presentatie-consultatiesessie-ambulancezorg-nederland-woensdag-6-februari-2019/190206_01_Presentatie_+Ambulancezorg.pdf
https://www.informatieberaadzorg.nl/binaries/informatieberaad-zorg/documenten/publicaties/2019/2/15/presentatie-consultatiesessie-ambulancezorg-nederland-woensdag-6-februari-2019/190206_01_Presentatie_+Ambulancezorg.pdf
https://www.informatieberaadzorg.nl/binaries/informatieberaad-zorg/documenten/publicaties/2019/2/15/presentatie-consultatiesessie-ambulancezorg-nederland-woensdag-6-februari-2019/190206_01_Presentatie_+Ambulancezorg.pdf

[18] Gert Koelewijn. Acute Zorg. Apr.

2019. url: https : / / www .

nictiz . nl / standaardisatie /

informatiestandaarden / acute - zorg/

(visited on 03/06/2019).

[19] Jay Kreps. Getting Real About Distributed

System Reliability. Mar. 2012. url: blog .

empathy % EF % BF % BD % EF % BF % BD % EF % BF %

BDbox.com (visited on 17/05/2019).

[20] Microsoft. Azure Integration Services. 2018.

url: https : / / azure . microsoft . com /

mediahandler / files / resourcefiles /

azure - integration - services / Azure -

Integration - Services - Whitepaper - v1 -

0.pdf (visited on 05/14/2019).

[21] Alireza Moghaddam. “Coding issues in

grounded theory”. In: Issues in educational

research 16.1 (2006), pp. 52–66.

[22] Michael M Neeki et al. “Accuracy of perceived

estimated travel time by EMS to a trauma

center in San Bernardino County, California”.

In: Western journal of emergency medicine

17.4 (2016), p. 418.

[23] NHG/Nictiz. Richtlijn gegevensuitwisseling

huisarts huisartsenpost ambulancedienst

afdeling spoedeisende hulp. May 2014. url:

https://www.nhg.org/sites/default/

files / content / nhg _ org / uploads /

richtlijn_acute_zorg_2014_versie_3.0.

pdf (visited on 05/01/2019).

[24] Nictiz. Acute Zorg. Apr. 2019. url: https:

/ / www . nictiz . nl / standaardisatie /

informatiestandaarden/acute-zorg/ (vis-

ited on 03/06/2019).

[25] Nictiz. Basisdataset Terugrapportage meld-

kamer, ambulance en spoedeisende hulp naar

huisarts. June 2012. url: https : / / www .

nictiz.nl/wp-content/uploads/2012/06/

AORTA_dHA_BDS_Tl_DataSet_terugrap.pdf

(visited on 06/05/2019).

[26] Nictiz. Snel vooruit in de acute zorg. Mar.

2018. url: https://www.nictiz.nl/wp-

content/uploads/2018/03/Infographic-

acute-zorg.pdf (visited on 09/16/2019).

[27] Nictiz. Snel vooruit in de acute zorg. Apr.

2019. url: https : / / www . nictiz . nl /

standaarden / acute - zorg/ (visited on

09/17/2019).

[28] Johan Oosterwold. “Spoedeisende ambulance-

zorg en ouderen”. In: Vakblad van Ambulance-

zorg 4 (2018), pp. 32–35.

[29] Duco Roolvink. “Keuzes maken als iedere sec-

onde telt”. In: Skipr 5.10 (2012), pp. 28–30.

[30] Diana van Roon. “Schakelpunt tussen lokale

zorgsystemen”. In: Tijdschrift voor prakti-

jkondersteuning 12.5 (2017), pp. 26–29.

[31] Nick Rozanski and Eoin Woods. “Software

systems architecture: working with stakehold-

ers using viewpoints and perspectives”. In:

Addison-Wesley, 2011.

[32] DMJ Schalk et al. “Professioneel Handelen in

de Spoedzorg: Ontwikkeling en implementatie

van richtlijnen en protocollen”. In: Triage

2009.3 (2009), pp. 17–20.

[33] Tariq Rahim Soomro and Abrar Hasnain

Awan. “Challenges and future of enter-

prise application integration”. In: Interna-

tional Journal of Computer Applications 42.7

(2012), pp. 42–45.

[34] Karthikeyan Umapathy and Sandeep Purao.

“Designing enterprise solutions with web ser-

vices and integration patterns”. In: 2006

IEEE International Conference on Services

Computing (SCC’06). IEEE. 2006, pp. 111–

118.

[35] Alix Vargas et al. “Towards the development

of the framework for inter sensing enterprise

architecture”. In: Journal of Intelligent Man-

ufacturing 27.1 (2016), pp. 55–72.

48

https://www.nictiz.nl/standaardisatie/informatiestandaarden/acute-zorg/
https://www.nictiz.nl/standaardisatie/informatiestandaarden/acute-zorg/
https://www.nictiz.nl/standaardisatie/informatiestandaarden/acute-zorg/
blog.empathy%EF%BF%BD%EF%BF%BD%EF%BF%BDbox.com
blog.empathy%EF%BF%BD%EF%BF%BD%EF%BF%BDbox.com
blog.empathy%EF%BF%BD%EF%BF%BD%EF%BF%BDbox.com
https://azure.microsoft.com/mediahandler/files/resourcefiles/azure-integration-services/Azure-Integration-Services-Whitepaper-v1-0.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/azure-integration-services/Azure-Integration-Services-Whitepaper-v1-0.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/azure-integration-services/Azure-Integration-Services-Whitepaper-v1-0.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/azure-integration-services/Azure-Integration-Services-Whitepaper-v1-0.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/azure-integration-services/Azure-Integration-Services-Whitepaper-v1-0.pdf
https://www.nhg.org/sites/default/files/content/nhg_org/uploads/richtlijn_acute_zorg_2014_versie_3.0.pdf
https://www.nhg.org/sites/default/files/content/nhg_org/uploads/richtlijn_acute_zorg_2014_versie_3.0.pdf
https://www.nhg.org/sites/default/files/content/nhg_org/uploads/richtlijn_acute_zorg_2014_versie_3.0.pdf
https://www.nhg.org/sites/default/files/content/nhg_org/uploads/richtlijn_acute_zorg_2014_versie_3.0.pdf
https://www.nictiz.nl/standaardisatie/informatiestandaarden/acute-zorg/
https://www.nictiz.nl/standaardisatie/informatiestandaarden/acute-zorg/
https://www.nictiz.nl/standaardisatie/informatiestandaarden/acute-zorg/
https://www.nictiz.nl/wp-content/uploads/2012/06/AORTA_dHA_BDS_Tl_DataSet_terugrap.pdf
https://www.nictiz.nl/wp-content/uploads/2012/06/AORTA_dHA_BDS_Tl_DataSet_terugrap.pdf
https://www.nictiz.nl/wp-content/uploads/2012/06/AORTA_dHA_BDS_Tl_DataSet_terugrap.pdf
https://www.nictiz.nl/wp-content/uploads/2018/03/Infographic-acute-zorg.pdf
https://www.nictiz.nl/wp-content/uploads/2018/03/Infographic-acute-zorg.pdf
https://www.nictiz.nl/wp-content/uploads/2018/03/Infographic-acute-zorg.pdf
https://www.nictiz.nl/standaarden/acute-zorg/
https://www.nictiz.nl/standaarden/acute-zorg/

[36] Wouter Verhoef. “Beter te laat dan te vroeg

arriveren op de SEH!?” In: Vakblad van Am-

bulancezorg 3 (2019), pp. 13–17.

[37] Matt Welsh et al. “The staged event-driven

architecture for highly-concurrent server ap-

plications”. In: University of California,

Berkeley (2000).

[38] Roel J Wieringa. Design science methodology

for information systems and software engi-

neering. Springer, 2014.

[39] Tomasz Wiktor Wlodarczyk, Chunming

Rong, and Kari Anne Haaland Thorsen.

“Industrial cloud: Toward inter-enterprise

integration”. In: IEEE International Confer-

ence on Cloud Computing. Springer. 2009,

pp. 460–471.

[40] Ding Yuan et al. “Simple testing can prevent

most critical failures: An analysis of produc-

tion failures in distributed data-intensive sys-

tems”. In: 11th Symposium on Operating Sys-

tems Design and Implementation (14). 2014,

pp. 249–265.

8. Appendix

8.1. Technology stack AmbuSuite

1. Storage

(a) Azure SQL DB

(b) Redis

(c) Azure Tables

(d) Azure Shares (images)

2. Applications

(a) Service Fabric (legacy connectors)

(b) Azure Functions

(c) Azure Webapps (applications)

(d) Azure Service Bus

(e) Azure Active Directory

(f) Azure Key Vault

3. Communication

(a) Service bus (pub/sub, queues)

(b) REST APIs

(c) Websockets

(d) UDP

4. Monitoring

(a) Application Insights

(b) PagerDuty

5. Collaboration

(a) Atlassian (Jira, confluence)

(b) Slack

6. Support

(a) Zendesk

(b) DevOps (ci/cd)

8.2. Inductive open coding

List of articles that have been used in the inductive

open coding process:

1. Dirk Alkema. O, komt u voor mij?. In: Vak-

blad van Ambulancezorg 4 (2018), pp. 2527

[2]

2. TFM Hooghiemstra. Transmurale ict in de

zorg: stapsgewijze invoering is nabij. In: Zorg

en Financiering 4.3 (2005), pp. 1329 [15]

3. NHG/Nictiz. Richtlijn gegevensuitwisseling

huisarts huisartsenpost ambulancedienst afdel-

ing spoedeisende hulp. May 2014 [23]

4. Nictiz. Snel vooruit in de acute zorg. Mar.

2018 [26]

5. Johan Oosterwold. Spoedeisende ambulance-

zorg en ouderen. In: Vakblad van Ambulance-

zorg 4 (2018), pp. 3235 [28]

6. Duco Roolvink. Keuzes maken als iedere sec-

onde telt. In: Skipr 5.10 (2012), pp. 2830 [29]

7. Wouter Verhoef. Beter te laat dan te vroeg

arriveren op de SEH!? In: Vakblad van Ambu-

lancezorg 3 (2019), pp. 1317 [36]

The table with the codes found in the inductive

coding process can be found below (Table 2). All of

the codes are subjected to a concept found in the re-

search question: what architectural design can facil-

itate an optimal information delivery in the Dutch

multi-agency emergency healthcare. The research

question revolves around three concepts: architec-

tural design, information delivery, and emergency

49

RQ Concept Related codes

Software architecture

Communication infrastructure

Inadequate/out-dated IT-solutions

Healthcare staff support

System integration

Lack of uniformity

Healthcare

Patient journey

ETA

Bed capacity

Patient care (quality)

Costs/financing

Isolated disciplines

Emergency department

Ambulance

Treatments/assessments

Medical history(Difficulty with) work(flow)

Scattered decision chain

Information delivery

Communication (problems)

Insufficient information

Overhead on communication

Late information delivery

Oral/written communication

Unsupervised/uncontrolled information flows

Table 2: Codes

healthcare. The codes are the ones after deduplica-

tion (axial coding). Note that the concept of induc-

tive open coding means that upon repetition, the

exact codes can differ, depending on the researcher.

8.3. Perspective traceability

Table 3 details the perspectives’ architectural tac-

tics and whether they are full-filled in the design or

not [31]. These architectural tactics are provided to

help applying the perspectives on the viewpoints,

however, not all tactics might be applicable, de-

pending on the design.

50

Perspective: Security Full-filled Not applicable

Apply recognized security principles Yes

Authenticate the principals Yes

Authorize access Partially

Ensure information secrecy Yes

Ensure information integrity No

Ensure accountability Outside scope

Protect availability Yes

Integrate security technologies Yes

Provide security administration Partially

Use third-party security infrastructure Yes

Perspective: Performance & Scalability

Optimize repeated processing Yes

Reduce contention via replication Yes

Prioritize processing Yes

Consolidate the workload Yes

Distribute processing over time 24/7 servicing

Minimize use of shared resources Yes

Reuse resources and results Yes

Partition and parallelize Yes

Scale up or scale out Yes

Degrade gracefully Yes

Use asynchronous processing Yes

Relax transactional consistency
24/7 real-time

requirement

Make design compromises No

Perspective: Availability & Resilience

Select fault-tolerant hardware Cloud computing

Use high-availability clusting

Yes

Log transactions Yes

Apply software availability solutions Yes

Create fault-tolerant software No

Design for failure Yes

Allow for component replication Yes

Relax transactional consistancy
24/7 real-time

requirement

Identify backup and recovery solutions Yes

Perspective: Evolution

Contain change Yes

Create extensible interfaces Yes

Apply design techniques for change Yes

Apply meta-model architectural styles Yes

Build variation points into software Yes

Use standard extension points Yes

Achieve reliable change Yes

Preserve development environments Yes

Table 3: Perspective traceability

51

Fig. 11: Architecture core concept relations, derived from [31].

52

8.4. APIM Policy

The policy consists of six elements that enable authentication and the forwarding of requests to the back-end.

Within the <inbound> section, at first the <set-backend> sets the back-end web service URL if not done

previously. Second, <authentication-managed-identity> requests an access token for the specified resource.

The policy uses a Named Value to avoid hard-coded identifiers or credentials. Third, <set-header> is used

to remove the Ocp-Apim-Subscription-Key for the back-end. Fourth <set-header> is used to create an

authorization header including the access token obtained earlier. Fifth, the <set-header> is used to set

the content type to JSON. Sixth, in the <backend> section, a <forward-request> is used to forward the

request to the back-end.

<policies>

<inbound>

<base />

<set-backend-service id="apim-generated-policy" backend-id="ApiApp_ambu-flow-api-

↪→ dev" />

<authentication-managed-identity resource="{{resourceFlowID}}" ignore-error="false

↪→ " output-token-variable-name="accessToken" />

<!-- Remove the subscription key from the header -->

<set-header name="Ocp-Apim-Subscription-Key" exists-action="delete" />

<set-header name="Authorization" exists-action="override">

<value>@("Bearer " + context.Variables["accessToken"])</value>

</set-header>

<set-header name="Content-Type" exists-action="override">

<value>application/json</value>

</set-header>

</inbound>

<backend>

<forward-request timeout="60" buffer-request-body="true" />

</backend>

<outbound>

<base />

</outbound>

<on-error>

<base />

</on-error>

</policies>

53

8.5. API technical functions

The GetAll[] functions from each data entity are used when it is desired to retrieve all the information

available in a data entity without having to call each separate method for all the information, e.g. in case

of a database write operation. A [] indicates that function parameters can be passed into the API-methods.

Trip: GetTripByID, GetAllTripInfo[], GetUserMissions[], UpdateMission, GetMissionUpdates[], GetMis-

sionRequests, ApproveMission, UpdateTrafficCongestions[], GetETA, GetStatusCode, GetStatusTime,

GetEndOfTrip[], GetUrgency, GetPreAnnouncement[].

Incident: GetIncidentByID, GetAllIncidentInfo[], GetRetrievalAddress[], GetDeliveryAddress[], GetEmer-

gencyCallInfo[].

Ambulance: GetAmbulanceByID, GetAllAmbulanceInfo[], GetPosition, GetInstitutionAvailability.

Patient: GetPatientsByID, GetAllPatientsInfo[], GetPatientPersonal[], GetInsurance[], GetMedication,

GetSituation[], GetPrimarySurvey[], GetSecondarySurvey[], GetTreatment[], GetTriage[].

54

	Preface
	Glossary
	Introduction
	Emergency care market description and figures
	AmbuSuite
	Research method
	Problem investigation
	Treatment design
	Treatment validation
	Treatment implementation
	Treatment evalutation

	Literature review
	Stakeholder investigation
	Scenarios
	Message content
	Requirements analysis
	Unified messaging
	Reliable communication
	Provisioning and monitoring
	Dynamic scaling
	Flexible services
	Secure communication
	Integration with other tools

	Architectural elements
	Architectural viewpoints
	Architectural perspectives
	Security
	Performance and scalability
	Availability and resilience
	Evolution and maintainability

	Event Driven Architecture
	Micro services
	Enterprise Integration Patterns
	Message Oriented Middleware
	Message broker
	Message queues
	Dead letter channel pattern
	Event message pattern
	Message store

	Messaging as a Service
	Cloud-based integration
	OAuth2.0

	Architectural description
	Relation between viewpoints
	Context viewpoint
	Scope
	Design rationale

	Functional viewpoint
	Design rationale
	Design decisions
	External interfaces

	Information viewpoint
	Design rationale

	Concurrency viewpoint
	Design rationale

	Viewpoint validation
	Security
	Performance and scalability
	Availability and resilience
	Evolution and maintainability

	Implementation
	Key decisions
	RescueTrack
	Use case: providing real-time ETAs
	Implementation process
	RescueTrack adapter
	API Management service (APIM)
	AmbuAPI
	Service bus
	Database application
	Hospital viewer

	Implementation trade-offs
	Impact analysis

	Evaluation
	Methodology reflection
	Literature reflection
	Engineering cycle reflection
	Implementation validation
	Unified messaging
	Reliable communication
	Provisioning and monitoring
	Dynamic scaling
	Flexible services
	Secure communication
	Integration with other tools

	Impact

	Conclusion and discussion
	Scientific implications
	Limitations
	Future work

	Appendix
	Technology stack AmbuSuite
	Inductive open coding
	Perspective traceability
	APIM Policy
	API technical functions

