
Volume xx (200y), Number z, pp. 1–8

Accelerating ray tracing with origin offsets

T. Zoet (ICA-4275438)

University of Utrecht, Netherlands

Abstract
In ray tracing, a large fraction of rendering time consists of traversal of the acceleration structure. Most methods that aim to
accelerate this process do so by skipping nodes high in the tree. We propose offsetting ray origins just before starting traversal.
This allows rays to be moved out of nodes deep in the tree, avoiding the scattered, cache-unfriendly memory access associated
with these rarely visited nodes. We do this using a precomputed set of hemispheres placed on the geometry surface which
are guaranteed not to contain any geometry, thus allowing rays starting inside a hemisphere to be moved to the hemispheres
boundary.

CCS Concepts
• Computing methodologies → Ray tracing;

1. Introduction

Ray tracing has wide applications. It is used in collision detection
algorithms, simulations of physical phenomena and graphics. Re-
cent advancements in ray tracing hardware have made real-time
ray tracing accessible to the masses. In the past year, the first video
games that employ ray tracing in part of their rendering algorithm
were released.

To perform efficient intersection tests between rays and a col-
lection of objects, acceleration structures are used. The two most
common acceleration structures in modern high-performance ren-
derers, the kD-tree and bounding volume hierarchy (BVH), aim to
bring the average case time complexity of tracing a single ray down
to near logarithmic complexity.

In this paper, we improve ray tracing performance by offsetting
extension rays just before starting traversal of the BVH. Many rays
visit the leaf node they originate from without finding an intersec-
tion. These visits are expensive. Often the node and primitive data
need to be fetched from main memory. Access patterns are scat-
tered and there are many leaf nodes, making them unlikely to be in
the cache. Ray-triangle intersection tests also have a high cost.

In a preprocessing phase, a set of hemispheres is placed on the
surface of the scene geometry. Each hemisphere is given a radius
such that it is guaranteed not to contain any intersecting geome-
try. Given a ray, we fetch the nearest hemisphere(s) and perform
low cost ray-sphere intersection tests to determine a distance along
which it is safe to move the ray origin. If the origin is moved far
enough, the ray is moved out of the leaf node it originated from and
potentially one or more nodes higher in the BVH. When the over-

head of offset calculation is outweighed by the reduced traversal
cost, the rendering process will become faster.

2. Related work

The average time complexity of tracing a single ray is close to log-
arithmic time. This is achieved through various data structures and
algorithms. These methods can be put into roughly 3 categories:

1. Acceleration structures. The most commonly used acceleration
structures, the kD-tree and BVH, aim to bring the cost of tracing
a single ray from linear to near logarithmic time. They do this
by recursively partitioning space and objects, respectively.

2. Amortization of traversal cost. By grouping rays together in
packets, the cost of fetching the acceleration structure data can
be amortized over many rays.

3. More efficient traversal of the acceleration structure. These
methods often make use of high-level knowledge about rays,
such as the difference between nearest-hit and any-hit (occlu-
sion) rays, or connectivity between rays, to guide traversal to-
wards parts of the tree that are more likely to intersect the rays.

The above categorization will not cover all methods. Some can
be put into more than one category, whereas others will defy all
categorization. The following sections summarize the main works
of each category, providing a context for the contributions in this
paper.

2.1. Acceleration structures

Fujimoto et al. [FTI86] use uniform spatial subdivision to partition
the scene into regular cells, putting objects in the cells they over-
lap. This grid is traversed with a ray. The ray is intersected with all

submitted to COMPUTER GRAPHICS Forum (11/2019).



2 T. Zoet / Accelerating ray tracing with origin offsets

the objects in each cell it passes. In contrast, Glassner [Gla84] uses
an adaptive scheme, placing objects in the recursively partitioned
octree. Cleary and Wyvill [CW88] provide an extensive analysis of
the uniform grid, showing that it, at that time, outperformed hierar-
chical methods by an order of magnitude.

Earlier, the kD-tree (or binary tree) was introduced by Bent-
ley [Ben75], although not in the context of ray tracing. The kD-
tree has found wide application, especially after the introduction
of O(n log n) construction algorithms that result in high-quality
trees. Goldsmith and Salmon [GS87] introduce a simple heuristic
to guide the construction of spatial subdivision trees. They estimate
the cost of adding an object to the tree using the number of children
and surface area of newly created nodes. By evaluating this cost for
all splitting options (e.g. all 3 axes for spatial median kD-trees) it is
possible to select the optimal partitioning, under the assumption of
a uniform ray distribution. MacDonald and Booth [MB90] extend
this surface area heuristic (SAH) to include the number of objects
contained in nodes, resulting in more accurate cost estimates. While
the SAH is a greedy heuristic, only considering the ‘current’ split
without looking at potential splits in deeper levels, MacDonald and
Booth show that it performs much better than using a fixed split
order (e.g. always along the longest axis or by cycling through x, y
and z).

Clark [Cla76] introduced the BVH. In contrast to the kD-tree,
the BVH partitions objects, not space. Construction of the BVH is
similar to the kD-tree, and allows the use of e.g. the surface area
heuristic. The main difference is how the bounds of the children of
a node are defined. The kD-tree places a split plane along one of the
axes of a node, assigning each side to one of its children. Objects
are then assigned to the child whose bounds they overlap. In the
BVH, objects are partitioned based on their centroid relative to the
split plane. The bounds of each child node are then recalculated as
the union of the bounds of all objects assigned to them. As such,
the children of a node can have bounds that either overlap or are
completely disjoint.

Havran [Hav00] provides an in-depth analysis of a wide range
of acceleration structures, including the kD-tree and BVH, and
concludes that the kD-tree gives the best ray tracing performance.
Wald [Wal07] greatly improves the speed of BVH construction and
Stich [SFD09] solves the problem of scenes with non-uniformly
sized triangles. Together, this closes the performance gap between
the kD-tree and BVH. Because of its flexibility, the BVH has be-
come the most widely used acceleration structure in modern ren-
derers.

2.2. Amortization

Wald et al. [WSBW01] group several rays together in a single
packet. The size of this packet is generally chosen to be the width of
the vector registers on the CPU. The acceleration structure is then
traversed with the packet. If one of the rays in the packet intersects
a subtree, the entire packet will visit those nodes. When rays are
coherent (i.e. share a similar origin and direction) they would have
followed a similar path through the tree had they been traced in-
dividually. By tracing them together the cost of fetching the nodes
from memory is shared between the rays. Additionally, intersec-
tion tests between rays and bounding boxes and triangles can be

performed using vector instructions. Overall, packet traversal (4-
wide) offers a 2-3x performance improvement when compared to
single ray traversal.

Reshetov et al. [RSH05] describe the Multi-Level Ray Tracing
Algorithm (MLRTA). They represent a potentially large group of
rays with a beam. This beam is used for the initial traversal of the
acceleration structure. This traversal looks for an entry point into
the tree: the first node for which both subtrees contain a leaf node
that intersect the beam. Once the entry point has been found, the
individual rays start traversal at this point. Depending on the co-
herency of the rays in the beam, the entry point can be quite deep,
allowing the rays to skip a significant portion of initial traversal.
Reshetov et al. report performance an order of magnitude above
then state-of-the renderers, allowing interactive rendering on com-
modity hardware. The process of finding entry points was further
optimized by Fowler et al. [FCM09]. They find deeper entry points,
and find these with fewer traversal steps.

Overbeck et al. [ORM08] use packets of up to 1024 rays and
propose a traversal algorithm specifically aimed at reflection and
refraction rays. These rays suffer from quickly degrading coherence
as the number of bounces for each path increases.

2.3. Improved traversal

There is an important distinction to make between nearest-hit rays
and occlusion rays. Nearest-hit rays (e.g. primary rays, reflection
rays, diffuse rays) require finding the exact closest point of inter-
section. This means that when a choice needs to be made between
visiting two nodes, the nearest node should always be traversed
first, leaving no room for more optimal traversal orders. This is not
the case for occlusion rays (e.g. shadow rays, ambient occlusion
rays), which only require determining whether there is any inter-
section along the ray. The exact order in which nodes are visited is
not relevant. Boulos and Haines [BH10] show that occlusion rays
can often dominate the total rendering time. It is therefore worth-
while to devise different traversal strategies for occlusion rays.

MacDonald and Booth [MB90] were the first to propose an al-
ternative traversal algorithm. They add neighbor links, or ropes,
between the leaves of a kD-tree. Once a ray has been traced, any
extension ray originating at the intersection point can then be traced
by following the links between nodes, starting at the leaf in which
traversal previously ended. This traversal method prevents visiting
many internal nodes, reducing the overall traversal time at the cost
of additional memory usage. Note that this method does not work
for the BVH, where nodes can overlap or have gaps between them.
Havran et al. [HBZ98] show that ropes result in a 10-20% reduction
of total rendering time, compared to standard kD-tree traversal.

Havran and Bittner [HB07] improve traversal times by augment-
ing the internal nodes of a kD-tree. Their work mainly aims to re-
duce the memory overhead introduced by ropes. This is achieved
by storing bounding boxes in the nodes at every nth level, where
n is a parameter of the construction algorithm. When tracing an
extension ray, traversal starts at the last visited augmented node.
If traversing the subtree does not result in an intersection, the exit
point of the ray relative to the last visited augmented node is cal-
culated. Then, the first augmented node containing the exit point at

submitted to COMPUTER GRAPHICS Forum (11/2019).



T. Zoet / Accelerating ray tracing with origin offsets 3

a higher (shallower) level is used to restart traversal. If the exten-
sion ray would have followed a similar path to the previous ray, the
number of visited nodes is reduced. The authors show considerable
speedups of up to 35%, however in shallow scenes the benefits are
outweighed by the overhead.

Hendrich et al. [HPMB19] use convex frustum shafts to cull parts
of a BVH. They subdivide the scene into regular voxels. For each
voxel a number of shafts in many directions is created, all fully con-
taining the voxel. These shafts are then intersected with the BVH
to construct the candidate list, the deepest nodes that intersect the
shaft. When tracing a ray, the frustum shaft containing this ray is
retrieved. If such a shaft exists, the entire candidate list is placed on
the traversal stack, instead of the root node of the BVH, effectively
skipping all nodes above the candidates. Hendrich et al. show that
this saves on average 42% in traversal steps.

Djeu et al. [Djeu09] reduce the traversal time of occlusion rays.
kD-tree leaf nodes contained entirely by the geometry are marked
as volumetric occluders. Traversal is terminated when these nodes
are encountered. Tracing occluded rays is sped up by several fac-
tors in some scenes. However, un-occluded rays incur a penalty.
Additionally, the scene geometry must be manifold to be able to
mark nodes as occluders.

Ize and Hansen [IH11] describe a more robust method for accel-
erating occlusion rays. They introduce the Ray Termination Surface
Area Heuristic (RTSAH). The RTSAH drops the assumption of no
ray termination that is used by standard SAH [GS87]. Using the
new cost function, they determine a traversal order for each pair of
sibling nodes in an existing BVH, giving priority to the one with
the lowest cost. This traversal decision can be stored in the parent
node using a single bit, generally requiring no memory overhead.
When tracing an occlusion ray, and this ray needs to visit both chil-
dren of the current node, the bit is used to determine the optimal
traversal path. Overall, the RTSAH results in up to 50% reduction
of visited nodes.

The work presented in this paper also falls under the third cat-
egory. We build a set of hemispheres on top of the acceleration
structure that are guaranteed not to contain any geometry. We then
use the hemispheres to calculate an offset for each extension ray,
quickly skipping deep parts of the acceleration structure hierarchy.

3. Offsetting rays

Testing a ray against a single leaf node is more expensive than a
single internal node. This has two main reasons. First, leaf nodes
are visited less often than the shallower internal nodes. As a result,
they are less likely to be in the cache. The same holds for the prim-
itive data in the leaf node. Second, intersecting a ray with the prim-
itives is much more computationally expensive than a test against
an axis-aligned bounding box. Most methods that aim to acceler-
ate traversal focus on skipping internal nodes or amortizing traver-
sal costs over multiple rays and quickly reaching the leaf nodes. It
could be beneficial to focus on skipping leaf nodes, avoiding a lot
of scattered memory access and some expensive intersection tests.

Consider rendering an opaque sphere, represented using many
triangles. After the primary rays originating from the camera have

Figure 1: Part of a BVH built on a circle. In shades of green inter-
nal nodes. In orange leaf nodes. Note that the distance required to
move a ray starting on the surface out of a leaf node is a fraction
of the scene size.

been traced, any extension ray starting on the sphere’s surface will
not hit any additional geometry: a sphere is a convex object and all
rays will be pointed away from the surface. Regardless, traversal
will first traverse down into the leaf node where the previous ray
ended, since the new ray’s origin is contained in the leaf’s bounds.
Offsetting the ray origin along a short distance could be enough to
move it out of the leaf node. A larger offset would then cull addi-
tional nodes above and adjacent to the leaf node. While a sphere
is the best-case scenario due to its convexity, the idea of offsetting
ray origins extends to more complex scenes. Figure 1 shows a 2D
example with a circle.

By offsetting rays, we are essentially performing part of the work
that is done by acceleration structure traversal: cutting of part of the
search space that does not contain geometry. If this is done more
efficiently with an alternative method, rendering will become faster.

To calculate an offset, we will need some auxiliary data struc-
ture that, when queried with a ray, moves the ray’s origin. This
data structure should use little additional memory to prevent degra-
dation of performance due to increased memory fetches, which is
explicitly what we are trying to prevent. Additionally, the query
should have a low computational cost. Assuming single-sided tri-
angles and no transparent materials, all rays will start on one side of
the geometry. Given a ray starting on a triangle, we wish to calcu-
late an offset on one side of the plane (as defined by the triangle’s
location and normal) in any given direction. In other words, we
are looking for something very much like an empty (non-occluded)
hemisphere around the ray origin. This naturally leads to using ac-
tual hemispheres stored on the geometry to offset the rays.

The following happens during a preprocessing phase. We place
one or more hemispheres on each triangle. At each hemisphere lo-
cation, we query the scene for the nearest intersection on the pos-
itive side of the plane. This can be done using the existing accel-

submitted to COMPUTER GRAPHICS Forum (11/2019).



4 T. Zoet / Accelerating ray tracing with origin offsets

Figure 2: A hemisphere (blue) placed in the center of a triangle
(green). The radius is limited by the triangle (red) above it.

eration structure. The distance to the intersection is then the radius
of the hemisphere. The volume of the hemisphere is guaranteed not
to contain any occluding geometry. During rendering, querying the
set of hemispheres is straightforward. Given a ray, we retrieve the
hemispheres attached to the triangle it originates from. The offset
is then calculated using basic ray-sphere intersection tests. After
offsetting the ray origin, traversal can be started.

The next two sections will describe various potential hemisphere
placement strategies. The first section covers how the hemisphere
locations can be chosen such that they best achieve our goal: mov-
ing the rays out of as many leaf nodes as possible. While the most
optimal solution is of course placing an infinite number of hemi-
spheres, when it comes to the actual effects on performance as mea-
sured in execution time a balance between saving traversals and
limiting overhead needs to be found. The second section describes
low-level optimizations to reduce overhead, such as a carefully cho-
sen memory layout, caching behaviour and vectorization.

3.1. Hemisphere sets

If we assume rays to start at a uniform random location on the tri-
angle, the probability of a ray receiving any offset is directly pro-
portional to the relative area of the triangle that is covered by the
hemisphere(s). The average offset is then guided by the radii of the
hemispheres. We wish to move as many rays as possible out of the
leaf node they start in, while at the same time limiting the num-
ber of hemispheres. What follows are five placement strategies that
balance these two things.

Center Sphere Set. The first and simplest method is to store
a single hemisphere located at the center of each triangle. At this
location the hemisphere will in general have the most potential for
moving a ray out of the triangle’s bounding box. Figure 2 shows an
example of a centered hemisphere.

Vertex Sphere Set. We can also place a hemisphere on each
triangle vertex. Compared to the previous solution this method is
more resistant to occluding geometry at the center. If only one area
of the triangle is occluded there is still potential for a large enough
hemisphere being placed on one or more of the vertices to offset
nearby rays far enough to leave the triangle bounds. There is an

important downside: if a vertex is part of a concave corner of the
surface geometry the radius of the hemisphere will be 0.

Median Sphere Set. To solve the problem of concave geome-
try we can move the hemispheres closer to the triangle center. One
option is to place the hemispheres between each vertex and the tri-
angle center. They would then essentially be placed along the me-
dians, the line segments from the vertices to the midpoint of the
opposite edges. Together, the hemispheres can cover a large area of
the triangle. Optionally, the center hemisphere could be stored as
well for larger coverage.

Polygon Sphere Set. In some situations the center sphere set
could perform better with only a slight modification. Consider a
scene with many groups of adjacent triangles lying in the same
plane, essentially forming (non-convex) polygons. A triangle in
such a group could make use of the hemisphere of one of its neigh-
bours. This neighbouring hemisphere might be much larger be-
cause the triangle itself lies closer to an occluding part of the scene
than the neighbour. If the neighbouring hemisphere covers a large
part of the triangle, it can offset many rays for much larger dis-
tances than the triangle’s own hemisphere. Selecting the optimal
hemisphere from all neighbours is a hard optimization problem. A
potentially good approximation would be to select the largest of all
hemispheres and assigning this to each triangle of the polygon.

Random Sphere Set. Instead of placing hemispheres at fixed
locations, it is also possible to distribute them randomly. With a
uniform distribution, the hemispheres can give good coverage of
the triangle area. Most importantly, this has some consequences for
storage that are covered in the next section.

3.2. Optimization

By placing a fixed number of hemispheres per triangle, retrieval
has constant time complexity. It also allows keeping the querying
code simple, minimizing the strain on the instruction cache. Fur-
thermore, it opens up options for aligning the data to cache lines
and efficient vectorized intersection tests.

Center Sphere Set. The center sphere set is the method with the
lowest storage requirements. Assuming we store the hemispheres
using single precision scalars (floats), this would require a mere
16 bytes: 4 for the radius, 4 for each of the 3 axes. This is only a
quarter of the most common cache line size (64), so retrieving a
single hemisphere will require at most one memory fetch. It is even
possible to only store the radius and recalculate the center using the
vertices. This would require only 4 bytes per hemisphere and has
the potential to reduce the number of fetches even further. Whether
or not this is actually the case will depend on the implementation
details of the renderer. If each extension ray is calculated directly
after tracing the previous ray and the triangle data is still in the
cache, recalculation might be faster.

Vertex Sphere Set. This method uses 3 times more memory than
the center sphere set. Depending on whether the vertices are reused,
the overhead will be 12 or 48 bytes per triangle. As a result, the data
for a single triangle is potentially stored across cache line bound-
aries. This can be solved by over-aligning the data to 16 or 64 bytes
(increasing memory overhead by a third), but whether this will be

submitted to COMPUTER GRAPHICS Forum (11/2019).



T. Zoet / Accelerating ray tracing with origin offsets 5

beneficial will depend on the exact scene that is being rendered as
well as the hardware that is used. Another option is to store the radii
directly with the vertex data. Obviously, this change will impact all
other parts of the renderer. It could degrade performance for the
acceleration structure or might simply be impossible to implement
(an example of this would be when using indexed triangles, where
vertices can be shared by multiple triangles).

Median Sphere Set. The median sphere set can be used with or
without the center hemisphere. Also storing the center hemisphere
will not add much overhead. If the medians are recalculated from
the vertices, the first step is calculating the center, and storing the
4th radius allows aligning the data to 16 bytes. If the hemisphere
centers are stored, adding the extra hemisphere will increase the
per triangle data to 64 bytes, exactly a cache line.

Polygon Sphere Set. The polygon sphere set can be stored and
queried in two distinct ways. First, using the method for the cen-
ter sphere set. In that case the same optimizations can be applied.
Second, using an indexed lookup. Since hemispheres are used by
multiple triangles, they need not be stored multiple times. This can
reduce memory overhead, if we assume that we store the hemi-
sphere centers as well as the radii. Total memory usage would be
one index per triangle to fetch the hemisphere, and one hemisphere
per polygon. The number of polygons will depend on the nature
of the scene and how many triangles are in the same plane as their
neighbours.

Random Sphere Set. To generate random locations on the sur-
face of a triangle, we can use the triangle’s index as the seed of a
random number generator. The hemisphere centers are then calcu-
lated as a random interpolation of the vertices. During construction,
only the radii need to be stored. When querying the sphere set, the
triangle index and vertices are used to regenerate the hemisphere
centers. The total memory overhead is a single scalar per hemi-
sphere, the radius. The number of fetches for a query starts with
the vertices. Each hemisphere adds a single scalar.

Further optimization can be done using SIMD instructions. For
example, using SSE will allow querying the center sphere set with
4 rays at once. This has two advantages. Firstly, 4 operations are
performed at once. Secondly, the latency of the fetching of the
hemispheres is shared between the 4 rays. Using wider vector in-
structions (AVX and AVX-512) should bring even more speedups,
although at diminishing returns.

4. Results

Test scenes are taken from the Computer Graphics Archive
[McG17], see also Table 1 and Figure 3. All models are scaled
such that their longest axis is set to exactly 20 units. For each of
the scenes, several representative viewpoints are selected. Results
are averaged over these viewpoints. Three ray classes are tested
in isolation to account for different behaviours: ambient occlusion
rays, diffuse rays and shadow rays.

Ambient occlusion rays are rendered using a range of radii set
to a fixed percentage of the scene size. Each primary ray that finds
an intersection is used to generate exactly one occlusion ray from a
cosine-weighted distribution.

scene triangles memory overhead (MiB)
buddha 1.1M 16.6
bunny 144K 2.2

cathedral 75K 1.1
dragon 871K 13.3
hairball 2.9M 43.9

livingroom 581K 8.9
rungholt 5.8M 88.7

sponzacrytek 262K 4
sponzadragon 1.1M 17.3

Table 1: Number of triangles per scene and memory overhead for
the 16-byte center sphere set.

The diffuse renders are made using a simple backward path trac-
ing algorithm. In each scene, several triangles with an emissive ma-
terial are added such that the scene is properly lit. The normal ge-
ometry has a simple diffuse material. Primary rays are casted and,
when they hit a diffuse material, extended. Each path is extended
until an emissive polygon is found, the ray leaves the scene, or a
maximum depth is reached.

For the shadow rays a single point light is added to a central
position in each scene. Each primary ray that hits an object is then
extended to the point light.

Two types of statistics are collected: the number of visited nodes
per ray (split by internal nodes and leaves) and the runtimes. Note
that for the diffuse renders the number of nodes is also calculated
per ray, not per path. Generating and tracing primary rays, writing
to the image buffer or any other steps are not considered when mea-
suring the runtimes. Only the following steps of the entire program
are tracked:

1. Generating extension rays.
2. Calculating offsets.
3. Tracing the extension rays.

All experiments were run single-threaded on a 2.60GHz Intel i7-
6700HQ with 8GB DDR4 RAM under Windows 10. For BVH con-
struction and intersection tests the Intel Embree ray tracing library
(version 3.5.2) was used [WWB∗14]. All images were rendered at
4096x4096 pixels.

4.1. Traversals

Table 2 shows the number of visited nodes and leaves for ambi-
ent occlusion rays. The rays were given a length, or radius, of a
percentage of the scene size. The radii range from 1% to 50%.
The baseline column shows the absolute number of visited internal
nodes and leaves. These numbers increase as the radius, and thus
the search space, becomes bigger. When using any of the hemi-
sphere sets to offset the rays, the average number of visited nodes
and leaves decreases, as shown by each column corresponding to
the respective hemisphere set.

The median hemisphere set consistently outperforms all other
sets. This is only by a small margin, though, indicating that increas-
ing the number of hemispheres per triangle has little added benefit.
When comparing the results of the vertex sphere set with the center

submitted to COMPUTER GRAPHICS Forum (11/2019).



6 T. Zoet / Accelerating ray tracing with origin offsets

Figure 3: All test scenes, as seen from one of the viewpoints. From
left to right, top to bottom: Buddha, Bunny, Cathedral, Dragon,
Hairball, Living Room, Rungholt, Sponza Crytek, Sponza and
Dragon.

sphere set, we can see that it performs better in some scenes, but
worse in others. This seems related to the nature of the geometry:
the architectural scenes that contain more concave geometry, such
as the Cathedral, make the vertex sphere set less useful. The poly-
gon sphere set shows no improvement over the center sphere set,
suggesting that selecting the largest hemisphere is a poor optimiza-
tion strategy. The random sphere set uses 4 hemispheres per trian-
gle, the same as the median sphere set, but does not perform better.
This indicates that placing the hemispheres on fixed locations gives
good coverage of the entire triangle area.

Scenes such as Buddha, Bunny and Dragon show a reduction of
visited leaf nodes by up to 85% for short rays. The number of vis-
ited internal nodes is more than halved. For longer rays reductions
are not as large, although still at least 30%. The strong reduction for
short rays is due to many rays receiving an offset that is larger than
the radius, causing traversal to terminate in the root node. Figure 4
shows this for the Dragon scene: the fraction of rays for which the
calculated offset (using the center sphere set) is larger than the ra-
dius is high for short radii and then drops quickly. For scenes that
do not contain both large open spaces and convex geometry, this
fraction drops much quicker.

The Rungholt scene contains almost exclusively axis-aligned ge-
ometry. Because of this, the majority of extension rays do not start
inside the bounding box of the leaf node the primary ray ended
in, and there is little improvement with offsets. Also shown in Ta-
ble 2 are results for the Rungholt scene rotated by 15◦. The baseline
shows that the number of visited internal nodes increases by about
20%, while the number of visited leaves doubles. When using off-
sets, this increase is partially undone.

The Sponza Dragon scene is the Sponza Crytek scene with the
dragon model added in its center. While the Sponza Crytek scene
shows negligible reduction for long rays, with the dragon relative

Figure 4: Fraction of AO rays for which the offset is larger than
the radius (in the Dragon scene with the center sphere set).

improvements become larger, showing that the sphere sets adapt
to varying geometry. The Sponza Dragon scene could be seen as a
common use case for e.g. games, where detailed character models
move through buildings.

Table 3 and Table 4 show the results for diffuse and shadow rays.
The overall behaviour for all scenes and sphere sets is similar to
that of the ambient occlusion rays, with some slight differences.
The scenes in which the AO rays saw the largest reductions do not
fare as well. Conversely, some of the worst performers for long AO
rays (such as the Living Room and Sponza Crytek scenes) do show
more significant reductions.

4.2. Runtimes

The traversal results have shown that the median sphere set con-
sistently outperforms all other methods. However, this is only by a
small margin. The center sphere set shows improvements within a
range of several percent. Because the center sphere set uses only a
quarter of the memory that is required by the median sphere set, the
results in this section only cover the center sphere set. Alternatives
have not been thoroughly optimized, and would probably not per-
form better, as calculating the offsets is mostly memory bound. The
center hemispheres were stored as a simple array, retrievable using
the triangle index. Each hemisphere occupies 16 bytes: 3 floats for
the center, 1 float for the radius.

Figure 5 shows the ambient occlusion ray trace times. For short
rays (1% of the scene size) the Dragon scene is traced using only
73% (827ms vs 1132ms) of the original time. As the ray length
increases this difference becomes smaller, with 85% (1339ms vs
1576ms) at 50% of the scene size. Rungholt is traced slower by
up to 3% at all ray lengths. For all but the shortest rays, the same
happens for the Cathedral and Sponza Crytek scenes. In all cases,
performance improvements are in accordance with the traversal im-
provements reported in the previous section: more saved traversal
steps means shorter trace times.

The diffuse trace times are displayed in Figure 6. The results fol-
low the same pattern as for the AO rays: a loss of 3% for Rungholt
and gains up to 20% for the Dragon. The results for shadow rays,
as shown in Figure 7, again follow the same pattern.

submitted to COMPUTER GRAPHICS Forum (11/2019).



T. Zoet / Accelerating ray tracing with origin offsets 7

Figure 5: Ambient occlusion ray trace times.

Figure 6: Diffuse ray trace times.

When combining the observations about visited nodes and trace
times, we can draw an important conclusion about the computa-
tional overhead of offset calculation: this overhead is small. Con-
sider the Rungholt scene, where the reduction of visited leaf nodes
is 1% or less for all ray types, and trace times increase by only 3%.

5. Conclusion

We presented a simple auxiliary data structure to accelerate ray
tracing. We precompute a set of hemispheres located on the sur-
face of the scene’s geometry that are guaranteed not to contain any
objects. When given an extension ray, we retrieve the hemispheres
that start on the same geometric primitive and offset the ray origin.
With a large enough offset, the ray will be moved out of the leaf
node it started in, thus saving expensive intersection tests at the
bottom of the tree during traversal. Additional internal nodes may
also be culled if the ray is moved out of their bounding box.

Improvements vary between scenes. In the most optimal case,
the number of visited leaf nodes can be reduced by several factors.
Additionally, there is a large reduction of the number of visited
internal nodes. However, this is only for short occlusion rays in

Figure 7: Shadow ray trace times.

scenes containing large open spaces and convex geometry. On the
other end of the spectrum there are scenes for which there is next
to no reduction of visited nodes. Changes in actual trace time range
from speedups of up to 25% to a loss of 3%. This last number
indicates that the overhead of offset calculation is low.

The memory overhead added by the hemisphere set is linear in
the scene size, requiring a fixed number of bytes per triangle. The
optimized hemisphere set used in this paper uses 16 bytes per trian-
gle. The hemisphere set is also completely independent of the ac-
celeration structure, making it compatible with any form of traver-
sal of the BVH or even alternative acceleration structures.

6. Future work

Only the center sphere set implementation was thoroughly opti-
mized. While the alternatives offer little extra reduction of visited
nodes at the cost of several times more memory overhead, it might
be worthwhile to investigate their performance when properly op-
timized.

The polygon sphere set could perform better than the center
sphere set with a better heuristic for selecting the optimal hemi-
sphere. Taking into account additional properties, such as the area
of overlap between a hemisphere and the triangles, might result in
a higher quality hemisphere set.

Concave geometry has been shown to result in little reduction
of visited nodes. This may be improved by using other methods to
offset rays, such as other geometric primitives that better represent
empty spaces in these areas.

A deciding factor for the viability of hemisphere sets is how they
perform in a GPU renderer. Offset calculation will have a different
overhead and the traversal algorithms used on the GPU tend to be
different.

Efficient construction of the hemisphere sets was not a subject of
this work. This will become especially relevant for dynamic scenes,
where quick reconstruction of (parts of) the hemisphere set will be
needed.

7. Acknowledgements

I would like to thank dr. ing. Jacco Bikker for providing the original
idea of offsetting rays and his guidance during this research project.
Special thanks to dr. dr. Egon van den Broek for reviewing this
paper and giving useful suggestions.

References
[Ben75] BENTLEY J. L.: Multidimensional binary search trees used for

associative searching. Communications of the ACM 18, 9 (1975), 509–
517. 2

[BH10] BOULOS S., HAINES E.: Sorted bvhs. Ray Tracing News 23, 2
(2010), 6. 2

[Cla76] CLARK J. H.: Hierarchical geometric models for visible surface
algorithms. Communications of the ACM 19, 10 (1976), 547–554. 2

[CW88] CLEARY J. G., WYVILL G.: Analysis of an algorithm for fast
ray tracing using uniform space subdivision. The Visual Computer 4, 2
(1988), 65–83. 2

submitted to COMPUTER GRAPHICS Forum (11/2019).



8 T. Zoet / Accelerating ray tracing with origin offsets

[FCM09] FOWLER C., COLLINS S., MANZKE M.: Accelerated entry
point search algorithm for real-time ray-tracing. In Proceedings of the
25th Spring Conference on Computer Graphics (2009), ACM, pp. 59–
66. 2

[FLPE15] FUETTERLING V., LOJEWSKI C., PFREUNDT F.-J., EBERT
A.: Efficient ray tracing kernels for modern cpu architectures. Journal
of Computer Graphics Techniques (JCGT) 4, 4 (2015).

[FTI86] FUJIMOTO A., TANAKA T., IWATA K.: Arts: Accelerated ray-
tracing system. IEEE Computer Graphics and Applications 6, 4 (1986),
16–26. 1

[Gla84] GLASSNER A. S.: Space subdivision for fast ray tracing. IEEE
Computer Graphics and applications 4, 10 (1984), 15–24. 2

[GS87] GOLDSMITH J., SALMON J.: Automatic creation of object hier-
archies for ray tracing. IEEE Computer Graphics and Applications 7, 5
(1987), 14–20. 2, 3

[Hav00] HAVRAN V.: Heuristic ray shooting algorithms. PhD thesis,
Ph. d. thesis, Department of Computer Science and Engineering, Faculty
of . . . , 2000. 2

[HB07] HAVRAN V., BITTNER J.: Ray tracing with sparse boxes. In Pro-
ceedings of the 23rd Spring Conference on Computer Graphics (2007),
ACM, pp. 49–54. 2

[HBZ98] HAVRAN V., BITTNER J., ZÁRA J.: Ray tracing with rope
trees. In 14th Spring Conference on Computer Graphics (1998), pp. 130–
140. 2

[HPMB19] HENDRICH J., POSPÍŠIL A., MEISTER D., BITTNER J.: Ray
classification for accelerated bvh traversal. In Computer Graphics Forum
(2019), vol. 38, Wiley Online Library, pp. 49–56. 3

[IH11] IZE T., HANSEN C.: Rtsah traversal order for occlusion rays.
In Computer Graphics Forum (2011), vol. 30, Wiley Online Library,
pp. 297–305. 3

[MB90] MACDONALD J. D., BOOTH K. S.: Heuristics for ray tracing
using space subdivision. The Visual Computer 6, 3 (1990), 153–166. 2

[McG17] MCGUIRE M.: Computer graphics archive, July 2017.
https://casual-effects.com/data. URL: https://
casual-effects.com/data. 5

[ORM08] OVERBECK R., RAMAMOORTHI R., MARK W. R.: Large ray
packets for real-time whitted ray tracing. In 2008 IEEE Symposium on
Interactive Ray Tracing (2008), IEEE, pp. 41–48. 2

[RSH05] RESHETOV A., SOUPIKOV A., HURLEY J.: Multi-level ray
tracing algorithm. In ACM Transactions on Graphics (TOG) (2005),
vol. 24, ACM, pp. 1176–1185. 2

[SFD09] STICH M., FRIEDRICH H., DIETRICH A.: Spatial splits in
bounding volume hierarchies. In Proceedings of the Conference on High
Performance Graphics 2009 (2009), ACM, pp. 7–13. 2

[Wal07] WALD I.: On fast construction of sah-based bounding volume
hierarchies. In 2007 IEEE Symposium on Interactive Ray Tracing (2007),
IEEE, pp. 33–40. 2

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C., WAGNER M.: In-
teractive rendering with coherent ray tracing. In Computer graphics fo-
rum (2001), vol. 20, Wiley Online Library, pp. 153–165. 2

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S., ERNST

M.: Embree: a kernel framework for efficient cpu ray tracing. ACM
Transactions on Graphics (TOG) 33, 4 (2014), 143. 5

submitted to COMPUTER GRAPHICS Forum (11/2019).

https://casual-effects.com/data
https://casual-effects.com/data


T. Zoet / Accelerating ray tracing with origin offsets 9

scene radius baseline center vertex median polygon random
buddha 1% 7.71 / 0.80 46% / 19% 43% / 17% 44% / 15% 45% / 19% 44% / 16%
buddha 5% 8.45 / 0.94 61% / 34% 59% / 32% 59% / 31% 60% / 34% 59% / 31%
buddha 10% 8.73 / 1.01 63% / 39% 61% / 38% 62% / 37% 63% / 40% 62% / 37%
buddha 25% 8.90 / 1.06 64% / 43% 63% / 42% 63% / 41% 64% / 44% 63% / 41%
buddha 50% 8.90 / 1.06 65% / 44% 63% / 42% 63% / 41% 64% / 44% 63% / 42%
bunny 1% 6.50 / 0.26 47% / 40% 38% / 32% 41% / 33% 45% / 39% 42% / 34%
bunny 5% 7.10 / 0.33 63% / 54% 58% / 47% 59% / 48% 62% / 53% 60% / 49%
bunny 10% 7.40 / 0.39 66% / 61% 62% / 55% 63% / 56% 66% / 60% 64% / 57%
bunny 25% 7.55 / 0.52 71% / 72% 68% / 68% 69% / 68% 70% / 71% 69% / 69%
bunny 50% 7.36 / 0.55 73% / 75% 70% / 71% 71% / 71% 72% / 74% 71% / 72%

cathedral 1% 5.78 / 0.12 68% / 84% 79% / 93% 57% / 73% 80% / 86% 60% / 77%
cathedral 5% 6.16 / 0.18 85% / 90% 89% / 95% 81% / 83% 91% / 91% 81% / 86%
cathedral 10% 6.60 / 0.26 89% / 94% 93% / 97% 86% / 89% 92% / 94% 87% / 90%
cathedral 25% 7.51 / 0.62 93% / 98% 95% / 99% 90% / 96% 95% / 98% 91% / 97%
cathedral 50% 7.03 / 0.91 95% / 99% 97% / 99% 93% / 98% 96% / 99% 93% / 98%
dragon 1% 6.32 / 0.43 55% / 17% 49% / 15% 50% / 15% 54% / 17% 50% / 15%
dragon 5% 7.08 / 0.57 66% / 40% 62% / 39% 62% / 39% 66% / 40% 63% / 39%
dragon 10% 7.43 / 0.65 69% / 50% 66% / 49% 66% / 49% 69% / 50% 66% / 49%
dragon 25% 7.41 / 0.66 71% / 53% 67% / 52% 68% / 52% 70% / 53% 69% / 53%
dragon 50% 6.96 / 0.62 71% / 54% 69% / 53% 70% / 53% 71% / 54% 70% / 53%
hairball 1% 9.18 / 1.45 76% / 58% 71% / 64% 66% / 43% 73% / 58% 67% / 47%
hairball 5% 12.12 / 2.74 93% / 81% 93% / 83% 91% / 74% 92% / 81% 91% / 76%
hairball 10% 14.16 / 3.76 94% / 87% 94% / 89% 93% / 83% 94% / 87% 93% / 84%
hairball 25% 16.08 / 4.66 96% / 90% 95% / 92% 94% / 87% 95% / 90% 95% / 88%
hairball 50% 16.47 / 4.81 96% / 91% 96% / 92% 95% / 89% 96% / 91% 95% / 89%

livingroom 1% 5.17 / 0.10 60% / 70% 64% / 71% 49% / 64% 77% / 77% 53% / 66%
livingroom 5% 5.62 / 0.18 84% / 85% 84% / 85% 77% / 82% 88% / 88% 79% / 83%
livingroom 10% 5.92 / 0.24 90% / 89% 89% / 89% 86% / 87% 93% / 92% 87% / 88%
livingroom 25% 6.39 / 0.35 92% / 93% 92% / 93% 90% / 92% 95% / 95% 91% / 93%
livingroom 50% 5.41 / 0.49 96% / 97% 96% / 97% 94% / 96% 97% / 98% 95% / 96%

rungholt 1% 6.55 / 0.22 83% / 99% 80% / 98% 81% / 98% 82% / 99% 82% / 98%
rungholt 5% 7.59 / 0.44 93% / 100% 91% / 99% 92% / 99% 93% / 100% 92% / 99%
rungholt 10% 8.07 / 0.54 94% / 100% 92% / 99% 93% / 99% 94% / 100% 93% / 99%
rungholt 25% 8.18 / 0.59 95% / 100% 93% / 99% 94% / 99% 95% / 100% 94% / 99%
rungholt 50% 8.17 / 0.59 95% / 100% 93% / 99% 94% / 99% 95% / 100% 94% / 99%

rungholtrotated 1% 7.98 / 0.45 77% / 70% 73% / 65% 74% / 64% 78% / 82% 75% / 66%
rungholtrotated 5% 9.15 / 0.74 88% / 84% 86% / 82% 86% / 81% 90% / 91% 87% / 82%
rungholtrotated 10% 9.49 / 0.89 90% / 88% 88% / 86% 89% / 86% 92% / 93% 89% / 86%
rungholtrotated 25% 9.66 / 0.95 91% / 90% 89% / 88% 90% / 88% 92% / 94% 90% / 88%
rungholtrotated 50% 9.66 / 0.95 92% / 90% 90% / 88% 90% / 88% 93% / 94% 91% / 89%
sponzacrytek 1% 10.33 / 0.18 86% / 80% 90% / 79% 79% / 74% 90% / 82% 81% / 75%
sponzacrytek 5% 11.05 / 0.28 95% / 89% 95% / 88% 92% / 86% 96% / 90% 93% / 87%
sponzacrytek 10% 11.62 / 0.39 96% / 93% 96% / 92% 94% / 91% 96% / 93% 94% / 91%
sponzacrytek 25% 9.16 / 0.60 98% / 98% 98% / 97% 98% / 97% 99% / 98% 98% / 97%
sponzacrytek 50% 5.82 / 0.46 99% / 99% 99% / 99% 98% / 98% 99% / 99% 98% / 98%
sponzadragon 1% 10.96 / 0.26 86% / 71% 87% / 70% 82% / 67% 87% / 73% 81% / 67%
sponzadragon 5% 12.50 / 0.43 93% / 85% 93% / 84% 92% / 83% 94% / 86% 92% / 83%
sponzadragon 10% 13.66 / 0.60 95% / 91% 95% / 90% 94% / 89% 95% / 91% 94% / 90%
sponzadragon 25% 11.60 / 0.74 97% / 95% 97% / 95% 96% / 95% 97% / 96% 96% / 95%
sponzadragon 50% 7.52 / 0.62 98% / 97% 98% / 97% 97% / 96% 98% / 97% 97% / 97%

Table 2: Ambient occlusion traversal. radius: ray length relative to scene size. baseline: #visited internal nodes / #visited leaf nodes per ray
without offset. sphere sets: visited nodes / leaves relative to baseline.

submitted to COMPUTER GRAPHICS Forum (11/2019).



10 T. Zoet / Accelerating ray tracing with origin offsets

scene baseline center vertex median polygon random
buddha 9.93 / 2.38 68% / 32% 67% / 31% 67% / 29% 68% / 32% 67% / 30%
bunny 8.12 / 2.24 74% / 45% 70% / 42% 71% / 40% 73% / 45% 71% / 41%

cathedral 10.09 / 2.29 94% / 91% 96% / 97% 91% / 86% 96% / 93% 92% / 88%
dragon 9.49 / 2.42 74% / 48% 71% / 42% 71% / 40% 74% / 49% 71% / 40%
hairball 19.62 / 8.39 95% / 83% 95% / 87% 94% / 78% 95% / 84% 94% / 79%

livingroom 9.21 / 2.18 92% / 87% 92% / 88% 90% / 82% 95% / 92% 91% / 84%
rungholt 9.35 / 1.02 95% / 99% 93% / 97% 94% / 97% 95% / 99% 94% / 98%

rungholtrotated 11.99 / 2.16 89% / 70% 87% / 66% 88% / 65% 92% / 85% 88% / 66%
sponzacrytek 16.20 / 4.20 96% / 93% 96% / 94% 94% / 91% 97% / 94% 95% / 91%
sponzadragon 18.77 / 4.87 95% / 91% 95% / 91% 94% / 89% 95% / 92% 94% / 89%

Table 3: Diffuse traversal. baseline: #visited internal nodes / #visited leaf nodes per ray without offset. sphere sets: visited nodes / leaves
relative to baseline.

scene baseline center vertex median polygon random
buddha 10.18 / 0.40 72% / 47% 70% / 44% 71% / 44% 72% / 47% 71% / 44%
bunny 10.42 / 0.15 81% / 64% 78% / 57% 79% / 58% 80% / 64% 79% / 60%

cathedral 7.27 / 0.05 93% / 89% 94% / 94% 90% / 80% 96% / 90% 91% / 83%
dragon 8.15 / 0.18 71% / 34% 69% / 32% 69% / 32% 70% / 34% 70% / 32%
hairball 16.66 / 1.43 97% / 90% 97% / 91% 96% / 85% 96% / 89% 96% / 87%

livingroom 6.38 / 0.05 91% / 77% 90% / 76% 88% / 70% 93% / 83% 89% / 72%
rungholt 6.96 / 0.08 93% / 99% 91% / 97% 92% / 98% 92% / 99% 92% / 98%

rungholtrotated 8.78 / 0.20 88% / 79% 86% / 72% 87% / 73% 87% / 82% 87% / 75%
sponzacrytek 15.61 / 0.09 97% / 86% 96% / 83% 95% / 81% 97% / 87% 96% / 82%
sponzadragon 17.71 / 0.14 96% / 78% 95% / 76% 95% / 74% 96% / 79% 95% / 75%

Table 4: Shadow traversal. baseline: #visited internal nodes / #visited leaf nodes per ray without offset. sphere sets: visited nodes / leaves
relative to baseline.

submitted to COMPUTER GRAPHICS Forum (11/2019).


