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Abstract

In this Thesis we apply a recently proposed model by Correia et al.1 to the Battle of
the Sexes game. This model considers games with intrinsic correlations between the final
possible outcomes, and lets players respond to these correlations with a response strategy.
We studied all possible Nash equilibria in these response strategies, which we found to be 9
in total, including equilibria corresponding to the previously-known pure and mixed-strategy
Nash equilibria. We finally computed which response-strategy profile leads to the optimal
payoff for the players. We found that for a large part of the space of correlation probabilities
the equilibrium corresponding to the pure-strategy Nash equilibrium is still optimal, since
the average payoff of the other Nash equilibria is often less than one would obtain from
consistently choosing one’s least-preferred pure-strategy option.

We furthermore study this model when applied to a simple 1-dimensional network, i.e.
a ring, by incorporating the exact solution of the 1-dimensional Ising model. We find that
the external field that players experience is always the same logarithmic function of the
correlation probabilities, but the way players react to this field differs for the various Nash
equilibria. The interaction strength between the players, which is mostly of the ferromagnetic
type, is a different function for dominant diagonal correlations and dominant off-diagonal
correlations. However, the change between these two seems to be continuous, but we lack
an analytical solution for part of the probability space of the correlations. We finally find
a magnetization which has the same dependence on the correlation probabilities for all the
Nash equalibria.
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1 Introduction

Consider the following scenario. You planned a night out with a friend and agreed to go the
movies. You know two movies would start at 10 pm, but you hadn’t decided yet on which movie
to see; you would decide this at the movie theater. Your friend arrives at 9:45, but you are
running late yourself, because of a flat tire on your bike. Your phone is also out of charge, so
you cannot reach each other. At 10 pm your friend decides to buy a ticket. He knows you would
rather see a comedy, while he himself is more a fan of action movies.

You arrive a couple minutes after 10 pm and notice there are still tickets available for both
movies. You would rather see a movie together then alone, so you have to guess which movie
your friend went to. Since you only have money to buy one ticket, buying tickets for both movies
is no option. Which movie do you pick?

The situation sketched is an example of what is known as the Battle of the Sexes in game
theory; a game wherein two players are trying to coordinate on the same choice, but with no
means of communication. Traditionally, the story behind this game is that of a man and a
woman who would meet for an activity. However, they both cannot recall whether they would
go to the movies or to the opera. The man prefers to go the movies, while the woman would like
to attend the opera. Of course, they would rather go together than alone, hence the coordination
problem. Now, assuming they cannot communicate each other’s preferred choice, where should
they go?

It quickly becomes clear that the Nash equilibria of this game are unfair, since one player is
better off than the other. On the other hand, a mixed-strategy equilibrium is suboptimal since it
results in an average payoff which is less than consistently going to one’s least-preferred choice.
One way to deal with such problems is by introducing a correlation device; a third party which
sends information to the players about which choice they should make. Recently, Correia et
al.1 presented a model which makes these correlations part of the game itself, i.e. a game with
intrinsic correlations between final outcomes. Players should then respond to these correlations
to find desirable equilibra. It is this model that we will apply to the Battle of the Sexes and
study extensively in this Thesis.

Broere et al.2 furthermore showed, using simulations, that when the (uncorrelated) Battle
of the Sexes game is played on a network, global behavior is strongly dependent on the network
structure. They showed that networks with high clustering lead to uniform behavior within
clusters, but heterogeneous between clusters. As a step towards analytical results for correlated
games on networks, we will use methods from statistical physics to model the Battle of the Sexes
on a simple 1-dimensional network, i.e. a ring.

The structure of this thesis is as follows. The theory in Section 2 elaborates on the Battle
of the Sexes game itself, as well as introduces game theoretical concepts and the notation we
will use. We will also formally introduce the notion of correlated games and present the model
by Correia et al. which lets players respond to the intrinsic correlations to improve their payoff.
Furthermore, we present the (bipartite) Ising model and its exact solution in 1 dimension, such
that we can apply methods of statistical physics to extend our model to simple 1-dimensional
networks.

The model for correlated games is then analyzed analytically in great detail in Sec. 3; we
provide a discussion of all possible equilibria in the probability space of the correlations, as well
as which response strategies yield the highest payoff, given certain correlations.

In Section 4 we connect the previously found results to the Ising model by renormalizing the
probabilities each final state is reached. This provides us with a description more in line with
statistical physics, such that we can extend our model to games on networks.

To conclude, we will summarize our most important results in Section 5 and put everything

3



H
HHHH1

2
A B

A 1, S t, t
B 0, 0 S, 1

Table 1: Payoff table for two-player BoS, with
0 < t < S < 1.

H
HHHH1

2
A B

A 1, S 0, 0
B 0, 0 S, 1

Table 2: Payoff table for two-player BoS, with
0 < S < 1.

into context. We describe the problems this model solves and how it can be improved or extended
for future work.

2 Theoretical background

In this section we will first specify the Battle of the Sexes (BoS ) game and introduce the con-
ventional terminology and notation of game theory. We will also elaborate on the notion of
correlated games1 and present a model that lets players respond to intrinsic correlations of a
game. Next we will explain the Ising model, giving a brief (conceptual) introduction to spin
angular momentum and providing the solution of the Ising model in 1 dimension. We adjust the
model slightly to accommodate for distinguishable particles on a bipartite lattice, such that we
can later make the connection to the BoS.

2.1 Game Theory: Battle of the Sexes

The situation sketched in the introduction is one of the problems game theory tries to solve. It
can be tackled in various ways, some of which we will look into now.

2.1.1 Pure strategies

In general, we can label the two options the players have as A and B. Furthermore, one can
define a payoff table, which tells exactly what each player would get after both players have
made their choice. For the BoS, a general payoff table is given in Table 1. Note that since
0 < S < 1, player 1 has the highest payoff when both players choose A, while player 2 receives
the highest when both players choose B. Additionally, since 0 < t < S, it is not only unfavorable
to miscoordinate, i.e. both choosing something different, but it is even worse if both players pick
their least-preferred option.

A simplified version is shown in Table 2. Here, there is no longer the distinction in payoff
between choosing (A,B) or (B,A), removing this asymmetry from the payoff table. From now
on, if we refer to the Battle of the Sexes’ payoffs, it will always be this table we are referring to.

As can easily be seen in Table 2, if both players choose A, no one has an incentive to deviate
from this choice, since if player 1 changes from A to B, his payoff will decrease from 1 to 0, and
when player 2 changes from A to B, his wil decrease from S to 0. Such a set of choices is known
as a Nash equilibrium. For the two-player BoS, both (A,A) and (B,B) are Nash equilibria.

Formally, a player i belongs to the set of players 1, 2, ..., N and the options player i has belong
to the pure-strategy space Si. We can then define the strategy profile s = {s1, s2, ..., sI}, with
si ∈ Si the pure strategy of player i. A pure-strategy profile is then a Nash equilibrium if no
single player can benefit from a unilateral deviation in strategy, i.e. s∗ is a Nash equilibrium3

when for all players i

∀si ∈ Si : u(i)(s∗i , s
∗
−i) ≥ u(i)(si, s

∗
−i), (1)
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with u(i)(si, s−i) the payoff obtained by player i for strategy profile s = {si, s−i}. Here we use
−i to indicate all players excluding player i, such that s−i = {s1, s2, ..., si−1, si+1, ..., sN}.

Note that in the Battle of the Sexes, although (A,A) and (B,B) are both Nash equilibria,
due to the difference in preference of the players, there will always be one player better off than
the other. As such, these equilibria can be regarded as unfair.

2.1.2 Mixed strategies

In a mixed strategy probabilities are assigned to each pure strategy. A pure strategy can in that
sense be seen as a mixed strategy, wherein this pure strategy has probability 1 to be chosen,
while all other pure strategies are chosen with probability 0.

Similar as with the pure strategy, a mixed-strategy profile σ∗ is a Nash equilibrium if for all
players i

∀si ∈ Si : u(i)(σ∗i , σ
∗
−i) ≥ u(i)(si, σ

∗
−i), (2)

where

u(i)(σ) =
∑
s∈S

 N∏
j=1

σj(sj)

u(i)(s)

is the expected payoff of player i when playing with strategy profile σ. It is called a mixed-
strategy Nash equilibrium when at least 1 player, thus not necessarily all, uses a mixed strategy.
Applying this to the Battle of the Sexes, the conditions for a Nash equilibrium are given by{

u(i)(σ∗i , σ
∗
−i) ≥ u(i)(A, σ∗−i)

u(i)(σ∗i , σ
∗
−i) ≥ u(i)(B, σ∗−i)

,

with i ∈ {1, 2} in a two-player game.

Assuming player i plays µ with probability P
(i)
µ , the payoffs received by player 1 when playing

either A or B are respectively given by

u(1)(A) = P
(2)
A · 1 + P

(2)
B · 0 = P

(2)
A ,

u(1)(B) = P
(2)
A · 0 + P

(2)
B · S = (1− P (2)

A )S,

where we used P
(i)
A +P

(i)
B = 1 in the second line. By requiring these payoffs to be equal, we find

the probability P
(2)∗
A for which player 1 remains indifferent. This probability is given by

P
(2)∗
A =

S

1 + S
. (3)

Similarly, by requiring u(2)(A) = u(2)(B), we find

P
(1)∗
A =

1

1 + S
. (4)

The probabilities P
(1)∗
A and P

(2)∗
A now form a mixed-strategy Nash equilibrium for the BoS.

At the mixed-strategy equilibrium, the probabilities to reach the final state µν are given by

P ∗µν = P
(1)∗
µ P

(2)∗
ν . By using P

(i)
B = 1− P (i)

A , we find the probability matrix

P ∗ =

(
S

(1+S)2
1

(1+S)2

S2

(1+S)2
S

(1+S)2

)
,
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which is asymmetric due to the different preferences of the players. Using this matrix, the average
payoffs the players obtain are〈

u(1)∗
〉

=
∑
µν

P ∗µνu
(1)
µν =

S

1 + S
,

〈
u(2)∗

〉
=
∑
µν

P ∗µνu
(2)
µν =

S

1 + S
.

Hence both players obtain the same average payoff at the mixed-strategy Nash equilibrium.
However, as S/(1 + S) < S, the payoff both players receive is even less than choosing one’s less-
favored option consistently. This is due to the fact that players will miscoordinate with nonzero
probability. We will now look into a way to avoid miscoordination by introducing correlations.

2.1.3 Correlated strategies

By considering the (expected) payoffs players obtain, one can see that the Battle of the Sexes
presents an interesting case for game theory. On the one hand, the pure strategy Nash equilibria
are unfair, in the sense that one player is always better off than the other. On the other hand,
although fair, the mixed-strategy Nash equilibrium yields a suboptimal payoff for both players.
One can avoid this problem by introducing a correlation device; a trusted third party, telling
both agents what to choose by drawing final states with a certain probability.

The idea is that players might gain if they could build a correlation device that sent signals
to both players. In our game of Battle of the Sexes, it would be beneficial if a third party would
flip a coin to determine the outcome of the game. For example, if it’s heads, the third party
would inform both players to choose A, whereas if it’s tails, the third party would inform them
to choose B. This way, while still not being able to communicate with each other, players would
always coordinate on the same choice, thus the expected payoff is higher than one would obtain
at the mixed-strategy Nash equilibrium. In the symmetric case, both players would now receive
a payoff of 1/2 + S/2 = (S + 1)/2 > S on average.

Using formal game-theoretical language, a correlation device is identified by a triple3

(Ω, {Hi} , p). Here, Ω is the (finite) space of all possible outcomes of the correlation device
and p is a probability distribution on the state space Ω. The information player i has, regarding
which ω ∈ Ω is the outcome, is represented by the information partition Hi. Suppose the true
state is ω, then player i has the information that it lies in hi(ω). Here, the set hi(ω) ∈ Hi

consists of the states that player i deems as possible outcomes when the true state is ω. Note
that ω ∈ hi(ω) as well, such that the true state is always part of the set of states seen as possible
by player i.

Applying this formalism to our example of the Battle of the Sexes, we denote the outcomes
of the correlation device by H for heads and T for tails. Then the state space is Ω = {H,T},
the probability measure p(ω) = 1/2 is constant, as both states are drawn with equal probability,
and the information partition is Hi = {{H}, {T}} for both players.

Now, given a correlation device (Ω, {Hi} , p), we need to define strategies that let the players
base their play on the information provided to them by the correlation device. We define corre-
lated strategies si as maps from Ω to the set of pure strategies Si with si(ω) = si(ω′) if ω′ ∈ hi(ω).
The latter condition implies that if ω′ ∈ hi(ω), then the actions of player i are the same for the
states ω and ω′. Returning to the BoS game, we would have for both players the maximally
correlated strategy si(H) = A and si(T ) = B, since we want both of them to choose A when the
result is heads, and B when it is tails.
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The correlated strategy profile s∗ = {s∗1, s∗2, ..., s∗N} is a correlated equilibrium if for all players i

∀si :
∑
ω∈Ω

p(ω)u(i)(s∗i (ω), s∗−i(ω)) ≥
∑
ω∈Ω

p(ω)u(i)(si(ω), s∗−i(ω)) (5)

Hence, no single player should be able to benefit by changing si while all other players’ correlated
strategies are kept fixed, similar to what we have seen in the case of the pure and mixed-strategy
Nash equilibria.

This condition is easily checked in our BoS game where a third party flips a coin to determine
the final outcome of the game. Suppose player 1 is told to play A. Then, by construction, player
2 is also told to play A. Therefore, player 1 cannot benefit from playing B instead, as this would
decrease his payoff from 1 to 0. Similarly, player 2 doesn’t want to deviate, since this would
decrease his payoff as well, from S to 0. The same arguments hold when player 1 receives the
information to play B. Hence we have a correlated equilibrium.

Note that the correlated equilibrium discussed here is not unique, since there may be other
probability distributions for which both players will always follow the correlation device. In fact,
it is easy to check that all correlation devices that assign nonzero probability to (A,A) and/or
(B,B), but zero probability to the other states, result in a correlated equilibrium. However, in
general, a correlation device might also assign nonzero probabilities to unfavorable outcomes.
In that case one should question whether it is beneficial to always obey the instructions of the
correlation device. This will be discussed in great detail in Sec. 2.1.4.

2.1.4 Response strategies for correlated games

As opposed to the game with correlated strategies that was presented above, we will now make
the correlation device part of the game itself in the following sense. Players no longer get to
construct a correlation device they would always want to obey, but we now have a game with
intrinsic correlations to which the players can respond. Changing the correlation device will
define a new game, to which players might respond in a different way. This type of game will be
referred to as a correlated game.1 As a concrete example, one can think of a traffic light at an
intersection; the traffic light is simply there and introduces correlations, but incoming traffic has
no way to influence the traffic lights (the correlation device) and has to respond to the color of
light shown (the correlations).

Consider the correlated Battle of the Sexes, i.e. the BoS game with a correlation device which
assigns initial probabilities pµν to draw a state µν, with µ, ν ∈ {A,B}. In the traditional sense
of a correlated equilibrium, players would always obey the instruction of the correlation device
and turn to mixed-strategy equilibrium otherwise. Now, however, player i will respond to the

initial correlations by either following the instruction to choose µ, with response probability P
(i)
Fµ

,

or not follow this instruction with probability P
(i)
NFµ

= 1− P (i)
Fµ

.
The decisions players make on whether or not to obey the instructions of the correlation

device, represented by the response probabilities, are the new actions players take, whilst still
not being able to communicate. These response probabilities affect the likelihood of each final
outcome of the game. Hence, this leads to renormalized probabilities pRµν given by

pRµν =
∑
µ′ν′

P
(1)
µ←µ′P

(2)
ν←ν′ pµ′ν′ , (6)

with P
(i)
µ←µ′ the probability that player i is told to play µ′ by the correlation device, but plays µ

instead. In terms of the response probabilities, these can be written as

P
(i)
µ←µ′ = δµµ′P

(i)
F ′
µ

+ (1− δµµ′)P
(i)
NF ′

µ
.
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The expected payoff is now given by the payoffs averaged over the renormalized probabilities,
i.e.〈

u(i)
〉

=
∑
µν

u(i)
µνp

R
µν ≡ C

(i)
A P

(i)
FA

+ C
(i)
B P

(i)
FB

+ C
(i)
C . (7)

The coefficients C
(i)
µ depend linearly on the initial correlation probabilities, pµν , and on the

response probabilities of the other player, P
(−i)
Fµ

. The exact form of these coefficients is given in
App. A.

An equilibrium for such a correlated game is reached when none of the players can improve
their expected payoff by changing their own response probabilities, while keeping the other
players’ probabilities fixed. If we consider Eqn. 7, then a Nash equilibrium is achieved by

requiring that for both players the coefficients C
(i)
A and C

(i)
B are zero, unless the equilibrium

response probability P
(i)∗
Fµ

is either 0 or 1, in which case the corresponding coefficient C
(i)
µ should

be consistently nonzero.1

More formally, we can define a Nash equilibrium in the response strategy in a similar way as
for the correlated strategy in Sec. 2.1.3. A Nash equilibrium is reached when no player i has

an incentive to change P
(i)
Fµ

, while the response probabilities of the other players, P
(−i)
Fµ

, remain

fixed. Thus, if for all players i and ∀µ′ ∈ {A,B}∑
µνν′

u(i)
µνP

(i)∗
µ←µ′P

(−i)∗
ν←ν′ pµ′ν′ ≥

∑
µνν′

u(i)
µνP

(i)
µ←µ′P

(−i)∗
ν←ν′ pµ′ν′ , (8)

then the response strategies form a Nash equilibrium for the correlated game.
Finally, as we now need to work with two independent probabilities per player, we will

introduce the notation

Π
(i)
PFA ,PFB

=
(
P

(i)
FA
, P

(i)
FB

)
, (9)

which completely defines the response strategy of player i. A response strategy profile can now

be written compactly as Π = {Π(1)
PFA ,PFB

, ...,Π
(N)
PFA ,PFB

}.

2.2 Spin systems

In physics, we know of two types of angular momentum:4 orbital, which we associate with the
motion of the center of mass around a central axis, and spin, which we associate with motion
of an object about the center of mass itself. Classically, however, spin can be seen as the net
sum of orbital angular momenta of all particles an object consists of, such that the distinction
between orbital and spin angular momentum is merely a matter of semantics. However, in
quantum mechanics this distinction is truly fundamental, since now the spin angular momentum
has nothing to do with spatial motion. Elementary particles are believed to be structureless
point particles and hence have no axis to spin around. They carry an intrinsic form of angular
momentum, which we call spin, in addition to their extrinsic orbital angular momentum.

The existence of this intrinsic form of angular momentum was inferred from experiments such
as the Stern-Gerlach experiment,5 an experiment which was decisive in convincing physicists of
the reality of quantized angular momentum. Quantized, since the spin can only take integer and
half-integer values.

Systems consisting of spin- 1
2 objects belong to the simplest quantum systems, as it admits just

two basis states.4 Understanding spin-1
2 dynamics is of great importance to describe magnetic
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systems, as these systems are described in terms of the magnetic dipole moment of atomic spins.
Simply put, a spin- 1

2 can be in either one of two states, which are commonly referred to as the up
and down states. Respectively, the up and down state are assigned the values +1 and −1. The
net sum of all magnetic dipole moments in a material determines to a large extend the magnetic
properties of a material.

We will now elaborate on spin- 1
2 models which are of importance for this thesis.

2.2.1 Noninteracting spin- 1
2 particles

The simplest spin system one can imagine is that of a single spin- 1
2 in an external magnetic field

with strength B in the z-direction. The energy of such a system is given by4

E(s) = −γBs. (10)

Here, γ is a proportionality constant, known as the gyromagnetic ratio, and s = ±1 is the spin
value. It follows immediately that the ground state, i.e. the lowest-energy state, is the one where
the spin aligns with the the field, i.e. s = +1. Note that the energy is often also expressed as

E(µ) = −µB,

where µ = γs is the magnetic dipole moment associated with a spinning charged particle.
According to basic statistical physics,6,7 the probability we find the particle in the state s is,

in thermal equilibrium, Boltzmann distributed, i.e.

P (s) =
e−βE(s)

Z
.

Here, β = 1/(kBT ) with kB Boltzmann’s constant and T the temperature. Furthermore, Z is
known as the partition function, which acts as a normalization factor and is given by

Z =
∑
s

e−βE(s) = 2 cosh(βγB).

The partition function in general plays an important role in statistical physics, as many thermo-
dynamic variables can be expressed in terms of the partition function or its derivatives.

In our case, it would be interesting to compute the magnetization M . It follows from the free
energy F as the derivative7

M = −∂F
∂B

,

where the free energy itself is given by

F = − 1

β
ln(Z).

Hence, the magnetization of a single spin- 1
2 particle in an external field is given by

M = γ tanh(βγB).

9



Now consider N spin- 1
2 particles in an external field. To determine the partition function, we

need to sum over the possible states of all spins, i.e.

ZN =
∑
s1=±1

∑
s2=±1

...
∑

sN=±1

e−β
∑N
i=1 E(si)

=
∑
s1=±1

∑
s2=±1

...
∑

sN=±1

N∏
i=1

eγβsi

=

N∏
i=1

( ∑
si=±1

eγβsi

)

=

( ∑
s1=±1

eγβs1

)N
= (2 cosh(βγB))

N
.

This gives us for the net magnetization

M = Nγ tanh(βγB), (11)

which is simply N times the magnetization of a single particle.
To make the connection with the Battle of the Sexes later on, we need to accommodate for

not one particle species, but two, due to the difference in preference of the players, which makes
them distinguishable. We can include this by assigning gyromagnetic ratio γA to one species,
and γB to the other. Supposing we have NA particles of type A and NB of type B, the partition
function becomes

ZNA+NB =
∑

sA1 =±1

∑
sA2 =±1

...
∑

sANA
=±1

∑
sB1 =±1

...
∑

sBNB
=±1

e
−β

[∑NA
i=1 E(γA|sAi )+

∑NB
i=1 E(γB |sBi )

]
.

For clarity we made the distinction between spins of different types explicit by writing sAi and
sBi for type A and B spins, respectively.

By going through the same procedure as before, one can easily show that we now have

ZNA+NB = (2 cosh(βγAB))NA(2 cosh(βγBB))NB

and

M = NAγA tanh(βγAB) +NBγB tanh(βγBB). (12)

We thus find that the two different species can be treated separately, as one would expect for
noninteracting particles, such that the net magnetization is simply the sum of all individual
components’ magnetization.

2.2.2 The Ising model and its exact solution in 1 dimension

Now consider N (identical) spin- 1
2 particles in an external field, but this time neighboring spins

interact with each other with interaction strength J . For simplicity, we consider our model in 1
dimension only, and with periodic boundary conditions, i.e. si+N = si. It is then described by

10



the famous Ising model, a model by Wilhelm Lenz and first solved by Ernst Ising in his 1924
thesis.8 The total system’s energy is given by7

E({si}) = −
N∑
i=1

[
Jsisi+1 +

γB

2
(si + si+1)

]
. (13)

The partition function is now given by

Z =
∑
s1=±1

∑
s2=±1

. . .
∑

sN=±1

exp

{
β

N∑
i=1

[
Jsisi+1 +

γB

2
(si + si+1)

]}

=
∑
s1=±1

∑
s2=±1

. . .
∑

sN=±1

N∏
i=1

exp

{
β

[
Jsisi+1 +

γB

2
(si + si+1)

]}

=
∑
s1=±1

∑
s2=±1

. . .
∑

sN=±1

N∏
i=1

Tsi,si+1
.

Here we used

〈si|T|si+1〉 ≡ Tsi,si+1 = exp

{
β

[
Jsisi+1 +

γB

2
(si + si+1)

]}
,

where we introduced the transfer matrix

T =

(
T1,1 T1,−1

T−1,1 T−1,−1

)
.

The partition function can now be written as

Z =
∑
s1

∑
s2

. . .
∑
sN

N∏
i=1

〈si|T|si+1〉

=
∑
s1

∑
s2

. . .
∑
sN

〈s1|T|s2〉 〈s2|T|s3〉 . . . 〈sN |T|s1〉

=
∑
s1

〈
s1|TN |s1

〉
.

Hence, the partition function is given by the trace of the N -th power of the transfer matrix

Z = tr
[
TN
]
.

The transfer matrix is symmetric, and thus one can perform a linear transformation to write
T = U−1DU, with D a diagonal matrix and U unitary. Then

Z = tr
[(

U−1DU
)N]

= tr
[(

U−1DU
) (

U−1DU
)
. . .
(
U−1DU

)]
= tr

[
U−1DNU

]
= tr

[
DN

]
,

where we used that the trace is invariant under cyclic permutations. Now, since D is diagonal,
we have

Z = λN+ + λN− ,

11



where the eigenvalues

λ± = eβJ cosh (βγB)± eβJ
√

sinh2 (βγB) + e−4βJ

are the roots of the equation det (λ1−T) = 0. The eigenvalues are always positive and λ+ > λ−,
except for B = 0. In the latter case λ+ = 2 cosh (βJ) and λ− = 2 sinh (βJ), such that λ+ ≥ λ−,
with the degeneracy (λ+ = λ−) occurring in the limit β →∞ (i.e. T → 0).

One can rewrite the partition function as

Zβ = λN+

[
1 +

(
λ−
λ+

)N]
,

such that in the thermodynamic limit (N →∞) one finds the free energy per spin

f(β,B) = − 1

βN
lnZβ = − 1

β
lnλ+.

Hence

f(β,B) = − 1

β
ln

[
eβJ cosh (βγB) + eβJ

√
sinh2 (βγB) + e−4βJ

]
,

from which we can determine all thermodynamic properties. The magnetization per spin is given
by

m =
M

N
= − ∂f

∂B
=

γ sinh(βγB)√
sinh2(βγB) + e−4βJ

, (14)

which vanishes for B = 0, just as for the uncoupled case. Note that the magnetization reduces
to the result for noninteracting spins (Eqn. 11) for J = 0, as it should.

Just like we did for noninteracting spins, we will now introduce a second particle species and
assign them different gyromagnetic ratios γA and γB . For clarity we will once more write the
respective spin values as sA and sB . We will consider a bipartite lattice, i.e. a lattice on which
a particle of species A has nearest-neighbors of type B and vice versa. For such a lattice, it is
important to note that spins of the same type do not interact with each other, but only with
spins of the other type (at least for nearest-neighbor interactions). If we assume particles of type
A are on the even lattice sites and particles of type B on the odd sites, we can write

E({si}) = −J
∑N/2
i=1

(
sA2is

B
2i+1 + sB2i+1s

A
2i+2

)
− B

2

∑N
i=1

[
(γAs2i + γBs2i+1) + (γBs

B
2i+1 + γAs

A
2i+2)

]
. (15)

For the partition function we now need to sum all states of both species, i.e.

Z =
∑
{sAi }

∑
{sBj }

N/2∏
i=1

eβ[JsA2is
B
2i+1+B

2 (γAs
A
2i+γBs

B
2i+1)]eβ[JsB2i+1s

A
2i+2+B

2 (γBs
B
2i+1+γAs

A
2i+2)]

=
∑
{sAi }

∑
{sBj }

N/2∏
i=1

T̃sA2i,sB2i+1
T̂sB2i+1,s

A
2i+2

,

Here we have matrix elements

T̃sA2i,sB2i+1
= eβ[JsA2is

B
2i+1+B

2 (γAs
A
2i+γBs

B
2i+1)] ≡ 〈sA2i|T̃|sB2i+1〉

T̂sB2i+1,s
A
2i+2

= eβ[JsB2i+1s
A
2i+2+B

2 (γBs
B
2i+1+γAs

A
2i+2)] ≡ 〈sB2i+1|T̂|sA2i+2〉,

12



with

T̃ =

(
T̃1,1 T̃1,−1

T̃−1,1 T̃−1,−1

)
and T̂ =

(
T̂1,1 T̂1,−1

T̂−1,1 T̂−1,−1

)
.

By computing the matrices explicitly, one can easily show that T̂ = T̃
ᵀ
. The matrix T̃T̃

ᵀ
is still

diagonalizable, such that we can proceed as we did for the single particle species. Hence

Z = λ
N/2
+ + λ

N/2
− ,

where the power N/2 is the result of having split the lattice in two sublattices consisting of the
even and odd labeled sites. Note that λ± are now the eigenvalues of T̃T̃

ᵀ
. Using once more that

λ+ > λ−, λ+ is the only surviving term in the thermodynamic limit. Computing the free energy
and taking its derivative with respect to B, we now find for the magnetization per spin

m =
(

cosh(βBγA) sinh(βBγB)[γA sinh(2βJ) + γB cosh(2βJ)]

+ sinh(βBγA) cosh(βBγB)[γA cosh(2βJ) + γB sinh(2βJ)]
)

/(
sinh(4βJ) sinh(2βBγA) sinh(2βBγB) + cosh(2βBγB)− cosh(4βJ) + 2

+ cosh(2βBγA)[cosh(4βJ) cosh(2βBγB) + 1]
)1/2

,

(16)

which reduces to Eqn. 14 when taking γA = γB = γ and to Eqn. 12 when setting J = 0.

3 Response strategy analysis

We will now turn to a complete analysis of the response strategy for the correlated Battle of the
Sexes game, as described in Sec. 2.1.3, with the main focus on the equilibrium solutions.

We assume for simplicity, but this can easily be generalized, symmetric probabilities of the
intrinsic correlations, or initial correlation device, i.e. pAB = pBA = 1

2 (1 − pAA − pBB), with
pAA + pBB ≤ 1. The coefficients of player i then depend on pAA and pBB only, and on the
response probabilities of the other players. To find all possible Nash equilibria in the pAA− pBB
plane, we simply impose the conditions on the coefficients in the payoff function, C

(i)
A and C

(i)
B ,

as discussed in Sec. 2.1.3. Since these coefficients are linear in the response strategy of the other
player, they can be solved exactly. To obtain a self-consistent solution, each slope is calculated
while assuming the other player’s response probabilities are in equilibrium, since no single player
should have any incentive to deviate from a Nash equilibrium.

To recap, the equilibrium conditions we impose are the coefficients C
(i)
µ (pAA, pBB , P

(−i)
FA

, P
(−i)
FB

)

being zero, unless the equilibrium response strategy P
(i)
Fµ

is at an extremum, i.e. equal to 0 or 1,
in which case the corresponding coefficient should be nonzero and negative or positive, respec-

tively. We thus have possible Nash equilibria for P
(i)
Fµ

= 0, P
(i)
Fµ

= 1 and 0 < P
(i)
Fµ

< 1. Note that
the response probabilities of both players need not be equal to reach equilibrium.

We will now look into each of the possible Nash equilibria.

3.1 Pure-strategy equilibria

We start with a response strategy profile corresponding to the pure-strategy equilibria, in the
sense that the final outcomes of the game are the pure-strategy Nash equilibria of the pure-
strategy Battle of the Sexes game. To consistently get (A,A) as the final outcome, both players
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should always follow the instruction to play A, while they should never obey the correlation

device if the instruction is to play B. Hence P
(i)∗
FA

= 1 and P
(i)∗
FB

= 0, such that the conditions
on the coefficients become{

C
(i)
A (pAA, pBB , 1, 0) > 0

C
(i)
B (pAA, pBB , 1, 0) < 0

∀ i ∈ {1, 2}. (17)

Similarly, to reach (B,B) consistently, the response probabilities must be P
(i)∗
FA

= 0 and P
(i)∗
FB

= 1,
such that{

C
(i)
A (pAA, pBB , 0, 1) < 0

C
(i)
B (pAA, pBB , 0, 1) > 0

∀ i ∈ {1, 2} (18)

are the conditions for the coefficients.
We find that both sets of conditions hold true in the entire pAA−pBB plane. Hence, regardless

of the correlation device, we have a Nash equilibrium for the response strategy profile

Π∗ = {Π(1)
1,0,Π

(2)
1,0} and for Π∗ = {Π(1)

0,1,Π
(2)
0,1}, (19)

corresponding to pure-strategy equilibria (A,A) and (B,B), respectively.

3.2 Mixed-strategy equilibrium

Next, we impose slope conditions with both players having 0 < P
(i)∗
Fµ

< 1 and thus where the
coefficients are all zero. Hence C

(i)
A

(
pAA, pBB , P

(−i)∗
FA

, P
(−i)∗
FB

)
= 0

C
(i)
B

(
pAA, pBB , P

(−i)∗
FA

, P
(−i)∗
FB

)
= 0

∀ i ∈ {1, 2}. (20)

We find once more that these conditions hold for any point in the pAA − pBB plane, and that
the equilibrium response strategies are given by

P
(1)∗
FA

=
1

1 + S
= P

(1)∗
A and P

(1)∗
FB

=
S

1 + S
= P

(1)∗
B , (21a)

P
(2)∗
FA

=
S

1 + S
= P

(2)∗
A and P

(2)∗
FB

=
1

1 + S
= P

(2)∗
B . (21b)

Hence

Π∗ = {Π(1)∗
PA,PB

,Π
(2)∗
PA,PB

} (22)

is a Nash equilibrium in the response strategy, and corresponds to the mixed-strategy Nash
equilibrium. Note that this equilibrium is uncorrelated, as the renormalized probabilities reduce

to pRµν = P
(1)∗
µ P

(2)∗
ν , regardless of the initial probabilities of the correlation device.

3.3 Correlated Equilibria

Now consider the response probabilities P
(i)∗
Fµ

= 1, which correspond to the correlated equilibrium
as described in Sec. 2.1.3. With these response probabilities, the slope conditions become{

C
(i)
A (pAA, pBB , 1, 1) > 0

C
(i)
B (pAA, pBB , 1, 1) > 0

∀ i ∈ {1, 2} (23)

14



0.0 0.2 0.4 0.6 0.8 1.0
pAA0.0

0.2

0.4

0.6

0.8

1.0
pBB

(a) Always obey correlation device
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(b) Never obey correlation device

Figure 1: Regions where the conditions given in (a) Eqn. 23, and as given in (b) Eqn. 28, are obeyed.
The area where the conditions hold for player 1 are indicated in red, while it is indicated in blue for
player 2. The straight lines are the lower boundaries that follow from the imposed conditions. The black
solid line separates the region where both players use the same response strategy (above the line) from
where both players use opposite response strategies (below the line). Here, S = 1/2 was used.

First of all, these conditions lead to the additional constraint

pBB > 1− 2
√
pAA + pAA, (24)

which is indicated as the solid black line in Fig. 1.
For both players, the conditions in Eqn. 23 furthermore lead to inequalities defining an area

in the pAA − pBB plane for which the conditions hold true. In this case the area wherein player
1’s conditions hold is defined by

1− pAA − pBB
2pBB

< S <
2pAA

1− pAA − pBB
, (25)

while for player 2 it is defined by

1− pAA − pBB
2pAA

< S <
2pBB

1− pAA − pBB
. (26)

By comparing these areas, we find the region where the solutions are self-consistent (Fig. 1a).
Within this area we recover the correlated equilibrium, i.e. both players always follow the
instructions of the correlation device. The equilibrium response strategy profile for this region
is therefore

Π∗ = {Π(1)
1,1,Π

(2)
1,1}. (27)

Similarly, an equilibrium is reached for P
(i)∗
Fµ

= 0. By imposing{
C

(i)
A (pAA, pBB , 0, 0) < 0

C
(i)
B (pAA, pBB , 0, 0) < 0

∀ i ∈ {1, 2}, (28)

15



we find that the area where these conditions hold is given by

1− pAA − pBB
2pAA

< S <
2pBB

1− pAA − pBB
, (29)

for player 1, while for player 2

1− pAA − pBB
2pBB

< S <
2pAA

1− pAA − pBB
. (30)

The areas are shown for both players in Fig. 1b for S = 1/2, from which we can see that the
area wherein the solutions are self-consistent is the same as in Fig. 1a. This shows that in this
area (VII in Fig. 3) we have an equilibrium given by Eqn. 27, as well as for

Π∗ = {Π(1)
0,0,Π

(2)
0,0}. (31)

The reason both of these strategy profiles are equilibria for the same correlation devices can easily
be understood, since it simply constitutes to redefining the actions players take when receiving
certain information. Instead of choosing A when receiving the information to play A, they will
play B, and similarly when receiving the instruction to play B, they will play A instead. In our
example in Sec. 2.1.3 with the coin flip, it would be equivalent to instructing B for heads and A
for tails, instead of the other way around.

3.4 New Nash equilibria

Up until this point we considered response strategies corresponding to already known equilib-
ria. However, there are more strategy profiles possible, which, as we will see, will lead to new
equilibria.

The first profile we consider is the one for which player 1 always follows the instructions given,
while player 2 never follows given instructions. Hence we impose{

C
(1)
A (pAA, pBB , 0, 0) > 0

C
(1)
B (pAA, pBB , 0, 0) > 0

∧

{
C

(2)
A (pAA, pBB , 1, 1) < 0

C
(2)
B (pAA, pBB , 1, 1) < 0

. (32)

These conditions hold in the area defined by

pBB <
S

S + 2
(1− pAA) ∧ pBB < 1− (1 + 2S)pAA, (33)

which is visualized in Fig. 2a for S = 1/2. In this area (I and III in Fig. 3) we thus have the
Nash equilibrium given by

Π∗ = {Π(1)
1,1,Π

(2)
0,0}. (34)

We also obtain the additional constraint

pBB < 1− 2
√
pAA + pAA, (35)

similar to Eqn. 24. This shows that the curve pBB = 1− 2
√
pAA + pAA divides the pAA − pBB

plane in an area where the coefficients of both players have equal signs (above the curve), from
an area where they have opposite signs (below the curve). In other words, above the curve the
players use the same response strategy (at equilibrium), while below the curve they will play
with opposite strategies.
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Figure 2: (a) shows the area where the conditions as given in Eqn. 32 are obeyed. In this area an
equilibrium is achieved if player 1 always follows the instructions of the correlation device, while player 2
never follows the instructions. In (b) the area is shown where the conditions of Eqn. 36 are met. Here,
an equilibrium is achieved if player 1 never follows the instructions of the correlation device, while player
2 always follows. For these figures S = 1/2 was used.

Similarly, we can impose the conditions corresponding to player 1 never obeying the correla-
tion device and player 2 always obeying, i.e.{

C
(1)
A (pAA, pBB , 1, 1) < 0

C
(1)
B (pAA, pBB , 1, 1) < 0

∧

{
C

(2)
A (pAA, pBB , 0, 0) > 0

C
(2)
B (pAA, pBB , 0, 0) > 0

, (36)

which hold in the area defined by

pBB <
1

1 + 2S
(1− pAA) ∧ pBB < 1− 2 + S

S
pAA, (37)

shown in Fig. 2b for S = 1/2. In this area (I and II in Fig. 3) the strategy profile

Π∗ = {Π(1)
0,0,Π

(2)
1,1} (38)

is a Nash equilibrium. Note that in the overlap of the areas shown in Fig. 2 both of the
corresponding strategy profiles are Nash equilibria.

As opposed to having both coefficients nonzero, i.e. all response strategies either 0 or 1, we
can also take one coefficient equal to zero, with the other coefficient nonzero. Consider C

(1)
A

(
pAA, pBB , 0, P

(2)∗
FB

)
> 0

C
(1)
B

(
pAA, pBB , 0, P

(2)∗
FB

)
= 0

∧

 C
(2)
A

(
pAA, pBB , 1, P

(1)∗
FB

)
< 0

C
(2)
B

(
pAA, pBB , 1, P

(1)∗
FB

)
= 0

. (39)

These conditions hold in the areas II, IV and VI (Fig. 3), which are defined by

S

S + 2
(1− pAA) < pBB < 1− 2

√
pAA + pAA, (40)
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Figure 3: All Nash equilibria in the response strategy of the correlated Battle of the Sexes game, repre-
sented in the pAA − pBB plane, with S = 1/2. In App. C one can see this plane for other S values.

and the equilibrium response strategies we find are given by

P
(1)∗
FB

=
S

S + 1

1− pAA + pBB
2pBB

∧ P
(2)∗
FB

=
1

S + 1

S(pAA − 1) + (S + 2)pBB
2pBB

, (41)

such that the strategy profile for this Nash equilibrium becomes

Π∗ = {Π(1)
1,PFB

,Π
(2)
0,PFB

}. (42)

Note that P
(1)∗
B < P

(1∗)
FB

< 1 and 0 < P
(2)∗
FB

< P
(2)∗
B , such that the response probabilities lie

between the mixed-strategy equilibrium value and the value of the other response probability at
one of the extrema (either 0 or 1).

Similarly, the set of conditions C
(1)
A

(
pAA, pBB , P

(2)∗
FA

, 1
)

= 0

C
(1)
B

(
pAA, pBB , P

(2)∗
FA

, 1
)
< 0

∧

 C
(2)
A

(
pAA, pBB , , P

(1)∗
FA

, 0
)

= 0

C
(2)
B

(
pAA, pBB , , P

(1)∗
FA

, 0
)
> 0

(43)

is true for a correlation device with the property

1− 2 + S

S
pAA < pBB < 1− 2

√
pAA + pAA, (44)
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which correspond to areas III,V and VI in Fig. 3. The response probabilities we find are then

P
(1)∗
FA

=
1

S + 1

(S + 2)pAA + S(pBB − 1)

2pAA
∧ P

(2)∗
FA

=
S

S + 1

1 + pAA − pBB
2pAA

, (45)

such that the response-strategy profile of this Nash equilibrium is given by

Π∗ = {Π(1)
PFA ,0

,Π
(2)
PFA ,1

}. (46)

Here, we find once more that 0 < P
(1)∗
FA

< P
(1)∗
A and P

(2)∗
A < P

(2)∗
FA

< 1.
Next, the conditions given by C

(1)
A

(
pAA, pBB , 1, P

(2)∗
FB

)
< 0

C
(1)
B

(
pAA, pBB , 1, P

(2)∗
FB

)
= 0

∧

 C
(2)
A

(
pAA, pBB , 0, P

(1)∗
FB

)
> 0

C
(2)
B

(
pAA, pBB , 0, P

(2)∗
FB

)
= 0

(47)

lead to the area in the pAA − pBB plane defined by

1

1 + 2S
(1− pAA) < pBB < 1− 2

√
pAA + pAA, (48)

corresponding to area IV in Fig. 3, with equilibrium probabilities

P
(1)∗
FB

=
1

S + 1

pAA − 1 + (1 + 2S)pBB
2pBB

∧ P
(2)∗
FB

=
1

S + 1

1− pAA + pBB
2pBB

, (49)

for which 0 < P
(1)∗
FB

< P
(1)∗
B and P

(2)∗
B < P

(2)∗
FB

< 1. The strategy profile corresponding to this
Nash equilibrium is

Π∗ = {Π(1)
0,PFB

,Π
(2)
1,PFB

}. (50)

Finally, the conditions C
(1)
A

(
pAA, pBB , P

(2)∗
FA

, 0
)

= 0

C
(1)
B

(
pAA, pBB , P

(2)∗
FA

, 0
)
> 0

∧

 C
(2)
A

(
pAA, pBB , P

(1)∗
FA

, 1
)

= 0

C
(2)
B

(
pAA, pBB , P

(1)∗
FA

, 1
)
< 0

(51)

hold for a correlation device obeying

1− (1 + 2S)pAA < pBB < 1− 2
√
pAA + pAA, (52)

i.e. area V in Fig. 3, and the equilibrium response strategies for such a device are

P
(1)∗
FA

=
1

1 + S

1 + pAA − pBB
2pAA

∧ P
(2)∗
FA

=
1

1 + S

(1 + 2S)pAA + pBB − 1

2pAA
, (53)

such that the equilibrium profile is given by

Π∗ = {Π(1)
PFA ,1

,Π
(2)
PFA ,0

}. (54)

Here we find again that the equilibrium response probabilities only have values for which

P
(1)∗
A < P

(1)∗
FA

< 1 and 0 < P
(2)∗
FA

< P
(2)∗
A . Note that all other possible sets of conditions for which

we set one coefficient equal to zero, which all hold true above the curve pBB = 1−2
√
pAA+pAA,

do not lead to self-consistent solutions.
To conclude the discussion of all possible Nash equilibria, we once more refer to Fig. 3 showing

all areas in the pAA − pBB plane, for which the previously discussed Nash equilibria exist. We
hereby remark that the pure and mixed-strategy Nash equilibria are solutions for any correlation
device, whereas the other equilibria we found only exist for devices with specific probability
distributions. A visualization of the Nash equilibria in the space of response probabilities is
given in App. B.
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Figure 4: (a) shows which response strategy profiles are optimal for player 1 and (b) for player 2. In
(c) and (d) we see the same, but now we only show where the payoffs are better than S, i.e. better than
the payoff one would get from consistently going to one’s least-preferred option. Here, we used S = 1/2.

3.5 Optimal payoff

Before moving on, we will compute which response-strategy is optimal for a player, given a
certain correlation device. This is necessary, as we assume a rational player will choose the
highest-rewarding strategy which still leads to an equilibrium.

We already know all Nash equilibria in the full pAA− pBB plane, thus we can easily compute
a player’s optimal strategy by plotting Eqn. 7. In Fig. 4 we have shown, for all values of the
correlation device, which strategy profile leads to the highest payoff. In App. D we show the full
3-dimensional plots of the payoff.

We see that there is only a difference in optimal strategy between the players in area VII (of

Fig. 3), in which above the line pBB = pAA the strategy profile {Π(1)
0,0,Π

(2)
0,0} is optimal for player

1 and below this line {Π(1)
1,1,Π

(2)
1,1}, whereas for player 2 it is the other way around.

We hereby note that for some initial probabilities of the correlation device it is possible to
have multiple response-strategy profiles yielding the same payoff. We have furthermore left out
the response strategies corresponding to the pure-strategy equilibria, since this is always the best
a single player can do, but it would take us back to original discussion of ‘fairness’ and which of
the two equilibria would ultimately be reached. From a statistical physics point of view it is also
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the least interesting case to study, as the outcome of the game would always be the same. We
do, however, show in 4c and 4d which strategy profiles are more rewarding than picking one’s
least-preferred option consistently. This shows that, even for correlated games, the pure-strategy
equilibria are, for a large part of the pAA − pBB plane, still the better choice.

4 Effective spin models

We will now apply our knowledge of statistical physics to the results of the previous section, to
model the Battle of the Sexes when played on some simple 1-dimensional networks. To model
an N -player game, we assume players are placed on a bipartite lattice and only interact with
their nearest-neighbors. Furthermore, we assume players in each pair pick the response strategy
in equilibrium that leads to the highest payoff in a two-player game.

As discussed in Sec. 2.2, the probability to reach a certain state s in thermal equilibrium is
given by

P (s) =
1

Z
e−βE(s), (55)

with E(s) the energy of the corresponding state and Z the partition function.
In our game of Battle of the Sexes, we would consider the final state µν, e.g. (A,B), and

its corresponding renormalized probability pRµν . Since we know which response probabilities
optimize payoff for each correlation device, and thus which renormalized probability matrices
are optimal, we can write them as effective Ising models by writing

pRµν =
1

Z
e−βHµν (56)

Here, H the effective energy, which will depend on the Nash equilibrium we consider, and Z is
an effective partition function, i.e. normalization constant.

To complete the analogy between the Battle of the Sexes and the Ising model, we let each
player correspond to a particle with spin 1/2, and let A correspond to ↑ and B to ↓. The reason

for this particular choice is to make sure that E
(1)
A < E

(1)
B and E

(2)
B < E

(2)
A , such that the player’s

preference corresponds to the single-spin ground state.

4.1 Uncorrelated games

When the players use response strategies P
(i)∗
Fµ

= P
(i)∗
µ , i.e. the situation as described in Sec. 3.2,

one can show by using Eqn. 6 that, regardless of the initial correlation device, the renormalized
probability matrix reduces to

pRµν = P (1)∗
µ P (2)∗

ν , (57)

which is clearly an uncorrelated probability matrix. This therefore corresponds to two noninter-
acting spin-1/2 particles in a magnetic field, as described in Sec. 2.2.1. Since the particles are
uncorrelated, we can treat them separately and make use of the fact that the final probability
to reach µν is simply the product of the individual particles’ probabilities.

For each of the players we now have

P (i)
µ =

1

Z
e−βH

(i)
µ , (58)
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Figure 5: As a function of the parameter S, we show the energy experienced by the players when placed
in an external field given by Eqn. 60, in (a), and the probabilities the players choose A, in (b), when
players use a response strategy corresponding to the mixed-strategy Nash equilibrium.

with Hµ corresponding to the energy given in Eqn. 10, where we take s = +1 if µ = A and
s = −1 if µ = B. Hence, the probabilities the players pick A are given by

P
(1)
A =

1

1 + S
=

eβγAB

e−βγAB + eβγAB
and P

(2)
A =

S

1 + S
=

eβγBB

e−βγBB + eβγBB
, (59)

which gives us

B = − 1

2β
ln (S), γA = 1, γB = −1. (60)

Note that in the case of game theory we do not have an external magnetic field like we would
have in a physics problem. However, one can instead have an external influence, e.g. some form
of propaganda, that influences the players’ choices in the same way an external magnetic field
influences the spin values.

Fig. 5 shows the energy of the players in the external field given by Eqn. 60 and the
probability to play A. This shows that the energy when player 1 chooses A is negative, which it
should be since A is his preference, and that this energy becomes less negative for increasing S.
This also makes, sense, since if S increases, his preference towards A decreases with respect to
B. This also shows in his probability to play A, which decreases as S increases.

For player 2 the energy he experiences when playing A is positive, which is also expected
from a physics point of view, as it is an unfavorable state. Similar as for player 1, the energy
now decreases for increasing S and the probability to play A increases, both which are due to
his preference for B becoming less prominent.

By now using Eqn. 12 and plugging in the above mentioned values for B, γA and γB , we find
a “magnetization” per player given by

m =
S − 1

S + 1
. (61)

Note that one would obtain the same result if one were to use Eqn. 16 with J = 0.

4.2 Correlated games

With the exception of the response-strategy profile corresponding to the mixed-strategy equi-
librium, all strategy profiles lead to correlated final outcomes. We hereby note that it was not
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possible to find analytical results for the external field B and the coupling constant J for all cor-
related games. We will here present the results for correlation devices with initial probabilities
in regions I, II, III and VII (see Fig. 3), as these have exact solutions.

For the correlated games, we need to use the energy corresponding to Eqn. 15, which can be
written in matrix form for two players as

Hµν =

(
−J −B(γA + γB) J −B(γA − γB)
J +B(γA − γB) −J +B(γA + γB)

)
, (62)

where we once more take µ, ν equal to 1 if they equal A and equal to −1 if they equal B. Using
again Eqn. 56, we now have a set of four equations, which can be solved to determine the
interaction strength J , the field B and the couplings γ.

In the region denoted by I we have equilibria for two strategy profiles that are equally good
payoff-wise.

We find an external magnetic field given by

B =
1

4β
ln

(
pAA
pBB

)
, (63)

which is the same for any correlation device. It is how the players couple to this field what

changes between the various Nash equilibria. For Π∗ = {Π(1)
1,1,Π

(2)
1,1}, i.e. both players always

following the instructions, we find γA = γB = 1, whereas for Π∗ = {Π(1)
0,0,Π

(2)
0,0}, i.e. both never

following the correlation device, we find γA = γB = −1. Similarly, for Π∗ = {Π(1)
1,1,Π

(2)
0,0}, we find

γA = −γB = 1, while for Π∗ = {Π(1)
0,0,Π

(2)
1,1} we obtain γA = −γB = −1. This result shows us

that if a player, in equilibrium, follows the instructions of the correlation device with response

probabilities P
(i)
FA

= P
(i)
FB

= 1, he will couple to the field given in Eqn. 63 with γ = 1, whereas if

his equilibrium response probabilities are P
(i)
FA

= P
(i)
FB

= 0, he will couple with γ = −1.
For the interaction strength between the players, we find that below the curve given by

pBB = 1− 2
√
pAA + pAA it is given by

J =
1

2β
ln

(
1− pAA − pBB√

2pAApBB

)
, (64)

whereas above this curve

J = − 1

2β
ln

(
1− pAA − pBB√

2pAApBB

)
. (65)

Although at first these seem two different interaction types, one ferromagnetic and one antifer-
romagnetic, one can check that above the aforementioned curve the argument of the logarithm
is smaller than 1, whereas in area VII it is greater than 1, such that in both cases the resulting
interaction strength is positive. This implies that we always see an interaction of the ferromag-
netic type, i.e. the players want to play either both A or both B, which makes sense, since this
yields them the highest payoff.

Considering now players placed on a bipartite lattice; N players in total, half with preference
A and half having preference B. We use Eqn. 16 with the above discussed external field B,
interaction strength J and coupling constants γ, and find that the magnetization per player is
given by

m =
pAA − pBB

(1− pAA − pBB)

√
3− (2pAA−1)(2pBB−1)

(1−pAA−pBB)2 +
√

pBB
pAA

+
√

pAA
pBB

, (66)
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for all the Nash equilibria discussed here, i.e. the ones corresponding to areas I, II, III and VII
in Fig. 3.

In Fig. 6 we show all our analytical results for the external field, interaction strength and
the magnetization per player. Since the external field and magnetization were the same for all
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Figure 6: Figures (a), (c) and (e) show our exact results for the external field B, interaction strength
J and the resulting magnetization per player m for the correlated Battle of the Sexes game. Figures (b),
(d) and (f) show the same parameters, but interpolated over the regions we could not solve analytically.
For reference, the solid lines of Fig. 3 are also shown. In all figures S = 1/2.
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equilibria, and the interaction strength appears to be continuous, we interpolated the analytical
results to obtain their values also for parameters for which we could not solve exactly. The
interpolation simply consisted of using the same functions we found analytically, and applying
them in white areas in Fig. 6. This allows us to describe the Nash equilibria corresponding
to areas IV,V and VI using the same bipartite Ising model. However, one needs to keep in
mind they are interpolations, hence not exact results. Also, for the interaction strength we find
an area where J < 0, i.e. antiferromagnetic interactions. However, this area is the same as
where the mixed-strategy equilibrium is the only self-consistent solution. The results we found
by interpolation can therefore not be used for this specific area (area 0 in Fig. 3). Lastly, the
interpolations do not tell us with which coupling constants γ the players couple to the external
field.

The fact that we found the same magnetization for all the Nash equilibria, leads us to believe
the final dynamics do not differ (on average) between the various equilibria in the response strat-
egy for correlated games, at least for a 1 dimensional bipartite lattice. Since the 1 dimensional
Ising model does not show a phase transition, whereas higher dimensional Ising models do, it
is likely one would find more interesting dynamics for the Battle of the Sexes on 2 dimensional
lattices.

5 Conclusion

To summarize, we analyzed a model by Correia et al.1 when applied to the Battle of the Sexes.
We started out with an introduction to game theory, elaborating on possible Nash equilibria
in the Battle of the Sexes with pure, mixed and correlated strategies. We then explained the
notion of a correlated game; making a correlation device part of the game itself, thus creating
games with intrinsic correlations. The model by Correia et al., which we discussed in detail, lets
players respond to these correlations by following the instructions of the correlation device only
with a certain response probability. Furthermore, we gave an introduction to some methods of
statistical physics to deal with spin models, such that we could use these techniques to extend
the two-player Battle of the Sexes game to simple network structures.

We then explored the entire probability space of the correlation device to determine all
possible Nash equilibria. This led us to the recovery of the pure-strategy, mixed-strategy and
correlated equilibria, as well as several previously unknown equilibria. The pure and mixed-
strategy equilibria appear to exist for any correlation device, whereas the correlated equilibrium
only exists for correlation devices with strong correlations on the diagonal of the probability
matrix. For correlation devices with strong off-diagonal correlations, we found equilibria for
strategy profiles where one of the players will always follow the instructions of the correlation
device, while the other player won’t follow given instructions. This is due to the fact that off-
diagonal states are unfavorable; if only one player obeys the instructions guiding towards such a
state, the players will ultimately reach one of the more favorable states on the diagonal.

To conclude the discussion of the response-strategy for a correlated Battle of the Sexes game,
we computed the optimal strategy profiles. The probabilities corresponding to these optimal
response-strategy profiles were then used as a starting point to make the connection with sta-
tistical physics. We computed the external field and the inter-player interaction strength for
some of the Nash equilibria. We found that the external field would have the same (logarithmic)
dependence on pµν for all Nash equilibria, but that the way the players couple to this field was
different for the various equilibria. In general, a player would couple to the field with a coupling
constant equal to +1 if he always obeys the instructions in equilibrium, and couples with a cou-
pling constant equal to −1 if he never follows given instructions. Furthermore, the interaction
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between players was always of a ferromagnetic type, which once more shows that players would
preferably end up both having made the same choice. We used the field and couplings we found
to determine the magnetization of one-dimensional networks, specifically players on a bipartite
lattice.

To improve the model, there are three things we urge to consider. First of all, we have
only taken into account symmetric initial probabilities of the correlation device. However, to
generalize, one should allow for any correlation device for which the probabilities sum to unity.
This might then lead to even more new Nash equilibria in the probability space of the correlation
device, which would now become a three-dimensional volume, instead of a two-dimensional plane.
Secondly, one might also consider to use the generalized payoff table we briefly mentioned (Table
2). This introduces yet another asymmetry to the Battle of the Sexes game, leading presumably
to different equilibria and response strategies. Lastly, since real-life networks are rarely one
dimensional, one should consider higher-dimensional networks. These can be treated using for
example the analytical solution for the two-dimensional Ising model,7 or by using a mean-field
approach for random networks such as Erdős-Rényi networks.

As a final remark, we note that it was not possible to find analytical solutions for B and J in

the case one of the equilibrium response probabilities is 0 < P
(i)
Fµ

< 1. However, from our results,
it is to be expected that B and J are the same as we found for the other Nash equilibria, but
the constants with which the players couple to B will probably be different, most likely some
function of the correlation probabilities pµν . To find these coupling constants, one should resort
to numerical methods.
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A Coefficients of the expected payoff

By introducing probability vectors p = (pAA, pAB , pBA, pBB) and pR = (pRAA, p
R
AB , p

R
BA, p

R
BB),

one can find the renormalized probabilities by the transformation

pR = Ap, (67)
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where the transformation matrix is given by the direct product A = A(1) ⊗A(2) with

A(i) =

(
p

(i)
FA

p
(i)
NFB

p
(i)
NFA

p
(i)
FB

)
. (68)

For example, by using this transformation one finds that the renormalized probability to get

(A,A) is given by pRAA = pAAp
(1)
FA
p

(2)
FA

+pABp
(1)
FA
p

(2)
NFB

+pBAp
(1)
NFB

p
(2)
FA

+pBBp
(1)
NFB

p
(2)
NFB

. Plugging
all renormalized probabilities into Eqn. 7 and collecting terms, one finds the coefficients

C
(1)
A = pAA

(
(S + 1)P

(2)
FA
− S

)
− pAB

(
(S + 1)P

(2)
FB
− 1
)
, (69a)

C
(1)
B = pBB

(
(S + 1)P

(2)
FB
− 1
)
− pBA

(
(S + 1)P

(2)
FA
− S

)
, (69b)

C
(1)
C = pAAS

(
1− P (2)

FA

)
+ pABSP

(2)
FB

+ pBAP
(2)
FA
− pBB

(
P

(2)
FB
− 1
)

(69c)

and

C
(2)
A = pAA

(
(S + 1)P

(1)
FA
− 1
)
− pBA

(
(S + 1)P

(1)
FB
− S

)
, (70a)

C
(2)
B = pBB

(
(S + 1)P

(1)
FB
− S

)
− pAB

(
(S + 1)P

(1)
FA
− 1
)
, (70b)

C
(2)
C = −pAA

(
P

(1)
FA
− 1
)

+ pABSP
(1)
FA

+ pBAP
(1)
FB

+ pBBS
(

1− P (1)
FB

)
. (70c)

B Equilibria in the response-strategy space

In Fig. 7 through 14 we show the Nash equilibria in the 4-dimensional space of response strategies,
for each area in the pAA − pBB plane as indicated in Fig. 3. Each point in a player’s strategy
space corresponds to an equilibrium. The color of the point shows with which point in the other
player’s strategy space it forms an equilibrium. For all figures we used S = 1/2, just as in the
main text.
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Figure 7: Equilibrium values of response probabilities in region 0.

27



PFA
1

PFB
1

PFA
2

PFB
2

Figure 8: Equilibrium values of response probabilities in region I.
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Figure 9: Equilibrium values of response probabilities in region II.
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Figure 10: Equilibrium values of response probabilities in region III.
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Figure 11: Equilibrium values of response probabilities in region IV.
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Figure 12: Equilibrium values of response probabilities in region V.

PFA
1

PFB
1

PFA
2

PFB
2

Figure 13: Equilibrium values of response probabilities in region VI.
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Figure 14: Equilibrium values of response probabilities in region VII.
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C Nash equilibria for various S

Fig. 15 shows how the areas wherein the various Nash equilibria exist, change as we increase the
parameter S.
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Figure 15: (a) - (d) Plots of the Nash equilibria in the probability space of the correlation device for
increasing S.
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D 3 Dimensional plots of payoff
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Figure 16: (a) and (c) show a 3D plot of the payoffs for each Nash equilibrium in the probability space
of the correlation device. In (b) and (d) we see the same, but now we have included the constant payoff
S, i.e. the payoff one would get from consistently going to one’s least-preferred option. In all figures
S = 1/2.
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