
From user feedback to
requirements using

chatbots

Master Thesis

Danny Horvath - 6253733

Graduate School of Natural Science
Master Business Informatics

Supervisors:
Dr. Fabiano Dalpiaz

Dr. Sergio Espana Cubillo

1.0 version

Utrecht, November 2019

Abstract

This thesis studies the opportunities of involving users in the requirements engineering process
using chatbots. First a semi-structured literature study explores the current field of Crowd Re-
quirements engineering, user feedback and chatbots in general. This literature study leads to a
number of initial requirements for using chatbots in the requirements engineering process. Com-
plementary requirements are gathered using a semi-structured interview with the stakeholders at
the case study company, leading to an initial requirements list regarding chatbots in the field
of requirements engineering. Furthermore, chatbots can help in guiding the users through the
bug reporting process by controlling the flow of the conversation and using follow-up questions
to further specify information. Therefore, we have designed and evaluated a conversation flow
specific for this case. However, we have found that the 5W’s used in journalism can be applied
to specify the details of a bug report. Finally, we have implemented automatic entity detection
in the prototype, this way we were able to further pinpoint the specific bugs and turn them into
proto-requirements. After the evaluation the subjects were asked to rate the chatbot using a usab-
ility scale, and were interviewed to find out their opinions about using a chatbot for requirements
engineering and identifying the strengths and weaknesses of the chatbot. Finally, the resulting bug
reports generated by the chatbot were discussed with the developers, they rated the bug reports
generated by the chatbot higher or equal to the original bug reports. The most recurring reason
for this higher score is the structure that the generated bug reports provide the developers with.

Keywords: Requirements engineering, chatbots, NLP, User feedback

ii From user feedback to requirements using chatbots

Contents

Contents iii

List of Figures vi

List of Tables vii

1 Introduction 1

2 Case Description 3
2.1 Initial prototype requirements . 4

3 Literature Review 6
3.1 Requirements Engineering . 6

3.1.1 RE activities . 6
3.1.2 Requirements elicitation . 7
3.1.3 Requirements analysis . 8
3.1.4 Requirements specification . 8

3.2 CrowdRE . 8
3.2.1 Motivating crowd members . 9
3.2.2 Eliciting user feedback . 10
3.2.3 Analyzing user feedback . 10
3.2.4 Monitoring contextual and usage data . 10

3.3 User feedback . 11
3.3.1 Feedback classification . 12

3.4 Chatbots . 13
3.4.1 Interaction model . 15
3.4.2 Initiation . 16
3.4.3 Intelligence . 17
3.4.4 Purpose . 17
3.4.5 Environment Dimension . 19
3.4.6 Intrinsic Dimension . 22
3.4.7 Interaction Dimension . 27
3.4.8 Human-Chatbot conversations . 31

3.5 Prototype Requirements . 32
3.5.1 Environment dimensions . 32
3.5.2 Intrinsic dimensions . 32
3.5.3 Interaction dimensions . 33

4 Research Method 34
4.1 Research questions . 34
4.2 Method . 35

4.2.1 Problem investigation . 36
4.2.2 Treatment design . 36

From user feedback to requirements using chatbots iii

CONTENTS

4.2.3 Treatment validation . 36

4.2.4 Chatbot purpose . 36

5 Conversation flows 39

5.1 Software Request Structure . 39

5.1.1 Problem statement . 40

5.1.2 Affected users . 40

5.1.3 Bug location . 40

5.1.4 Reconstruction scenario . 40

5.2 Initial conversation flow . 40

5.2.1 Production blocking question . 41

5.2.2 Uncovering the problem . 41

5.2.3 Question expected end-result . 42

5.2.4 Reconstructing the scenario . 42

5.2.5 Mapping the urgency . 42

5.2.6 Summarize request . 42

5.2.7 Rate chatbot . 42

5.3 Conversation flow adjustments . 43

5.3.1 Question problem adjustments . 43

6 Prototype design 44

6.1 Microsoft LUIS . 44

6.1.1 LUIS vs. Rule-based pattern-matching . 44

6.1.2 LUIS Development cycles . 47

6.2 Microsoft Bot Framework . 48

6.2.1 Bot structure . 49

6.3 First prototype cycle . 50

6.3.1 Bot Design . 50

6.3.2 LUIS application design . 51

6.3.3 Prototype testing results . 52

6.4 Second prototype cycle . 53

6.4.1 Bot Design . 53

6.4.2 LUIS application design . 54

6.4.3 Prototype testing results . 55

6.5 Third prototype cycle . 55

6.5.1 Bot Design . 56

6.5.2 LUIS application design . 57

6.5.3 Prototype testing results . 58

6.6 Fourth prototype cycle . 59

6.6.1 Bot Design . 59

6.6.2 LUIS application design . 60

6.6.3 Prototype testing results . 62

6.6.4 Proto-Requirements . 62

6.7 Machine learning analysis . 63

7 Prototype evaluation 65

7.1 Experimental design . 65

7.2 Hypotheses . 66

7.3 Result analysis . 66

7.3.1 SUS score analysis . 67

7.3.2 Prototype evaluation . 67

7.3.3 Prototype evaluation summary . 70

iv From user feedback to requirements using chatbots

CONTENTS

8 Conclusions & Discussion 73
8.1 Conclusion . 73

8.1.1 Research questions . 73
8.1.2 Motivating users to provide feedback through a chatbot integrated in a soft-

ware product (RQ 1) . 73
8.1.3 Guiding users in providing informative feedback about a software product

using a chatbots (RQ 2) . 74
8.1.4 Automatically eliciting proto-requirements from user feedback (RQ 3) . . . 74
8.1.5 Using chatbots integrated in a software application to elicit requirements . 74

8.2 Lessons learned . 74
8.3 Validity threats . 75
8.4 Future work . 75

8.4.1 Analysis of automatic entity detection opportunities 76
8.4.2 End-user analysis . 76
8.4.3 Implementing the chatbot in a software application 76

Bibliography 77

Appendix 80

A Interview protocol 81

B Software bot taxonomy 87
B.1 Environment dimensions . 87
B.2 Intrinsic dimensions . 87
B.3 Interaction dimensions . 87

C Pattern accuracy results 88
C.1 What pattern accuracy . 88
C.2 Who pattern accuracy . 89
C.3 Why pattern accuracy . 90
C.4 Where pattern accuracy . 91
C.5 When pattern accuracy . 92

D Initial conversation flow 93
D.1 Full conversation flow . 93
D.2 Welcome dialog . 93
D.3 Question problem dialog . 94
D.4 Expected end-result dialog . 94
D.5 Reconstruction scenario dialog . 94
D.6 Edit dialog . 95
D.7 Rate chatbot dialog . 95

E Prototype testsets 96
E.1 Testset version 0.1 . 97

F Prototype example utterances 100
F.1 Example utterances version 0.1 . 100

G Prototype interview protocol 101

H Developer interview protocol 105

From user feedback to requirements using chatbots v

List of Figures

2.1 Visualization of HiX Modules . 4

3.1 Example of the relationships among the aspects of requirements engineering [17]. . 9
3.2 Definition of software bots [27]. 14
3.3 “The relationship between software bot interfaces and software services: (a) soft-

ware bot with external services, (b) software bot with internal services, and (c)
software bot with both internal and external services” [27]. 14

3.4 “Mainstream adoption of new human-computer interface paradigms” [27]. 14
3.5 Difference between software bots and chatbots [27]. 15
3.6 Mock-up of the CORDULA system [12]. 16
3.7 Example of a chatbot with a command-line interaction model. Extracted from

https://core.telegram.org/bots . 16
3.8 Example of a chatbot with a natural-language interaction model. Extracted from

https://algorithmxlab.com/blog/2017/12/19/bring-chatbots-say-5-giant-banks/ . 17
3.9 Chatbots categorized by purposes . 18
3.10 High-level taxonomy of software bots [27]. 19
3.11 Environment dimensions [27]. 19
3.12 Intrinsic dimensions [27]. 22
3.13 Interaction dimensions [27]. 28

4.1 The Three Dimensions of Requirements Engineering [35]. 35
4.2 Design science cycle [45]. 36
4.3 Structured vs. unstructured requests . 37

6.1 LUIS development cycle [38]. 48
6.2 LUIS request and response [38]. 48
6.3 Bot builder activity [42]. 49
6.4 Bot builder processing stack [42]. 49
6.5 Initial prototype dialogues. 50
6.6 Example Document type entity values. 52
6.7 Precision & Recall per entity version 1. 52
6.8 Second prototype dialogs. 54
6.9 Precision & Recall per entity version 2. 55
6.10 Third prototype dialogues. 57
6.11 Precision & Recall per entity version 3. 58
6.12 Fourth prototype dialogues. 61
6.13 Precision and Recall per entity version 4. 62
6.14 Proto-requirements definition . 63
6.15 Recall and precision over versions. 64

7.1 Test set assignment. 65

vi From user feedback to requirements using chatbots

List of Tables

3.1 Keywords indicating a review type (basic classifier) [30]. 12

7.1 Scoring of chatbot per subject . 71

From user feedback to requirements using chatbots vii

Chapter 1

Introduction

Todays large software systems comprise a vast number of stakeholders. By large software systems
one can think of systems such as Microsoft Windows, Apache Webserver, Facebook and other
systems that go beyond a single-customer setting and serve a large market of customers.

These stakeholders include customers who pay for the system, users who interact with the system
to get their work done, developers who develop the system, and more [9]. However, engaging a
large number of software product users, who are beyond an organizations reach, in requirements
engineering (RE) by using traditional RE methods has proven to be a challenging task [39]. Tra-
ditional market-driven RE approaches elicit feedback through beta-tests, questionnaires and focus
groups. This physically limits the amount of feedback and requirements to be gathered by the
effort it takes to gather these requirements [17].

More advanced RE approaches applied in market-driven RE provide companies with tools to
directly interact with the users of the software product using ad hoc feedback-gathering channels
such as forums [15]. However, Snijders et al. state that “these approaches seem to miss the op-
portunity to continuously involve large, heterogeneous groups of users who express their feedback
through a variety of media” [39].

Crowd Requirements Engineering, from now on CrowdRE, aims to gather feedback from a crowd
of users or representatives which can be a larger audience than possible with traditional RE tech-
niques [17]. This is achieved by using several unobtrusive automated means of gathering feedback
[17]. One can think of gathering feedback through reviews submitted in app stores, feedback from
forums and in-app solutions. However, this results in large data sets of feedback which can not
be analyzed manually due to time and effort constraints [17][41]. Therefore, a crucial component
of CrowdRE is to provide companies with a solution to semi-automatically analyze and transform
the feedback to requirements [17].

In 2016 Robert Dale argued that intelligent virtual assistants were the most hyped language
technology, Lebeuf et al. agree that bots are quickly becoming the standard for communicating
with software services [7][26]. In addition, Shawar et al. state that people want to use natural-
language to communicate with computers [37], Zadrozny et al. agrees with this statement by
stating that users want “to express their interest, wishes, or queries directly and naturally, by
speaking, typing, and pointing” [48]. One can think of the voice-driven digital assistants such as
Siri by Apple, Cortana by Microsoft, Alexa by Amazon and the Google Assistant, followed by
an enormous range of text-based chatbots [7]. The reason for this sudden rise in popularity is
that bots provide developers with a convenient way to generate a UI for interacting with machine-
learning algorithms [26]. In addition, major software companies such as Facebook and Microsoft
are recognizing and acknowledging the values as bots, Microsoft states that “conversation as a
platform” is the OS of the future [26]. Chatbots can therefore prove valuable as a communication

From user feedback to requirements using chatbots 1

CHAPTER 1. INTRODUCTION

platform between users and developers, providing a feedback medium which can in turn help big
software companies gain a better understanding of their users needs.

The goal of this thesis project is to uncover how the feedback of large heterogeneous groups
of users can be continuously elicited in the requirements engineering process, by using a chatbot
that can be integrated in the software product. This way users can continuously provide feedback
using the chatbot on the fly. This feedback is then used as input for the chatbot to elicit require-
ments from the feedback resulting in proto-requirements. These requirements can be used by the
company to improve the quality of their software product. Additionally, these conversations and
the resulting feedback can be stored to gain a better understanding of the needs and wishes of the
software product users. The research question that will be used in this thesis project goes:

“How can chatbots integrated within a software product prove beneficial in eliciting requirements
from user feedback?”

This question will be answered by designing and developing a prototype of a chatbot that can
eventually be implemented within a software application. The prototype will then be evaluated
by consultants and developers at the case organization, to gather feedback and elicit requirements
from their feedback.

This is achieved by executing a case study at ChipSoft where we will develop a prototype of
a chatbot that can be implemented in their software product named HiX (Health information
Xchange). The consultants and developers at ChipSoft will be asked to provide feedback through
the prototype. Finally, the results will be evaluated with the consultants and the requirements gen-
erated by the prototype will be discussed with the developers, resulting in a comparison between
the situation with and without the chatbot.

In Chapter 2 a detailed description of the case in this research project is given, followed by
the literature review in Chapter 3. The literature review positions the research and provides the
groundwork for answering the research questions. In Chapter 4 the research method and approach
is explained to this end, followed by a detailed description of the conversation flows in Chapter
5. In Chapter 6 the design of the prototype will be described in detail. In Chapter 7 we will
delve deeper into the evaluation of the prototype followed by Chapter 8 where the results and
conclusions of the research will be discussed.

2 From user feedback to requirements using chatbots

Chapter 2

Case Description

For the case study, a prototype of a requirements focused chatbot, that can be implemented in
the software application HiX by ChipSoft, will be developed. Since HiX is a large and complex
software product, it is divided into different so-called “modules” as displayed in Figure 2.1. These
modules cover a broad range of fields, e.g. Finance, Patient and Multimedia modules exist. Since
it is not possible at this time, and the scope of this thesis project to develop a prototype covering
all these modules, the prototype will be developed and prepared for implementation exclusively
for the Multimedia/PACS (Picture Archiving and Communication System) module in HiX. This
module focuses on displaying, storing and interacting with a range of multimedia documents such
as images, videos and audio recordings. This module is an adequate choice, for it is under active
development and change. Therefore, a lot of feedback can be gathered in this module.

The consultants at ChipSoft have the role to implement HiX at the customers and tailor the
product to their specific wishes. This is accomplished by the consultants creating a prototype
of the customers’ wishes in a sandbox environment at ChipSoft. This sandbox environment is
installed in a testing environment at the given customer allowing the system administrators and
other employees to test the given prototype. Finally, if the prototype passes the tests the en-
vironment is rolled out into production. In addition, the consultants also handle any customer
wishes, provide support and assist the developers in support calls, bug reporting and requesting
features. They provide the main communication channel between the developers and the external
customers, this makes them the most important internal customer at ChipSoft as seen from a
developers point of view.

Due to this fact, and the fact that it is not possible to implement the prototype at actual custom-
ers and integrate the prototype in the software application due to time- and security constraints,
we choose to develop the chatbot as a stand-alone application and evaluate it likewise. The con-
sultants will be able to interact with the prototype and report bugs through the prototype. The
prototype can then use the feedback provided by the consultants to formulate proto-requirements
using realistic data.

In the current situation, the consultants can report bugs or handle support calls through a web
solution. The communication between the customer and the consultant is monitored, and it
provides the possibility to create internal memo’s for the communication between consultants and
developers. This way the progression of the support call can be monitored from begin to end.
However, it does not provide developers with a clear view on what needs to be developed or what
the bug exactly is, due to the possible poor formulation of the bugs in question. This often results
in not clearly understanding the “why” dimension of the requirement in question. As Yu et al.
state, understanding the “why” is an important part of requirements engineering [47]. Therefore,
the prototype should focus on uncovering and eliciting the “why” of a requirement through a
conversation with the user, in this case the consultants and developers. This will provide ChipSoft

From user feedback to requirements using chatbots 3

CHAPTER 2. CASE DESCRIPTION

Figure 2.1: Visualization of HiX Modules

with better insights on the rationale of a requirement, than just understanding the “what”, offer-
ing the possibility to think of other solutions during the requirements engineering process.

The feedback data can be used to make a comparison between the current situation and the
situation with the prototype. To do so, we will conduct interviews with the consultants and other
stakeholders to identify their requirements and constraints. In addition, the current requirements
are compared with the requirements generated by the prototype to evaluate the added value of a
chatbot and see which requirements are of higher quality according to the developers. Finally, the
usability of a chatbot will be evaluated with the subjects in question.

2.1 Initial prototype requirements

For the prototype to be successful it should satisfy certain concrete requirements. The require-
ments of the initial design of the chatbot prototype will be listed in this subsection. This list
will be complemented by the literature study and results of the semi-structured interviews in Sec-
tion 3.4. Since the prototype focuses solely on reporting bugs and creating valuable requirements
from this feedback, the initial requirements of the prototype are:

• R1 - Bug problem statement extraction The prototype should be able to extract a
concrete problem statement through conversing in natural-language with the user;

4 From user feedback to requirements using chatbots

CHAPTER 2. CASE DESCRIPTION

• R2 - Desired end-result extraction The prototype should be able to extract the desired
end-result through conversing in natural-language with the user;

• R3 - Classification of a bug The prototype should be able to classify a bug in terms of
location, urgency and users affected;

• R4 - Reconstruction scenario extraction The prototype should be able to extract a
reconstruction scenario through conversing in natural-language with the user;

• R5 - Create proto-requirements The prototype should be able to summarize the bug
report and report this back to the user;

• R6 - Bug summarizing The prototype should be able to summarize the bug report and
report this back to the user;

• R7 - Synonym knowledge base The prototype should be able to detect and act upon
synonyms of work-related terms e.g. Patientphoto and Image document type.

These requirements describe the prototype on a high-level and highlight the main function-
alities. They originate from interviews with the consultants and developers at ChipSoft and
discussions with the first supervisor of this thesis project. It focuses on reporting bugs solely due
to time constraints, added value and complexity. Requesting new features is of higher complexity
than bug reporting due to the higher degrees of freedom the user has in describing a feature. For
this reason, a conversation about a bug can be controlled easier. In addition, we expect that there
is more added value for conversing through natural-language to report a bug than there is when
requesting a feature. The reason for this expectation is that the reconstruction scenario can be
elicited more in-depth and follow-up questions might add value.

From user feedback to requirements using chatbots 5

Chapter 3

Literature Review

To gain a better understanding of the domain area of crowd requirements engineering, from now
on CrowdRE, a literature review was performed. The literature review helped us get a better un-
derstanding of the current solutions in the domain, and what problems still reside in the domain.

3.1 Requirements Engineering

For software companies it is crucial to ensure that a software product fulfills the needs of the users
as accurately as possible. Therefore, the company first needs to acquire knowledge regarding the
needs and wishes of users, the so-called requirements of the product. According to Paetsch et al.
a requirement is used to precisely describe what is to be developed but leaves out how it should
be implemented [32]. In contrast, Harwell et al. describe a requirement as a ‘thing’ that acts as a
promise that something must be accomplished, transformed, produced or provided [20]. Finally,
Dick et al. define a requirement as “a statement that identifies a product or process operational,
functional, or design characteristic or constraint, which is unambiguous, testable or measurable,
and necessary for product or process acceptability (by consumers or internal quality assurance
guidelines).” [10]. In this research we will not select nor create a definition of requirements as this
is beyond the scope of this research.

Requirements engineering is regarded as the process to uncover these requirements by formu-
lating, analyzing and agreeing on what, why and how something should be developed [44]. Dick et
al. define requirements engineering as “a subset of systems engineering that is concerned with dis-
covering, developing, tracing, analyzing, qualifying, communicating and managing requirements
that define a system of successive level of abstraction.” [10]. Requirements engineering can assist
in gathering requirements before development starts to reduce the risk of having to do costly
rework [32]. However, due to the popularity of agile software development, requirements engin-
eering can be seen as a continuous process that can be used before, during and after the software
development phase, to uncover fault repairs, environmental adaptation and functionality additions
requirements [40][49]. Because this research focuses on gathering requirements from feedback, and
therefore after the software development phase, we will approach RE as a continuous process,
which is conducted before, during and after the software development phase.

3.1.1 RE activities

In the literature, RE is defined as a process that is split up in different activities or tasks. Thayer
and Dorfman split up the RE process into five key activities in their book [43]:

6 From user feedback to requirements using chatbots

CHAPTER 3. LITERATURE REVIEW

1. Software requirements elicitation - Discovering, reviewing articulating and understanding
the needs and wishes of the user;

2. Software requirements analysis - Analyzing the acquired needs and forming them into re-
quirements;

3. Software requirements specification - Specifying the requirements in a requirements docu-
ment;

4. Software requirements verification - Verify the specified requirements and check if they are
in line with standards and useful;

5. Software requirements management - Planning and controlling of the previous defined activ-
ities.

While not all research agrees with this set of activities or tasks, requirements elicitation seems
to be a returning activity in all the literature. In contrast, van Lamsweerde adds the following
activities in their study [44]:

1. Domain analysis - Gathering domain knowledge to gather a greater understanding of the
problem to solve;

2. Evaluation and agreement - Aims on making informed decisions of issues arised during the
elicitation activity;

3. Requirements documentation - Regards the creation of a requirements document containing
all the requirements;

4. Requirements evolution - Activity intersects with change management and configuration
management in software engineering.

This research focuses on a combination of the elicitation, analysis and specification activities.
Where a chatbot will serve as the elicitation mechanism handling the analysis and specification
using feedback. Therefore, we will not give an in-depth description of the remaining activities as
it is beyond the scope of this research.

3.1.2 Requirements elicitation

The requirements elicitation activity aims at uncovering the requirements that will help shap-
ing the system-to-be. In this activity it is crucial to gather information about the application
domain, business needs, system constraints, stakeholders and the problem itself to better under-
stand what should and should not be developed for the system-to-be [32][44]. To achieve this, a
number of techniques can be used, van Lamsweerde splits up these techniques in artefact-driven
and stakeholder-driven techniques [44]. Since this research focuses on creating requirements from
feedback, thus stakeholder-driven, we will not delve deeper into artefact-driven techniques.

Stakeholder-driven elicitation techniques rely on interaction with stakeholders to obtain relev-
ant information about the organization, domain and the problems residing in the system-as-is
[44]. van Lamsweerde propose the following techniques [44]:

1. Interviews - Structured and unstructured interviews can be conducted among stakeholders;

2. Group sessions - A series of group workshops can be organized to elicit feedback from larger
groups of stakeholders;

3. Observation - Observing how stakeholders use the software to uncover requirements.

In addition, Paetsch et al. add the following technique to the list [32]:

From user feedback to requirements using chatbots 7

CHAPTER 3. LITERATURE REVIEW

1. Brainstorming - Organizing brainstorming session to gather creative ideas focused on evolving
the software product.

While these techniques are useful for a small amount of stakeholders, the amount of interaction
with the stakeholders is inefficient when trying to elicit requirements from a large number of
end-users. This is because there is a physical limit in the amount of requirements that can be
gathered by the effort it takes to gather these requirements [49]. Therefore, Zowghi et al. advice
investigating methods that involve direct interaction with stakeholders using new technologies
including web and agent based architectures [49].

3.1.3 Requirements analysis

The requirements analysis phase consists of checking the necessity, consistency, completeness and
feasibility of the elicited requirements. This is in the majority of the cases a manual task to
be executed by a requirements analyst. The task commonly consists of JAD (Joint Application
Development) sessions, prioritization and modeling [32][44]. If a conflict is uncovered in the set of
requirements, they can be resolved by a prioritization negotiation with the stakeholders to uncover
more critical requirements. The final result of this phase is to compromise a set of requirements
that is agreed on by the stakeholders [32].

3.1.4 Requirements specification

The purpose of documenting and specifying requirements, is that it is easier to communicate
documented requirements between stakeholders and developers [32]. This phase consists of doc-
umenting the set of requirements that is agreed upon, in the requirements analysis phase, in the
so-called requirements document [32][44]. The requirements document can be the baseline for
evaluating products and processes and can be useful for change control. As Paetsch et al. state
“A good requirements document is unambiguous, complete, correct, understandable, consistent,
concise, and feasible.” [32].

3.2 CrowdRE

As this research consists of a case-study at a company developing a software product for the
healthcare industry, we will limit us to the approach of market-driven RE. This is because the
product goes beyond a single-customer setting and this type of approach enables serving a large
market of customers [17]. Todays large software systems comprise a vast number of stakeholders.
These stakeholders include customers who pay for the system, users who interact with the system
to get their work done, developers who develop the system, and more [17]. However, engaging a
large number of software product users, who are beyond an organization’s reach, in requirements
engineering (RE) by using traditional market-driven RE methods has proven to be a challenging
task [16][39]. In traditional market-driven RE approaches, feedback is elicited through beta-tests,
questionnaires and focus groups. This physically limits the amount of feedback and requirements
to be gathered by the effort it takes to gather these requirements. However, there are more
advanced RE solutions that use multi-modal feedback gathering approaches [17][16][39] leaving
the company with the possibility to directly communicate with their end-users. As observed by
Snijders et al., “these approaches seem to miss the opportunity to continuously involve large, het-
erogeneous groups of users who express their feedback through a variety of media.” [39].

In CrowdRE the feedback comes from a crowd of users or their representatives which is a much
larger audience than previously [17]. This feedback can be gathered using several unobtrusive
automated means, for example, an integrated chatbot in the software product [17]. A big chal-
lenge remains in motivating the crowd to provide high-quality feedback, the authors state that
digital-motivation techniques should be adaptive to the context and adaptable by the crowd, but
in such a way that it does not affect the quality of the feedback [17]. A chatbot could be such a

8 From user feedback to requirements using chatbots

CHAPTER 3. LITERATURE REVIEW

digital-motivation technique as it is adaptive and can easily be adopted by the crowd. In addi-
tion, it allows the user to further specify their feedback by using natural language in a conversation.

Figure 3.1: Example of the relationships among the aspects of requirements engineering [17].

A CrowdRE solution should strive to gather a continuous stream of feedback from as many
crowd members as possible to identify and communicate the needs of these crowd members [17].
The feedback and information is called user feedback where the crowd member (or user) is con-
sidered as the direct sender of this feedback. The authors divide this entire process in five different
key activities [17]:

1. Motivating crowd members

2. Eliciting user feedback

3. Analyzing user feedback

4. Monitoring contextual and usage data

3.2.1 Motivating crowd members

The motivation activity is a very hard one as it focuses on motivating users to provide a continuous
stream of user feedback. A crowd member can be motivated in two different ways: 1) intrinsic and
2) extrinsic. Intrinsic is when the crowd member is genuinely interested in the software product
and willing to commit time in the software evolution [17]. Extrinsic is when the feedback results
from external interventions and incentives such as monetary rewards and non-monetary rewards
such as social recognition [17]. As stated by Hosseini et al. “Intrinsic motivations are typically
the stronger of the two” [22]. The challenge at hand is to create interest in such a way amongst
crowd members that they are intrinsically motivated to provide continuous feedback. However,
the challenge in this activity is that motivating the crowd has been proven to be extremely hard
[31]. As stated by Snijders et al. gamification and persuasive technology, such as rewarding
crowd members for providing feedback, can be used to boost the interest of crowd members in
providing a continuous stream of valuable feedback [17][39][29].This research will focus on getting
crowd members intrinsically motivated as there will be no reward for using the chatbot to provide
feedback.

From user feedback to requirements using chatbots 9

CHAPTER 3. LITERATURE REVIEW

3.2.2 Eliciting user feedback

The next key activity involves the process of eliciting feedback from the crowd members and can
be seen as the most interesting key activity in this research. Deepa et al. state that “existing
methods for requirements elicitation require intensive interactions with the stakeholders, for ex-
ample, through face-to-face meetings, interviews, brainstorming sessions, and focus groups” [9].

There are two ways in which feedback is gathered, pull feedback is when the feedback is gathered
from the crowd through a specific request made by the company, push feedback is when the
crowd independently provides feedback [17]. In this research we mostly focus on the push type
of feedback as we provide the crowd with a chatbot which they can independently use to provide
feedback through. An additional source of feedback can come from monitoring data, this means
that feedback can be enriched by monitoring the end-users behavior [17][41]. This extra informa-
tion helps the developer in providing them with a deeper understanding of the particular needs and
problems of the crowd [41]. This research will focus on gathering linguistic feedback by providing
crowd members the possibility to communicate their feedback through natural language. Crowd
members report on a lot of different things ranging from bugs, extension ideas and new product
ideas [17][31]. Since the eliciting of requirements was an activity formerly executed as a design
time activity it is currently shifting more and more to a run-time activity, actively involving the
crowd members via the use of user feedback [23][2]. This feedback is given through a number of
feedback channels such as forums, app-store reviews and social media [17]. While this is a step
in the right direction, the crowd members need to go out of their way to provide feedback posing
them to a potential hurdle for providing feedback [17]. This could mean that there should be an
easy way for crowd members to provide feedback on the fly rather than having to take an extra
step to provide feedback. The combination of these new feedback elicitation methods and the
current more traditional elicitation methods can lead to a very powerful combination, that leaves
the developer with a greater understanding of the wishes and needs of their crowd members [17].

3.2.3 Analyzing user feedback

To actually leave the developers with a greater understanding of the crowd members, the user
feedback needs to be analyzed [17]. By providing the crowd members with a way to provide
feedback on the fly, the amount of feedback may also increase. This could lead to the point
where it is no longer possible to analyze the feedback manually [17][41]. Therefore, an automated
way of analyzing the feedback would be almost vital to benefit from the big set of user feedback
[17]. The most obvious solution is to use linguistic analysis techniques such as text-mining to
automatically analyze the feedback [17]. This would classify the feedback in different categories
such as “bug reports” and “feature requests” [17]. However, a challenge is to reduce the risk of
so-called “misuse” which could lead to accidentally extracting personal information from crowd
members [31]. Therefore, it is very important to provide crowd members with a way to set their
privacy preferences. In this way both the company and the crowd members can benefit from
sending and receiving feedback.

3.2.4 Monitoring contextual and usage data

Another step in the process is the monitoring of context and usage data. In the future there can be
new ways to gather user feedback, for example gathering usage data through sensors in internet of
things devices or through the use of usage-mining techniques [17][16]. The combination of both the
text-mining in the analysis phase and the usage-mining techniques used in this phase can provide
the company with even more valuable information about the crowd. In addition, combining usage
data with feedback can be very valuable when two opposing opinions arise to make a decision [16].
Finally, usage data can also be monitored in software products, which can also lead to unveiling
new and formerly unknown requirements without the involvement of the user itself [17].

10 From user feedback to requirements using chatbots

CHAPTER 3. LITERATURE REVIEW

3.3 User feedback

For software companies it has become increasingly important to involve their users in the soft-
ware development process [3][24][34][5][18]. Bragge et al. state that receiving innovative end-user
feedback is an essential part for acquiring new development ideas [5]. In the long-term, actively
involving users in the software development process can have a positive impact on the success
of the software product [49]. According to Damodaran, actively involving users in the software
development process can yield the following benefits [8]:

1. Improved quality of the software product due to more accurate user requirements;

2. Avoidance of costly features that the user do not want and will not use;

3. Improved level of acceptance of the software product;

4. Greater understanding of the software product by the user;

5. Increased participation in decision making.

However, it often proves difficult for software development companies to actively involve users in
their software development process [18][24]. This is because, for most of the software development
companies the customer is prioritized over the end-user. In addition, the developers are often
unable to interact with or communicate with the end-users, resulting in the requirements being
communicated through marketing. Finally, because of the popularity of agile software develop-
ment, and the fact they use relatively short development cycles, there is no time for involving the
users in every iteration [18][24].

Panichella et al. state that user feedback can contain usage scenarios, bug reports and feature re-
quests [34]. However, in popular applications this will lead to a large set of feedback. As feedback
varies in quality and tends to be unstructured identifying valuable user feedback proves to be a
challenging task [34].

Due to the increased popularity of mobile applications, application distribution platforms or app
stores such as the Google Play or Apple AppStore have become increasingly popular [13]. These
app stores allow to submit feedback, which is particularly interesting from the software and re-
quirements engineering perspective, in the form of reviews and so-called star-ratings [13][34][33].
However, Pagano et al. state that the real potential and impact on requirements engineering are
not yet well understood [33]. These reviews consist of rating the application with a number of
stars and providing a review message. They are completely public and can be seen by other people
and the developers of the application [33]. Reviews serve as a communication channel between
developers and users where the users can provide the developers with relevant information about
the application which can help software development companies improve their product quality
[33][34]. The reviews provided in the app stores seem to differ from other online stores in two
ways [13]:

1. The reviews seem to be shorter in length;

2. An app can have multiple releases. Therefore, reviews can be specifically aimed at a certain
version and can vary over time.

These reviews provide a strong medium for eliciting feedback and communication between de-
velopers and users. However, due to the size of the set of reviews, it requires a large time invest-
ment to manually analyze, process and extract valuable information from these reviews [13][34].
Additionally, the user has to take an extra step to provide the feedback, possibly missing some
feedback from

From user feedback to requirements using chatbots 11

CHAPTER 3. LITERATURE REVIEW

Review type Keywords
Bug reports bug, fix, problem, issue, defect, crash, solve

Feature requests
add, please, could, would, hope, improve, miss, need,
prefer, request, should, suggest, want, wish

User experiences help, support, assist, when, situation
Ratings Great, good, nice, very, cool, love, hate, bad, worst

Table 3.1: Keywords indicating a review type (basic classifier) [30].

3.3.1 Feedback classification

Due to the fact that it is time-consuming to manually analyze the large amount of feedback made
available through app store reviews it is beneficial to automatically classify reviews. Maalej et
al. state that reviews can effectively be categorized in four types [30]: 1) Bug reports, 2) Feature
requests, 3) User experiences, 4) Ratings. Bug reports describe problems with the app that should
be fixed, think of crash reports, performance issues and erroneous behavior. In feature requests
the users suggest or asks for missing content, functionalities and features and share ideas on how
the software product can be improved in the future. User experience describes the experience
and perception of the user with the software product in certain situations and can be seen as the
documentation of the product, its requirements and features. Finally, the ratings are less inform-
ative for developers and basically just reflect the overall perception of the software product [31][33].

However, it is a challenging task to automatically understand what a user means in a certain
review. Therefore, Panichella et al. state that “a deep analysis of the sentence structure needs to
be exploited to determine the intention of a review’ [34]. In addition, the tense of a certain review
can also change the meaning of the review [34].

They have used review metadata such as the star rating and tense of the sentence in combin-
ation with text classification, natural language processing and sentiment analysis techniques to
automatically classify the reviews in one of the four types previously mentioned [30]. In addition,
they have introduced various classification techniques to automatically classify reviews [30].

Basic Classifier: String Matching

The first, and most basic classifying technique mentioned is to check whether it contains a certain,
manually configured, keyword. These keywords are added to a list of keywords specific for a
certain type of review previously mentioned and check if the review contains one of the keywords
on this list. For this, techniques such as regular expressions, string matching and SQL queries can
be used [30]. Maalej et al. have identified a list of keywords indicating a review type, displayed
in Table 3.1.

Document Classification: Bag of Words

Document classification is a technique in information science where a document is assigned to a
certain class. A basic example is the classification made between “spam” or “no spam” e-mails.
In the case of reviews, a single complete (title and text) review is regarded to as a document. The
basic form of document classification is called bag of words (BOW), where the classifier creates
a dictionary from all the terms in the corpus of all reviews and calculates if and how often a
term is present in a certain review [31]. The advantage of this technique is that machine learning
algorithms can be used to extend this technique based on review metadata. In addition, it does
not require the developers to manually maintain and set up a list of keywords and patterns of
keywords can be used to predict the type of a review [31].

12 From user feedback to requirements using chatbots

CHAPTER 3. LITERATURE REVIEW

Natural Language Processing: Text Preprocessing

To increase the classification accuracy some pre-processing of the reviews, such as stopword re-
moval, stemming, lemmatization, tense detection and bigrams, is required. Maalej et al. suggest
using common natural language processing techniques for this task [30].

Stopwords are referred to as “common English words such as the, am, their” that do not in-
terfere or add something informative to the review. By removing this “noise” the influence of
more informative terms such as “bug” or “add” can be increased. This will directly improve
the accuracy of document classifiers [30]. However, they mention that some stop words such as
“should”, “but”, “before”, “while”, etc. can possibly prove to be relevant in classification [30].

Lemmatization is the process that reduces different forms of a word to their basic lemma, so
that it can be analyzed and handled as a single item [30]. Additionally, stemming reduces each
word to its basic form by simply removing the post-fix. The difference is that lemmatization uses
dictionaries and takes the linguistic context of a word in consideration where stemming does not.
Both of these techniques can prove to be useful by reducing the amount of different keywords to
their basic forms and hereby, increasing the count of these keywords. This allows the classifier to
learn faster and more efficiently and allows the use of sequences of words that co-occur more often
than by chance [30].

Review Metadata: Rating and Length

The reviews contain metadata that can be collected such as the star rating, length and the sub-
mission time. These star ratings are, most commonly, a numeric value between 1 and 5 where 1
is the lowest score and 5 the highest possible. The star rating could help in classifying a review,
as for example, a bug report will most likely have a low star rating. Maalej et al. state that user
experience reviews are most likely to be found in positive reviews with 4 or 5 star ratings [30]. The
length of certain reviews can be used as an indicator of a reviews’ type. A longer review might
be more valuable and informative, as it indicates a report on an experience or maybe a bug [30].
Finally, Maalej et al. use the tense of verbs to classify reviews, they state that a past tense might
be used for reporting where a future tense might indicate a feature request [30].

Sentiment Analysis: Sentiment Scores

Reviews in apps stores might indicate a user’s sentiment, this sentiment can be used in the classific-
ation of the reviews. A negative sentiment might indicate a bug report where a positive sentiment
might indicate a user experience. These sentiments, might be extracted from the reviews and used
by the classifier to train itself in identifying the type of reviews more accurately [30].

Supervised Learning: Binary vs. Multiclass Classifiers

Finally, a review can be of more than one type e.g. a complaint or negative rating and a bug
report. This might prove problematic as the classifier will not be able to classify the given review.
However, supervised machine learning algorithms might prove a solution to this. These algorithms
will calculate the probability for each factor to decide whether the review is of a type or not. In
contrast, a multi class classification creates the possibility to assign a review to multiple types
[30].

3.4 Chatbots

Chatbots are computer programs that interact with human-beings using natural language through
a text interface [37]. More in-depth Lebeuf et al. specify chatbots as a software bot and defines
a software bot as “an interface that connects users to services” as can be seen in Figure 3.2 [27].

From user feedback to requirements using chatbots 13

CHAPTER 3. LITERATURE REVIEW

Figure 3.2: Definition of software bots [27].

As visualized in Figure 3.3 services can then internalized and/or accessed externally. In ad-
dition, the bot should provide additional value, for example in the form of interaction style or
automation on top of the software service’s basic capabilities [27].

Figure 3.3: “The relationship between software bot interfaces and software services: (a) software
bot with external services, (b) software bot with internal services, and (c) software bot with both
internal and external services” [27].

Many near-synonyms exist for chatbots such as dialogue systems, interactive conversational
agents, virtual agents and chatterbots [36]. While chatbots were first developed to fool humans
that they were talking with an actual human being. However, today there are a lot of new
applications for chatbots that focus on supporting humans in their daily tasks as opposed to
fooling humans that they are talking to an actual human being [37][7][36].

Figure 3.4: “Mainstream adoption of new human-computer interface paradigms” [27].

These chatbots can be used for a large range of applications such as technical support, educa-
tion, language learning tools and entertainment [37]. Dale also mentioned that the MIT Technology
Review has listed conversational interfaces, thus chatbots, as one of the ten breakthrough tech-
nologies in 2016. He also reports that “Uber’s Chris Messina wrote an influential blog piece that
2016 is the year of conversational commerce and Satya Nadella announced that chatbots were the

14 From user feedback to requirements using chatbots

CHAPTER 3. LITERATURE REVIEW

next big thing in the same year” [7]. However, these were only mere speculations and hype, the
fact remains that interaction with technology using natural language is become more and more
significant, popular and feasible for many purposes [7]. In addition Lebeuf shows the mainstream
adoption of human-computer interface paradigms in Figure 3.4 which supports the statements
made previously and showing the recent popularity and interest in bots [27].

Lebeuf states that there is a significant difference between a chatbot and a bot as displayed
in Figure 3.5. She states that a chatbot is always a bot but a bot is not always a chatbot [27]. She
states that chatbots are distinguished by their ability to communicate with users by using natural
language [27]. Lebeuf describes a chatbot as “any software bot with a conversational interface”
[27].

Figure 3.5: Difference between software bots and chatbots [27].

There are different ways to characterize bots, Lebeuf et al. states that a way to characterize
bots is by the way the user interacts with a chatbot. They state that characteristics of chatbots
are [26]: 1) Interaction model, 2) Initiation, 3) Intelligence, 4) Purpose.

Friesen et al. have developed a system named CORDULA (Compensation Of Requirements De-
scriptions Using Linguistic Analysis), as displayed in Figure 3.6, which is a system that uses
chatbot technology to support requirements elicitation [12]. During the development of this sys-
tem they faced four challenges: 1) missing information, 2) stalemate situations, 3) contradictory
information, 4) known but not solvable problems. They solved these challenges by relying on
end-user interaction with the system and not rely on the system to make up requirements [12].
While this system is a good first step, it does not work with user feedback and relies on the end-
user in certain situations. These end-users have no technical background and therefore should be
supported by the chatbot [12]. Another issue residing in this research is that it is not clear to
what extent they have actually implemented their ideas or if it is just a concept.

3.4.1 Interaction model

Some bots exclusively support a domain-specific language, this is quite similar to interacting with
a command-line interface, meaning that the bot only reacts to a list of defined commands, as
illustrated in Figure 3.7. As can be seen the bot has a list of pre-defined commands to execute
certain actions.

Other bots interact with users in natural-language, as displayed in Figure 3.8 and parses the
valuable information from natural-language conversations [26]. Since this thesis project focuses
on gathering feedback from users, who do not have domain-specific knowledge, we will focus on

From user feedback to requirements using chatbots 15

CHAPTER 3. LITERATURE REVIEW

Figure 3.6: Mock-up of the CORDULA system [12].

Figure 3.7: Example of a chatbot with a command-line interaction model. Extracted from ht-
tps://core.telegram.org/bots

gathering feedback using a chatbot that supports natural-language parsing. This gives users more
freedom when providing feedback, but makes the parsing more complex and error-prone. More
error-prone because since there is no default format each user can communicate requirements in its
own way, therefore, the chatbot needs adapt to the situation to effectively elicit the requirements
from the conversation.

3.4.2 Initiation

Initiation describes the way the chatbot is initiated for interaction. Lebeuf et al. describe that
a bot can support one of to initiation approaches [26]: 1) Pull-based approach, 2) Push-based

16 From user feedback to requirements using chatbots

CHAPTER 3. LITERATURE REVIEW

Figure 3.8: Example of a chatbot with a natural-language interaction model. Extracted from
https://algorithmxlab.com/blog/2017/12/19/bring-chatbots-say-5-giant-banks/

approach. A chatbot that uses a pull-based approach lets the user initiate interaction with the
chatbot, this can be achieved by having an initiation message such as “Hey Google”, but can
also be a simple greeting. A push-based approach is when the chatbot initiates the interaction
according to some system or user context [26]. Due to the fact that gathering feedback is done
through unobtrusive automated methods [17], the prototype should use a pull-based approach.
This leaves the user the choose whether or not to provide feedback.

3.4.3 Intelligence

Lebeuf et al. split up the intelligence of chatbots in three different parts: 1) Adaptation, 2) Reas-
oning 3) Autonomy. Adaption is described as the degree in which the chatbot is context-aware
and is able to use the context to change the way they interact with the users [26]. For this thesis
project this is an important factor, the chatbot should be able to adapt to the users input to
further classify feedback or ask follow-up questions when it is uncertain.

Reasoning is described as the bots ability to reason, some use simple conversation flows or lo-
gic rules where others use more advanced AI to drive their conversations [26]. A first setup of
the prototype can be developed by using simple logic rules and a conversation flow, however, it is
desirable to implement AI in the chatbot to make it smarter and more adaptive.

Lebeuf et al. describe that some bots are entirely autonomous where some others rely on hu-
man input or have a mixed approach [26]. The chatbot proposed in this thesis project should be
completely autonomous, since it is very labor-intensive if human-input is needed to gather large
amounts of feedback.

3.4.4 Purpose

Lebeuf et al. propose five different purposes for chatbots [26]:

• Generalist bots - Similar to Siri and Cortana supporting users in a range of simple tasks

From user feedback to requirements using chatbots 17

CHAPTER 3. LITERATURE REVIEW

• Transactional bots - These bots can automatically execute transactions with external
systems

• Productivity bots - Improve users or team productivity by automating tedious tasks

• Informational bots - Fetch information for users

• Collaboration bots - Communicate, coordinate and collaborate

However, this list is incomplete without the mentioning of social chatbots, as stated earlier
chatbots were first developed to fool a human in thinking that they are talking to a human in-
stead of a computer. Therefore, we add the purpose Social bots to the list which represents the
bots that are used for having simple conversations about different topics. Finally, the chatbot
proposed in this thesis project is not compatible with one of the purposes described by Lebeuf et
al. However, it can be seen as a combination between a productivity and informational bot, as it
improves the teams productivity and can at the same time assist the users and provide them with
information.

We have made a selection of 38 chatbots, of some of the most impactful chatbots through time
and categorized them, in Figure 3.9 in the purposes as stated by Lebeuf et al. [46][11][14].

Figure 3.9: Chatbots categorized by purposes

In addition, Serban et al. describe that dialogue systems can be divided into goal-driven
systems, such as support services and non-goal driven systems such as computer game characters
[36].

While these purposes provide us with insights in the different categories of chatbots and help
define the purpose of the chatbot prototype more in-depth. However, classification is needed to
further classify the prototype. Moreover, the prototype can not be placed in a single purpose as
proposed by Lebeuf et al. Therefore we will classify the prototype using the taxonomy provided
by Lebeuf et al. as displayed in Figure 3.10

Lebeuf et al. state that bots can be categorized by using three dimensions that describe the
first level of the taxonomy [27]:

1. The environment dimensions - Describes the environment the bot operates in;

2. The intrinsic dimensions - Describes the way the bot is built;

18 From user feedback to requirements using chatbots

CHAPTER 3. LITERATURE REVIEW

Figure 3.10: High-level taxonomy of software bots [27].

3. The interaction dimensions - The way the bot interacts with the environment.

We will be going through each dimension one-by-one handling each facet and categorize the
prototype. In addition, the taxonomy can be used to acquire the requirements that can be used
in the development of the chatbot prototype.

3.4.5 Environment Dimension

Figure 3.11: Environment dimensions [27].

From user feedback to requirements using chatbots 19

CHAPTER 3. LITERATURE REVIEW

Lebeuf et al. state that the environment of the bot and the way the bot interacts with this
environment has a certain effect on the bot [27]. As shown in Figure 3.11 this dimension has seven
facets [27].

Type

In this facet Lebeuf et al. describe two options Standalone and Platform, these are exclusive
and only one can be chosen [27]. Standalone is when the bot is not tied or restricted to a specific
platform where platform is described as “integrated” into a platform.

As the prototype will be “integrated” into a platform, a software product. Therefore, we can
say that the prototypes’ type should be Platform.

Scope

The bots scope defines the size of the environment and Lebeuf et al. provides us with two exclusive
scope states [27]:

1. Bounded - The bot is limited in how far it can travel;

2. Unbounded - The bot is not limited in how far it can travel.

In our situation, due to the fact that the bot is integrated in a software product, the bot can
not operate outside of this product. Therefore, we could say that the scope of the prototype should
be Bounded.

Closure

The closure facet is concerned about who is able to access the environment and offers us two
exclusive states [27]:

1. Closed - Access to the environment is limited by e.g. login;

2. Open - Access to the environment is open.

This facet depends on the way the software product is developed, some software products may
be freely accessible and others might require some kind of login. Looking at our case study, in
which the software product requires a user to login, we can say that the prototypes’ closure will
be Closed.

Dynamism

The dynamism of a bot is described as the degree to which the bot’s environment is capable of
being changed by outside forces and provide us with two exclusive states [27]:

1. Static - The bot’s environment can not be changed;

2. Dynamic - The bot’s environment is susceptible to change;

As a software product is constantly susceptible to change and evolves over time, the environ-
ment of the prototype can, and will constantly change. Therefore, we could say that the prototype
should be Dynamic.

20 From user feedback to requirements using chatbots

CHAPTER 3. LITERATURE REVIEW

Predictability

The predictability of the bot is described as “the degree to which, given the same conditions, the
outcome of the bots actions can be predicted” and gives us a number of options [27]:

1. Stochastic - The actions performed by the bot are random and cannot be predicted;

2. Uncertain - The actions performed by the bot can be partially predicted;

3. Deterministic - The actions of the bot can be fully predicted.

In the case study the actions performed by the prototype can be partially predicted and is
therefore Uncertain. This is because the prototype will partially depend on the training it gets
to define how accurate it can detect and react to dialogues.

Permanence

The permanence is described as how long the effects on changes from actions performed by the
bot in it’s environment persist [27]. It leaves us with two boolean facets [27]:

1. Episodic - The changes resulting from actions by the bot are not persistent on the environ-
ment and have no effect on the future state of the environment;

2. Sequential - The changes resulting from actions by the bot are persistent on the environment
and have persistent effect on the future state of the environment.

Since the prototype will be used for providing feedback and will only use the feedback to elicit
proto-requirements, the protoype will be Sequential. The actions performed by the prototype
will not have any persistent effects on the environment.

Population

Lebeuf et al. describe the population as the active entities within the bot’s environment, making
a distinction between “passive” and “active” objects. Passive objects can only be manipulated
and not be changed where active objects can change and can be other bots, humans and systems
[27]. This facet can be described by two sub-facets [27]:

1. Cardinality - Describes the size of the population;

2. Diversity - Describes the composition of the environment.

Cardinality

Lebeuf et al. provide three options for the cardinality of the environment [27]:

1. Singular - The bot is the only member of the population;

2. Countable - The population can be reasonably counted;

3. Uncountable - The population can not be reasonably counted;

As the prototype will be part of a software product with a measurable population, the cardin-
ality should be Countable. Each user is registered in the system and it is not an open-source or
social media platform, resulting in a limited and measurable number of users.

Diversity

The diversity can be described by choosing one of two options [27]:

From user feedback to requirements using chatbots 21

CHAPTER 3. LITERATURE REVIEW

1. Homogeneous - All members of the populations are the same type;

2. Heterogeneity - The population is not homogeneous.

The prototype can be categorized in the Heterogeneity option as it will most likely contain
objects of different types.

3.4.6 Intrinsic Dimension

Lebeuf et al. state that the intrinsic dimension describes the internal properties of the bot itself,
which are a result of the bot’s developers with a clear focus on the externally observable intrinsic
properties [27]. The dimensions consists of 7 facets with 24 sub-facets as displayed in Figure 3.12.

Figure 3.12: Intrinsic dimensions [27].

Knowledge

A bots knowledge is described as what the bot knows and understands. Since knowledge is a very
high-level concept, it is broken down into the following sub-facets: memory and source [27].

Memory

Lebeuf et al. state that a bots memory describes its ability to both store and access its knowledge
[27]. They offer three boolean values:

1. Long-term - The bot remembers what happened before;

22 From user feedback to requirements using chatbots

CHAPTER 3. LITERATURE REVIEW

2. Short-term - The bot is able to temporarily, the bot understand where it is, when it is and
who it’s talking to;

3. Future - The bot is able to store and access predictions of future events.

The interviewees state that the long-term storing and future isn’t really necessary in the first
place and the focus should be on short-term memory. However, in the future the storing of con-
versations could prove to be valuable. Therefore, we think that the Long-term and Short-term
values should both be true for the prototype.

Source

The knowledge source describes where the bots knowledge originates from [27]. Three boolean
values are offered:

1. Encoded - The bot’s knowledge should be encoded;

2. Supplied - The bot’s knowledge is provided by someone or something in its environment;

3. Learned - The bot’s knowledge is inferred from it’s environment

The interviewees state that the bots’ knowledge should partly be encoded to avoid leaking
patient data. In addition the bots knowledge will be supplied by the environment and inferred
from the environment. Therefore all values should be true.

Reasoning

A bots reasoning describes its capacity to apply logic to achieve its goals. Since reasoning is a
very high-level concept, the reasoning dimension is broken down into six sub-facets [27].

Mechanisms

The mechanism of a bot describes the way it processes inputs and/or generates outputs in or-
der to realize its goals [27]. The possible reasoning mechanisms range from scripted to planning:

1. Scripted - The bot only responds to predefined stimuli;

2. Mixed - The bot uses a combination of planning and scripted reasoning mechanisms;

3. Planning - The bot has no predefined script mapping inputs to outputs.

Since the prototype in this study should be able to converse in natural-language but should
also be able to detect certain keywords, the mechanism should be mixed.

Agency

A bots agency describes its ability to perform the tasks it requires to achieve its goals without
interference [27]. The possible agency values range from none to complete:

1. None - The bot requires permission of an external party when performing actions;

2. Veto - The bot has the ability to carry out the tasks required to realize its goals, however,
an external party can veto the bots actions.;

3. Complete - The bot does not require permission to carry out the tasks required.

From user feedback to requirements using chatbots 23

CHAPTER 3. LITERATURE REVIEW

The prototype should always be able to create a software request or proto-requirement from
the given input. Therefore, the prototype should have the complete value. In addition, the
prototype will mostly gather data and should not execute any actions that are irreversible.

Predictability

The predictability describes the degree to which the bots output can be predicted given the same
conditions [27]. The possible predictability values range from stochastic to deterministic:

1. Stochastic - The bots results appear to be random;

2. Mixed - The bot is sometimes stochastic and sometimes deterministic;

3. Complete - The bot is predictable given the same conditions.

The prototype will rely on the user’s input and the way the natural language is processed. For
this reason the output and results may sometimes differ from the expected result and therefore,
the prototype should have the mixed value.

Visibility

The visibility describes the degree to which the bots makes it’s decisions or actions visible to
others [27]. The possible visibility values range from none to transparent:

1. None - All decisions and actions are hidden;

2. Transparent - Decisions and actions leave visible traces;

3. Visible - Bot creates additional artefacts to provide visibility in decisions and actions.

Due to the preference of the interviewees to have the prototype provide the users with feedback
it will automatically leave visible traces of decisions and actions. Therefore, the best fitting value
will be transparent.

Reactivity

The reactivity describes the time the bot takes to respond to the user[27]. The possible reactivity
values range from synchronous to asynchronous:

1. Synchronous - The bot responds at the same time;

2. Transparent - The bot mixes synchronous and asynchronous response times;

3. Asynchronous - The bot responds after some time has passed.

Since the prototype will be a chatbot, it’s response time should be as short as possible. There-
fore the prototype in this study should be synchronous.

Scheduling

“A bots reasoning scheduling describes the bots strategy for dealing with multiple inputs or out-
puts that need to be reasoned about” [27]. There are two exclusive states available:

1. Single Tasked - The bot can handle one stimulus at a time;

2. Multiple Tasked - The bot can handle multiple tasks and stimuli at once.

The interviewees state that they do not see the need of the prototype handling two tasks at
the same time. They state that a single action should be finished before moving to another task.
Therefore, the prototype should be single tasked.

24 From user feedback to requirements using chatbots

CHAPTER 3. LITERATURE REVIEW

Adaptability

Lebeuf et al. describe the adaptability of a bot as its ability to alter or change its behaviour or
functionality at runtime [27]. There are two exclusive adaptability states:

1. Non-Adaptive - The bot is not able to change its behaviour at runtime;

2. Adaptive - The bot is able to at least change some behaviour at runtime.

Since the prototype will have two clear functionalities: 1) Reporting bugs and 2) Requesting
functionalities it should not change its behaviour at runtime. Therefore the prototype will be
non-adaptive.

Goals

The goals of the bot are described in this section and are split up in different facets [27].

Complexity

The complexity facet describes how complex the goals of the bot are [27]. The values range
from low to high:

1. Low - The bots tasks are simple;

2. High - The bots tasks are complex.

Since the elicitation of requirements from natural language feedback is the main goal of the
protype, the tasks it should perform will most-likely be of high complexity.

Criticality

The criticality facet describes how critical the goal of the bot is [27]. The values range from
low to high:

1. Low - The tasks are of low risk;

2. High - The bots tasks are of high risk.

Since the prototype should always create proto-requirements, and will rely on human control
and interaction the criticality of the prototype should be low.

Attainability

The attainability facet describes how attainable the goal of the bot is. The boolean values are:

1. Achievable - The bot’s goal is achievable and has an explicit end-state;

2. Homoeostasis - The bot’s goal is not achievable and has no explicite end-state.

The interviewees state that the prototype should be able to detect when it has gathered enough
information to create a new request or report. Therefore, a clear end-state of the prototype can
be determined. Due to this fact the goals of the prototype will be achievable.

Explicitness

The explicitness facet describes how explicit the goals of the bot are defined [27]. The boolean
values are:

From user feedback to requirements using chatbots 25

CHAPTER 3. LITERATURE REVIEW

1. Explicit - The bots goals is clearly defined, described and with no room for interpretation;

2. Implicit - The bots goals are not clearly defined but instead ambiguous.

The goal of the prototype is to elicit requirements from natural language. Therefore, the goals
of the prototype will most likely be explicit.

Source

The bots goal source describes where the bots goals originated from [27]. The boolean values
are:

1. Internal - The bots goals are derived at runtime or provided in code;

2. External - The bots goals are adopted from external stakeholders.

The goals of the prototype should be derived both from code and external stakeholders. There-
fore, both values should be true.

Delegation

Lebeuf et al. describe the delegation as “its permission or authority to act on behalf of or to
represent others” [27]. The values range from none to complete:

1. None - The bot does not have the authority to act on behalf of others;

2. Partial - The bot has authority to do things on behalf of the user, but does not pretend to
be the person its representing;

3. Complete - The bot has the authority to both act on behalf of and pretend to be the user
themselves.

The prototype should not act on behalf or pretend to be a user, so the delegation value should
be none.

Specialization

The bots specialization is the degree to which the bot focuses its efforts in a specific area. The
values range from generalist to specialist:

1. Generalist - The bot supports a wide range of tasks;

2. Specialist - The bot focuses on a specific tasks.

As the interviewees have stated that the prototype should focus on a specific set of tasks.
Therefore, the prototype should be a specialist.

Antrophomorphism

A bots level of anthropomorphism is the degree to which the bot has been given human-like
characteristics or traits. [27]. As the interviewees have stated that it should be clear that the
prototype is a bot, it should not have any human traits or a personality. Therefore the value for
all sub-facets in this category should be none.

26 From user feedback to requirements using chatbots

CHAPTER 3. LITERATURE REVIEW

Life Cycle

Life cycle describes the various phases the bot goes through in it’s life [27].

Creation

The creation of the bot is described as the way the bot was brought to life [27]. There are
three exclusive states:

1. Human - The bot was created by a human;

2. Bot - The bot was created by another bot;

3. System - The bot was created by another system.

As the prototype should be initialized by a human it will be created by a human. Therefore,
the state here should become human.

Lifespan

The life span of the bot is described as the time the bot continues to function [27]. There are
three exclusive states:

1. Terminating - The bot has a terminating lifespan;

2. Transient - The bot passes in and out of existence;

3. Continuous - The bot never self-terminates.

As stated by the interviewees the prototype should self-terminate at some point, end the con-
versation and should appear again when needed. Therefore, the state should be transient.

Reproduction

The bots reproduction describes the bots ability to spawn other bots [27]. There are two ex-
clusive states:

1. None - The bot is not able to create new bots;

2. Reproductive - The bot is able to create new bots.

The bot in this study should not be able to create new bots. Therefore, the state is none.

3.4.7 Interaction Dimension

The interaction dimensions consists of seven facets displayed in Figure 3.13 and describes the bots
interaction with different elements in its environment [27].

Access

The access facet described the degree to which the bot has access to its environment, aiming at
the restrictions the bot has to its environment and gives us three exclusive options [?]:

1. None - The bot is not allowed to access any of its environment;

2. Partial - The bot is allowed to access some of its environment;

3. Complete - The bot is allowed to access all of its environment.

In our case the prototype should have partial access as it should be allowed to access most
but not all of the environment in the software product, due to security and confidentiality.

From user feedback to requirements using chatbots 27

CHAPTER 3. LITERATURE REVIEW

Figure 3.13: Interaction dimensions [27].

Sense

Lebeuf et al. describe sensing as the “degree to which the bot is able to perceive stimuli in its
environment.” and gives us two options [27]:

1. Non-sensing - The bot does not try to perceive external stimuli;

2. Sensing - The bot tries to perceive a limited set of stimuli in its environment.

The prototype should be Not sensing as it will not contain any kind of sensors and thus is
not able to sense stimuli in its environment.

Act

The bots acting refers to the ability to act or make changes to its environment and consists of two
exclusive states [27]:

1. Non-acting - The bot does not try to act upon or make changes to its environment;

2. Acting - The bot tries to act upon or make changes to its environment.

The prototype will be Non-acting as it should not try to act upon or make changes to the
environment it is in. It simply elicits requirements from feedback and does not make any changes
on its own.

28 From user feedback to requirements using chatbots

CHAPTER 3. LITERATURE REVIEW

Communicate

Communication is described as the bots ability to meaningfully interact with others in it’s environ-
ment [27]. Lebeuf et al. state that there are two exclusive states available: 1) non-communicative
and 2) communicative [27]. The prototype will be able to interact with others in it’s environment
it will be communicative.

Disposition

Disposition is described as the willingness of the bot to help, perform actions for, or share re-
sources with others in the environment [27].

1. Antagonistic - A bot can be antagonistic if it makes purposefully antagonistic attempts to
inconvenience or undermine others [27];

2. Competitive - A bot is competitive if it acts in favour of its own self-interests [27];

3. Indifferent - The bot is indifferent if it is unaware of the needs of others (inadvertently or
by choice) [27];

4. Cooperative - The bot is cooperative if it is willing to help others in its environment, poten-
tially sacrificing its own goals [27].

5. Benevolent - The bot is benevolent if it always helps others in its environment, even if it is
detrimental to its own goals or best interests [27].

Since the prototype aims at helping others in its environment at all times, we can assume that
it is benevolent.

Veracity

Lebeuf et al. describe veracity as “the bots deliberate adherence to or divergence from the truth
during its communications” [27]. They offer three different values:

1. Untruthful - The bot is untruthful if it tries to deceive the users;

2. Mixed - The bot is mixed if it tries to deceive the users at some times and is truthful at
others;

3. Truthful - The bot is truthful if it does not attempt to deceive the users.

The interviewees all state that the both should be honest that it is a bot and should not try
to deceive the user in any way. Therefore, the prototype will be truthful.

Cardinality

The bots cardinality describes the number of users it can interact with at the same time. Le-
beuf et al. describe three different boolean values for this:

1. One-One - The bot is only capable of interacting with one individual at a time;

2. One-Many - The bot is capable of interacting with many users at the same time;

3. Many-Many - The bot is capable of interacting with many users at the same time and they
are able to interact with each other as well.

From user feedback to requirements using chatbots 29

CHAPTER 3. LITERATURE REVIEW

Since the prototype should be capable of interacting with a single, and many users at the same
time both the One-One and One-Many cardinality values should be true.

Directionality

The bots directionality describes the way the bot communicates with its environment and the
following values are available:

1. Indirect - The bot communicates indirectly;

2. Direct - The bot communicates directly with others.

The only way the prototype communicates with end-users through direct-messages. For this
reason the value for directionality will most likely be direct.

Language Capability

The bots language capability describes it’s conversational capabilities and the way it commu-
nicates with humans [27]. The following values are given:

1. None - The bot is not able to use human language;

2. Keywords - The bot is only able to communicate using keywords and predetermined phrases;

3. Natural Language - The bot is able to communicate using natural language;

4. Conversation - The bot is able to engage in meaningful two-way dialogues.

The interviewees state that they would like to communicate with the prototype using natural-
language, and that it should be able to detect entities and phrases using natural language pro-
cessing. Therefore, natural language is the value that should be chosen.

Initiative

The initiative describes the way in which a bot initiates interaction with its environment and has
two values [27]:

1. Reactive - The bot initiates actions in response to a stimuli;

2. Proactive - The bot takes control of the situation rather than responding.

As the prototype proposed should be able to gather feedback in the most unobtrusive way,
we want the user to initiate a conversation rather than the prototype starting one. Therefore the
value for initiative would be Reactive. However, the results from the interviews point out that a
combination of both is the preferred way. The prototype should be reactive most of the time and
should be proactive when a bug or error occurs taking control of the situation.

Robustness

In this section the robustness of the bot, the ability to detect, handle and correct errors or ambi-
guity, is described. It is broken down in three different sub-facets: 1) Error prevention, 2) Error
discovery, 3) Error correction [27]. The requirements of this part of the prototype are elicited from
the interviews with the developers.

Error prevention This value describes the bots ability to reduce or prevent input errors from
users [27]. The interviewees state that the main responsibility of this should be at the side of the
prototype. However, they state that at certain points the user has a degree of responsibility to
provide the prototype with valid input.

30 From user feedback to requirements using chatbots

CHAPTER 3. LITERATURE REVIEW

Therefore, both the chatbot and the user should be responsible for error prevention.

Error discovery Error discovery is described by Lebeuf et al. as the strategy that the bot
uses to detect errors in the input [27]. The interviewees agree that the bot should be able to de-
tect and discover errors autonomously. In addition, they state that the prototype should provide
the user with feedback about it’s interpretation and therefore partly relying on the users ability
to discover errors.

Therefore, both the chatbot and the user should be responsible for error discovery.

Error correction Lebeuf et al. describes the error correction as the strategies the bot uses
to recover from a detected errors [27]. The interviewees state that both the user and the bot
should be responsible for correcting errors. The bot should attempt to correct an error by using
a knowledge base and the bot should offer the user the possibility to correct the error.

Therefore, both the chatbot and the user are responsible for error correction in this study.

Mobility

A bots mobility describes its ability to move around within its environment. A bots degree of
mobility can vary for different dimensions. A bot could be mobile in where it interacts (e.g., acts,
senses, communicates) and/or where it reasons. For the scope of this taxonomy,

The bots mobility describe the ability to move around within its environment and has two
exclusive options:

1. Static - The bot is not able to move within its environment;

2. Mobile - The bot is able to move within its environment, for example a slackbot moving
between channels.

As the prototype will reside in a software product and gathers feedback, it will have a static
position and should not have the need to move. Therefore, our prototype should be Static.

3.4.8 Human-Chatbot conversations

Hill et al. have researched the differences between human-human and human-computer interac-
tion, they have compared 100 random instant message conversations between humans and 100
random conversations with Cleverbot, which is a chatbot [21].

They found that a human writes fewer words per message when sending messages to a chat-
bot than when they were conversating with another human-being. However, they did send more
than twice as many messages to the chatbots as they did to another person [21]. They also
confirmed there hypothesis that the anonymous nature of human-computer conversations would
lead to more profanity in the messages. There research showed that human-computer interactions
contained a lot more profanity than the human-human conversations and were also very sexually
explicit, contained more sear words and negative emotion words [21]. While cleverbot is a social
chatbot and not a chatbot that is used in professional conversations this has to be kept in mind
when developing the prototype. They concluded that while chatbots are limited to communicate
with humans socially and share common experiences, many people are still willing to communicate
with and have extensive conversations with chatbots. However, they do not seem to be able to
have a fully intelligent human, socially centered, conversation just yet [21].

From user feedback to requirements using chatbots 31

CHAPTER 3. LITERATURE REVIEW

3.5 Prototype Requirements

The requirements in Section 2.1 merely provided us with the initial requirements for the prototype,
the information gathered from the semi-structured interviews and described in Section 3.4 can be
turned into requirements to complete the list of requirements the prototype has to satisfy.
In Appendix B the complete overview of the bot’s taxonomy is displayed. This taxonomy was
derived from the interviews with the consultants at ChipSoft in combination with the literature
review. The taxonomy can then be used as a guideline for the additional requirements of the
prototype. We will highlight and explain the most important requirements that can be derived
from this taxonomy split per dimension.

3.5.1 Environment dimensions

The following requirement result from the environment dimensions:

• R8 - Integrated in application The working service should ultimately be integrated
within a software product, in this case HiX.

As all the facets address characteristics about the environment of the prototype, the most
important requirement that can be derived from this dimension is that it should be integrated
in a software application, in this case HiX. At the same time this requirement, due to the way
the application is built, the prototype to-be is bound, closed, dynamic, uncertain and the
permanence of the changes are sequential. In addition, due to the countable number of users
in HiX and the fact that there are various user-groups it also covers the fact that the prototype
should be countable and heterogeneous. However, due to security and time constraints we will
not be able to realize this prototype. The reason for this is that the prototype will never pass
the security requirements in the time we have for this research at the case study. Therefore, we
have chosen to not satisfy this requirement but rather describe the possibilities of implementing
the prototype in an application.

3.5.2 Intrinsic dimensions

The following requirement result from the intrinsic dimensions:

• R9 - Conversation storing The prototype should save conversations for the short- and
long-term;

• R10 - Provide feedback The prototype should provide the user with feedback to create
transparency regarding the decisions made;

• R11 - Sufficient information detection The prototype should be able to detect when
it has gathered enough information to create the proto-requirement and transition to an
end-state;

• R12 - Human initialization The prototype should only react to a human initializing the
prototype;

• R13 - Transient lifespan The prototype should be able to self-terminate itself when the
end-state is reached and should appear again when a user initializes it.

The facets in this dimension point out the internal properties of the prototype itself. The most
important requirements that can be derived from this dimensions are the ones that describe the
behavior and information/knowledge handling of the prototype. In addition, it is important to have
a clear view on the lifespan and initialization of the prototype itself. The source, mechanisms,
agency, reactivity, and adaptability facets are already handled in the initial requirements as
stated in Section 3.5.

32 From user feedback to requirements using chatbots

CHAPTER 3. LITERATURE REVIEW

3.5.3 Interaction dimensions

The following requirement result from the interaction dimensions:

• R14 - Provide user with clarity The prototype should state to the user that it is in fact
a bot and not deceive a user that it is human;

• R15 - Support multiple sessions The prototype should be able to communicate with mul-
tiple users at the same time, this goes for multiple independent conversations simultaneously
and the prototype should not support multi-party conversations;

• R16 - Natural-language The prototype should be able to detect and converse in natural-
language;

• R17 - Error-prevention The prototype should be able to assist the user in error discovery,
prevention and correction.

The facets in this dimension point out the way the prototype should communicate with users.
The most important requirements that can be derived from this dimensions are the ones that
describe the way the prototype should act, communicate and handle input errors with users.

From user feedback to requirements using chatbots 33

Chapter 4

Research Method

In this chapter, we discuss the research method including the research questions, case description
and experiments. The research method consists of a combination of desk research, prototype
design & development and a case study. The case study is executed at the company ChipSoft
B.V. based in Amsterdam. ChipSoft is a leading software company in the healthcare industry
in the Netherlands. They have developed a software product named HiX (Health Information
X-change) which is an innovative healthcare product, that provides a complete integrated solution
to hospitals, pharmacies, general practices and other healthcare industries. In this thesis project,
we will tailor the prototype to HiX as explained in Section 2. The research question that will be
used in this thesis project goes:

“How can chatbots integrated within a software product prove beneficial in eliciting requirements
from user feedback?”

This leads to the following sub-questions:

1. RQ 1 - How can users be motivated to provide feedback through a chatbot integrated into
a software product?

2. RQ 2 - How can chatbots help guiding users in providing informative feedback about the
software product?

3. RQ 3 - How can proto-requirements be automatically elicited from natural-language user
feedback?

4.1 Research questions

The goal of this thesis project is to uncover how the feedback of large heterogeneous groups of
users can be continuously included in the requirements engineering process, by using chatbots in-
tegrated in the software product. This can help companies involve the users and provide them with
a continuous stream of valuable feedback to be used in the requirements process. The company
can use the feedback to elicit requirements and tailor the software product to the users needs more
accurately. Additionally, the conversations between the chatbot and the users can be analyzed to
improve the understanding of the users’ needs and wishes, resulting in a more successful software
product and greater user satisfaction.

The first research questions aims at uncovering how users can be motivated to interact with a
chatbot that can be integrated in a software product, this revolves mostly around user involve-
ment. The second research question provides an answer about how the interaction between users
and a chatbot should be, to guide them in providing valuable feedback. Finally, the third research
question focuses on extracting information and transforming the feedback to proto-requirements,

34 From user feedback to requirements using chatbots

CHAPTER 4. RESEARCH METHOD

proto-requirements are prototype requirements that can be used as the base for defining actual
requirements. Pohl describes that to reach a complete specification of requirements one has to
reach a certain maturity in: 1) Specification, 2) Agreement, 3) Representation. Specification is
focused on the way requirements are specified using a formal language and representing require-
ments in a certain formal language [35]. This can be achieved by creating a prototype that offers
the possibility to elicit requirements and specify them in a formal language from natural language.
However, the prototype can not offer the possibility to reach a higher maturity level on the agree-
ment axis as displayed in Figure 4.1, without human interference. In addition, the representation
can not be adjusted by the prototype and always needs human interaction [35]. Therefore, the
only possible output of the prototype will be proto-requirements as human interaction is needed
to reach complete specification and maturity of these requirements.

Figure 4.1: The Three Dimensions of Requirements Engineering [35].

4.2 Method

To answer the research questions presented in Section 4.1 we have chosen to use qualitative re-
search. The reason we have chosen for qualitative research is because of the exploratory nature
of the research at hand. Because of the fact that a prototype of a chatbot will be developed, the
design science methodology will be used throughout this thesis project.

RQ 1 will be answered through the literature review in which we gather information about
human-chatbot interaction and how to motivate users to provide the company with a continuous
stream of valuable feedback about the software product. In addition, the interviews with the
stakeholders provides us with more insights in how they would like to communicate with a chatbot.
RQ 2 shall be answered by interviewing the stakeholders and researching how chatbots can help
users in providing valuable feedback to create a prototype fitting to the case at hand. Additionally,
conversation flows will be created and discussed with domain-experts to evaluate them. Finally,

From user feedback to requirements using chatbots 35

CHAPTER 4. RESEARCH METHOD

Figure 4.2: Design science cycle [45].

RQ 3 can be answered by designing & developing a prototype that automatically elicits proto-
requirements from feedback provided by users in natural-language, and evaluating the quality of
these proto-requirements with the stakeholders.

4.2.1 Problem investigation

The first phase in the process is to gather background information and get a clear view of the
problem by executing a literature review. In addition, the stakeholders, in this case the consultants
and developers at ChipSoft, will be interviewed using a semi-structured interview. By combining
the results of the literature review with the results of the interviews, a clear view of the problem
will be acquired specifically for this case as described in Chapter 2.

4.2.2 Treatment design

By executing interviews with the stakeholders, the requirements specific for the case will be defined.
In our case, the stakeholders are the consultants and developers, who will use and validate the
prototype. In addition, the prototype will be designed and developed in this phase. The design
and development of the prototype will be executed in short iterations. In each iteration a part of
the prototype will be designed and developed followed by a validation with the stakeholders. We
have chosen this approach to be as flexible as possible and tailor the prototype to the stakeholders
wishes as accurate as possible. For the development of the bot ChipSoft has stated that they prefer
to use the Microsoft Bot Framework, for this reason we will not look into other frameworks for the
development of the chatbot prototype. This is a pragmatic consideration that yields a constraint
for the design of the prototype, this constraint leads to less freedom in defining the prototype
and designing the type of conversations. This is typical for industry-hosted research where the
environment has to be taken into consideration when developing and defining the treatment.

4.2.3 Treatment validation

The prototype will be evaluated and validated with the consultants and the developers using
interviews and a comparison of the situation with and without the prototype implemented.

4.2.4 Chatbot purpose

To clarify the purpose of the chatbot in the case study we have held semi-structured interviews
with four different consultants and three different developers at ChipSoft. These interviews fo-
cused on gathering the opinions and the requirements for the chatbot. In addition, focused on
clarifying the purpose of the chatbot. The interviewees included three I&S (Implementation and

36 From user feedback to requirements using chatbots

CHAPTER 4. RESEARCH METHOD

Support) consultants, the I&S Teamlead of the Multimedia consultancy team, two Software de-
velopers and the Teamlead of the Multimedia development team.

The interviewees state that bug reports most of the time originate from three sources: 1) Feedback
during projects, 2) Support calls, 3) Meetings between consultants and developers. The bugs are
then described in a software request.

Figure 4.3: Structured vs. unstructured requests

However, the interviewees state that these processes differ a bit per module at ChipSoft. Some
of the modules focus more thoroughly on the description of the problem where the Multimedia
module relies on the flexibility and speed of the communication between the developers and con-
sultants. However, this results in less organized registration of the requests and reports. The
consultants state that there is no central document or place for registering and looking up the
feature requests and bug reports which results in loss of control. In contrast, the developers state
that they would like to have more structure in the requests and reports. This is supported by
researching the current available software requests and pinpointing which were created conform
the software requests structure as stated in Section 5.1 displayed in Figure 4.3. This research
only contained the available software requests that contained a bug up until 22 October 2019.
As displayed, there is still a large percentage (48.1%) of software requests that are not conform
the software request structure. In addition, the consultants suggest creating a digital platform
for storing all the requests and reports for a better overview. In addition, the description of new
features require a lot of technical insights from the consultants, which in turns leads to discussion
between developers and consultants and increased work.

The consultants state that at some point a feature request or bug report might be rejected.
However, the reason why these get rejected is too varied to make a clear statement about the most
common reason behind these rejections. The reasons range from duplicate entries, time constraints
and wrong reasoning of the solution suggested. The developers however state, that the requests
get rejected mostly because of the request not being clear enough. The consultants do state that
further clarification of the requests would not lower the rejection rate. In contrast, the developers
all state that further clarification and a better description of the request would result in a lower

From user feedback to requirements using chatbots 37

CHAPTER 4. RESEARCH METHOD

rejection rate.

The interviews unveiled that the chatbot should provide a way to create a better overview of
all the requests and reports and provide the consultants with a set of proto-requirements for the
consultants to start with. It has to focus on providing the consultants with more insights in the
users wishes and a clear description of the problem or missing feature and the expected end-results.
When reporting a bug the chatbot should use the information available from the software applic-
ation without having to question the users. In this, the chatbot should also be able to categorize
the requests/reports per functionality making it easier to prioritize them and increasing the over-
view. The developers would like to see more structure and as much information as possible in the
requests, and check if there isn’t a duplicate request at that point.

The consultants see the chatbot as an addition to the current support site that is used to avoid
duplicate data as much as possible. It should be able to replace a part of the support and handle
the elicitation of basic information and grant ChipSoft with more insights in the users wishes. The
developers would use the chatbot as a way to elicit more requirements and providing them with
more information.

38 From user feedback to requirements using chatbots

Chapter 5

Conversation flows

This chapter describes the conversation flow that will be used in the prototype. The conversation
flows have been created in iterations and serve as the starting point for designing the prototype.
These have been designed using an experts’ opinion at ChipSoft by executing a semi-structured
interview after each iteration. The chapter will go through every iteration of the conversation flow
and explain how this iteration was executed split up in different sections.

5.1 Software Request Structure

We will explain how the structure of a software request looks at ChipSoft. A software request (SIF)
protocol/template is used within ChipSoft to describe the structure a software request should have
to be accepted by ChipSoft. At the very least a SIF should contain a problem statement and
desired end-result according to the interviewees, and the software request protocol. However, in
the current situation the software request protocol is not used in most situations. The interviewees
confirm this by stating that they miss structure in the current software requests. The interviewees
state that in case of a bug a reconstruction scenario could be valuable for uncovering the cause
of the bug and further specifying the SIF. Finally, the interviewees state that information about
the affected users, location, environment and priority could prove useful when reporting
bugs. In short, a SIF regarding a bug should contain the following elements:

• Problem statement - The problem statement should describe the bug experienced as
detailed as possible and is the starting point of a SIF;

• Desired end-result - The desired end-result should describe how the user expects the
application to work after fixing the bug on a functional level;

• Reconstruction scenario - The reconstruction scenario should describe the process leading
up to the bug step-by-step. This provides the developers and consultants with a detailed
description of the problem and an indication on where it occurs;

• Affected users - The affected users describe the user group that is affected by the bug
mostly. This information can also be extracted from within the application itself;

• Bug location - The bug location describes where the bug occurs in the application. Addi-
tional information can be gathered using information residing within the application;

We will go over each of the elements and explain what information should be attained for each
of these elements.

From user feedback to requirements using chatbots 39

CHAPTER 5. CONVERSATION FLOWS

5.1.1 Problem statement

The problem statement should define the problem as concrete and accurate as possible. More
precise, as Max Kush states it should identify the gap between the current situation and the
desired end-results [25]. To identify this gap, a common approach is to use the 5W’s as used in
journalism [19]:

• Who - Who does the problem affect?;

• What - What is the issue?;

• Why - Why is it important to fix the problem?;

• Where - Where is the issue occurring?;

• When - When does the issue occur? [28].

By answering every question stated in the 5W’s method, we can clearly identify the problem
at hand. In addition this helps in filling the affected users and bug location elements. It
seems clear that when reporting a bug the starting point should revolve around describing the bug
experienced. This why we have chosen to start the conversation flow with the “what” question as
can be seen in Appendix D.

5.1.2 Affected users

The affected users should describe the “who” of the 5W’s method, and give a clear description
of the users or user groups that are experiencing the problem at hand. In this case there is a
fixed list of user groups dependable on the implementation of HiX at the customer. Additionally,
this element might already be extracted from the problem statement, if this is not the case, the
follow-up question to discover the “who” should be asked.

5.1.3 Bug location

The bug location describes the location where the bug occurs, more specific it should uncover the
functionality and screen that is open at the time of the bug occurrence. In some of the cases this
element might be extracted from the answer given to the problem statement question, if that is
not the case, the follow-up question to discover the “where” should be asked. Again, additional
information about the bugs location can be extracted from within HiX without having to burden
the user with more questions.

5.1.4 Reconstruction scenario

The reconstruction scenario is a step-by-step walk through up until the moment the bug occurred.
This element should be used to give the developers some guidance about the root cause of the bug.
In addition, information from within HiX, such as the logging, might be used to provide valuable
information about the bug occurrence.

5.2 Initial conversation flow

The initial conversation flow as displayed in Apendix D have been created after conducting the
semi-structured interviews with the consultants at ChipSoft. At first, we wanted to make a clear
overview of the structure of a conversation between a chatbot and a human. As stated in Chapter
3.5 the bot should make clear that the user is communicating with a bot instead of a human. For
this reason the “welcome message” contains a sentence that clarifies that the user is talking to a
bot. In addition, the bot only reacts when a human initializes the chatbot, satisfying R11 and
R14 as stated in Chapter 3.5.

40 From user feedback to requirements using chatbots

CHAPTER 5. CONVERSATION FLOWS

The next logical step was to classify if the bug experienced is production blocking for the user. If
this is the case the user should be redirected to a human employee if they want to. The reason
why we have not implemented a feature requesting scenario in the conversation flow is that, the
interviewees stated that reporting a bug could prove more valuable than requesting a new feature
as the chatbot could use valuable information from within HiX to enrich the bug report. In this
chapter we will go through each of the questions step-by-step to clarify why we added these ques-
tion to the conversation and how they relate to the requirements as defined in Section 2.1 and
Section 3.5. The full conversation flow can be seen in Appendix D.

5.2.1 Production blocking question

As the interviewees have stated there should be a way to rank the urgency of a software request
as described in R3 in Section 2.1. While some bugs might be more urgent than others, there are
also bugs that lead to production blocking situations for the user. This means that the user is
not able to advance in a certain work process while experiencing the bug. In that case, as the
interviewees have stated, there should be a fail safe mechanism that can connect the user directly
to a consultant. If at some point there is no consultant available, the user is asked if they want
to continue the report through the bot or cancel the report. If the user wants to continue the
conversation, the bug report will be stored as production blocking and will be given the highest
priority available. Since this relies on the user reporting the bug being entirely honest instead
of detecting if the bug is production blocking or not, this is not entirely safe. In addition, for a
user to understand what is production blocking and what is not, requires some experience and
proper knowledge of the system. However, for this prototype and the test setup that uses the
consultants at ChipSoft, which have a solid understanding of the product and know what bugs
are production blocking, this mechanism is sufficient. We expect that for this mechanism to work
at users a further classification and check, needs to be added to verify if the bug is production
blocking. This part of the conversation will not be added to the actual prototype due to time
constraints and the employees in case are the actual subjects. The full conversation flow can be
seen in Appendix D.

5.2.2 Uncovering the problem

The next step in the conversation is to uncover the “what” of the problem at hand, which relates
to the problem statement element of a software request as explained in Section 5.1. The bot will
question the user to describe the problem they are experiencing using the 5W’s as explained in
Section 5.1. The first step in extracting all the W’s is to gather information about what problem
the user is experiencing. In a lot of situations the user might already reveal other elements such
as the “who” or “where/when” of the bug at hand. In these situations those questions could
be skipped, this keeps the conversation flow as short as possible and reduces the redundancy of
questions. If these elements can not be extracted from the answer to the “what” question they
will be asked in the sequence displayed in Appendix 5.2 depending on what element is missing.
This whole question mechanism can satisfy R1 as described in Section 2.1.

At this point the “why” question is still included, but we have noticed that the “why” of a
bug is most of the time that something is not working properly. The same goes for the “when”
and “where” questions, as we think that they may point to the same thing which likely is the
location where the bug occurs. There is a very thin line between these elements meaning that
they might be combined in later iterations.

Finally, the bot will summarize the request and returns the summarized request to the user.
At this point the user can review the created request and make changes to it, which in combina-
tion with the extraction of the elements satisfies R5 and partly satisfies R6 and R10 as described
in Section 2.1 and Chapter 3.5. The full conversation flow can be seen in Appendix D.

From user feedback to requirements using chatbots 41

CHAPTER 5. CONVERSATION FLOWS

5.2.3 Question expected end-result

When the problem statement has been extracted the next step is to clarify what the user expect-
s/desires of the end-result. This part of the conversation just records what the user answers to this
question. In addition, it questions if the desired end-result changes the current way of working
for the users. If so, it questions what changes in the current way of working. This part of the
conversation can satisfy R2 as described in Section 2.1. The full conversation flow can be seen in
Appendix D.

5.2.4 Reconstructing the scenario

The reconstruction scenario should be questioned to provide the developers with a way to recon-
struct the scenario at the given customer and fill the element in the software request structure.
This part of the conversation can satisfy R4 and partly R7 as described in Section 2.1. The idea
is to let the user describe the process that led up to the bug step-by-step. We expect a video or
a screen capture might be more valuable, but this is not within the scope of this research and
the case study at hand. Therefore, we have chosen to go with a question/answer mechanism in
which the user describes every step and the bot finally summarizes and creates a list of these
steps. Furthermore, the bot will eventually gather information about the user, the environment,
current open screens, call stack, etc. to add more value to the reconstruction scenario. Finally, the
bot summarizes the extracted reconstruction scenario and reports it back to the user validating
the report. The user can then choose to add, delete or edit the reconstruction scenario. The full
conversation flow can be seen in Appendix D.

5.2.5 Mapping the urgency

During the entire conversation an urgency score can be stored depending on the answers given
by the user. This score is calculated using the information available inside the application and
the answers provided by the users. This information includes, the location of the bug, the user
experiencing the bug, impact of the functionality failing and other factors. The urgency score
ranges from 1 to 5 where 1 is the highest urgency score and 5 is the lowest. At this point, the user
will be asked if the mapped urgency is correct, if the user agrees with the mapped urgency score
this score will be taken. If the user disagrees with the urgency score, the user will be given the
choice to raise the urgency score by 1 or lower the urgency score by 1. This gives the user some
influence in the urgency score while preventing them from always choosing the highest possible
rating. This process partly satisfies R3 as described in Section 2.1, as it can classify the bug in
terms of urgency. The full conversation flow can be seen in Appendix D.

5.2.6 Summarize request

After mapping the urgency the entire request will be summarized and displayed to the user to val-
idate the report. The user can then choose to edit the report if they disagree with the summarized
report. This summary satisfies R6 and R9, as described in Section 2.1 and 3.5, as it provides users
with feedback through every step and finalizes the feedback with a full summary of the extracted
report. If the user agrees with the summary the report will be stored. The full conversation flow
can be seen in Appendix D.

5.2.7 Rate chatbot

The final step, is asking the user to rate the chatbot in terms if it was useful or not. This step of the
conversation is for research purposes and helps in understanding the weaknesses and strengths of
the prototype. The user will be given the choice to rate the chatbot or not and give some feedback
about the bot. The rating will take place through a 1-5 star rating where after the user will be
asked to give an optional short description. This function will not be implemented in the current
case-study as we will evaluate the effectiveness and usefulness of the bot using semi-structured

42 From user feedback to requirements using chatbots

CHAPTER 5. CONVERSATION FLOWS

interviews. However, if the bot is to be implemented at end-users this feature might prove useful.
The full conversation flow can be seen in Appendix D.

5.3 Conversation flow adjustments

After having consulted the chatbot expert at ChipSoft, and through conversation and feedback
with the first supervisor of this thesis project, some adjustments have been made to the initial
conversation flow as described in Section 5.2. This chapter will go through these adjustments and
explains why these changes have been made.

5.3.1 Question problem adjustments

After having discussed the initial conversation flow with the first supervisor of this thesis pro-
ject and the chatbot expert at ChipSoft, we came to the conclusion that the order in which the
elements were filled in the initial flow was not optimal. In addition, there seemed to be a lot of
redundancy in questions and questions that did not add as much value as thought at first.

The first change was to reduce the amount of questions in the “what” part. The reason be-
hind this change was, that the questions about what would happen if the bug is fixed and what
would happen if the bug is not fixed do not add any value to the element. In addition, we are
running the risk of the dialogue becoming very boring and way too extensive. Furthermore, we
are now focusing more on extracting the “who” and “where” element from the answer provided
to the “what” question further automating this process and therefore simplifying the conversation
for the user.

The next change was to further split the “what” and “why” elements and removing the “why
should this problem be solved” question. The reason behind this is that the why should the prob-
lem be solved question is theoretically the same question as the how does this problem limit you
in your work question. By removing the redundant question the conversation gets simplified and
less of a drag to the user.

We then found out that the “where” and “when” dimension are quite similar when reporting
a bug. The reason behind this is that they both lead to a location in the application where the
bug occurs, for this reason we have chosen to combine these dimensions in a single question. Again,
reducing the redundancy and burden of the conversation for the user.

Because we now focus more on automatically extracting and detecting the “who” and “where”
dimension from the answer provided in the “what” question, we decided to validate the extracted
elements. If the bot extracts a “who” or “where” element from the “what” question the bot will
first validate if this element was correctly detected and extracted. If this is the case the bot will
only question the missing elements, therefore again reducing the burden of the conversation and
further automating the process. This also increases the degree of control we have on the conver-
sation as we can further define where the conversation is going. In addition, this change helps
further satisfying R11 and R19 as described in Section 3.5.

From user feedback to requirements using chatbots 43

Chapter 6

Prototype design

This chapter describes the design of the prototype that was implemented during the case study
at ChipSoft as described in Chapter 2. This chapter first explains the enabling technology used
in the prototype and is then split up in different versions of the prototype where each version
represents an iteration in the process of the prototype design. In addition, the reasoning behind
the choices made will be explained.

6.1 Microsoft LUIS

For the prototype we have decided to use the LUIS (Language Understanding Intelligence Service)
by Microsoft. This service is a machine learning-based service that supports natural language un-
derstanding an processing (NLP & NLU). The service identifies different user goals in so-called
“intents” and extracts valuable information from sentences in the form of “entities”. The service
supports 13 different languages is available worldwide and implements active learning to continu-
ously improve the quality of it’s models [1]. In addition, it seamlessly integrates with the Azure
Bot Service and C# and thus, with the code base of HiX. Another reason for using LUIS instead of
other NLP/NLU frameworks is that the chatbot expert at ChipSoft stated that ChipSoft already
uses LUIS for their other chatbot, this means that there is more knowledge available within the
company. In contrast, we have compared the LUIS solution to pattern-matching, which will be
discussed in Section 6.1.1. By implementing LUIS into the prototype we can support natural-
language conversations and therefore satisfy requirement R18 as defined in 3.5.

6.1.1 LUIS vs. Rule-based pattern-matching

The SpaCy framework offers the possibility to use their rule-based pattern-matching engine, this
engine is comparable to regular expression but is based on token-based matching. This token-
based matching is done after the PoS (Part of Speech) tagging and lets you find certain words
and phrases that you are looking for. They state that rule-based matching system are a good
choice when there is a finite number of examples or there are clear, structured patterns such as IP
addresses, country names or URL’s. While this seems like a good approach at first, the degrees of
freedom that a user has while conversing with a bot in natural-language increases the difficulty of
identifying clear patterns. Another downside of this approach is that detecting these patterns will
be very time consuming and are set in stone afterwards resulting in less flexibility and scalability.

We have researched and identified a number of patterns using the rule-based pattern-matching
approach, and measured the accuracy of these patterns given different existing software requests.
This approach relies heavily on dependency types identified by PoS tagging, this means that a
pattern is identified by looking at the structure and dependencies in the given sentences. To test
this approach we have identified a number of patterns by looking at the way existing software re-

44 From user feedback to requirements using chatbots

CHAPTER 6. PROTOTYPE DESIGN

quests are built up, and looking at the dependencies between the different elements. These results
are displayed in Appendix C. However, we do realize that these existing software requests are not
representative for natural-language conversations which most-likely will be split up in multiple
smaller answers to the questions as described in Chapter 5. As we can see, the identified patterns
that are most accurate are quite general such as “NOUNS”, “VERBS” and “ADP”. This will
result in identifying a lot of entities and words in a sentence, so to filter out the noise an extra
filtering step needs to take place. This extra filtering may be, comparing each of the found words
to a list of entities available within HiX. This list can consist of entities and synonyms for these
entities with different weights, if a certain threshold score is reached the bot will assume that the
user means that entity and will extract that entity.

To be able to compare the pattern-matching approach to the LUIS approach more accurately
we went through some real-life example answers gathered through a first setup of the chatbot. We
have asked a number of developers to exclusively answer the “what” question through the chatbot
and avoid using too much technical terms and act if they are end-users. This way we can simulate
a number of responses without polluting the experiment population. The reason why we only look
at the “what” question is that the answers to this question may contain information and entities
about other elements.

To test the LUIS approach, we have created a LUIS application which is able to detect “who”,
“where”, and document type entities using the entity tagging functionality available in LUIS. The
“who” and “where” entities are tagged using the machine learning functionality available in LUIS
and the document type was implemented as a set list of document types as available in HiX, this
list consisted of set document types and their synonyms. To train this model we have added 10
example utterances to the “none” intent and 20 example utterances to the “what” intent. In
these example utterances we have manually tagged the entities and trained the application. We
have then created a simple chatbot in which the user is asked to answer the “what” question,
which then creates a LUIS request and saves the result of the detected entities. Two developers
at ChipSoft have been asked to answer the “what” question after each reading 10 randomly se-
lected existing software requests. We have then analyzed the answers and compared them to the
pattern-matching approach as will be analyzed further in this chapter.

The goal of this small experiment is to prove that the LUIS approach is more applicable to
the case at hand. We will look at which approach is better in detecting the “who”, “where” and
document type in an answer to the “what” question. Which is better is measured in the amount
of false positives, true positives, and false negatives. The SpaCy approach will only take the top 3
of the “where”, “when” and “who” patterns with the highest accuracy as identified in Appendix
C. However, we will exclude the “NOUN” patterns without a dependency tag as this just identifies
all nouns in the sentence and can not be identified as a real pattern.

Example 1

“In the overview screen the function of removing a patient from an object is being
called but this has not yet been implemented. Also, too many zismuts are being

created when importing an image”

In this example the following entities can be identified:

1. Patient - Can be identified as the “who” in the answer as the problem relates to the patient;

2. Overview screen - Can be identified as the “where” in the answer as the problem resides
in this screen;

3. Importing - Can be identified as the “when” in the answer as the problem occurs when
importing an image;

From user feedback to requirements using chatbots 45

CHAPTER 6. PROTOTYPE DESIGN

4. Removing - Can be identified as the “when” in the answer as the problem occurs when
removing a patient;

5. Image - Can be identified as the document type as the problem relates to an image.

Pattern-matching result We will go through each of the elements and explain what they
have tagged and why this is correct or incorrect.

1. Who - the blue color represents the top 3 who pattern tagging;

2. Where - the red color represents the top 3 where pattern tagging;

3. When - the green color represents the top 3 when pattern tagging;

“In the overview screen the function of removing a patient from an object is being
called but this has not yet been implemented. Also, too many zismuts are being

created when importing an image”

As we can see a lot of the sentence is tagged using the top 3 patterns per element. This also
means there is a lot of noise that needs to be filtered out. We can notice that the who patterns
also tag irrelevant words, which needs to be filtered out as well. The when patterns seem to miss
any of the words referring to the “when” in the answer. We can conclude that the patterns do
the job but lack in precision and require a lot of post-processing of the tags. In addition, the
pattern-matching needs at least 3 iterations through the answer resulting in slower processing of
the answer. Finally, the document type is recognized as a who pattern this is quite normal as
there was no specific pattern for the document types.

LUIS result We will go through each of the elements and explain what they have tagged and
why this is correct or incorrect.

1. Who - the blue color represents the who entity tagging;

2. Where - the red color represents the where entity tagging;

3. When - the green color represents the when entity tagging;

4. Document type - the yellow color represents the document type entity tagging;

“In the overview screen the function of removing a patient from an object is being
called but this has not yet been implemented. Also, too many zismuts are being

created when importing an image”

As we can see, the LUIS approach is way more accurate and produces less noise in this example.
In addition, it correctly detects the document type. The down part of the LUIS approach is that
it missed the “removing” part of the “when” element but this may be caused due to a lack of
training.

Example 2

“I can not view ecgs in the ecg viewer”

In this example the following entities can be identified:

1. I - Can be identified as the “who” in the answer as the problem relates to the current user;

2. Ecg viewer - Can be identified as the “where” in the answer as the problem resides in this
screen;

3. View - Can be identified as the “when” in the answer as the problem occurs when removing
a patient;

46 From user feedback to requirements using chatbots

CHAPTER 6. PROTOTYPE DESIGN

4. Ecgs - Can be identified as the document type as the problem relates to an image.

Pattern-matching result We will go through each of the elements and explain what they
have tagged and why this is correct or incorrect.

1. Who - the blue color represents the top 3 who pattern tagging;

2. Where - the red color represents the top 3 where pattern tagging;

3. When - the green color represents the top 3 when pattern tagging;

“I can not view ecgs in the ecg viewer”

As we can see the patterns fail to detect the “who” which is I in this example. In addition,
the “when” patterns yield some interesting results as it does not tag anything useful. Again, the
“who” patterns also recognize the document type, but this might not be that strange regarding
the fact that these patterns have not been split up. Finally, the patterns fail to detect the “when”
element in this particular example.

Pattern-matching result We will go through each of the elements and explain what they have
tagged and why this is correct or incorrect.

1. Who - the blue color represents the who entity tagging;

2. Where - the red color represents the where entity tagging;

3. When - the green color represents the when entity tagging;

4. Document type - the yellow color represents the document type entity tagging;

“I can not view ecgs in the ecg viewer”

The LUIS solution can successfully identify the “who” in this example and successfully splits
the document type and the “who”. In addition, there is a bit less noise regarding the “who”
element tagging.

We have noticed that both of the approaches do the job, but the LUIS approach seems to generate
a bit less noise and tag more precisely. In addition, the patterns are set in stone and are not that
flexible in contrast with the LUIS approach which keeps on learning its entire lifetime. The LUIS
approach also seems to perform a bit better as the pattern-matching requires multiple iterations,
post processing and filtering to do the job as efficiently as LUIS does.

6.1.2 LUIS Development cycles

Microsoft has stated some best-practices and created a so-called development lifecycle. This
lifecycle explains the process of efficiently creating a LUIS application. The concept of this lifecycle
is that each iteration over the full lifecycle creates a new working version of the LUIS application
[38] as displayed in Figure 6.1.

The first step in the design process is to build a LUIS app schema, this step is the process
of creating/editing the intentions and entities in the application. This step should be followed
by defining a couple of training examples or so-called training utterances and features to the
LUIS application. The next step is to virtually train the application with the provided example
utterances and publish the version of the application. This results in an HTTPS endpoint which
can receive utterances through an HTTP request and responds with the extracted intentions
through a JSON object as visualized in Figure 6.2.

LUIS mainly consists of three concepts [38]:

1. Intents - The intent represents and detects the action the user wants to take;

From user feedback to requirements using chatbots 47

CHAPTER 6. PROTOTYPE DESIGN

Figure 6.1: LUIS development cycle [38].

Figure 6.2: LUIS request and response [38].

2. Utterances - An utterance is a text input from the user that the application should be able
to understand;

3. Entities - An entity represents some detailed information that is relevant for a given utter-
ance.

6.2 Microsoft Bot Framework

The Microsoft Bot framework is a framework that focuses on creating intelligent bots, in particular
bots that focus on communicating with users through conversations. These bots can be hosted
in a so-called Microsoft Azure Bot Service directly in the cloud and seamlessly integrated with
Microsoft LUIS as explained in Section 6.1. The bots can communicate with the user through
various so-called “channels”, a channel can be Facebook, Skype, Slack or the bot can be integrated
directly into an application such as HiX by ChipSoft. Every interaction between the user and the
bot generates a so-called “activity” which in fact is a HTTP request to the Azure Bot Service
which the bot processes and responds to as displayed in Figure 6.3 and 6.4 [42]. Each activity that
the bot receives gets routed to the “turn handler” which then in turn links the individual activity
to whichever assigned “activity handler” [42]. In addition, one could add “middleware” which
are executed in order, giving each the chance to interact with the activity [42]. We will not delve
deeper into the technical working of the bot framework but rather focus on the functional structure
which we can use to describe the prototype design and choices made during this research. The
entire bot framework is asynchronous meaning it can support multiple sessions of independent
conversations simultaneously. This means that by using the Microsoft Bot Framework we can
directly satisfy requirement R17 and R9 as defined in Section 3.5.

48 From user feedback to requirements using chatbots

CHAPTER 6. PROTOTYPE DESIGN

Figure 6.3: Bot builder activity [42].

Figure 6.4: Bot builder processing stack [42].

6.2.1 Bot structure

This section will describe the structure and elements a bot, created with the Microsoft Bot Frame-
work, contains. A bot should contain the following elements [42]:

1. Bot logic - The bot logic acts as the heart of the bot and processes incoming activities from
one or more channels and generates outgoing activities;

2. Bot controller - The bot controller follows the standard MVC structure and helps in
defining and determining the routing of messages and HTTP POST requests;

3. Bot resource file - The bot resource file contains all the resources needed to setup the
environment of the bot and connect to the Azure Bot Service;

4. Dialogs - A bot can contain several dialogs that define how the bot interacts with a user
and how the answers are processed, this also defines the conversation flows of the bot;

5. Data classes - Data classes contain information you want to store in an object that can be
easily passed between different dialogs.

From user feedback to requirements using chatbots 49

CHAPTER 6. PROTOTYPE DESIGN

We will be defining the prototype by describing and explaining the dialogs, bot logics and
data classes for each of the development iterations during the thesis project. In addition, we
will describe the training process and design of the LUIS application as explained in Section 6.1.
This way we will focus more thoroughly on the functional design of the prototype rather than the
technical design.

6.3 First prototype cycle

The first prototype cycle focused on correctly identifying, extracting and labeling entities and
intents regarding the “what” question. We will first go through the bot design followed by the
design of the LUIS application the training of the model and test results.

6.3.1 Bot Design

The initial design of the bot itself has been created, this includes the following dialogues as
displayed in Figure 6.5:

1. Welcome dialog - This dialog states the welcome message as defined in Appendix D and
helps;

2. Main dialog - This dialog defines the structure of the entire conversation and defines and
routes user to the different sub dialogues;

And contains the following data class:

1. Report details - This data class contains the various fields according to the software
structure and additionally the DocumentType field defined in Section 5.1;

Figure 6.5: Initial prototype dialogues.

In this first version of the prototype the “welcome dialog” acts as the entry-point of the bot
for the user. The bot will respond with a welcome message stating that it is in-fact a bot and can
help the user reporting bugs. The user can then respond with a welcome response, this response
will not be processed as it is most-likely a greeting. This dialog satisfies requirement R14 and R11
as described in Section 3.5.

50 From user feedback to requirements using chatbots

CHAPTER 6. PROTOTYPE DESIGN

The welcome message is followed by the main dialog, this dialog contains the routing and conver-
sation flow definition. As it is possible to prompt a message from this dialog directly and process
the response to this message we have chosen to implement the “what” question directly in this
dialog. The response to this question will be directly saved into the “ReportDetails” data object
filling the “what” field. In addition, if the LUIS application successfully finds a “WhoEntity”,
“WhereEntity” or “DocumentTypeEntity” these will be mapped to the accompanying fields in
the data object. With this information filled up we can further control the flow of the conversa-
tion in future iterations.

Finally, the bot will provide the user with a simple summary of the extracted entities and intents
stored in the data object to provide the user with feedback and afterwards ends the conversation.
This flow in conversation partially satisfies requirement R10 and R13 as defined in Section 3.5.

6.3.2 LUIS application design

The initial design of the LUIS application focuses on detecting and mapping the “what” intent
correctly. As a LUIS application should always contain a “NoneIntent” which will be used when
none of the defined intents can be detected, we have also added this intent with 15 example
utterances for the none intent and 12 for the what intent, visible in Appendix F, according to the
best-practices defined [4]. This results in the following intents:

1. What Intent - This intent is the starting point of the prototype as it triggers the “what”
question as defined in Section 6.3.1.

2. None Intent - This intent will be taken when the LUIS application fails at mapping an
answer to a defined intent and contains Section 5.1;

Additionally, we have chosen to add three entities, for the “WhoEntity” and “WhereEntity”
we have chosen to use a machine-learned entity type. This choice has been made due to the
fact that the “who” or “where” element in an answer might not always be the exact name or a
synonym. An example that we can give is: “When I view an ECG HiX crashes.” in this example
“I” refers to the user currently using the bot, and “view” refers to the ECGViewer as the user
is trying to view an ECG. These are not actual users or locations and therefore would not be
mapped to a given entity, when using a pre-defined list of possible values for this entity. By using
the machine-learning type of entity the application keeps on improving in detecting values like
this and will eventually be more accurate than a pre-defined list. Additionally, this reduces the
amount of effort in maintaining these entities and keeping them up-to-date. However, this will
result in the manual tagging of the utterances to train the application to detect the correct words.

In contrast, the DocumentTypeEntity is designed as a pre-defined list of values and synonyms
that point to these values as displayed in Figure 6.6. This choice has been made due to the fact
that HiX only supports a pre-defined set of document types and this set does not change often.
Furthermore, there are a lot of synonyms to these document types that are used by the users and
we can now easily extract the given document type in the bot. By using this pre-defined list of
synonyms we satisfy requirement R7 as defined in 2.1. This results in the following list of entities
in this version:

1. Who entity - Machine-learned entity that tries to identify and extract the “who” from the
answer to the “what” question;

2. Location entity - Machine-learned entity that tries to identify and extract the “where”
from the answer to the “what” question;

3. Document type entity - Pre-defined list of support document types in HiX and their
synonyms as displayed in Figure 6.6.

From user feedback to requirements using chatbots 51

CHAPTER 6. PROTOTYPE DESIGN

Figure 6.6: Example Document type entity values.

6.3.3 Prototype testing results

To test this version of the prototype we have chosen to use ten existing software requests available
at ChipSoft. These software requests were randomly selected and two developers at ChipSoft were
asked to reproduce these software requests through interaction with the prototype. The entire
test set is available in Appendix E in addition the results of the tests are displayed in Figure 6.7.

Figure 6.7: Precision & Recall per entity version 1.

As expected and due to the fact that the application had only 1 intent and the none intent
in this version, the overall prediction score regarding intent prediction was 100%. In addition,
we have measured the times the application failed at detecting an entity or provide us with false
positives. For the testing of the application we only look at the detection of the WhoEntity,
DocumentTypeEntity and LocationEntity due to the fact that these are available in all versions
of the prototype and comparison considerations. The results of these measurements can be found
in Figure 6.7. As we can see the first version of the prototype was quite accurate for the given
test set as it had an overall recall of 63,33% which was calculated using the formula

100 − (10 ∗missedEntities)

This version had a high precision which is calculated using the following formula

100 − (10 ∗ falsePositiveEntities)

The precision was 86,67%. The prototype had the most problems with detecting the LocationEntities
as it missed 3 out of 10, and provided us with the same number of false positives. This can be

52 From user feedback to requirements using chatbots

CHAPTER 6. PROTOTYPE DESIGN

related to the fact that this version of the prototype detects verbs such as “open”, “view” and “im-
port” as LocationEntities. The reason for this is that these verbs are commonly used as nouns.
These verbs themselves provide us with very little information about the location of the bug and
might be combined with the DocumentTypeEntity in further versions to provide the developers
with more information. In contrast, the application could easily detect the DocumentTypeEntities
in the answers, this could be related to the fact that these are detected using a pre-defined list
instead of the machine learning as the training set contained only 30 example utterances for the
training of the model.

Finally, the utterances were manually labeled and used as extra training for the model. This
way, the detection rate should increase for the next cycle of the prototype development process.

6.4 Second prototype cycle

The second prototype cycle focused on improving the accuracy of the entity tagging further devel-
oping the conversation flow and adding confirmation dialogues to validate the tagged entities. We
will first go through the bot design followed by the design of the LUIS application the training of
the model and test results.

6.4.1 Bot Design

This cycle focused on validating the extracted entities, adding the desired end-result dialogues
and adding the “where”, which refers to the location where the bug occurs, and “who”, which
refers to the user or user group affected by the bug, dimension follow-up questions according to
the conversation flow in Appendix D The prototype contained the following dialogues:

1. Welcome dialog - This dialog states the welcome message as defined in Appendix D and
helps;

2. Main dialog - This dialog defines the structure of the entire conversation and defines and
routes user to the different sub-dialogues;

3. Where dialog - If the LocationEntity, which points out the location of the bug, can not
be extracted from the answer to the “what question” defined in the main dialog, this dialog
will start asking the user to describe where the problem was experienced. After processing
the answer the user will be asked to validate the detected “where” value;

4. Who dialog - If the WhoEntity’, which points to the users or user groups affected by the
bug, can not be extracted from the answer to the “what question” defined in the main dialog
this dialog will start asking the user to describe where the problem was experienced. After
processing the answer the user will be asked to validate the detected “who” value;

5. End result dialog - This dialog records the desired end-result and puts this end-result in
the already existing data object. In addition, it validates both the values for the “who” and
“where” dimension residing in the data object.

And contains the following data class:

1. Report details - This data class contains the various fields according to the software struc-
ture and additionally the DocumentType and DesiredEndResult fields defined in Section 5.1;

As displayed in Figure 6.8 the prototype now has more control over the flow of the conversation,
as it can detect if a certain entity has been tagged and if not move to a sub-question that helps it
to extract that entity. In addition, the prototype can now further validate the extracted entities
and move to the point where the user can define the desired end-result which in turn satisfies both
requirement R1 and R2 as defined in Section 2.1.

From user feedback to requirements using chatbots 53

CHAPTER 6. PROTOTYPE DESIGN

Figure 6.8: Second prototype dialogs.

By validating the entities with the user we can simultaneously provide them with feedback and
insights in the choices made by the bot. For this reason we can partly satisfy requirements R10
and R11 as described in Section 3.5.

6.4.2 LUIS application design

This cycle focused on correctly labeling and training the model, adding the desired result intent
and adding patterns to the what intent. The patterns were not added in the first cycle as the
LUIS documentation suggests to add these in later iterations to further refine and improve the
detection of the application [4]. This results in the following intents:

1. What Intent - This intent is the starting point of the prototype as it triggers the “what”
question as defined in Appendix D.

2. Desired result Intent - This intent detects when the user wants to define the desired end
result through the prototype as displayed in Appendix D.

3. None Intent - This intent will be taken when the LUIS application fails at mapping an
answer to a defined intern.

In this version we have not added any entities yet as we wanted to further increase the accuracy
of the entity detection as defined in Section 6.3. So the list of entities remains:

1. Who entity - Machine-learned entity that tries to identify and extract the “who” from the
answer to the “what” question;

54 From user feedback to requirements using chatbots

CHAPTER 6. PROTOTYPE DESIGN

2. Location entity - Machine-learned entity that tries to identify and extract the “where”
from the answer to the “what” question;

3. Document type entity - Pre-defined list of support document types in HiX and their
synonyms as displayed in Figure 6.6.

6.4.3 Prototype testing results

To test this version of the prototype we have again chosen to use existing software requests avail-
able at ChipSoft. These software requests were randomly selected and two developer, which were
different than the developers used previously, at ChipSoft were asked to described these software
requests through interaction with the prototype. The entire test set is available in Appendix E in
addition the results of the tests are displayed in Figure 6.9.

Figure 6.9: Precision & Recall per entity version 2.

As expected and due to the fact that the application had only 2 intents and the none intent
in this version, the overall prediction score regarding intent prediction was 100%. For testing
the accuracy and error chances of the application we have used the same testset as available in
Appendix E for comparison considerations. The results of these measurements can be found in
Figure 6.9. As we can see this version of the prototype had a small increase of 7% in recall in
comparison to the first version. This might be a result of the fact that the model had a bigger
pool of training data. In contrast, the precision remained the same and it failed at the exact
same sentences as the first version did. This might be related to the fact that this version of the
prototype focused on providing the application with more training data instead of adding new
things to the LUIS entity detection algorithm. The prototype, again, had the most problems with
detecting the LocationEntities as it missed 3 out of 10 and provided us with the same number
of false positives. In contrast, the application had a better score at detecting the WhoEntity

and the DocumentTypeEntity in the answers, this could be related to the increase in training
data available to the application. This version of the application contained a total of 85 example
utterances.

6.5 Third prototype cycle

The third prototype cycle focused on extending the conversation flow by adding the document
type, edit report and problem result dialogues and improving the accuracy of the entity tagging.

From user feedback to requirements using chatbots 55

CHAPTER 6. PROTOTYPE DESIGN

In addition, we have added the reconstruction scenario, finalize dialog and the possibility to edit
the report. We will first go through the bot design followed by the design of the LUIS application
the training of the model and test results.

6.5.1 Bot Design

This cycle focused on expanding the current conversation flow by adding the document type,
edit report and problem result dialog as displayed in Appendix D. The prototype contained the
following dialogues:

1. Welcome dialog - This dialog states the welcome message as defined in AppendixD and
helps;

2. Main dialog - This dialog defines the structure of the entire conversation and defines and
routes user to the different sub-dialogues;

3. Where dialog - If the LocationEntity can not be extracted from the answer to the “what
question” this dialog will start asking the user to describe where the problem was experienced.
After processing the answer the user will be asked to validate the detected “where” value;

4. Who dialog - If the WhoEntity can not be extracted from the answer to the “what question”
this dialog will start asking the user to describe where the problem was experienced. After
processing the answer the user will be asked to validate the detected “who” value;

5. End result dialog - This dialog records the desired end-result and puts this end-result in
the already existing data object. In addition, it validates both the values for the “who” and
“where” dimension residing in the data object.

6. Reconstruction scenario dialog - This dialog records the steps taken by the user up until
the point that the bug occurs, this helps the developers in the process of providing a fix for
the bug;

7. Finalize dialog - This dialog summarizes the report and shows it to the user to provide
them with feedback and add a layer of control. This helps in the process of detecting
malfunctions and or errors;

8. Edit report dialog - This dialog will first ask the user if it wants to edit the report after
the summarization. If so, the user will be provided the list of the different elements and
can choose which elements it wants to edit. Afterwards, the user is redirected to the finalize
dialog again and can choose to edit other elements.

And contains the following data class:

1. Report details - This data class contains the various fields according to the software
structure and additionally the DocumentType, DesiredEndResult and ReconstructionSteps
fields defined in Section 5.1;

As displayed in Figure 6.10 we have made some changes to the flow of the conversation as
it seemed more logical to first validate if an entity exists and otherwise execute the dialog. In
addition, we now offer the possibility to provide a reconstruction scenario step-by-step which in
turn satisfies requirement R4 as defined in Section 2.1. Finally the finalize dialog adds feedback
and provides extra control and error detection, this in turn satisfies requirement R6, R10 and R19
as defined in Section 2.1

56 From user feedback to requirements using chatbots

CHAPTER 6. PROTOTYPE DESIGN

Figure 6.10: Third prototype dialogues.

6.5.2 LUIS application design

This cycle focused on correctly labeling and training the model, adding the desired result intent
and adding patterns to the “what” intent. The patterns were not added in the first cycle as
Microsoft suggests to add these in later iterations to further refine and improve the detection of
the application [4]. This results in the following intents:

1. What Intent - This intent is the starting point of the prototype as it triggers the “what”
question as defined in Appendix D;

2. Desired result Intent - This intent detects when the user wants to define the desired end

From user feedback to requirements using chatbots 57

CHAPTER 6. PROTOTYPE DESIGN

result through the prototype as displayed in Appendix D;

3. None Intent - This intent will be taken when the LUIS application fails at mapping an
answer to a defined intent and contains.

In this version we have not added any entities yet as we wanted to further increase the accuracy
of the entity detection as defined in Section 6.3. So the list of entities remains:

1. Who entity - Machine-learned entity that tries to identify and extract the “who” from the
answer to the “what” question;

2. Location entity - Machine-learned entity that tries to identify and extract the “where”
from the answer to the “what” question;

3. Document type entity - Pre-defined list of support document types in HiX and their
synonyms as displayed in Figure 6.6.

6.5.3 Prototype testing results

To test this version of the prototype we have again chosen to use existing software requests avail-
able at ChipSoft. These software requests were randomly selected and two other developers at
ChipSoft were asked to described these software requests through interaction with the prototype.
The entire test set is available in Appendix E in addition the results of the tests are displayed in
Figure 6.11.

Figure 6.11: Precision & Recall per entity version 3.

In this version of the prototype, it is now possible to start with the description of the desired
end result right after the welcome message dialog and the bot will correctly detect it and adjust
the flow of the conversation.

For testing the precision and recall of the application we have used the same test set as available
in E for comparison considerations. The results of these measurements can be found in Figure
6.11. As we can see this version of the prototype had a small increase of roughly 3% in recall in
comparison to the previous version. This might be a result of the fact that the model had a bigger
pool of training data. In addition, the increase mostly comes forward out of the fact that this
version seemed to be better in detecting correction LocationEntities. In contrast, the precision

58 From user feedback to requirements using chatbots

CHAPTER 6. PROTOTYPE DESIGN

is increased to an absolute maximum of 100%, on the dataset used, which means that this version
did not provide us with false positives. As in the previous versions, this version struggled with de-
tecting every LocationEntity as well. The detection of the DocumentTypeEntity and WhoEntity

remained the same in comparison to the previous version. This version of the application contained
a total of 110 example utterances.

6.6 Fourth prototype cycle

The fourth and final prototype cycle focused on finishing up the conversation flow by adding the
document type, edit report and problem result dialogues and improving the accuracy of the entity
tagging. In addition, we have added an “action” field by combining the document type and where
entity to provide a way to detect the action the user was performing. Finally, we have added the
storing of the final result in a text file and provided keyword detection to generalize the locations
and users as “i” and “we” can refer to the current user using the chatbot. We will first go through
the bot design followed by the design of the LUIS application the training of the model and test
results.

6.6.1 Bot Design

This cycle focused on expanding the current conversation flow by adding the document type,
edit report and problem result dialog as displayed in Appendix D The prototype contained the
following dialogues:

1. Welcome dialog - This dialog states the welcome message as defined in Appendix ... and
helps;

2. Main dialog - This dialog defines the structure of the entire conversation and defines and
routes user to the different sub-dialogues;

3. Problem result dialog - This dialog offers the users the possibility to select what the bug
results in. It consists of the following choices: “Crash”, “Missing functionality”, “Function-
ality not working” and “Long waiting times”;

4. Where dialog - If the “where entity” can not be extracted from the answer to the “what
question” this dialog will start asking the user to describe where the problem was experienced.
After processing the answer the user will be asked to validate the detected “where” value;

5. Document type dialog - If the “document type entity” can not be extracted from the
answer to the “what question” this dialog will start asking the user to describe what docu-
ment type is related to the problem. The list of document types can be extracted directly
from the software application and is currently a static list;

6. Who dialog - If the “who entity” can not be extracted from the answer to the “what
question” this dialog will start asking the user to describe where the problem was experienced.
After processing the answer the user will be asked to validate the detected “who” value;

7. End result dialog - This dialog records the desired end-result and puts this end-result in
the already existing data object. In addition, it validates both the values for the “who” and
“where” dimension residing in the data object.

8. Reconstruction scenario dialog - This dialog records the steps taken by the user up until
the point that the bug occurs, this helps the developers in the process of providing a fix for
the bug;

9. Finalize dialog - This dialog summarizes the report and shows it to the user to provide
them with feedback and add a layer of control. This helps in the process of detecting
malfunctions and or errors;

From user feedback to requirements using chatbots 59

CHAPTER 6. PROTOTYPE DESIGN

10. Edit report dialog - This dialog will first ask the user if it wants to edit the report after
providing the report summary. If so, the user will be provided the list of the different
elements and can choose which elements it wants to edit. Afterwards, the user is redirected
to the finalize dialog again and can choose to edit other elements.

And contains the following data class:

1. Report details - This data class contains the various fields according to the software
structure fields defined in Section 5.1. Additionally, the DocumentType, DesiredEndResult,
ReconstructionSteps, Action and ProblemResult fields have been added.

As displayed in Figure 6.12 we have made some changes to the flow of the conversation as
it seemed more logical to first detect what the bug results in and then move on to the “where”
followed by a validation or definition of the document type related to the bug. This may provide
the developers with a better understanding of the bug at hand and in turn can further pinpoint
the location and origin of the bug.

6.6.2 LUIS application design

This cycle focused on correctly labeling and training the model, adding problem cause entity, the
combined location document type entity, this location document entity combines a location with
a document type found and results in the action that the user took when the bug occurred. This
results in the following intents:

1. What Intent - This intent is the starting point of the prototype as it triggers the “what”
question as defined in Appendix D;

2. Desired result Intent - This intent detects when the user wants to define the desired end
result through the prototype as displayed in Appendix D;

3. None Intent - This intent will be taken when the LUIS application fails at mapping an
answer to a defined intent and contains.

In this version we have added the ProblemResultEntity and the LocationDocumentEntity.
The problem result entity is used to identify what happens when the error occurs so we can further
define the priority of the given error. The combination of the location and document entity can
help in identifying the action the user was performing when the error occurred. And may provide
the developers with a better understanding of the location of the bug:

1. Who entity - Machine-learned entity that tries to identify and extract the “who” from the
answer to the “what” question;

2. Location entity - Machine-learned entity that tries to identify and extract the “where”
from the answer to the “what” question;

3. Document type entity - Pre-defined list of support document types in HiX and their
synonyms as displayed in Figure 6.6;

4. Problem result entity - Machine-learned entity that tries to uncover what the problem
results in e.g. an error or a functionality not working;

5. Location document entity - Machine-learned composite entity consisting of both a Docu-
ment type and Location entity that tries to identify and extract the “where” in combination
with the document type from the answer to the “what” question;

60 From user feedback to requirements using chatbots

CHAPTER 6. PROTOTYPE DESIGN

Figure 6.12: Fourth prototype dialogues.

From user feedback to requirements using chatbots 61

CHAPTER 6. PROTOTYPE DESIGN

6.6.3 Prototype testing results

To test this version of the prototype we have again chosen to use existing software requests avail-
able at ChipSoft. These software requests were randomly selected and two other developers at
ChipSoft were asked to described these software requests through interaction with the prototype.
The entire test set is available in Appendix E in addition the results of the tests are displayed in
Figure 6.13.

Figure 6.13: Precision and Recall per entity version 4.

For testing the recall and precision of the application we have used the same test set as available
in E for comparison considerations. The results of these measurements can be found in Figure
6.13. As we can see this version of the prototype had a small increase of roughly 3.5% in recall in
comparison to the previous version. This might be a result of the fact that the model had a bigger
pool of training data. In addition, the increase mostly comes forward out of the fact that this
version seemed to be better in detecting correction DocumentTypeEntities. Again, the precision
was 100% which means that this version did not provide us with false positives in any way on the
data that we have used. As in the previous versions, this version struggled with detecting every
LocationEntity as well. The detection of the DocumentTypeEntity and WhoEntity remained
the same in comparison to the previous version. This version of the application contained a total
of 120 example utterances.

6.6.4 Proto-Requirements

By having defined all the fields that we will be extracting and using in the prototype we can define
the end-result of the generated report. Therefore we can now specify the proto-requirements that
we have discussed earlier in this research. The fields that will be available in the end-report and
are thus referred to as proto-requirements are displayed in Figure 6.14.

62 From user feedback to requirements using chatbots

CHAPTER 6. PROTOTYPE DESIGN

Figure 6.14: Proto-requirements definition

6.7 Machine learning analysis

With the current prototype versions and the limited amount of data we had available within the
case organization, we can look at an estimation of the amount of data that was needed to train
the LUIS application to the point where it could prove to be valuable in a prototype environment.

Due to time and security constraints we have chosen not to implement the prototype in the soft-
ware application as it would add little to no value to the research. This means that implementing
the chatbot would only prove that it is possible to implement the chatbot in an application, rather
than proving the value of implementing a chatbot in an application. This means that if the proto-
type is to be implemented in the case application, it would use information available in the system
such as patient numbers, type of desktop and user ID’s.

The prototype was developed in four iterations over the research period, each iteration contained
a design, development, testing and training phase. For each version a different amount of training
data was fed to the system to increase the prototypes recall and precision. The amount of training
data, or example utterances, per version was:

• Version 1 - 30 example utterances;

• Version 2 - 85 example utterances;

• Version 3 - 110 example utterances;

From user feedback to requirements using chatbots 63

CHAPTER 6. PROTOTYPE DESIGN

• Version 4 - 120 example utterances.

The number of example utterances that were added each version depended on several factors
such as: available software requests and available developers that could aid in providing the
prototype with data. Since there was no dataset of conversations regarding the domain available
we could not use this to train the prototype, which in turn resulted in a minimally trained model
and thus, lower recall and precision during the experiment phase.

Figure 6.15: Recall and precision over versions.

As we have used the same test set to test each version of the prototype we have created a
graph of the increase in recall and precision over the different versions, this is displayed in Figure
6.15. As explained and discussed in the previous sections we can see an overall increase in recall
and precision over the different versions. What is interesting is the increase in precision between
version 2 and 3. This increase might be the result of the increased training data or the different
approach in the LUIS application as explained in Section 6.5. Another minimal increase can be
noticed in recall when looking at versions 3 and 4, this might be a result from introducing the
“location document entity” as explained in Section 6.6. We can notice that adding a lot of example
utterances does not necessarily means increasing recall and precision by the same amount.

64 From user feedback to requirements using chatbots

Chapter 7

Prototype evaluation

In this Chapter, experiments that were performed to evaluate the design of the prototype in
Chapter 6 will be explained.

7.1 Experimental design

The experiment consists of a group of 3 out of 6 available Implementation & Support consultants of
team multimedia. These consultants implement HiX at the customers, test new software additions
and provide support for the customers. In addition, we have also included 3 out of a total of 7
developers from team multimedia. This makes the total sample size of the experiments 6 where
there are 3 developers and 3 consultants. The developers that were included in the experiment
have not been involved in the training process of the prototype in the previous stages of the
research.

Figure 7.1: Test set assignment.

Each member of the sample group was asked to report a bug through the prototype by using
existing software requests available in the current system. Each consultant reported 3 software
requests conform the software request structure as explained in Section 5.1 and 3 software requests

From user feedback to requirements using chatbots 65

CHAPTER 7. PROTOTYPE EVALUATION

that are not in line with the software request structure, thus contain less information. Each subject
was assigned to a randomly picked test set of software requests using a numbering for each test set
ranging from 1 up to 6 as we are using 6 pools of software requests. Each test set will exclusively
contain bug reports and will not contain feature requests. This process is displayed in Figure 7.1.

Each of the subjects got a short introduction to the purpose of the chatbot and a small
demonstration on how the systems works. We have observed the full process and took note of the
interaction between the subject and the prototype and were available to provide the subject with
support during the process. The focus on this part of the experiment is on the interaction between
the subject and the chatbot and can also provide us with data to further analyze the efficiency of
the prototype and evaluate this with the developers afterwards. By efficiency we mean the ability
of the prototype to guide the users in the bug reporting process and it’s ability to automatically
detect entities.

When the subjects have finished reporting the pool of software requests assigned to them, we
have conducted a semi-structured interview. The protocol for this interview can be found in Ap-
pendix G. This interview mainly focused on the interaction between the subject and the chatbot.
However, it contained a number of questions about the correctness of the automatically detected
entities and the opinion of the subject about using the chatbot as a supporting tool for the purpose
of requirements engineering. The full conversation between the chatbot and user were saved for
analysis purposes. Finally, a selection of the results, 2 conform the structure and 2 not conform
the structure per subject, of the reports provided through the prototype were discussed by using
the interview protocol in Appendix H with 3 different developers of multimedia to conclude if
the bugs reported through the chatbot are more helpful than the reports available in the current
system.

7.2 Hypotheses

To validate if the experiments were successful or not we have created a number of hypotheses:

1. H1 - Subjects prefer interacting with a chatbot when reporting bugs over reporting bugs
through the current reporting system available at ChipSoft;

2. H2 - Developers value the reports generated through the chatbot higher than the reports,
in line with the software request structure described in Section 5.1, available in the current
reporting system available at ChipSoft;

3. H3 - Developers value the reports generated through the chatbot higher than the reports, not
conform the software request structure, available in the current reporting system available
at ChipSoft.

These hypotheses focus at uncovering the opinions of the subjects regarding the prototype and
additionally validating the usefulness of the reports generated by the prototype. H2 and H3 have
been created to help in answering RQ 3 as described in Chapter 4. In addition, H1 focuses on the
ability to answer RQ 2 in combination with the semi-structured interview. This experiment can
uncover the opinion of the subjects about reporting bugs by using a chatbot.

7.3 Result analysis

In this section the results of the semi-structured interviews with the subjects are discussed and
the evaluation of the average System Usability Scale (SUS) score is reported on. As mentioned in
Section 7.1 a total of 6 subjects (3 consultants and 3 developers) were asked to report 6 bugs (3
conform the software request structure and 3 not conform the software request structure) through
the use of the chatbot prototype. The sample consisted of 50% male and 50% female subjects,
2 out of 3 consultants are female and 1 out of 3 developers is female. The subjects age ranged

66 From user feedback to requirements using chatbots

CHAPTER 7. PROTOTYPE EVALUATION

between 24 and 50 years old. The highest completed level of education of 3 subjects was a master’s
degree, 2 subjects have a bachelor’s degree and 1 subject has an intermediate vocational education.
Out of the sample 4 subjects have worked at ChipSoft between 1 and 3 years, 1 subjects has been
working at ChipSoft for 5 years and 1 subject has been working at ChipSoft for 19 years.

7.3.1 SUS score analysis

The SUS scale was used as an evaluation tool after the subjects had an experience with the chat-
bot. The scale tries to measure the opinion of the subject about the usability of the chatbot and
results in a 0 to 100 score [6]. As we wanted to measure the global usability of the chatbot prototy
we have chosen to use the SUS. The reason for this is that the SUS was constructed to “cover a
variety of aspects of system usability, such as the need for support, training, and complexity, and
thus have a high level of face validity for measuring usability of a system. ” [6]

Out of the full sample, 3 out of 3 consultants rated the chatbot with a total score of 70 points
on the SUS scale. 2 out of 3 developers rated the chatbot with a total score of 90 points and 1
developer rated the chatbot with a total score of 80 points the . This results in an average SUS
score of 78.3%. In contrast the scale does not focus specifically on chatbots. In addition, since
the experiment was executed using the Microsoft Bot Framework Emulator, we do not know if the
look and feel of this emulator relates to the score. To mitigate this risk we have included some
questions that might support this score in the semi-structured interview as displayed in Appendix
G. It seemed that the first question: “I think that I would like to use this system frequently” in
the SUS scored the lowest average amongst all subjects, with an average score of 2.5. 2 out of 3
consultants scored this question with a score of 2 and 1 out of 3 developers scored this question
with a score of 2. Furthermore, question 4: “I think that I would need the support of a technical
person to be able to use this system”, in the SUS scored the highest average score with an average
of 3.66 points.

7.3.2 Prototype evaluation

In addition to asking the subjects to score the chatbot using the SUS as explained in Section 7.3,
we have conducted a semi-structured interview with the subjects. In this section we will go over
each of the questions and discuss the results per question. The complete interview protocol can
be found in Appendix G.

Question 1 - How did you like using the chatbot to report bugs?

The first questioned focused on extracting the opinions of the subjects regarding the usage of the
chatbot to report bugs.

4 out of 6 subjects (all developers and 1 consultant) stated that they experienced using the
chatbot as pleasant due to the structure it offered them when reporting a bug. 2 (1 developer and
1 consultant) out of 6 subjects stated that they liked using the chatbot due to the simplicity of
reporting a bug through the chatbot. They liked the guidance the chatbot offered them as they
were led through the reporting process. Finally, a single consultant stated that he liked the speed
in reporting a bug the chatbot offered him.

Consultant 3 stated that there were some options missing in the lists of options offered at some
questions (e.g. document types) and that she was not entirely sure that she had described the
problem sufficiently. She stated that adding a feedback mechanism, where the user gets feedback
if the information provided is sufficient would prove useful. Developer 3 explicitly stated that
reporting a bug through the chatbot seemed easier than the current process and offered more
structure.

From user feedback to requirements using chatbots 67

CHAPTER 7. PROTOTYPE EVALUATION

Question 2 - What could be improved in the chatbot?

This questions tried identifying possible improvement points in the chatbot.

3 out of 6 subjects (1 developer and 2 consultants) stated that they would like to have more
options in the list of options and improving the accuracy of the entity detection. 2 subjects (2
developers) stated that they would like a back button to edit the previous step immediately. 1 con-
sultant would like a clarification of the “who” question. Finally, a consultant stated that adding
a possibility to upload screenshots might prove useful and valuable for the developers.

Consultant 2 expected that, due to the simplicity and speed of reporting a bug through the
chatbot, it might overload the consultants with bug reports. The suggestion was to provide a se-
lect number of end-users with the rights to use the chatbot for bug reporting purposes. Developer
2 suggested creating a real-time summary of the report and visualizing this to the user.

Question 3 - What did you think was the best part of the chatbot?

This question tried identifying the strengths of the chatbot.

5 out of 6 subjects (all developers and 2 consultants) stated that they thought the biggest strength
of the chatbot was the structure it offered and the guidance of the user through the bug reporting
system. 1 consultant, liked the entity detection algorithm and the possibility to select a specific
document type over the structure.

Consultant 2 stated that the speed of reporting a bug through the chatbot was a strength.

Question 4 - What did you think about the flow of the conversation?

This question focused on identifying the strengths and weaknesses of the conversation flow. Ad-
ditionally, it tried to identify the feeling of the conversation flow.

6 out of 6 subjects stated that they thought the conversation flow was good and clear. They
stated that the chatbot asks the correct questions and the conversation feels natural to them.
Consultant 1 suggested a more dynamic conversation when reporting more complex bugs and con-
sultant 3 suggested changing the order of the questions. She suggested moving the reconstruction
scenario after the what question and moving the desired result question after the reconstruction
scenario.

Question 5 - Were the questions formulated understandable? If no, what would you
improve?

This question focused on identifying the weaknesses in the conversation flow and suggestions about
mitigating these weaknesses.

3 out of 6 subjects (2 developers and 1 consultant) stated that the questions were understand-
able for them. Consultant 3 stated that, due to the fact the order of the questions is consistent,
users might not read the questions anymore. The rest of the subjects stated that some questions
could use some clarification. Consultant 1 stated that the “where” question was unclear to her,
consultant 2 stated that she had trouble understanding the “who” question. Finally, developer 1
suggested further clarifying the reconstruction scenario question.

Question 6 - Were there missing questions? If so, please state the missing questions?

This question focused on identifying the weaknesses in the conversation flow and suggestions about
mitigating these weaknesses.

68 From user feedback to requirements using chatbots

CHAPTER 7. PROTOTYPE EVALUATION

4 out of 6 subjects (3 developers and 1 consultant) agreed that there were no missing questions
in the conversation flow of the chatbot. Consultant 1 stated that, adding a question questioning
the number of the hotfix the user is on might prove useful. In addition, consultant 2 suggested
adding a question regarding the module the user is in could prove valuable.

Consultant 3 suggested adding the possibility to add multiple testcases to the report to fur-
ther specify the bugreport. In contrast, developer 1 stated that adding more questions might
compromise the structure of the results which mitigates the value of the chatbot.

Question 7 - What did you think of the entity detection algorithm?

This question focused on identifying the opinion of the subjects regarding the entity detection
algorithm.

4 out of 6 subjects (1 developer and 3 consultants) experienced the suggestions the chatbot made
and the entities detected as pleasant. However, they agreed that the algorithm was a bit inaccur-
ate at some points and suggested that adding more training data may increase the accuracy. 1
developer stated that the automatic entity detection would only prove useful if it is more accurate,
and 1 consultant already liked the accuracy and the suggestions the chatbot made.

Consultant 2 suggested still showing the alternative options when a suggestion is made by the
chatbot. It was unclear for here what she could choose from and therefore could not accurately
confirm the suggestion made.

Question 8 - How did you experience the result of the prototype?

This question focused on identifying the opinion of the subjects regarding the report generated by
the chatbot.

4 out of 6 subjects (all developers and 1 consultant) experienced the report as clear and handy
and could understand the generated result. 2 consultants stated that a better presentation (e.g.
bold fonts, headings, colors) would further clarify the reports.

Question 9 - What did you think about the way the result was represented?

This question focused on identifying the opinion of the subjects regarding the presentation of the
report generated by the chatbot.

4 out of 6 subjects (1 developer and all consultants) agreed that adding headings or make the
different parts of the report stand out more would benefit the user. 2 developers stated that they
liked the way the report was presented and would not change anything.

Consultant 2 suggested creating the option to hide the reconstruction from the summary at the
end of the conversation. She suggested using a button to show the reconstruction scenario, to
avoid the summary being too big.

Question 10 - If we turn the chatbot into a working service would you use it to report
bugs?

This question focused on the willingness of users to use the chatbot to report bugs.

4 out of 6 subjects (1 developer and all consultants) agreed that they would use the chatbot
to report bugs only if it is integrated in HiX. 1 developer wanted to use the chatbot to report bugs
even if it is not integrated in HiX, and 1 developers stated that from a developers’ point of view

From user feedback to requirements using chatbots 69

CHAPTER 7. PROTOTYPE EVALUATION

she would not use the chatbot to report bugs. However, she stated that look from a consultants’
point of view or end-users point of view she would use the chatbot.

Consultant 3 added that if it offers the possibility to record a reconstruction scenario, it would
prove even more useful. Developer 1 suggested that the chatbot should open when a bug occurs
to offer the possibility to immediately report the bug. Finally, consultant 1 explicitly stated that
he would not use the chatbot if it was a stand-alone application and required an extra action to
open.

Question 11 - What features would you like to add to the prototype?

This question focused on extracting suggestions for future features to increase the success of a
chatbot as a bug reporting platform.

6 out of 6 subjects agreed that adding the possibility to record the reconstruction scenario would
be a valuable feature. In addition, 3 out of 6 subjects (2 consultants and 1 developer) stated that
utilizing information residing within the application would be a helpful addition to the chatbot.
2 developers stated that adding a back button to the chatbot would be useful to edit the report
on the fly.

Developer 1 added, that utilizing the usergroups to determine the knowledge level of the user
reporting the bug might prove useful.

7.3.3 Prototype evaluation summary

When evaluating the results of the interviews, we have identified the following benefits of using a
chatbot to report bugs:

• Structure - The chatbot provides the users with a useful structure in both the reporting
process and the generated result;

• Speed - The chatbot increases the speed of reporting bugs by simplifying the process;

• Simplicity - By guiding the user through the process of reporting a bug the process can be
simplified;

The subjects however state that the entity detection algorithm could use some more training
data to increase the accuracy of the tagged entities. Another thing to keep in mind is that the
formulation of the questions is an important aspect as it could interfere with the effectiveness of the
report. Additionally, adding the possibility to record a reconstruction scenario is something the
subjects highly desired, and the representation of the results should be improved by highlighting
the different parts according to the consultants. In contrast, the developers like the structure and
clarity of the generated reports. Furthermore, the list of options should be filled with all available
options, this can however be mitigated by using the information residing in HiX. In addition, the
users would like to further utilize the information available in HiX. Finally, 5 out of 6 subjects
stated that they would use the chatbot to report bugs when it is turned in a working service and
implemented within HiX.

Bug report comparison analysis

To validate and evaluate the results generated by the chatbot we have conducted a semi-structured
interview with 3 developers. These 3 developers have been asked to compare 6 original software
requests (3 conform structure and 3 not conform structure) with 6 bug reports generated by the
chatbot resulting from the prototype evaluation. We have made sure that the developers did not
get to evaluate a software request from the set they were asked to evaluate. In this section we
will go over each of the questions and discuss the results per question. The complete interview
protocol can be found in Appendix H.

70 From user feedback to requirements using chatbots

CHAPTER 7. PROTOTYPE EVALUATION

Subject Generated report grade Original report grade
D1 8 7.5
D2 8.5 7
D3 7.5 6.5

Table 7.1: Scoring of chatbot per subject

Question 1 - How would you rate the report created by the prototype in comparison
to the software original software request?

This question focused on rating the reports generated by the chatbot in comparison to the original
software requests. We have used a 1-10 scale where 1 is the lowest score and 10 is the highest score.

Overall, all the subjects rated the generated report higher or equal to the original software re-
quests. Developer 2 rated the generated report with the highest score of 8.5 and the original report
with a 7. Developer 3 rated the generated report with the lowest score of a 7.5, and scored the
original request with a 6.5. The average score of the generated report was an 8 and the average
score of the original request was 7.2. The results can be found in Table 7.1.

Question 2 - Which elements score better in the prototypes result? Please explain
why.

This question focused on identifying the strengths of the generated report.

The subjects all agreed that the generated reports had a better structure than the original software
requests. In addition, there was less “noise” in the generated reports and they liked the addition
of a reconstruction scenario.

Question 3 - What could have been better in the prototypes result? Please explain
why.

This question focused on identifying the strengths of the generated report.

The subjects all agreed that the generated reports had a better structure than the original software
requests. In addition, there was less “noise” in the generated reports and they liked the addition
of a reconstruction scenario.

Question 4 - Which report do you prefer? Please explain why.

This question focused on identifying the preferences of the subjects regarding the generated report.

All subjects state that they would prefer the generated report over the original software request.
Developer 1 and 2 agree that the structure and the smaller amount of noise residing in the gener-
ated report was the reason why they preferred it over the original software request. Developer 1
even stated that he thought “the structure is the biggest strength of the chatbot”.

Question 4 - Which report do you prefer? Please explain why.

This question focused on identifying the preferences of the subjects regarding the generated report.

All subjects state that they would prefer the generated report over the original software request.
Developer 1 and 2 agree that the structure and the smaller amount of noise residing in the gener-
ated report was the reason why they preferred it over the original software request. Developer 1
even stated that he thought “the structure is the biggest strength of the chatbot”.

From user feedback to requirements using chatbots 71

CHAPTER 7. PROTOTYPE EVALUATION

Question 5 - Do you think the report generated by the prototype is in line with the
software request structure?

This question focused on identifying if the generated report is in line the software request structure
as described in Section 5.1.

It seemed unclear to the subjects what the software request structure was. Therefore, all of
them agreed that they were not familiar with it and could not rate it in comparison to the soft-
ware request structure. This can be seen as a result and supports the statement that there is still
a lot of structure missing in the software requests.

Question 6 - Do you think the report contains sufficient information for you to fix
the bug?

This question focused on evaluating if the generated report contains enough information for the
developers to fix the bug.

All developers agreed that the generated report contains enough information for them to be able
to fix the bug at hand. However, these bug reports were built from bug fixes they had handled in
the past.

Generated report evaluation summary

With an average score of 8 for the generated report and an average score of 7.2 for the original
software requests, we can say that the generated reports are a slight improvement. The subjects
agree that the structure and lesser amount of noise are the biggest benefits of the generated reports
in comparison to the original software requests. One developer stated that from a developers’ point
of view the affected users might not be necessarily helpful to them. In addition, the software request
structure defined by ChipSoft as described in Section 5.1 seems unfamiliar to the developers which
supports the statement of the missing structure. Finally, all the subjects agree on the fact that
the generated report contains sufficient information for them to fix the bug at hand.

72 From user feedback to requirements using chatbots

Chapter 8

Conclusions & Discussion

In this section the different findings and results of this thesis are discussed and concluded. Main
findings of this research are given and each research question is answered separately. Additionally,
the limitations and threats of this thesis are discussed and directions for future work are proposed.

8.1 Conclusion

8.1.1 Research questions

The research questions, as proposed in the first chapter, are as follows:

1. RQ 1 - How can users be motivated to provide feedback through a chatbot integrated into
a software product?

2. RQ 2 - How can chatbots help guiding users in providing informative feedback about the
software product?

3. RQ 3 - How can proto-requirements be automatically elicited from natural-language user
feedback?

The research questions are answered in the subsections in this chapter. After these answers,
the lesson learned for the main research question is discussed. The main research question was
stated as follows: MRQ. “How can chatbots integrated within a software product prove beneficial
in eliciting requirements from user feedback?”

8.1.2 Motivating users to provide feedback through a chatbot integ-
rated in a software product (RQ 1)

The insights gathered in Section 3.2 and 3.3 show that involving users in the software development
process is a crucial yet hard process. It is clear that we are aiming for intrinsic motivation as this
focuses on getting users genuinely interested in the software product and willing to commit time
in the software evolution. Using semi-structured interviews with the consultants and developers
of the case company. We have identified the different aspects that influence this willingness, and
have turned them into requirements for the chatbot prototype described in Section 3.5.

Due to security and time constraints we were not able to implement the chatbot into HiX. This
automatically resulted in a small number of opinions. In addition, the sample contains only sub-
jects with a technical background. This could mean that actual end-users could have a harder
time interacting with the chatbot. Due to this threat and constraints we were not able to test
what moves end-users to using the chatbot for bug reporting purposes.

From user feedback to requirements using chatbots 73

CHAPTER 8. CONCLUSIONS & DISCUSSION

8.1.3 Guiding users in providing informative feedback about a software
product using a chatbots (RQ 2)

In this thesis we have created a prototype of a chatbot. Additionally, we have created conversa-
tion flows, specific to the case company, resulting from discussion with the first supervisor of this
thesis and the chatbot expert at the case company. Finally, we have added a machine-learning
solution to the prototype that can automatically detect entities by the answers provided by the
user. However, we have identified that for the process of bug reporting, the 5W’s as explained in
Section 5 can be used as a red thread to guide the users in providing sufficient information for
the developers to fix the bug. In addition, the automatic entity detection could provide the users
with suggestions to ease the process of bug reporting.

These 2 principles could prove applicable to situations other than the case companies’. Fur-
thermore, the subjects agreed that utilizing the information residing in the application would be
valuable. Finally, the interviewees stated that adding the possibility to record a reconstruction
scenario would be a very helpful addition.

8.1.4 Automatically eliciting proto-requirements from user feedback (RQ
3)

By adding the machine-learned entity detection algorithm, we can automatically detect entities in
the answers given by the users. In addition, by summarizing and creating a visual bug report we
are able to create a bug report that is equivalent to proto-requirements. The proto-requirements,
that were used in this research are defined by the fields available in the bug reports of the case
company and defined in the software request structure as displayed in Figure 6.14 and Section
5.1. The interviewees in this thesis have stated that they liked the structure the reports offered
them and the reduction in the noise in comparison to the original software requests. In addition,
the subjects experienced the suggestions made by the chatbot as pleasant but stated that more
training data might improve the accuracy. The suggestion was to improve the presentation of the
reports by adding headings or bold fonts to further clarify the different elements.

8.1.5 Using chatbots integrated in a software application to elicit re-
quirements

We had a sample of 6 subjects (3 developers and 3 consultants) available. Additionally, the bug
reports used in the experiment were already available at the case company and no new bugs
could be reported through the chatbot. Based on the results we can conclude that at the given
case study the subjects stated that they would use the prototype when it is implemented in the
software application to report bugs through. They have also rated the bug reports generated by
the chatbot higher than the original existing software requests. Most of the subjects agree that
adding an option to record a reconstruction scenario could prove useful in the future and further
improving the presentation of the bug report might clarify it even more for the developers. Finally,
by combining all the facets of the chatbot such as the automatic entity detection, ability to guide
users and utilize the information residing in the software application it could prove to be a useful
requirements elicitation medium.

8.2 Lessons learned

We have learned that, when correctly trained and implemented, a chatbot could prove to be a
valuable requirement elicitation medium. The users seemed to like the structure the chatbot
offered and the guidance through the process of reporting bugs. Furthermore, the amount of
training data was limited resulting in a lower detection rate of the entities. Once there is more
data available the accuracy of the entity tagging process may be increased mitigating this problem.

74 From user feedback to requirements using chatbots

CHAPTER 8. CONCLUSIONS & DISCUSSION

Another thing is that for bug reporting the 5W’s can provide a red thread to both guide the users
in the conversation flow and provide structure to the developers in the reports.

8.3 Validity threats

In this section the validity threats regarding the research will be explained and mitigated.

The first and foremost validity threat is the limited sample size, resulting in a small number
of opinions and the fact that the sample used in this research only contained subjects with a
technical background. This could mean that actual end-users could have a harder time interacting
with the chatbot. This threat was introduced due to the fact that it is simply not possible to
implement the chatbot in HiX and let end-users interact with the chatbot due to security and
time constraints. However, by asking the subjects to act and use the chatbot like an end-user
would and additionally asking them to think from the role of an end-user in the interviews could
mitigate this threat. Moreover, the consultants are well capable of looking at the chatbot from
and end-users point of view as they are working and communicating with end-users on a daily basis.

The second validity threat could be the limited amount of training data the chatbot had available.
This could result in the chatbot missing out entities or even returning false positives, which could
affect the opinions of the subjects about the chatbot. This threat is mitigated by providing the
subjects with feedback during the reporting process and giving them the opportunity to edit and
correct automatically detected entities.

Due to the exploratory nature of this research it was not possible to collect large amounts of
data. Therefore, the lack of quantitative data could prove a threat to the validity of this research.
However, it is not the goal of this research to prove a given algorithm or technology, the goal is to
prove the value of a chatbot implemented in a software application as a requirements extraction
method. To prove this we have used the opinions of domain experts in combination with require-
ments and chatbot experts available to prove this, thus possibly mitigating this validity threat.

Another validity threat could be the limited amount of available software requests. This could
result in the use of software requests that were used during the training of the prototype as there
are simply no new software requests available within ChipSoft. This could pose a threat as the
chatbot could have an easier time recognizing the entities from these requests. We have tried
to mitigate this threat by randomly selecting the software requests and have only used the most
recent available software requests. However, the possibility of selecting a software request that
was used during the training process still exists.

The final threat could be the fact that the chatbot used during the experiments was not implemen-
ted inside the software application. Therefore, it was not possible to simulate the full experience
of a chatbot integrated within a software application. Therefore, relying on the subjects’ creativ-
ity to recognize the possibility of extracting and using data residing inside the application. We
have tried to mitigate this risk by explaining the possibilities of implementing the chatbot in the
application during the semi-structured interviews executed after the experiments. This way the
subjects could recognize the possibilities of implementing the chatbot in HiX without the need to
implement the chatbot in HiX.

8.4 Future work

Due to the exploratory nature of this resource of the combination of CrowdRE, User feedback and
chatbots it is only a fundament for the scientific opportunities and optimization of this field of
Requirements Engineering. In this section we propose future work to further analyze and research

From user feedback to requirements using chatbots 75

CHAPTER 8. CONCLUSIONS & DISCUSSION

this field of Requirements engineering.

8.4.1 Analysis of automatic entity detection opportunities

Since this research had a limited amount of participants and training data available, a following
research could focus on delving deeper into the different automatic entity methods. One can think
of the pattern-matching algorithms, NLP & Machine-learning. In addition, the researchers could
try to gather more training data and examples to test the different approaches and propose a best
practice for this specific case of automatic entity detection in the field of CrowdRE. Furthermore,
they could quantitatively analyze these approaches to provide scientifically solid proof of the best
fitting approach.

8.4.2 End-user analysis

While this research has focused on identifying the needs and wishes of a specific group of involved
end-users, a future research might include end-users. This might lead to interesting results as
motivating end-users can still prove to be a hard activity. Specifically identifying different ways
to intrinsically motivate end-users to use a chatbot to provide feedback over a given software
application. In addition, involving end-users might lead to interesting flaws in the conversation
flows and eventually the automatic entity detection algorithms.

8.4.3 Implementing the chatbot in a software application

As described we were not able to implement the chatbot in an actual software application and have
only proposed ideas on how implementing the chatbot might prove useful. For this reason, a next
research could actually delve deeper into the possibilities and opportunities of implementing the
chatbot in a software application. One might think of utilizing the information available within
the software application as proposed in this research.

76 From user feedback to requirements using chatbots

Bibliography

[1] luis (language understanding) cognitive services microsoft azure. 44

[2] Raian Ali, Carlos Solis, Mazeiar Salehie, Inah Omoronyia, Bashar Nuseibeh, and Walid
Maalej. Social sensing: when users become monitors. In Proceedings of the 19th ACM SIG-
SOFT symposium and the 13th European conference on Foundations of software engineering,
pages 476–479. ACM, 2011. 10

[3] Muneera Bano and Didar Zowghi. User involvement in software development and system
success: a systematic literature review. In Proceedings of the 17th International Conference
on Evaluation and Assessment in Software Engineering, pages 125–130. ACM, 2013. 11

[4] Dina Berry. Best practices - luis - azure cognitive services, Jul 2019. 51, 54, 57

[5] Johanna Bragge, Hilkka Merisalo-Rantanen, and Petri Hallikainen. Gathering innovative
end-user feedback for continuous development of information systems: a repeatable and
transferable e-collaboration process. IEEE Transactions on Professional Communication,
48(1):55–67, 2005. 11

[6] John Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation in industry,
189(194):4–7, 1996. 67

[7] Robert Dale. The return of the chatbots. Natural Language Engineering, 22(5):811–817, 2016.
1, 14, 15

[8] Leela Damodaran. User involvement in the systems design process-a practical guide for users.
Behaviour & information technology, 15(6):363–377, 1996. 11

[9] V Dheepa, D John Aravindhar, and C Vijayalakshmi. A novel method for large scale require-
ment elicitation. International Journal of Engineering and Innovative Technology (IJEIT)
Volume, 2, 2013. 1, 10

[10] Jeremy Dick, Elizabeth Hull, and Ken Jackson. Requirements engineering. Springer, 2017. 6

[11] Dylanavalverde. A brief history of chatbots, Dec 2018. 18

[12] Edwin Friesen, Frederik Simon Bäumer, and Michaela Geierhos. Cordula: Software require-
ments extraction utilizing chatbot as communication interface. In REFSQ Workshops, 2018.
vivi, 15, 16

[13] Bin Fu, Jialiu Lin, Lei Li, Christos Faloutsos, Jason Hong, and Norman Sadeh. Why people
hate your app: Making sense of user feedback in a mobile app store. In Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
1276–1284. ACM, 2013. 11

[14] Futurism. The history of chatbots [infographic], Nov 2016. 18

From user feedback to requirements using chatbots 77

BIBLIOGRAPHY

[15] Eduard C Groen, Joerg Doerr, and Sebastian Adam. Towards crowd-based requirements
engineering a research preview. In International Working Conference on Requirements En-
gineering: Foundation for Software Quality, pages 247–253. Springer, 2015. 1

[16] Eduard C Groen and Matthias Koch. How requirements engineering can benefit from crowds.
Requirements Engineering Magazine, 2016. 8, 10

[17] Eduard C Groen, Norbert Seyff, Raian Ali, Fabiano Dalpiaz, Joerg Doerr, Emitza Guzman,
Mahmood Hosseini, Jordi Marco, Marc Oriol, Anna Perini, et al. The crowd in requirements
engineering: The landscape and challenges. IEEE software, 34(2):44–52, 2017. vivi, 1, 8, 9,
10, 17

[18] Jonathan Grudin. Interactive systems: Bridging the gaps between developers and users.
Computer, (4):59–69, 1991. 11

[19] Geoff Hart. The five w’s: An old tool for the new task of task analysis. Technical communic-
ation, 43(2):139–145, 1996. 40

[20] Richard Harwell, Erik Aslaksen, Roy Mengot, Ivy Hooks, and Ken Ptack. What is a require-
ment? In INCOSE International Symposium, volume 3, pages 17–24. Wiley Online Library,
1993. 6

[21] Jennifer Hill, W Randolph Ford, and Ingrid G Farreras. Real conversations with artificial
intelligence: A comparison between human–human online conversations and human–chatbot
conversations. Computers in Human Behavior, 49:245–250, 2015. 31

[22] Mahmood Hosseini, Keith Phalp, Jacqui Taylor, and Raian Ali. The four pillars of crowd-
sourcing: A reference model. In Research Challenges in Information Science (RCIS), 2014
IEEE Eighth International Conference on, pages 1–12. IEEE, 2014. 9

[23] Mahmoud Hosseini, Keith T Phalp, Jacqui Taylor, and Raian Ali. Towards crowdsourcing
for requirements engineering. 2014. 10

[24] Netta Iivari. Enculturation of user involvement in software development organizations-an
interpretive case study in the product development context. In Proceedings of the third Nordic
conference on Human-computer interaction, pages 287–296. ACM, 2004. 11

[25] Max Kush. The statement problem. Quality Progress, 48(6):71, 2015. 40

[26] Carlene Lebeuf, Margaret-Anne Storey, and Alexey Zagalsky. Software bots. IEEE Software,
35(1):18–23, 2018. 1, 15, 16, 17

[27] Carlene R Lebeuf. A taxonomy of software bots: towards a deeper understanding of software
bot characteristics. PhD thesis, 2018. vivi, vivi, vivi, vivi, vivi, vivi, vivi, vivi, 13, 14, 15, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31

[28] Chris Lindstrom. How to write a problem statement, Apr 2011. 40

[29] Philipp Lombriser, Fabiano Dalpiaz, Garm Lucassen, and Sjaak Brinkkemper. Gamified
requirements engineering: model and experimentation. In International Working Conference
on Requirements Engineering: Foundation for Software Quality, pages 171–187. Springer,
2016. 9

[30] Walid Maalej and Hadeer Nabil. Bug report, feature request, or simply praise? on auto-
matically classifying app reviews. In 2015 IEEE 23rd international requirements engineering
conference (RE), pages 116–125. IEEE, 2015. viivii, 12, 13

[31] Walid Maalej, Maleknaz Nayebi, Timo Johann, and Guenther Ruhe. Toward data-driven
requirements engineering. IEEE Software, 33(1):48–54, 2016. 9, 10, 12

78 From user feedback to requirements using chatbots

BIBLIOGRAPHY

[32] Frauke Paetsch, Armin Eberlein, and Frank Maurer. Requirements engineering and agile
software development. In Enabling Technologies: Infrastructure for Collaborative Enterprises,
2003. WET ICE 2003. Proceedings. Twelfth IEEE International Workshops on, pages 308–
313. IEEE, 2003. 6, 7, 8

[33] Dennis Pagano and Walid Maalej. User feedback in the appstore: An empirical study. In
Requirements Engineering Conference (RE), 2013 21st IEEE International, pages 125–134.
IEEE, 2013. 11, 12

[34] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A Visaggio, Gerardo
Canfora, and Harald C Gall. How can i improve my app? classifying user reviews for software
maintenance and evolution. In Software maintenance and evolution (ICSME), 2015 IEEE
international conference on, pages 281–290. IEEE, 2015. 11, 12

[35] Klaus Pohl. The three dimensions of requirements engineering. In International Conference
on Advanced Information Systems Engineering, pages 275–292. Springer, 1993. vivi, 35

[36] Iulian V Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau.
Building end-to-end dialogue systems using generative hierarchical neural network models.
In Thirtieth AAAI Conference on Artificial Intelligence, 2016. 14, 18

[37] Bayan Abu Shawar and Eric Atwell. Chatbots: are they really useful? In Ldv forum,
volume 22, pages 29–49, 2007. 1, 13, 14

[38] Joseph Sirosh. Luis.ai: Automated machine learning for custom language understanding, Feb
2018. vivi, vivi, 47, 48

[39] Remco Snijders, Fabiano Dalpiaz, Mahmood Hosseini, Alimohammad Shahri, and Raian
Ali. Crowd-centric requirements engineering. In Utility and Cloud Computing (UCC), 2014
IEEE/ACM 7th International Conference on, pages 614–615. IEEE, 2014. 1, 8, 9

[40] Ian Sommerville. Software Engineering. Addison-Wesley Publishing Company, USA, 9th
edition, 2010. 6

[41] Melanie Stade, Marc Oriol, Oscar Cabrera, Farnaz Fotrousi, Ronnie Schaniel, Norbert Seyff,
and Oleg Schmidt. Providing a user forum is not enough: first experiences of a software com-
pany with crowdre. In 2017 IEEE 25th International Requirements Engineering Conference
Workshops (REW), pages 164–169. IEEE, 2017. 1, 10

[42] John A Taylor. How bots work - bot service, May 2019. vivi, vivi, 48, 49

[43] Richard H. Thayer, Sidney C. Bailin, and M. Dorfman. Software Requirements Engineerings,
2Nd Edition. IEEE Computer Society Press, Los Alamitos, CA, USA, 2nd edition, 1997. 6

[44] Axel van Lamsweerde. Requirements Engineering: From System Goals to UML Models to
Software Specifications. Wiley Publishing, 1st edition, 2009. 6, 7, 8

[45] Roel J Wieringa. Design science methodology for information systems and software engineer-
ing. Springer, 2014. vivi, 36

[46] Wizu and Wizu. A visual history of chatbots, Feb 2018. 18

[47] Eric SK Yu. Towards modelling and reasoning support for early-phase requirements engin-
eering. In Proceedings of ISRE’97: 3rd IEEE International Symposium on Requirements
Engineering, pages 226–235. IEEE, 1997. 3

[48] Wlodek Zadrozny, Malgorzata Budzikowska, J Chai, Nanda Kambhatla, Sylvie Levesque, and
Nicolas Nicolov. Natural language dialogue for personalized interaction. Communications of
the ACM, 43(8):116–116, 2000. 1

From user feedback to requirements using chatbots 79

BIBLIOGRAPHY

[49] Didar Zowghi and Chad Coulin. Requirements elicitation: A survey of techniques, approaches,
and tools. In Engineering and managing software requirements, pages 19–46. Springer, 2005.
6, 8, 11

80 From user feedback to requirements using chatbots

From user feedback to requirements using chatbots 81

APPENDIX A. INTERVIEW PROTOCOL

Appendix A

Interview protocol

I&S Interview Protocol

The goal of this thesis project is to uncover how the feedback of large heterogeneous groups of
users can be continuously included in the requirements engineering process, by using chatbots
integrated in the software product, in this case HiX. This can help companies involve the
users and provide them with a continuous stream of valuable feedback to be used in the
requirements engineering process.

ChipSoft can use the feedback to elicit requirements and tailor the software product to the
users, in our case the consultants, needs more accurately. Additionally, the conversations
between the chatbot and the users can be analyzed to improve the understanding of the users’
needs and wishes, resulting in a more successful software product and greater user
satisfaction.

The chatbot focuses on gathering feedback from a large heterogeneous group of users to elicit
feedback from these requirements. It should provide the consultants with a medium to report
bugs and request features from within HiX. The chatbot will have two clear functionalities:

1. Requesting a new feature;
2. Reporting a bug.

Furthermore, the chatbot should use the feedback to elicit requirements from through a
natural-language conversation. It is important that the chatbot focuses on the “why” dimension
rather than the “what” dimension.

This interview is executed to gather more insights in the current processes and elicit
requirements from the stakeholders, in this case the consultants, for the prototype.

Interviewee information
1. What is your name?
2. What is your age?
3. What is your gender?
4. What is your education level?
5. How long have you been working at ChipSoft?
6. What is your job at ChipSoft?

Process questions
First off, we will start with questions to clarify the process of bug reporting and feature requests
and how a feedback chatbot can provide support in this process.
 82 From user feedback to requirements using chatbots

APPENDIX A. INTERVIEW PROTOCOL

1. Can you explain the current process of requesting a feature for the standard content in
the multimedia/PACS module?

2. Can you explain the current process of reporting a bug in the standard content in the
multimedia/PACS module?

a. Is this process the same as in other modules?
3. What is your opinion about these processes?
4. Do your feature requests or bug reports get rejected at times?

a. What is the reason behind this?
b. Do you think further clarification of the requests/reports would decrease the

rejection rate?
5. What would you do to improve these processes? Please motivate your answer.
6. Do you often get questioned to clarify your requests or reports by the developers or

teamleads?
a. If yes, how do you communicate with the developers?
b. What is your opinion about this way of communication?

7. Can you explain/sketch a conversation to request a feature?
8. Can you explain/sketch a conversation to report a bug?

Chatbot questions
The next questions will focus on gathering your opinion about the use of a chatbot for gathering
feedback and eliciting requirements through feedback in HiX.

1. How would you like to use a chatbot to provide feedback about HiX?
2. What type of feedback regarding the standard content should the chatbot be able to

gather? Please motivate your answer.
3. Are there any must-have questions the chatbot should ask for eliciting requirements?

a. If yes, which questions?
i. Can you motivate why these are must-have questions?

Interaction questions
The next couple of questions focus on the way you would like to interact with the chatbot.

1. How do you think the chatbot should interact with humans and why?
a. Image Command-driven chatbot
b. Image natural language chatbot

2. Should the chatbot be able to handle multiple tasks simultaneously e.g. Bug reporting
when requesting a feature?

a. Can you motivate your answer?
b. Can you provide an example of such a situation?

From user feedback to requirements using chatbots 83

APPENDIX A. INTERVIEW PROTOCOL

3. How would you describe the end-state of the chatbot or is there no end-state in a
conversation?

4. Please explicitly define the chatbots goals.

Chatbot identity questions
The final questions will focus on the identity of the chatbot and what the identity of the chatbot
should be according to you.

1. Do you think the chatbot should have a personality?
a. Should the chatbot have a name?

i. If yes, what name do you suggest?
b. Should the chatbot have a gender?

i. If yes, what gender would you prefer and why?
c. Should the chatbot age over time or should it have a static age?
d. Should the chatbot have an unique way to identify it? E.G. a logo, 2D avatar or

3D avatar.
i. If yes, which?

e. Should the chatbot have a visible or identifiable species, race, or ethnicity?
i. If yes, what do you think it should be?

f. Should the chatbot have a clear profession?
i. If yes, what should it be?

g. Do you think the chatbot should reply to personal questions as if it has its own
personality?

i. What personal questions should the chatbot be able to reply to?
h. Do you think the chatbot should show emotions?

i. If yes, in what way should the chatbot show its emotions, on a superficial
level or logical level? - Plaatje

ii. Superficial
iii. Logical

2. Should the chatbot be able to deceive the users that it is a human? Explain why or why
not.

84 From user feedback to requirements using chatbots

APPENDIX A. INTERVIEW PROTOCOL

A. Command-driven bot

B. Natural-language bot

From user feedback to requirements using chatbots 85

APPENDIX A. INTERVIEW PROTOCOL

A. Proactive

B. Reactive

86 From user feedback to requirements using chatbots

Appendix B

Software bot taxonomy

B.1 Environment dimensions

B.2 Intrinsic dimensions

B.3 Interaction dimensions

From user feedback to requirements using chatbots 87

Appendix C

Pattern accuracy results

C.1 What pattern accuracy

88 From user feedback to requirements using chatbots

APPENDIX C. PATTERN ACCURACY RESULTS

C.2 Who pattern accuracy

From user feedback to requirements using chatbots 89

APPENDIX C. PATTERN ACCURACY RESULTS

C.3 Why pattern accuracy

90 From user feedback to requirements using chatbots

APPENDIX C. PATTERN ACCURACY RESULTS

C.4 Where pattern accuracy

From user feedback to requirements using chatbots 91

APPENDIX C. PATTERN ACCURACY RESULTS

C.5 When pattern accuracy

92 From user feedback to requirements using chatbots

Appendix D

Initial conversation flow

D.1 Full conversation flow

D.2 Welcome dialog

From user feedback to requirements using chatbots 93

APPENDIX D. INITIAL CONVERSATION FLOW

D.3 Question problem dialog

D.4 Expected end-result dialog

D.5 Reconstruction scenario dialog

94 From user feedback to requirements using chatbots

APPENDIX D. INITIAL CONVERSATION FLOW

D.6 Edit dialog

D.7 Rate chatbot dialog

From user feedback to requirements using chatbots 95

96 From user feedback to requirements using chatbots

APPENDIX E. PROTOTYPE TESTSETS

Appendix E

Prototype testsets

E.1 Testset version 0.1

1 - Jip melding bij geen juiste gebruikersrechten om een drive mapping te benaderen

A Jip notification appears when in certain situations the files cannot be accessed correctly by HiX. Part
of the Jip notification is a Win32 epoch utc date time adjusted to the local date time. This date is 1-1-
1601 and HiX does not like that as Creation date time. This date comes from a .Net function that
returns this if no valid files are found in the relevant call. With this Sif, we want to ensure that such Jip
reports do not occur more often in situations like this.

2 - Jip-melding bij openen Pdf document met webbrowser in samengesteld formulier
Reported via support site Sint Maarten Kliniek.
When using the view multimedia document (Display of images) in a composite form, it happens to
SMK that the PDF is loaded twice \ opened by refreshing the Multimedia document. Because the
Multimedia document is refreshed, the region is refreshed as an action link and a new region is
loaded. The view model property still comes in on the old screen in terms of binding, so this gives a Jip
message on the web browser (cannot be delivered object).

Solution is by keeping a boolean variable or the dispose function off the screen and then when
refreshing the Multimedia document, no longer refreshing the web browser.

3 - Progressbar bij bulkimport weer aanzetten
When performing bulk import, the two lower progress bars are not used because the bulk import task
caused errors. This has since been repaired, but the progress bars are still off. We also want to merge
some duplicated code from both bulk import functionalities.

4 - Doorsturen beelden scherm werkt nog niet op de nieuwe manier.
When images have been imported, a function has been created to be able to choose which
examinations should be forwarded to an external pac.

This screen currently does everything itself in terms of structure etc. While in 6.2 many of these
functionalities are centralized in the thumbnail browser itself.

With this sif we want to forward screen update to work in accordance with the new thumbnail browser.
In addition, no valid dome server is not taken into account, we would like to immediately take this into
account when we show a message to the user.

5 - Progressbar bij bulk Bij scannen document + OK+nieuw komt JIP-melding 'Kan bestand
C:\Users\norim\AppData\Local\Temp\tmp1642.jpg niet vinden' naar vorenimport weer aanzetten
Reason:
Reported by: Testing sifs 6.2 73474

When scanning a (group) document, where you select 'Create group document' in the scan screen
and fill in a group name and then click OK + new, a JIP message will appear: Can file C: \ Users \
norim \ AppData \ Cannot find Local \ Temp \ tmp1642.jpg. (JIP 7ADB9F3C). This also applies to not
scanning as a group document. So generally the OK + new button.

Desired effect:
That no JIP message appears and that a new scan can be made via OK + new button after scanning a
(group) document

6 - Fout bij dicom store koppeling
Situation: With ViaSana an error occurs that generates the following error message on the
dicom_rontgen_store link: Unable to cast object or type 'System.String' to type
'ChipSoft.Publics.MultiMedia.ICS_MultiMediaStorageLocations. This error message keeps coming
with every new message that is offered until the link is rebooted.

7 - Opslaan rotatie van PDF documenten
When saving PDF documents, the rotation must be saved per page, this must be done in a separate
structure and not in the Multimedia document, because only 1 value fits in there now. Because
everything is now scanned to PDF, creating / modifying this structure is necessary. It is not going well
now with PDF documents that are imported as PDF files, usually these PDF documents have already
been properly edited / created in advance.

From user feedback to requirements using chatbots 97

APPENDIX E. PROTOTYPE TESTSETS

The same also applies to a Multi-Page tiff, for this there is only 1 multimedia document and then the
rotation must be saved per page. This must be stored in a separate table (production) that is linked to
the multimedia document.

8 - Bij bulk export van multimediadocumenten moeten privacy en niet toonbare documenten
niet gekozen worden

With bulk export to file or bulk export to printer, multimedia documents from a patient in a certain
category can be selected for export. Here privacy and non-displayable documents can now also be
selected and exported while this is not allowed. With this sif we want to filter out privacy and
documents that cannot be displayed

9 - Dicom video en multiframes thumbnails tonen geen icoon en afspeeltijd

The thumbnails of dicom videos now get a dicom icon and with a dicom multiframe. With sif 105036,
dicom videos get a picture in the thumbnail instead of an icon. With this sif we want to give the pictures
a play icon and play time in the thumbnails.

In the code: create a virtual field that shows the effective playing time. This field is then used to display
as playback time in the thumbnail. The effective playback time is determined by doing frametime *
imagecount / 1000 (if it is in milliseconds), if the playback time is not yet filled.

10 - Volgende/vorige knop bij externe pdf geeft wit scherm

When switching between PDFs that are viewed with the external viewer, clicking on the next button
will display a white screen instead of the PDF.

Margie 11-20

11 - Importeren vanaf fotocamera werkt niet icm citrix

In support call 526578, which states that reading photos from a camera does not work. Locally this
goes well. But under citrix an error message appears: required capability not supported. With this sif
we want to ensure that images can be imported from a camera without an error message. this
concerns the action photo camera via scanning.

12 - Bij alle typen multimedia documenten mimetype zetten bij import

Since sif 83798 it is possible to add an action link of the type "show multimedia documents of
investigation" to one or more mime types so that only multimedia documents of this mime type are
shown. At the moment, however, the mime type is only set when importing dicom documents and
importing PDF documents. So this functionality is still of limited value. With this sif it is the intention
that when importing all multimedia documents the mime types are set. The most logical place to do
this is in the "PrepareDocumentForPost" function of DocumentUtilities in the public-extend or the
"NewMultiMediaDocumentAdvancedPrefill" function in the document logic.

13 - Bij het klikken op een MM documenten wordt PACS gestart via een actionlink in een
actionlink

When CS-Pacs is started from the thumbnail browser (double-click on a document / research that is
connected to a config that says 'use in CS-Pacs', a multimedia action link is started to open the
document. Inside this action link is then looked at or pacs, or MM must be opened.

When this is PACS, a controller and action link from Pacs is created to open the builds. In accordance
with the code guidelines you do not need to start action links in action links.

98 From user feedback to requirements using chatbots

APPENDIX E. PROTOTYPE TESTSETS

With this SIF we want to make this process in accordance with the guidelines. Either return the pacs
action as a view result, or bring the check forward: when clicking on the document, you already
determine which action link should be opened.

14 - Vertaalbug: static gedrag DrawingControl aanpassen

Ezis.Multimedia gives error in translation street. Cause is in this piece of code:

 public static readonly DependencyProperty DocumentRepresentationCurrentProperty =
 DependencyProperty.Register ("DocumentRepresentationCurrent", typeof (string), typeof
(DrawingControl),
 new UIPropertyMetadata (Resource.GetString
("Multimedia_AnnotationImageViewerContextmenu_ToggleRepresentationMMDoc_Image"));

Because this is static, it is executed during the translation. However, Resource.GetString cannot be
used here because its implementation is in the HiX application, which is not present during translation.

(RnD manager will still want to adjust Developer and Supporter)

15 - Baseerror bij opslaan multimedia document zorgt ervoor dat het document niet
opgeslagen kan worden

It is currently not possible to correct this error in a base terror that occurs during saving, and to save it
again.

A temporary variable is read out in the CanCommit and if it is true, no storage is allowed.

By putting the variable into a try / finally block, the variable will always be reset and it is possible to
successfully save a document after a base terror.

From user feedback to requirements using chatbots 99

Appendix F

Prototype example utterances

F.1 Example utterances version 0.1

100 From user feedback to requirements using chatbots

From user feedback to requirements using chatbots 101

APPENDIX G. PROTOTYPE INTERVIEW PROTOCOL

Appendix G

Prototype interview protocol

Interview protocol

The goal of this experiment is to uncover how the feedback of large heterogeneous groups of

users can be continuously included in the requirements engineering process, by using chatbots

integrated in the software product, in this case HiX. This can help companies involve the

users and provide them with a continuous stream of valuable feedback to be used in the

requirements engineering process.

This prototype provides you with the ability to report a bug by guiding you through a certain

conversation flow. This conversation flow is aimed at gathering sufficient information to create a

bug report that complies with the software request guidelines available at ChipSoft.

After interacting with the chatbot, you will be asked some questions that are part of the System

Usability Scale (SUS), and we will conduct a semi-structured interview to evaluate your

experience of the interaction with the system. In addition, the questions will aim at extracting your

opinion about the interaction with the system.

102 From user feedback to requirements using chatbots

APPENDIX G. PROTOTYPE INTERVIEW PROTOCOL

System usability scale (SUS) questions

Please provide us with some information about the usability of the scale by rating the given

aspects from 1-5 where 1 is “strongly disagree” and 5 is “strongly agree”.

From user feedback to requirements using chatbots 103

APPENDIX G. PROTOTYPE INTERVIEW PROTOCOL

Prototype questions
The next questions will focus on gathering your opinion about the use of a prototype for
gathering feedback and eliciting requirements through feedback in HiX.

1. How did you like using the prototype to reports bot through?

a. What could be improved about the prototype?

b. What did you think was the best part of the prototype?

c. What would you improve in the prototype, and please elaborate why?

2. What did you think about the flow of the conversation?

a. Did this flow feel natural to you? If no, what would you change?

b. Were the questions formulated understandable? If no, what would you improve?

c. Were there missing questions? If so, please state which you would add.

3. What did you think of the automatic entity detection algorithm?

4. Would you use the prototype in the future to report bugs? Why or why not?

5. What features would you like to add to the prototype? And why?

104 From user feedback to requirements using chatbots

From user feedback to requirements using chatbots 105

APPENDIX H. DEVELOPER INTERVIEW PROTOCOL

Appendix H

Developer interview protocol

Interview protocol-developers

The goal of this experiment is to uncover how the feedback of large heterogeneous groups of

users can be continuously included in the requirements engineering process, by using chatbots

integrated in the software product, in this case HiX. This can help companies involve the

users and provide them with a continuous stream of valuable feedback to be used in the

requirements engineering process.

This interview focuses on comparing the generated reports created by the chatbot in the

experiment, with their related original software requests.

1.1 Comparison questions

1. How would you rate the report created by the prototype in comparison to the software

original software request?

2. Which elements score better in the prototype’s result? Please explain why.

3. What could have been better in the prototype’s result? Please explain why.

4. Which report do you prefer? Please explain why.

5. Do you think the report generated by the prototype is conform the software request

structure?

6. Do you think the report contains sufficient information to fix the bug reported?

106 From user feedback to requirements using chatbots

	Contents
	List of Figures
	List of Tables
	Introduction
	Case Description
	Initial prototype requirements

	Literature Review
	Requirements Engineering
	RE activities
	Requirements elicitation
	Requirements analysis
	Requirements specification

	CrowdRE
	Motivating crowd members
	Eliciting user feedback
	Analyzing user feedback
	Monitoring contextual and usage data

	User feedback
	Feedback classification

	Chatbots
	Interaction model
	Initiation
	Intelligence
	Purpose
	Environment Dimension
	Intrinsic Dimension
	Interaction Dimension
	Human-Chatbot conversations

	Prototype Requirements
	Environment dimensions
	Intrinsic dimensions
	Interaction dimensions

	Research Method
	Research questions
	Method
	Problem investigation
	Treatment design
	Treatment validation
	Chatbot purpose

	Conversation flows
	Software Request Structure
	Problem statement
	Affected users
	Bug location
	Reconstruction scenario

	Initial conversation flow
	Production blocking question
	Uncovering the problem
	Question expected end-result
	Reconstructing the scenario
	Mapping the urgency
	Summarize request
	Rate chatbot

	Conversation flow adjustments
	Question problem adjustments

	Prototype design
	Microsoft LUIS
	LUIS vs. Rule-based pattern-matching
	LUIS Development cycles

	Microsoft Bot Framework
	Bot structure

	First prototype cycle
	Bot Design
	LUIS application design
	Prototype testing results

	Second prototype cycle
	Bot Design
	LUIS application design
	Prototype testing results

	Third prototype cycle
	Bot Design
	LUIS application design
	Prototype testing results

	Fourth prototype cycle
	Bot Design
	LUIS application design
	Prototype testing results
	Proto-Requirements

	Machine learning analysis

	Prototype evaluation
	Experimental design
	Hypotheses
	Result analysis
	SUS score analysis
	Prototype evaluation
	Prototype evaluation summary

	Conclusions & Discussion
	Conclusion
	Research questions
	Motivating users to provide feedback through a chatbot integrated in a software product (RQ 1)
	Guiding users in providing informative feedback about a software product using a chatbots (RQ 2)
	Automatically eliciting proto-requirements from user feedback (RQ 3)
	Using chatbots integrated in a software application to elicit requirements

	Lessons learned
	Validity threats
	Future work
	Analysis of automatic entity detection opportunities
	End-user analysis
	Implementing the chatbot in a software application

	Bibliography
	Appendix
	Interview protocol
	Software bot taxonomy
	Environment dimensions
	Intrinsic dimensions
	Interaction dimensions

	Pattern accuracy results
	What pattern accuracy
	Who pattern accuracy
	Why pattern accuracy
	Where pattern accuracy
	When pattern accuracy

	Initial conversation flow
	Full conversation flow
	Welcome dialog
	Question problem dialog
	Expected end-result dialog
	Reconstruction scenario dialog
	Edit dialog
	Rate chatbot dialog

	Prototype testsets
	Testset version 0.1

	Prototype example utterances
	Example utterances version 0.1

	Prototype interview protocol
	Developer interview protocol

