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Abstract

This paper explores mental workload classification using un-
obtrusive psychophysiological measures. Posture movements
on a chair, a wrist-worn heart rate sensor, color- and infrared-
spectrum remote photoplethysmography were recorded from
sixteen expert train traffic operators in a railway human-in-the-
loop simulator with low-, medium-, and high- mental workload
conditions. Normalized heart rate- and posture movement- fea-
tures were extracted and used as input for nearest-neighbor and
ensemble machine learning classifiers. The classifiers were
trained using a cross-validated, leave-one-out, and between-
subject design. Results show that the classifiers can distinguish
low-, and high- mental workload states of the expert operators
above chance. Posture movements and heart rate variability
measures from the infrared spectrum and yielded the highest
performance and, combined with the properties of no physical
contact to the subject in case of the gyroscope, and the invisi-
bility of infrared light to the human eye, these measures make
for the least obtrusive mental workload classification sensor-
setup tested in this paper.

Keywords: Mental workload; remote photoplethysmography;
posture movements; machine learning; unobtrusive

Introduction
In digital labor, especially in a safety-critical environment
(e.g., nuclear plant operators, train-, and air- traffic con-
trollers), the mental workload is arguably a critical cognitive
component (Harteis, 2018). Despite the lack of a universal
definition, an indication of what mental workload is com-
prised of can be found in the literature. A set of components
can be distilled to external task demand, internal competence,
and the capacity to deal with the task which determines the
level of mental workload (Young, Brookhuis, Wickens, &
Hancock, 2015; Gaillard, 1993; Welford, 1978).

Current methods for measuring mental workload include
self-report, observations, and physiological measurements.
Self-report methods like the NASA-TLX (Hart & Staveland,
1988) require the subject during set intervals to report on their
mental state while performing a task that can not be done in
parallel (Mitchell, Macrae, & Gilchrist, 2002). Mental work-
load assessments by observation require an expert to classify
the mental workload manually. This makes it expensive and
not scalable. Physiological measures often include heart rate
features, among others, the inter-beat-interval and resulting
heart rate variability (Young et al., 2015; Charles & Nixon,
2019). These can be acquired via electroencephalograms
(EEG), electrocardiograms (ECG), and functional magnetic
resonance imaging (fMRI). The traditional means to obtain
these measures are obtrusive as static task-, or controlled
(lab-) environments are required (Hogervorst, Brouwer, &

Van Erp, 2014). Advances in wearable sensors reduce the
obtrusiveness of these physiological measures; however, true
unobtrusiveness and data quality remain a challenge (Yu,
Cang, & Wang, 2016; Lo, Sehic, & Meijer, 2017; Lux et al.,
2018). Traditional measures are not practical in a production
environment since they are physically obtrusive (i.e., physi-
cally limiting or restricting the freedom of movement due to
attached sensors or interrupting the workflow), expensive, or
both.

The new trend of the quantified self brings physically
less- or even un-obtrusive physiological- mental workload
measures (Swan, 2012). For instance, camera-based remote
photo-plethysmography (rPPG), which can detect heart
features (Verkruysse, Svaasand, & Nelson, 2008; Takano
& Ohta, 2007; Huelsbusch & Blazek, 2002) and requires
no physical contact. Another example is body sway, where
a relation between body sway and cognitive functioning
was found (Andersson, Hagman, Talianzadeh, Svedberg, &
Larsen, 2002). Posture movements during a task, measured
by frontal-, lateral- and side-to-side movement on a chair,
were also found to discriminate cognitive load (Arnrich, Setz,
La Marca, Tröster, & Ehlert, 2010). Like camera-based ob-
servations, measuring posture movements on a chair does not
require physical contact with the subject, and in that respect
is an unobtrusive mental workload measure. Furthermore,
the omnipresence of chairs in a monitoring setting makes
for a convenient means. For a recent overview of mental
workload measures and their corresponding obtrusiveness,
see Alberdi, Aztiria, and Basarab (2016).

Furthermore, automated mental workload classification
models using relatively unobtrusive measures as input have
been made. For example, Martinez, Irigoyen, Arruti, Martı́n,
and Muguerza (2017) and Lopez, Condori-Fernandez, and
Catala (2018) created models that utilize unobtrusive features
to classify mental workload in an automated fashion. Using
skin conductance- and heart rate- features measured at
the wrist, in conjunction with a machine learning model,
they were able to classify low-, medium- and high-mental
workload states. Van Gent, Farah, Nes, and Arem (2018)
conducted a multilevel mental workload classification ex-
periment in a driving simulator. Using heart rate features
extracted from a finger-worn-photo-plethysmography-sensor
and machine learning, they successfully built a multi-level
mental workload classifier. Ghosh, Danieli, and Riccardi
(2015) used physiological signals (skin conductance, skin



temperature, heart rate features, and body movement)
recorded with a wristband and self-reports gathered via an
app as input for a machine learning model, to successfully
classify the stress levels reported by the subjects.

These studies show the potential of automated mental
workload classification models. The current study builds fur-
ther upon these findings by exploring the use of sensors with
a higher degree of unobtrusiveness, i.e., using sensors to mea-
sure mental workload, which require no direct physical con-
tact between the subject and the sensor.

Contribution to science
This paper aims to investigate the extent to which it is possi-
ble to classify mental workload state unobtrusively. The re-
quired conditions for such unobtrusive mental workload de-
tection in a human-in-the-loop simulation environment will
be explored.

The research question of this paper is: to what extent is it
possible to classify mental workload states with unobtrusive
behavioral and psychophysical measures as input features
for a machine learning model. Following from this main
question, the sub-question is what features contribute to
this classification and what combination of those is the least
obtrusive. This approach is bottom-up and data-driven, as
no prior hypothesis exists as to how each signal feature
or combination thereof contributes to mental workload
classification. It is also top-down theory-driven, as the type
of input signals and resulting features extracted will be based
on the mental workload literature.

An experiment will be conducted where data of three
different mental workload levels; low-, medium-, and high
is collected. Remote photo-plethysmography in the color-,
and infrared- spectrum, and posture movement measures
are used as input due to their minimal obtrusive nature. A
machine learning model will be used to search for patterns
that correspond to the mental workload states. Furthermore,
the features contributing to correct classification workload
levels will be inspected to gain insight on what features
contribute to classifying mental workload in an operator
monitoring setting.

This research contributes to the literature, and in particu-
lar, to the field of artificial intelligence by exploring a new-,
automated-, and more refined physically unobtrusive- method
for the detection of mental workload. The ability to phys-
ically unobtrusively measure mental workload will enable
more symbiotic human-computer interaction. When mental
workload levels are known, more granular (artificial) human
resource management can be conducted in situations where
alertness is critical. Work can be distributed dynamically
among the available workforce based on the mental workload
levels of individuals. This opens up the possibility for a safer,
more efficient, and better working conditions, and reduced
mental under- and overload.

Experiment setup
In the ProRail Amsterdam Train Traffic Control Centre, data
under known and varying levels of mental workload from
expert train traffic controllers was recorded in a human-in-
the-loop simulator. In the following section, the experimental
setup is discussed.

Participants
Sixteen ProRail train traffic controller operators (four female,
M = 13.44, SD = 10.00 working experience in years) were
recruited voluntarily. Operators were informed about the
goal of the study beforehand, and the setup of the study
is following the guidelines set out in the Declaration of
Helsinki.

Apparatus
Posture movements were recorded using a gyroscope
mounted to a chair, and to record heart rate features, color-
and infrared spectrum remote camera-based photoplethys-
mography and a wrist-worn sensor were used.

Gyroscope and wrist-worn sensor On the back of a
regular office chair with roller wheels, a metal- screw-in
phone mount was attached, holding a Samsung Galaxy S4
with Android 5.0.1 (see figure 1a). The app “SensorRecord”
(version 2.3.0), recorded the pitch- (x-axis), roll- (z-axis),
and jaw (y-axis) from the internal inertial measurement unit
(Mourcou, Fleury, Franco, Klopcic, & Vuillerme, 2015). A
sampling rate of 20Hz was used (Khusainov, Azzi, Achumba,
& Bersch, 2013). A wrist-worn EmpaticaTM E4 (see figure
1e), attached to the non-dominant wrist of the operator, was
used to extract heart rate features (Lo et al., 2017; McCarthy,
Pradhan, Redpath, & Adler, 2016).

Color and Infrared rPPG For the rPPG measures, the
subjects were recorded in the color spectrum with a GoPro
Hero Black 7 (see figure 1c) with a resolution of 1280 x 720
at 59.94 frames per second, and in the infrared spectrum
with a Basler acA640-120gm with a 8mm f/1.4 varifocal lens
at 659x494 and 24 frames per second (see figure 1d). For
an overview of the GoPro and acA640-120gm settings, see
appendix 1.

Quality of rPPG is influenced by many factors
(Zaunseder, Trumpp, Wedekind, & Malberg, 2018; McDuff,
Blackford, & Estepp, 2017). The measures taken related to
frame recording are discussed in the next section. The mea-
sures taken that are related to data handling and feature ex-
traction will be discussed in the data analysis and model con-
struction section.
Compressing video streams reduces the amount of data that
is favorable for storage and throughput, but since rPPG relies
on color fluctuation between frames, which is lost



Figure 1: The simulator setup consists of four 24 inch HP monitors with a resolution of 1920 x 1080 at 60Hz, displaying the
railway simulator “Amsterdam Schiphol Tunnel”, the following components were used: (a) the Samsung S4, mounted on the
back of the office chair with a metal-screw on mount. (b) The LED light with CRI 95+ (c) GoPro Hero 7 Black mounted on a
tripod. (d) Basler acA640-120gm Infrared camera (e) Empatica E4 wristband.

with (heavy) compression, raw or very lightly-compressed
frame streams (at least 4.3*104 kb/s for random motion) are
needed (McDuff et al., 2017). The GoPro supported a min-
imum compression of 4*104, the proprietary Basler “Pylon
Viewer 5.2.0” software supports raw 200*105 kb/s uncom-
pressed, and compressed 1.9*103 recording modes. Due to
storage limitations handling the uncompressed frame stream,
the compressed MPEG-4 stream was used. To be captured
by the image sensor, light reflecting from the skin and blood
vessels has to be emitted by a light source, making lighting
another essential consideration for rPPG. For the color spec-
trum, an LED lamp with a color temperature of 3000 Kelvin
and a Color rating index (CRI) of 95%+ was used to light
the left front of the operator (see figure 1b). The infrared
spectrum was lighted with a dedicated “Smarteye” two watts
infrared flasher, which is synchronized with the shutter speed
of the sensor – providing optimal lighting.

Experimental design
Five domain experts drafted a simulation scenario consisting
of three sections with varying workload levels (see figure 2a
for a schematic overview). The task of the operator was to
manage the traffic while adhering to the correct safety proto-
cols. The events in the scenario started at set times; however,
the duration of each scenario varied depending on the chosen
strategy and efficiency applied by the operator. The work-
load was manipulated with the number of activities the oper-
ator had to act on. In the lowest workload condition, passive
monitoring was required, and train traffic operated according
to plan. In the medium workload condition, active monitor-
ing and occasional input were required (e.g., removing ob-
structions, setting permissions for trains to move – but no bi-
directional communication with other parties). In the high
workload condition, an emergency call was received requir-

ing direct input, communication, and decision making from
the operator (e.g., gather information regarding the event,
make a decision on what protocol is applicable, and the re-
sulting actions to take, etc.). Each operator conducted two
of these sessions – where each session consisted of a slight
variation in the emergency event that occurred. Activities re-
quired and the resulting mental workload in the variations of
the scenarios was comparable. The duration of a session var-
ied between 15 and 35 minutes, dependent on the execution
and efficiency of the plan deployed by the operator.

Data analysis & model construction
All data processing was done using Python 3.7 (Van Rossum
& Drake Jr, 1995) and the Scikit-learn package (Pedregosa et
al., 2011). The data were preprocessed, preparing them for
the next step where features were extracted. The data were
then compiled into datasets that could be used to build the
machine learning models. For an overview of the pipeline,
see figure 3.

Pre-processing
The gyroscope data consisted of the three-axis (x,y, and z)
with a precision of nine decimals. Due to the accuracy and
low noise of the inertial measurement unit of the Samsung
S4, the data is processed raw (Mourcou et al., 2015). The
Empatica E4 wristband was processed with Empatica’s
proprietary software, returning processed inter-beat-interval
data.

On each frame from the recordings of the operator in the
color- and infrared- spectrum, a deep neural net face detec-
tor with a capacity to detect faces under a wide variation of
head orientations was applied (Bulat & Tzimiropoulos, 2017;
King, 2009). The face detector extracts a fixed set of 68 fa-



Figure 2: (a) A schematic timeline of the scenarios. The first third of the scenario starts with all traffic according to plan. The
second third a fire alarm is given: communication and actions are required. The last third, all necessary input from the operator
is done and active monitoring for updates is required. (b) An example of the facial landmark points and the region of interest
extracted from it (black square). (c) A schematic overview of the sliding window approach.

cial landmarks from detected faces (see figure 2b, the red
dots). rPPG requires a region of interest of the skin to ex-
tract color information from (Trumpp et al., 2018). Despite
the fact that the forehead performs worse compared to the
cheeks, the forehead was chosen to extract the mean color
channel pixel values from because under vertical head move-
ments it remained in-frame for longer and lighting was more
evenly distributed (Lempe, Zaunseder, Wirthgen, Zipser, &
Malberg, 2013). This forehead region of interest spanned the
space between the facial landmarks 20, 21, 24, and 25, where
the horizontal distance between 21 and 24 was used to ver-
tically shift 21 and 24 up (see figure 2a, the black square).
For each frame where facial landmarks could be detected, the
average red-, green-, blue- and infrared pixel values were cal-
culated. The resulting time series dataset contained for each
frame where facial landmarks were found the mean values
for the red-, green-, blue- and infrared channels. A python
implementation of Wang, Brinker, Stuijk, and Haan (2017)

amplitude selective filtering algorithm was written to filter
this time series. The amplitude selective filtering algorithm
exploits known reflective properties of the skin, to remove
frequencies that are outside the expected heart rate frequency
band (e.g., head movement, reflections of light, etc.) from the
color channels. These filtered color channels were then used
as input for the rPPG plane orthogonal skin response algo-
rithm, developed by Wang, Brinker, Stuijk, and Haan (2016),
resulting in a one dimensional PPG signal. This PPG signal
was band-pass filtered between 0.9 and 2.5Hz, correspond-
ing to a minimum and maximum heart rate of 54 and 150
beats per minute, based on the Empatica E4 heart rate mea-
surements. The infrared channel was, after visual inspection,
high-pass filtered on 0.9Hz and low-pass filtered on 2.5Hz.

Feature extraction
The preprocessed rPPG and gyroscope data are split into
temporal windows. Each window overlaps with the previous
one with a specific overlap factor, where the size of the over-



Figure 3: An overview of the data pre-processing, feature extraction and model construction



lap was synchronized between the rPPG measures (color-
and infrared) and the gyroscope measures (see figure 2c).
The temporal-step size between a window and its succeeding
window was equal for all sensors. Heart rate and posture
movement features are sensitive to the temporal length-
and shared overlap between- windows they are calculated
over. For heart rate features, time-domain features were
reliably found from 20-second windows, and frequency
domain features from 120-second windows (Salahuddin,
Cho, Jeong, & Kim, 2007; McNames & Aboy, 2006). For
posture movement features, temporal lengths starting from
2.5-seconds and overlap starting from 50% have been found
to be reliable sizes (Khusainov et al., 2013). To explore the
effect of window sizes, two sets with varying window-sizes
but identical step sizes were created for rPPG and gyroscope.
The first consisted of 45 seconds for rPPG and 5 seconds
for gyroscope (the “small” window set), and the second
of 60 seconds for rPPG and 6 seconds for gyroscope (the
“large” window set). See Table 1 for the window- and
overlap sizes used and their respective resulting step-size.
Missing samples in a heart rate window that did not exceed
two seconds were, due to the gradual change over time of
heart rate features (Borst et al., 1982), interpolated using
Pandas 24.0 interpolate function (McKinney et al., 2010).
In all other cases, windows containing missing values were
removed from the dataset.

Over each window, sensor-specific features are calculated.
The HeartPy toolbox (Van Gent et al., 2018) was used to cal-
culate the color-channel heart rate features. Scipy signal’s
“find peaks” function was used to analyze the infrared chan-
nel (Jones, Oliphant, Peterson, et al., 2001). See table 2 for
an overview of features per sensor.

Machine learning datasets
The features that were calculated from the preprocessed
sensor windows are prepared as datasets for use in a machine
learning model.

Data bias Because posture movement- and heart rate fea-
tures for mental workload classification rely on changes over
time rather than absolute differences, and absolute differ-
ences between participants are data structure patterns a ma-
chine learning model could exploit, all features are within-
participant normalized. Model overfitting on the training-
data caused by unbalanced within-participant proportions of
the workload levels is reduced by applying the synthetic
minority over-sampling technique (SMOTE) on the train-
ing set (Cawley & Talbot, 2010; Chawla, Bowyer, Hall, &
Kegelmeyer, 2002). SMOTE is used because, compared to
random oversampling, it preserves some of the variances in
the oversampled instances. To avoid leaking of information
from the training- into the test- set due to the autocorrela-
tional risk inherent in human physiological data (Van Gent et
al., 2018), the test set consisted of the data of three partic-
ipants, which was withheld from the training set. The test-

(and resulting training-) set composition was cross-validated
with leave-one-out, by running the model iteratively over all
possible unique combinations (k) of one and two, from the
total number (n) of nine participants n!

(k!(n−k)!) for a total of 28
cross-validation train- test sets.

Models & Classifiers KNeighbours-, AdaBoost-, and
Random Forest- classifiers in their default form were eval-
uated (Head et al., 2018; Breiman, 2001; Freund, Schapire,
& Abe, 1999; Cover & Hart, 1967). Bayesian hyper-
parameter optimization using a Gaussian process from the
Scikit-optimize package (Head et al., 2018) was used as sug-
gested by Shahriari, Swersky, Wang, Adams, and De Freitas
(2015). Note that for unbiased performance estimation, a val-
idation set should be used. This was not done due to the
limited influence of hyperparameter tuning on model perfor-
mance, the added complexity to implement, and the scope
of this research. The feature importance was determined
using Scikit-learn’s cross-validated recursive feature elimi-
nation ranking (Guyon, Weston, Barnhill, & Vapnik, 2002).
A final model was built using the previously found features,
and Scikit-learn’s “AUC-ROC-CURVE” performance evalu-
ation (Pedregosa et al., 2011), for the average area under the
receiver-operator-characteristic curve of all cross-validated
models (Huang & Ling, 2005). Each workload condition was
evaluated in a one- vs. other-mental workload classification
manner, resulting in three mean cross-validated AUC ROC
curves.

Results
A brief description of the data is given, followed by the
validation and performance characteristics for sensor com-
binations, the used classifiers, the importance of features,
and the model performance with the best performing sensor,
classifier, and features.

Descriptive Statistics From the sixteen participants, six
were excluded due to recording problems, and one due to less
than 40 samples in both the low- and medium workload con-
dition. For an overview of the samples after removing miss-
ing values for both the small- and large-window sizes, and
before and after oversampling, see table 3 and figure 4. The
average heart rate measured by the Empatica E4 was M =
78.74 bpm, SD = 4.45 bpm, with average max heart rate M =
115 bpm SD = 19 bpm, where the individual max measured
heart rate was 143 bpm. The average minimum heart rate was
M = 63.18 bpm, SD = 4.62 bpm, and the individual minimum
heart rate was 56 bpm. Because the results from the Empatica
E4 both before and after oversampling were too few to suc-
cessfully train a classifier on, they were discarded from the
analysis.

Validation To create a baseline and to test for data bias,
all classifier–sensor combinations were run with randomly
shuffled train-set labels. The resulting AUC-ROC curves
returned chance level performance for all mental workload
levels, confirming no data bias the model could exploit – and



Table 1
Window- and step sizes used for scenario one and two
Sensor Window size in sec. Overlap in % Step size in sec.

Small Large Small Large Small Large
Color-
& Infrared- spectrum 45 60 95 95 2.25 3

Gyroscope 5 6 55 50 2.25 3

Table 2
Overview of features used
Sensor Features

Color- & Infrared- spectrum:

Beats per minute (BPM)1,2, Inter beat interval (IBI)1,2, Mean absolute difference (MAD)1,
Standard deviation of intervals between adjacent beats (SDNN)1,2, Standard deviation of
successive differences (SDSD)1,2, Proportion of differences greater than 20ms between
beats (pNN20)1,2, Proportion of differences greater than 50ms between beats (pNN50)1,2

Gyroscope for each axis:
Min3, Max 3,4, Mean 3,4, Variance 3,4, Standard deviation (SD) 3, Skew3,4, Kurtosis3,4,
Root mean square (RMS) 3,4, Zero-crossings (ZCR)3, absolute difference (ABSDIFF)3,
first five fast Fourier transform frequencies (FFT)3,4, Uniformity3

1(Van Gent et al., 2018)
2(Rawenwaaij-Arts, Kallee, Hopman, et al., 1993)

3(Figo, Diniz, Ferreira, & Cardoso, 2010)
4(Atallah, Lo, King, & Yang, 2010)

chance level baseline performance.
An informal survey was recorded after the completion of
simulation sessions. On the question “On a scale from 1
to 7, with 7 being the highest, what grade would you give
to the workload of the experiment?” the training operators
responded with M = 3.75, SD = 1.13 for the first experiment
and M = 4.00, SD = 1.67 for the second.

Performance All sensor combinations were evaluated us-
ing three classifiers with default parameters (Random Forest
with 100 trees, AdaBoost with 60 estimators, and KNeigh-
bours with 3 classes). For an overview of the AUC-ROC per-
formance for each classifier, see appendix 2a. Adaboost and
Random Forest both outperformed KNeighbours, and Ad-
aBoost outperformed Random Forest for all workload levels
on the Infrared set by one percent, and on the Gyroscope and
Infrared combination by one percent lower standard devia-
tion (see appendix 2a). For an overview of the results, see ap-
pendix 2b. The recursive- cross-validated feature elimination
of one vs. other mental workload states using the AdaBoost
classifier and AUC-ROC performance scoring, found the best
performing low- mental workload window size is large, the
best performing medium- mental workload is small, and the
best performing high- mental workload window size is large
(see figure 6 for an overview).

Three final models were created, one for each mental
workload condition containing the best performing features
found with the cross-validated recursive feature elimination

using the AdaBoost classifier. For an overview of the result-
ing AUC-ROC curves, see figure 5. Low- (M = 0.66, SD =
0.10 AUC-ROC), medium- (M = 0.53, SD = 0.09 AUC-ROC)
and high- (M = 0.62, SD = 0.11 AUC-ROC) vs. the other
mental workload conditions could be classified above chance.

Feature elimination The features of the low- mental work-
load, large window; medium mental workload, small window
and high mental workload large window were inspected for
relative performance contribution. For an overview of the
best features per workload level, see appendix 4. For an
overview of the total contribution the best features made to
the AUC-ROC score for respective best workload level- win-
dow size combination, see figure 7. For an overview of the to-
tal contribution of the sensors to the AUC-ROC scores for the
respective best workload level- window size combinations,
see figure 8.

Discussion & Conclusion
It was found that the various physically unobtrusive heart
rate- and posture- features used to train different machine
learning models were able to classify mental workload states.
From the three constructed levels of mental workload, the
low- and high workload levels were found to be distin-
guishable best. Although the medium workload could be
classified above chance, its performance was found to be
weak. A possible explanation for this weak performance of
the medium mental workload classification could be that it



Table 3
Sensor sets with corresponding window-samples raw, and after removing missing and SMOTE oversampling, for both the small-
and large windows.

Small window Large window
Sensor Features Raw Oversampled Raw Oversampled
Color 14 8451 12459 6271 9270
Infrared 7 8176 12318 5966 9036
Gyroscope 48 9289 13857 7002 10446
Empatica 8 2004 2865 1647 2352

Figure 4: An overview of the raw window samples per participant for the Color, Infrared and Gyroscope sensors in the small
(top) and large (bottom) window conditions.

was not pronounced enough to be differentiated from either
low- or high mental workload.
The measures were taken with a gyroscope, a wrist-worn
sensor, and remote photoplethysmography in the color-, and
infrared-spectrum, and feature importance were determined
using cross-validated recursive feature elimination. The
movement features provided information to classify mental

workload states, where a substantial contribution from the
fast Fourier frequencies was found, confirming previous
findings from the literature (Khusainov et al., 2013). The
wrist-worn Empatica E4 sensor did not provide enough data
samples to be used in the explored machine learning models.
From the color- and infrared spectrum rPPG, heart rate
features from the infrared spectrum were found to contribute



Figure 5: The cross-validated area under receiver-operator curves of the Color-, Infrared and Gyroscope model for low-,
medium- and high- workload vs. others classification. With on the x-axis the false positive rate, on the y-axis the true positive
rate. The red line is chance performance, the blue line the mean and the grey the standard deviation received from the cross-
validations. A large standard deviation indicates large classification variance between different train- and test-sets. The standard
deviation is an indicator of the generalizability of the classification

Figure 6: AUC-ROC model performance for the number of features added, where the blue lines are small window size, and the
orange lines large window sizes.



Figure 7: AUC-ROC model performance for the number of features added, where the blue lines are small window size, and the
orange lines large window sizes.

Figure 8: Absolute AUC-ROC score contribution per best performing feature.

most. The high contribution of heart rate features is in line
with findings of the mental workload literature (Gastel,
Stuijk, & Haan, 2015). It is interesting to see the higher per-
formance of infrared rPPG compared to the color spectrum.
A possible explanation might be the quality difference in

lighting, although fundamental lighting properties could play
a role too Wang et al. (2016).
Since the findings show that heart rate measures can classify
mental workload states, and fundamentally both color-
and infrared measures rely on the same rPPG principle,



cross-sensor compatibility is suspected. This could mean
that various other measures for extracting heart rate features
can be used in a machine learning model to classify mental
workload state, opening up the possibility to choose the
measure most practical given the environment it is used in.

In previous research, the quality of the data of the
wrist-worn Empatica E4 is found to be sufficient for mental
workload classification, and since it also measures heart rate
features – it is interesting to see that it failed to contribute in
this experiment (Lo et al., 2017). A factor that might explain
this contradiction with previous findings is the duration of the
data used in this experiment. Both the total duration of each
session was relatively short (between 15 and 30 minutes), as
were the used window sizes of 45 and 60 seconds. Perhaps
using similar overlap- but larger window- sizes of 300
seconds as used by Lo et al. (2017), would result in a coarser
temporal resolution of the mental workload measurement,
but better performance for the wrist-worn sensor.

The main objective of this research was to determine to
what extent unobtrusive mental workload classification in an
operator simulation setting is possible. The resulting area-
under receiver-operator -curve scores show that it is possi-
ble to classify mental workload states. Furthermore, posture
movements and heart rate features from the infrared rPPG
contribute most to the classification. The properties of no
physical contact to the subject in case of the gyroscope and
the invisibility to the human eye in case of the infrared light
camera make these measures the least obtrusive mental work-
load classification sensor-setup tested in this paper.

Limitations & Future work
A few considerations should be noted to explain the findings.
With regards to internal and ecological validity, expert
operators had to act on an uncommon and critical situation
in the simulation, where the exact extent of elicited mental
workload is unknown. Domain experts constructed the
scenario intending to include as much mental workload
variation as possible. The fidelity of the simulator and
the simulated communication are factors that hampered
an ecologically valid setting. The simulator fidelity is
moderate; since it is built to practice procedures, it lacks
more advanced functionality for fine-grained adjustments
compared to reality. The missing fine-grained functionality
limits the operator’s flexibility, and when routine operations
are not possible can cause confusion. The communication
with various train operators is another aspect, which – as
also indicated by the field experts and operators themselves
- is a major contributing factor to the mental workload
experienced. Because the experiment leader emulated all
communication, it was fewer-, less varied- and serial. These
limitations suggest workload levels in the field are expected
to be more pronounced.
rPPG Signal capture The quality of the infrared- and color

rPPG signal can be improved by the hardware used, lighting
and compression settings of the recording.
The quality of a camera lens influences how the light
reaches the image sensor and influences the resulting image
detail, where a high-grade lens will improve sharpness and
color. A general-purpose outdoor sports camera, the GoPro
Hero 7 black, with its default lens, was used to record the
color spectrum. A situation-specific image capture device
with a dedicated lens for indoor use under relatively static
conditions will produce more detailed frames in which the
rPPG algorithm can retrieve a stronger PPG signal. The
infrared camera came with a dedicated light-source for
optimal lighting, which could illuminate the subject’s face
frontally. For the color spectrum recording, a CRI95+ rated
LED light was, which, due to the intensity of the LED
lamp, could not light the subject frontally without obtru-
sively blinding. This raises the question if the difference in
lighting conditions could be a factor for the comparatively
lower color-spectrum performance. Another color-related
improvement is adjusting the color settings of the recording
manually. By increasing the dynamic range of the colors,
amplitude differences should become more distinct, allowing
for better discrimination of signals. Due to the restraints of
the proprietary Basler software, uncompressed 2*105 kbit/s
recordings of more than two minutes could not be made.
Using a raw and uncompressed image stream McDuff et al.
(2017) showed that compared to a compressed stream, the
raw stream yields a much cleaner signal with a significantly
higher signal-to-noise ratio PPG signal. Preliminary testing
on small sub-two minute segments recorded with the Basler
camera in the infrared spectrum confirmed this finding. This
indicates that applying on-line processing on this stream
yields much better rPPG signals while eliminating the storage
needs.

Data processing & classification The preprocessing, fea-
ture extraction and workload state labeling can contribute to
a better model.

The amplitude selective filter algorithm could be tweaked
by making use of both infrared- and color channels as
Trumpp et al. (2018) have done. In this case, the infrared
and color channels would be merged into one stream, using
the color channels to remove non-heart rate related frequen-
cies, and the infrared for the heart rate related frequency.
To sustain temporal synchronization, the facial landmark
tracking, time synchronization, and the horizontal camera
vantage point between the infrared- and color-spectrum
recording would need to be controlled for. Top-down,
literature driven feature extraction was used in this paper.
(Autoregressive) convolutional neural nets are another way
for feature extraction, which have shown promising results
for time series data (Bińkowski, Marti, & Donnat, 2017;
Yang, Nguyen, San, Li, & Krishnaswamy, 2015). These
autoregressive convolutional neural nets could be used both
for posture movement- and heart rate- feature extraction.



The transition between levels of mental workload is modeled
instantaneous; the trigger of an event results in immediate
mental workload change in the labeling of the data; however,
the psychophysical mental workload change is more gradual
(Kim, Cheon, Bai, Lee, & Koo, 2018). Because of this
more gradual psychophysiological change, sections spanning
these transitions are of ambiguous mental workload state.
Finer grained levels of mental workload to capture the
mental workload transition states (Van Gent et al., 2018),
or informed data selection around an event, as is typical for
EEG event-related research, could be a solution (Luck, 2014).
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U. (2010). What does your chair know about your
stress level? IEEE Trans. Information Technology in
Biomedicine, 14(2), 207–214.

Atallah, L., Lo, B., King, R., & Yang, G.-Z. (2010). Sensor
placement for activity detection using wearable accelerom-
eters. In 2010 international conference on body sensor net-
works (pp. 24–29).
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Appendix
Appendix 1: GoPro and Basler Infrared Settings

Table 1
Color settings GoPro Hero 7 Black
Setting Value
Aspect Ratio 16:9
Resolution 720 x 1280
Frames per second 60 (59.94 actual)
Field of View Linear
Video Stabilisation Off
Low Light Off
Short CI Off
Protune On
Shutter 1/120 (should be: 1/ (framerate* 2))
ISO min 100
ISO max 400
Whitebalance 4000 K
Sharpness Medium
Color Flat
Raw Audio Track Off
AAMG Auto



Table 2
Basler Infrared Settings
Setting Value
SequenceSetTotalNumber 2
SequenceSetIndex 0
SequenceSetExecutions 1
SequenceAdvanceMode Auto
GainAuto Off
GainSelector All
GainRaw 600
GainSelector All
BlackLevelSelector All
BlackLevelRaw 64
BlackLevelSelector All
GammaEnable 1
GammaSelector sRGB
DigitalShift 0
PixelFormat Mono12Packed
ReverseX 0
TestImageSelector Off
Width 659
Height 494
OffsetX 0
OffsetY 0
CenterX 0
CenterY 0
BinningHorizontal 1
BinningVertical 1
TriggerSelector AcquisitionStart
TriggerMode Off
TriggerSelector FrameStart
TriggerMode On
TriggerSelector FrameStart
TriggerSelector AcquisitionStart
TriggerSource Line1
TriggerSelector FrameStart
TriggerSource Line1
TriggerSelector FrameStart
TriggerSelector AcquisitionStart
TriggerActivation RisingEdge
TriggerSelector FrameStart
TriggerActivation RisingEdge
TriggerSelector FrameStart
TriggerSelector AcquisitionStart
TriggerDelayAbs 0
TriggerSelector FrameStart
TriggerDelayAbs 0
TriggerSelector FrameStart
ExposureMode TriggerWidth
ExposureAuto Off
ExposureOverlapTimeMaxRaw 0
AcquisitionFrameRateEnable 1
AcquisitionFrameRateAbs 30.0003
LineSelector Line1
LineMode Input
LineSelector Out1
LineMode Output
LineSelector Out1
LineSelector Line1

Setting Value
LineFormat OptoCoupled
LineSelector Out1
LineFormat OptoCoupled
LineSelector Out1
LineSelector Out1
LineSource UserOutput
LineSelector Out1
LineSelector Line1
LineInverter 0
LineSelector Out1
LineInverter 0
LineSelector Out1
LineSelector Line1
LineDebouncerTimeRaw 10000
LineSelector Out1
UserOutputValueAll 0
CounterSelector Counter1
CounterEventSource FrameTrigger
CounterSelector Counter2
CounterEventSource FrameStart
CounterSelector Counter1
CounterSelector Counter1
CounterResetSource Off
CounterSelector Counter2
CounterResetSource Off
CounterSelector Counter1
LUTSelector Luminance
LUTEnable 0
LUTSelector Luminance
LUTSelector Luminance
LUTValueAll
LUTSelector Luminance
GevStreamChannelSelector StreamChannel0
GevSCPSPacketSize 9000
GevStreamChannelSelector StreamChannel0
GevStreamChannelSelector StreamChannel0
GevSCPD 0
GevStreamChannelSelector StreamChannel0
GevStreamChannelSelector StreamChannel0
GevSCFTD 0
GevStreamChannelSelector StreamChannel0
GevStreamChannelSelector StreamChannel0
GevSCBWR 10
GevStreamChannelSelector StreamChannel0
GevStreamChannelSelector StreamChannel0
GevSCBWRA 1
GevStreamChannelSelector StreamChannel0
AutoTargetValue 1280
AutoGainRawLowerLimit 300
AutoGainRawUpperLimit 600
AutoExposureTimeAbsLowerLimit 4
AutoExposureTimeAbsUpperLimit 1e+06



Setting Value
AutoFunctionProfile GainMinimum
AutoFunctionAOISelector AOI1
AutoFunctionAOIWidth 659
AutoFunctionAOISelector AOI2
AutoFunctionAOIWidth 659
AutoFunctionAOISelector AOI1
AutoFunctionAOISelector AOI1
AutoFunctionAOIHeight 494
AutoFunctionAOISelector AOI2
AutoFunctionAOIHeight 494
AutoFunctionAOISelector AOI1
AutoFunctionAOISelector AOI1
AutoFunctionAOIOffsetX 0
AutoFunctionAOISelector AOI2
AutoFunctionAOIOffsetX 0
AutoFunctionAOISelector AOI1
AutoFunctionAOISelector AOI1
AutoFunctionAOIOffsetY 0
AutoFunctionAOISelector AOI2
AutoFunctionAOIOffsetY 0
AutoFunctionAOISelector AOI1
UserDefinedValueSelector Value1
UserDefinedValue 0
UserDefinedValueSelector Value2
UserDefinedValue 0
UserDefinedValueSelector Value3
UserDefinedValue 0
UserDefinedValueSelector Value4
UserDefinedValue 0
UserDefinedValueSelector Value5
UserDefinedValue 0
UserDefinedValueSelector Value1
ParameterSelector Gain
RemoveLimits 0
ParameterSelector Framerate
RemoveLimits 0
ParameterSelector Gain
ChunkModeActive 0
EventSelector ExposureEnd
EventNotification Off
EventSelector FrameStartOvertrigger
EventNotification Off
EventSelector AcquisitionStartOvertrigger
EventNotification Off
EventSelector FrameStart
EventNotification Off
EventSelector AcquisitionStart
EventNotification Off
EventSelector EventOverrun
EventNotification Off
EventSelector ExposureEnd



Appendix 2a: Classifier performances on Infrared and Gyroscope and Infrared, for all mental workload
states and window sizes



Figure 9: An overview of the classifier ROC-AUC score for the different sensor groups and window sizes and mental workload
levels.



Appendix 2b: Classifier performances on all sensor combinations, for all mental workload states and
window sizes



Figure 10: Classifier performance scores for small window size



Figure 11: Classifier performance scores large window size



Appendix 3: An overview of the best performing window size- and features per workload level on the
AUC-ROC score.



Figure 12: Absolute feature contribution to the AUC-ROC score of low-mental workload classification using a large window

Figure 13: Absolute feature contribution to the AUC-ROC score of medium-mental workload classification using a small
window



Figure 14: Absolute feature contribution to the AUC-ROC score of high-mental workload classification using a large window

Figure 15: Absolute AUC-ROC score contribution of all best performing features.
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