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Abstract

The goal of this research is to try to predict the condition
of a patient in the future, given the current condition and
conditional on the treatment using data of the University
Medical Center Utrecht. There are two separate use cases:
the Pediatric Intensive Care Unit (PICU) and the operating
room (OR). In both cases, the haemodynamic parameters are
predicted. The prediction is aided by lab measurements and
patient information and made conditional on the intervention.
The intervention in the PICU dataset consists of inotropes
and in the OR dataset it is a combination of inotropes and
anesthetics. A model is developed that uses K-Means combined
with Symbolic Aggregation ApproXimation (SAX) to cluster the
patient windows and uses these clusters and the interventions to
build a probability matrix. This probability matrix can be used
to predict new cases. The model performs significantly better
than a model predicting no change. The model performs equally
well as a clustering method using only K-Means, but is better
able to consistently cluster the patient status into meaningful
categories. The influence of the interventions cannot be isolated
as they are too highly correlated with the patient status.





1
Introduction

In an intensive care or operating room, a patient is monitored intensively. There are often a lot of different
measurements being taken continuously. Next to the patient’s current status, the change in status can provide
valuable information about the severity of the status. In order to help the doctors to interpret the measurements
and their progression quickly and correctly, research is being done into summarizing or predicting the status of
the patient. A prediction of the patient status over time can aid in a quicker assessment of the severity of the
situation and thereby help place the focus on the problematic cases and parameters.

The patient status is heavily dependent on the interventions made by the doctors. For example, a blood
pressure that is consistently getting lower can suddenly go up because of a change in medication. A prediction
model that does not take the intervention into account might learn this pattern and suggest a spike in the blood
pressure after any long decrease. This can be avoided by making the dependence on the intervention explicit.
It is therefore useful to include the interventions in the prediction model.

The goal of this research is to try to predict the condition of a patient in the future, given the current
condition and conditional on the treatment. In a clinical situation, the prediction has to be motivated and
interpretable, to be reliable and trustworthy. The second aim is to evaluate the influence of the medical
interventions on the prediction.

This leads to two research questions:

1. Can we predict the change in status of the haemodynamic parameters of a patient given the current (and
potentially historical) status and the medication they receive?

2. Can we isolate the role of the medication/intervention in this prediction?

The first question is the main goal of this research. If an accurate and transparent prediction model can be
established, this can then be used to answer the second question.

1.1 Use cases

Two different clinical environments at the University Medical Center Utrecht are used for this research. While
closely related in terms of the variables used, they differ largely on resolution and patient population. This
allows for a close comparison of any prediction model in two different situations.

1.1.1 Pediatric Intensive Care: Heart failure

The first case is the Pediatric Intensive Care Unit (PICU). Children in perioperative care for cardiac surgery
can have a long stay in the PICU with many interventions. Besides surgery, these children receive different
types of inotropes to keep their haemodynamic parameters in a safe range. Therefore, the aim in this use case
is to predict the (continuous) haemodynamic parameters of these children. The main parameters of interest in
this research are therefore the (arterial) blood pressure, heart frequency and the oxygen saturation of the blood.
More information about these parameters follows in Chapter 4. Predicting to what extent the parameters

1



2 Introduction

improve given specific inotropes can provide an indication of the severity of the patient’s status. In this use
case, a low blood pressure, a high heart frequency and a low oxygen saturation are considered problematic.

For the purpose of this research, only the data from children younger than one year old is used. The normal
range of the haemodynamical parameters changes significantly with age and large age differences might therefore
make a reliable prediction problematic. For example, a large difference in age might cause a clustering algorithm
to implicitly group by age instead of by severity. Next to these parameters, discontinuous lab results are
available to aid in the prediction.

The available interventions are inotropes. These medications influence the haemodynamic parameters (e.g.
increasing the contractility of the heart muscles) and are given through continuous intravenous infusions (IV).
The settings of these IV’s are available in the dataset for each minute.

In this use case the chosen resolution is hours. This means that given a patient’s condition in the current
time window of one hour (and potentially historical information), the next hour is predicted. It takes time for
the inotropes to take effect and the length of the PICU stay is generally in the order of days or weeks.

1.1.2 Anesthesiology: Haemodynamic fluctuations

The second use case is the operating room. The aim in this use case is to predict the change in haemodynamic
parameters during the maintenance phase of the anesthesia in surgery on adult patients. The same
haemodynamic parameters were used as in the PICU use case and the same states of these parameters are
considered problematic: a low blood pressure, a high heart frequency and a low oxygen saturation.

After the patient has been sedated, the surgery starts and the anesthesiologist maintains the anesthesia by
monitoring the haemodynamic parameters and administering sedatives and inotropes.

The maintenance phase was chosen because the induction phase can have many different events and include
a large number of single dose injections. In the maintenance phase, pumps are used to continuously administer
the medication. The types of pumps and their settings can be varied. All changes in the types of pumps and
their speed are recorded in the data. This information can be used to extract the settings of all pumps used
for each minute. The data of the maintenance phase of the anesthesia is in form therefore similar to the PICU
dataset, as both include continuous medication and the same haemodynamic parameters.

While the end of the anesthesia is not part of the maintenance phase, it is not filtered out. The anesthesia
is ended by discontinuing the sedatives. It is in form therefore similar to the maintenance phase.

In this use case the same haemodynamic parameters are to be predicted as in the PICU case but at a
much higher resolution. The duration of the surgery is generally in the order of minutes to at most hours
and the doses of medication are significantly higher, because they have to take effect quickly in adult patients.
Therefore, the chosen resolution is blocks of 6 minutes. The time for medication to take effect is smaller at the
higher doses and a divisible time window was needed.

1.2 Problem statement

The goal of this research is to try to predict the status of a patient in the future, given the current status
and conditional on the treatment. Given the category in which the patient falls in a time window wi and the
interventions related to this window, we want to predict the category the patient will fall in in wi+1.

Predicting this for each type of treatment available in the dataset shows the influence of the intervention.
As the medication is continuously administered, the setting at last minute of the window is defined as the
intervention related to that window. Therefore, an intervention I at a given window wi is defined as the setting
of all IV pumps at time wi[−1], the last minute of wi. The setting of a single pump iv at time t is defined as
ivt.

Iwi
= {∀iv∈IV ivwi[−1]}

The question then becomes: given the measurement window wp
i for patient p at time i, can we calculate the

probability cwp
i+1

for p being in category c in time window i+1 for each class c ∈ C, conditional on treatment twi
?

The probability to calculate is therefore:

P (Cwp
i
|Iwp

i−1
, wp

i−1) (1.1)

• p ∈ P patients

• c ∈ C categories

• wp
i ∈ W time windows for patient p at time i

• Iwp
i

interventions associated with time window wp
i
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1.3 Background and related work

1.3.1 Time series

The data used for this research consists of time series. Time series data differs from data used in classical
machine learning approaches both in its size and nature [15]. Next to a high dimensionality, each time series
generally has a high feature correlation and a large amount of noise [3]. This can be seen in the available data
as even with the selection of only a few (haemodynamic) parameters, a large number of values are available for
each patient and the variables are by definition highly correlated.

This causes a problem when trying to define the similarity of two time series. The phenomenon introduced
by [1] as the “curse of dimensionality” states that in high dimensional space, the similarity or distance measure
loses its meaning. This occurs because the increase in dimensionality reduces the variation in the distances.
The time series become essentially equidistant and therefore similarity or clustering becomes meaningless.

In order to overcome this problem, most data mining methods use some from of dimensionality reduction.

1.3.2 Dimensionality reduction

The goal of dimensionality reduction is to create an approximation of the raw time series that reduces the
dimensionality as much as possible without losing the important information. It is not the individual time
points that are of interest, but the patterns and trends in the time series. Therefore, the aim is to represent
these patterns and trends in a more compact way.

Symbolic Aggregate ApproXimation (SAX) is a discretisation technique proposed by Lin et al. in 2007 as
a method to represent time series [10]. It provides dimensionality reduction while still allowing an (lower
bounding) approximation of the distance between the original time series. It is essentially an extension to
Piecewise Aggregate Approximation (PAA). PAA reduces a time series of n data points to w data points by
dividing the time series into w equal sized frames. The vector of the w mean values for each frame is given as
the data-reduced representation.

SAX has two extensions to this method. First, the data is normalized before applying PAA. The
normalization step converts the data to zero mean and unit variance, by subtracting the mean from the value
and dividing the resulting differences by the standard deviation. Next, the vector is discretized by converting
the w mean values to a symbol. In order to do this, a breakpoints are calculated such that each symbol is
produced with an equal probability. Each of the w values is then checked against the breakpoints and assigned
to the corresponding symbol. This yields an ordinal representation which can then be used in place of the
original time series.

SAX requires two parameters: the alphabet size a and the number of segments w.
As the symbols can represented by integers representing the order, this representation still allows the use of

the Euclidian distance measure. For two equal-sized SAX strings of n symbols (represented by integers), the
Euclidian distance is the symmetric straight-line distance through n-dimensional space:

d(sax(1), sax(2)) = d(sax(2), sax(1)) =

√
Σn

i=1(sax
(2)
i − sax

(1)
i ) (1.2)

1.3.3 Prediction and clustering

Next to the data preparation, there are many different data mining methods for time series. The most common
data mining tasks on time series are clustering and prediction [15].

Clustering divides the data into groups. These groups are defined by the data itself. The clusters are formed
by minimizing the distance (or maximizing the similarity) based on some distance measure. There are two
main types of clustering: partitional clustering and hierarchical clustering. The most common algorithm used
for clustering is K-Means [6]. K-Means is a partitional clustering algorithm that requires the number of clusters
K to be given. This algorithm efficiently divides the data into K clusters, finding a (local) minimum from each
point in the cluster to the mean. As the algorithm depends on the randomly chosen or preset initial clusters,
it can get stuck in a local optimum.

Clustering requires a clear distance measure to minimize. Given any distance measure and a suitable
(dimension reduced) representation of the time series, it can find the (locally) optimal set of clusters. This
means that it can easily work with representations such as SAX combined with the Euclidian distance.

Clustering is an unsupervised learning method. It does not require any information about any desired
labeling. It allows for easy interpretation as labeling or prediction is based on cluster membership, which can
be easily explained in terms of distances.

Clustering is not only used as a task in itself, but also as a preprocessing step to pattern discovery algorithms
such as time series rule discovery.



4 Introduction

Prediction or forecasting attempts to predict a future state. This can be done with many different types of
algorithms. A common method is the use of Artificial Neural Networks (ANNs, [19]), but prediction can also
be seen as a type of clustering. Instead of generalizing a current state, it uses the information about the cluster
members to predict the next state. This can be done by clustering the members based on their current state,
and obtaining a generalized future state from the cluster.



2
Motivation

From the related work and the use cases it follows that the model has to be transparent and that some dimension
reduction method has to be applied as the data is very high-dimensional.

2.1 Transparency

Methods that work well for time series forecasting are often black-box. For example, ANNs are often used for
time series, but these models do not allow for easy rule extraction [19].

In both use cases, it is important that the prediction can be explained by a direct look at the model.
Therefore, a prediction through clustering was chosen instead of a neural network approach. In a clustering
approach, each prediction can be reduced to the membership of a cluster with the distribution of the future
status within that cluster. It therefore allows for a simple rule extraction. These rules can easily be extended
with interventions by taking the intersection of cluster membership with the type of intervention. This allows
for interpretable (forward) probabilities P (Cwp

i
|Iwi−1

, wp
i−1) as defined in section 1.2.

Another benefit of this choice is that no goal value is required. As this is an unsupervised method, there
does not need to be any labeling beforehand. However, it is still possible to label the found clusters later (e.g.
by severity) to simplify the interpretation of the results, as the cluster centers or prototypes can be extracted.
These prototypes are the mean of all members of the cluster and thereby provide an indication of the general
state of the members. This indication can then be used to label the clusters for easier interpretation.

2.2 Dimension reduction and avoiding regression towards the mean

The datasets contain a large number of time windows in which the patient is in a stable state. This is especially
the case in the PICU dataset, in which long stable periods can be found. Therefore, a large number of time
windows are in a small section of the variable range.

It is therefore expected that a clustering method such as K-Means may focus too much on this center. For
example, this could cause time windows outside of this ‘normal’ area to simply be added to the nearest cluster
in the center. As the vast majority of the points in the cluster is very close to each other, this might still be
a (local) minimum in the sum of squared distances. This would cause the definition of these problematic time
windows to change as they are associated with a cluster center in or near the normal range of the variable. On
the other hand, it would also change the definition of the center, as the problematic time windows could skew
its prototype. For example, when dividing the data into three clusters, the desired division would be low, center
and high, with the exact division depending on the variable. With K-Means, the arbitrary splits might cause
each of these clusters to contain a part of the center. This changes both the prototypes of the outer categories
and the prototype of the center.

However, as we are mainly interested in the time windows that represent a problematic state, these time
windows should be identifiable instead of grouped with time windows in a normal range.

5
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Pre-processing the data using SAX not only has the effect of condensing the data, but could also alleviate
this problem. As SAX applies symbols on an ordinal scale, this essentially places the values at an equal distance
of each other. SAX generates the breakpoints such that each symbol occurs with equal probability. This causes
the ‘normal’ area to be broken up into more parts than the problematic values at the edges. This should cause
the edge time windows to be grouped together already before the clustering step, which may make it easier for
them to become their own cluster instead of being added to the large center cluster.

An example of the difference made by including SAX can be found in Figure 2.1. This is an example of the
blood pressure, in which we are mainly interested in the lowest category. In Figure 2.1b, the division between
the lowest and middle cluster seems arbitrary. The dense region is split into two clusters, while there is no clear
change in the data. After SAX is applied with a median filter, it can be seen in Figure 2.1c that this division
seems more logical. The dense region is all part of the blue center, while lower red cluster starts where the data
becomes less dense.

Figure 2.1c shows that the size of the blue middle cluster is significantly reduced, while still holding the
majority of the data. The higher green cluster initially mainly contained outliers, but became an actual category
after applying SAX. The percentage of data in each cluster can be found in Table 2.1. While the largest category
1 remains the largest in all three methods, the division becomes more equal.

Figure 2.2 shows the clustering on the reverse transformed SAX levels. This figure shows the equiprobable
distribution of the levels.

The alphabet size used for the symbolization should not be too small, as the equidistant breakpoints will
then have a negative effect. At a too small alphabet size, the breakpoints only occur in the stable group and
the edges are grouped with the closest stable situation, essentially worsening the initial problem.

Depending on the parameters used, the use of SAX may therefore not only reduce the dimensionality of the
data, but might also improve the definition of the clusters.

(a) Clustering given by k-means
with k = 3 on the raw data

(b) Clustering given by k-means
with k = 3 on the data after
applying a median filter

(c) Clustering given by k-means
with k = 3 on the data after
applying SAX

Figure 2.1: The difference made by using SAX on ABP OR data

Figure 2.2: The clusters marked on the reverse transformed SAX levels
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0 1 2
Raw data 42.7% 46.7% 10.7%
Medians 39.4% 47.0 % 13.6%

SAX 33.4% 39.5% 27.1%

Table 2.1: Division of data over the three clusters for the methods given in Figure 2.1

2.2.1 Median vs. Mean

In the original paper by Lin et al. in 2007 in which SAX was introduced, the symbols were assigned using the
mean [10]. However, this can be problematic, as the medical data can contain significant outliers. For example,
large spikes can occur in the measurements of the arterial blood pressure when blood is drawn using the arterial
line (as the line is blocked to the transducer). In order to make the method more robust to outliers, the
median is used instead of the mean. The difference in clustering made by applying a median filter can be seen
in Figure 2.1. In Figure 2.1a, there are many outliers to be seen. In Figure 2.1b, a median filter with width 5
has been applied and this already reduces the number of outliers that are directly visible. Table 2.1 shows that
this reduction of the influence of outliers changes the division of the data over the clusters. The percentage
of data in both the highest and lowest category has changed. This shows that the outliers may influence the
division of the data. Therefore, the median was chosen for the SAX method to make it more robust.
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3
Model description

3.1 Data preparation

The first step of the model is to prepare the data for training. In this preparation step, the raw data is
transformed to a list of categorized time windows. Each variable is categorized separately. The final category
of each time window is determined as the intersection of the variable categories.

(a) Windowing the raw data (b) Dividing the window into
segments of equal size and taking
their median

(c) Applying SAX to the medians

Figure 3.1: The pipeline of the data preparation

3.1.1 Windowing

First, the data is divided into W time windows (Figure 3.1a). The size of each window w ∈ W and the step
between the start times of subsequent windows are given as a parameter for each use case. The step between two
subsequent windows wi and wi+1 is chosen smaller than the window size, so that subsequent windows partially
overlap. This is done to ensure that the exact timing does not influence the prediction. For example, a window
with a large spike at the start has a large distance to a window with a similar spike at the end. However, this
does not necessarily mean that the spike has a different meaning, as the location in the window depends on an
arbitrary start time. Using a sufficiently large overlap, both windows are included in the dataset.

If a window misses data for any minute, it is discarded.

3.1.2 Symbolic Aggregate Approximation

The next step is to transform each window into a list of symbols using SAX as described in Section 1.3.2.
Next to the data, the SAX method requires two parameters: n and a. The parameter n determines the

length of the dimension-reduced representation that is produced by SAX. The parameter a represents the

9
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alphabet size, which determines the number of symbols that are used in the discretized representation of the
dataset.

First, each window wi is subdivided into n equal sized subsegments. The median of each segment sj ∈ wi

is calculated and a vector of medians M = m1, ...,mn is produced, as can be seen in Figure 3.1b.
Next, breakpoints B = β1, ...βa−1 are determined such that it assigns a symbols with equal probability. Each

value mi in the vector of medians is then checked against the breakpoints and assigned to the corresponding
symbol, as can be seen in Figure 3.1c. The symbols were chosen as integers (in ascending order) for easier
distance calculation in the clustering step. The assignment is done as follows:

m̂i = j, iff βj−1 ≤ mi < βj

This results in a list of n symbols for each window.

3.1.3 Clustering

Next, these vectors of SAX symbols are fed to a K-Means clustering algorithm. The initial cluster centers were
randomly selected by the algorithm. In this algorithm, the Euclidian distance is used to divide the set of SAX
vectors into k = 3 clusters. Each cluster receives a label C = 0, .., k−1, which is then defined as the category for
all of its members for that variable. The labels are applied such that the order of the cluster labels corresponds
with the ascending order of the cluster centers.

It would also have been possible to cluster the data after combining the variables. However, combining
multiple SAX strings would significantly increase the dimensionality of the data that is to be clustered. By
clustering each variable separately, this dimensionality is limited and it is therefore easier to get meaningful,
interpretable clusters.

3.1.4 Combining the variables

Performing the aforementioned steps for each variable results in a dataframe with a row for each time window
containing a category for each variable. The intersection of these variable categories is then used as the overall
category for that time window. If any variable has no category for a certain window, that window is discarded.
An example of variable categories and their resulting overall category can be seen in Table 3.1. A graphical
representation of the category division can be found in Figure 3.2.

Start time ABP HF SAT Category
0 0 0 2 0 ABP0 ∩HF2 ∩ SAT0
1 60 1 2 0 ABP1 ∩HF2 ∩ SAT0
2 120 1 2 0 ABP1 ∩HF2 ∩ SAT0
3 180 0 2 1 ABP0 ∩HF2 ∩ SAT1
4 240 0 2 1 ABP0 ∩HF2 ∩ SAT1

Table 3.1: Example of category combination

Figure 3.2: The resulting category division
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3.1.5 Next and previous categories

Next, the window to predict and its category need to be found. For a current window with start time stcurrent
and ∆t being the step size between two consecutive windows, the window to predict can be any window such
that its start time stpredict = stcurrent + k ∗ ∆t for any positive integer k. For the purpose of this research,
the next window is chosen as the time window that starts the minute after the current window ends (i.e.
stpredict = stcurrent + windowsize).

It can also be useful to add history to the model. Therefore, the previous categories need to be found
as well. The start time for each (positive integer) level of history h is defined as follows: sthistory=h =
stcurrent − h ∗ windowsize.

3.1.6 Covariables

Covariables were used to aid the prediction. In the current and previous categories, these variables are added
to the intersection. This means that adding covariables further divides each area in Figure 3.2. In the category
to predict, covariables are not included and that category division therefore remains unchanged. This ensures
that they add information without increasing the number of prediction choices. The variables are discretized
using the same method and parameters as the prediction variables, with the exception of some pre-categorized
information that is added in the OR dataset.

As the covariables in the PICU dataset consist of discontinuous measures such as lab values, these
measurements are not present in every window. Only taking windows with values for all variables would
therefore cause a significant loss of data points and introduce bias. This is handled in two different ways.
First, all lab values in the PICU dataset are linearly interpolated with a maximum distance of one day. If
there is more than one day between two measurements, there are no values between them. This absence might
also add useful information as the choice of whether or not a blood test is performed can provide information
about the patient status. Therefore, the absence of a measurement is also added as a category. For example,
the covariable blood lactate (LAC) can have the following values (for k = 3): [LAC0, LAC1, LAC2, LAC−],
with LAC− representing the absence of a measurement.

3.1.7 Merging

The interest is mainly in the problematic ‘side’ categories (low ABP, high HF, low SAT). If a patient’s status is
currently within a normal range for all variables, the exact status within this range is not important. Likewise,
movements within this normal range are not of interest. Therefore, a possible simplification step to the model
is to merge the center categories. This is done by taking all categories that do not have at least one category
from [ABP0,HF2, SAT0] (the side categories for k = 3) and combining them into a large category Center.
Combining ABP, HF and SAT with three clusters each, causes the observations in the categories marked in
Figure 3.3 to be combined in the Center category. Covariables do not change which categories are merged and
retain their original value in the current and previous windows (e.g. ABP1 ∩HF1 ∩ SAT1 ∩ LAC0 becomes
Center ∩LAC0). Therefore, there can still be variation in the categories in the center if their covariables vary.
As mentioned in section 3.1.6, covariables are not included in the prediction category. Therefore, a prediction
category with no variable in [ABP0,HF2, SAT0] simply gets the category Center.

This merging removes some details and can therefore not be applied when the exact value is to be predicted.
However, when focus is on the change in categories, this does not remove any important information. In order
to accommodate this difference, the model can be used both merged and unmerged.

3.1.8 Intervention

The last step of the data preparation is to add the interventions to the dataset. The intervention doses are
manually categorized into levels in order to allow for easier clinical interpretation. As continuous medication is
used, the intervention is taken as the value at the last minute of the time window. The intervention supports
the move from one category to another and may be influenced by the status in the current window. For
example, a medication dose can be increased because of a decline in patient status. The interaction between
the medication and the status should then in turn influence the status in the next time window.

3.1.9 Result

The result of the data preparation is a data frame with for each row the current (and potentially previous)
category, the prediction category and the intervention as values to be used for prediction. Beside these prediction
columns, the data frame also has the patient (pseudo) ID, start time and a reference to the next category.
These are not used for the prediction, but are present for the purpose of verification and retrieval of the original
window for the calculation of performance measures.
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Figure 3.3: The category division with the merged categories marked

The data frame for the example patient in Table 3.1 with a history of h = 1, covariable LAC and added
interventions can be found in Table 3.2. As this example only has information for five consecutive hours, only
three rows have information for both the previous and next hour. The last step of the data preparation is
therefore to remove all rows with missing data in one of the category columns. In this example, the greyed out
first and fifth row are therefore removed. In the actual datasets, there are many more consecutive windows.
Therefore, this last filter only removes a small number of windows near the start, end and gaps in the data for
each patient.

The final data frame can then be used for training and testing. The dataset is randomly split into a training
and testing set (as further discussed in Chapter 5). The training part uses all categories with the interventions
to build a probability matrix. The test part then uses the current (and potential previous) category and the
intervention combined with the probability matrix to predict the next category. This predicted category can
then be compared to the actual next category from the dataframe.

ID st Interv. Category Next category Category History h1

1 0 AdrLow ABP0 ∩HF2 ∩ SAT0 ∩ LAC0 ABP1 ∩HF2 ∩ SAT0 -
1 60 AdrLow ABP1 ∩HF2 ∩ SAT0 ∩ LAC1 ABP0 ∩HF2 ∩ SAT1 ABP0 ∩HF2 ∩ SAT0 ∩ LAC0
1 120 None ABP1 ∩HF2 ∩ SAT0 ∩ LAC1 ABP1 ∩HF2 ∩ SAT1 ABP1 ∩HF2 ∩ SAT0 ∩ LAC1
1 180 None ABP0 ∩HF2 ∩ SAT0 ∩ LAC1 ABP1 ∩HF2 ∩ SAT1 ABP1 ∩HF2 ∩ SAT0 ∩ LAC1
1 240 None ABP0 ∩HF2 ∩ SAT1 ∩ LAC1 - ABP0 ∩HF2 ∩ SAT0 ∩ LAC1

Table 3.2: An example of a data frame with no merged categories and parameters h = 1, k = 3, windowsize = 60

3.2 Training

In the training step of the model, the probability matrix is built. This matrix contains a cell for each combination
of current hour wi ∈ W and intervention t ∈ T . If previous time windows (history) are included in the
prediction, they are represented by extra dimensions of the matrix. The cells are then split based on the
category in those previous windows.

Each cell of the probability matrix contains a dictionary, which is a set of key-value pairs. Initially, this
dictionary is empty. The training algorithm processes each row in the training dataset by finding the correct
cell in the probability matrix based on the category, intervention type and history. The given next category is
then added as a key to the dictionary, with a value of 1. If it is already present in the dictionary, the value
is incremented. This results in a count of how often each possible next category occurs for each specific start
situation.

After all rows in the training dataset have been processed, each dictionary is divided by its sum. This means
that all counts are replaced by the proportion. When the training and test dataset have the same distribution,
this proportion can be seen as the probability. In the testing phase of this research, the training and test sets
are randomly sampled from the dataset and therefore can be assumed to have the same distribution.

This yields a probability matrix with for each combination of previous windows the probability
P (Cwp
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i−1) as defined in section 1.2.
Using the example categories from Table 3.2 and adding some extra data, an example probability matrix
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can be found in Table 3.3. The category with the highest probability is marked as bold. This example does
not include history. Each level of history is added as an extra dimension.

Intervention

Current
ABP0∩HF2∩SAT0∩LAC0 ABP0∩HF2∩SAT0∩LAC1 ABP1∩HF2∩SAT0∩LAC1

None {ABP0 ∩ HF2 ∩ SAT0:0.8,
ABP1 ∩HF2 ∩ SAT0:0.2}

{ABP0 ∩ HF2 ∩ SAT0:0.9,
ABP1 ∩HF2 ∩ SAT0:0.1}

{ABP0 ∩ HF2 ∩ SAT0:0.7,
ABP1 ∩HF2 ∩ SAT0:0.3}

AdrLow {ABP0 ∩HF2 ∩ SAT0:0.25,
ABP1 ∩ HF2 ∩ SAT0:0.75}

{ABP0 ∩ HF2 ∩ SAT0:0.6,
ABP1 ∩HF2 ∩ SAT0:0.4}

{ABP0 ∩HF2 ∩ SAT0:0.1,
ABP1 ∩ HF2 ∩ SAT0:0.9}

Table 3.3: An example of the probability matrix without history

3.3 Prediction

The resulting probability matrix can be used to predict new cases. The prediction function finds the correct
cell in the probability matrix based on the category, intervention type and potential history and retrieves the
dictionary. It then selects the key with the highest value. This is the category with the highest probability
P (Cwp
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i−1) of being the next category associated with this time window. This key is returned as the
prediction for the next category of the new time window.
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Data description

4.1 Datasets

The two use cases each have a separate dataset. While the haemodynamic parameters used in the datasets are
the same, their distribution differs greatly. There is also a different set of covariables for both datasets.

4.1.1 Pediatric Intensive Care

The PICU dataset consists of 2250 patients from 2016 to 2018. Only the data of patients younger than one
year old was used. Of these patients, 88 have at some point received inotropes and had an arterial line. The
final dataset consists of the data for these 88 patients over a period of one month.

This dataset is then divided into time windows by using a rolling window with a width of 60 minutes and
a 10 minute step. This means that each pair of consecutive windows has a 50 minute overlap. This leads to
a total of 97102 one-hour windows with data for each minute for all three variables. Of these windows, 86046
have a next hour to predict.

Finally, there are 75567 time windows that have a next hour and two hours of history.

4.1.2 Anesthesiology

The OR dataset consists of 9766 adult patients from July 2014 to July 2019. Of these 9766 patients, 6798 had
an arterial line. The data was filtered such that only the maintenance (and end) phase of the anesthesia is used.
This was done by taking the time given as the end of the induction phase for each patient and only taking the
data after this time.

This dataset is then divided into time windows by using a rolling window with a width of 6 minutes and
a 3 minute step. This means that each pair of consecutive windows has a 3 minute overlap. This leads to a
total of 476610 time windows with data for each minute for all three variables. Of these windows, 456053 have
a next window to predict.

Finally, there are 422802 windows that have a next window and two previous six-minute blocks of history.

4.2 Prediction variables

Both datasets contained a large number of variables with different degrees of abundance and importance.
Therefore, only the variables that were selected for this research are outlined below. The research focused on
three haemodynamic parameters: arterial blood pressure, heart frequency and oxygen saturation.

The data is marked according to the Early Warning System (EWS) as used in the University Medical Center
Utrecht, or other reference values from the use cases when available. For the PICU dataset, the Pediatric Early
Warning System (PEWS) is used. In PEWS there are different scores for children from 0 to three months old
and from three months to a year old. As the majority of the PICU dataset is younger than three months old

15
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(as shown in Figure 4.9), the reference values from this age group are used. A higher score corresponds with a
higher risk. The data is marked to show the distribution of values with regard to their clinical interpretation.

4.2.1 Arterial blood pressure

The arterial blood pressure (ABP) is a continuous measurement in both use cases. Whenever a patient has
an arterial line, the blood pressure is recorded every minute. The blood pressure is measured through the
arterial line and the systolic, diastolic and mean pressure are recorded. The systolic blood pressure ABPsys is
the maximum pressure that occurs when the left ventricle contracts. The diastolic blood pressure ABPdia is
the minimum pressure between two contractions. The mean blood pressure ABPmean is calculated using the
following formula [4]:

ABPmean =
ABPsys + (2 ∗ABPdia)

3

For the purpose of this research, the mean blood pressure is used as prediction variable as it was available in
both datasets. The normal range of the blood pressure increases with age.

The blood pressure is recorded in mmHg. In these use cases, the blood pressure is considered problematic
when it is too low, as this suggests insufficient blood flow.

As can be seen in Figure 4.1, the blood pressure is relatively normally distributed. In the PICU dataset,
the mean ABPmean is 54.3 mmHg and the median ABPmean is 52.0 mmHg. In the OR dataset, the mean
ABPmean is 73.5 mmHg and the median ABPmean is 72.0 mmHg.

(a) Distribution of ABPmean in the PICU dataset (b) Distribution of ABPmean in the OR dataset

Figure 4.1: The distribution of the arterial blood pressure in both datasets

4.2.2 Heart frequency

The heart frequency (HF) or pulse of a patient is also available on a minute by minute basis in both datasets.
It is measured as the number of contractions of the heart per minute and is therefore recorded in bpm. The
heart frequency depends on the patient’s age and condition. For example, a young child has a higher heart rate
than an older patient. A patient with fever or heart failure generally also has a higher heart rate.

The cardiac output is determined by the volume of blood that is being displaced in one heartbeat (stroke
volume) and the heart frequency [8]. A neonate can only vary its heart rate to change its cardiac output. Older
children and adults can vary both their heart rate and their stroke volume.

In these use cases, the heart rate is considered problematic when it is too high.
As can be seen in Figure 4.2, the average heart rate is significantly higher in the PICU dataset than in the

OR dataset. In the PICU dataset, the mean HF is 146.2 bpm and the median HF is 147 bpm. The heart
frequency in the PICU dataset seems to be relatively normally distributed, whereas the OR dataset has a
larger percentage of values on the high end of the distribution. In the OR dataset, the mean HF is 77.2 bpm
and the median HF is 68 bpm.

In both datasets, the majority of the values lies in the range corresponding to (P)EWS score 0 or 1.

4.2.3 Oxygen saturation

The oxygen saturation (SAT) is the percentage of the hemoglobin in the blood that is oxygen-saturated. This
should be 95-100% when the blood leaves the lungs. This is the arterial saturation, or SaO2. The saturation
can be approximated using the peripheral saturation SpO2 [7]. This is measured using a pulse oximeter at the
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(a) Distribution of HF in the PICU dataset (b) Distribution of HF in the OR dataset

Figure 4.2: The distribution of the heart frequency in both datasets

finger, which measures the saturation based on the difference in absorption of red and infrared light by the
oxygenated hemoglobin and deoxygenated hemoglobin. In a healthy adult, this should be 95-100%, with levels
below 90% considered hypoxemia, insufficient oxygen in the blood.

In the PICU use case, significantly lower values for oxygen saturation occur, as these children often have
some form of heart failure. Within the population of these patients with a heart disorder, there are two cases
for the saturation. Patients with two ventricles and no mixing should have normal saturation levels of 95% to
100%. Patients with only one ventricle or two with blood mixing between them, the saturation level should be
between 75% and 85%. If such a patient has a saturation of SpO2 > 85%, this can mean that there is too much
blood going through the lungs and not enough through the body, which can cause a heart failure situation and
anaerobe lactate production.

Figure 4.3 shows that the PICU dataset contains a lot more lower saturations than the OR dataset. In the
PICU dataset, the mean SAT is 92.9% and the median SAT is 95.3%. In the OR dataset, the mean SAT is
98.2% and the median SAT is 99%. This difference occurs because of the potential heart disorders mentioned
above.

A low saturation is problematic as this can lead to hypoxia, insufficient oxygen in the tissue.

(a) Distribution of SAT in the PICU dataset (b) Distribution of SAT in the OR dataset

Figure 4.3: The distribution of the oxygen saturation in both datasets

4.3 Covariables

Next to the prediction variables, covariables are added. These variables supply info but are not predicted
themselves. There are two types of covariables: dynamic and static. The value for the dynamic variables can
differ between the current hour and potentially included history, while the static information is given from a
preoperative survey (POS).

Covariables are only used in the category of the current hour and history, not in the category to predict.
As the static information does not change between two time windows, this is only added at the current hour.

In the PICU dataset, the covariables lactate, creatinine and ASAT are used. Others were explored, but
these proved to be the most informative in initial runs. These are all dynamic, discontinuous lab measurements.
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In the OR dataset, the dynamic variable expirated vapor is used and the static information age group, BMI
class, ASA score, specialism and hypertension.

4.3.1 Lactate

Lactate is a product of anaerobic metabolism. When there is not enough oxygen available for the cells, they
can partially convert to anaerobic metabolism to produce energy. The lactate is measured in the lab and is
therefore a discontinuous measure. It is measured more often for at risk patients. Therefore, the frequency
at which the lactate level is measured can be an indication of the physician suspecting heart failure. While
higher lactate values are an indication of the patient’s risk, the lactate clearance may provide more information
[9]. Therefore, multiple consecutive measurements of lactate might provide more information than the absolute
value.

Normal lactate levels are 0-2 mmol/L. At a higher level, the anaerobic metabolism has started. Lactate
levels of 2-5 mmol/L are considered reasonably high, but can be normal after surgery. Lactate levels of above
5 are considered high.

The mean value for lactate in the PICU dataset is 1.58 mmol/L and the median value is 1.4 mmol/L. The
distribution of lactate values can be found in Figure 4.4. Most of the data is in the normal range. Only a very
small number of lactate values in the dataset are higher than 5 mmol/L.

Figure 4.4: Distribution of Lactate in the PICU dataset

4.3.2 Creatinine

Creatinine is a waste product produced by the muscles. This is filtered out of the blood by the kidneys. A high
level of creatinine in the blood can therefore indicate renal dysfunction.

In patients with heart failure, renal dysfunction occurs often [11]. The heart failure may be worsened by the
renal dysfunction and vice versa. Therefore, the renal function can be an important indicator of the patient’s
status.

Normally, the creatinine concentration drops in the first year and then increases with age. This is because a
neonate’s creatinine levels are influenced by the creatinine levels of the mother. The mean value for creatinine
in the PICU dataset is 51.6 µmol/L and the median value is 38.6 µmol/L. The distribution of the creatinine
levels can be found in Figure 4.5.

4.3.3 ASAT

ASAT (aspartate aminotransferase) is an enzyme mainly found in the liver and muscles, such as the heart
muscle [17]. It is closely related to ALAT (alanine aminotransferase), which was also present in the dataset,
but which was not used as it had little impact on the prediction when used alongside ASAT.

A high level of ASAT can indicate damage to the liver cells or muscles, for example because of insufficient
perfusion. The mean value for ASAT in the PICU dataset is 75.1 U/L and the median value is 40.4 U/L. The
distribution of the ASAT values can be found in Figure 4.6.
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Figure 4.5: Distribution of Creatinine in the PICU dataset

Figure 4.6: Distribution of ASAT in the PICU dataset

4.3.4 Vapor

The concentration of expirated (end-tidal) vapor is an indication of the concentration of inhaled sedatives in
the blood. It is the direct result of an intervention, but it is added as a covariable because it also gives an
indication about the patient’s status.

There are two types of vapor in the dataset: isoflurane and sevoflurane. These have similar effects at
different concentrations. In order to use them together, the values need to be normalized. This can be done
using the Minimum Alveolar Concentration (MAC) [12]. The MAC is the concentration at which 50% of the
patients does not respond to a surgical incision. The ratio between the MAC for isoflurane and sevoflurane is
1.54. By multiplying all concentrations for isoflurane by 1.54, the end-tidal vapor is normalized to sevoflurane.

In the normalized dataset, the mean value for expirated vapor in the OR dataset is 1.21 vol% and the
median value is 1.22 vol%.

The distribution of the expirated vapor can be found in Figure 4.7.
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Figure 4.7: Distribution of Vapor in the OR dataset

4.3.5 Age group

The age of a patient can have a large influence on the patient status. For example, the normal range of the
haemodynamic parameters differs greatly between the young children and older patients. But also within the
adult dataset, the age might give some extra information about the patient’s health.

In the PICU dataset, data of children older than one year old have been filtered out. The mean age is then
82.4 days old and the median age is 56 days old. The distribution of ages within this group of children younger
than one year old can be found in Figure 4.9.

As the PICU dataset is already filtered by the patient’s age, it is only added as a covariable in the OR
dataset, where it is included as static information. The mean age in the OR dataset is 60.9 years old. The
median age in the OR dataset is 64.0 years old. It was chosen to divide the age into ten year groups, in order
to reduce the variability, while keeping most of the information. The distribution of the age (groups) can be
found in Figure 4.8.

(a) Age in years (b) Age groups

Figure 4.8: Distribution of age in the OR dataset

4.3.6 BMI class

A severely under- or overweight patient might respond differently to a medication or status change than a
patient at a normal weight. Therefore, the BMI class was added as a covariable to the OR dataset. The BMI
is calculated using the formula patientweight(kg)

(patientheight(m))2 . The BMI was then categorized into categories underweight,
normal weight, overweight and obese [16].

The distribution of the BMI groups in the OR dataset can be found in Figure 4.10.
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Figure 4.9: Distribution of age in the PICU dataset

Figure 4.10: Distribution of BMI in the OR dataset

4.3.7 ASA score

The American Society of Anesthesiologists’ (ASA) Physical Status Classification is a score used to classify the
physical status of a patient before surgery [14]. The classification can be found in table 4.1.

Class Physical status
1 A normal healthy patient
2 A patient with mild systemic disease
3 A patient with severe systemic disease
4 A patient with severe systemic disease that is a constant threat to life
5 A moribund patient who is not expected to survive without the operation

Table 4.1: ASA classification (from [13])

If the surgery is an emergency, the letter E is added to the class. Class 6 has later been added to classify
patients that are declared brain-dead, where the surgery is for donor purposes [13]. For the purpose of this
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research, data from patients with an E-class or class 6 are not included.
The distribution of ASA scores in the dataset can be found in Figure 4.11. Most patients have ASA score

2 or 3. There is also a large group of patients for which no ASA score is recorded.

Figure 4.11: Distribution of the ASA score in the OR dataset

4.3.8 Specialism

The medical specialism of the surgery can also provide insight in the status of the patient. The different
specialisms are represented by three-letter abbreviations. The most common specialism in the dataset is
cardiothoracic surgery (CTC). This specialism includes heart and lung surgery. It is therefore highly related to
the haemodynamic parameters.

The distribution for the different medical specialisms can be found in Figure 4.12.

Figure 4.12: Distribution of medical specialisms in the OR dataset
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4.3.9 Hypertension

Patients with hypertension have a chronic high blood pressure. Hypertension can indicate a health risk and
can skew the normal ranges for the blood pressure.

Hypertension is represented by a yes/no question in the POS. There are also many cases in which the answer
is missing. The distribution for hypertension can be found in Figure 4.13.

Figure 4.13: Distribution of hypertension in the OR dataset

4.4 Interventions

In the PICU-dataset, the available interventions are six types of inotropes: adrenaline, noradrenaline, dopamine,
dobutamine, milrinone and phenylephrine. As milrinone is generally on the same setting and phenylephrine
barely occurred in the dataset, these were excluded. In the OR-dataset, the available interventions are
a combination of inotropes and anesthetics. As this was a very large set with varying frequencies, this
was narrowed down to four types of intervention: phenylephrine, propofol, remifentanil and norepinephrine
(noradrenaline).

All of these medications are given through continuous intravenous infusions (IV).
In total, this yields a list of seven intervention types: five types of inotropes and two sedatives/analgesia.

In the Table 4.2, the effects of the medications and the dataset in which they are present are outlined briefly.
The inotropes have been manually discretized into levels based on the levels used in practice in the different
use cases.

PICU OR Effect
Inotropes
Adrenaline X HF↑ ABP↑

Noradrenaline X X ABP↑
Dobutamine X HF↑ ABP−| ↓
Dopamine X HF↑ ABP↑

Phenylephrine X ABP↑
Anesthetics

Propofol X Sedative ABP↓
Remifentanil X Analgesic ABP↓ HF↓

Table 4.2: The different types of interventions
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4.4.1 Interventions PICU

The distribution of the combinations of inotropes in the PICU dataset can be found in Figure 4.14. The
minutes without inotropes are not included in this distribution, but are present in the dataset. Approximately
two-thirds of the windows do not have inotropes.

Figure 4.14: Distribution of the interventions in the PICU dataset (excluding None)

4.4.2 Interventions OR

The distribution of the types of pump fluid is given in Figure 4.15. Because of interpretability and size, only
the most common and meaningful types were selected. The pump fluids selected for the model are marked red.
These were manually divided into levels.
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Figure 4.15: Distribution of the interventions in the OR dataset
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5
Testing

In order to properly test the performance of this model, it is compared to other models. For this, a set of
metrics and models had to be selected.

5.1 Metrics

To assess the performance of the model, three metrics were chosen: the accuracy (both overall and in problematic
categories), the Concordance index and the Root Mean Squared Error (RMSE).

5.1.1 Accuracy

The accuracy is the percentage of cases in which the predicted category was the same as the actual next
category. While the overall accuracy does give some insight into the performance, the interest is mainly in
the ‘problematic’ categories. For example, the patient’s blood pressure might fluctuate within a normal range.
This fluctuation is not of interest for this research. By merging these normal categories as mentioned in section
3.1.7, the influence of this fluctuation was minimized in the prediction.

Another possible way to isolate the accuracy of interest is to look at the accuracy per category. The accuracy
in a certain category c was defined as the percentage of cases in category ct=i of which the next category ct=i+1

was predicted correctly. In other words, the accuracy for category c is the accuracy over all observations with
origin category c.

This is used in the metrics by defining the accuracy in the problem categories as the sides accuracy. The
sides accuracy is defined as the mean accuracy for all categories of which at least one variable is in a problematic
range (i.e. in [ABP0,HF2, SAT0]).

The difference between the overall accuracy when merged and the sides accuracy is that the overall accuracy
merged takes the cases into account in which a patient moves from the center category to a problem category,
whereas these are excluded in the sides accuracy. While it might be interesting to predict these changes, they
may also consist of sudden declines in the patient that are either unpredictable or result from outside influences
that are not represented in the data. For example, in the OR data it is likely that such a decline could be the
result of the progress of the surgery.

In terms of accuracy, the model performance is considered good if the accuracy is significantly higher than
predicting no change. No change means that the category in the current window is predicted as the category
for the next window. As generally in more than half of the cases there is no change between two consecutive
windows, predicting no change already provides an accuracy of over 50%.

5.1.2 C-index

The Concordance index or C-index is the area under the Receiver-Operator Curve (ROC) [5]. It measures the
goodness of fit in a binary outcome. The ROC-curve plots the true positive rate against the false positive rate.
A high C-index shows that the model is good at discriminating between the problematic and normal cases. A
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C-index of over 0.7 is considered acceptable and a C-index of over 0.8 indicates a strong model. However, the
interpretation of C-index also depends on the incidence.

In order to calculate the C-index for this model, the statistic is split per variable. As the actual and predicted
categories are intersections of these variables, this first has to be split. For each variable, the problem category
(AB0, HF2 or SAT0) is labeled as 1 and the other two categories are labeled as 0. This is done for the actual
categories and the predicted categories and results in two binary vectors per variable.

For example, given the actual category ABP1 ∩HF2 ∩ SAT0 and the predicted category ABP0 ∩HF2 ∩
SAT0, the resulting vectors for ABP are ABPactual = [0] and ABPpredicted = [1], because ABP1 is not the
problem category and ABP0 is.

These vectors are generated for all predictions for each variable and are then used to calculate the C-index.

5.1.3 Root mean squared error

Finally, the root mean squared error (RMSE) is calculated [2]. The RMSE is calculated as follows:

RMSE =

√
Σn

i=1(ŷi − yi)2

n

where ŷ is the prediction and y is the actual observation. The prediction is defined as the prototype (or mean)
of the predicted category. The actual observation is taken as the original window. However, in order to avoid
skewed results because of outliers in the original data, a median filter of the same width as the SAX method it
is compared to is applied. This filter has a width of 5 in the PICU data and a width of 3 in the OR data.

This provides a good measure of the average distance from the actual value to the predicted value. This
takes two aspects of the model into account. First, there is a distance caused by categorizing the observations
and representing each category by its mean. Secondly, an incorrect category prediction will increase the distance.
However, if the original observation is at the edge of the cluster, near the incorrectly predicted cluster, the
distance might not increase by a lot.

The RMSE in itself does not provide an indication of the model’s performance, but can be used to compare
types of models and to see if the average error is acceptable in a clinical perspective.

The RMSE is only calculated in the unmerged model, as merging the center groups multiple states of multiple
variables. This inherently increases the error and changes the prototype, but only in categories that are of less
interest. It is therefore not a useful performance measure. As the RMSE is mainly included to evaluate the
influence of adding the SAX step to the model, it is sufficient to calculate it for unmerged cases only.

5.2 Comparisons

These metrics give an indication of the performance of the model in itself, but can also be used compare the
model to other models or variations of the current model. The base model is the model described in Chapter
3 using K-Means and SAX to categorize the data and combining the current, next and potential previous
categories with the interventions to generate a probability matrix. There are three models that are interesting
to compare the performance of this model to: the no change model, the model with only K-Means and no SAX
and the model with K-Means and SAX without interventions.

5.2.1 No Change model

As mentioned in section 5.1.1, the accuracy of a model is compared to the accuracy of simply predicting the
current category. As there are many situations in which the category does not change between two windows, it
is important to compare this. By predicting the same category as the current window, the model could have a
reasonable accuracy without having any predictive value. It is therefore important to see whether the current
model performs better than the No Change model.

5.2.2 K-Means

In order to check the usefulness of including the SAX step in the data preparation stage, the model is checked
against a model without this symbolisation step. In order to avoid the outliers and reduce the dimensionality
of the data, a simple median filter is applied instead. This median filter uses the same width as the segments
in the SAX model it is compared to. This width is 5 minutes in the PICU dataset and 3 minutes in the OR
dataset.

The expectation is that the RMSE is lower in the K-Means only model than in the model with SAX if the
accuracy is similar, as K-Means directly tries to minimize the distances within each cluster. While K-Means
might get stuck in a local optimum, this effect should be minimized by taking the mean of multiple iterations.
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It is expected that the abstraction caused by applying SAX increases this error. It is therefore interesting to
see whether this increase is large enough to be problematic.

As mentioned in section 2.2, it is expected that using K-Means without SAX causes the center category to
change with regard to the problematic categories. In order to test this, the number of time windows in the side
is recorded as well.

5.2.3 Model without interventions

In order to quantify the influence of the interventions, the model is also run without interventions. The model
remains unchanged, except that the intervention is set to none for each entry in the prepared dataset.

As the end-tidal vapor is (the direct result of) an intervention, it is also excluded from this model.
The difference in the performance caused by excluding the interventions can provide insight into the extra

information given by the intervention when the patient status is known. This insight is necessary to answer
the question whether the influence of the interventions can be isolated.

5.3 Test method

After the data preparation step is performed, the training and testing of the model is run using 10-fold cross
validation. This means that the dataset D is randomly divided into 10 disjoint subsets si ∈ D such that⋃10

i=1 si = D. For each of the 10 iterations or folds i, subset si is taken as the test set, while D \ si is used
as the training set. The training set is passed to the training method to produce a probability matrix. The
test method uses the test set to predict each category and compare it to the actual value. For each row in
the test set, the test method passes the current category, intervention and potential previous categories to the
prediction method, combined with the probability matrix. The returned prediction can then be compared to
the actual category to calculate the performance of the model.

The overall accuracy and accuracy per category are calculated per fold and the mean is returned. All
predictions are returned combined with the true category, in order to calculate the C-index and the RMSE.

In order to get a more robust result and reduce the influence of randomness in the data preparation step,
the combination of preparation and 10-fold cross validation is repeated 10 times and the mean is taken for each
metric. In Chapter 6, these mean values are given as results.

5.4 Parameters

The parameters chosen for these tests are as follows:

PICU OR
SAX nsegments 12 2

SAX alphabet_size 15 15
History h 2 0

Number of clusters k 3 3

The parameters were based on a parameter sweep. The options for the number of segments were chosen
such that the window size is divisible by it. As can be seen in Figure 5.1a, the model performs best on the
PICU dataset for n = 12. In the OR dataset, the model performs best with n = 1. However, as this would
remove all variation from the window, n = 2 was chosen. This performs only slightly worse.

The alphabet size was set to 15. As can be seen in Figure 5.2a, this yields the best performance for the
PICU dataset. In the OR dataset, an alphabet size of 20, performs slightly better in some iterations. As this
difference is small and did not occur consistently, an alphabet size of 15 was chosen.

The number of clusters k was set to three. A higher number of clusters caused an exponential increase in
the number of prediction categories, and therefore worsened the performance and caused problems with the
interpretability.

Adding history has a different effect in the two use cases. In the PICU dataset, adding two hours of history
showed significant improvement in the accuracy of the model. This improvement can be seen in Figure 5.3a. In
the OR dataset, adding any window as history only worsened the performance, as shown in Figure 5.3b. This
sweep was only performed in the unmerged model, as this trend was clear and the time and space requirements
of running the OR model with history were very large.
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(a) SAX number of segments in the PICU dataset (b) SAX number of segments in the OR dataset

Figure 5.1: Parameter sweep for the number of segments

(a) SAX alphabet size in the PICU dataset (b) SAX alphabet size in the OR dataset

Figure 5.2: Parameter sweep for the alphabet size

(a) History in the PICU dataset (b) History in the OR dataset

Figure 5.3: Parameter sweep for the history
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For each metric, the models are compared and a comparison is made between the PICU and OR datasets. All
reported values are the mean over the iterations and over the 10-fold cross-validation.

For all metrics except the RMSE, the values are given both for the merged and the unmerged model. In
the unmerged model, all time window categories are the intersection of the categories of their variables. In the
merged model, a time window category that does not contain any problematic category (ABP0,HF2orSAT0),
is represented as Center. In the current and previous window, the Center category can be intersected with
covariables.

6.1 Accuracy

6.1.1 PICU

The accuracy for the PICU dataset can be found in Figure 6.1. As can be seen, the No Change model performs
worse than the other models. The difference is significantly larger in the sides (∆ = 0.12) than in the edges
(∆ = 0.052). For each model, the overall accuracy improves significantly when the center categories are merged
(∆ = 0.066), but the sides accuracy barely changes (∆ = 0.0034).

The accuracy is slightly lower when the interventions are removed, but the change is very small. The mean
decrease in accuracy between a model and its counterpart without interventions is 0.013 in the overall accuracy
and 0.011 in the side accuracy.

The accuracy is slightly higher when the SAX step is removed from the model, but the change is again very
small. The mean increase in accuracy between each model and the counterpart without SAX is 0.018 in the
overall accuracy and 0.0035 in the side accuracy.

6.1.2 OR

The accuracy for the OR dataset can be found in Figure 6.2. As can be seen, the No Change model performs
significantly worse (∆ = 0.16) than the other models for the side accuracy. In the overall accuracy, the No
Change accuracy is very close to the other models and even occasionally performs better. For each model,
the overall accuracy improves significantly when the center categories are merged (∆ = 0.13), but the sides
accuracy barely changes (∆ = 0.010).

The overall accuracy is slightly higher when the interventions are removed, but the change is very small.
The mean increase in overall accuracy between a model and its counterpart without interventions is 0.013. The
side accuracy is lower when the interventions are removed, with a larger difference (∆ = 0.037).

The accuracy is higher when the SAX step is removed from the model. The mean increase in accuracy
between each model and the counterpart without SAX is 0.078 in the overall accuracy and 0.013 in the side
accuracy.
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(a) Overall accuracy in the PICU dataset (b) Side accuracy in the PICU dataset

Figure 6.1: The accuracy for the PICU dataset

(a) Overall accuracy in the OR dataset (b) Side accuracy in the OR dataset

Figure 6.2: The accuracy for the OR dataset

6.1.3 Comparison

As can be seen in Table 6.1, the model has a higher overall accuracy on the PICU dataset than on the OR
dataset. However, the side accuracy is higher for the OR dataset.

Variable PICU OR
Overall accuracy 66.2% 57.5%

Overall accuracy merged 73.4% 69.8%
Side accuracy 74.7% 77.7%

Side accuracy merged 75.1% 78.5%

Table 6.1: Comparison of the accuracy for both datasets for the SAX + K-Means model (with interventions)

6.2 C-index

6.2.1 PICU

The values for the C-index for the different models for the PICU dataset can be found in Figure 6.3. Merging
the center categories or excluding the interventions slightly decreases the C-index. All values are above or
around 0.9. For ABP and HF, the highest C-index occurs for the SAX and K-Means model. For SAT, the
C-index is slightly higher for the K-Means only model.
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(a) C-index for ABP (b) C-index for HF (c) C-index for SAT

Figure 6.3: The C-index in the PICU dataset

6.2.2 OR

The values for the C-index for the different models for the OR dataset can be found in Figure 6.4. Merging the
center categories or excluding the interventions slightly decreases the C-index. All values are between 0.8 and
0.95. For ABP and SAT, the highest C-index occurs for the SAX and K-Means model. For HF, the C-index is
slightly higher for the K-Means only model.

(a) C-index for ABP (b) C-index for HF (c) C-index for SAT

Figure 6.4: The C-index in the OR dataset

6.2.3 Comparison

As can be seen in Table 6.2, the C-index differs a lot per variable. For ABP and SAT, the C-index is significantly
higher on the PICU dataset than on the OR dataset. For HF, the values are quite close, with the model
performing slightly better on the OR dataset.

Variable PICU OR
ABP 0.927 0.837
HF 0.923 0.936
SAT 0.965 0.918

Table 6.2: Comparison of the C-index for both datasets for the SAX + K-Means model (unmerged, with
interventions)

6.3 RMSE

6.3.1 PICU

The RMSE for the different models for the PICU dataset can be found in Table 6.3. In all three variables, the
RMSE is lower for the K-Means only model than for the SAX + K-Means model and lower for the model with
interventions than the accompanying model without interventions. There is very little difference in RMSE for
ABP between the models, while there is a larger difference between the models in the RMSE for the variables
HF and SAT.
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Model ABP (mmHg) HF (bpm) SAT (%.)
SAX + K-Means 11.29 14.91 4.44

SAX + K-Means without interventions 11.35 15.02 4.47
K-Means only 11.10 14.20 3.76

K-Means only without interventions 11.16 14.30 3.78

Table 6.3: The RMSE in the PICU dataset

6.3.2 OR

The RMSE for the different models for the OR dataset can be found in Table 6.4. For HF and SAT, the
RMSE is lower for the K-Means only model than for the SAX + K-Means model and higher for the model with
interventions than the accompanying model without interventions. For ABP, the SAX + K-Means model has a
slightly lower RMSE than the K-Means only model, and the model with interventions has a lower RMSE than
the accompanying model without interventions.

Model ABP (mmHg) HF (bpm) SAT (%.)
SAX + K-Means 12.68 28.55 1.69

SAX + K-Means without interventions 12.88 28.07 1.70
K-Means only 12.73 19.97 1.58

K-Means only without interventions 13.00 19.81 1.60

Table 6.4: The RMSE in the OR dataset

6.3.3 Comparison

As can be seen in Table 6.5, there is a large difference between the RMSE of the model on both datasets. While
the RMSE for ABP is similar between the two datasets, this is not the case for HF and SAT. The model has a
significantly higher error for HF on the OR dataset than on the PICU dataset. The opposite happens for SAT,
where the model has a significantly lower error on the OR dataset.

Variable PICU OR
ABP 11.3 mmHg 12.7 mmHg
HF 14.9 bpm 28.6 bpm
SAT 4.44 %. 1.69 %.

Table 6.5: Comparison of the RMSE for both datasets for the SAX + K-Means model (unmerged, with
interventions)

6.4 Cluster centers and number in side

In order to see the influence of SAX on the cluster division, the prototypes or cluster centers are extracted. As
the cluster centers are in terms of SAX symbols, these are then transformed back to the unit of the variable.
As the SAX symbols are applied using breakpoints, the reverse transformation replaces a SAX symbol by the
center of that range. For example, a symbol associated with ABP values of 50 ≤ 60mmHg is transformed to
55mmHg. As the SAX transformation also reduced the dimensionality, these reverse transformed values are
then repeated for the length of the SAX segment (i.e. 5 minutes in the PICU dataset and 3 minutes in the OR
dataset).

In Figures 6.5 to 6.7, the cluster centers for the haemodynamic parameters in the PICU dataset can be
found. The figures show that the cluster centers change when SAX is not used. In the model with only K-
Means, the outer cluster centers move further outward. The size of this move differs per variable.

This shift can cause the problematic category (ABP0, HF2 or SAT0) to change with regard to the PEWS
score. For example, the clustering of SAT by the SAX + K-Means model corresponds directly to the PEWS
score. The problematic category SAT0 gets a score of 2, which is the highest score for that variable and
corresponds to an oxygen saturation under 91%. In the K-Means only clustering, a saturation of less than 91%
is between the middle and high cluster prototype. Therefore, this clustering is not easily interpretable in terms
of the PEWS score, as part of the middle cluster is already in a problematic state.

In the ABP and HF cluster centers, this change is not as large.
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In Figures 6.8 to 6.10, the cluster centers for the haemodynamic parameters in the OR dataset can be found.
The same shift can be seen here. A large difference can be seen in the clustering of HF in Figure 6.9. Here,
the cluster center problematic category HF2 moves up significantly. While the prototype for HF2 in the SAX
+ K-Means model corresponds with a EWS score of 1 or higher, the corresponding prototype in the K-Means
only model only includes values with a score of 3. The same happens for SAT0 in Figure 6.10.

(a) Cluster centers for ABP for the SAX + K-Means
model

(b) Cluster centers for ABP for the K-Means only
model

Figure 6.5: The cluster centers for ABP in the PICU dataset

(a) Cluster centers for HF for the SAX + K-Means
model

(b) Cluster centers for HF for the K-Means only model

Figure 6.6: The cluster centers for HF in the PICU dataset

6.4.1 Number of time windows in side

These changes in the clustering can also be seen in the distribution of the number of time windows between the
side and the center. This distribution can be found in Table 6.6. The table shows that less time windows are
in any problematic (side) category in the K-Means only model than the SAX + K-Means model. This decrease
is small in the PICU dataset, but significantly larger in the OR dataset.

Variable PICU OR
Total number of windows 75567 456053

SAX + K-Means 50453 (66.8%) 236004 (51.7%)
K-Means only 49923 (66.1%) 168025 (36.8%)

Table 6.6: Comparison of the mean number in the side for both datasets for the SAX + K-Means model versus
the K-Means only model
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(a) Cluster centers for SAT for the SAX + K-Means
model

(b) Cluster centers for SAT for the K-Means only
model

Figure 6.7: The cluster centers for SAT in the PICU dataset

(a) Cluster centers for ABP for the SAX + K-Means
model

(b) Cluster centers for ABP for the K-Means only
model

Figure 6.8: The cluster centers for ABP in the OR dataset

(a) Cluster centers for HF for the SAX + K-Means
model

(b) Cluster centers for HF for the K-Means only model

Figure 6.9: The cluster centers for HF in the OR dataset
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(a) Cluster centers for SAT for the SAX + K-Means
model

(b) Cluster centers for SAT for the K-Means only
model

Figure 6.10: The cluster centers for SAT in the OR dataset
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7
Discussion

7.1 Performance

As seen in the previous chapter, the model performs sufficiently well. In all cases, the accuracy of the K-
Means+SAX model is significantly higher than the No Change model for the problematic (side) categories.
With a side accuracy of 75.1% to 78.5%, the results are promising.

The C-index ranges from 0.84 to 0.97 and is therefore significantly above the threshold of 0.7. As the
percentage of the time windows in the problematic category for each variable is generally in the range of
20% to 35% of the total number of time windows, this can be considered good performance. This C-index is
significantly higher than to be expected from the accuracy. This is the case because the accuracy per variable
is significantly higher than the overall accuracy. Within each variable, the category remains unchanged more
often than the overall category. The accuracy of the No Change model per variable is generally above 80% for
both datasets, with each other model improving on this. There is one exception to this range. The No Change
accuracy for ABP in the OR dataset is only 72.5%. This corresponds with the lowest C-index as found in Table
6.2.

There is some difference between the PICU data and the OR data. The higher overall accuracies and C-
index for the PICU dataset may be explained by the age differences within the dataset. While filtering the
dataset to only include data from patients of less than one year old does reduce the influence of age, there
is still some variation in the normal ranges. This might influence the categorization, as the age is implied in
the data and therefore might change the likelihood of certain category changes. This variation may cause less
movement from one category to another within each variable.

Another possible explanation is the higher degree of outside influence in the OR dataset. In the OR data, a
surgery is taking place. Changes within the ‘normal’ ranges of the variables could therefore be more difficult to
predict from the available data, as no information about the progress of the surgery is used. In the problematic
categories, changes in the haemodynamic status could be more related to the intervention as action is taken
to return to a normal range, which might explain the higher performance in these categories. The difference
in RMSE between the datasets is caused by the difference in the distribution of the values and thereby the
distribution of the cluster centers.

There are also some differences between the performance of the SAX + K-Means model and the K-Means
only model. As expected, the RMSE is slightly higher in the SAX + K-Means model than in the K-Means
only model, but the difference is small. The accuracy is very similar, but slightly higher for the K-Means only
model. This can be explained by the larger center category, as seen in Table 6.6.

In conclusion, the model performs sufficiently. While adding SAX does not increase the performance of the
model, it does change the category division. As seen in section 6.4, the cluster centers change significantly
when the SAX step is excluded. The center category becomes larger and the cluster center corresponding
to the problematic category becomes more extreme. In the case where less extreme category definitions are
desirable, and the focus is on the problematic categories, the model with SAX can therefore be considered the
more suitable model.

39
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7.2 The role of intervention

As can be seen in Figure 6.1, there is very little change in the accuracy when the interventions are excluded.
This suggests that the correlation between the patient status and the medication they receive is very high.

In order to confirm this, the distribution of the interventions needs to be examined further. In Figure 7.1a,
the number of unique interventions per combination of current category and history (h = 2) is shown for the
(unmerged) PICU data. It shows that in the majority of the cases, there is only one type of intervention present
for each combination. The mean number of interventions is 1.17, with the median at 1. The high level of
detail in the categorization of the situation achieved by adding history and covariables causes a decrease in the
number of datapoints in each category and therefore a decrease in variation within the categories. The number
of time windows per category (and history) can be seen in Figure 7.1b. The mean number of time windows per
category is 5.77, with the median as low as 2. This shows that next to the small number of intervention types,
there is also a small total number of time windows left in each cell of the probability matrix.

Merging the center increases the number of time windows per category and the variation, but only slightly.
Cases with a single type of intervention still hold a large majority.

Therefore, the high level of detail created by including covariables and history causes the number of time
windows in each cell to be very small and generally associated with only one type of intervention. This means
that in the PICU dataset, the small difference in performance by excluding the interventions is caused by a
high correlation between the patient status and the intervention and a small number of datapoints for each
status.

(a) A histogram of the number of unique types of
intervention for each combination of current category
and history (h = 2) for the PICU data (unmerged)

(b) A histogram of the number instances for each
combination of current category and history (h = 2)
for the PICU data (unmerged)

Figure 7.1: Distribution of instances and types of intervention for the PICU dataset

As there are significantly more data points in the OR dataset and no history is included there, there should
be more datapoints in each category. This can be seen in Figure 7.2b. The median number of instances per
combination of category and patient information is 6 (mean of 15.5), whereas the median number of instances
in the PICU dataset was only 2 (mean of 5.77). There are also significantly more combinations of interventions,
as there are five types of medication used with five levels each. When vapor (with three categories) is included
as an intervention, there are over 1000 unique combinations of interventions. The PICU dataset contains only
32 possible combinations of interventions.

This results in a slightly larger number of different interventions for each combination of status and patient
information. As can be seen in Figure 7.2a, this variation is larger than in the PICU dataset, with a mean of
4.8 (and a median of 3) unique intervention types per cell in the probability matrix. While it is less clear than
in the PICU dataset, this still suggests a high level of correlation as the number of unique types of interventions
per cell is very small compared to the total number of interventions.

7.3 Conclusions

In Chapter 1, two connected research questions were defined. The first question was whether the change in
the status could be predicted accurately. As explained in section 7.1, the performance meets the criteria set
in Chapter 5. The model significantly outperforms the No Change model in the categories of interest (side
accuracy) and the error increases only a little by including the SAX step.

The second question was whether the role of the intervention could be isolated. As explained in section 7.2,
this is not possible as the intervention is too highly correlated with the patient’s status.
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(a) A histogram of the number of unique types of
intervention for each current category for the OR data
(unmerged)

(b) A histogram of the number instances for each
current category for the OR data (unmerged)

Figure 7.2: Distribution of instances and types of intervention for the OR dataset

7.4 Practical use in medicine

As shown above, the accuracy and error of the model seem promising. This shows that the method could
potentially have practical use. The model is able to predict any situation that has been encountered before.

It is not possible to isolate the influence of the interventions on the prediction. It seems that any prediction
made by the model implicitly includes the intervention in the patient’s status. This problem might be solved
by including the intervention explicitly in the model, even though removing it makes little difference in the
performance. When it is included, the model can still predict the situation if the actual intervention corresponds
with the intervention present in the same situation in the training set. If so, a prediction can be given. If not,
it might not be possible to predict the next status.

This generalizes to the problem that only previously seen situations can be predicted by this model.
Combinations of categories and history that do not occur in the current dataset cannot be predicted. This is
only problematic if there are many such cases. If most new situations fall into one of the currently filled cells in
the probability matrix, there is no problem. By making the model as specific as it is now, it performs best on
the current datasets. However, when new data is introduced, the current level of detail might cause it to fall
in an unseen category. Therefore, the level of detail might cause the model to be overfit to the current dataset
and thereby be weak in predicting new, actual cases.

Another problem is that a trend from a problematic status towards a normal status might be important
even if it is not large enough for the status to move to a normal category. In order to combat this, finer-grained
categories might be necessary for the model to be useful in practice. However, this problem is inherent to any
model that uses categorization. Any clustering will cause the loss of some information, unless the number of
clusters becomes prohibitively large. An increase in clusters would also make the model even more specific,
thereby worsening the problem of potentially overfitting and losing compatibility to new cases.

Therefore, using this model to predict a patient’s future status might help provide doctors with a quick,
general idea of the severity of the situation over time. The performance of the model seems acceptable for
practical application, but further examination would be needed to evaluate whether the level of detail in
the categories is sufficient. It would also be necessary to explore whether new situations correspond to the
available combinations of current (and previous) categories and interventions in the probability matrix and
therefore whether they could be predicted.

7.5 Further research

This research has brought many new questions that need to be researched further. First of all, a lot of
datapoints are discarded because only the windows with no missing data are used. This could potentially
be improved by defining a maximum number of (consecutive) missing values. A problem with these missing
values is that they are not necessarily missing at random.

As mentioned in section 7.1, the performance of model on the PICU dataset is influenced by the difference
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in age. Even though the dataset has been filtered to only include patients of less than one year old, there is
still a noticeable change in the reference values with regard to age. This might cause the model to partially
categorize patient time windows by age instead of by severity of the situation. This might influence the
likelihood of moving between two specific categories and make the interpretation of the results more difficult.
A possible solution to this is to take the difference from the baseline as the status, with an age-dependent
baseline. This can be done in multiple ways. For example, the direct deviation with regard to the baseline can
be taken (e.g. -5 mmHg). The problem with this might be that the absolute deviation may have different
meaning depending on the baseline. Instead, the difference could be measured in terms of standard deviations.
However, this introduces the problem that the standard deviation would have to be calculated by age group,
which requires a cutoff between groups and might therefore be problematic with a baseline that is a continuous
function of the age. Therefore, this change requires further research and was outside of the scope of this research.

In section 7.4, it was shown that a potential problem with this model is that it can only predict cases that
have been seen before. Categorizing generalizes the situation somewhat, but the addition of intervention,
covariables and history makes the situation more specific. This means that there are many situations that
might occur in practice, but cannot be predicted because the corresponding cell in the probability matrix has
not been filled with previous data. While generalizing the model (e.g. by removing history) might solve this,
it would also significantly decrease the performance. It might therefore be useful to extend the model such
that an unseen case is generalized to a combination of similar cases in order to allow for prediction. However,
it would need to be researched whether such an extension adds any predictive performance, as it would need
to be accurate enough to actually benefit the model.

The third and potentially most important question lies in the role of the categories with regard to the time.
In the current model, the category of the current time window wi is taken and the majority next category in
its cluster for wi+1 is returned. This means that the status ‘jumps’ from one category to another. Another
possible approach would be to take the mean or median of the measurements in the next window wi+1 for all
members of the cluster found in wi. If all of the members of the current cluster of wi are in the same cluster
at wi+1 and there are no other members of the cluster at wi+1, this gives the exact same result as the current
model. However, this will generally not be the case. Not only can there be variation within a cluster such that
the majority category for the next window does not contain all of the current members, but there can also be
new members in the cluster of the next window that skew its prototype.

Comparing the current model to a model that returns the mean or median of all members for the next time
window (instead of the prototype of the majority next category) can provide more insight into the quality of
the categorization and the time factor in the prediction. The time factor differs as the current model assumes
that patient windows that are currently in a similar state may differ greatly in the next point in time. Taking
the mean or median assumes that patient windows currently grouped together stay together for the next hour.
Whether this differs greatly will depend on the nature of the time relations in the dataset. It also depends on
the variation and level of detail in the model. As shown in section 7.2, there is little variation left within each
cell of the probability matrix. When there is no variation, the difference in the time component is difficult to
extract as often 100% of the datapoints in a cell are in the same next category. There may however be some
influence of other datapoints that occur in the next category and may skew the prototype.

The comparison may also give some insight into the quality of the categorization. If there are distinct
categories, a model that chooses the majority category should perform better, as it would have a small distance
to the actual value in the majority of the cases. If there are no distinct categories, the cutoff between adjacent
categories might be arbitrary and a mean or median might perform better.

As this small change to the model could provide great insight in the nature of the relations in the dataset,
it is an interesting direction of further research.

It might also be useful to further explore the definition of interventions. In the current model, the
intervention was taken as the current status of the continuous medication. In other words, the time windows
were defined independent of the interventions and the intervention used was based on the window. Another
possible approach might be to take any change in the medication and take the time window before that to predict
the window afterwards. This would define the intervention as the direct change of the status of the medication.
Defining an intervention as such might provide a different insight in the influence of the interventions as there
is a more direct change. It would therefore define a more event-based model.

This approach would ignore all medication that is the same as the previous minute, as this would not be
considered an intervention. However, this means that a deliberate choice to keep the medication at the current
state would also be ignored, even though it might add valuable information to the model.

This suggests that the difference between the current model and the event-based model lies in the
interpretation of the medication status. When the intervention is defined as any deliberate choice made with
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regard to the medication, neither model provides a realistic interpretation of the situation. The current model
assumes that the medication at each minute is a deliberate choice, whether it was changed or not. The
event-based model would assume that only changes are deliberate choices, and continuation of the current
medication would not be seen as a decision. As neither model corresponds directly to the real situation and
the difference is not clear from the data, it might be useful to perform further research into which definition of
intervention would be valid.

This could be useful to research as the difference in definition might have a large influence on the ability to
isolate the intervention and to draw conclusions on the relations between the intervention and the status.

Finally, the influence of the change in status within a time window is minimized in this model. As could
be seen in section 6.4, there is little change over time within each cluster prototype. It seems that all variation
within the window has been averaged out. This means that the change in status is only used in the prediction
when history is included and only if the trend involves a change in category. Any trend within a category is
not used.

Recently, a new extension to SAX has been proposed that does take this trend into account [18]. This new
technique SAX_CP extends SAX by detecting trend changes using variable segment sizes to improve the
approximation of the data. It might therefore be interesting to see what influence this extension has on the
current model.

While the model performs sufficiently well, these are interesting areas of further research that might improve
the performance and provide more insight in the relations found in the data.
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