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Abstract

Persistent homology is a way to analyse the shape of a dataset rather than its semantics. This is done
by assigning the dataset holes in different dimensions, borrowing this theory from the mathematical
area of topology. The dataset is treated as being sampled from a topological space, which is in turn
approximated at different resolutions. The persistent Betti numbers then count the number of holes
in these spaces, registering for how long the holes persist as the resolution increases. Computing
such features classically may prove costly, with some steps possibly requiring exponential time. In a
2016 paper, a polynomial time quantum algorithm for the approximation of persistent homology is
promised. In this thesis it is shown these methods are generally incapable of uniquely determining
the persistent Betti numbers in arbitrary dimensions. The algorithm does succeed in the zeroth
dimension. After treating the prerequisites, the methods from this paper are explained, the above
statements are proven, and finally the quantum algorithm is related to agglomerative hierarchical
clustering and spectral clustering.
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Chapter 1

Introduction

1.1 Topics

This introductory chapter is meant to build an intuitive understanding of the separate fields brought
together in this thesis, and therefore mostly serves to draw an outline for the following chapters to
fill. Breaking down the title of this thesis, it is revealed that the ideas stem from three different
fields. First, the algorithms are to be run on a quantum computer, thus evidently drawing from
physics. Second, the treated algorithms are used for cluster analysis, hailing from machine learn-
ing and statistics. Lastly, pure mathematics is represented by the use of persistent homology, a
technique for data analysis that stems from topology. Persistent homology is used in this thesis as
the basic principle for quantum clustering. The topics are discussed in order of their corresponding
chapter’s appearance, and the dependencies between these chapter’s subsections are visualised in
the flowchart at the end of this introduction. Following any path in this flowchart leads to the
terminal nodes that represent sections of the sixth and last theoretical chapter, where all theory
culminates in the discussion of quantum algorithms for hierarchical and spectral clustering.

The remainder of this subsection is used for notes on the general structure of this thesis. As a
matter of convention, most definitions are segmented from the main body of text, unless it is best
seen as an addendum to previous definitions, or a string of related definitions are presented at once.
In these cases the terms that are defined are emphasized. On the topic of typography, important
terms that are not given strict definition at their place of occurence are emboldened.

Nearly all recurrent and foundational material is collected in the second chapter. Sometimes the
choice was made to not include theory finding use only in specific subsections, instead treating it
wherever required. Examples are the treatment of homotopies in aid of the theory of simplicial
complexes separate from the section on topology, or that of perturbations for the motivation of
spectral clustering. This decision is based on didactical considerations, although the disjunctive
modular division of material is usually given higher priority.

The three fields this thesis builds on are now briefly introduced.

1.1.1 Quantum Computing

Quantum computers store their information in quantum bits or qubits, the quantum analogue to
classical bits. These basic units of information differ from their classical counterparts as they are not
strictly binary and discrete, but rather continuous. As with bits, a qubit has two elemental values,
commonly denoted |0〉 and |1〉, but it differs in that it may also reside in an intermediate state called
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a superposition. In linear algebraic terms this means that the state of a qubit is determined by a
linear combination of the elemental values of the qubit. A curiosity is that the coefficients of this
combination, and therefore the full state of the qubit, are not directly accessible. A state is read out
by way of quantum measurement, obtaining one of the elemental values with probability derived
from the aforementioned coefficients. Following this measurement the state collapses, leaving the
state of the system in a single elemental value.

In essence, qubits are a way of storing information with a richer structure than their classical binary
counterparts. Stored information is manipulated by way of matrix multiplication, and because of
this algebraic structure an expansive array of possibilities is offered. As a notable example, one of
the consequences of the availability of superpositions is the concept of quantum parallelism, the
possibility of obtaining several results of an operation in superposition. A different useful property
is that of entanglement. In a system of multiple qubits, it is possible for a state to occur that
can not be described by the individual states of the component qubits. The qubits are then said
to have become entangled, and this phenomenon can be exploited for information theoretical gain.
Superdense coding, used to communicate two classical bits worth of information by sending only one
qubit, exploits the possibility of entanglement. Without entanglement this feat would be impossible
(by a result called Holevo’s theorem [70]).

This model of computation is not only one of advantages, as it bears disadvantages as well. As
was mentioned before, the precise state of a quantum system is inaccessible, and upon measure-
ment the state collapses onto an elemental value. Part of the paradigm is therefore dedicated to
interference, the process of attempting to manipulate the probability distribution governing these
results. Furthermore, the states may suffer from decoherence, state decay caused by outside in-
fluences. This makes quantum computation without taking additional measures prone to noise and
instability. Another difficulty is that classical thinking is strongly ingrained. Truly new algorithms
are rarely formulated, and fully exploiting the capabilities of a quantum computer has proven hard.

For reasons now apparent, most quantum algorithms are rooted in a few pioneering routines. A fa-
mous example of such a routine is the later to be treated Grover’s algorithm that can search through
an unstructured database in sublinear time. Another is Shor’s algorithm that can accomplish integer
factorisation in polynomial time, therefore equipping quantum computers to pose a threat towards
modern cryptography that grounds itself in the hardness of the factorisation problem.

1.1.2 Cluster Analysis

Cluster analysis is an example of an unsupervised machine learning task wherein the main objective
is the identification of homogeneous groups in a dataset. The problem formulation is pinned on the
philosophy that a proper clustering should lead to groupings of datapoints that have a high degree
of likeliness within each group, but a high dissimilarity between the separate groups. If the clus-
tering induces a partition of the dataset this corresponds to a hard or complete clustering, where
each datapoint belongs to exactly one cluster. If not, the clustering is said to be incomplete. The
incomplete clusterings cover all possibilities that do not require strict memberships. If a clustering is
incomplete, datapoints may be said to belong to clusters with a certain probability or likelihood, or
datapoints may be labeled outliers that are not assigned to any cluster at all. Regardless the type,
clustering is most suited to exploratory data analysis and knowledge discovery, finding application
in several fields where it is of importance to be able to identify groups.

The algorithms used are based on distinct ideas on what makes a cluster, leading to several different
models. Examples are connectivity based models that base their clusters on pairwise distances,
centroid based models that find identifying points representative for the clusters and density
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based models. The first two models are treated in this thesis through hierarchical clustering and
k-Means clustering. The last is not, but the interested reader is encouraged to read about such
models in for instance the form of DBSCAN [79].

Prior to this work, multiple research groups have investigated the possibility of setting a quan-
tum computer to the task of clustering, and more generally machine learning. Highly accessible
surveys of the proceeds are given in [4] and [80].

1.1.3 Persistent Homology

Summarily, topology is an area in pure mathematics that studies spaces up to specific continuous
deformations. This means that the result of a space that is subject to bending and stretching but
not tearing or glueing is considered equivalent to the original space from before these operations
were performed. Equivalently, two spaces are seen as equal if one can be transformed into the other
by way of a continuous deformation. Seeing as such transformations, known as homeomorphisms,
are clearly not required to preserve distances between elements, the familiar notion of a metric will
not suffice to encode and retain nearness relations. One can instead opt to register this information
in certain subsets, leading to the definition of a topology, and consequently to that of a topologi-
cal space. The topological space thus arises as a generalisation of the metric space and it is worth
noting that every metric indeed induces a topology.

Because a general topological space on itself has no canonical distance measures, its geometry
is discussed qualitatively instead of quantitatively. Rather than speak of lengths or angles, topol-
ogists converse in terms of paths, loops and holes. It is the latter of these three that is of most
importance to this thesis; the theory that captures the holes of a space in each dimension is that
of homology. A key insight that connects topology to machine learning is that one can not only
look at a dataset as representing information, but that it can also be analysed through its innate
homological information. The first obstacle is that a dataset is not a topological space, but under
a set of mild assumptions this can be remedied. In order to do this, inspiration is drawn from the
computation of simplicial homology, the homology of a simplicial complex.

Recall that simplices can be considered to be generalisations of the triangle, as they are shapes
formed by pairwise connected points. Simplices in turn can be joined together following specific
rules to form a simplicial complex which can be realised as a topological space. In order to compute
the simplicial homology, all cycles comprised of simplices in such a complex are considered, and
each closed cycle that does not bound another simplex is considered to be a hole in the complex.
Intuition dictates that if there is nothing to bound, there should be a hole. The simplicial homology
is a representation of these holes. In general, a topological space can be approximated by a simplicial
complex which is referred to as the act of triangulation.

A set of real-valued vectors together with some metric is called a point cloud. Given a point
cloud, one can assume the points are coordinates sampled from an underlying topological space and
attempt to triangulate it based on the sample. A common way to do this is to treat every data-
point as a 0-simplex and to add higher dimensional simplices between them, based on a distance
parameter. This would raise the question of what parameter to use, which is a difficult one and is
moreover case-dependent. Persistent homology answers the question of what scale parameter to use
with another: “why not all of them?” Instead of looking at one fixed scale parameter, persistent
homology traces the lifespan of the detected holes as the scale increases. At each timestep the
complex is expanded, thereby closing and creating new holes, which means the scale is a factor car-
rying important information. The associated construction incorporating the homology of all these
complexes is called persistent homology, as it shows how the holes persist over time. The holes
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that live the longest are most likely to be true features of the underlying space, while short-lived
holes are likely to be noise in the dataset. Hence we can not only compute the supposed homology,
but also obtain reasonable assurance on how accurate an approximation it is.

1.2 Academic Context

As an academic work, this thesis should be read in an academic context. This section should assist
in establishing this frame of reference. First, the following literature review is a coarse evaluation
of the work related to this thesis. Following this review, a cursory listing of the contributions made
in this thesis is given in the second subsection, which will later be revisited in greater detail in the
concluding chapter.

1.2.1 Literature Review

Quantum computing and quantum information, both coinciding to a certain extent, are relatively
new fields. Although many papers are published on the field’s developments, most algorithms and
relevant information regarding gate-based quantum computation can be found in [70]. For this
reason the review of quantum computation is confined to this modest paragraph.

Although the concept of persistent homology predates [92], this paper both introduces the ele-
ments of persistent homology to the reader and proposes algorithms for its computation over both
fields and principal ideal domains. The latter are abstract algebraic structures, the use of which
grants generality which is often not needed in machine learning applications where the coefficient
domain is fixed.

Persistent homology seems suited to clustering in particular because the homology in the zeroth
dimension measures the connectivity of a topological space. At the time of writing and to our
knowledge, four papers have been published on the possible applications of persistent homology to
clustering tasks. These four papers are treated below in no particular order.

In [49], the authors have presented a clustering algorithm using persistent homology. The gen-
eral idea is to construct neighborhoods around datapoints and to look at their measured overlap
based on topological properties at a varying timescale. These overlaps are then used to filter and
remove points from each neighborhood. A graph from which the clusters can be extracted is con-
structed on the resulting sets.

Using examples from time series analysis, the effectiveness of persistent homology for clustering
is demonstrated in [74]. Several statistics based on the persistent homology of the data are calcu-
lated and the clustering takes place solely in the space of these observations. The found clusters
translate back to a clustering of the original dataset. It is worth noting, however, that the paper
does not thoroughly analyse the computational complexity.

Of a surveying nature itself, several common clustering algorithms are compared in [90], with the
addition of a clustering algorithm rooted in persistent homology. This algorithms identifies clusters
by assigning statistical significance to found connected components using the zeroth dimensional
homology, using a treshold on the persistence.

Finally, [18] discusses a hill climbing based algorithm where the merging of clusters is guided by per-
sistent homology. The main objective of this paper is to use persistent homology to aid in choosing
the clustering parameters, and the theory is formulated in the generality of Riemannian manifolds.
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A supposed quantum algorithm for the computation of persistent homology is outlined in [59]. In-
stead of deterministically constructing simplicial complexes, this algorithm uses a quantum search
algorithm to construct an approximation to the complex encoded in a quantum state. This both
reduces the computational complexity and compresses the information. Following this, the Betti
numbers are estimated using an eigenvalue estimation routine [2], and it is claimed this leads to the
computation of persistent homology. This claim is discussed in Section 5.3.

A notable paper [1] that warns against the hidden or overlooked caveats of many quantum algo-
rithms mentions the paper from the above paragraph as a positive example of quantum algorithmic
design. Furthermore, there has been a proof of concept realisation that computes the Betti numbers
on a small scale photonic quantum processor. This was reported on in [48].

For further context, several quantum counterparts to classical clustering algorithms have been devel-
oped [5,89]. These adaptations depend on replacing certain subroutines of the common algorithms
by quantum routines and set the landscape for quantum clustering tasks.

1.2.2 Summary of Contributions

First and foremost, this thesis combines the three fields of quantum computing, machine learning
and topology. This conjoinment is cast into one unifying language. The use of this language in
particular is to bring seemingly unrelated theoretical results together, and showing they exist in the
intersections of their fields. The theoretical gaps left by preceding works are filled, with the result
serving as a foundation for the main contributions of this thesis. Reasoning from these foundations
it is shown that in dimensions higher than zero, the algorithm in [59] might fail to approximate
the persistent Betti numbers. It is also proven the algorithm succeeds in the zeroth dimension.
The computation of the zeroth dimensional persistent Betti numbers is related to the process of
hierarchical clustering, and the connection between the theory in [59] and spectral clustering is
briefly explored.
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Chapter 2

Mathematical Preliminaries

2.1 Algebra

Although linear algebra usually precedes abstract algebra in any mathematically oriented curricu-
lum, this section reverses this order and assumes knowledge from a first course in linear algebra.
These prerequisites will be used for minor motivation in the first subsection on abstract algebra, and
the concepts from this subsection will be useful to extend the presumed known theory from linear
algebra. A good resource to revisit linear algebra is [8], and all abstract algebraic theory discussed
in this subsection is but a drop of water in the ocean that is [30].

2.1.1 Abstract Algebra

Abstract algebra is one of the cornerstones of modern mathematics and envelopes the study of
abstract algebraic structures. A student’s first exposure to abstract algebra is usually in the form
of group theory and this subsection dares not deviate from this tradition.

Definition 2.1.1. (Group). A group is a set G together with an operation · : G×G→ G satisfying
the following three axioms for any x, y, z ∈ G:

1. The operation is associative, meaning x · (y · z) = (x · y) · z;

2. The set contains an identity element e ∈ G with the property that e · x = x · e = x;

3. Each element x in the set has an inverse x−1 ∈ G so that x−1 · x = x · x−1 = e.

If the group’s operation is commutative the group is called an abelian group, and if no confusion
may arise the composition x · y of two elements may be written as xy. Groups can be thought of as
modeling symmetry and can arise in several ways. One example is found in free groups, reminiscent
of spanned vector spaces. In linear algebra, the span of a basis contains all linear combinations of
the basis elements. The equivalent notion in a free group is a generating set, and the free group is
the span of this set in the sense that it contains all products including inverse factors.

Definition 2.1.2. (Free Group). The free group F (B) on a generating set B is the group with
as elements all possible finite reduced combinations of the elements in B and their inverses. The
cardinality of B is called the rank of F (B).

Vector spaces and groups are in fact directly related, as the vector space axioms ensure that every
vector space is in particular an abelian group. Therefore, maps between groups exist, and they
carry the same name as their vector space counterparts.
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Definition 2.1.3. (Group Homomorphism). A map f : G → H between groups is called a homo-
morphism if for all x, y ∈ G: f(xy) = f(x)f(y).

As in linear algebra, if the homomorphism is bijective, it is called an isomorphism.

Definition 2.1.4. (Group Isomorphism). A homomorphism between two groups is called an iso-
morphism if it is bijective, and two groups G1 and G2 are called isomorphic if an isomorphism
between them exists. This is denoted G1

∼= G2.

Group homomorphisms are closely related to subgroups of groups, to be defined momentarily. The
reader is invited to explore these connections themselves.

Definition 2.1.5. (Subgroup). A subset H of a group G is called a subgroup, denoted H < G, if
combined with the restriction of the group operation to H it itself forms a group.

Subgroups will be important to the theory of persistent homology which requires quotient groups
in particular for its construction. Quotient groups themselves require normality of the subgroup by
which the quotient is taken.

Definition 2.1.6. (Normal Subgroup). A subgroup N of G is called a normal subgroup of G,
denoted N / G, if it is invariant under conjugation. Therefore, N is normal precisely if for all g ∈ G:

gNg−1 =
{
gng−1 | n ∈ N

}
⊆ N. (2.1)

The requirement for normality in the definition of a quotient group is related to the group operation
that is induced on the resulting quotient.

Definition 2.1.7. (Quotient Group). If G is a group and N / G is a normal subgroup of G, the
group:

G/N = {gN | g ∈ G} with operation (xN)(yN) = (xy)N for x, y ∈ G

is called the quotient group of G by N .

Quotients can be used to construct an abelian group based on a non-abelian one by quotienting
out a specific subgroup. This is called the abelianisation of the original group, and the following
definition is a prelude to a precise definition.

Definition 2.1.8. (Commutator Subgroup). An element of the form xyx−1y−1 for x, y ∈ G is called
a commutator of G. The group [G,G] generated by the commutators of G is called the commutator
subgroup of G.

The commutators of an abelian group are per definition all reducible to the identity element so that
the commutator subgroup of any abelian group is the trivial group consisting of only the identity
element. It can be shown that the commutator subgroup is normal, meaning the following definition
is legal. The definition reflects that the abelianisation of an already abelian group should be the
group itself.

Definition 2.1.9. (Abelianisation). The abelianisation of a group G is the abelian group G/[G,G].

These constructions lead to the final required construction from group theory.

Definition 2.1.10. (Free Abelian Group). The free abelian group F ′(B) on a generating set B is
the abelianisation of the free group F (B) on B.
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The free abelian group is therefore not just a free group that is abelian, but it is the abelianisation
of a freely generated group.

Moving on in abstract algebra, concepts such as rings, modules and fields are met. This sub-
section will only define fields, which will be used to extend vector spaces past the familiar definition
over real or complex scalars.

Definition 2.1.11. (Field). A field is a set F together with two operations + : F× F→ F (known
as addition) and · : F× F→ F (known as multiplication) so that for every x, y, z ∈ F:

1. Both operations are associative, meaning x+ (y + z) = (x+ y) + z and x · (y · z) = (x · y) · z;

2. The operations are commutative: x+ y = y + x and x · y = y · x;

3. The set F admits distinct identity elements 0F and 1F so that 0F + x = x and 1F · x = x;

4. There exists an additive inverse −x ∈ F so that x+ (−x) = x− x = 0F;

5. If x 6= 0F, there exists a multiplicative inverse x−1 ∈ F so that x · x−1 = 1F;

6. Multiplication is distributive over addition: x · (y + z) = (x · y) + (x · z).

The characteristic ch(F) of a field F is defined as the smallest natural number n so that Σni=11F = 0F,
or 0 if no such n exists. It is essential to remark that the congruence classes of the integers modulo p
for a prime number p form a finite field of characteristic p with the usual addition and multiplication
operations:

Fp = Z/pZ = {0p, 1p, ..., (p− 1)p}. (2.2)

This field, among others, will be used to enrich the commonly known theory of linear algebra in the
following subsection.

2.1.2 Linear Algebra

Recall that the axioms defining vector spaces make use of scalars. In elementary definitions these
scalars are often taken from either R or C, and it can easily be confirmed that both these objects
are fields. In more generality, when the scalars in the axioms are taken from an arbitrary field F, the
vector spaces they describe are said to be vector spaces over the field F. Linear maps on these spaces
will often be referred to as linear operators from this subsection onwards, defined as linear maps
given irrespective of basis. In finite dimensions these operators can be given matrix representations
with respect to a fixed basis, and the terms operator and matrix will be used interchangeably in the
unambiguous presence of such a basis.

Having established this, the underlying fields are immediately used in the next definition.

Definition 2.1.12. (Linear Functional). A linear functional on a vector space is a linear map from
the space into its field of scalars.

In order to stimulate the imagination it is remarked that a definite Riemann integral is a linear
functional. Linear functionals however need not be complicated: it is claimed without proof that if
the vector space is Cn with its elements represented by column vectors, the linear functionals on the
space are precisely the conjugate transposes of the column vectors acting as matrices. In general
these functionals are called the duals of the vectors and they themselves form a vector space.

Definition 2.1.13. (Dual Space). The dual space V ∗ of a vector space V is the vector space
consisting of all linear functionals on V .
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Vector spaces are often combined with their dual spaces in tensor products, leading to interesting
correspondences, represented by for instance an evaluation map that applies duals to vectors.

Definition 2.1.14. (Tensor Product). Let V and W be two vector spaces with bases {v1, v2, ..., vn}
and {w1, w2, ..., wm} respectively. The tensor product V ⊗W of V and W is the nm-dimensional
vector space generated by the basis {vi ⊗ wj}1≤i≤n,1≤j≤m of abstract elements.

Objects of a tensor space, and therefore by circular reasoning the basis elements vi ⊗wj , are called
tensors. It is easy to be misled into thinking every tensor can be written in the form v ⊗ w for two
elements v and w from their respective component spaces. This is not true, as the counterexample
v1 ⊗ w1 + v2 ⊗ w2 illustrates. Further properties are that tensor products are multilinear and the
tensor operation is distributive over both components. If both components are inner product spaces
the tensor product inherits a well-defined inner product of itself.

The linear operators acting on a tensor product are tensor products of the operators acting on
the components. If A and B are two fixed matrices, the map A ⊗ B is given a matrix representa-
tions in the basis of the tensor space by the Kronecker product with submatrices:

[A⊗B]ij = aijB. (2.3)

This product retains and combines several aspects of the component matrices which are mostly
verified through direct computation when required.

For the following paragraphs, let V be a finite dimensional space with inner product 〈·, ·〉. If A
is an operator on V , there exists a unique operator A† so that for all vectors v, w ∈ V :

〈v,Aw〉 = 〈A†v, w〉 (2.4)

and this operator is called the adjoint or Hermitian conjugate of A. Note that this definition is
easily generalised to the adjoint of an operator between two finite dimensional inner product spaces.
On realised matrices, adjoints are the conjugate transposes of their matrices and they have several
useful properties which can be verified whenever they are required later in this work. If the operator
is its own adjoint, meaning A = A†, the operator is called Hermitian or self-adjoint. Projectors
that map vectors onto subspaces are important examples of Hermitian operators.

More specialised is the definition of normal operators, operators which commute with their ad-
joint. It follows directly from this definition that every Hermitian operator is normal in particular.
Specialising even further, an operator is called unitary if its adjoint is also its inverse. The set of
all complex unitary n× n matrices in the standard basis forms a group U(n) with the operation of
matrix multiplication. As a glimpse into the depths of abstract algebra, this group can be equipped
with a differentiable structure, turning it into a continuous object called a Lie group.

The final definitions of this subsection involving inner products are those of positive and posi-
tive definite operators. An Hermitian operator A on V is called a positive definite operator if for all
non-zero elements v of the space, 〈v,Av〉 > 0. If equality is allowed to occur, meaning 〈v,Av〉 ≥ 0,
the operator is simply called positive. From this point on the assumptions on V are removed.

Mathematicians familiar with the theory discussed in this subsection will have already noticed
the use of the dagger to denote the adjoint, notation that is common in physics but differs from the
uses in mathematics. Another notational convention specific to quantum mechanics, and therefore
physics, is the use of Dirac’s bra-ket notation in which a vector is written |v〉 and referred to as a
ket, while its dual 〈v| is called a bra. This notation is convenient as it offers a fairly natural way
to write and manipulate vectors in inner product spaces, for instance demonstrated by writing the
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standard complex inner product 〈v, w〉 as a bra-ket 〈v|w〉. The outer product too can be cast in
this form. If |v〉 , |w〉 are both elements of inner product spaces V and W respectively, their outer
product is defined by the operator that acts as:

|w〉〈v| : V →W, (|w〉〈v|) |x〉 = 〈v|x〉 |w〉 . (2.5)

As an example, given an orthonormal basis of elements |i〉 for a vector space, a projection on the
subspace spanned by |j〉 is given by the outer product |j〉 〈j|. These projections, and outer products
in general, can be combined linearly. Moreover, every linear operator can be represented as a sum of
outer products with leading coefficients. This immediately ties in to the intuition for the following
important theorem [8].

Theorem 2.1.15. (Spectral Decomposition). A matrix acting on a vector space V can be diago-
nalised with respect to an orthonormal basis of V if and only if the matrix is normal.

If A can be diagonalised as:

A =
∑
i

λi |i〉〈i| (2.6)

this representation is called its spectral decomposition. The spectral decomposition theorem offers
assurance that this is possible if A is normal. As the use of the letter λ might have suggested, this
decomposition is comprised of eigenvalues and eigenvectors. This naming convention stems from
the spectrum, a generalisation of the set of eigenvalues of an operator as used in functional analysis.

Assuming the underlying field is complex and f is a complex function, f can be extended to a
function on the class of normal matrices through spectral decompositions. Assuming A is normal
and diagonalised as was done previously, the image of A under f is defined as:

f(A) =
∑
i

f(λi) |i〉〈i| . (2.7)

This image is uniquely defined and this extension can be used for a variety of functions.

As a final note on general (not necessarily linear) algebra, the structures in this section can be
further abstracted using the language of category theory. Although this claim may be disputed,
category theory carries an algebraic flavour. A complete rigorous understanding of persistent ho-
mology would require a basic understanding of rings, modules and categories. Interested readers
are referred to [30] and [56] to acquire this knowledge.

2.2 Analysis

This section introduces a selection of the basic ideas of mathematical analysis, the area of math-
ematics that studies theories relating to functions, precision, and limits in spaces with suitable
structures. Metric spaces are important to data analysis and will provide an intuitive basis for
topologies whereas Hilbert spaces form the domain for all quantum mechanical systems. As such,
this section is highly important. Additional resources for these topics are [77,86] and [55].

2.2.1 Metric Spaces

Metric spaces are those spaces that are equipped with a metric which holds information about the
distance between any two elements of the space. The definitions in this subsection are essential to
the construction of the theory in this thesis, although they will only be present implicitly once the
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foundations have been established. The natural course of action at the start of the study of metric
spaces is defining the metric.

Definition 2.2.1. (Metric). Let V be a set. A metric on V is a map d : V × V → R that meets
the following three requirements for all x, y, z ∈ V :

1. d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. d(x, y) ≤ d(x, z) + d(z, y).

A pair (V, d) of a set and a metric on the set is what is known as a metric space. The presence of the
metric allows for notions of precision and convergence, both most notably present in the definition
of the limit of a map.

Definition 2.2.2. (Limit). For f : (V, dV ) → (W,dW ) a map between metric spaces and v, w
elements from V and W respectively, f is said to have the limit w as x approaches v if for every
real value ε > 0 there exists a δ > 0 so that if x is taken from the domain of f with dV (x, v) < δ,
then dW (f(x), w) < ε.

If the value w meeting these requirements exists the limit is denoted limx→v f(x) = w. The thought
underlying this definition is that if you can guarantee that for every precision ε a corresponding
precision δ can be chosen so that if x is δ-close to v in the domain, f(x) will be ε-close to w in the
codomain, then when taking the limit the function will take the value w.

Limits are not limited to functions, but can also be taken of sequences. This is because a sequence
can be defined as a function on the natural numbers equipped with the metric d(x, y) = |x − y|,
although limits of sequences are subject to some specifics.

Definition 2.2.3. (Sequence). A sequence of elements in a set V is a map N → V , n 7→ an. The
usual notation for this sequence is (an)n∈N.

Assuming (V, d) is a metric space, the sequence (an)n∈N is said to converge to an element a in V
if for every ε > 0 there exists a natural number N such that n > N implies d(an, a) < ε. This is
denoted limn→∞ an = a. If no such a exists the sequence is called divergent.

A specific class of sequences, so called Cauchy sequences, are of direct importance to the following
subsection. It can be shown that every convergent sequence must belong to this class.

Definition 2.2.4. (Cauchy Sequence). If (an)n∈N is a sequence in a metric space (V, d), then it is
called a Cauchy sequence if for every ε > 0 there exists an N ∈ N so that for every m,n ∈ N:

m,n ≥ N =⇒ d(am, an) < ε. (2.8)

The converse however need not be true, and this class of sequences leads to a class of spaces.

Definition 2.2.5. (Complete Space). A metric space is called complete if every Cauchy sequence
in it converges to an element in the space.

Before leaving the topic of general metric spaces the discussion of two important objects, open and
closed balls, is broached. Open and closed sets are important to the study of metric spaces and
they should be familiar to the reader in the form of open and closed intervals on the real line. In
fact, they were already used throughout this subsection without having properly introduced them.
Because more generality is not necessitated these balls are defined without further explaining their
open and closed prefixes, leaving the meaning to the imagination of the reader.

12



Definition 2.2.6. (Metric Balls). A closed ball of radius ε centered around a point v of a metric
space (V, d) is defined as:

B̄d(v, ε) = {x ∈ V | d(v, x) ≤ ε} . (2.9)

If the inequality in the predicate is taken to be strict, the ball, then denoted Bd(v, ε), is called open.

Following this small detour, the treatment of specialised complete spaces can be started.

2.2.2 Hilbert Spaces

Hilbert spaces are special instances of more general spaces named Banach spaces. For completeness
this subsection is opened with the definition of a Banach space, showcasing the first example of an
induced metric.

Definition 2.2.7. (Banach Space). A Banach space is a vector space over either R or C equipped
with a norm ‖ · ‖ that is complete with respect to the metric d(x, y) = ‖x−y‖ induced by the norm.

Hilbert spaces are a strict subset of Banach spaces, and because they are inner product spaces rather
than normed spaces, they allow for concepts like orthonormality and unitarity.

Definition 2.2.8. (Hilbert Space). A Hilbert space is an inner product space over either R or C
that is complete with respect to the metric d(x, y) =

√
〈x− y, x− y〉 induced by its inner product.

Hilbert spaces are often required because they can, among other reasons, offer certain guarantees
on convergence, and they are indispensable to functional analysis. Although Hilbert spaces may be
infinite dimensional quantum computing does not require this generality, and for this reason the
results in this subsection are formulated for finite dimensional Hilbert spaces to avoid further com-
plexity. On the contrary, the following definitions and proposition will greatly reduce the complexity
when moving from general quantum mechanics to quantum computing.

Definition 2.2.9. (Isometry). A linear map f between two Hilbert spaces H,K with inner products
〈·, ·〉H and 〈·, ·〉K is called an isometry if and only if for all x, y ∈ H: 〈x, y〉H = 〈f(x), f(y)〉K .

These maps are thus inner product preserving and by extension, as the name implies as well, distance
preserving. Isometries can in turn be used to define isomorphisms between Hilbert spaces.

Definition 2.2.10. (Hilbert Space Isomorphism). Let f : H → K be a map between Hilbert
spaces. Then f is called a Hilbert space isomorphism if f is a surjective isometry. If such a map
exists the Hilbert spaces H and K are called isomorphic, written H ∼= K.

A possibly surprising result from functional analysis is that finite dimensional Hilbert spaces can be
uniquely characterised by their dimension [55].

Proposition 2.2.11. (Characterisation of Finite Dimensional Hilbert Spaces). If H and K are
both real or complex finite dimensional Hilbert spaces, then H ∼= K if and only if they are of equal
dimension.

This proposition is given without proof and is derived from a more general theorem that characterises
separable spaces, spaces whose involved definition will be avoided in this work. More information
can be found in any text on functional analysis.
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2.2.3 Differential Equations

The purpose of this subsection is not to delve into the theory of differential equations, but merely
to remind the reader of the existence of, or introduce the reader to, the concept of differential
equations. A differential equation containing a univariate function is called an ordinary differential
equation and is defined as follows.

Definition 2.2.12. (Ordinary Differential Equation). An n-th order ordinary differential equation
for an unknown but at least n times differentiable function f(x) is defined by a function g so that:

g

(
x, f,

df

dx
,

d2f

dx2
, ...,

dnf

dxn

)
= 0. (2.10)

A solution of the above differential equation is a function f that satisfies the equation on at least
an open ball. The differential equation relates the function to its derivatives and therefore describes
a dynamical phenomenon where a function can behave differently in a point depending on its rates
of change at that point. Such equations are not restricted to functions of one variable.

Definition 2.2.13. (Partial Differential Equation). A n-th order partial differential equation for
an unknown function f(x1, x2, ..., xk) that admits mixed partial derivatives up to at least the n-th
order is given by a function g:

g

(
x1, x2, ..., xk, f,

∂f

∂x1
,
∂f

∂x2
, ...,

∂2f

∂x1x1
,
∂2f

∂x1x2
, ...

)
= 0 (2.11)

that may involve all mixed partial derivatives up to order n.

Much is known about the general theory of ordinary differential equations, including good guarantees
on the existence and uniqueness of solutions by the Picard-Lindelöf theorem [87]. Partial differential
equations do not have this luxury and they are often studied in the context of so-called weak
solutions. Good texts on ordinary differential equations and partial differential equations are [87]
and [32] respectively.

2.3 Topology

Building on the intuition from real analysis, this section’s meaning is to develop the theory of
simplicial homology as quickly as possible. This construction requires the treatment of point-set
topology, which is the most elementary study of topology in the set-theoretic domain and naturally
leads to algebraic topology when the topic shifts to topological invariants. For more elaborate
treatments the reader is refered to [68] for point-set topology, [13,45] for algebraic topology and [37]
for the younger field of applied topology.

2.3.1 Point-Set Topology

Metric spaces are rigid in the sense that, intuitively, relocating a single point of the space destroys
the space’s structure. Since the distances between points have changed disproportionally, so too
has the metric and the resulting space can no longer be considered equivalent to the original space.
This does however not mean that the basic classifying qualities have changed, as the resulting space
for instance might still exhibit the same number of holes. A topology is a structure more general
than a metric that makes such considerations precise. More accurately, it encodes the relations of
a space’s elements in a way that is insensitive to transformations that bend or stretch the space.
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Definition 2.3.1. (Topology). A topology on a set X is itself a set T ⊆ P(X) satisfying the
following three axioms:

1. The sets ∅ and X are elements of T ;

2. The intersection of two sets in T is an element of T ;

3. Any union of sets taken from T is an element of T .

A pair (X, T ) of a set X and a topology T on X is called a topological space. The elements of
the topology are called the open sets of the space, whereas their relative set complements in X are
the closed sets. Note that because topologies are generalisations of metrics, every metric induces a
topology. In general however, there is no canonical topology for an arbitrary set.

Maps that conserve topological properties are required to behave predictably. Before being able
to define maps that give topological equivalences, it needs to be specified what it means for a map
to be predictable. As in calculus and analysis this is done by way of continuity.

Definition 2.3.2. (Continuity). A map f : (X, TX)→ (Y, TY ) between topological spaces is called
continuous if for all U ∈ TY , f−1(U) ∈ TX .

Using the notion of continuity, equivalences between topological spaces can be defined.

Definition 2.3.3. (Homeomorphism). A homeomorphism is a bijective map f between topological
spaces such that both f and its inverse f−1 are continuous.

If a homeomorphism between two topological spaces exists the spaces are called homeomorphic and
the spaces will be indistinguishable based on their invariants, the qualitative properties of their
topologies. Non-algebraic examples of these invariants are not within the scope of this text and will
therefore not be treated, although the ideas of connectedness, compactness and separability may
sound familiar. The next subsection will see the development of an algebraic invariant. Properties
such as these are conserved because a homeomorphism induces a bijection between the topologies,
which is the set-theoretical notion of an isomorphism.

2.3.2 Algebraic Topology

One of the most prominent invariants of a topological space is its number of holes. A homeomorphism
may bend or stretch a space but by continuity never tear or glue parts of it, meaning it can never
create or close holes. This invariant takes the shape of a sequence of groups or vector spaces and is
called homology. This subsection will treat the specific theory of simplicial homology, the homology
of simplicial complexes, starting from simplices.

Definition 2.3.4. (Simplex). Let {v0, ..., vk} be an ordered set of affinely independent elements of
Rn. The k-simplex σk spanned by these elements is defined as:

σk = (v0, ..., vk) =

{
k∑
i=0

λivi |
k∑
i=0

λi = 1, λi ∈ [0, 1]

}
. (2.12)

A simplex is therefore defined simply as the convex hull of its vertices. Requiring the vertices to
be ordered imposes one of two possible orientations on the simplex, and the convention that two
orderings define the same orientation if and only if they differ by an even permutation is maintained.
This orientation manifests itself as a positive or negative sign on the simplex.

Simplices are most commonly interpreted as being generalisations of the triangle. Analogously
simplices have faces which, along with their sign, are important for the definition of homology.
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Definition 2.3.5. (Faces). For j ≤ k, a j-face of a k-simplex (v0, ..., vk) is the j-simplex spanned
by a subset of {v0, ..., vk} with cardinality j.

Faces can be obtained by removing vertices before taking the convex hull. For example, σ
(i)
k =

(v0, ..., v̂i, ..., vk) is the (k− 1)-simplex spanned by the vertices excluding vi. The hat indicates that
the respective vertex is removed. This can be used to remove any number of vertices.

On the contrary of removal, simplices can be joined together to form larger structures called sim-
plicial complexes. This is done by joining the simplices along their faces.

Definition 2.3.6. (Simplicial Complex). A simplicial complex S is a set of simplices such that:

1. If σ is a simplex in S, every face of σ is a simplex in S;

2. For two simplices σ, η in S, their intersection σ ∩ η is either empty or a face of both σ and η.

The simplicial complex can be realised with a natural topology which is not required to be defined
explicitly for the further treatment of homology, and the dimension of this realised simplicial com-
plex as a space is equal to the maximum dimension of its simplices.

Given such a simplicial complex, chains of simplices can be defined, which can be visualised as
a partial traversal of the complex following the simplices in this chain. Graphs, being a special
instance of a simplicial complex containing only its vertices as 0-simplices and edges as 1-simplices,
form a natural illustration. A path or walk in a directed graph is a sequence of edges that connects
two vertices in the graph. The simplified idea of homology is then the following: if a walk in a
directed planar graph is closed and there exists no smaller closed walk on its vertices, this could be
interpreted as having detected a 1-dimensional hole in the graph. The chain is closed but encloses
nothing. If this were to be made rigorous and generalised to higher dimensional simplices, the holes
in any dimension could be detected. This is precisely what simplicial homology achieves. The first
step towards this objective is defining the chains.

Definition 2.3.7. (Chain Group). The k-chain group ∆k(S) of a simplicial complex S is the free
abelian group generated by the k-simplices of S. An element of this group is called a k-chain.

This definition grants a domain and co-domain for a boundary map that maps a k-simplex σk to
its boundary ∂k(σk), a chain of its (k − 1)-faces. Formally this boundary is a sum of the oriented
faces of σk:

∂k(σk) =

k∑
i=0

(−1)i σ
(i)
k . (2.13)

The following definition captures the boundary map, in fact a homomorphism, in its full generality.

Definition 2.3.8. (Boundary Homomorphism). The k-th boundary homomorphism of a simplicial
complex S is the map:

∂k : ∆k(S)→ ∆k−1(S), ∂k (Σσ cσσ) = Σσ cσ∂k (σ) (2.14)

that maps chains of k-simplices to chains of their oriented faces.

It is stated without proof that for any k, ∂k∂k+1 = 0. Under the assumption that 0-simplices
have no boundary and therefore ∂0 = 0, the combination of the chain groups and the boundary
homomorphisms form a chain complex, depicted below.

· · · ∆k(S) ∆k−1(S) · · · ∆0(S) 0
∂k+1 ∂k ∂k−1 ∂1 ∂0
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Given this chain complex for a simplicial complex, its simplicial homology can be computed.

Definition 2.3.9. (Simplicial Homology). Let S be a simplicial complex with its chain complex
given. The k-th simplicial homology group of S is the quotient group:

Hk(S) = (ker ∂k) / (im ∂k+1) . (2.15)

Reiterating the previous discussion in the current context, the homology groups include all closed
chains that are not themselves boundaries. Because the simplices are oriented and therefore signed,
a chain is mapped to its endpoint minus its starting point, meaning the kernel of ∂k contains the
closed chains. Quotienting out the image of ∂k+1 ensures that all boundaries are removed, leaving
only those closed chains that are not boundaries. The number of holes are then measured by the
Betti numbers.

Definition 2.3.10. (Betti Numbers). If S is a simplicial complex and Hk(S) is finitely generated,
its rank βk is called the k-th Betti number of S.

At this point it is worth noting that the coefficients used in the definition of the chain groups are
taken from Z. Alternatively these coefficients can be taken from a field F. If this is done the
development of simplicial homology can be recast in the language of vector spaces. Rather than
using a generating set for the chain groups a basis is used, quotient spaces are taken instead of
quotient groups, and the boundary homomorphisms are given realisations as matrices. The Betti
numbers become the dimensions of the resulting vector spaces representing the simplicial homology.
A result called the universal coefficient theorem [45] guarantees that the Betti numbers remain
unchanged as long as the characteristic of the field is 0.
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Chapter 3

Quantum Computing

3.1 Quantum Mechanics

The section at hand, as an amalgation of several sources [41, 43, 70], introduces the elements of
quantum mechanics. This theory finds its roots in the irreconcilability of the observation that light
exhibits both properties of waves and particles with classical mechanics, which assumes that light
should be able to be fully described by either one. This concept is what is known as wave-particle
duality. This section however mostly steers away from the physical interpretation of quantum
mechanics, offering little more than a short contextual discussion of the common interpretations in
the closing subsection, and mostly treats quantum mechanics as a mathematical system based on
axioms called the postulates of quantum mechanics.

3.1.1 Postulates of Quantum Mechanics

In essence the theoretical framework of quantum mechanics describes the mathematical laws a
general quantum mechanical system should obey, but does not give any information on how these
conditions can be met. Therefore the framework is given in terms of postulates. The first postulate
forms a suitable example of this dynamic. It speaks of the state space of a system, but does not
connect the state space of a particular system to a concrete object.

Postulate 1. (State Space). The state space of an isolated quantum mechanical system is an
appropriate Hilbert space H. A pure state of this system is completely described by a state vector
|ψ〉, a unit vector in H. �

Physicists refer to normalised linear combinations:∑
i

ci |ψi〉 (3.1)

of state vectors as superpositions, where an amplitude ci is associated to each state |ψi〉. The
possibility of superposition follows from the linearity of the Schrödinger equation which expresses
the time evolution of a closed system, meaning there is no interaction with any other outside
system. In order to describe this evolution, |ψ〉 is considered as a time-dependent function in the
next postulate.

Postulate 2. (Evolution). The continuous time evolution of the state |ψ〉 of a closed quantum
system is given by the Schrödinger equation:

i~
∂ |ψ〉
∂t

= H |ψ〉 . (3.2)
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The constants i and ~ are the imaginary unit and the reduced Planck constant respectively, whereas
H is an Hermitian operator known as the Hamiltonian of the system. �

Using the theory of differential equations it can be shown that under the assumption of the existence
of a solution, discrete time evolution from time t0 to t1 corresponds to the application of a unitary
operator U(t0, t1) to the state.

All of the preceding discussion has been exclusively concerned with closed systems. At some point
the system may need to be opened up to measurement, violating the requirement of the system
having no outside interactions. Measurement therefore leads to a peculiar behaviour of the system.

Postulate 3. (Measurement). A quantum measurement is described by a collection {Mi} of oper-
ators on the state space H, with each Mi being called the measurement operator for the possible
outcome i. The probability of obtaining the outcome i when measuring the state |ψ〉 is given by:

P(i) = 〈ψ|M†iM
†
i |ψ〉 (3.3)

and the measurement operators satisfy:∑
i

〈ψ|M†iM
†
i |ψ〉 =

∑
i

P(i) = 1. (3.4)

The state of the system directly after having measured the outcome i is given by:

Mi |ψ〉√
P(i)

. (3.5)

�

The sum condition (3.4) is equivalent to the measurement operators satisfying the much easier to
verify completeness relation: ∑

i

M†iM
†
i = I. (3.6)

The fourth and final postulate assigns a class of state spaces to a composite quantum system
consisting of distinct component systems. Such systems lead to the notion of quantum entanglement,
to be defined shortly, which is the idea that when it comes to quantum states the whole may be
greater than the sum of its parts.

Postulate 4. (Composite Systems). The state space of the composite quantum system with n
ordered component state spaces {Hi}ni=1 is given by their tensor product:

H =

n⊗
i=1

Hi. (3.7)

�

As is known from the theory of tensor spaces, H contains states |ψ〉 for which no sequence of states
|ψi〉 ∈ Hi exists so that |ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉. If the system resides in such a state it is in
entanglement and the state is called an entangled state. If on the other hand such a sequence does
exist the state is called separable.

The four postulates given in this subsection describe the abstract fashion in which a quantum
mechanical system may be measured and observed. It is a current point of contention how the
theory spanned by these postulates corresponds to the physical world. Some common interpreta-
tions are discussed later in this section, after having expanded on notable special cases of quantum
measurement in the next subsection.
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3.1.2 Special Cases of Measurements

Two useful special cases of measurement can be derived from the general third postulate. The first
is the projective measurement, useful in particular because their expectations and variances can be
calculated directly.

Definition 3.1.1. (Projective Measurement). A projective measurement is given by an Hermitian
operator M , called the observable, with spectral decomposition

M =
∑
i

λiPi (3.8)

for Pi the projector onto the eigenspace corresponding to the eigenvalue λi. When the state |ψ〉 is
measured the probability of obtaining outcome i is given by

P(i) = 〈ψ|Pi|ψ〉 (3.9)

and the state of the system immediately after this measurement is

Pi |ψ〉√
P(i)

. (3.10)

Immediately introducing new notation, it can now be verified that the expected value and variance
of an observable M for a state |ψ〉 are given by:

E(M) = 〈M〉 =
∑
i

iP(i) = 〈ψ|M |ψ〉 and Var(M) = 〈M2〉 − 〈M〉2 . (3.11)

The use of projective measurement is usually implicit when it is said the measurement is performed
in an orthonormal basis of enumerated vectors |j〉. The projectors are then taken to be Pi = |i〉 〈i|.

Assume next that a projective measurement has been performed and the result m was obtained.
The consideration of a second projective measurement on the resulting state Pm |ψ〉P(m)−1/2 re-
veals that P(m) = 1 for this measurement, meaning the same result will be observed and the state
will remain unchanged as P 2

m = Pm. This is what is known as repeatability and illustrates that pro-
jective measurement is indeed a special case of the general measurement. A physical measurement
of a system may destroy part of it, making a repeat measurement impossible in general.

Alternatively one might be interested only in the probabilities of the outcomes, not in the state
the measurement leaves the system in. Under these circumstances it is common to describe the
measurement in condensed form as a Positive Operator-Valued Measure measurement, or POVM.

Definition 3.1.2. (POVM Measurement). A set {Ei} of positive operators is called a POVM

measurement if the operators satisfy the completeness relation. Following the third postulate, the
probability of measuring i is given by P(i) = 〈ψ|Ei|ψ〉. Given a general quantum measurement
{Mi}, the associated POVM measurement is given by the set of positive operators:{

M†iM
†
i

}
(3.12)

called the POVM elements of the measurement.

The treatment of measurements is concluded with a short discussion of phase factor invariance. Two
states |ψ〉, |ϕ〉 are said to be equal up to a global phase factor if there exists a real number θ so that
|ϕ〉 = eiθ |ψ〉. In more generality, two amplitudes are said to differ by a relative phase factor if they
differ by a factor of this form, and two states are said to differ by a relative phase in some basis if
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each of their paired amplitudes differ by the same relative phase.

Adding a global phase factor to a state does not change its measurement statistics, and there-
fore the statistics for two states that differ only by a global phase factor are identical. One way to
see the truth of this statement is by noting that the bra of the ket eiθ |ψ〉 introduces a factor e−iθ

which cancels the phase factor:

P(m) = 〈ψ|e−iθM†mM†meiθ|ψ〉 = 〈ψ|M†mM†m|ψ〉 . (3.13)

In terms of observations these states can therefore be considered equal, and global phase factors are
often omitted. This does not hold for relative phase factors however, as the phases depend on the
choice of basis and can therefore not offer the same universal guarantee of invariance.

3.1.3 Interpretations

Up until this point this section has discussed quantum mechanics in abstract terms without regard
for physical meaning. This was done for two reasons. The first is to keep the mathematical frame-
work isolated from realisation. The second, most interestingly and in large part motivation for the
first, is because there is no universally accepted interpretation. This subsection offers two common
possible explanations [41] for the existence of superpositions and the meaning of measurement.

Assume for the next two paragraphs that a system in superposition was measured and a pure
state was succesfully identified. The possible interpretations attempt to answer the question of
what the dissociation between the superposed state prior to measurement and the concrete state
after measurement means physically.

The Realist interpretation, most prominently advocated by Einstein, argues that the system
was never in superposition and that quantum theory is simply incomplete. Even before measure-
ment the state would have been pure, but the theory itself was uncertain of which of the possible
pure states the system was in. According to realists, a completion of the theory would involve the
inclusion of additional information on the state that removes indeterminism.

The Copenhagen interpretation shifts the blame of uncertainty to the system itself and says
the system was not in a fixed pure state, but was compelled to regress to one upon measurement.
This supports the possibility of actual physical superposition and at the same time implies the act
of measurement truly boasts impact that is unknown.

Although both have been pondered and discussed by physicists extensively, at the time of writ-
ing there is only experimentally obtained proof towards the latter interpretation [9, 41].

3.2 Quantum Circuits

Quantum computing is a computational paradigm that depends on the theory of quantum mechan-
ics to obtain speedups over the best known classical algorithms of this time. In order to achieve this
the quantum algorithms, expressed as quantum circuits in the gate-based quantum computation
scheme, rely on quantum superpositions of the quantum analogues to classical binary values and
wave interference to push the information held by a quantum system towards some sought after
final result. This result can then be read out through measurement. Although this measurement
has a probabilistic nature, the probabilities can be controlled to some extent, and a large part of
the design of quantum algorithms concerns itself with precisely this objective.
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In this section qubits and quantum circuits are defined and explained in a succint fashion. For
a more elaborate treatment of this material the reader is referred to Quantum Computation and
Quantum Information [70], generally considered to be the bible of the field of quantum computing.

3.2.1 Qubits

The most elementary component of any quantum circuit, and therefore of quantum computing, is
the qubit. This quantum counterpart to the classical bit is a mathematical object that allows its
base states to be in superposition.

Definition 3.2.1. (Qubit). A qubit corresponds to a quantum mechanical system with a complex
state space H spanned by two orthonormal vectors |0〉 and |1〉.

It is known from the theory of functional analysis that because the two-dimensional state space H
admits a countable basis, it can be identified with C2 through a Hilbert space isomorphism. The
custom of using the particular state space C2 will be upheld from now on, so that every state |ψ〉
of a qubit can be described as an element of the complex unit sphere:

|ψ〉 = c0 |0〉+ c1 |1〉 for c0, c1 ∈ C with |c0|2 + |c1|2 = 1. (3.14)

Because this norm should be preserved all operations on a qubit should be unitary, and conversely
any unitary matrix in U(2) specifies a valid operation on the qubit. This requirement supports the
probablistic aspect of the superposition. A projective measurement on a general state with respect
to the given basis leads to the following probabilities of observing either state:

P(i) = 〈ψ|i〉〈i|ψ〉 = c̄ici = |ci|2 for i ∈ {0, 1}, (3.15)

and leaves the system in:

|i〉〈i|ψ〉√
P(i)

=
ci
|ci|
|i〉 , (3.16)

or simply |i〉 as ci/|ci| has modulus one and global phase factors can safely be ignored.

By the fourth postulate of quantum mechanics, n separate qubit systems can be joined together
to form an n-qubit system or register. The state space of this system is the n-tensor product
H⊗n ∼= C2⊗n of the individual state spaces. The agreed upon ordered and orthonormal basis for
any such state space is the standard computational basis in which the k-th element (0 ≤ k ≤ 2n−1)
is given by:

|k〉 = |k0 · · · k2n−1〉 :=

2n−1⊗
j=0

|kj〉 , (3.17)

where the sequence of kj corresponds to the coefficients in the binary expansion of k.

The operators acting on these systems are tensor products of unitary matrices and a quantum
circuit can be defined as a sequence of such operators. These circuits are the subject of the next
subsection.
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3.2.2 Circuits

Much like classical circuits, quantum circuits consist of wires carrying information and gates acting
on that information. The most notable difference is that every gate must act linearly and, due to
its required unitarity, reversibly. The following graphic shows the most frequently used single-qubit
gates as circuits.

Circuit Matrix

Hadamard H
1√
2

[
1 1
1 −1

]

Pauli X X

[
0 1
1 0

]

Pauli Y Y

[
0 −i
i 0

]

Pauli Z Z

[
1 0
0 −1

]

Phase S

[
1 0
0 i

]

π/8 T

[
1 0
0 eiπ/4

]

The Hadamard gate, not to be confused with the Hamiltonian, is important and often used to bring
a qubit initialised in the basis state |0〉 to the uniform superposition of both of its basis states:

H |0〉 =
1√
2

(|0〉+ |1〉) . (3.18)

Moreover it is easily verified that a second application returns the state to |0〉, meaning H2 = I. It
is a minor exercise to confirm that the Hadamard gate can be written as a linear combination of
the Pauli X and Z matrices, gates which swap the amplitudes of a state and flip the sign of the |1〉
state respectively. The Pauli Y gate represents a rotation of π radians on the unit circle.

Measurements of qubits are part of quantum circuits as well, and if applicable it is customary
to both defer measurement to the end of the circuit and assume that wires contain measurements
at their endpoints. If these are explicitly included they are represented by a meter symbol:

where the distinction of single wires carrying qubits and double wires carrying classical bits is made.

Once systems of multiple qubits are used, the application of a matrix A to the single k-th qubit in
a system of size n is viewed as the application of an n-tensor Ak to the state space of the system
with A in its k-th position, and copies of the identity on all others. This naturally extends to the
application of different matrices to distinct qubits, and thus a quantum circuit can be defined as
follows.
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Definition 3.2.2. (Quantum Circuit). A quantum circuit on a system of n qubits is a sequence of
n-tensors ended by a measurement unless specified otherwise. Each component matrix is called a
gate, and if the qubits in a circuit can be split into groups with different purposes these groups are
referred to as registers.

The first elementary example of the use of registers is seen in controlled operations. If an operator
acting on some register of qubits is given, the application of this operator may be conditioned on
the state of a collection of qubits. This is what is referred to as a controlled operation.

Definition 3.2.3. (Controlled Operation). Let U be a unitary operator on a register of n qubits,
and |ϕ〉 a state of this register. The controlled operation Ck(U) conditioned on k qubits is defined
by the unitary operator acting as:

Ck(U) [ |x1 · · ·xk〉 ⊗ |ϕ〉 ] = |x1 · · ·xk〉 ⊗ Ux1···xk |ϕ〉 (3.19)

where the exponent of the operator on the right hand side is the product of the xi.

The operator is therefore only applied if all of the xi are set to 1. In a quantum circuit, controlled
operations are indicated by connecting wires, as is shown in the circuit below for n = 1 and k = 2.

•
•

U

Alternatively, if the wires do not need to be distinguished from eachother in the circuit, the following
shorthand representation can be used to bundle them.

/
2

•

U

This convention is also used to bundle any number of wires outside of controlled operations.

As an important example of controlled operations, the following two circuits show the swap gate
that swaps the states of two qubits.

× • •
≡

× •
Another example is the CNOT gate in itself, used thrice in the above circuit in the right hand
representation. It can in fact be shown that the CNOT gate along with the Hadamard, Phase and
π/8 gates form a discrete set of universal operations. This means that any unitary quantum circuit
can be approximated to arbitrary accuracy by a quantum circuit consisting only of these universal
gates. A proof of this statement is given in [70].

The computational complexity of any quantum circuit, and therefore of any quantum algorithm, is
often quantified by counting the total number of component gates. If another quantity is chosen
this will explicitly be mentioned in the analysis of a circuit.
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3.2.3 Realisation

Several possible physical realisations of a gate-based quantum computer are described in the seventh
section of [70]. This short closing subsection discusses in more generality the still ubiquitous “five
plus two” requirements for physical implementations introduced by DiVincenzo in [28] and two
alternative schemes to gate-based quantum computing following them. For starters, the seven (five
plus two) requirements for a physical system to be suitable for quantum computing are the following.

1. It must be scalable and be able to accomodate well-characterised qubits;

2. Said qubits must be initialisable to simple states;

3. Decoherence times of the system must exceed the required gate operation times;

4. The system must admit a universal set of quantum gates;

5. Measurement should be possible per qubit;

6. Both stationary and moving qubits must allow for interconvertation;

7. The transmission of moving qubits from one location to another must be faithful.

The first five are of direct importance to quantum computation. When put together they describe
a system that can emulate a Turing machine (1, 2, 4) and retain a state for long enough so that
any operation can realistically be applied (3). Moreover, the result of any computation is readable
through measurement (5). If a physical system meets these criteria it is a suitable candidate to be
used as a quantum computer. The last two requirements are meant for quantum communication.

This section is closed with the brief mention of two alternative schemes for quantum computa-
tion. The first of these is adiabatic quantum computing, closely related to quantum annealers.
This scheme relies on the adiabatic theorem which, in simplified form, states that if the Hamiltonian
H1 of a system moves into another Hamiltonian H2 gradually enough through a path in a space of
matrices, a particle in the j-th eigenstate of H1 will be carried over into the j-th eigenstate of H2.
This information can then be used to usher a system into a state that represents a solution to an
optimisation problem. A reference for this scheme is [20].

The second alternative scheme is topological quantum computing. Gate-based quantum com-
putation is prone to errors and therefore requires the use of error correcting codes in practice.
The topological quantum computer natively addresses this problem by encoding the information
in topological properties rather than in a comparatively rigid quantum state directly. More pre-
cisely, topological quantum computation depends on particles called non-abelian anyons that are
repeatedly interchanged, which leads to a braiding of their paths through a time dimension. These
braids induce unitary operations, meaning a quantum routine can be executed by interchanging the
particles in specific ways. References for this scheme include [33] and [76].

3.3 Famous Algorithms

Since the specifics of quantum mechanics deviate significantly from classical intuition, the design of
quantum algorithms is considered to be very hard. As of the time of writing there are two major
quantum algorithms that provide a significant speedup over the best known classical algorithms.
These two algorithms, known as the quantum Fourier transform and Grover’s algorithm, both lead
to classes of algorithms based on them of which most quantum algorithms that offer significant
speedups are a part. As an important example of such an algorithm, this section describes the
phase estimation algorithm that is based on the quantum Fourier transform.
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3.3.1 The Quantum Fourier Transform

The discrete Fourier transform is a classical data transformation algorithm often used in digital
signal processing. Readers unfamiliar with Fourier analysis but who are interested in examples and
further theory are refered to sources such as [84]. In brief, the discrete Fourier transform takes in a
finite complex sequence {x0, ..., xN−1} and outputs a transformed sequence x′ of equal length with

x′k =
1√
N

N−1∑
l=0

xle
2πi·lk/N (3.20)

as its elements. The quantum Fourier transform is its quantum counterpart, a unitary mapping
the domain of which consists of quantum mechanical amplitudes. Although the domain is shrunk,
the advantage is that this transform can be computed in quadratic time whereas the best classical
algorithm, the fast Fourier transform, requires exponential time [70]. The mapping applies the
discrete Fourier transform to the sequence of amplitudes associated to a quantum state and is
therefore given by:

QFTN :

N−1∑
j=0

xj |j〉 7→
N−1∑
j=0

x′j |j〉 (3.21)

for an arbitrary input state. Using the general phase shift gates Rm defined as:

Rm =

[
1 0
0 e2πi/2m

]
(3.22)

and the binary fraction j(s) = 0.js...jn the following diagram, derived in [70], is an efficient circuit
for the quantum Fourier transform acting on a state |j1 · · · jn〉 given in the standard computational
basis.

|j1〉 H R2 · · · Rn−1 Rn |0〉+ e2πi·j(1) |1〉

|j2〉 • · · · H R2 · · · Rn−2 Rn−1 · · · |0〉+ e2πi·j(2) |1〉
...

|jn−1〉 • • · · · H R2 |0〉+ e2πi·j(n−1) |1〉

|jn〉 • • · · · • H |0〉+ e2πi·j(n) |1〉

Note that this representation omits both the swap gates required for the proper ordering of the basis
and the normalising factors of the output. Basic tensor algebra then shows that the result of this
circuit is equal to the transformation given by Formula 3.21.

The unitarity of the transformation, as well as the computational complexity, can be deduced from
this circuit as it is made up wholly of unitary operators. Moreover, the unitarity guarantees the
existence of an inverse operator QFT†N given by the adjoint of a matrix representation QFTN .

In general, the quantum Fourier transform can be used to efficiently solve the hidden subgroup
problem (explored in more depth in Chapter 6) of which integer factorisation is a specific instance.
Shor’s algorithm [81], the famous threat to RSA cryptography, solves the factorisation problem in
polynomial time by depending on the transform, thereby making it highly relevant to quantum
computing and cryptography.
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3.3.2 Phase Estimation

Given a unitary operator U with an eigenvector |u〉 for which the corresponding eigenvalue λu is
unknown, phase estimation is the process of estimating this eigenvalue. Since U is unitary this
eigenvalue must be of the form e2πiϕ for some ϕ ∈ [0, 1), meaning that λu is completely determined
by the value of ϕ. The algorithm outlined in this subsection constructs a quantum state equivalent
to the result of a quantum Fourier transform applied to a binary fractional representation of ϕ and
then uses the reversibility of the transform to find the representation of ϕ.

As in the previous subsection, most algebraic manipulations are delegated to [70], as they are
tedious but easily verifiable. The first result of such a manipulation is the product representation of
the quantum Fourier transform:

QFT2n : |j1 · · · jn〉 7→ 2−n/2
n−1∏
l=0

(
|0〉+ e2πi·j(n−l) |1〉

)
, (3.23)

which is equal to the statement that the result of the quantum Fourier transform is a product
that involves exponentiated partial binary fractions. When ϕ is represented as a binary fraction
0.ϕ1 · · ·ϕt of length t, the following circuit acting on two registers |0〉⊗t and a set of qubits ⊗kl=1 |ul〉
representing |u〉 places the first register in the product representation of QFT2t |ϕ1 · · ·ϕt〉.

|0〉 H · · · • |0〉+ e2πi·φ(t) |1〉
...

|0〉 H • |0〉+ e2πi·φ(2) |1〉

|0〉 H • |0〉+ e2πi·φ(1) |1〉

|u1〉

U20

U21

· · ·

U2t−1

|u1〉

|u2〉 |u2〉
...

|uk〉 |uk〉

As before, normalisation factors are not shown. The notation φ(s) = 0.ϕs...ϕt was used analogously
to how j was used for j in the previous subsection. This circuit shows how every qubit in the first
register is put into uniform superposition by way of Hadamard gates, after which the controlled
operator U is applied repeatedly to the second register. After each application the phase factor
introduced to |u〉 can be transfered to a corresponding qubit in the first register by multilinearity,
explaining why the second register remains unchanged. Applying the inverse transform to the first
register and measuring the result then gives:

QFT†2tQFT2t |ϕ1 · · ·ϕt〉 = I2t |ϕ1 · · ·ϕt〉 = |ϕ1 · · ·ϕt〉 . (3.24)

If ϕ cannot accurately be represented as a binary fraction of length t, or it needs to be approximated
for other reasons, usage of a register of size t leads to an approximation |ϕ̃〉. It is derived in [70]
that to approximate ϕ accurately to t′ bits with probability of success at least 1− ε, the value of t
should be chosen as:

t = t′ + dlog
(
2 + (2ε)−1

)
e. (3.25)
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This same reference shows that this algorithm requires O(t2) operations excluding the manipulations
of the second register which are case-dependent.

3.3.3 Grover’s Algorithm

Grover’s algorithm [42] is a quantum search algorithm with sublinear time complexity and one of
the main draws of quantum computing. It requires only O(

√
N ) operations on an unstructured

database of size N , where a classical algorithm would always scale linearly. It depends heavily on the
notion of oracles, functions that can identify solutions to problems even if these solutions were not
known prior. As such, this subsection will start with explaining the workings of a general quantum
oracle, beginning from classical oracles. Assume that a problem is given and the elements of the
search space for this problem can be indexed so that every identifier can be stored in n bits.

Definition 3.3.1. (Classical Oracle). Assuming a problem is given, a classical oracle is a function
f : {0, 1}n → {0, 1} that maps an index to 1 if and only if the index corresponds to a solution for
the problem at hand.

Classical oracles can be extended to quantum oracles through the help of an ancillary oracle qubit
|q〉. If this qubit is added to a register fit to contain the indices of the items in the search space, the
quantum oracle extending the classical oracle f may be defined as a unitary operator Of acting as:

Of : |x〉 ⊗ |q〉 7→ |x〉 ⊗ |q + f(x) (mod 2)〉 (3.26)

where the addition is taken modulo 2. The state of the oracle qubit after application of the operator
then shows whether or not x corresponds to a solution or not. This is precisely the case if the value
of the oracle qubit has changed. A clean definition of the quantum oracle follows from choosing to
let |q〉 represent a specific state:

|q〉 =
|0〉 − |1〉√

2
. (3.27)

The following definition can then be verified algebraically.

Definition 3.3.2. (Quantum Oracle). Assuming a problem and a classical oracle f for this problem
are given, a quantum oracle Of is defined as the unitary operator that acts as:

Of : |x〉 ⊗ |q〉 7→ (−1)f(x) |x〉 ⊗ |q〉 . (3.28)

Assume for the rest of this paragraph that the search space is a Hilbert space of dimension N = 2n

wherein each basis state corresponds to an item. Moreover, assume that exactly M ∈ [1, N ] of
these items are solutions to the search problem, and that |ψ〉 is the uniform superposition of the
aforementioned basis states. The implementation, given an oracle f , is then quite easily explained.
Define the Grover diffusion operator Gf as:

Gf = (2 |ψ〉〈ψ| − I)Of . (3.29)

For some k ∈ N, the required value of which will be addressed shortly, the repeated application
Gkf |ψ〉 then approximates the uniform superposition |ϕ〉 of the M basis states representing the
solutions to the search problem. Schematically this is represented by the following quantum circuit.
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|0〉⊗n / H⊗n

Gkf

|ϕ̃〉

|1〉 H |q〉

The intuition underlying the diffusion operator is that it acts on a two-dimensional subspace of the
search space spanned by |ψ〉 and |ϕ〉, and with each application the state is rotated closer towards
|ϕ〉. As such, the number of applications k depends on the required precision for the approximation
|ϕ̃〉. Besides discussing the geometric interpretation of the algorithm, it is derived in [70] that k
scales as O(

√
N ), leading to a complexity of O(

√
N ) in the number of calls to the oracle, and it is

shown that this is optimal.
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Chapter 4

Clustering

4.1 Hierarchical Clustering

Hierarchical clustering derives its name from the fact that its methods assume there is an hierarchical
structure present in the data. This assumption underpins both their strengths and weaknesses.
Because of the assumption, identified clusters can easily be represented in visual representations
called dendrograms, and the desired final partition of the dataset can be chosen based on the
information in this summary. This means that the number of clusters is not required to be chosen
beforehand. The downside is that if no hierarchy is present, the methods force it upon the data.
An example of why this is generally counterproductive is given later.

4.1.1 The Agglomerative Approach

The agglomerative approach is the most commonly used one, and therefore it is used to introduce
hierarchical clustering. As a general description, it is assumed that the clusters admit a hierarchy
in the sense that every cluster smaller than the full dataset is part of some larger cluster. At every
step these clusters are merged based on intercluster similarity and every merging of the clusters is
registered. This partitioning information is kept in a dendrogram, an undirected rooted tree together
with a vertical axis signifying the number of clusters at a given height in the tree.

5

4

3

2

1

x1 x2 x3 x4 x5

Figure 4.1: An example of a scaled dendrogram, not showing similarities.

Agglomeratively, there are five initial singleton clusters in this example, one for every datapoint.
Moving towards the root in the dendrogram, clusters are merged and the lower a merging takes
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place, the higher the similarity of the clusters must be. Every node in the tree therefore represents
a single cluster. Extracting a clustering from the dendrogram is a straightforward task. Choose the
number of clusters k, and draw a horizontal line at height k − 1 in the dendrogram. The subtrees
strictly below this line are then precisely the clusters and the partition of the dataset can be read off
by grouping the leaf nodes of each subtree. This description of the dendrogram equates to a sketch
of agglomerative hierarchical clustering, leaving only the details regarding the merging to be filled in.

Assume that the dataset X is unlabeled and an arbitrary dissimilarity function f : X2 → R on
the paired datapoints is available. In order to merge clusters this dissimilarity needs to be extended
to arbitrary subsets of the dataset, and this leads to a linkage between clusters. The following
graphic specifies several such extensions for two non-empty and disjoint subsets C1, C2 ⊂ X with,
if available, centroids c∗1 and c∗2 respectively.

Linkage Formula

Single min
c1∈C1,c2∈C2

f(c1, c2)

Complete max
c1∈C1,c2∈C2

f(c1, c2)

Average 1
|C1||C2|

∑
c1∈C1,c2∈C2

f(c1, c2)

Centroid f(c∗1, c
∗
2)

The reader might wonder why the involved functions are called dissimilarity measures instead of
similarity measures. The reason for this is plain to see when a metric is taken as the dissimilarity
measure. A higher value is indicative of a higher dissimilarity between two elements, and therefore
the metric quantifies the dissimilarity rather than the similarity. This reasoning extends to general
dissimilarity measures and therefore justifies the naming convention.

Both the dissimilarity function and linkage determine the resulting dendrogram and are therefore
vital to this clustering algorithm. Which of the linkages is suited best to a problem depends on
both the structure of the data and the requirements for the sought clusters, meaning the involved
reasoning is almost always subjective. By drawing small examples one can clearly see the difference
in behaviour for the different linkages.

For completeness the agglomerative hierarchical clustering algorithm is given below. If single linkage
is used and this procedure is implemented naively the complexity is O(n3) [69], but if the process
is optimised the complexity can be reduced to O(n2) which is optimal [82].

Algorithm 1 Agglomerative Hierarchical Clustering

Input: A dataset X and a linkage L.
Output: A partition {Ci}ki=1 of the dataset.

1: Initialise the dendrogram with |X| nodes representing the singleton clusters;
2: Repeatedly compute the arguments of the minimum linkage L between the current clusters

until convergence, merging them in both the partition and the dendrogram;
3: Present the dendrogram to the analyst who chooses the number of clusters k;
4: Let {Ci}ki=1 be the collected nodes of the subtrees under level k and return this partition.
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The dendrogram used in this description may be replaced by a datastructure that saves the parti-
tions found during the iterations, identified by the minimum linkage. The result corresponds to a
unique constructable dendrogram. Using the dendrogram directly is however more intuitive.

The introduction of hierarchical clustering is concluded with the promised example of an unjustly
imposed hierarchy taken from [51]. Assume a dataset composed evenly of men and women is given,
originating from three different countries. Most likely a partitioning into two clusters would divide
the dataset into men and women, but without further information it is equally likely that a division
into three clusters would characterise the clusters by nationality. There is however no guarantee that
the former clustering resulted from joining two clusters in the latter. It may therefore be possible
that some structures are ignored and the results become unrepresentative.

4.1.2 The Divisive Approach

In contrast to joining clusters, clusters may be split as well. As a reconsideration of the example
from the previous subsection points out, this principle might even be safer for some datasets. In
practice this divisive approach is studied little compared to agglomerative methods because for an
arbitrary dataset there are significantly more divisions than agglomerations to consider, leading to
a higher number of required computations. Although this problem was addressed to some extent
in [62], divisive hierarchical clustering is often still not considered an option.

The adaption to divisions is fairly simple. The dendrograms introduced previously may be read
starting from the top, where the first and single cluster is the entirety of the dataset. At every
following iteration an allowed set of splits should be considered and as a result one of the clusters
should be split in two. The nodes in the dendrogram then represent clusters that are separated
instead of merged, and a clustering is extracted from the final dendrogram in identical fashion.

Readers interested in the further specifics of this approach are redirected towards [44].

4.2 Prototype Based Methods

In unsupervised learning, particularly in clustering, a prototype is some archetypical point that is
treated as being representative for part of the dataset. Finding such points allows for a clustering
of the dataset based on proximity to these prototypes, and the prototype based methods therefore
aim to identify them. The most popular example is the k-Means algorithm that uses the means of
clusters in Euclidean spaces as prototypes, recalibrating at every iteration until the clusters remain
unchanged. After introducing this algorithm, the k-Medoids problem that generalises the k-Means
problem to arbitrary dissimilarity functions is explained in addition.

4.2.1 k-Means Clustering

The main principles underlying k-Means clustering are the assumptions that the mean of a cluster
forms a good prototype, and that recalibration of the clusters based on their means leads to a clus-
tering with small variation within the clusters. In order to motivate the algorithm, the reasoning in
this section starts from the ideal but computationally infeasible case.

Let the dataset be given as X = {x1, ..., xn} ⊆ Rm. Assuming k is fixed and the clusters are
given by a partition {Ci}ki=1 of the labels, the variation within the p-th cluster as measured through
the squared Euclidean metric is given by:

32



1

|Cp|
∑
i,j∈Cp

d(xi, xj)
2. (4.1)

The optimal clustering respecting the above principles is therefore found by choosing the partition
{Ci}ki=1 that minimises the objective function

k∑
p=1

 1

|Cp|
∑
i,j∈Cp

d(xi, xj)
2

 (4.2)

that simply sums the within-cluster variations. Although easily formulated, the search space for
this optimisation problem consists of all partitions of the dataset, and the problem can in fact be
shown to be NP-hard even in the planar case [64]. It is therefore unrealistic to solve in practice,
and the k-Means algorithm based on Lloyd’s algorithm [61], through which it is related to the later
to be introduced Voronoi diagrams, is often used instead. The k-Means algorithm shown below is a
hill climbing algorithm that converges to a local optimum.

Algorithm 2 The k-Means algorithm

Input: A dataset X and the number of clusters k.
Output: A partition {Ci}ki=1 of the labels of the datapoints.

1: Randomly assign each datapoint an initial cluster;
2: Compute the centroids (means) of the clusters, reassigning each datapoint to the cluster

represented by the closest centroid and repeat until convergence;
3: Return the partition {Ci}ki=1 wherein each datapoint is assigned to the nearest centroid.

Some object to calling this algorithm the k-Means algorithm, stating “k-Means” is only the name
of the clustering problem as their reason. Due to its effectiveness however, the above algorithm has
come to be synonymous with solving the k-Means problem.

An interesting aspect of this algorithm is the random initialisation step. Instead of randomly
assigning the datapoints to clusters, several other initialisation schemes have been proposed [7,71].
Regardless, random initialisation is still the most popular one at the time of writing. The algorithm
is usually ran multiple times, yielding different results each time due to the involved randomness,
and the result giving the lowest value for the objective function given in Equation 4.2 is kept. If
this is repeated q times the time complexity is given by O(qkmn) [58], where n is the number of
datapoints and m is the dimension of the datapoints.

As a conceptual preparation for the next subsection, although it will not be treated, an alike problem
called the k-Medians problem can be obtained from the k-Means problem with slight modifications.

4.2.2 k-Medoids Clustering

Before being able to think about k medoids, the single medoid needs to be defined: a medoid is a
prototype that behaves much like a mean or median but is required to be an element of the dataset
rather than of an ambient space. Given a dissimilarity function f and a subset C ⊆ X of the data,
the medoid c′ of C can be defined formulaically as:

c′ = arg min
c∈C

∑
x∈C

f(c, x). (4.3)
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By now defining an objective function:

k∑
p=1

∑
x∈Cp

f(c′p, x)

 , (4.4)

a problem similar in nature to the k-Means problem is obtained. Instead of measuring the variation
within a cluster by the averages of the Euclidean squared distances, the dissimilarities between the
elements in the cluster and the medoid of the cluster are summed. The k-Medoids algorithm, also
called the partitioning around medoids algorithm, heuristically solves this minimisation problem by
repeatedly adjusting the clustering based on the medoids. This algorithm is given below.

Algorithm 3 The k-Medoids algorithm

Input: A dataset X, a dissimilarity function f and the number of clusters k.
Output: A partition {Ci}ki=1 of the labels of the datapoints.

1: Randomly select k elements of X to serve as the first medoids;
2: Assign each element to its most similar medoid, and therefore to a cluster;
3: As long as the value of the objective function decreases, check per cluster if replacing

the medoid by another element in the cluster reduces variation. If so, select this
element as the new prototype and reassign all elements;

4: Return the stabilised partition {Ci}ki=1.

Because of the use of dissimilaries instead of the Euclidean metric, this algorithm is more generally
applicable. Furthermore, because the medoids are part of the dataset, the dissimilarities do not
need to be recomputed after the first iteration. In the case of k-Means the prototypes may shift
to arbitrary real vectors, and this means that the distances need to be recomputed during every
iteration. Regardless, the k-Medoids algorithm is often more costly to run in practice with a time
complexity of O(k(n− k)2) [58].

4.3 Spectral Clustering

Spectral clustering derives its name from the importance of the spectra of matrices associated to
graphs for its methods. In more detail, these spectra can be related to the number of connected
components of the graph, and this knowledge can be exploited to find a clustering of a suitable
dataset into groups. The entirety of this section is based on [88], a comprehensive tutorial on graph
Laplacians and spectral clustering. The proofs of the propositions in this section can be found in
this paper, as well as both algorithms discussed.

4.3.1 Graph Laplacians

Spectral graph theory studies graphs through the spectra of the matrices associated to them, for
example the adjacency matrix, or more strongly pertaining to this section, the graph Laplacians. A
graph Laplacian is a matrix that in some sense encodes a discrete analogue to the gradient known
from calculus, measured when moving between the vertices. This subsection collects the different
definitions used for the graph Laplacian in practice along with some elementary results.

Before beginning to build towards the definitions of the graph Laplacians, a note is made of conven-
tions regarding the spectrum of a matrix. It will be assumed that eigenvectors are not normalised
and therefore have no unique representation unless noted otherwise, and the set of eigenvalues will
be assumed to be ordered increasingly. This allows for an ordering on the eigenvectors corresponding
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to these eigenvalues.

Let G = (V,E) be a non-negatively weighted and undirected graph with vertices V = {v1, ..., vn}
and weighted adjacency matrix W with entries wij . If two vertices vi and vj are not connected by
an edge in the graph this is reflected in W by wij = 0. The degree di of any vertex vi in the graph
is defined as:

di =

n∑
j=1

wij , (4.5)

and the degree matrix D of the graph is defined as the diagonal matrix diag(d1, ..., dn). The graph
Laplacian is then defined as the difference of the degree matrix and the weighted adjacency matrix.

Definition 4.3.1. (Graph Laplacian). The graph Laplacian L of G is defined as L = D −W .

Alternatively the following definition can be used, which is called the normalised graph Laplacian
for historical reasons.

Definition 4.3.2. (Normalised Graph Laplacian). The normalised graph Laplacian L∗ is defined
from the graph Laplacian L as the matrix L∗ = D−1/2LD−1/2.

The first proposition concerning the graph Laplacians depends on specialised indicator vectors for
subsets of the vertices of the graph, defined as follows.

Definition 4.3.3. (Indicator Vectors for Graphs). Let A ⊆ V be a subset of the vertices of G.
The indicator vector 1A = (b1, ..., bn) is the binary vector that indicates for each vertex vi if it is
contained in A, meaning bi = 1 if and only if vi ∈ A.

The proposition itself relates the spectra of the graph Laplacians to the connected components of
their graph, making it crucial to spectral clustering. As a preview to the succeeding proposition it
is mentioned that 0 is always an eigenvalue of any graph Laplacian defined in this subsection.

Proposition 4.3.4. The multiplicity k of the eigenvalue 0 of two graph Laplacians L and L∗ equals
the number of connected components A1, ..., Ak of the graph they are based on. The eigenvectors
corresponding to the eigenvalue 0 of the unnormalised graph Laplacian L are the indicator vectors
1A1

, ..., 1Ak whereas these eigenvectors of the normalised graph Laplacian L∗ are given by:

D−1/2 · 1A1 , ..., D
−1/2 · 1Ak . (4.6)

The final result from this subsection is a collection of properties of the graph Laplacians.

Proposition 4.3.5. (Properties of the graph Laplacians). If L is any graph Laplacian and L∗ is
any normalised graph Laplacian, the following statements are true:

1. Both L and L∗ are positive semi-definite;

2. The smallest eigenvalues of L and L∗ are 0;

3. All eigenvalues of L and L∗ are real.

Datasets with measures of similarity, or less generally distances between points, can be written as
weighted graphs, and can therefore be subjected to a cluster analysis using the propositions from
this subsection. This type of clustering algorithm is the topic of discussion for the next subsection.
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4.3.2 Spectral Clustering Algorithms

The spectral clustering algorithms treated in this subsection take similarity matrices that contain
the similarity of the points in a dataset as their input. As an example, such a matrix can canon-
ically be constructed when the dataset comes equipped with a pre-defined metric d. Under this
assumption the similarity matrix would be defined as the matrix S with entries sij = d(xi, xj) for
all points xi, xj in the dataset. Based on the information the similarity matrix provides, different
weighted graphs with the datapoints as their vertices can be realised, and these graphs are called
similarity graphs. Each similarity graph recipe has different conditions for the insertion of an edge
into the graph, but all model the local relationships of the datapoints through their edges.

In abstract formulation the following spectral clustering algorithms take in a similarity matrix,
construct a similarity graph and extract the clusters after changing the representation of the data.

Algorithm 4 Unnormalised Spectral Clustering

Input: A similarity matrix S ∈ Rn×n and the number of clusters k.
Output: A partition {Ci}ki=1 of the datapoints identified by their label.

1: Construct a similarity graph based on S;
2: Determine the graph Laplacian L of the similarity graph;
3: Compute the first k eigenvectors v1, ..., vk of L;
4: Let A ∈ Rn×k denote the matrix with the eigenvectors v1, ..., vk of L as its columns;
5: Use the k-Means algorithm to find a clustering {Ci}ki=1 of the row vectors A and return it.

Like the graph Laplacian has a normalised counterpart, so too does the unnormalised spectral
clustering algorithm. It varies slightly from the above algorithm, most notably in that it has an
added normalisation step for the eigenvectors. Both have a time complexity of O(n3) [91].

Algorithm 5 Normalised Spectral Clustering

Input: A similarity matrix S ∈ Rn×n and the number of clusters k.
Output: A partition {Ci}ki=1 of the datapoints identified by their label.

1: Construct a similarity graph based on S;
2: Determine the normalised graph Laplacian L∗ of the similarity graph;
3: Compute the first k eigenvectors v1, ..., vk of L∗ and normalise them to unit length;
4: Let A ∈ Rn×k denote the matrix with the normalised eigenvectors of L∗ as its columns;
5: Use the k-Means algorithm to find a clustering {Ci}ki=1 of the row vectors A and return it.

Both algorithms are very similar, but it should be noted that the normalised spectral clustering
algorithm assumes a defined norm or metric. If this structure is given the choice of algorithm is
situational. At a glance, the change in representation of the data in both algorithms may seem
arbitrary. The following subsection offers intuition for when and why these algorithms are expected
to result in a satisfying clustering of the dataset, and addresses the need for a normalisation step in
the second algorithm.
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4.3.3 Motivation using Perturbations

The motivation in this subsection is one of multiple offered in [88], where the reader can find alter-
native explanations in terms of graph cuts and random walks. The explanation in this subsection
bases itself on perturbation theory.

Perturbation theory is the theory that studies small disturbances and is often used in numerical
analysis, where otherwise unsolvable real life phenomena are considered as small perturbations of
a solvable problem. The use of such disturbances is then to solve a simpler or exact problem and
derive an approximate solution to the assumedly perturbed and more complex instance of the same
problem. The general idea for the use of this theory to motivate spectral clustering is then as follows.

The ideal case where the similarity graph consists of the input number k of connected components
is considered, and the actual dataset’s similarity graph is considered to be a perturbed instance of
this graph. Following from Proposition 4.3.4, the set of row vectors in the matrix A found in the
unnormalised algorithm for the ideal case are precisely the indicator vectors for the k connected
components, and the k-Means algorithm trivially detects k clusters with these indicator vectors as
their centroids. If the perturbation is small, one would hope that this translates to a small change
in the connected components, and therefore a reliable clustering of the actual dataset. This ex-
planation can analogously be given in more generality by considering the similarity matrix used to
construct the similarity graph, which gives a more intuitive basis for perturbations in general.

The remainder of this subsection is dedicated to a theoretical basis for the above explanation in
terms of matrix perturbation theory. The first definition is therefore that of a perturbation of a
matrix.

Definition 4.3.6. (Matrix Perturbation). Let M be any matrix, and H a matrix of the same
dimensions. If H is considered small compared to M with respect to any measure of size, the
matrix M̃ = M +H is said to be a perturbation of M .

The meaning of a measure of size used in this definition was kept vague on purpose, so that many
such measures remain eligible. A norm can be used, and as the Frobenius norm is required later in
this subsection it will be given as an example.

Definition 4.3.7. (Frobenius Norm). The Frobenius norm ‖M‖F of a matrix M is defined by:

‖M‖F =
√

trace(MTM) . (4.7)

Other required definitions concern angles between subspaces of a fixed Euclidean space. These
definitions depend on singular values of matrices and extend the familiar notion of angles between
vectors.

Definition 4.3.8. (Singular Values). The singular values of a matrix M of finite dimensions are
the square roots of the eigenvalues of the product M†M .

Readers with more experience in data analysis or statistics may recognise this definition as it is used
in the singular value decomposition required for principal component analysis. Here, the singular
values are stepping stones towards the definition of canonical angles between Euclidean subspaces.

Definition 4.3.9. (Canonical Angles). Let M1 and M2 be two matrices whose respective columns
form orthonormal bases for two m-dimensional subspaces of Rn, and let σi denote the singular
values of M†1M2 for i = 1, ...,m. The canonical angles of these spaces are then given by arccos(σi)
for i = 1, ...,m.
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For m = 1 this definition coincides with the definition of an angle between two vectors, and it
therefore generalises this angle to a set of angles which is in fact invariant under a wide class of
transformations of the ambient Euclidean space. This definition can be even further generalised to
subspaces of differing dimensions. In practice these angles are used to measure the distance between
the two column spaces of M1 and M2 through the norm of the diagonal matrix:

S(M1,M2) = diag(sinσ1, ..., sinσm) (4.8)

that contains the sines of the canonical angles between the column spaces of M1 and M2.

The main result required from matrix perturbation theory can now be stated. The statement
of this theorem uses the conventions that for a matrix M and an interval I ⊂ R, the set of all
eigenvalues of M contained in I is given by λI(M), the space VI(M) is the eigenspace spanned by
the eigenvectors corresponding to these eigenvalues, and

δI(M) = inf{|λ− x| for λ ∈ λĪ(M) and x ∈ I} (4.9)

denotes the distance from I to the closest eigenvalue of M in the complement Ī of I in R defined
using the infimum.

Theorem 4.3.10. (Davis-Kahan). Let M be a square symmetric matrix and let M̃ be a perturbation
of M by a second symmetric matrix. If I ⊂ R is any interval, then the distance between the
eigenspaces VI(M) and VI(M̃) is bounded above by:

∥∥∥S(VI(M), VI(M̃))
∥∥∥
F
≤

∥∥∥M̃ −M∥∥∥
F

δI(M)
. (4.10)

This theorem is both stated in more generality and proven in [11]. Readers interested in matrix
perturbation theory are also referred to this source, and this opportunity is taken to redirect readers
interested in a rich theory of linear subspaces to the theory of Grassmannians, as can be found in
for instance [57].

This theorem can now be directly related to the explanation given earlier in this subsection. If
a graph Laplacian is substituted for M , a small perturbation should lead to a small change in the
eigenspaces, and therefore conserve the desired properties from the ideal case to a certain degree.

Finally, the need for a normalisation step in the normalised spectral clustering algorithm can be
addressed. In the above explanations for the unnormalised spectral clustering algorithm, the rows
taken from the matrix A formed in the algorithm can be shown to be indicator vectors and much
of the theory in this section is founded on this fact. For the normalised graph Laplacian however,
it follows from Proposition 4.3.4 that these rows each contain exactly one non-binary entry in the
ideal case. The row normalisation step would counter this problem and thus make the above theory
applicable. Once again this step relies on the assumption that the change in properties is somehow
proportional to the size of the perturbation.
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Chapter 5

Persistent Homology

5.1 Common Elements

This section serves as a precursory section to the following sections on persistent homology and
quantum persistent homology, introducing point clouds as well as several different ways in which
simplicial complexes can be constructed on a point cloud. The concept of persistent homology
depends heavily on these constructions, as it assumes a point cloud is a set of points sampled
from some topological space and attempts to approximate its homology. Simplicial complexes are
essential to this process as they are used to bridge the gap between the discrete sample and the
underlying space. On its own, a finite point cloud is discrete and therefore its homology is of no
interest. Although point clouds and simplicial complexes are common to both algorithms they are
treated differently, which is the reason their introduction is abstracted to this additional section.

5.1.1 Point Clouds

All qualitative datasets without further structure can be seen as subsets of an Euclidean space, so
that the dataset inherits the Euclidean metric. If another metric is defined, or the datapoints are
not qualitative, this may not necessarily be true. In the generalised case any dataset representable
by real vectors accompanied by some metric forms a point cloud. This subsection describes point
clouds, datasets eligible as input for persistent homology, and addresses under what circumstances
a dataset may be translated to a point cloud. As the following definition reveals, point clouds are
easily described.

Definition 5.1.1. (Point Cloud). An n-dimensional point cloud X is a subset X ⊆ Rn together
with a metric on Rn. Any dataset that can be represented as such is called point cloud data.

Note that this definition implies that the data does not need to be given as a subset of some real
space, but only that it can be represented as one. In practice a map that effectuates this translation
is required to be given. As a minor example, consider the group U(n) of unitary matrices. There
is a natural map from the matrices in this group to the n2-dimensional Euclidean space, meaning a
set of unitary matrices may be referred to as point cloud data.

When translating between metrics spaces there may be stronger requirements involved, for instance
that the mappings preserve the exact distances between elements. To this end isometric embeddings
are defined.

Definition 5.1.2. (Isometric Embedding). Let (X, dX) and (Y, dY ) be two metric spaces. An
isometric embedding of (X, dX) into (Y, dY ) is a map f : (X, dX)→ (Y, dY ) so that for all x1, x2 ∈ X:
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dX(x1, x2) = dY (f(x1), f(x2)). (5.1)

In full generality an embedding is a map that shows an instance of a structure as a substructure of
another structure, and it is isometric if it preserves distances. Henceforth any representation of a
dataset as a point cloud will be referred to as an embedding of the dataset into a real space.

As a characterisation of when a metric space can be isometrically embedded in an Euclidean space
the following theorem is given. It is proven in [12].

Theorem 5.1.3. Let X be a metric space. There exists an isometric embedding of X into (Rn, dEucl)
if and only if every finite subset with at most n+ 3 elements can be isometrically embedded in this
same space.

In the next subsection processes for the construction of simplicial complexes on point clouds are
discussed. It will also see to a more general definition of simplicial complexes that is required when
the complex is built on an intermediate structure rather than the point cloud directly.

5.1.2 Construction of Simplicial Complexes

The types of simplicial complexes treated in this subsection were specifically chosen because they
have seen widespread use, were implemented classically in common packages and offer a wide variety
of options. They are therefore well studied and established. A source that offers directions towards
other simplicial complexes is the survey paper [72].

Throughout this subsection an arbitrary point cloud X with associated metric d will be considered.
As an opening note on notation, the convention of using Sε(X) to denote an arbitrary simplicial
complex at scale ε on X will be used, and this may be shortened to Sε if no confusion may arise.
This is useful if a statement regarding a simplicial complex is made that does not discriminate based
on how the simplicial complex was constructed, as this subsection introduces several such recipes.

The first two constructions, the Čech complex and the Vietoris-Rips complex [16], are constructed
in similar ways and will moreover be shown to be related. For their construction the spaces:

X(ε) :=
⋃
x∈X

B̄d(x, ε/2) ⊂ (Rn, d) (5.2)

at different scale values ε are considered. These spaces are unions of closed balls with diameter
ε centered around the elements of the point cloud, as the following figure shows for a small two-
dimensional example.

Figure 5.1: A set X(ε).
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The mentioned complexes base themselves on these spaces by adding simplices conditioned on the
overlappings of the closed balls, specifically as follows.

Definition 5.1.4. (Čech Complex). The Čech complex Cε(X) on X is the simplicial complex whose
k-simplices are determined by unordered finite sequences of points {xi}ki=0 in X for which the closed
balls B̄(xi,

ε
2 ) in X(ε) have a point of common intersection.

A k-simplex σ = (x0, ..., xk) can therefore be a part of a Čech complex if and only if the balls
surrounding all k+ 1 of its vertices have a non-empty shared intersection. This equals the following
statement:

σ ∈ Cε(X) ⇔
k⋂
i=0

B̄d(xi, ε/2) 6= ∅. (5.3)

The Čech complex is often seen as the ideal simplicial complex based on the X(ε) spaces. The
explanation requires a few general topological definitions, starting from homotopies.

Definition 5.1.5. (Homotopy). A homotopy is a family of maps ht : X → Y between topological
spaces, indexed over the unit interval I, so that the associated map H : I × X → Y defined by
H(t, x) = ht(x) is continuous. Two continuous maps f, g : X → Y are called homotopic, denoted
f ' g, if there exists a homotopy ht with h0 = f and h1 = g connecting them.

A homotopy is a continuous deformation of one map into another, and as an example, two homotopic
paths are intuitively best pictured as two curves with shared start and end points with either able
to be continuously slid onto the other. In turn, homotopies lead to a notion of equivalence between
topological spaces that is broader than the homeomorphism.

Definition 5.1.6. (Homotopy Equivalence). A continuous map f : X → Y between topological
spaces is called a homotopy equivalence if there exists a continuous map g : Y → X such that
g ◦ f ' 1X and f ◦ g ' 1Y . If such maps exist the spaces X and Y are to be said homotopy
equivalent, or of the same homotopy type. This is denoted X ' Y .

Every homeomorphism in particular can be shown to be a homotopy equivalence although the
converse does not hold, and the most interesting aspect of this new idea is that topological properties
such as homology are still invariant under homotopy equivalence [45]. This fact, combined with the
following variant of the Nerve theorem [16], illuminates why the Čech complex is so important.

Theorem 5.1.7. The Čech complex Cε(X) is homotopy equivalent to X(ε).

As per the theory discussed so far, the homology of X(ε) can not directly be computed. The above
theorem however guarantees that the simplicial homology of Cε(X) corresponds to that of X(ε), so
that knowing one automatically grants you the other. In a way the Čech complex can therefore be
thought of as accurately representing the space X(ε), at least in terms of homology.

The downside to the Čech complex is that its construction, as per the above definition, has a large
asymptotic complexity as every possible simplex needs to be checked. This problem is neutralised
to some degree by relying on the Vietoris-Rips complex.

Definition 5.1.8. (Vietoris-Rips Complex). The Vietoris-Rips complex VRε(X) on X is the sim-
plicial complex whose k-simplices are determined by unordered finite sequences of points {xi}ki=0 in
X for which the B̄(xi,

ε
2 ) in X(ε) have pairwise non-empty intersections.

This complex admits a k-simplex if and only if all of its 1-simplices are already in the complex,
meaning the complex is completely determined by its 1-simplices. In order to more accurately
discuss substructures as these, the following definition introduces skelata of simplicial complexes.
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Definition 5.1.9. (n-Skeleton). The n-skeleton Sn of a simplicial complex S is the simplicial
complex consisting of all simplices in S of dimension n or lower.

Note that this notation should not cause the n-skeleta to be confused with n-spheres, as this nota-
tion is usually reserved for the latter. This choice was made under the consideration that n-spheres
will not be explicitly used in this thesis.

The full Vietoris-Rips complex VR is the clique complex of VR1, which can be treated as a graph
since the 0-simplices can be equated to nodes, and the 1-simplices can be equated to edges. It
can therefore be stored in graph datastructures, which opens this complex to the already existing
and significant number of results on graph processing. More important however, speaking from a
theoretical point of view, is its following relation to the Čech complex.

Proposition 5.1.10. For any positive scale parameter ε,

Cε(X) ⊆ VR2ε(X) ⊆ C2ε(X). (5.4)

The implications of this proposition will become apparent when sequences of simplicial complexes
are considered, and the reader is encouraged to revisit this proposition after filtrations of simplicial
complexes are defined in the section following this one. For now, it is noted that this proposition
can be found in [16], and that although the construction of the Vietoris-Rips complex is significantly
faster than it is for the Čech complex, the problem can be reduced to the clique problem and is
therefore NP-complete [54]. Regardless, the Vietoris-Rips complex has been shown to work well in
practice [17,23,83].

Before moving on to describe other complexes, the difference between the Vietoris-Rips complex
and the Čech complex is illustrated by the following figure.

Figure 5.2: The Vietoris-Rips and Čech complexes compared.

This figure shows that the Vietoris-Rips complex on the left contains a 2-simplex at this scale, as its
1-faces are part of the complex. On the right, the Čech complex does not admit a 2-simplex as even
though the 1-simplices that would form its faces are present, the closed balls have trivial intersection.

As an alternative, the Witness complex was first introduced in [22] specifically to combat the
inherent high simplicial dimensions of the Vietoris-Rips and Čech complexes. The mechanism that
reduces these dimensions is simultaneously the reason the Witness complex is easier to compute. It
is shown in the following definition that this complex does not depend on the full point cloud, but
is instead based on a subset L ⊆ X called the landmarks of the complex.
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Definition 5.1.11. (Witness Complex). For every x ∈ X, let mx = minl∈L d(x, l). The Witness
complex Wε(X,L) on X is the simplicial complex with the landmarks L as its 0-simplices and that
admits a k-simplex (li0 , ..., lik) as a member if and only if there exists a witness x ∈ X to the simplex
so that d(x, lij ) ≤ mx + ε for all landmarks li0 , ..., lik .

The Witness complex is best thought of as simply a complex with a lot of degrees of freedom, as
the choice for the landmarks is free. Before expanding on the choices involved, the following figure
should give some geometric intuition to accompany the abstract definition.

l0

l1

l2

l3

x

mx

ε

Figure 5.3: An example of a 2-simplex with a point x as its witness.

This figure shows a 2-simplex within the context of a landmark set {l0, l1, l2, l3}. For this choice of
scale ε, the point x is a witness to the simplex (l1, l2, l3), because all three of its elements lie within
the ball Bd(x,mx+ ε). The last landmark l0 is excluded because it is not within the specified range.

The choice for the number of landmarks is case-dependent, but the original paper suggests that
a ratio of the point cloud size to the number of landmarks of at least 20 works well for two-
dimensional surfaces. A precise rule in any number of dimensions is unknown. With this number
chosen, the paper offers two ways of selecting the landmarks. The first is a random initialisation,
and the second is an inductive procedure executed as follows. First, choose an arbitrary landmark
l0. In any following step, assume that i landmarks

Li = {l0, ..., li−1} (5.5)

have already been chosen. The next landmark li is then chosen as the element of X \ Li that
maximises the objective function

x 7→ min
l∈Li

d(x, l), (5.6)

and this is repeated until the desired number of landmarks were chosen. This procedure should
result in a set of landmarks with high variability, but one that also tends to favour extreme points.
For this reason careful consideration is required when Witness complexes are used.

As per [22], the idea for the Witness complex arose from the theory of Delaunay triangulations
from computational geometry [21], which in turn are closely related to Voronoi diagrams. Based on
these notions one more type of parametrised simplicial complex, the Alpha complex [6], is defined.
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Definition 5.1.12. (Voronoi Diagram). Let {Pi}i∈I be a sequence of non-empty subsets of Rn
indexed over I ⊆ N. Then every Pk is called a site and the Voronoi cell associated to Pk is given by:

Vk = {x ∈ Rn | ∀i ∈ I \ {k} : d(x, Pk) ≤ d(x, Pi)}. (5.7)

The sequence V = {Vi}i∈I of Voronoi cells covers Rn and is called a Voronoi diagram of Rn.

This definition depends on a measure of distance between points x and subsets A of Rn similar to
the one used in the statement of the Davis-Kahan theorem in the previous chapter, here specifically
defined as:

d(x,A) = inf{d(x, a) | a ∈ A}. (5.8)

Voronoi diagrams can be efficiently computed in two dimensions by Fortune’s algorithm [34]. In
higher dimensions however, this process becomes more complex [39].

Delaunay triangulations can be characterised as combinatorially described simplicial complexes
based on Voronoi cells. Because of this their definition requires more generality than the defini-
tion of simplicial complexes used thus far can provide, and the first course of action should be to
extend the latter’s definition.

Definition 5.1.13. (Abstract Simplicial Complex). An abstract simplicial complex S = (V,Σ) is
a set of vertices V and a collection Σ of finite non-empty subsets of V called abstract simplices so
that the membership σ ∈ Σ implies that every non-empty subset of σ is also an element of Σ.

Intuition dictates that a face of an abstract simplex σ should simply be a subset of σ, and the
dimension of σ should be defined as its cardinality. All other terms and prior intuition should
transfer to this new definition.

Definition 5.1.14. (Delaunay Triangulation). The Delaunay Triangulation D(X,V ) defined over
a given Voronoi diagram V of Rn is the abstract simplicial complex (X,Σ) where:

Σ = {σ ⊆ X |
⋂
x∈σ

Vx 6= ∅}. (5.9)

The final simplicial complex to be defined in this subsection can be extracted as a subcomplex from
a Delaunay triangulation by adding scale constraints. For its definition, let m(x) denote the smallest
index of a Voronoi cell the element x ∈ X is a member of and define:

V (x, ε) = Vm(x) ∩ B̄d(x, ε) (5.10)

to be the intersection of this cell with the closed ball of radius ε centered around x. The Alpha
complex is then defined as follows.

Definition 5.1.15. (Alpha Complex). The Alpha complex Aε(X) on X is the abstract simplicial
complex (X,Σ) whose abstract simplices are given by:

Σ = {σ ⊆ X |
⋂
x∈σ

V (x, ε) 6= ∅}. (5.11)

The Alpha complex has several interesting properties. First, it is homotopy equivalent to the Čech
complex at the same scale ε, meaning the Alpha complex too has the same homology as X(ε) per
transitivity [22]. However, in contrast to the Čech complex, the dimension of the Alpha complex is
upper bounded by the dimension of the point cloud [72].
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5.2 Persistent Homology

It follows from the previous section that if a point cloud dataset is given and the simplicial homology
of the space assumed to underly the dataset is to be estimated, a simplicial complex needs to be
constructed. This construction itself however requires an arbitrary choice of the scale parameter,
which completely determines the topology of the complex. It is therefore preferable to investigate
the complexes at different scale parameters and register how the homology of the approximating
complexes change as the scale changes, resulting in the idea of persistent homology. The theory
developed in this section makes this idea precise and offers two summaries of this information in
the form of barcodes and persistence diagrams.

5.2.1 Persistent Betti Numbers

When wanting to base an analysis of any kind on multiple scale parameters, it is useful to bundle
these different values together. A sequence is the natural choice of object, and the result is named
a parameter sequence.

Definition 5.2.1. (Parameter Sequence). A parameter sequence s = {εi}ni=1 of length n is a finite
and strictly increasing sequence of positive real numbers.

Defining this object as a finite sequence is a conscious decision. As any real world point cloud
dataset X is necessarily finite, the set of scale parameters that define a unique complex on this
cloud is finite itself, for the Čech and Vietoris-Rips complexes bounded above by the diameter

max
x1,x2∈X

d(x1, x2) (5.12)

of the dataset. Therefore, given any infinite parameter sequence, there exists a finite subsequence
that represents exactly the same information and the complexity of the sequence can be severely
reduced by discarding the redundant scale parameters. From this point onwards the finiteness of
point clouds will be assumed.

Given any parameter sequence, a simplicial complex Sε(X) can be constructed on the point cloud
for any element ε of the sequence. By the same reasoning these complexes too can be taken together
to form one singular object.

Definition 5.2.2. (Filtration on a Point Cloud). Let X be a point cloud, and s = {εi}ni=1 a
parameter sequence. The ordered sequence

Fs = {Sεi(X)}ni=1 (5.13)

of simplicial complexes is called a filtration of simplicial complexes on X.

Theoretical papers on persistent homology may opt to define these filtrations by way of Morse
functions [67] from differential topology. Although this definition removes the need for an explicit
parameter sequence, their use is infeasible in practice. For this reason the theory required for Morse
functions and this consequent alternative definition will not be treated in this thesis.

Instead of computing the simplicial homology of the individual complexes, the homology can be
computed within the context of the different complexes in the filtration. The direct underlying
object for persistent homology is therefore a filtration instead of a single simplicial complex. Let
∂i∗ denote the boundary operators associated to the chain complex of the i-th simplicial complex in
the filtration for the next definition.
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Definition 5.2.3. (Persistent Homology). Let Fs be a filtration based on a parameter sequence of
length n. For any p ∈ N, the k-th p-persistent homology group of the i-th simplicial complex in the
filtration is defined as:

Hi,pk =
(
ker ∂ik

)
/(im ∂i+pk+1 ∩ ker ∂ik). (5.14)

In order to unpack this definition, first notice the likeliness to the definition of simplicial homology.
Here too the quotient of all closed cycles of k-simplices by the boundaries is taken, with the differ-
ence being that the boundaries are now taken from the larger (i + p)-th complex in the filtration.
Intersecting this image with the kernel ensures that the quotient is well defined. The simplices of
the i-th complex must be strictly contained within any successive complex in the filtration, but the
holes that were present in the i-th complex may have closed since. Therefore the elements of the
p-persistent homology groups correspond to all holes that have persisted in the p complexes in the
filtration following the i-th complex.

For further remarks, notice that the persistent homology groups stabilise past a certain point where
the chain groups become trivial by the non-existence of generating simplices. The number of persis-
tent homology groups is therefore bounded, as there can not exist simplices on the point cloud with
more vertices than the point cloud has elements. Notice too that this definition can be formulated
in terms of vector spaces as well by choosing suitable field coefficients. For a deeper treatment of
persistent homology the reader is refered to [66].

From a practical point of view, the next definition should be an analogue to the Betti numbers
that summarise the simplicial homology of a single complex. Since persistent homology is defined
over a finite point cloud the following definition has no finiteness requirements like the definition of
the Betti numbers did have.

Definition 5.2.4. (Persistent Betti Numbers). The k-th p-persistent Betti Number of the i-th
simplicial complex in a filtration is the rank of Hi,pk , denoted by βi,pk .

As a digression, the persistent analogue to the Betti numbers could be defined as sequences

βik = {βi,jk }
|s|−i
j=i (5.15)

rather than single numbers in order to stay consistent with the dependence of persistent homology
on sequences. The choice of definition is not particularly important, as the analysis of persistent
homology relies mostly on visual summaries in the form of barcodes and persistence diagrams.

5.2.2 Barcodes and Persistence Diagrams

Once the persistent homology groups are known they can be represented visually in two different
ways. In order to not let the connection to the abstract theory waver, holes will be referred to as
homology generators for the remainder of this subsection, which is the nomenclature from algebraic
topology. This is especially important because the full category theoretical justification for these
summaries is not given. Instead, the theorem that lies at the heart of their definitions is used as a
springboard, and the full foundations are discussed in [66].

Theorem 5.2.5. (Structure of Persistent Homology Modules). Given a filtration on a point cloud
X, the persistent homology modules over a field F admit decompositions of the following form:

H∗(X;F) ∼=

(
m⊕
i=1

ΓxiF[t]

)
⊕

(
n⊕
i=1

ΓyiF[t]/(tni)

)
. (5.16)
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The object on the left hand side of this equation is a persistent homology module, encoding the k-th
persistent homology in full. The decomposition on the right hand side is split into two components.
The first corresponds to all homology generators that appear at some scale xi and remain in all
successive complexes. The second component captures all homology generators that appear at scale
yi and disappear from the filtration at scale yi + ni. This theorem thus grants a method to extract
the birth and death times of the homology generators, and with them the lifespan of said generator.

Definition 5.2.6. (Bar). A bar is an ordered pair (b, d) ∈ Z× Z ∪ {∞} with b < d.

Every homology generator has an associated bar (b, d) and the lifespan d−b can be directly computed
from it. Because a mapping from a persistent homology module to a set of bars can be defined,
and the bars are ordered pairs of numbers, they can be represented in a visual summary called the
barcode.

Definition 5.2.7. (Barcode). The barcode of a filtration on a point cloud is the ordered set of
all bars corresponding to the persistent homology of the filtration, ordered on the dimension of the
homology generators and birth scale in that order.

The following diagram may be considered as a stylised example of a barcode.

ε

H0

H1

H2

Figure 5.4: An example of a barcode based on a point cloud sampled from a circle.

Every homology generator is literally represented as a bar, with its birth and death visible along
the horizontal axis. This summary clearly shows which of the generators persist the longest and are
therefore most likely to represent true homological properties of the underlying space from which
the point cloud is assumed to be sampled. This same explanation holds for the stylised persistence
diagram shown on the next page, which is a different but equivalent visualisation of the bars.

Every bar is now shown as a point plotted above the diagonal line, its value along the horizontal
axis signifying its birth, and the value along the vertical axis its death. Because the death of a
generator cannot occur before its birth, no points can be plotted on or below the diagonal. The
points are often styled by colour or shape based on their dimension for clarity.

Other summaries of persistent homology exist. The most prominent of these is the persistence
landscape [15]. In contrast to barcodes and persistence diagrams, the persistence landscapes can be
treated as elements of a normed vector space and are suited to calculus, meaning they are receptive
to statistical methods. This means that these summaries can for instance be averaged for repeated
experiments. Their name derives from the fact that when plotted, the results look likes a landscape
of hills. These landscapes are not treated here because they require knowledge of measure theory.
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Figure 5.5: A persistence diagram based on the same point cloud sample from a circle.

5.2.3 Computation

This subsection offers a method for the algorithmic computation of homology, which can be extended
to directly accomodate the computation of persistent homology as was done in [92]. Because of its
effectiveness this algorithm is often referred to as the standard algorithm, even though it is officially
named the reduction algorithm. The algorithm revolves around the reduction of matrices to their
Smith normal form, introduced in the next definition.

Definition 5.2.8. (Smith Normal Form). A matrix M with entries in a field F is said to be in
Smith normal form if it is represented as a diagonal matrix

M =



m1

. . .

mi

0
. . .

0


(5.17)

for non-zero m1, ...,mi ∈ F so that mj is a divisor of mj+1 for all j < i.

It is stated without proof that every matrix over a field can be written in Smith normal form. As the
usage of a field suggests, this subsection will treat the homology of a topological space as a sequence
of vector spaces. With this being the case, the k-th vector space in the sequence has a basis of
k-simplices, and the boundary operator ∂k can be realised as a matrix called the standard matrix
representation of the boundary operator with respect to these bases. It follows directly from the
definition of the boundary operator that this matrix has entries taken from {−1, 0, 1} corresponding
to the orientations of the simplices in the boundary, and these matrix representations completely de-
termine the homology. Explaining the reduction algorithm equates to explaining why this is the case.

Assume the vector spaces ∆i of i-chains are given, and their dimensions are denoted by di. For any
i the standard matrix representation of ∂i : ∆i → ∆i−1 is given by a di−1 × di matrix with null
space ker ∂i and range space im ∂i. Reducing this matrix to Smith normal form by elementary row
and column operations therefore reveals essential information: modified bases {ej,i} for the spaces
∆i, and through them the dimensions of the null spaces and range spaces. These bases follow from
the changes in the initial bases of simplices induced by the row and column operations. If the Smith
normal form of ∂i is determined by ordered entries m1, ...,mli the following information is known.
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1. The set {ek,j | lk + 1 ≤ j ≤ dk} is a basis for ker ∂k and therefore dim ker ∂k = dk − lk;

2. The elements of {mjek−1,j | 1 ≤ j ≤ lk} form a basis for im ∂k and dim ∂k = lk;

3. The k-th Betti number can be computed as βk = dk − lk − lk+1.

The formula for the k-th Betti number is derived as the codimension of im ∂k+1 in ker ∂k:

βk = dimHk

= dim ker ∂k/im ∂k+1

= dim ker ∂k − dim im ∂k+1

= dk − lk − lk+1.

(5.18)

The complexity of the reduction algorithm is cubic in the number of simplices in the complex [92].

5.3 Quantum Persistent Homology

This section is based on the description of an incomplete quantum algorithm for the computation of
persistent homology given in [59]. The general idea is that one can forego the expensive construction
of a simplicial complex if one is given access to a quantum computer, instead approximating it
in a quantum state through the use of Grover’s search algorithm. The paper uses the Vietoris-
Rips complex in particular. Following this, the combinatorial Laplacians, generalisations of the
unnormalised graph Laplacian that are tied to the homology of the complex, can be derived. It
is then attempted to approximate the persistent homology through this construction. Although
this method may fail to compute the persistent Betti numbers of a filtration, it can be used to
approximate the Betti numbers of a simplicial complex. This routine was implemented on a quantum
computer as a proof of concept, and the results were published in [48].

5.3.1 Simplicial Complexes in Quantum States

For a simplicial complex S of choice, ensure that an ordering is fixed on the elements of its 0-
skeleton S0 = {s1, ..., sn}. This subsection will concern itself with the construction of a quantum
state encoding the complex, and in order to do this a simplex σ in the complex will be represented
by a bitstring of length n where the value on the i-th position is 1 if and only if the i-th element
of S0 is a vertex of σ. This allows for the identification of the sets of k-simplices Sk \ Sk−1 in the
complex with subspaces Sk of Hilbert spaces Hk spanned by all possible k-simplices represented in
the standard computational basis. Extending this further, a relation:

S ∼ H =

n⊕
i=1

Hi (5.19)

between the full simplicial complex S and a subspace S of the Hilbert space H is found. Note that
boundary operators on this space can be formulated through the use of projections:

Pk : H → Hk, (5.20)

and simplex boundaries can therefore be identified as elements of this space.

The above identifications grant a domain for the simplicial complex, as the component spaces of H
are spanned by all possible simplices. If the simplicial complex is not yet explicitly determined, the
last remaining step is its approximation, and the complex is manifested specifically as the uniform
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superposition |s〉 ∈ H of the member simplices of S. Once a membership oracle for the simplices in
the complex is formulated, this state is determined through a straightforward application of Grover’s
algorithm.

5.3.2 Extraction of the Betti Numbers

In order to find the Betti numbers of a simplicial complex in a quantum state, the Abrams-Lloyd
algorithm introduced in [2] and expanded on in [50] is used, an algorithm for the estimation of
eigenvalues which, compared to the phase estimation algorithm, only requires an approximation
to the eigenvector corresponding to the eigenvalue that is sought. This algorithm is described in
generality before it is applied.

Let U be a unitary operator and ṽ an approximation to the eigenvector v of U with eigenvalue
λv. If ṽ is represented in a quantum state by |ṽ〉, the initial state to be constructed is |0〉⊗t ⊗ |ṽ〉
with the first register of t qubits serving the same goal as the first register in the phase estimation
algorithm. This initial state can then be coaxed into the state:

|ψ〉 =
1√
2t

2t−1∑
j=0

|j〉 ⊗ U j |ṽ〉 (5.21)

by first applying a Hadamard transform to the first register and then consecutively applying U the
required number of times to the second register. Now note that because U is unitary it must be
normal as well, and therefore the spectral decomposition theorem (Theorem 2.1.15) applies. As a
consequence the state |ṽ〉 can be written as a linear combination:

|ṽ〉 =
∑
k

ck |vk〉 (5.22)

for suitable complex coefficients ck and where the vk form a basis of eigenvectors of U . Because
the eigenvalues corresponding to the eigenvectors vk can be written in the form e2πiϕk for values
ϕk ∈ [0, 1), the state |ψ〉 can then be rewritten as:

|ψ〉 =
1√
2t

2t−1∑
j=0

|j〉 ⊗ U j
(∑

k

ck |vk〉

)

=
1√
2t

2t−1∑
j=0

|j〉 ⊗

(∑
k

cke
2πiϕkj |vk〉

)

=
1√
2t

∑
k

ck

2t−1∑
j=0

|j〉 ⊗ e2πiϕkj |vk〉

=
1√
2t

∑
k

ck |vk〉 ⊗

2t−1∑
j=0

e2πiϕkj |j〉

 .

(5.23)

The reader should note that the registers are swapped in the last step. After applying an inverse
quantum Fourier transform, a subsequent measurement yields one of the eigenvalues. This feature
of the algorithm is what is used to approximate the Betti numbers of the simplicial complex S.
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As a first step, the boundary operator ∂k is embedded into a different operator:

Bk =

(
0 ∂k
∂†k 0

)
(5.24)

acting on Sk−1 ⊕Sk that can be verified as being Hermitian as well as a Hamiltonian following the
Dirac formalism [27]. The consequence of this embedding is that the Abrams-Lloyd algorithm can
now be used to estimate the dimension of the kernel of ∂k, as it corresponds to the kernel of Bk, and
this in turn can be used to compute the estimated Betti numbers. In order to do this, an important
map called the matrix exponential needs to be introduced.

Without concern for the domain, codomain and the matter of convergence, the matrix exponential
is an extension of the exponential function ex to matrices. Recall that the exponential function can
be expanded as:

ex =

∞∑
k=0

xk

k!
(5.25)

for x a scalar. Since this expansion involves only products and sums, which are also allowable op-
erations for matrices, the exponential eX of a matrix X is defined identically.

It is important to note that the matrix exponential e−iHt of any Hamiltonian H is unitary [70].
Moreover, all eigenvalues of an Hermitian operator must be real [8]. Lastly, it can be verified from
the definition that every eigenvalue of a matrix exponential must be of the form eλ where λ is an
eigenvalue of the exponent. Put together, these observations show that when the Abrams-Lloyd al-
gorithm is applied to e−iBk , the fraction of times the eigenvalue e0 = 1 is measured is an indication
for how often the eigenvalue 0 occurs in the spectrum of ∂k. More precisely, the algorithm is applied
using the uniform mixture of the (k−1)-simplices and k-simplices in S as |ṽ〉, with [59] representing
this mixture as a density operator [70]. This representation is not treated here.

Let pk be the observed probability of measuring the eigenvalue 1. As per the deriviation of the
k-th Betti number as a codimension in Subsection 5.3.2:

βk = dim ker ∂k − dim im ∂k+1. (5.26)

Since in this subsection ∂k+1 is an operator acting on Sk+1, it is also a given that

dim im ∂k+1 = dimSk+1 − dim ker ∂k+1 (5.27)

as a consequence of the rank-nullity theorem [8]. Using pk · dimSk ≈ dim ker ∂k the following
estimation β̃k of the k-th Betti number is obtained:

β̃k = dim ker ∂k + dim ker ∂k+1 − dimSk+1

≈ pk · dimSk + pk+1 · dimSk+1 − dimSk+1

≈ pk · dimSk + (pk+1 − 1) · dimSk+1.

(5.28)

The time complexity of this process is derived in [59] as being O(ξn5) for ξ a multiplicative factor
depending on the desired accuracy, simplices in the complex and the dimensions of the eigenspaces.
We, however, are of the opinion that this analysis is lacking, as for instance the assumptions made
during the complexity analysis of the Abrams-Lloyd algorithm are not properly addressed. For
one, [2] formulates a requirement on the value of |〈ṽ, v〉|2 which is not shown to be met in [59].
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Unfortunately this procedure can not be used to compute the persistent Betti numbers of a filtra-
tion. The authors of [59] have erroneously assumed the persistent Betti numbers can be calculated
from the Betti numbers, which is not the case. The obstacles are discussed after the next subsection
that introduces the combinatorial Laplacians, which are required to continue the discussion of the
ideas put forward in [59].

5.3.3 Combinatorial Laplacians

Like simplicial complexes subsume graphs (as the latter are one-dimensional simplicial complexes),
so too do the combinatorial Laplacians defined in this subsection subsume the graph Laplacian. A
combinatorial Laplacian is much like a graph Laplacian except that it’s defined more generally on
a simplicial complex. It holds the same type of information and serves the same general purpose.

The definition of the combinatorial Laplacians for a simplicial complex requires knowledge of an
associated chain complex of vector spaces and an inner product to be defined on these spaces. Using
this structure an adjoint operator ∂†k : ∆k−1 → ∆k to each boundary map ∂k : ∆k → ∆k−1 can
be found. It is worth noting that these adjoints are strongly associated to coboundary operators
used for the definition of cohomology through cochain complexes [45]. Cohomology is another major
construction used heavily in algebraic topology and differential geometry, and there exists a parallel
to persistent homology called persistent cohomology [24]. Returning from this small detour, the
following definition is in order.

Definition 5.3.1. (Combinatorial Laplacians). Let S be a simplicial complex, and let ∂i denote
the boundary operators of the chain complex associated to S. The k-th combinatorial Laplacian
Lck : ∆k → ∆k of S is defined as the linear operator:

Lck = ∂k+1 ◦ ∂†k+1 + ∂†k ◦ ∂k. (5.29)

This definition takes a drastically differing form from the earlier definition of the graph Laplacian,
and this is due to the more complex structures present in simplicial complexes. Note that if the
boundary maps are realised as their standard matrix representations, the resulting combinatorial
Laplacians will be realised as matrices as well. This can be demonstrated while simultaneously
sketching how the graph Laplacian fits into this definition using straightforward binary weights.

Let G be any undirected graph with degree matrix D and binary weight matrix W . Starting
with the graph G as a template, construct a new graph G′ with any orientation on its edges so
that G′ becomes a directed graph. The graph G′ will be viewed as both a graph and a simplicial
complex, and the imposition of the orientations guarantees the orderings required for the boundary
maps. As a graph, G′ admits an incidence matrix B, and as a simplicial complex it theoretically
grants two boundary maps ∂1 and ∂0, the latter of which is trivial per definition. It follows from
the definition of the incidence matrix that BT coincides with the standard matrix representation of
∂1 [40], and that its adjoint equals its transpose because it can not contain complex entries. Finally,
since ∂0 is trivial, its adjoint must be trivial too. Therefore the 0-th combinatorial Laplacian of G′

is given by:

Lc0 = ∂1 ◦ ∂†1 + ∂†0 ◦ ∂0 = BT ◦ (BT)T + 0 ◦ 0 = BTB. (5.30)

For any suitable graph G, this computation reveals that Lc0 so obtained is a matrix with the degrees
of the nodes of G on its diagonal, and that the values outside of the diagonal correspond to the
negated entries of the weight matrix. Therefore, Lc0 = D −W = L for such a graph G. A proof of
the proposition that BTB equals D −W is found in [36].
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Because the combinatorial Laplacians are defined in terms of boundary maps and their adjoints,
there is an a priori connection with homology and cohomology. It follows from Hodge theory that
this connection is actually fairly strong. Hodge theory concerns itself with the representation of de
Rham cohomology [57] on certain manifolds by harmonic forms, solutions to specific partial differen-
tial equations. Mathematically educated readers might realise at this point that the Laplacians can
be seen as discretizations of the differential Laplace operator, the fact of which was already hinted
at during the introduction of the graph Laplacians, and that the discrete harmonic forms are then
harmonic cycles. The combinatorial treatment of these discrete objects through the lens of Hodge
theory was simply dubbed combinatorial Hodge theory, and the following is one of this area’s main
results.

Theorem 5.3.2. (Combinatorial Hodge Theorem). Let S be a finite simplicial complex, and let
Lck : ∆k → ∆k denote the k-th combinatorial Laplacian of the chain complex associated to S for a
field F of characteristic zero. The vector space ∆k then decomposes as:

∆k
∼= im ∂k+1 ⊕ kerLck ⊕ im ∂†k. (5.31)

This theorem along with references for historical accounts can be found in [31], while [65] offers
a longer and physically motivated explanation of why the discretization of the Laplace operator
might be useful. Of the highest conceptual relevance to this thesis is [35], that uses this theorem to
construct an algorithm that computes the Betti numbers from the combinatorial Laplacians. The
next paragraph sketches how this theorem is related to homology, and therefore the Betti numbers,
completing the relation between homology and the combinatorial Laplacians.

First, assuming V,W to be finite dimensional inner product spaces and T : V → W a linear
map between them, recall the following two facts from linear algebra.

1. The image imT † of the adjoint of T equals the orthogonal complement (kerT )
⊥

of its kernel;

2. For any linear subspace U of V , V ∼= U ⊕ (V/U).

It can then be derived from the above theorem that under the given conditions, the kernel of the
k-th combinatorial Laplacian and the k-th homology space Hk(S;F) are isomorphic as vector spaces.
In order to see this, compare the result of the following derivation that uses the above facts to the
decomposition given in Theorem 5.3.2:

∆k = ker ∂k ⊕ (ker ∂k)
⊥

= ker ∂k ⊕ im ∂†k
∼= im ∂k+1 ⊕ (ker ∂k/im ∂k+1)⊕ im ∂†k

= im ∂k+1 ⊕Hk(S;F)⊕ im ∂†k,

(5.32)

so that it must follow that kerLck ∼= Hk(S;F).

5.3.4 Towards Persistent Betti Numbers

First, a proposition is presented that shows that the persistent Betti numbers can not generally be
constructed from the Betti numbers. Following this, the observations involving the combinatorial
Laplacians and persistent homology made in [59] are treated.
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Proposition 5.3.3. The Betti numbers of the simplicial complexes in a filtration do not necessarily
provide enough information to uniquely compute the persistent Betti numbers of the filtration.

Proof. This statement is proven constructively by way of an example. Consider the following point
cloud with the Euclidean metric on R2:

X = {(0, 0), (0, 1), (1, 0), (1, 1), (1 +
√

2 , 0), (1 +
√

2 , 1)}, (5.33)

visualised below. This point cloud will be used to illustrate that the persistent Betti numbers can
not be computed from the Betti numbers without additional information.

Figure 5.6: The point cloud X.

Using the Vietoris-Rips complex, as this is the complex [59] uses, together with the parameter
sequence s = {0, 1,

√
2 }, the following behaviour is observed.

Figure 5.7: The complexes VR1 (left) and VR√2 (right) on X.

The first Betti number of VR1 equals 1, but so too does the first Betti number of VR√2 while these
values do not stem from the same homology generator. Because for general complexes the Betti
numbers in and of themselves contain no additional information on the generators, their persistence
can not be derived from just the Betti numbers. There is no way to truthfully distinguish between
the two possible values {0, 1} for β1,1

1 while its true value is 0.

Because [59] made use of the Vietoris-Rips complex it was used as the complex of choice in the
proof, but one should note that the Čech complex is identical to the Vietoris-Rips complex if only
simplices of dimension 1 or lower are considered. This can be verified by comparing Definitions
5.1.4 and 5.1.8: if only 1-simplices are considered, the common intersection in the definition of the
Čech complex is the intersection of a pair of closed balls, the same intersection used in the definition
of the Vietoris-Rips complex. This means this result is not limited to just the Vietoris-Rips complex.

Of course the recurrent mention of the homology generators in the proof betrays that if they could be
found, the persistent Betti numbers, and more generally the persistent homology, could be computed
in full. The following interesting theory was described in [59]. If the direct sum of the operators Bk
(5.24):

B =
⊕
k

Bk (5.34)
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is taken and the result is squared, the resulting operator is the direct sum:

B2 =
⊕
k

Lck (5.35)

of the combinatorial Laplacians belonging to the simplicial complex. Note that for the explicit
construction of these operators, the overlap between the domains of the Bk needs to be accounted
for, and that terms of the form ∂k∂k+1 are trivial and therefore vanish. Because S is a complex
Hilbert space and C is a field of characteristic 0, the combinatorial Hodge theorem applies and for
all k the following holds:

kerLck ∼= Hk(S;C), (5.36)

where S is treated as a simplicial complex. Therefore, if a way is found to characterise these kernels,
the full persistent homology can be computed based on comparison of the generators.

Lloyd et al. do attempt to use (5.34) and (5.36) in [59] to compute all Betti numbers at once
by applying the Abrams-Lloyd algorithm to B in the same way as was done for the individual Bk in
Subsection 5.3.2. Note that the Abrams-Lloyd algorithm can not be directly applied to B2, because
of the requirement of Hermiticity. There are two problems with this approach. First, the dimension
of the kernel of B does not necessarily equal the dimension of the kernel of B2, so that knowing
the former does not grant knowledge of the latter. The following nilpotent matrix is an illustrating
example:

A =

(
0 1
0 0

)
. (5.37)

While the dimension of the kernel of A is 1, the dimension of the kernel of A2 is 2 as A2 = 0.
Second, assuming that through this method dim kerB2 = dim ker⊕kLck would be found, this yields
the dimension of the kernel of the direct sum of the combinatorial Laplacians. Because knowing the
value of a sum does not equate to knowing the value of its components, this dimension does not
lead to the individual dimensions of the kerLck.
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Chapter 6

Quantum Clustering

In this chapter the theoretical work on persistent homology treated thus far is related to cluster
analysis. This relation will be established by first formulating novel membership oracles required for
the construction of the different simplicial complexes. Following this, it is argued that the process of
constructing 1-simplices in the Vietoris-Rips and Čech complexes parallels single linkage clustering,
and it is shown that part of the barcode can be constructed from just the Betti numbers. This par-
tial barcode is related to the dendrogram. At the tail end, the possibilities for a quantum spectral
clustering algorithm within the current framework are briefly discussed.

Over the course of this chapter it will be assumed that distances among datapoints are computed
classically and available in a quantum random access memory [38], the quantum counterpart to the
random access memory. This memory structure maps address input states to output states as:∑

k

ck |k〉a ⊗ |0〉d 7→
∑
k

ck |k〉a ⊗ |Dk〉d , (6.1)

where the image is a superposition of the information Dk in the queried memory cells. The subscripts
a and d indicate elements of the address and data registers respectively.

6.1 Simplex Membership Oracles

As the methods discussed previously use Grover’s algorithm to construct simplicial complexes in
quantum states, they require access to a quantum oracle. In this section several classical oracles
that directly amount to quantum oracles (per Definition 3.3.2) for the complexes treated in Section
5.1.2 are given as a proof of concept, with all being based on the inexpensive direct comparison of
distances. Simplices are again encoded in bit strings and all given functions have binary output,
meaning they qualify as classical oracles.

6.1.1 The Čech Complex

Because the Čech complex depends on the intersection of a number of closed balls it is difficult to
construct a membership function for arbitrary metrics. Without explicit knowledge of the metric,
a general expression for the classical membership oracle would be of the form:

M Č
ε ((x0, ..., xk)) = 1⋂k

i=0 B̄d(xi,ε/2)6=∅, (6.2)

where (x0, ..., xk) is a simplex with vertices in the point cloud, and 1 is the indicator function. This

ensures that the binary function M Č
ε equals 1 if and only if the argument simplex is a member of
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the Čech complex at scale ε, which in turn is only the case if the intersection in the predicate in
Equation 6.2 is non-empty per the definition (5.1.4) of the Čech complex.

As an example, consider the Euclidean metric. An implementation scheme could be a function
that computes the volume of a polytope contained in the intersection. The argument simplex would
then be a member of the complex if and only if the determined volume is non-zero.

6.1.2 The Vietoris-Rips Complex

Since the Vietoris-Rips complex is a clique complex, the membership oracle is comparatively easier
to implement. Recall that for a clique complex, a simplex is a member of the complex if and only
if its 1-faces are members of the complex, leading to the following membership oracle:

MVR
ε ((x0, ..., xk)) =

∏
(i,j),i6=j

1d(xi,xj)≤ε, (6.3)

where the product ranges over the unordered pairs (i, j) of vertex indices. The product equals 1
exclusively if all vertices are pairwise within range, meaning the intersection of the closed balls at
scale ε surrounding them is non-empty, and the computation may be terminated as soon as this
condition is not met for a single pair to increase efficiency.

6.1.3 The Witness Complex

A supporting function for the Witness complex’s membership oracle is given before defining the
oracle itself. This function verifies an element x in the point cloud as a witness to a k-simplex:

gWε (x, li0 , ..., lik) = 1[∑
j 1d(x,lij

)≤mx+ε=k+1

], (6.4)

assuming the vertices were taken from the landmark set and this does not require checking. This
function determines the number of landmarks lij for which d(x, lij ) ≤ mx + ε, and x is a witness
to the k-simplex precisely if this number equals k + 1, meaning the inequalities hold for all k + 1
landmarks making up the simplex. An extension to a membership oracle then takes the form:

MW
ε (li0 , ..., lik) = 1[∑

x∈X 1gWε (x,li0
,...,lik

)>0

]. (6.5)

A simplex is a member of the Witness complex if there exists at least one witness to the simplex,
meaning the sum in the predicate must be larger than 0. It is possible that the elements of the point
cloud can be sorted by their likeliness to be witnesses, thus decreasing the number of computations,
as the routine may be terminated as soon as a single witness is found. Such optimisations are not
considered here.

6.1.4 The Alpha Complex

The Alpha complex per definition has a high similarity to the Čech complex, and can even be seen as
a substructure of the latter. A simplex can only be a member of the Alpha complex if it would also
be a member of the Čech complex. For this reason it suffers from the same drawbacks as the Čech
complex does: without an expression for the metric, a membership oracle is difficult to construct.

Assume the Voronoi diagram is available and it is denoted V . Computing V for each separate
call to the oracle would produce significant overhead. Given this diagram, the membership oracle
for the Alpha complex is then an extension of the oracle for the Čech complex:
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MA
ε ((x0, ..., xk)) = 1⋂k

i=0[Vm(xi)
∩B̄d(xi,ε/2)] 6=∅. (6.6)

It is unclear to what extent the dependency on the Voronoi diagram complicates the problem of
finding an expression for this oracle. Considering the process naively, some measure of complexity
is added, but the Voronoi cells may also serve as reference points to aid in the construction of the
aforementioned polytopes.

6.2 Quantum Hierarchical Clustering

Since the preceding section has seen the formulation of membership oracles, Grover’s algorithm
can be used for the construction of simplicial complexes per the theory in Subsection 5.3.1. In
this section it is assumed that a filtration over the point cloud for some parameter sequence s is
available, with each simplicial complex being represented in a separate quantum state. Using these
elements the possibility of a quantum algorithm for the task of agglomerative hierachical clustering
is explored, starting from linkages.

6.2.1 Simplices as Linkage

Linkages were introduced in Subsection 4.1.1 as constructions to measure the connectivity of two
clusters based on a given dissimilarity function. If the dataset is a point cloud and the dissimilarity
function is taken to be the metric, the 1-simplices of a Vietoris-Rips or Čech complex on the point
cloud parallel single linkage. In order to see this connection, assume that the scale parameter for the
construction of the simplicial complexes is allowed to vary continuously over a closed real interval.
As the scale increases, 1-simplices are added between the datapoints that are closest according to
the metric, meaning that the minimising connected components C1 and C2 for:

min
c1∈C1,c2∈C2

d(c1, c2) (6.7)

are merged first. This is precisely the formula for single linkage clustering, using the metric as the
dissimilarity function, and the connection is completed by considering the parameter sequence s as
a discretization of the interval. This observation is the inspiration for considering the persistent
homology of the 1-skelata in a filtration on the point cloud for hierarchical clustering. In doing so,
the complexity of the process of constructing quantum states for these complexes should be further
reduced, as for general complexes no calls to a quantum oracle needs to be made for the higher
dimensional simplices.

Higher dimensional simplices may still serve a purpose within this context. The presence of high
dimensional simplices in a cluster may indicate a high confidence in its elements being truly related,
as may the number of higher dimensional simplices present. Considering only the zeroth dimensional
persistent homology over the filtration has an enticing advantage however, as the persistent Betti
numbers in this dimension can be found by the quantum algorithm in [59]. This statement is proven
in the next subsection.

6.2.2 Partial Persistence

In particular, the algorithm in [59] can find the persistent homology in the zeroth dimension because
the persistent Betti numbers in this dimension equal specific Betti numbers. The following lemma
details why this is the case.

Lemma 6.2.1. In the zeroth dimension, the persistent Betti numbers of a filtration can be computed
from the Betti numbers of the individual complexes in the filtration.
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Proof. First, let β0(εi) denote the function that maps a scale parameter εi in s to the zeroth Betti
number of the simplicial complex at that scale. This function is monotonically decreasing on s.
For all i, j with i < j, the complex at scale εi is a subset of the complex at scale εj , meaning
that as the scale increases simplices can only be added but never removed. Recall now that the
zeroth Betti number of a simplicial complex equals the number of connected components in the
complex. When a simplex of any dimension is added in the step from εi to εj , it is either added
to a connected component, or a connected component disappears because the simplex connects two
connected components that were previously disconnected. In either case, the number of connected
components does not increase, thus

β0(εi) ≥ β0(εj), (6.8)

and it may be concluded that β0(·) is monotonically decreasing. Moreover, per the preceding
explanation, an increase in scale only ever brings about the death of generators. Therefore, at any
scale, β0(·) gives the number of generators that have survived since scale parameter 0, or more
generally since the last complex in the filtration. Given that the Betti numbers are known for all
scales in the parameter sequence, the zeroth p-persistent Betti number of the i-th simplicial complex
in the filtration is then calculated as:

βi,p0 = β0(εi+p). (6.9)

The relevance of this result to hierarchical clustering is that the barcodes and persistence diagrams
in the zeroth dimension may be read much in the same way as the dendrogram. Consider the
following example of a barcode for the zeroth dimensional persistent homology.

ε

Figure 6.1: An example of a partial barcode.

Note that this barcode can be constructed without requiring specific knowledge of the homology
generators. For the trivial scale parameter, the number of connected components equals the num-
ber of datapoints, and therefore β0(0) = |X|. A bar is started for each of these generators in the
barcode. As general procedure, starting from any scale parameter ε, the bars for the currently living
generators all persist up until the first value ε′ in the parameter sequence for which β0(ε′) differs
from β0(ε). At this point the extension of the highest β0(ε′) − β0(ε) still mutating bars is stopped
as their corresponding generators have died.

Similarly to how the dendrogram is read in order to choose the number of clusters, the partial
barcode can be used to choose a number of clusters based on the longetivity of the generators. For
instance, assuming for this paragraph that the parameter sequence used for the construction of the
above partial barcode is uniformly spaced, the third generator from the bottom seems to have the
longest solitary lifespan. This could be the basis for a choice of the scale parameter at the end
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point of this bar. The main difference with the dendrogram is then that the complete clustering, or
equivalently the partition, can not be read directly from the barcode. Instead, the scale parameter
points towards a single simplicial complex in a quantum state from which the clusters need to be
extracted. This point is addressed in the following subsection.

6.2.3 Obtaining the Partition

Once a scale parameter ε is chosen, either automatically through some pre-defined selection rule or
through visual inspection of the barcode by the analyst, the partitioning of the point cloud needs
to be extracted from the corresponding simplicial complex. Several possible routines are discussed
in this subsection. Since the premise is finding the connected components of a simplicial complex
S, it will be useful to consider its 1-skeleton S1 as an undirected graph (S0, S1 \ S0) so that graph
theoretical methods become available.

Classically, one would use the depth-first search algorithm to find the connected components of
an undirected graph. At the time of writing and to our knowledge however, this algorithm has no
quantum counterpart. The first option offered is therefore to reconstruct the state containing the
simplicial complex through quantum state tomography [70, 73], after which classical methods like
the depth-first search become available.

Staying within the confines of quantum computing, it is likely this task can be reformulated based
on the undirected st-connectivity problem. This problem is, given an undirected graph and two
vertices s and t in it, to determine if there is a path connecting the vertices s and t. A quantum
algorithm to solve this problem is given in [10], along with the following theorem on its complexity.

Theorem 6.2.2. Assume the adjacency matrix of an undirected graph with n vertices is given,
and that if two vertices s and t are connected by a path, this path is of length at most m. The
st-connectivity problem can then be decided in O(n

√
m ) quantum queries.

More work in this direction was done in [52], in the form of an extension of the complexity analysis
and the introduction of new quantum algorithms for the determination of graph connectivity.

Another option could be the use of quantum walks [75], the quantum analogue to the random
walks from stochastics. Random walks are stochastic processes that model paths, usually studied in
the setting of an integer lattice, where each step to a different position in the lattice is taken with
some probability. Interestingly, these quantum walks have been shown to be possible primitives for
universal computation [19], but more importantly the possibility of using them for searching prob-
lems has been studied [63,78]. They become explicitly connected to the problem at hand through [3],
in which quantum walks on graphs are considered.

The hidden subgroup problem was mentioned previously in the chapter on the quantum Fourier
transform, as the latter is instrumental to solving the hidden subgroup problem for abelian groups
on a quantum computer [70]. The problem is revisited here as a possible basis to reformulate the
problem of finding the connected components on. The following definition is needed for a precise
definition of the general hidden subgroup problem.

Definition 6.2.3. (Subgroup Hiding Function). Let G be a group and Y a finite set. A subgroup
H ≤ G is said to be hidden by a function f : G→ Y if for all g1, g2 ∈ G the following holds:

f(g1) = f(g2)⇔ g1H = g2H. (6.10)

The problem is then as follows: if G is a finitely generated group, Y is a finite set and f is a function
hiding a subgroup H of G, find a generating set for the subgroup H. This problem is the general
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case of many problems of interest, such as the problem of order finding, computation of discrete log-
arithms, and even bears relation to the graph isomorphism problem [53]. The mention of the graph
isomorphism problem should indicate that it is not unprecedented to involve the hidden subgroup
problem in the analysis of graphs.

How the hidden subgroup problem can be utilised to find the connected components is an open
problem. In order to recast the latter problem as an instance of the former, the group G, the set Y
and a function f would need to be chosen. A lead towards this structure may be found in the idea
of the fundamental group from topology [45], that studies the closed paths in a pointed topological
space up to homotopy. Pointed, in this case, refers to a singled out point in the space that serves
as a basepoint for the paths. However, it should be added that the fundamental group, and the
homotopy groups in general, are notoriously hard to compute. Moreover the fundamental group is
generally not abelian. As an addition, one that is extremely likely to be in excess, inspiration may be
drawn from the fundamental groupoid [14] as well, which removes the need for a choice of basepoint.

Finally, possibly in supplement to the ideas from the previous paragraph, the linear algebraic study
of graphs may prove to help connect the problem of finding the connected components to the hidden
subgroup problem. In particular the theory of vertex spaces, edge spaces and cut spaces treated
in [25] may be of help. In this formalism, vector spaces are formed from the vertices and edges of a
graph G = (V,E). The vertex space V is constructed as the vector space of all functions V → F2

over F2, which grants a natural correspondence between subsets of the vertices and (characteristic)
functions in V that are constant equal to 1 on these subsets. Under this translation the sum x+ y
of two elements x, y from this space is defined by the symmetric difference:

x+ y := x∆ y = (x \ y) ∪ (y \ x) , (6.11)

and the empty set ∅ is taken to be the zero element. The edge space E is constructed following the
same formula, and from this starting point several familiar graph theoretical notions such as cycles
and cuts can be transported to a linear algebraic setting. Because there is a natural inner product:

〈·, ·〉 : E × E → F2, (F, F ′) 7→
∑
e∈E

F (e)F ′(e) (6.12)

on the edge space one can even speak of orthogonality of the edges, leading to several interesting
general results [25].

6.2.4 Complexity

If the complexity analysis of Lloyd et al. in [59] holds, the computational complexity of finding the
Betti numbers should take O(ξn5) time, where n is the size of the point cloud. It is highly likely
that this complexity can be further reduced if only the zeroth Betti numbers of the complexes are
computed. Redoing this analysis however would be difficult, since it is unclear how it should be
confirmed that the requirements for the Abrams-Lloyd algorithm are met, and how the issues of
convergence should be addressed. With the zeroth Betti numbers found, the construction of the
partial barcode takes linear time, as it only requires one iteration over the Betti numbers. This
leaves only the complexity of finding the partition from the chosen simplicial complex.

The complexity of the first option, quantum state tomography, is hard to determine, as it depends
both on what is considered to constitute a measurement and how the computational complexity of a
physical measurement operation is determined. Even if these problems are addressed, the problem
of dependency on the probability distribution corresponding to the quantum state remains. Find-
ing the connected components by solving the st-connectivity problem or hidden subgroup problem
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however does lead to explicit time complexities.

Assume for both that the problem reduction does not exceed the time required to solve the prob-
lem. In the case of the st-connectivity problem, Theorem 6.2.2 then guarantees that the connected
components can be found in at most O(n7/2) time by setting m := n and checking every unordered
pair of vertices. The hidden subgroup problem, in turn, can be solved by an algorithm with running
time polynomial in the logarithm of the group size [53]. If the group can be constructed with the
vertices as it elements, the resulting complexity would be O(poly log n).

Since single linkage hierarchical clustering can be implemented classically with a running time of
O(n2), formulating a quantum algorithm as is done in this chapter may at first seem like a fruitless
endeavor. The use of simplices, however, may offer additional information useful for the qualitative
evaluation of the clusterings. This idea is touched upon later in the discussion of future directions.

6.3 Quantum Spectral Clustering

In this closing section some interesting connections between spectral clustering and the material in
this thesis are mentioned. Specifically, having to compute the spectrum of the graph Laplacian is
one of the major drawbacks of spectral clustering. Having access to the combinatorial Laplacians,
the theory in [59] and [2] may ease this, as an approximation to the most important part of the
spectrum is obtained in the routine for the computation of the Betti numbers.

6.3.1 Finding the Eigenvectors

One of the interesting aspects of the Abrams-Lloyd algorithm is that once an eigenvalue is measured,
part of the state collapses onto one of the eigenvectors corresponding to this eigenvalue. If this or any
other routine can be adapted to find the eigenvalues and eigenvectors of the zeroth combinatorial
Laplacian, this process covers the first four out of five steps for the unnormalised spectral clustering
algorithm. Note that this is a direct result of the zeroth combinatorial Laplacian equating to the
unnormalised graph Laplacian, and that the obstruction in applying the Abrams-Lloyd is that this
operator is in general neither unitary nor Hermitian. The next result will show that the normalised
graph Laplacian of an undirected graph without isolated vertices is in fact Hermitian and, although
more difficult to construct, is therefore also a candidate for use in a quantum spectral clustering
algorithm.

Proposition 6.3.1. The normalised graph Laplacian L∗ of an undirected graph without isolated
vertices is Hermitian.

Proof. Let D denote the degree matrix of the graph, W its weighted adjacency matrix, and L the
graph’s unnormalised graph Laplacian. Recall that in order to show that L∗ is Hermitian, it needs
to be demonstrated that it is self-adjoint:

(L∗)† =
(
D−1/2LD−1/2

)†
= L∗. (6.13)

This will be done by first showing that D−1/2 and L are symmetric, from which the above can be
derived. First, note that the degree matrix D is normal following its definition in Subsection 4.3.1.
As such, exponents of D can be taken through Equation 2.7, and if D is written as diag(d1, ..., dn)
then:

D−1/2 = diag(d
−1/2
1 , ..., d−1/2

n ). (6.14)
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Because all entries in D are necessarily real, non-zero and positive, D−1/2 is again a symmetric
real matrix. This step is the cause for the requirement of the graph not having isolated vertices: if
a vertex i without any incident edges can exist in the graph, this vertex would lead to an entry di = 0.

Next, recall that a weight matrix of a non-negatively weighted graph too can only have positive
real entries, and that they represent the weights of the edges in the graph. Since the weight matrix
W is based on an undirected graph, it must follow that W is symmetric. The graph Laplacian L
can then be shown to be symmetric as:

LT = (D −W )
T

= DT −WT

= D −W
= L,

(6.15)

and recollecting the above facts it can be deduced that L∗ is Hermitian:

(L∗)† =
(
D−1/2LD−1/2

)†
=
(
D−1/2LD−1/2

)T

=
(
D−1/2

)T

LT
(
D−1/2

)T

= D−1/2LD−1/2

= L∗.

(6.16)

As a product of real matrices, L∗ must be real as well, and therefore its adjoint must be its trans-
pose. Next, the distributive property of the transpose is used to distribute the transpose over the
(reversed) components, and finally it is used that all three components are symmetric, completing
the derivation.

Relying on the normalised graph Laplacian, and therefore making use of the normalised spectral
clustering algorithm, removes the problem of not being Hermitian that the unnormalised graph
Laplacian did face. The result is that the Abrams-Lloyd algorithm can be applied to approximate
the spectrum of this matrix, but although the algorithm then obtains eigenvectors of its matrix ex-
ponential, it is unclear whether or not these can be uniquely related to its eigenvectors. In addition
this approach does not allow the presence of isolated points.

Other ideas for obtaining the information required for spectral clustering may follow from distantly
related work, like the quantum algorithm for principal component analysis [60]. At this junction it
suffices to conclude that if the spectrum and the eigenvectors can be found, the spectral clustering
algorithms are completed by a quantum variant of the k-Means algorithm.

6.3.2 Quantum k-Means Algorithms

This subsection offers ideas for the final step of a quantum spectral clustering algorithm that were
not explored further during the research for this thesis. Since the classical spectral clustering algo-
rithms in Subsection 4.3.2 require use of the k-Means algorithm, a full quantum variant is likely to
require a quantum counterpart to k-Means clustering. Therefore, these ideas are presented in the
form of possible connections between the k-Means algorithm and known quantum algorithms.
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An interesting quantum routine that was published in [89] computes the Euclidean distances of
a vector to a set of cluster centroids, and may be used to accelerate the k-Means algorithm hybridly.
This use was described in the same paper. Previously mentioned, the quantum principal component
analysis algorithm [60] may indirectly be related to the k-Means algorithm, specifically through
the work of [26] that explores the classical relation between principal component analysis and the
k-Means problem by viewing the latter as a sparse variation of the former. It is worthy of note
that this paper was met with criticism based on supposedly unclear phrasing, potentially placing
the results in contention. Lastly, [29] considers a continuous relaxation of the normally discrete
k-Means problem and shows this instance of the problem can be solved through a singular value
decomposition, again offering a possible new site for future research.

If any of these ideas can be united, the result will likely prove to be a large step towards a full
quantum k-Means algorithm, and therefore towards a quantum spectral clustering algorithm as
well.
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Chapter 7

Discussion

7.1 General Discussion

The general discussion consists first and foremost of a reflection on the work put forward in this
thesis. The contributions made are summarised in the first subsection, while also discussing them
in relation to each other by shedding light on their commonalities. These contributions themselves
stem from, and add to, a selection of open problems. A selection is given in the second subsection.

7.1.1 Contributions

As a first contribution, it was proven by way of counterexample that the method presented in [59] is
not able to compute the persistent homology of a general filtration. This counterexample is based
on the fact that the birth and death of homology generators are not exclusive events, meaning that
moving from one complex to a subsequent complex in a filtration, a birth and death may coincide.
If this occurs, the Betti numbers of the complexes alone are insufficient to discern the persistence,
as the persistence of the generators is obfuscated. Since the method offers no insight into the gen-
erators bringing forth the Betti numbers, this deficiency is irremediable.

It was later shown as reconciliation that this statement excludes persistence in the zeroth dimension.
As the complexes in a filtration are increasing, each being contained within the next, births of ho-
mology generators are of no concern in this dimension. By formulating a function on the parameter
sequence defining the filtration, it was shown that the zeroth Betti numbers of the complexes can
at most decrease when varying the scale parameter upwards. In turn this means that the persistent
Betti numbers in the zeroth dimension equal specific Betti numbers, and can thus be found by the
proposed quantum algorithm in [59]. The implementation in [48] can be seen as a partial proof of
concept for this theory along with the theory in Chapter 6.

Because persistent homology is a tool used most commonly in data analysis, it is inherently con-
nected to machine learning. Since homology in the zeroth dimension is concerned with connectivity,
the most natural point of entry to this domain is through cluster analysis. Specifically, the obser-
vation that the barcodes and dendrograms used in hierarchical clustering bear resemblance leads to
a connection with agglomerative hierarchical clustering. This thread is followed, offering quantum
routines to each classical step in the classical algorithm, until the selection of a complete clustering.
Once the simplicial complex containing these clusters as its connected components is chosen, several
options and ideas were offered for their extraction.
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Further relations to clustering were explored by pairing the zeroth combinatorial Laplacian of a
simplicial complex, previously investigated in relation to homology [31], with the graph Laplacians
used in spectral clustering. By considering the applicability of the Abrams-Lloyd algorithm [2] to
both the normalised and unnormalised graph Laplacians, showing the former to be Hermitian, two
starting points for quantum spectral clustering algorithms were mooted. The capstone to these
ideas would be a quantum algorithm for k-Means clustering, for which several possible venues of
future research were offered.

The research done in the process of writing this thesis has consequently lead to the identification
of several open problems. Some were mentioned in the earlier chapters, and these will be revisited
along with a new addition in the next subsection.

7.1.2 Open Problems

By far the largest open problem is the completion of a quantum algorithm for the computation
of persistent homology and its complexity analysis. Although the methods discussed so far were
very ingeniously found by the original authors, it is not clear if the problems they still face can be
circumnavigated. If not, a different approach, possibly more algebraic in flavour, may need to be
explored.

A different problem that remains open is the extraction of the clustering from the quantum state
resulting from the quantum routines paralleling the agglomerative hierarchical clustering algorithm
(Subsection 6.2.3). The use of quantum state tomography is possible, but it would be preferable
to have a full quantum algorithm that returns the clusters in some form. It is to this end that the
st-connectivity problem, quantum walks, and the hidden subgroup problem were explored.

Of a different nature is the practical consideration of chance. As most quantum algorithms are
probabilistic, the effects of approximating a full filtration of linked simplicial complexes should be
analysed statistically. Simulations would constitute a large part of this analysis. No implementations
were realised as part of this thesis in favor of a conceptual approach.

7.2 Future Directions

Having listed the contributions made and their effect on the open problems left, this following section
offers ideas and directions for future research. These ideas are segmented into two classes. One,
corresponding to the first subsection, is a collection of possible extensions of the work presented.
The second, corresponding to the second subsection by process of elimination, treats problems that
do not exhibit such a tight relationship to the preceding chapters.

7.2.1 Additions and Extensions

Proposition 4.3.4, found in the section on spectral clustering, shows that the graph Laplacians
have several properties that are intimately tied to the connectivity of the graphs they are based on.
Although the higher combinatorial Laplacians serve different purposes, inspired by the combinatorial
Hodge theorem one might entertain the possibility that they too conceal geometric information much
like the graph Laplacians do. As discretisations of the Laplace operator they almost surely do, but
to what extent this information relates to clustering is unknown. On the topic of dimensions, the
higher dimensional simplices were mostly neglected in clustering applications. It might be interesting
to study how these simplices fit into the picture of cluster analysis, by for instance looking at the
percentage of higher dimensional simplices in a connected component as a measure of subjective
accuracy.
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7.2.2 Related Topics

The inspiration for naming the following related topics originates mostly from considerations on
the theory’s practical applications. For one example, simplicial complexes, and therefore persistent
homology based clustering algorithms, could potentially be used for geometric anomaly detection.
If a vertex remains unconnected to any other vertex for a long stretch in the parameter sequence, or
a higher dimensional simplex with this vertex as a face takes a long time to form, this may indicate
the vertex in question is an outlier. Similarly, the articulation points in the skelata can be used to
add a measure of statistical belief to the strength of a clustering.

On a more fundamental level, related to treating the lower dimensional simplices as vertices and
edges, the theory regarding graph states [46] might offer results adjustable to simplicial complexes.
Such states are normally employed for different applications, but it is worth noting every graph has
an associated graph state regardless.

As an example of a topic that is more involved with recent developments in machine learning, [47]
is offered. This paper treats the topological signatures found by persistent homology algorithms
as intermediate stops rather than objectives, and besets deep neural networks on these signatures
to learn representations suitable to specific learning tasks. Future research should point out what
benefits having access to these representations might bring.

Up until this point, all quantum algorithmic theory presented has been based on the translation of
classical algorithms to quantum algorithms. This work is therefore concluded by returning to the
root of this problem, following this quantization in reverse. Dequantization is the informal name
given to the process of translating quantum algorithms with a proven speedup over the best known
classical algorithms back to classical algorithms preserving this speed advantage, and the results
are classified as quantum-inspired classical algorithms. The most prominent example of such an
algorithm is the quantum-inspired algorithm solving the recommendation problem [85], which stood
for a long time as a strong example of exponential speedup on a quantum computer. Attempting
to dequantify any quantum algorithm, including the ones in this thesis, could illuminate both the
classical and quantum playing fields.
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