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Abstract

In this research we aim to automatically generate an explanation of decisions made by machine
learning models. To be able to do this we adapted the explanation based model by Feelders
and Daniels. We describe the building blocks of the model and consider different options for
determining the required reference object. In this thesis we calculate the required distances
with either Gower’s distance or the simplex method. For the type of object reference we use
either the closest object with the desired classification or the medoid object of the desired
classification. We test the proposed algorithm with a questionnaire that tested the quality of
the explanation and parts there of. We found that the medoid reference type was significantly
better received by respondents than the closest reference type. In the ordinal logistic regression
model we found a significant negative effect of the number of errors people made in the subject
knowledge questions on the perceived explanation quality. We were unable to find any significant
results for the other factors, and we found no significant effect on which distance function
performs better, or if adding the counter-acting to the contributing causes had an effect on the
overall perception of the explanation. As the number of participants to the empirical study
was rather small we opted to go for a more exploratory approach to find factors that could be
interesting to investigate in further studies. Due to this reason future research with this method
is recommended as we were unable to get a definitive conclusion for our developed model.
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1. INTRODUCTION

1 Introduction

With the wide spread usage of Artificial Intelligence (AI), in the current day and age people
see more and more decisions being made for them by predictive models. For these people an
explanation as to why a particular decision was made is expected. Today’s predictive models
almost all suffer from the issue of being unable to explain why a certain prediction is made
over the other. Other fields (medicine, Law, etc.) which insist on having a decision made
which can be explained are currently limited in their wide spread use of predictive models
due to this shortcoming. The ability to see how decisions are made by the predictive models
might also give us a better understanding as to how they work. There has been a substantial
amount of research on the subject of explaining decisions made by prediction models. Most of
these solutions work with a model-agnostic method of trying to provide the explanation. This
means that it takes into account the input and output of the model and tries to come up with
an explanation without having access to a description of the model itself. The idea of these
explanations is that depending on the most important variables people can make their own
decision about the correctness of the explanation. We approach this issue from a different side,
instead of looking purely at the features side of the model we first want to find out how humans
provide explanations to other humans. Philosopher Miller has looked into how humans explain
to one another (Miller, 2018). According to Miller a good way of explaining why something
happened or why something is, is to provide an example of a similar situation with a different
result to provide a comparison for a person to deduce with. For example if we want to know
why student A didn’t get accepted into college we could look at an other student B who did get
accepted and compare their grades to see that student A has lower grades compared to student
B. While methods like these exist they tend to not involve the feature importance and only
provide a comparison (Molnar, 2019). What we strive for is an approach which sits somewhere
between the model-agnostic methods and example-based explanations. The proposed method
falls between these two, as we use the existing datapoints to find a reference object (example-
based explanation) while the explanation given is based on the features and how to get the
desired result (model-agnostic).

While research to the specific approach is limited a great number of tools are available to
make this possible. We use multiple building blocks, first we make use of Feelders and Daniels
explanation framework as the starting point (Feelders and Daniels, 2001). Because we are
using this we require to search for a fitting reference object which we can use to provide the
comparison for the explanation. To be able to compare objects we will have to look at different
distance measures. As we want the algorithm to work with mixed numeric and categorical data
we also need to make sure we are able to use categorical data in these distance functions.

For the algorithm to function we require a reference object, which we use to compare the
input with. The main purpose of this reference object is to provide an object with the desired
classification different from the one the explainee got assigned to. To acquire the reference
object we looked at multiple solutions, which primarily came from the field of Data Clustering
(van de Velden et al., 2018). All of these solutions make use of a distance functions, which we
also require to choose.
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1. INTRODUCTION

1.1 Research questions

Summarizing we aim to answer the following question:

Does the explanation framework which we will refer to as NEXT (Norm-based EX-
planation Technique) presented in (Feelders and Daniels, 2001) provide a good basis
for explaining decisions of machine learning models?

To make the explanation framework operational, we specifically consider the following choices:

1. Which of the considered reference objects produces the best explanations?

2. Which of the considered distance functions provides us with the best reference objects,
going by the quality of the explanation produced?

3. How does the inclusion or exclusion of counteracting causes influence the quality of the
provided explanations?

In chapter 2 we will describe NEXT. In chapter 3 we will explain which tools we are going to
use to get the distance functions and reference object we need to use in NEXT. In chapter 4 we
will go into how we plan to test the models performance in the form of an empirical study. In
chapter 5 we will explain the different analyses we ran on the empirical study results. In chapter
6 we will end with the end results of our algorithm and the accompanied empirical study to see
it’s effectiveness. We finish in chapter 7 where we take a look at what we could improve for
future studies and what might need to change.
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2. A FORMAL MODEL OF EXPLANATION

2 A formal model of explanation

In this chapter we provide a summary of the research done in the paper by Feelders and Daniels
(Feelders and Daniels, 2001). We will explore the proposed explanation model and explain how
we implemented it in the model. We will discuss the overall ideas of the explanation model by
Feelders and Daniels, the requirements it has, what has been used to meet those requirements
and why we made certain choices.

2.1 An explanation based model

Feelders and Daniels developed a model for diagnosis and explanation in financial models.
Their model is largely based on Humphreys’ notion of aleatory explanations. In short an event
E occurred because of C+, despite C−. Where C+ are the contributing causes, which help
explain why E happened, and C− are the (possibly non existing) counteracting causes, which
could prevent E from happening (Feelders and Daniels, 2001; Humphreys, 1989). The event E
in this regard is divided into two kind of possible events:

• variable y has some particular value at time t

• variable y changes value from time t to t′

Feelders and Daniels change the meaning of the event E to make it more descriptive in their
usecase. They evolve it from E to the usage of Hesslow’s 〈a, F, r〉 explanandum of an event (Hess-
low, 1983). Here a is an object, F being a property of that object in reference to a reference class
r. An example would be 〈student A, has a relatively low grade, other students in his class〉. In
these explanandum r can take up different forms e.g. we could also compare ”student A” with
”student A” at a later date to change the reference type to a temporal object, multiple kinds
of options exist we only need to make sure that the reference objects we are using are viable in
the comparison.

As this is a very abstract way of being able to compare two events, we are able to use it in
a great many cases. Two issues arise to make us able to use this way of explaining to automate
an explanation in the model:

• A way to find the contributing (C+) and counteracting causes (C−).

• A viable reference object used for comparison

Feelders and Daniels already developed a way to calculate the C+ and C− which will be
explained in chapter 2.2.2.

As we want to be able to also use this on mixed models, this brings up the issue of converting
categorical values to real numbers when we need to calculate distances of objects from each
other. This is also used to find a reference object from any dataset as we will have to deal with
categorical data in these cases. As our goal is to find an explanation for decisions/classifications
made by a algorithm we need to be able to automatically generate a viable reference object
from the training data that was used on that model.

2.2 Finding the explanation

Having a distance function and reference object available, we are now able to use them in the
algorithm to calculate causes by using the method provided by Feelders and Daniels (Feelders
and Daniels, 2001). If we take the previous explanandum 〈a, F, r〉 we now always know the
variable a, the object we want an explanation for and variable r the object we are comparing it
to. From the context of our situation we know we want to find why a didn’t get the value that
r got, this is the F variable. In our case these are the causes we want to compute to find out
why. For example: why was a’s loan application rejected, whereas b got accepted.

8



2. A FORMAL MODEL OF EXPLANATION

2.2.1 Finding the set of causes

To begin formulating an explanation we want to find the difference in value between the two
objects the object a with value y(a) and the object of reference c with value y(c). To get the
degree of difference we need to calculate the difference in the outcome of their values which we
call the ∆y.

∆y = y(c) − y(a) (1)

Generating an explanation we compare and take into account the influence of the different
variables in the current classifier. This can be achieved by looking at the influence on the
prediction the different input variables have. We can calculate this influence using the variables
of both the applicant x(a) and reference object x(c). To get the influence of a single variable
i of x(a) denoted as inf(xi) we replace the value of x(a) with the variable i of x(c) (denoted as

f(x
(a)
−i , x

(c)
i ) and calculating the difference it made on the value we got previously. This answers

what y value would a have had, if it had c’s value for xi. Resulting in the formula:

inf(xi) = f(x
(a)
−i , x

(c)
i )− y(a) (2)

This gives us a score for a single variable i. We can extend this equation from the influence of a
single variable to that of a set of variables X with index set I ⊆ {1, 2, ..., n} on y. This changes
the previous equation 2 to:

inf(XI) = f(x
(a)
−I , x

(c)
I )− y(a)

Instead of now calculating for only a single variable we calculate the influence of every variable.
This collection of influences we then use to define the set of causes C. This is simply adding any
variable which influence does not equal 0 to the set of causes C (Feelders and Daniels, 2001).

2.2.2 Counteracting and contributing causes

Now that the algorithm has a way of finding the causes of the difference between two objects we
want to be able to find which causes contribute to the current value and which causes counteract
the current value. To separate the causes C we look at the previously calculated ∆y in equation
1. If Ci has the same sign as the ∆y has it gets assigned to the set of contributing causes C+

if it has the opposite sign it gets assigned to the counter-acting causes set C−.

A problem arises if big objects are used to compare to each other and these objects also
differ in a lot of variables. We can end up in a data overload for the person needing to interpret
the causes. To prevent even the tiniest influences to be shown to the person receiving the causes
we filter out the less important ones based on a threshold. This is done by using the notion
definition of a parsimonious set:

Definition 1. (Parsimonious set of contributing causes). The parsimonious set of contributing
causes C+

p , is the smallest subset of C+ such that:

inf(C+
p )

inf(C+)
≥ T+

The parsimonious set of counteracting causes is defined analogously. The parsimonious set
of contributing causes is the smallest subset of the set of contributing causes, such that its
influence on y exceeds a particular fraction T+ of the influence of the complete set. In case
there are several sets of equal cardinality that explain a fraction larger than T+, the one with
the highest inf-value is called the parsimonious set. The definition with respect to counteracting
causes is clearly analogous. The fraction T+ and T− are numbers between 0 and 1, and will
typically be close to 1. We can now use this parsimonious set to explain to the user why a
certain event/classification happened.
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2. A FORMAL MODEL OF EXPLANATION

Coefficients: value student A (A) student B (B)

grade1 (g1) 0.05 10 9

grade2 (g2) 0.01 5 6

bad behaviour (b) -0.25 1 0

Table 1: Example coefficients and student score

2.2.3 Example

If we would have a simple linear model to calculate if a students got a admitted to a master
programm or not which includes three variables: ‘grade1‘ ([1-10]), ‘grade2‘ ([1-10]) and ‘bad
behaviour‘ ([0-1]) with the coefficients shown in table 1 (with an intercept of 0 for simplicity
sake) this results into the linear equation 3. In this example we consider a student to have been
admitted if y ≥ 0.50. If we would want to see why student A didn’t get admitted with his score
while student B did as shown in the coefficient table 1.

y = 0.05× g1 + 0.01× g2 − 0.25× b (3)

We now use the previous described method to find out why student A failed to gete admitted
compared to student B. We first want to calculate the difference in y value student A has from
our reference object student B:

y(B) − y(A) = 0.51− 0.3 = 0.21 = ∆y (4)

We now want to find the influences of that each separate variable has we do this by replacing
one value of student A with that of student B and see what changes in the y value. For each
feature we now want to swap their value for the one in the reference object student B and
calculate their influence:

inf(g1) = y(g
(B)
1 , g

(A)
2 , bA) = (0.05× 9 + 0.01× 5− 0.25× 1)− 0.3 = −0.05

inf(g2) = y(g
(A)
1 , g

(B)
2 , bA) = (0.05× 10 + 0.01× 6− 0.25× 1)− 0.3 = 0.01

inf(b) = y(g
(A)
1 , g

(A)
2 , bB) = (0.05× 10 + 0.01× 5− 0.25× 0)− 0.3 = 0.25

(5)

Grade1 has a different sign than ∆y we can say this is a counter-acting cause, grade2 has
the same sign as ∆y we add this to the set of contributing causes. For bad behaviour just like
grade 2 the sign of coincides with ∆y also making this a contributing cause.

We now have a set of causes C and we know which causes are contributing causes C+ and
counter-acting causes C−. The final part is to find the parsimonious set of contributing causes.
In the example we pick a threshold T = 0.95 to filter the contributing causes. We now want to
calculate the parsimonious set of contributing causes, in our case this consists only of the bad
behaviour feature since if we add the grade2 feature as well we go above our threshold T = 0.95:

inf(g2) = (0.25)

inf(C+) = (0.25 + 0.01)
= 0.96 ≥ T (6)

Since our function is linear we end up having to add both our influences together, in the
case of different relations between features the influence of two features might differ when taken
together. We can see that in this case only the bad behaviour would be shown as its effect is
higher than the threshold. In the end this tells us the main reason that student A didn’t get
admitted was his bad behaviour and additionally can show us that he did score better in grade1
than student B but not enough to outweigh his bad behaviour.
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3. ADAPTION OF THE EXPLANATION BASED MODEL

3 Adaption of the explanation based model

In chapter 2, we presented the NEXT explanation model. In this model we require a reference
object (object of reference) to generate explanations. A reference object could for example be
the most similar object that received the opposite classification or an object that is in some
sense representative for the group of objects that received the opposite classification. In either
case, we need a similarity measure (or distance measure) that quantifies the similarity between
objects. Since objects can have both numerical and categorical features, we need a similarity
measure that can handle such mixed type data.

3.1 Calculating distances between mixed type datapoints

A lot of research has been done on the topic of converting categorical variables to continuous
ones (Robnik-Šikonja and Kononenko, 2008; Drezner and Turel, 2011), but even with all this
research a perfect solution has not yet been found. For our research and for the purpose of
having a comparison that is easier to grasp we chose to go with two different distance functions
which incorporate the changing of categorical data to continuous. The first one is the more
naive Gower’s distance (Gower, 1971), the second one is the more complex Simplex method
(McCane and Albert, 2008).

3.1.1 Gower’s distance

Gower’s distance is an easy to grasp distance measure to calculate the difference between two
mixed-type datapoints. It’s used to compare two objects A and B to get a distance measure
Dg(A,B). To calculate this distance measure we need to first find the distance between each
individual variable i in the two objects expressed as d(A,B)i. the calculation differs depending
on the type of variable that is being evaluated. When the variable is categorical in nature and
Ai and Bi are of the same category we set the value to 0; if they differ we set it to 1. If the
variable is continuous we end up with a different formula which calculates a number between 0
and 1, where 0 means the variables are exactly the same and 1 means they are at opposite ends
of their respective range. The formula used to calculate this score is as follows:

d(A,B)i =
|Ai −Bi|

Ri

Here Ri is the range of variable i i.e. Ri = max(Xi) −min(Xi) where the maximum and
minimum are taken over the collection of all datapoints. Gower’s then sums up the scores
and divides them by their availability δ(A)(B)i , which gets set depending if the two compared
variables are present in the database, and not missing. Our algorithm assumes that the database
is always complete, so availability always equals 1. This results in the main part of the Gower’s
distance:

D(A,B) =

∑p
i=1 d(A,B)i∑p
i=1 δ(A,B)i

It is possible to add weights to each variable if desired. In that case the formula becomes:

D(A,B) =

∑p
i=1 d(A,B)i ×Wi∑p
i=1 δ(A,B)i ×Wi

If we look at how Gower’s distance treats the categorical values we can see that it does not
care for the impact a categorical variable actually has. Rather it assumes the worst case and
says that for one change in categorical variable it equals a max range difference even if two
categorical variables could very well be close to each other in practice. We picked this distance
measure as it is simple to grasp for a person how this function works and so can be used as a
good point of comparison for the more complex Simplex method.
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3. ADAPTION OF THE EXPLANATION BASED MODEL

Figure 1: Simplexes for n = 2,3,4.

3.1.2 Simplex method

The Simplex method aims to find the impacts that different values in a categorical feature has in
comparison to its other values. For example, we want to know the difference between the values
A,B,C from a categorical variable X it is possible for the values A and B to be closer than
the values B and C. This comes from the fact that after getting the coordinates we calculate
the distance with the inverted covariance matrix. Which results in a value between 0 and 1 for
each different column. unlike what the Gower’s distance does where these distances are always
either 0 or 1. The Simplex method as its name states uses a simplex, a (n−1)d shape where all
point are the same distance away from each other, to replace the categorical values of a variable
with the coordinates of a n sized simplex within a n− 1 space. The examples of the simplexes
generated when n = 2, 3, 4 are shown in figure 1, as can be seen in the figure all of the points
displayed are within the same distance of each other if we were to measure them. If we were to
convert our categorical variable X into simplex coordinates we would end up with the following
coordinates:

A = (0, 0)

B = (1, 0)

C = (0.5,

√
3

2
)

Which in our eventual table would look as followed:

Value v1 v2
A 0 0

B 1 0

C 0.5
√
3
2

The use of the Simplex is preferred due to this property as all the different categorical values
get the same starting point in importance. From here on we replace the original categorical
values with the coordinates of the simplex’ points in their respective space as a vector. To
summarize, each categorical value is replaced by (n − 1) numerical values, where n is the size
of the domain of the variable.

From here the Simplex method calculates a standard covariance matrix for all the datarows
in the dataset. It then uses the Mahalanobis distance to calculate the distance for both the
continuous and former categorical variables separately. For the Mahalanobis distance we use
the inverse covariance matrix Σ−1. When we use this in the algorithm and we want to compare
person A to person B for example, we use the inverted covariance matrix we calculated and use
the following formula twice. Once for continuous variables Dcon and once for categorical Dcat:

D(A,B)con/cat = (Acon/cat −Bcon/cat)
TΣ−1(Acon/cat −Bcon/cat)

12



3. ADAPTION OF THE EXPLANATION BASED MODEL

When both distanceDcon andDcat have been calculated we combine them using the euclidian
distance measure, we can do this as the Mahalanobis distance inherently scales the variance of
each column down to 1:

D(A,B) =
√

(Dcon)2 + (Dcat)2

The differences between Gower’s and the Simplex method consist of the different way of
calculating the distance between categorical values. Another difference is the fact that the
Simplex method makes use of the Mahalanobis distance which takes into account the correlation
between variables (through Σ−1) whereas Gower’s ignores the correlations entirely.

3.1.3 Correlation example Mahalanobis and Gower’s

In table 2 we show an example dataset where we have the age of people combined with their
income. The trend in the dataset is that with age the income also increases except for one
outlier being the person aged 23 having an income of 3000. The last two columns show the total
distance to all other datapoints combined for both the Gower’s distance and the Mahalanobis
distance. If we look at our outlier here we can see that in the case of using Gower’s distance this
one is quite average compared to the others. In comparison the Mahalanobis distance shows
the outlier which has the biggest distance from the other datapoints by a large amount. This
indicates that something seems to be different than what we would expect in the dataset (in
our case the positive correlation of age and income).

age income Gower’s Mahalanobis

1 23 3000 2.40 31.28

2 26 2400 2.54 18.37

3 32 2600 2.23 21.81

4 54 4400 2.50 15.59

5 44 4000 2.07 11.73

6 60 5000 3.28 21.18

Table 2: Example dataset and the total distances to all others on distance function.

3.2 Reference object(s)

For reference object choices we looked at how data-clustering algorithms cluster their different
datapoints around a singular existing point, finding the center this way. We ended up with
K-medoid for it’s ability to find a prototypical object of our classification classes with usage
of an existing datapoint. This way we can keep the realistic reference without averaging all
separate variables in a dataset. The other approach we went with is the closest datapoint with
the desired classification (Wilson and Martinez, 1996). This gives us a nice comparison to see
if people will prefer a person being as close as possible or the more prototypical approach.

3.2.1 Closest object

The closest point type of reference object is quite simple. We calculate the shortest distance we
can get to another datapoint with the desired classification. To do this we simply use one of the
distance functions explained in the previous subsection. Due to having two different options for
the distance function it’s possible we get different results using a different distance function.
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3.2.2 Prototypical object

The prototypical object or medoid approach we take uses the aforementioned approach of finding
the datapoint that is the least distance away from all other datapoints of the desired classifica-
tion. Same as with the closest object approach the actually output object can differ depending
on which distance function we use. Let X be a set of data points, then xm is a medoid of X
(with respect to the distance measure d). If and only if:

xm = argmin
x∈X

{ ∑
x′∈X

d(x, x′)

}
.

Notice that a medoid is always an observed data point. An alternative would be to compose a
new data point by taking the average (numerical) or mode (categorical) of each single attribute.
Such an object may however be highly unrealistic and therefore not suited as a reference object.

For the data in table 2, observation nr. 5 is the medoid according to both Gower’s distance
and Mahalanobis distance.
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Variable Name Range Description

Ratio of payment to income (dir) percentage This is the total monthly mortgage payment divided by total monthly income

Ratio of housing to property value (hir) percentage This is the inhouse expense to total income ratio

Ratio of loan size to property value (lvr) percentage This is the total size of the requested loan divided by the properties total value

Consumer credit score (ccs) [1-6]

1: if no ”slow” payments or delinquencies.
2: if one or two slow payments or delinquencies.
3: if more than two slow payments.
4: if insufficient credit history for determination.
5: if delinquent credit history with payments 60 days overdue.
6: if delinquent credit history with payments 90 days overdue.

Mortgage credit score (mcs) [1-4]

1: if no late mortgage payments.
2: if no mortgage payment history.
3: if one or two late mortgage payments.
4: if more than two late mortgage payments.

Bad credit record (pbcr) Yes/No If any public record of credit problems (bankruptcy, charge-offs, collection actions) exist

Unemployment rate in industry (uria) [0%-100%] This is the percentage of people that are unemployed in your line of work

deny Yes/No If the applicant was denied their mortgage application (1 = yes; 0 = no)

Table 3: Description of variables

4 Experimental design

In this chapter we show how we selected the cases for explanation and we will explain how
we tested the quality of our generated explanations. To achieve this we use a questionnaire as
explanations can be seen as adequate for one person but unhelpful to another. This section
covers the cases we used to put in our questionnaire, which questions were asked with each
case and the presentation of the questionnaire itself. We also explain why we chose our specific
questions and what we expected to see in our return.

4.1 The cases

For our questionnaire we used the Boston HMDA 1997-1998 dataset included in the ECdat
library of R. From this dataset we created a logistic regression prediction model and used this
prediction model to classify our objects for the eventual use in our algorithm. Then we run the
algorithm on different datarows to create our cases.

4.1.1 The logistic regression model

For the logistic regression model we don’t use the full Home Mortgage Disclosure Act(HMDA)
dataset. The columns used for the predictions variables are visible in table 3. The classification
values are the deny column (Munnell et al., 1996). With this data we create a logistic regression
model with deny as the Y variable and the variables in the table as the prediction variables.
After calculating the model we take all the results and transform the classification predictions
from a continuous number to either a 1 if the probability of denial was 50% or higher else it
got a 0. This way we ensure our algorithm only has access to the classification gotten instead
of the chance that get calculated by the model. If we look at the coefficients in table 4 we see
that most variables behaved as we expected, the only exception to this is the coefficient that
‘ratio of housing to property value‘ has. Our expectation was that if a person would spend more
of his total income on housing expenses this would give a higher chance of denial not a lesser
chance. If we look at the actually significance of the different variables we see that four of them
are highly significant and two (mortgage credit score and employment rate) are significant. We
see that the ‘ratio of housing to property value‘(hir) is not significant due to this reason and
the reason that with our current threshold it never was part of the set of causes and it’s sign is
counter-intuitive, we decided to remove it from the questionnaire.
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Coefficients: Estimate Std z value Pr(>|z|)
(Intercept) -7.43649 0.53381 -13.931 <2e-16

ratio payment to income 5.30583 0.99184 5.349 8.82e-08

ratio of housing to property value -0.56651 1.15599 -0.490 0.6241

ratio loan size to property value 2.64364 0.45908 5.759 8.48e-09

consumer credit score 0.28924 0.03647 7.930 2.19e-15

mortgage credit score 0.30316 0.13110 2.312 0.0208

bad credit record ‘yes‘ 1.29967 0.19056 6.820 9.10e-12

unemployment rate in industry 0.06324 0.03144 2.012 0.0443

Table 4: Summary of the logistic regression model.

Figure 2: The distribution of cases over the Questionnaires.

4.1.2 Selecting the cases

To select the cases we set a threshold T for the counteracting and contributing causes of
T = 0.88. We then proceeded to calculate all the causes for the different combinations of
setups for distance functions and reference objects, this results in each datarow which had
a rejected mortgage in the model having 4 different cause sets to compare with each other
(Simplex/Closest, Simplex/Medoid, Gower’s/Closest, Gower’s/Medoid). We exclude all the
datarows that contained no differences between all four options. From all the remaining cases
we chose a number of cases that would represent the non-outliers (those of which had no strong
single cause). To minimize the number of different questionnaires to be filled we arranged it so
we could use both within and in-between subject testing. This was done as shown in Figure 2.

In Figure 2 the numbers represent the ID’s of the data rows and the dotted lines the com-
parison in the within subject analyses. The comparisons always test for just one difference in
the possible distance functions or reference objects with the exception of the single case in ques-
tionnaire 3 which is meant to be a single case. The main reason for this version is the addition
of counteracting causes being displayed and wanted to see the difference in-between subject
groups. This means Gower’s/Medoid vs Gower’s/Closest gets compared. But Gower’s/Medoid
vs Simplex/Medoid doesn’t in the same questionnaire (except for the one case in questionnaire
3). The ID’s overlap in the different questionnaires as this makes it possible to use the results
we got in questionnaire 1 and 2 to be compared to those in questionnaire 3 which has the
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counter-acting causes added to it. Case 572 was chosen as it provided one of the few situations
where there was a difference in causes for each possible combination of distance function and
reference object.

4.2 Experimental setup

As we want to minimize the number of people needed to participate in the questionnaire we
tried to set it up in such a way that with a minimal number of cases we could test our different
questions within and in-between subject groups. To achieve this we split the questionnaire in
three different versions, to prevent the questionnaire from becoming too long for a single person
to fill in comfortably.

4.2.1 Background knowledge

At the start of the questionnaire we ask participants to read a small explanation of the cases
they will be exploring. This section explains what each variable means. After the participant
reads this explanation he or she is asked to answer a number of questions, each question relating
to what they would expect to happen if we increase or decrease a single variable. This has been
done to see if the participant filling in the questionnaire has an understanding of what they are
being shown in the cases.

4.2.2 Applicant overview

We split each comparison in to a case giving the participant an applicant profile, which shows
them their variables from x(a) with a short explanation of what each variable in this table means
for them, an example of this can be seen in figure 3.

4.2.3 Depiction of the explanation

After reading the case the participant reads that his mortgage application was denied (everyone
is denied). After reading the decision, the explanation is presented to the participant. This
explanation consists of a small paragraph explaining what the participant is shown, followed
by a table where the participant is shown his case compared to that of the person he is being
compared to. The contributing causes are shown in red. The variables which counteracted
the decision are colored in green (in case the participant is filling in questionnaire 3). This is
followed by the explanation itself which summarizes on which parts the applicant got rejected,
naming the most important ones first. An example of this can be seen in figure 4.

4.2.4 Questions

Finally the participant is asked to rate several aspects of the explanation. Our aim for the
questionnaire was to find out the following:

1. How well received are the explanations?

2. Which of the distance functions is preferred when it comes to the reference object.

3. Which of the reference object types is better received when it comes to the reference
object.

4. Are some variables more important to people than others in the generated explanation.

Firstly he/she is asked ”How satisfied are you with explanation (A/B/C)?” on a scale of 1-5,
with the lower end labeled as ”Completely unsatisfied” and the higher end labeled ”Completely
satisfied”. Secondly the participant is asked to rate the reference object: ”Do you think the
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Figure 3: Example of a case as presented to a questionnaire participant

Figure 4: Example of a case comparison and explanation as presented to a questionnaire par-
ticipant.
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comparison to person (A/B/C) is relevant?”. The scale is again 1-5 with the labels changed
for the lower end to ”Completely irrelevant” and the higher end labeled ”Completely relevant”.
Thirdly we ask the participant to rate each individual cause and if they find it to be a valid
reason for denial worded as:’In your opinion, is your score on ”ratio payment to income”(e.g.)
a valid reason to deny your application’. The participant get a scale of 1-5 with the lower end
labeled ”Not at all” and the higher end labeled ”Very much so” (Coleman, 2018). Finally the
participant is asked if they have any suggestions, which they can freely fill in if they so desire
(this is the only optional question in the questionnaire). An example of all types of questions
can be seen in figure 5.

Figure 5: Example of all types of question for the participant.
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5 Methods of analysis

In this section we will go through the analyses methods used to find the results shown in section
6. As we have three different questionnaires and not all have the same number of responses our
data for the majority of the comparisons is based on the percentage of people answered. All
required questions were made as a Likert scale type question, it is argued that this gives us the
ability to also use the mean as a measurement but is not universally agreed on for this reason
we ran four analysis. Two depicting the answers as ordinal and the other two depicting the
answers as numeric.

5.1 Methods

Due to the small number of participants (40) we chose to more in depth with our analysis and
try to find out where possible effects are visible. Due to this we consider multiple ways to
analyse the questionnaire results.

5.1.1 Cumulative distribution

Our first analysis looks at the cumulative distribution of the responses. This analysis is used
to see if we can see if one of the compared distance functions or reference objects is scoring
consistently lower than the other. This is done the following way: If we take the question ”How
satisfied are you with explanation A?” comparing on Gowers vs Simplex as an example, we
count the number of responses received for each distance function. We then proceed to go from
1 towards 5 for each separate distance function with the count for rating 1 being the number of
people that rated this explanation as a 1. Rating 2 then gets shown as the count of both rating
1 and rating 2 combined, then continue doing this until we reach rating 5 where we should
end up with the total number of answers as the total count. Since we might have a different
number of participants for different distance functions or reference objects we use percentage
of total answers. In the mathematical sense we are trying to find if the cumulative conditional
probability given condition A is always lower than given condition B. So we can state that if:

P (y ≤ j|A) ≤ P (y ≤ j|B)

∀j = 1, . . . , 5
(7)

then P (y|A) is ”stochastically larger” than P (y|B) and in that sense we can state that A tends to
produce better explanations than B (if in this case y represents the quality of the explanation).

Visually, this means that the cumulative distribution of y given A lies completely below the
cumulative distribution of y given B.

5.1.2 Within subject dependent t-test

We use the dependent t-test (also called a paired sample t-test) to compare the mean difference
between our samples to the difference we would expect to find between population means, and
then takes into account the standard error of the differences. This means we compare the means
of our two different conditions and the standard error to determine if the differences in means
is likely or not.

5.1.3 Pearson chi-square

The Pearson chi-square is used to check for individual effects of variables on our predictions,
this way we can see if any single effect has a strong correlation with the rating provided by the
participant. In this case we try to find the most parsimonious model which is not significant
in our Pearson and likelihood ratio test. The eventual model can be viewed as a mosaic plot
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and through this we can see the effect sizes in form of the standard residual if there are any
significant differences from our null hypothesis. If any of these differences occur we can state
that there is an effect in that variable. We use the same outcome variables y for this method.

5.1.4 One-way independent ANOVA

The one-way independent ANOVA is used for finding effects for single independent variables.
We use it for the same reason we used Independent factorial ANOVA for the logistic regression
only in this case to compare it with the Pearson chi-square. Same as the Pearson chi-square we
use this ANOVA to test for single independent variables and if they have a significant influence
on their own. The main difference is the output is processed as a continuous variable instead
of a factor making it possible to see smaller changes more easily. Before building the regression
model we first use Levene’s test to verify if the assumptions are satisfied. Levene’s test assesses
the equality of variances for two or more groups, which is an assumption that the one-way
independent ANOVA has. If the Levene’s test is non significant and therefore the assumption
holds, we can continue building the linear model which will be used for analysis. In the analysis
we use as y values the explanation rating and reference object rating, and a single predictor
variable (reference type, distance function or number of contributing causes). If the Levene’s
test is significant and therefore the assumption is not met we can use Welch’s F test to adjust
for the differences in group variances. If in Welch’s F test we do find a significance we can state
that there was a significant difference between the two different variables.

5.1.5 Ordinal logistic regression

For looking at the combined effects of both the reference object type and the distance function
used when considering the replies as an ordinal variable and not a continuous we use a logistic
regression model. In this case our y value consists of either the rating given on the question
”How satisfied are you with explanation (A/B/C)?” or ”Do you think the comparison to person
(A/B/C) is relevant?” as a factor, depending on what we are testing for. As the predictor vari-
ables we use the distance function used (factor), the reference object type(factor), the number
of errors a person made in the test questions(numeric) and the number of contributing causes
that were given(numeric). The result will be a model which consists of multiple separating lines
(in our case 4 lines as we got 5 different factor levels). This gives us a total of 5 areas which are
coinciding with the possible answers, this way we can calculate with the input in which area
a certain combination will most likely fall. With the ordinal logistic regression model built we
look at the coefficients and if any are significant. Another thing we look for is the signs of the
coefficients if these coincide with what we would expect. After making the model we do not
automatically get the p-values, to acquire this we compared the t-value against the standard
normal distribution. This calculation is not completely accurate but gives us a good estimate
to the p-value. The formula for the ordinal logistic regression is show in equation 8. In the
formula we calculate the proportional odds j for the class y given x, we calculate this using the
intercept t for j using the coefficients β> for variable x (Long and Freese, 1997). We use the
polr function in the R package MASS to do this for us.

P (y ≤ j|x) =
exp(tj − β>x)

1 + exp(tj − β>x)
(8)

5.1.6 Independent factorial ANOVA/multiple regression

A factorial ANOVA is an ANOVA which uses more than one independent variable and which
uses a prediction output which is continuous. We use this analysis to see if we have different
results compared to the ordinal logistic regression when we see the output as a continuous
variable instead of a factor as the participants have answered. Reasoning behind this is the fact
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that we might find differences in outputs which we can miss if we use the factors due to our
low number of participants. Instead of the logistic model used in the ordinal logistic regression
we use a linear model for the ANOVA to determine if there are any significant variables. We
take the same outcome types for y (explanation rating/comparison rating), we also use the
same predictors as with the logistic regression (distance function, reference type, number of
contributing causes and errors made on test questions). The standard model for the factorial
ANOVA is shown in equation 9. The y value given variable xi and zi is calculated with the
intercept β0 and the coefficients for single variables are β1 and β2 and the interaction effects
coefficient uses both variables calculated with β3. The coefficients are the sum of squares of the
variable xi, zi and the interaction effect (xi × zi) (Field et al., 2012, p. 403).

yi = β0 + β1xi + β2zi + β3(xi × zi) (9)
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Figure 6: Total Number of errors made by participants

6 Results

In this chapter we present the results we found by performing the analyses discussed in chapter
5.

6.1 Questionnaire results

We had a total of 40 respondents on our questionnaire divided over the different questionnaires
as: questionnaire 1 (14), questionnaire 2 (14) and questionnaire 3 (12). Most participants were
between the age of 24-36 and were either currently studying or started their career. We summed
the total number of errors made by participants as shown in figure 6. In figure 7 the ratings
given by the participants to the question ”How satisfied are you with explanation (A/B/C)” and
the rating given to the question ”Do you think the comparison to person (A/B/C) is relevant”.
In both cases the mode is at 4.

6.2 Cumulative distribution

We used the cumulative distribution to find a stochastically larger effect in single independent
variables.

6.2.1 Explanation rating with reference object type

If we look at figure 8 we can clearly see for closest type keeps it’s cumulative percentage above
that of the medoid type reference object. Medoid in our case seems to perform better over closest
in the overall cases when it comes to the quality of the explanation as rated by participants.
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Figure 7: The frequencies of ratings given to the explanation and reference object type

Figure 8: Cumulative distribution for quality of explanation depending on the reference object
type (closest or medoid)
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Figure 9: Cumulative distribution for quality of explanation depending on distance function

6.2.2 Explanation rating with distance function

If we look at figure 9, it is visible that the Simplex method just about stays above the cumulative
percentage of Gowers’ percentage. The effect seems to be less than that of the previous graph
comparing reference object types. It still holds that Gowers is stochastically larger than Simplex,
this would mean that Gowers is the preferred option of finding the reference object.

6.2.3 reference object rating

As can be seen in figure 10 and figure 11 in both cases we do not achieve a stochastically larger
variable in the case of the reference object rating.

6.2.4 Contributing causes with and without counter-acting causes

In figure 12 we see that including counteracting causes in the explanation doesn’t seem to
improve its quality. Except for rating 1, the cumulative distribution of quality of explanations
mentioning just contributing causes is below that of explanations including counteracting causes.
The exception for rating 1 is due to a single respondent giving this rating for 1 explanation.

6.3 Within subject dependent t-test

We use the dependent t-test (in R function ”t.test” with paired set to TRUE) to see if our
subjects within the questionnaire displayed a preference for one of the reference type or distance
function based on their explanation rating. The results of the t-tests can be seen in table 5.
The comparisons that were done are shown in the earlier discussed figure 2 the dashed lines
here are the comparisons we do within subject combining them per questionnaire. As seen none
of the results test significant (p < 0.05). What we can take from the t-test is that when testing
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Figure 10: Cumulative distribution for quality of reference object depending on the reference
object type (closest or medoid)

Figure 11: Cumulative distribution for quality of reference object depending on distance function
(gowers or simplex)
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Figure 12: explanation ratings comparison counter-acting and contributing causes
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Questionnaire Comparison t-value df p-value

1 medoid/closest 0.66749 27 0.5101

2 gowers/simplex 0.44073 27 0.6629

3 medoid/closest 1.4832 11 0.1661

3 gowers/simplex 0.32063 11 0.7545

Table 5: Results of all dependent t-tests

Figure 13: Percentage distribution of explanation rating for medoid and closest

within subject the t-value indicates the same tendency towards medoid and Gowers as analysis
later in this section will show.

6.4 Pearson chi-square

For the Pearson chi-square analysis we look at the influence of reference type and distance
function separately on the explanation rating and comparison rating. The complete test can be
found in the appendix.

6.4.1 reference object influence on explanation rating

The chi-square test for reference object type against explanation rating also shows in this test
to have a significant influence for when a person would have the medoid type for a good rating
with X2(1) = 9.694136, p < .05. If we then look at our percentage graph in figure 13 we can
see that medoid scores better than the closest type in the higher ratings. The odds of scoring
a rating 4 or higher are 1.98 (1.758621,0.888889) times higher when using the medoid reference
object.
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Test X2(1) df p-value

explanation | reference object 9.694136 4 0.04590745

explanation | distance type 3.727172 4 0.4441862

comparison | reference object 2.91621 4 0.571944

comparison | distance type 2.524658 4 0.6402259

Table 6: All chi-square test results

(center = median) Df F value Pr(>F)

group 1 9.522 0.002429

146

Table 7: Levene’s Test for Homogeneity of Variance (center = median)

6.4.2 Distance type influence on explanation rating

As shown in the table of all chi-square (table 6) results we can see that the influence that the
different distance types on the explanation rating were non significant p = 0.4441862 6= p < 0.05.

6.4.3 reference object influence on comparison rating

Just like with the previous test we do not see any significant effect for the reference type on the
comparison rating. As shown in table 6 we have a non significant p-value p = 0.571944 6= p <
0.05.

6.4.4 Distance type influence on comparison rating

The influence that the different distance types had on the comparison rating also tested non
significant, p = 0.6402259 6= p < 0.05. This also indicates that there was no relation found
between the distance type used and the comparison rating.

6.5 One-way independent ANOVA

For the One way ANOVA we take a look at the separate independent variables to see if they
have any influence. Same as with the Pearson chi-square analysis we take a look at the influence
of distance function and reference type separately on the explanation or comparison rating. For
the one-way independent ANOVA we do the Levene’s test to see if the predictor is significant. If
it is we apply Welch’s F test, else we can build a linear model to see if the predictor is significant.

6.5.1 Explanation rating one-way independent ANOVA

For our explanation rating predicted by the distance function Levene’s test was insignificant
with p = 0.3184. And showed in the linear model to be insignificant with p = 0.428. The
explanation rating predicted by reference type had a significant Levene’s test shown in table
7. This tells us that when we use the reference type as a predictor changing the reference type
has a big influence on changing the outcome variable (explanation rating). If we do the follow
up Welch’s F we get another significant return with F = (1, 126.3) = 6.5751, p = .01151. This
indicates that even after adjustments that reference type still has a significant influence on the
explanation rating, which is in line with our earlier analysis.

6.5.2 Comparison rating one-way independent ANOVA

For the comparison rating predicted by distance function, Levene’s test came back insignificant
p = 0.6126. As with previous results the generated linear model shown in table 8 shows that
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Df Sum Sq Mean sq F value Pr(>F)

Distance function 1 0.0 0.0243 0.015 0.903

Residuals 146 236.16 1.6175

Table 8: Levene’s test One-way ANOVA comparison rating/distance function

Df Sum Sq Mean sq F value Pr(>F)

Reference type 1 0.0 0.0001 0 0.994

Residuals 146 236.2 1.6177

Table 9: Levene’s test One-way ANOVA comparison rating/reference type

the distance function has no significant effect on the comparison rating with p = 0.903. The
F-value in the levene’s test also indicates that the means are almost identical to each other.
The comparison rating predicted by reference type also shows an insignificant Levene’s test
p = 0.8376. From this linear model just as the previous result shows a non significant effect in
the prediction of the comparison rating by reference type as shown in table 9 with p = 0.994.
We can also see from the F-value that the means are almost identical just as the previous result.

6.6 Ordinal logistic Regression

We use the ordinal logistic regression to find significant effects when we have multiple indepen-
dent variables which need to predict an ordinal outcome.

6.6.1 Explanation rating logistic model

In the ordinal logistic model in table 10 we see that the reference type is significant with
p = 0.0018, where the coefficient indicates that the reference type medoid scores better than
the closest. Another significant variable in this test is the number of contributing causes in the
explanation (p = 0.0422) with the coefficient being negative indicates that when participants
were shown an explanation with less contributing causes they are more likely to rate the expla-
nation positively. Another variable of note is the errors made, it’s close to being significant and
according to the coefficient people that made more errors at the start are more likely to give
the explanation a lower rating.

Coefficients: value Std. Error t value p-value

Distance type.simplex -0.2204 0.3062 -0.7199 0.4715992

Reference type.medoid 1.1911 0.3807 3.1288 0.0017553

Number of contributing causes -0.5059 0.2490 -2.0315 0.0422030

Number of errors -0.2219 0.1236 -1.7953 0.0726136

Intercepts: value Std. Error t value

1—2 -4.0073 0.6555 -6.1138

2—3 -2.0762 0.5564 -3.7317

3—4 -1.1258 0.5423 -2.0761

4—5 0.8757 0.5406 1.6200

Table 10: The summary of the logistic regression model for explanation rating
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Coefficients: value Std. Error t value p-value

Distance type.simplex 0.06706095 0.2988123 0.2244250 0.8224266418

Reference type.medoid 0.19435939 0.3554711 0.5467656 0.5845397668

Number of contributing causes 0.21910064 0.2412739 -0.9080991 0.3638258464

Number of errors 0.07728198 0.1172310 -0.6592285 0.5097490473

Intercepts: value Std. Error t value

1—2 -2.16547305 0.5583698 -3.8782058

2—3 -1.14283200 0.5360185 -2.1320756

3—4 -0.27555674 0.5305947 -0.5193356

4—5 1.58763960 0.5570865 2.8498976

Table 11: The summary of the logistic regression model for comparison rating

(center = median) Df F value Pr(>F)

group 3 1.5612 0.2014

144

Table 12: Levene’s Test for Homogeneity of Variance (center = median)

6.6.2 Comparison rating logistic model

Compared to the explanation rating the model for the comparison rating does not include any
significant variables (see table 11).

6.7 Independent factorial ANOVA/multiple regression

The factorial ANOVA is used to make a linear model of both the explanation and comparison
ratings.

6.7.1 Explanation factorial ANOVA

Our ANOVA is fit for the explanation rating predicted by the reference type, distance function,
number of contributing causes and the number of errors made at the background questions test.
If we look at the Levene’s test in table 12 we can conclude that due to F (3, 144) = 1.56, p =
0.2014 is not significant, that the assumptions of the ANOVA are met. The ANOVA’s type
III test is shown in table 13. In the table we can see that the main effect with a significance
of (p < 0.01) is the reference type for its influence on the explanation rating and a minor
significance of (p < 0.05) in the number of contributing causes. Just like the previous results
other predictors are non significant. In comparison to the ordinal logistic regression we see the
same significant results.

6.7.2 Comparison factorial ANOVA

Same as with the previous ANOVA we first need to see if our assumptions hold by looking if
our Levene’s test in table 14 is significant or not. Our assumption holds again as F (3, 144) =
0.0882, p = 0.9664 is not significant. This means we can now look at the type III test again to
determine the important predictors. In the type III test we can see that none of the predictors
are significant so we can not state that any is important enough as a predictor, this also coincides
with the results found earlier.
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Response: explanation Sum Sq Df F value Pr(>F)

(Intercept) 186.261 1 159.9888 <2.2e-16

Reference type.medoid 14.415 1 12.3818 0.0005817

Distance type.simplex 0.735 1 0.6314 0.4281761

Number of contributing causes 5.545 1 4.7630 0.0307110

Number of errors 3.065 1 2.6325 0.1069015

Residuals 166.483 143

Table 13: ANOVA table (Type III tests) explanation

(center = median) Df F value Pr(>F)

group 3 0.0882 0.9664

144

Table 14: Levene’s Test for Homogeneity of Variance (center = median)

Response: comparison Sum Sq Df F value Pr(>F)

(Intercept) 136.820 1 83.4467 5.778e-16

Reference type.medoid 0.432 1 0.2634 0.6086

Distance type.simplex 0.088 1 0.0535 0.8175

Number of contributing causes 1.331 1 0.8119 0.3691

Number of errors 0.422 1 0.2576 0.6126

Residuals 234.464 143

Table 15: ANOVA table (Type III tests) comparison
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6.8 Conclusion

Explanation based on medoid objects of reference tend to be rated higher than explanation
based on ”most similar” objects of reference. Something to note is that participants did not
show the same effect when asked directly if the reference object was relevant to their case. This
could be due to the fact that the participants do not link the explanation rating to that of
the comparison used and only look at the explanation separate from the comparison person.
Another possibility is that the participants overall found the reference objects too close to each
other and might not have been able to significantly differentiate them from each other.

The ordinal logistic regression gave us a significant result on the number of errors people
made on the the test. This indicated that people were giving worse ratings if they made
more errors on the test. For the non significant results of the distance function we do see the
coefficients that we expected to see from our participants where they find the easier comparison
of Gower’s distance to be better rated than the more complex Simplex method. Another
observation can be made for the number of causes presented to the user. If we look at the
coefficients given to the number of contributing causes we can see that the rating tends to be
higher if less causes are presented. This is in line with Feelders, as the parsimoneous set is used
to prevent the less crucial causes to be filtered out preventing info overload for the user. We
can see this effect in the results.

Participants were also able to fill in an open field on the questionnaire which asked how
they think we could improve the explanation. Eight (20%) people noted that in the case of
our mortgage question they wouldn’t want to be compared to another person as they see their
application as a singular case. A positive note is that when the medoid was used as a reference
type most people voted for a rating of 3 or higher indicating to us that the explanation might
not be passable right now as we can consider a rating of 3 to also indicate ”no opinion” or
”neutral”, but does not get completely rejected. Looking at our research questions we can see
if we are able to answer them now:

1. Which of the considered objects of reference produces the best explanations?

2. Which of the considered distance functions provides us with the best reference objects,
going by the provided end result?

3. How does the inclusion or exclusion of counteracting causes influence the quality of the
provided explanations?

1. If we look at the results of the analysis we see that the medoid type scores significantly
better than the closest type when it comes to the explanation rating. The results of the question
if people were satisfied with the comparison person did not give us significant results.

2. If we look to the analysis we can not exclude either of the options, we have not been able
to find a significant difference in any of the analyses performed. Hence, it doesn’t seem to be
worthwhile to use the more complicated Simplex method in combination with the Mahalanobis
distance. The simpler Gower’s distance appears to work just as well

3. There is a slight indicator in the cumulative distribution of the counter-acting included
and excluded analysis that only showing the contributing causes has a better effect on the
ratings. This is not a significant indicator and might only be taken as an indicator for future
research.

33



7. DISCUSSION

7 Discussion

In this section we will describe the implications of the results and discuss the (possible)shortcomings
of the research done in this paper. From our conclusion we see that one of our three research
questions has gotten an answer (which reference type is better closest/medoid). If we go back to
the other two questions we have no certainties to indicate our different options are better than
the other, with only a possible indicator in the counter-acting excluded way of explaining. An
interesting point we did pick up in one of our analysis is that the number of contributing causes
the explanation uses was influencing the rating with significance in the ordinal logistic model.
One of our biggest issues in this research was the lack of participants in our questionnaire, for
any research further on this subject which uses a questionnaire to be viable for a good analysis
should consist around 100+ participants as the lack of data can be really shown when we take
a look at our analysis. Due to this lack of data a lot of the analysis is looking for variables that
could be significant and our overall analysis could very well be wrong. With a bigger set we
would have been able to run a more precise analysis and go into greater detail as to what is
important when it comes to the explanation.

Another point is the setup for the questionnaire for the setup we should have had a strict
divide of within and between tests, our current implementation was chosen to minimise the
number of participants needed for maximum number of comparisons, this in the end conflicted
with the strict divide of within and between subject testing. It would have improved our analysis
if we would have done only one independent variable being tested instead of multiple at the
same time, this being the comparison of the non counteracting causes questionnaires (1/2) and
the added counteracting causes questionnaire (3). The reason being that we combined the same
cases with and without counteracting causes to at the same time compare them to the distance
function or reference object types. Resulting in some single variable analysis not having an
single independent variable but two.

The database that was used to create the questions for the questionnaire might have been to
complex for the differences in explanations that we wanted to achieve. The main issue with this
is that we tried to find a database which is understandable for the participants but might have
ended up with a too complex explanation for the low level testing that was ran. We limited our
research to only two options in each category (distance function/reference object type) this was
mostly done for ease of comparison in future research a more broad approach would be needed
to find what distance function or reference object type would work best.

A major point that didn’t get looked into was how to present such an explanation when
generated. We chose to go with the more raw type where we give the actually contributing cause
with a very short clear description. If this were to change to a more natural type of explanation,
which in the real world could be done by a subject expert, people might also increase their liking
of the explanation provided due to the more natural way of it being presented to them.
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Appendix

Cases used

going from Questionnaire 1-3, comparison in blocks of 2 except for the 3 final ones which get
compared together.

Pearson chi-square tables

full tables of the Pearson chi-square test done in the analysis
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