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Abstract

Rapidly developing research on convolutional neural networks allows for generating semantic information on images
in an increasing variety of ways and with increased segmentation performance. This work focuses on one such deep
learning objective, which we termed material segmentation and which involves determining for each pixel in an image
– in this research we work with street-level imagery – which of a predefined set of materials it represents. The context
for this research was provided by a GIS company, which records and digitizes the public space and whose clients have
requested such per-pixel material information. This company also employs deep learning to automatically detect and
locate street furniture, and the material information additionally has the potential to improve this object detection.

We annotated our own dataset, which is deficient in both the number of annotated images and the ground truth
coverage per image. In addition, this dataset suffers from severe class imbalance. In the first part of this research
we explore techniques to either resolve this class imbalance or to mitigate its negative effect on material segmentation
performance. In our case, the best loss function turns out to be class-weighted cross entropy loss, though only by small
margin. We conjecture that our class imbalance is too severe, and renders the dataset intractable without merging small,
non-performing classes together or acquiring more ground truth for the small classes.

In addition to colour values, we also have depth information to our disposal, which gives the distance from the camera
to the surface at each pixel. Contrary to our expectations, our network cannot manage an increase in performance when
working with a unified RGBD representation over only RGB colour input. Our experiments indicate that, even though
depth maps hold some discriminatory value, they become superfluous in the presence of colour information. We show
examples where depth falls short in terms of discriminatory value by visual inspection.

Lastly, we assessed the extent to which our lack of training data holds performance back. We deduce that two factors
are likely to cause the largest gains in performance: increasing the number of segmentations for classes with little ground
truth, and increasing the number of training images to a thousand. Such measures should be able to effectuate satisfactory
performance. Further improvements in material segmentation performance are likely to be gained by swapping depth
maps for intensity maps, and simultaneously performing instance segmentation and material segmentation, using a joint
network like Panoptic FPN.
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1 Introduction

This research was carried out at CycloMedia Technology, a company specialized in GIS and located in Zaltbommel, The
Netherlands. Founded in 1994, CycloMedia performs large-scale panoramic photography, three-dimensional reconstruc-
tion and geographical mappings of the public space. Among other things, this digitization of the exterior world is used for
inventorization of common objects therein, e.g. traffic lights and signs, benches, lampposts, etc. The company employs
Ford Fiestas mounted with panoramic image cameras, yielding 360◦, 250 megapixel∗ images called cycloramas, and
Velodyne HDL-32E LiDAR sensors. These cars drive all public roads in commissioned municipalities (they have driven
throughout The Netherlands) and capture their surroundings at five meter intervals using said photography and LiDAR
measurements. LiDAR measurements yield point clouds; collections of three-dimensional coordinates corresponding to
surface points with which the pulsed laser light – emitted by the LiDAR equipment – collided and reflected back. Since
this equipment knows its geographical location through GPS and SLAM postprocessing, the azimuth and altitude of the
emitted signal through IMU, and the distance from the equipment to the collision (and reflection) point (determined by
halving the time between emission and reception of the signal), the three-dimensional position of the point of collision
can be resolved.
These point clouds offer only a sparse sampling of the environment. Therefore, the points are connected by edges using
a surface reconstruction algorithm in order to approximate the actual surfaces that were sampled. Such a surface recon-
structed object or environment is called a mesh, and is the conventional method of storing 3D models within computer
graphics and geometry processing. Figure 2 shows the process of generating a textured mesh from a point cloud.

As the camera location, orientation, and focal length are known for each cyclorama, the 3D mesh reconstructed from
the point cloud recorded at the same location can be related to that cyclorama in such a way that the image and mesh
are spatially coherent. Moreover, the absolute geographical locations of the points are known, due to GPS, IMU, and
SLAM postprocessing. The geometric relationships between the 3D objects and their projection on the image plane of
the cyclorama is illustrated in Figure 3. Besides the RGB colour values, an extra channel can then be added, which covers
all pixels in a cyclorama and indicates the distance, or depth, towards the surface that was projected on that pixel. This
channel is called a depth map†, and can be combined with the colour information to form a RGBD representation of an
image. The other way around, the reconstructed environment meshes can be enhanced by texturing the meshes using the
colour information from the cycloramas, pictured in Figure 2c. The entire data collection pipeline for all CycloMedia’s
forms of data is visualized in Figure 1.

1.1 Problem statement

CycloMedia’s customers mainly include municipalities requesting either inventorization and localization of their property
in public spaces, or merely the panoramic captures. CycloMedia also offers a web-based portal, called Street Smart, which
enables customers to measure, inspect, and take inventory of the public space themselves. Customers increasingly request
more fine-grained attributes of objects, including their material properties. As an example, different materials often have
different material cycles, and these can be planned with such segmentations. Inspection with respect to a specific material
or set of materials can be eased by highlighting these materials in cycloramas. The total surface area of a material can
be obtained instantaneously, e.g. the total square kilometers of asphalt roads in the province of Utrecht. This research
is at least partially due to these demands. Attributing material information to a digitization of the public space requires
a segmentation of the cycloramas based on the materials the pixels represent, i.e. each pixel will need to be classified
according to a predefined set of materials. The focus of this research will be on material segmentation of the cycloramas
and examines which models and settings yield what quality of material segmentation.
Secondly, these material segmentations could enhance the quality of the instance segmentations, since most materials
only tend to appear in a limited set of object types. Therefore, a material prediction can alter the probability distribution
over the possible object types. In turn, knowing where which objects are located in images – the result of instance
segmentation – could benefit material segmentation. This is backed by the intuition that objects are often made out of a
restricted range of materials, e.g. trees consist of the material types wood and foliage. This synergy between material
segmentation and instance segmentation is reserved for future work, however. We note that in researching such a synergy,
both material segmentation and instance segmentation can be performed separately, with the effects of either upon the

∗As of the upcoming DCR11 iteration of CycloMedia’s Digital Cyclorama Recorder (DCR) system.
†This is not strictly true, as CycloMedia defines depth maps to be separate image files into which the depth is encoded. In this work, however, the

term refers to an image’s fourth channel, encoding the depth.
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(a) CycloMedia has Ford Fiesta cars driving around commissioned
municipalities in order to record their public space.

(b) Panoramic cameras mounted on top of the car capture
360◦cylindrical photos, referred to as cycloramas.

(c) The LiDAR shoots light signals in all directions, and records
when and when they hit surfaces.

(d) This results in a point cloud; a collection of three-dimensional
surface locations.

(e) Surface reconstruction algorithms transform the point clouds
into 3D models. The texturing is visualized in Figure 2.

(f) These meshes are finally used to generate depth maps, which
show for each pixel in a cyclorama the distance to its surface.

Figure 1: CycloMedia’s recording process of the public space, and the data collection pipeline for generating novel data
based on the recordings.

other being studied, but the two tasks could also be unified into a joint task, producing both material segmentations and
instance segmentations simultaneously on the same image.

We restrict our solutions to convolutional neural networks, or CNNs for short. CNNs belong to the class of machine
learning models known as deep learning, and have a proven track record of semantic image processing within computer
vision [53]. Various computer vision tournaments and challenges are dominated by, and often solely consist of, CNN
entries [47]. Tournaments organized during the year 2012 saw a leap in prediction quality across the various image
processing tasks when CNNs were (re)introduced. This allows for arguing that deep learning outperforms more shallow
machine learning models for computer vision in general and the aims of this research in particular, and provides us with
reason to only consider deep learning for our objectives.

With the depth maps and geographical coordinates of the cycloramas, the detected objects in images can be related to
real-world locations. However, CycloMedia currently indicates the location of objects within cycloramas with bounding
boxes: two-dimensional rectangles that demarcate an object’s pixels as tightly as possible. These bounding boxes will
naturally also comprise superfluous pixels that do not belong to the object. These background pixels will pollute the
approximation of object locations. A better alternative would be to use segmentation masks, where each detected object
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(a) A point cloud (b) A mesh after surface reconstructing
the point cloud

(c) A textured mesh

Figure 2: Three stages in the process of surface mesh reconstruction.

y

z

x

object

center of
projection

image
 pla

ne

focal length

Figure 3: The relation of 3D point coordinates (of either captured real-world objects or reconstructed meshes) and their
projections on the image plane.

has a binary mask indicating which pixels belong to it. In that case, only relevant depth values are taken into account.

1.2 Research questions

The goal of this work is to semantically segment street-level cycloramas as accurately as possible with respect to materials,
i.e. each pixel needs a material label. This goal is formulated in our main research question:

RESEARCH QUESTION: "What material segmentation performance are we able to obtain on outdoor imagery?"

We quantify performance in this work using the mean intersection-over-union (mIoU).
Three aspects of material segmentation are investigated, to each of which we dedicate a subquestion. The first of these
concerns the class imbalance of the dataset we annotated, which is certain to hamper performance. This means that there
are classes with multiple orders of magnitude more ground truth annotations than others. This causes the networks to
be biased towards the large classes, and since mIoU averages IoU of classes equally, this harms our performance. We
therefore investigate this problem and formulate it our first subquestion:

SUBQUESTION I: "What measures significantly reduce either class imbalance or the adverse effect of class imbalance on
material segmentation performance?"

We consider the negative influence of class imbalance significantly reduced when no class has a near zero mIoU due to
lack of ground truth.

One would expect the addition of a depth map to benefit material segmentation, as this should facilitate distinguishing
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Figure 4: Visualizations of depth maps for four images. Since the difficulty of the human eye to perceive small
differences in colour makes representing small deviations in depth challenging, we show shaded meshes instead of a
visualization of the depth map. This allows one to observe that, though the depth is generally noisy, the amount and
texture of the noise differs between some materials, and depth therefore still is expected to hold important discriminitve
information.

different objects, indicates surface orientations – a surface’s normal might be of influence to the material’s posterior
distribution – and might encode additional discriminatory properties. The depth maps are rather noisy, though the noise
itself is characteristically distinct for some materials. See Figure 4 for some examples. The first image shows that the
street and sign have relatively smooth depth while the dirt patch on the bottom left has a much coarser depth, and the depth
of foliage is by far the coarsest. The second image shows a difference in coarseness between the asphalt and the grass.
Barring the reflection, water has not been recorded, because the LiDAR signals were not reflected back to the sensor.
Whenever signals do not return to the sensor, a depth of zero is recorded instead. Moving objects are difficult to manage,
as they often create stretched artifacts of non-existent depth. In some cases, this can be mitigated by determining surfaces
which show up in a point cloud as scanned from one position, but disappear in the point cloud generated from the next
position. The third image shows that the bicyclists have been successfully omitted from the depth. Removal of moving
objects and their artifacts does not always work; the fourth image depicts an imaginary wall created by the moving bus.

For these reasons it is reasonable to expect depth to contain discriminitive value in segmenting materials, since materials
tend to differ in depth texture and orientation. We investigate the difference in performance between the two types of
input:

SUBQUESTION II: "How much does the performance of material segmentation with additional depth input improve com-
pared to our network only receiving colour information?"

In our research, we work with a limited dataset. Resolving the two above subquestions should enable us to give an
adequate answer to our research question, given this small amount of data. We employ methods to assess the extent
to which the data scarcity holds performance back, and assess what material segmentation performance is likely to be
possible with a larger dataset. The third subquestion addresses this:

SUBQUESTION III: "How much does material segmentation performance increase with more training data?"

The answers to all these subquestions will give a good sense of material segmentation’s feasibility.
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2 Literature Review

Nowadays, computer vision as discussed in this work is commonly approached with machine learning. Within the broad
field of artificial intelligence, machine learning is the prominent branch in which algorithms and models are developed
that make computers learn to perform increasingly complex tasks without explicit instructions. Instead, machine learning
models infer these instructions themselves. More concretely, prior to the machine learning revolution, algorithms utilized
man-made, fixed rules that defined how to operate on data. For all but the most trivial of tasks, hard-coding these rules is
cumbersome, inefficient, error-prone, and poses the risk of having to be redone once their purpose or the characterstics of
the data change. As a solution, algorithms and models in machine learning are tasked with automatically inferring these
rules, using training data, which essentially teaches the model to infer these rules itself. The downside to this is that
training data is needed, and, depending on the objective, often a large amount.
Machine learning has proven to be a good solution to a multitude of use cases, with some examples being recognizing
and classifying objects in photos or videos, interpreting human speech, and performing medical diagnosis. A commonly
used supervised machine learning model is that of neural networks, to which the next section provides an introduction.
"Supervised" here refers to the model being explicitly taught what to do, as opposed to unsupervised models, which have
to infer features from the data themselves. Deep neural networks are neural networks possessing a certain degree of
complexity – manifested in their physical depth; the number of cascading processing steps that operate on top of each
other – and comprise the subset of machine learning techniques known as deep learning. This work will center around
convolutional neural networks, an adaptation of neural networks for use in computer vision, and these will be treated in
Section 2.2.

Within computer vision, multiple objectives, or use cases, are defined. When considering only computer vision, the
six prominent objectives are image classification, object localization, object detection, instance segmentation, semantic
segmentation, and panoptic segmentation. Examples are given in Figure 5. Among these, image classification is the
simplest, which concerns classifying an entire input image with a label from a predefined set of classes. Object localization
aims to either indicate the location of the image’s primary object or demarcate that objects spatial extent within the image.
Bounding boxes, convex hulls, or other polygons could be used to effectuate demarcation. Additionally, the located object
can be classified in a task aptly titled as object localization. Object detection performs object localization for potentially
multiple objects, which can stem from the same class. Instance segmentation is identical to object detection, but yields
pixel-based mask segments in order to describe an object’s spatial extent. Lastly, semantic segmentation seeks to classify
each individual pixel, with a disregard for individual instances. Adjacent pixels displaying different instances of the
same class will therefore get partitioned into the same segment. Panoptic segmentation combines semantic segmentation
and instance segmentation, classifying each pixel in an image while still maintaining instances. These five objectives
are among the most common problems within still image deep learning. However, a multitude of other tasks have been
formulated, with some examples accommodated in Figure 6.

This section starts with an introduction to neural networks in Section 2.1, and to convolutional neural networks in Section
2.2. The objectives that this work tackles, semantic segmentation, and its more specific variant material segmentation,
are discussed in Section 2.3 and Section 2.6. Section 2.4 and Section 2.5 discuss the objectives of instance segmentation
and panoptic segmentation respectively. We end our literature study with an overview of some existing datasets for the
various objectives in Section 2.7.

2.1 Neural networks

Artificial neural networks, henceforth simply referred to as neural networks, are processing mechanisms loosely based on
biological neural networks as present in the brains of humans and animals. A human brain contains 86 billion neurons
on average, connected to each other through outgoing axons and incoming dendrites. When an organism with a brain
takes part in a particular activity, a certain subset of the neurons in its brain activate in a transmitted fashion. That is, a
neuron receives input signals through its dendrites, and once the cumulative of these signals exceed a certain threshold, the
neuron activates and passes the signal along its axons, which branch into synapses connected to other neurons’ dendrites.
When two neurons repeatedly activate together, or rather one neuron repeatedly causes activation in the other, then their
connection strengthens and the efficiency of the one neuron carrying signal to the other increases. This is how brains learn,
according to the Hebbian learning principle: "When an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that
A’s efficiency, as one of the cells firing B, is increased." [41] Neural networks are based on this concept, with its nodes –
representing neurons – connected to each other in an arbitrarily complex function, and the strength of their connections
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DONKEY

(a) Image classifica-
tion

DONKEY

(b) Object localiza-
tion
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DOG #2
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HEN

(c) Object detection
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DOG

CAT
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(d) Instance segmen-
tation
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DOG
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(e) Semantic segmen-
tation
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DOG #1

DOG #2
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SKY

GRASS

TREE #3TREE #1

TREE #2

(f) Panoptic segmen-
tation

Figure 5: Six common computer vision tasks. Image classification assigns a single label to the entirety of an input
image. Object localization detects and classifies the primary object in the image and denotes its position and possibly
its spatial extent with e.g. a bounding box. Object detection performs object localization for a potential multitude of
objects. Instance segmentation does object detection, but segments the objects with a pixel-wise mask, denoting the
exact shapes. Semantic segmentation assigns a class label to each pixel in the input image, and disregards different
object instances. Panoptic segmentation classifies every pixel like semantic segmentation, but distinguishes between
different instances from the same class, like instance segmentation. The image used of the town musicians of Bremen
is CC0 public domain.

DONKEY

(a) 3D object local-
ization

(b) (Articulated) pose
estimation

A HEN ON TOP OF A CAT ON TOP
OF A DOG ON TOP OF A DONKEY.

(c) Image captioning

Figure 6: Some more computer vision tasks. 3D object detection localizes an object in three-dimensional space. Pose
estimation attempts to reconstruct the skeletons of humans or animals visible in the image. Image captioning offers a
natural language sentence describing the contents of its input image.

increasing with the magnitude of activations that pass through them during a so-called "training" procedure. This is
commonly summarized as "neurons that wire together fire together", a phrased coined by Lowel et al. in 1992 [63].

Neural network are a class of highly popular and powerful machine learning models, capable of representing complex
mathematical functions and learning latent features and patterns of digitally recorded phenomena. Neural networks can
be used for classifying data, among other things. They are complex functions manifested as DAGs, taking as input a vector
of input values x = {x1, ..., xn} corresponding to attributes of data that is to be classified, from which they produce k
predicted probabilities ŷ = {ŷ1, ..., ŷk} of the data belonging to each of the k respective classes.∗ The data can then be
labeled with the class having the highest of these probabilities.
Nodes, the digital counterparts of the biological neurons, form the building blocks of a neural network. They receive, pro-
cess, and transmit activations: values indicating the degree to which the corresponding node responds to the input data.
Nodes are organized in layers, which are vectors of nodes connected to nodes in the preceding and/or subsequent layer,
but are not inter-connected within a layer. Such layers are known as fully-connected layers, since each node is connected
to all nodes of the following layer. Input data is supplied to the input layer, the nodes yielding the outputs constitute the
output layer, and all layers in between are the hidden layers.
A template neural network is depicted in Figure 7, where n is the number of input nodes, j is the number of hidden layers,
indicating the network’s depth, and k is the number of output nodes, equalling the number of classes considered in the

∗Originally, neural networks were formulated very differently, with one network per class. There are no defined rules or an official implementation,
but the structure as presented here is what is commonly taught and used in practice.
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Figure 7: A template neural network, sketching their general structure. Before training, n, j, k, and each |hj| are
hyperparameters that are manually fixed. Not all weights are displayed due to spatial restrictions.

classification. The lth hidden layer h(l) = {a(l)1 , ..., a
(l)

|h(l)|} contains |h(l)| nodes. Each layer is a collection of nodes
which together can be regarded as features of the input data.

Such a network architecture, or structure, is manually designed before it is being used, and is determined by a subset
of the hyperparameters: (meta)parameters of the network that are not learned, but are tweaked manually to define some
aspect of the network or training procedure. Using the notation at hand, n, k, j and each |hj| are hyperparameters. Not
all hyperparameters are concerned with the network’s structure, however.∗ Each pair of nodes in subsequent layers of
the network has an associated weight. Intuitively, weights determine the strength of node connections and indicate their
correlation. If, during training, the network sees a lot of training samples where both nodes have either large or small
activation, the weight of their connection will increase, in accordance with the aforementioned Hebbian learning principle.
Additionally, each node in the hidden layers and output layer has another scalar, called a bias. The bias is an offset for
a node in the case that it consistently, i.e. for the majority of training samples, has either a large or small activation. It
is added to the sum of weighted activations from the previous layer before being activated to make sure the activation
function is performed properly, since those are designed for zero-centered input. Because the sign and magnitude of
weights are supposed to indicate the correlation between nodes, biases will make sure this is adhered to by shifting
their norm towards zero. In this way, and intuitively speaking, only meaningful and indicative combinations of nodes will
activate similarly. The weights and biases together form the parameters of the network, and the values of these parameters
are determined during the training of the network, a process which is explained later. Assuming this network has already
been trained, the classification of a data point – called forward propagation – consists of calculating the activations within
the nodes layer-by-layer, until the output nodes are reached. At any hidden layer, the activations comprise a feature
representation of the input, whatever that representation that the network has taught itself during training might be. The
activation of the oth nodes in the lth hidden layer is then calculated according to

∗Some authors debate whether the hyperparameters determining the structure (n, k, j and each |hj|) can be considered hyperparameters in the first
place. They argue that these are mere characterstics of the chosen network topology, while hyperparameters determine the training of the network, e.g.
learning rate, batch size, and other properties of training we will see later on.
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a(l)o = σ([

|h(l−1)|∑
i=1︸ ︷︷ ︸

sum over
all nodes in

previous layer

a
(l−1)
i w

(l−1)
i,o︸ ︷︷ ︸

weighted activation
from previous layer

] + γ(l−1)o︸ ︷︷ ︸
bias

) (1)

where w(l−1)
i,p is the weight associated with the connection from the ith node in the previous hidden layer to the current

node, γ(l−1) is the bias associated with the previous layer, σ is an activation function, and the nodes preceding the first
hidden layer are the input nodes: h(0) = x. The function is more clearly visualized in Figure 10, showing how the node
activation is calculated by summing the activations in the previous layer multiplied by the weights of their associated
connections, after which a bias term is added and the whole sum is processed by an activation function. This activation
function has two purposes. The first is squashing the sum, which could be any real number, to a fixed interval (either
ranging from 0 to 1 or from −1 to 1, depending on the specific activation function), in order to limit all activations to
a universal range. Secondly, most activation functions introduce non-linearity. Without this non-linearity, each neural
network would merely be a linear function of its inputs regardless of its depth, which would forego the computation of
more interesting features and restricting its uses only to a small set of facile problems. Early neural networks used the
sigmoid activation function [36]: σ(x) = (1 + e−x)−1, pictured in Figure 9a, but it proved awkward for training due
to two disadvantages that render the training procedure more difficult and more slow [81]. These downsides have to do
with backward propagation (backpropagation or backprop for short), the algorithm with which the network is trained.
Backpropagation calculates the gradients of the difference between ground truth and network output with respect to each
layer’s output layer-by-layer, from the deep layers to the shallow ones. The difference between ground truth and network
output is called loss and is a measure of how erroneous the network has predicted a particular input. The gradients of the
loss with respect to the parameters then indicate in which direction – namely the opposite of the gradient’s direction –
and by how much the network parameters should be adjusted in order to reduce this loss, which is the goal of the training
process. When passing through sigmoid activations in the network, this so-called "gradient flow" is multiplied by the
derivative of the sigmoid function. Nodes with either a small or large activation are referred to as saturated nodes, and the
derivative of the sigmoid function at these nodes is near zero. This means that the gradient, after being multiplied with the
sigmoid’s derivative, is nearly diminished, which slows down training significantly. The second downside arises from the
node following a sigmoid always receiving a positive activation. At any layer, activations are multiplied with weights W ,
and the derivatives of the layer weights with respect to the layer outputs ( ∂f∂W , which we will multiply with the "upstream"
gradient calculated thus far) are the layer inputs, because ∂ax

∂a = x. The layer inputs of a layer succeeding a sigmoid
activation are always positive, and therefore the values of the gradient on W after having backpropagated through such a
layer will always be either all positive or all negative, depending on the sign of the incoming gradient flow, because they
result from a multiplication with a positive value. In other words, at each parameter update step, either all parameters are
increased or they are all decreased. If the optimal parameter configuration contains both positive and negative parameters,
the training procedure will be inefficient. Figure 8 shows an intuitive interpretation, where the parameter updates are
zigzagging around the optimal gradient descent path.

A solution to this last problem is to make sure that the inputs to the multiplicative layer are zero-centered. The tanh
activation function, pictured in 9b, increases its range to [−1, 1], making sure that the next layer can receive both positive
and negative activations. However, any gradient flow will still be significantly reduced when backpropagating through
saturated nodes. The ReLU activation function (first used in AlexNet, discussed later) trades the zero-centering in for
good derivatives in the positive region of its domain (though not in the negative region), as can be seen in Figure 9c
[51]. ReLU simply takes the maximum of 0 and its input: σ(x) = max(0, x) It also converges around six times as fast
as sigmoid or tanh, and better fits the biological allegory of (convolutional) neural networks. A variant of ReLU, called
Leaky ReLU, makes sure that also the negative domain has a small derivative by replacing the flat line with a slight upward
slope, making sure that a network always gets at least some gradient flow [64]. What’s more, it can output negative values
instead of strictly positive ones. The amount of slope can be parameterized using a Parametric Rectifier, or PReLU, which
learns the slope parameter during training [38].
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Allowed gradient
update directions

Allowed gradient
update directions

Figure 8: The sigmoid activation function always outputs positive values, which, because of the rules of derivation,
causes the values of the gradient with respect to the weights of the corresponding layer to be either all positive or
all negative. In other words, the parameters of a layer are either all incremented or all decremented per update step.
Illustrated here is a hypothetical optimal weight vector, with only two parameters for demonstrative purpose, as a dashed
line. The updates can be only either all positive (all possible update vectors in the first quadrant) or all negative (all
possible update vectors in the third quadrant), resulting in the inefficient, zigzagging gradient descent updating around
the optimal gradient descent path.

The calculation of an entire layer of activations can also be summarized as a matrix-vector multiplication of weights with
previous activations:

a(l) = σ(


w

(l−1)
1,1 . . . w

(l−1)
|h(l−1)|,1

...
. . .

...
w

(l−1)
1,|h(l)| . . . w

(l−1)
|h(l−1)|,|h(l)|



a
(l−1)
1

...
a
(l−1)
|h(l−1)|

+


γ
(l−1)
1

...
γ
(l−1)
1

) = Wa(l−1) + γ(l−1) (2)

In order to have the activations at the output nodes interpretable as a probability distribution, these activations will need
to sum to 1. To that end, a softmax function can be used [10, 11]:

ŷ = s(a(j+1)
p ) =

ea
(j+1)
p∑k

i=1 e
a
(j+1)
i

(3)

Training

The parameters of the network (the weight and bias values) are determined through training. In order to train a neural
network, a designated training set is required, consisting of training samples: inputs for which the ground truth label is
known. Ground truth is the manually assigned set of true labels which serve as examples for the network to learn from.
Because these represent the optimal prediction the network could possibly make, it can be regarded as the golden standard.
These training samples are iteratively classified using forward propagation. For each iteration, after the class probabilities
are obtained, the loss quantifies the network’s inability to correctly classify the training sample. This is calculated as some
function of the difference between the ground truth and the output probabilities. An example of a loss function for neural
network classification is the cross entropy loss, also sometimes termed (multinomial) logistic loss, as was originally used
in combination with multinomial logistic regression [73]. It is defined as:

LCE = −
C∑
i=0

yi log ŷi (4)
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(a) The sigmoid activation function:
σ(x) = 1
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(b) The tanh activation function:
σ(x) = tanhx [55].
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(c) The ReLU activation function:
σ(x) = max (x, 0) [51].

Figure 9: Different activation functions. The sigmoid function has neither zero-centered outputs nor does it provide
sufficient gradient flow at both large and small activations. The tanh function stretched its range in order to output
zero-centered activations, but still kills gradient flow at both ends of its domain. ReLU is linear in its positive domain
– positive activations will always yield a sufficient gradient – but it is again zero-centered. Leaky ReLU (not pictured)
has a slight slope in order to mitigate saturation in the negative domain and enable itself to output negative activations.
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Figure 10: Diagram visualizing the process of activation calculation. The weighted sum is taken over all activations in
the previous layer, with the weights belonging to the connections connecting each corresponding node in the previous
layer with the node of the activation that is currently being calculated. A bias term is added to this sum, and the
compound is processed by an activation function, such as sigmoid or ReLU. Reproduced with permission from [90].

where yi is the ground truth and ŷi the predicted probability∗ for each class i in C. Note that yi is 1 if i happens to be
the ground truth class, and 0 otherwise. For this reason, a simpler formulation takes the negative natural logarithm of the
prediction score of the true class as denoted by the ground truth label:

LCE = − lnP (Y = ys | X = xs) = − ln ŷs (5)

where xs is the particular training sample input vector being processed, ys is the ground truth class of that training sample
and − ln ŷs is the network’s predicted probability for the ground truth class. The natural logarithm of the probability
is taken, because those prove easier to optimize for than the probability itself. Multiplication is more computationally
expensive than addition, and in logarithmic form, the product of probabilities will transform to the sum of log probabilities.
Moreover, sufficiently small digits may cause underflow, meaning precision is lost as a result of a computers inability to
store all its decimals. In log space, this is less of a problem. Since logarithms with base greater than 1 are monotonically
increasing functions, optimizing with respect to the negative logarithm will yield the same results as optimizing with
respect to the original probabilities. Lastly, the log probability is negated, as the loss should be inversely proportional to
the probability of the true class.

Since neural networks of sufficient complexity oftentimes have too many parameters to be able to analytically solve for
the weights that give the minimum loss, a numerical solution called gradient descent is used. The downside to this is that

∗For binary classification, the probabilities are the result of an activation function, e.g. sigmoid. For multi-class classification, they are the output
of a normalization function, e.g. softmax. However, not all variations of cross entropy loss work upon the final probabilities. For problems in which
each sample can take on multiple labels, it is common for the cross entropy loss function to work on top of the network scores or logits, which are the
penultimate activations that would normally feed into the final activation function.
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finding the global optimum is not guaranteed. Instead of viewing the neural network as a big function that is parameterized
by weights and that takes input vectors and outputs probability vectors (f(x;W)→ ŷ), we can also view the network as
a function with as inputs the weights and as output the loss of a training sample, given that sample: f(W;x,y) → L,
where L is the loss when predicting sample x and comparing its output with ground truth y using a network with weight
matrix W. Since a neural network consists solely of additions, multiplications and activation functions (which are always
derivable), we can calculate the partial derivatives of the loss with respect to each parameter. Disregarding the bias
parameters for notational simplicity∗, a matrix containing all these partial derivatives is known as a gradient:

∇W =


∂L

∂w
(l−1)
1,1

. . . ∂L

∂w
(l−1)

|h(l−1)|,1
...

. . .
...

∂L

∂w
(l−1)

1,|h(l)|

. . . ∂L

∂w
(l−1)

|h(l−1)|,|h(l)|

 (6)

Note that the gradient has the same shape as the weight matrix itself, which is true for the gradient of any type of variable.
Each partial derivative indicates how much the loss changes when changing only the corresponding parameter and keeping
the other parameters fixed. Therefore, in order to reduce the loss, each parameter should be incremented by a fraction of
the associated partial derivative. The reason why only a fraction is taken, is because these gradients can be arbitrarily large,
which would result in arbitrarily large parameter updates. This fraction is another hyperparameter called the learning rate,
and finding an optimal learning rate proves to be a challenge in itself. A low learning rate will make the network slower
at finding a parameter setting with low loss, as it is taking smaller steps towards a minimum loss, while a high learning
rate might constantly overshoot optimal parameter settings, which also renders learning slow. A more severe problem
of too high a learning rate is its risk to land in sub-optimal areas of the loss landscape, the surface of the graph of the
loss function. Ideally, training will make the network parameters converge to a global minimum, or local minimum with
similar loss. However, there always exists the danger of the network landing in severely sub-optimal local minima or
saddle points, examples of which are pictured in Figure 11 [25]. As the gradient in both these kinds of points is zero, it
is impossible for the network to progress without a more sophisticated learning methodology. Even though saddle points
seem a trivial, rarely occurring problem in low dimensions, they become increasingly prevalent in higher dimensions and
will occur more frequently than local minima [25]. This corresponds with intuition, because a saddle point is essentially
a point at which the loss increases in at least one direction and decreases in at least one other direction. The higher the
dimensionality of the loss landscape, the higher the chance that one of the increasingly many dimensions has a negative
gradient direction, while another is positive.
A second problem, also exacerbating with increased parameter complexity, is the problem of a jittery, inefficient gradient
descent path caused by a point on the loss landscape on which the loss changes quickly in one direction while barely
changing in another.† The gradient descent path will then progress slowly along the slowly moving direction, while
jittering along the sensitive dimension – changes along which results in large changes of the loss. To combat these
problems, the idea of momentum was introduced [85]. Instead of computing the next parameter setting at time t + 1 as
Wt+1 = Wt − η ∗ ∇Wt, where η is the learning rate, we use Wt+1 = Wt − ηvt+1, where vt+1 = ρvt + ∇Wt

is the velocity or momentum that is being build up as a moving average of past gradients and ρ is a hyperparameter
serving as friction. The latter is typically between 0.90 and 0.99. This momentum increases the chance of learning paths
overshooting local minima and saddle points, and cancels out opposing directions within a dimension the path would else
be jittering over.

The gradient of the loss with respect to its inputs is calculated using the previosuly mentoined backpropagation algorithm.
Using rules of derivation, especially the chain rule, partial derivatives of the loss with respect to a layer’s parameters can
be calculated using the partial derivatives previously calculated in the "next"‡ layer. This is done layer-by-layer, working
backwards through the network until the partial derivatives with respect to every parameter in the network are known (and
the full gradient of the parameter matrix has been calculated).

During gradient descent, every training sample in the training set is forward propagated and their losses are averaged
before one parameter update – one step on the gradient landscape – is performed using that average loss. Even though the
gradient (more) accurately represents the optimal gradient on the loss landscape, this method is often impracticably slow,

∗Biases are typically treated as weights in a parameter matrix or gradient.
†This is referred to as the loss having a bad condition number at this point, which is characterized by a large ratio between the largest and smallest

values in the parameters’ Hessian matrix – the multi-dimensional matrix containing all possible second-order partial derivatives of the loss with respect
to the weights
‡According to the sequence of layers as seen during forward propagation.
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(a) Local minimum (b) Saddle point

Figure 11: Parameter settings for which the loss function yields a zero gradient, halting learning progression. In a local
minimum, all directions exclusively increase the loss, leading gradient descent to conclude, since it thinks it has reached
an optimal parameter setting. At a saddle point, the loss goes up in some directions, and down in others, with a current
gradient of zeroes, which offers no guidance to gradient descent as to what step to take. The latter problem increases in
frequency the higher the dimensionality of the parameters. Momentum combats both these problems, by incorporating
a moving average of past gradients, and thereby keeping some velocity to bypass such points.

(a) Gradient descent (b) Stochastic gradient descent

Figure 12: Paths taken by different gradient descent approaches in a loss landscape as a function of two parameters.
Loss landscapes depending on the many parameters in a neural network are challenging to visualize.

since training sets can be arbitrarily large. At the other extreme, stochastic gradient descent (SGD) uses only one random
(hence the term "stochastic") training sample before taking a step, resulting in a larger number of steps in more inefficient
directions (using momentum "smoothes out" the descent path, though). Figure 12 depicts a loss landscape as a function
of only two weights.∗ It depicts characteristic descent paths for both gradient descent and SGD. In practice, a balance is
struck by mini-batch SGD, which groups randomly sampled subsets of training data into (mini)batches and performs its
steps per batch.

In short, neural networks contain many parameters allowing it to process input in a way that it has taught itself during
its training. This dynamic way of discriminating between latent features gives neural networks a large advantage over
traditional machine learning methods, in which feature representations are to be designed manually.

2.2 Convolutional neural networks

Convolutional neural networks (CNNs) are an adaptation of neural networks for use in computer vision. A regular CNN
is displayed in Figure 13. It consists of two parts. The first is a convolutional part that downsamples and convolves an
input image to a small representational feature vector. This is then fed into the second fully-connected part, which is
essentially a neural network as discussed in the previous section (Section 2.1). The convolutional part contains layers,
like a standard neural network does, but each layer has its neurons or activations ordered in three-dimensional arrays
rather than one-dimensional vectors, with a predetermined width, height, and depth. The input layer takes images of size
w ∗ h ∗ 3, i.e. the number of pixels times the number of colour channels per pixel. Forward propagation then consists
of a series of convolutions, where at each layer the image representation reduces in spatial resolution while (commonly)
increasing in depth.
∗An actual neural network has potentially millions of parameters, but visualization becomes difficult in higher dimensions
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Figure 13: The structure of a regular CNN.
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Figure 14: A convolutional layer in a convolutional neural network. Reproduced with permission from [90].

Each convolution – each transition from one layer to the next – has a number of square kernels, or filters, of equal size.
Common filters sizes are 1x1, 3x3 and 5x5. The depth of these kernels is equal to the depth of the activation layer they
act upon. In order to reduce only the depth dimension (or to increase it, which is sometimes needed before and after
expensive convolutions in order to reduce compute), 1x1 filters can be utilized. The parameters of the convolutional part
are contained in these filters. Conceptually, each filter in a convolution slides across the extent of the previous layer in a
sliding-window fashion and produces one activation map, containing an activation for each spatial location of the kernel.
Figure 14 illustrates how at each spatial position, the activations are element-wise multiplied by the corresponding weights
in the kernel. These products are then summed together with an additional bias, of which each kernel has one, before being
processed by an activation function. This yields the activation at the center pixel of the kernel at its current position in the
new layer. Note that in Figure 14, the kernel is shown as a flat, two-dimensional matrix, while in practice kernels nearly
always have a depth greater than one and extend over the depth of the previous layer. A kernel’s depth equals the number
of colour channels for the first layer, and the number of kernels of the previous layer for each subsequent layer.

Naturally, the filter should not exceed the layer boundaries, as there are no pixel values defined outside of it. This is not
an issue when the filter moves over the layer in a pixel-wise manner. However, the filter can be made to move quicker
using the stride hyperparameter, determining the interval of activation calculations. A convolution with stride 2 is shown
in Figure 16. If the current settings of filter size and stride will make the filter move outside of the image’s spatial extent,
the layer can be padded with zero-valued activations that surround it. Figure 15 exemplifies a layer with a padding of 1.
Instead of zero activations in the padding border, existing activations can be used, a method known as reflection.

The dimensionality of each hidden layer can be calculated according to

(
W − F + 2P

S
+ 1)× (

H − F + 2P

S
+ 1)×K (7)

where W and H are the respective width and height of the preceding layer, F is the kernel size of the convolution, P is
the number of padding borders, S is the stride, and K is the number of filters.

At the end of the convolutional part, the input image has been condensed to a small representation of it, encoding the
important aspects of the input at a low resolution but with a much larger depth. This representation is transformed into a
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Figure 15: An input layer with pooling 1, meaning a border containing zeroes of thickness 1 is encircled around the
layer. The additional zeroes are printed in red.
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Figure 16: A convolution with kernel size 3 and stride 2.

vector that serves as input to the fully connected part. Note that activations in an intermediate layer in the convolutional
part only depend on and are connected to a small cube of activations in the preceding layer, whereas activations in the
fully connected part are connected to all neurons in the preceding layer, hence the name. The fully connected part takes
care of the classification of the input image, based on the feature representation produced by the preceding convolutional
part.

Arguably the major drawback of neural networks is their uninterpretability. A machine learning model that is difficult
to interpret is also called a black box, which produces results while its actual workings are difficult to gauge. They
have a wealth of parameters, making it hard for humans to determine what consistencies, or features, the network has
managed to discover. This contrasts with simpler machine learning classification models, like logistic regression and
classification trees, which facilitate human understanding and insight. However, when dealing with convolutional neural
networks, it is possible, to some extent, to assess the kind of semantic structures that kernels are looking for by visualizing
their weights. Figure 17 shows reconstructed patterns that cause high activations for kernels belonging to convolutions
at different depths. This process shows how kernels in shallow layers concern themselves only with basic patterns and
deeper kernels look for abstractions of this simple geometry into more meaningful structures. Likewise, activations at
deeper layers have a larger receptive field, the effective area that influences a kernel’s activation. It can be thought of as
the area of the input image that a neuron "sees".
Besides visualizing kernels, activation maps can also be visualized, with grayscale colors indicating the magnitude of
activation at that location for a particular kernel. Figure 18 gives examples.

History and evolution of CNNs

The foundations for convolutional neural networks are arguably two works from the 1960s by Hubert and Wiesel, who
demonstrated that a cat’s visual cortex is highly hierarchical, with low-level neurons picking up on basic shapes, colors
and movements, and neurons higher in the hierarchy abstracting upon their subordinates [44, 45]. In 1998, LeCun et
al. formalized these observations into the first convolutional neural network, in which input pixels were processed in a
similarly hierarchical way [54]. However, as computational power was not sufficient, deep learning image processing
methods like theirs were not used in practice back then.

Multiple different conferences and institutions hosted and still host competitions on computer vision. Two notable histor-
ical competitions for image classification (Figure 5a) and object detection (Figure 5c) are the PASCAL VOC challenge
[29], which ended in 2012, and the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [74], which held its
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(a) Layer 1 (b) Layer 2 (c) Layer 3 (d) Layer 4

Figure 17: A visualization of kernels with high activations from different layers in a CNN. As the image reaches deeper
layers, the kernels capture more semantically meaningful structures and patterns. Images reproduced from [99] with
permission.

Figure 18: Images and their activation map processed with a kernel that appears to be looking for face-like inputs.
Images from [96] with permission.

last competition in 2017. For the latter competition, the winning error margins are given per year in Figure 19. In 2012,
the winning entry was a CNN by Krizhevsky et al., implementing LeNet as conceptualized in 1998 [51]. The increase is
apparent in said figure. Their seminal work caused a renewed interest in deep convolutional neural networks, and every
subsequent winning entry were CNNs of increasing complexity.

In the years following the conception of tractable CNNs in 2012 by AlexNet, newer architectures continuously achieved
improved prediction quality, generally by becoming deeper; the deeper the network, the more it tends to be able to abstract
and extract semantic information from its input. AlexNet is generally a CNN as described prior. It contains two branching
paths of convolutions which both connect to the fully connected part, but this was due to a hardware restriction: the
Nvidia GTX 580 graphics cards which were used did not possess sufficient VRAM to store all activations. Therefore, the
network was spread across two GPUs, with each branch running on one of them. 2013’s ZFNet kept the same general
structure as AlexNet, but made slight changes to hyperparameters like stride and number of filters at certain layers [99].
2014 saw two entries finishing close together: VGG (named after the Visual Geometry Group at the University of Oxford)
[82] and GoogLeNet [86]. The former decreased the filter sizes and increased the number of layers from 8 to 16 (in
VGG16) or 19 (in VGG19). The winner of that year was GoogLeNet, which is built using inception modules; local
topologies that are carefully fine-tuned and stacked on top of each other to form the final network. Each inception module
is therefore a network within a network. Since each module is designed to be efficient, the network as a whole is efficient
as well. A naive version of GoogLeNet’s topology is shown in Figure 20a. It performs three convolutions and one pooling
operation in parallel. Pooling layers are solely used to reduce a feature representations dimensionality without utilizing
parameters and therefore without adding semantic information, and likely losing such information. The most common
pooling method is max pooling, illustrated in Figure 21 in which only the maximum activation is kept within each square
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Figure 19: Top-5% error rates of the winning entries of ILSVRC challenges from years 2010 through 2017.
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Figure 20: The two iterations of GoogLeNet’s inception module. Reproduced from [86] with permission.

region. Similarly to convolutions, pooling is also set using stride and region size hyperparameters.

Each activation layer operation within the inception module has a different kernel size. At the end, the resulting activation
layers are concatenated, i.e. placed back-to-back to create a large block of data incorporating all incoming parts. Stride
and zero padding are used to make sure the four activation layers are equal in resolution, enabling the concatenation to
be a simple depth-wise stacking. However, this topology proved computationally complex due to the depth of inputs and
number of kernels Szegedy et al. envisioned [86]. They addressed this by inserting "bottleneck" layers: 1x1 convolutions
that only reduce the depth of an activation map. Three such layers are inserted: two before the 3x3 and 5x5 convolutions,
and one after the pooling layer. In this way, the convolutions are performed on significantly less feature maps. These
additional pooling layers contrast Figure 20b with Figure 20a. GoogLeNet contains nine of these modules, and with
each module containing two layers the networks ends up having 22 layers, including fully connected layers. Despite
GoogLeNet being significantly deeper than AlexNet, it only has five million parameters, twelve times as few as AlexNet.
It can be concluded that a higher number of parameters of a network does not necessarily imply a higher prediction quality.

Starting in 2015, ILSVRC’s winning entries all contained at least 152 layers. Intuition stated that deeper networks perform
inherently better than shallower ones. However, deeper networks proved harder to optimize, though not as a result of
overfitting, a scenario in which a model adapts too well to its training data and therein losing its ability to generalize to
new and unseen data. Instead, this was caused by the magnitude of the gradient diminishing as it is backpropagated further
back up the network. Repeated application of the chain rules decreases the partial derivatives, which makes training the
shallow layers increasingly slow. This is known as the vanishing gradient problem. The 2015 ILSVRC winner, ResNet,
adds residual connections or skip connections to deep architectures, pictured in Figure 22, which alleviates this problem
[39]. Here, small groups of two or three convolutional layers are grouped into residual blocks. Besides the regular flow
of convolution through such a block, activation layers are also routed around the convolutions, bypassing any processing,
after which the layer is element-wise summed with its filtered counterpart. This skipping performs identity mapping,
since the feature layer is not altered within the shortcut. The regular convolution flow, which is being bypassed by the
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Figure 21: Max pooling performed on an activation map. For pedagogical reasons, pooling is often taught using
non-overlapping regions. We note that this is not a requirement; pooling regions may overlap.
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Figure 22: Two versions of a residual block in ResNet. Reproduced from [39] with permission.

skip connection, is called the residual mapping. In order to sum the input of a layer with its residual, they need to be equal
in dimensions. In ResNet’s case, input and output layers always equal in width and height. Any downsampling is offset
by using padding. However, the input and output layers might differ in the number of channels, in which case the identity
mapping becomes a linear projection.

The benefits of residual connections are twofold: the gradient signal in shallow layers becomes stronger as a result
of it being copied and sent down the skip connections, avoiding the multiplications it would otherwise undergo when
backpropagating through the convolutions. Secondly, in addition to the network learning the weights in the convolution
layers, the skip connections allow it to learn to what extent the network wants to use these convolutions in the first place.
In the extreme case, the weights within a residual block could converge to all zeroes, in which case the comprising
convolutions are not used at all. This increased degree of autodidacticism at least partially explains ResNet’s performance
boost, which comes with barely any added computational complexity – apart from the negligible element-wise additions
– and without additional parameters to train. Another interpretation is the network learning, at each residual block, what
should be added or subtracted to the inputs, i.e. a residual block learns the delta to its input instead of changing it directly.
For very deep implementations of ResNet, e.g. networks with over fifty layers, computational complexity again becomes
a problem. Like GoogLeNet, this is resolved using bottleneck layers, i.e. by reducing the depth dimensionality at the
beginning of the block (using a smaller number of kernels than before), and increasing the depth again just before the end
of the block (with a number of kernels equal to the input depth). In this way, the core convolutional operations of the
block are performed on fewer input channels. This is pictured in Figure 22b.

The authors improved upon the residual block design and created a more direct path for propagation (in both directions) by
moving the activations to the residual mapping pathway [40]. Zagoruyko et al. made the residual blocks "wider" by using
more kernels instead of making the whole network deeper, also improving performance [97]. Huang et al. stochastically
disable a subset of residual blocks from the network for each batch during training, reducing depth and tackling the
vanishing gradient problem to a further extent, and then use the full trained network at test time [43]. The same authors
also proposed DenseNet in 2017 [42]. Instead of the skip connections routing a residual block’s input only to the same
block’s summation stage, the inputs are additionally being routed to the concatenation stages of every subsequent block,
thereby densely connecting the residual blocks. In other words, every residual block now ends in a summation of its
own input, residual, and inputs of all its preceding blocks. This alleviates the vanishing gradient problem even further,
strengthens feature propagation and encourages feature reuse. ResNet’s original authors improved it again in 2017 with
ResNeXt, which parallelized the residual pathways within each residual block [95]. Each pathways was made slightly
"thinner", i.e. they used slightly fewer kernels, but there are now multiple branching paths, the number of which is the
cardinality of the network. The writers argue that increasing cardinality gives better performance than increasing either
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Figure 23: Different usage of a pyramidal structure for feature representation. (a) Ideally, each scale of a feature
pyramid is generated from the corresponding image scale, as this would retain localization information at the low
resolution scales as well as the higher resolution scales. (b) A depiction of a CNN, which typically predicts only upon
the last, lowest resolution feature representation. (c) A pyramidal hierarchy additionally predicts using intermediate
representations. This method is used by the single-shot detector [60]. (d) The feature pyramid network as proposed
by Lin et al., which employs a top-down pyramid in which each scale is a concatenation of the layer at the previous
scale in the same pyramid, as well as the layer at the same scale in the bottom-up pyramid. Reproduced from [56] with
permission.

network depth or residual block width.

Further additions and improvements

Up until now the general evolution of CNNs has been discussed. This section treats some more specific instantiations.
It is difficult for a network predicting on one feature layer based on one input image to detect both very large and very small
objects. In allowing for this spatial prediction flexibility, images and feature representations of multiple different scales
can be used. An image pyramid is a series of an image at regularly spaced scales. These are common in non-deep learning
techniques, using hand-engineered features, e.g. in HOG (histogram of oriented gradients) [24] and SIFT (scale-invariant
feature transform) [62]. Operating on such pyramids produces features that are less scale-specific, since an object’s change
of scale can be offset by a corresponding switch to a different pyramid level. Similarly, using equisized regions on all
scales of a pyramid will inspect the image on a range of different granularities. Processing all scales of the image pyramid
independently by a CNN will produce a feature pyramid, with feature maps at the same intervals of scales. Lin et al.
refer to such a conceptually ideal pyramid as featurized image pyramids, but these featurized image pyramids were not
used in CNNs due to their computational complexity [56]. Instead, CNNs typically take a single image scale, compute
a succession of feature representations at different scales (i.e. the convolutional layers) during forward propagation, and
predict on the smallest of these representations, as per a regular architecture shown in Figure 23b. However, the shallow
layers are high resolution at the cost of semantic strength, since these layers have local, low-level features. Alternatively,
the intermediate feature scales can also be used to predict upon, with those predictions aggregated, as shown in Figure 23c
[60]. These two methods are fast, but less accurate than featurized image pyramids. Lin et al. managed to replicate the
prediction quality of featurized image pyramids from only a single input scale, using a method that is as fast as a regular
CNN [56]. After the regular forward pass of an image, for instance using ResNet, they construct a second pyramid in a top-
down fashion, by upsampling, starting from the deepest layer (comparable to fully convolutional networks, treated later
on). At each layer of this top-down pyramid, the semantically strong but spatially coarse preceding layer is upsampled.
Additionally, it is added in an element-wise fashion to the layer of the feed forward network (the bottom-up pyramid) at
the same resolution, whose activations are more accurately localized as it was subsampled fewer times. The latter layer
is first convolved by a 1x1 kernel, prior to the addition. The end result is highly similar to a featurized image pyramid –
having strong semantics and accurate localization at each level – on which predictions can be made and processing can be
done at all scales by other architectures. The pyramid typically contains scales from 1/4th of the resolution to 1/32nd, with
each scale having the same depth. Lin et al. name their proposal feature pyramid network (FPN).

The convolutional neural networks discussed thus far are among the category of backbones, core CNN architectures on
which more complicated networks can be built. In other words, besides inference performed using only these back-
bones, they can also be used as the core convolutional functionality within more complex architectures. Such advanced
architectures are mostly tailored towards a specific computer vision task, and are therefore discussed in the task-specific
subsections, namely Section 2.3, Section 2.4 and Section 2.5.
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Figure 24: Three dimensional visualizations of both batch and group normalization. For the former, mean and variance
are calculated across the batch dimension (and pixel dimension), separately for each channel. Conversely, group nor-
malization estimates mean and variance within groups of channels, but separately for image in a batch. Reproduced
with permission from [94].

Normalization

Activation functions were briefly discussed in Section 2.1. There, we mentioned some activation functions with their
advantages and disadvantages. Ideally, an activation function makes sure that its preceding layer gets zero-centered
activations (or is at least able to output both positive and negative activations) and passes gradients of sufficient magnitude
further down regardless of the value of its input. Both of these ideals can be enforced at the start of the network by zero-
centering and normalizing the data during a data preprocessing stage. Zero-centering is done by subtracting the mean
value from all sample features in each dimension/channel, and normalization is done by dividing each such dimension by
its standard deviation.∗ The resulting data has a unit Gaussian distribution, in which each sample is in the same range and
contributes equally during training. During testing, those same means, averaged over the training images, are naturally
subtracted again from the test samples.

Data preprocessing increases the chance of a larger gradient with respect to the first couple of layers, but this effect
quickly diminishes deeper into the network, as the activations – the transformed inputs – can take on arbitrarily small and
large values again, depending on the weights they encounter and are multiplied by. It is desirable to have this constrained
distribution of activations within the network as well, as opposed to only at the beginning. In order to force the activations
to be unit Gaussian again at different point within the network, batch normalization can be used. Invented in 2015 by Ioffe
et al., batch normalization is a normalization step that can be applied to a batch of activations at any point in the network,
and is usually performed after fully connected or convolutional layers and before an activation function [46].† Like data
preprocessing, it ensures the activations in the batch to be unit Gaussian distributed:

x∗ =
x− E[x]√
V ar[x]

(8)

This is a differentiable function, and can therefore simply be backpropagated through. The mean and variance are calcu-
lated independently for each dimension/channel and across samples in the batch, visualized in Figure 24a. These are then
used to normalize each neuron according to the above formula. This constrains the activations to regions of the activation
function domain that are sure to backpropagate a gradient of sufficient magnitude (except in the case of regular ReLU).
However, this does not necessarily have to be desirable. It could be that a certain degree of saturation works better for
some layers. Therefore, batch normalization allows the network to learn the degree of normalization by giving it two
additional parameters, γ and β, which are used in an operation inverse to the normalization:

y = γx+ β (9)

The network could learn γ =
√
V ar[x] and β = E[x] to undo the normalization entirely, γ = 1 and β = 0 to keep the

normalization as is, or anything in between. This form of batch normalization improves gradient flow during backprop-
agation and allows for higher learning rates. An additional benefit is the regularization effect. Regularization combats
∗In practice, when using deep learning for image processing, the normalization step is often skipped, as RGB values are already comparable in

terms of scale and distribution, reducing the urgency of normalization.
†In deep learning frameworks or libraries, batch normalization is usually implemented, and can be conceptually thought of, as a separate kind of

layer.
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Figure 25: Comparison of prediction error rates between batch normalization and group normalization for different
batch sizes. Reproduced from [94] with permission.

overfitting by forcing a machine learning model to be more general. For example, adding an additional term to a loss
function which penalizes the model’s complexity is a form of regularization, because complex models are more suscep-
tible at capturing undesirable noise in the training data. In this case, batch normalization makes a forward pass during
training non-deterministic; the output then depends on the empirical mean and variance of the batch it is shipped in, and
this batch is sampled stochastically, which was found to improve generalization. During testing, batch normalization is
not performed based on the mean and variance of the current (test) batch, but on some mean and variance acquired during
training, e.g. a running averages of values seen during training. These values are then fixed for testing and deployment
purposes.
As a sidenote, another popular technique for avoiding overfitting is pretraining. A network is then first trained on some
general dataset for some general task, after which the resulting parameters are transferred and used as a starting point in
another network. This network is then finetuned, i.e. trained until convergence, on the task and dataset at hand. Especially
the shallow end of the network, where the low to mid-level features are inferred, benefits from this, as these features are
often more or less the same for differing tasks. The deep layers often learn the task and subject specific features, and
these glsplkernel are most affected by the finetuning. Pretraining not only generally speeds up training, but also usually
prevents overfitting.

He et al. mention some problems of batch normalization, and propose an alternative: group normalization [94]. According
to them, batch normalization requires a sufficiently large batch size. Figure 25 shows how the prediction error increases
exponentially each time the batch size is halved. Only after a batch size of approximately 16 does the error rate plateau.
For computer vision and other memory-intensive purposes, such a batch size is often infeasible due to memory limitations.
He et al. also mention that, during test time, batch normalization uses a static mean and variance calculated during training
time. Therefore, the activations in a batch aren’t normalized by their own mean and variance, meaning they aren’t actually
normalized. Group normalization addresses these issues by making the normalization independent of batch size, or
the batch dimension. Instead, each image is normalized independently. Its channels are grouped, and normalization is
performed within each group. Normalizing within groups offers increased flexibility over normalizing over all channels (a
technique called layer normalization), since the model is now able to learn a different distribution for each group. Figure
25 shows that group normalization has a consistent error rate over varying batch sizes. He et al. suggest 32 groups of
channels.

2.3 Semantic segmentation

Semantic segmentation aims to classify every pixel in an input image, as exemplified in Figure 5e. COCO (Common
Objects in Context) is a large-scale object detection, segmentation, and captioning dataset, originally developed by Mi-
crosoft and containing 330,000 images of which over 200,000 are labeled, covering 1.5 million object instances, 80 object
categories, and 91 stuff categories [58]. COCO distinguishes between things, countable objects (instances) with a specific
size and shape, and often composed of parts, like car, person, or elephant; and stuff, homogeneous, amorphous
matter or repetitive patterns of fine-scale properties, e.g. grass, sky, and wall.
Additionally, COCO hosts competitions on different computer vision objectives. Even though COCO calls its Stuff Seg-
mentation Task semantic segmentation, it differs from semantic segmentation as defined in this work in that not all pixels
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Figure 26: A fully convolutional network. The first half of such a network encodes the image to a vector representation
by repeatedly downsampling. Noh et al. used VGG16 as backbone for this part. The latter half then upsampled this
feature vector again, until it has the resolution of the input image, but with the depth equal to the number of classes and
each channel being a probability map for its associated class. The whole image is being processed at once, as opposed
to e.g. a sliding-window approach, which classifies an image pixel-by-pixel. This is faster, as becomes apparent
once one views this method as essentially sharing computations between the patches being processed during sliding-
window. In that perspective, the overlap between patches constitute the shared computations. Reproduced from [68]
with permission.

have to be classified [13]; COCO’s thing and stuff classes are inherently mutually exclusive, making it impossible to
classify pixels that are supposed to belong to things. Therefore, COCO’s Panoptic Segmentation task is closer to seman-
tic segmentation, in which both things and stuff are simultaneously classified. The only difference is that architectures
performing panoptic segmentation are supposed to differentiate between multiple instances of the same thing detected
in case their pixels are adjacent, whereas this is not necessary for semantic segmentation. However, simply discarding
this differentiation between instances will yield results similar to semantic segmentation, as only the pixel classifications
remain.

Prior to 2015, deep learning semantic segmentation was performed using a sliding-window approach∗, in which each pixel
was classified separately based on a small region centered on it. This is very slow, which is why Long et al. proposed
the concept of semantic segmentation using fully convolutional network (FCNs) in their seminal paper [61]. Instead of
classifying the image pixel-by-pixel based on their surrounding patches of pixels, the whole image is processed as a whole,
thereby avoiding redundant computations for overlapping patches. Long et al. achieve this by "decapitating" the fully
connected part of any CNN backbone, e.g. AlexNet, VGG or GoogLeNet, and instead upsampling again using bilinear
interpolation to the image’s original resolution. Therefore, an input image of WxHx3 is processed to yield a "probability
image" of WxHxC, where C is the number of classes, meaning each channel in the output is a probability map for the
corresponding class. Likewise, each pixel contains probabilities for each class of the pixel belonging to that class. As
Long et al. used only a single bilinear interpolation transformation, they call the output results "dissatisfyingly coarse".
They mitigated this by merging predictions from shallower layers, but at the cost of increased computational complexity
and a more convoluted network. Noh et al. improved the concept by replacing the bilinear interpolation with a full-fledged
upsampling part, mirroring the (down)convolutional part [68]. The architecture is shown in Figure 26. Because FCNs
essentially first encode their input into a small representation, after which that representation is decoded into the final
predictions, FCNs are sometimes termed encoder-decoder networks.†

Upsampling is done using transpose convolutions. Transpose convolutions are the intuitive opposite of regular convolu-
tions, in which a single scalar activation from a spatially smaller representation is element-wise multiplied by all weights
in the layer’s kernel, resulting in an enlarged patch with the same size as the kernel. The aggregation of all patches,
obtained from transpose convolving all activations, then becomes the upsampled layer, with overlapping areas of patches
being summed. The process is visualized in Figure 27. The network is more accurate, with a significant speed-up during
test time: both forward and backward propagation are approximately five times faster than AlexNet [61].

In Section 2.1, we briefly discussed the cross entropy loss. Semantic segmentation pipelines can be evaluated using
this loss by applying it to the predicted probabilities and one-hot ground truth of every pixel in the segmented image.
Especially in the field of bioinformatics, however, other loss functions have gained traction which are better suited for
segmentation problems with a severe class imbalance. Dice loss was conceived to combat the class imbalance present

∗Though we note there are other approaches that do not rely on deep learning, e.g. approaches based on selective search.
†However, this term is also applied to neural networks that are not CNNs, with examples of this usage common in natural language processing

(NLP).
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Figure 27: A transpose convolution with kernel size 3 and stride 2. It can be thought of as a convolution in reverse,
where now an input pixel is multiplied by each element in the convolution kernel, obtaining the activation patch in
the upsampled feature layer, centered at the same location as the input pixel. Overlapping pixels between upsampled
patches are summed.

in semantic segmentation of brain lesions, which tend to only take up a minuscule fraction of a 3D brain scan. Such
an imbalance will invariably bias the network towards the majority class(es). Dice loss is based on the Dice similarity
coefficient or Dice score coefficient (DSC) [79], which measures the similarity between ground truth and prediction
segmentations. The Dice coefficient is named after its creator: Lee Raymond Dice. For binary classification, DSC can be
calculated using:

DSC =
2|Ŷ ∩ Y |
|Ŷ |+ |Y |

=
2TP

2TP + FP + FN
(10)

where |Ŷ | and |Y | are the number of predicted and ground truth foreground pixels, and |Ŷ ∩Y | is the number of pixels on
which prediction and ground truth agree. However, this function is not differentiable, as it uses discrete values. Therefore,
a continuous alternative can be used as loss function for binary classification [66]:

DSC =
2
∑N
p ŷpyp∑N

p ŷ
2
p +

∑N
p y

2
p

(11)

where ŷp is the binary prediction and yp the ground truth of pixel p. Negating this formula yields a valid loss function,
though only for binary classification. Another formulation from [83] is as follows:

DSC =

∑
p ŷpyp + ε∑

p ŷp + yp + ε
−

∑
p(1− ŷp)(1− yp) + ε∑
p 2− ŷp − yp + ε

(12)

The smoothing term ε is used to avoid division by zero in the case none of the classes is either present in the ground truth
or predicted.

Back in 2006 already, Crum et al. proposed the generalized Dice score (GDS) as a way of evaluating multiple class
segmentations (naturally not within the context of deep learning image segmentation) [23]. GDS was adapted into the
generalized Dice loss (GDL) by Sudre et al. in 2017 [83]:

GDL = 1− 2

∑
l wl

∑
p ŷplypl∑

l wl
∑
p ŷpl + ypl

(13)

where ŷpl and ypl are the ground truth and predicted probability of label l at pixel p, and wl = 1/(
∑
p ypl)

2 is the class
weight of label l, inversely proportional to the square of its area size. This loss function resembles the reference metric
we use to grade the overall quality of a segmentation architecture: the mIoU metric. It averages over all classes the
ratio of correctly predicted pixels to the union of predicted and ground truth pixels of that class. GDL will optimize this
metric directly, whereas cross entropy, though easier to optimize, only serves as a "proxy" towards the real objective of
optimizing mIoU. Attentive readers will note that the function actually poses a closer resemblance to the F1 score. Since
F1 and the mIoU are positively correlated, and maximizing one necessarily maximizes the other, this does not have any
practical implications [92]. We suspect that the F1 formula is easier to optimize than that of mIoU, hence to choice to
represent GDL with the F1 formula.
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Figure 28: RoI pooling. A proposed region is subdivided into a fixed number of bins, of which the boundaries are
rounded. Within each bin, only the highest activation is kept and transmitted to the fully connected layers.

2.4 Instance segmentation

Instance segmentation (Figure 5d) performs object detection (Figure 5c), but instead of provided bounding boxes, it uses
pixel-wise masks in order to denote an object’s spatial extent. Within COCO, instance segmentation is filed under the
Object Detection Task, but they distinguish between object detection using bounding boxes and object detection using
segmentation masks.

A highly effective instance segmenting architecture is Mask R-CNN, proposed by He et al. in 2017 [37], influencing
multiple successors which have since exceeded it in performance [59]. It is the culmination of a sequence of works, each
building off of its predecessor.
It’s conception originated in 2014 with R-CNN (region-based CNN) [32]. R-CNN, like its two successors, is an object
detection architecture, displayed in Figure 30a. It starts by executing a fixed, deterministic algorithm – i.e. this alsogirthm
is not learned and is not altered during training – which is required to suggest region-of-interest (RoI) proposals. The
algorithm in question is called selective search∗, and it iteratively merges clusters of pixels that are similar in colour or
texture [88]. More precisely, it takes an input image and segments it into relatively fine-grained groups of texturally
similar pixels. Repeating this process, it acts upon this segmentation and merges groups instead of pixels. This process is
iterated until a certain, manually specified stop condition is met, which decides upon the granularity of the clustering. The
bounding boxes of these segmentations are then returned as RoI proposals, which are all separately processed by a CNN.
Like most CNNs, the CNN used in R-CNN expects a fixed input size.† Therefore, the RoI proposals need to be rescaled
to be of uniform resolution. This is done using an affine warping technique. Afterwards, the warped image regions are
condensed by a CNN to a small feature representation, which is then classified using category-specific linear support
vector machines (SVMs) [22, 87]. The authors use SVM loss function on the scores, and additionally linearly regress on
the bounding box coordinate offsets of the original proposal regions. The aim is to provide the network with the ability
to alter the bounding box, in case selective search offers an erroneous demarcation, e.g. a human head is excluded while
detecting humans, while the network has learned that humans, more often than not, have heads.

Downsides to R-CNN are slow training time, slow inference, and high memory requirements. R-CNN’s selective search
typically suggest around 2,000 RoI proposals, each of which have to be processed by a small CNN. To that end, one of
the authors enhanced the model, calling it Fast R-CNN [31]. He resolved the issue by processing the whole image by a
(larger) CNN, with selective search acting on top of the resulting feature representation, demonstrated in Figure 30b. The
RoIs now do not need to be separately convolved and warped, but are only pooled by an RoI pooling layer, since the fully
connected part still expects a fixed size input. RoIs are subdivided into bins, with the number of bins equalling the input
size to the fully connected part. In each bin, only the maximum activation is supplied to the fully connected input layer:

Bin boundaries are rounded to the nearest integer. The fully connected part yields softmax classification probabilities and
bounding box offsets for each class, the latter of which is a four-tuple ((x, y, w, h)) containing scale-invariant translation
and log-space height/width shift relative to an object proposal [33]. Each training RoI is labeled with a ground truth class
and a ground truth bounding box regression target. For backpropagation, Girshick uses a multitask loss, unifying the
softmax loss and regression loss [31]:

∗Girshick et al. note that other region proposal algorithms are equally feasible: objectness [3], category-independent object proposals [27], con-
strained parametric min-cuts (CPMC) [14], multi-scale combinatorial grouping [4], and mitotic cells [20] could replace selective search.
†CNNs that produce variable output dimensions, e.g. FCNs, are the exception.
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Figure 29: The region proposal network (RPN). At every spatial location in the feature layer generated by a backbone
architecture, a single forward pass predicts the objectness and regressed coordinates of k candidate region proposals,
or anchors. The location’s surrounding 3x3 square patch is first convolved into a 256-dimensional feature layer, after
which two parallel fully connected layers predict the objectness and coordinate regressions. Objectness is represented
with two output nodes with probabilities for the anchor containing an object of interest and it not containing an object
of interest. Reproduced from [72] with permission.

− log pu︸ ︷︷ ︸
true class log loss

+λ
∑

i∈{x,y,w,h}

smoothL1(ti − vi),︸ ︷︷ ︸
true class bounding box regression loss

where smoothL1(x) =

{
0.5x2, if |x| ≤ 1

|x| − 0.5, otherwise
(14)

Fast R-CNN is approximately ten times as fast as regular R-CNN, both during training and testing. In fact, Fast R-
CNN’s test times are bottlenecked significantly by selective search. In order to improve test time even further, Ren et
al. omit the fixed region proposal algorithm, and instead additionally learn a region proposal network (RPN) during
training [72], which proposes RoIs instead of a fixed algorithm using a sliding-window approach. They aptly titled their
network Faster R-CNN, of which a diagram can be found in Figure 30c. Apart from the duty of proposing regions being
handed to the RPN, Faster R-CNN is the same as Fast R-CNN. Like Fast R-CNN, the input image is first convolved
into a feature layer, on top of which the classification and regression of proposed bounding boxes, and now also the
generation of region proposals itself, is effectuated. Each of RPN’s region proposals has an associated objectness score;
the network’s estimated probability of the region containing an object of interest. A threshold on this objectness score
decides which proposals will be predicted upon, and which will be discarded. Ren et al. investigated two backbones for
convolving the input image into the feature layer: ZFnet [98] and VGG-16 [82]. The proposals are obtained by sliding a
3x3 window – whose receptive field on the input image is naturally much larger – over the feature layer. At each spatial
location of the feature layer, this 3x3 window is convolved by a 3x3 convolutional layer to either a 256-d feature, when
working on ZFnet’s feature layer, or a 512-d feature, when working on VGG-16’s feature layer. This feature is in turn
fed to a 1x1 convolutional layer in order to produce two sibling fully connected layers. The first fully connected layer
predicts two probabilities for the window containing an object and for the window not containing an object.∗ The second
fully connected layer predicts four scores – two spatial coordinates and two box dimensions – which together predict a
regression off of the default sliding window bounding box into a more suitable bounding box. The architecture of the
small network evaluating the sliding windows is shown in Figure 29.

At each sliding window location, not only one square candidate region proposal, but multiple candidate region proposals,
called anchors, are evaluated. Ren et al. evaluate three aspect ratios (1:1, 1:2 and 2:1) at three different sizes (with area
sizes 1282, 2562 and 5122), resulting in nine different anchors being evaluated per sliding window, all simultaneously
in the same network. This means that the objectness classification and bounding box regression fully connected layers
actually have 2 ∗ 9 and 4 ∗ 9 outputs, respectively. For a convolutional feature map of width w and height h, a grand total
of wh9 anchors are evaluated. Ren et al. contrast this method to other schemes that propose regions at different scales
and sizes. One could use a featurized image pyramid, where each feature layer is built from scaled input, and run the RPN
on each layer. Alternatively, one could scan an input image of a single scale with multiple sliding windows of different
sizes and scales. Both methods are inefficient, as they require multiple passes of sliding a window, either on different
input images or with different windows. The latter methods also entails training multiple different small convolutional
network, one for each size and aspect ratio. The RPN evaluates multiple anchors at each location in parallel, and thus

∗Ren et al. mention that objectness could also be represented with one probability, using logistic regression. This two-class output was chosen for
simplicity.
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requires going over the feature layer only once. Ren et al. note that their RPN is translation invariant; if the network picks
up on an object in a certain image, then the network will always detect this object regardless of its exact location. One
could Photoshop the object to a different spatial location, and the network will still guarantee its detection.∗

In training the RPN, each anchor is assigned a binary label denoting whether or not it contains an object of interest. An
anchor’s label is positive if its IoU with any single ground truth box is larger than 0.7, or if it is (one of) the anchors
with the highest such IoU. This second condition is employed to catch the rare case that the first does not yield sufficient
positive anchors. A negative label is assigned to an anchor if there is no ground truth box with which it has an IoU larger
than 0.3. The total loss then becomes:

L({p̂i}, {t̂i}) =
1

Ncls

∑
i

Lcls(p̂i, pi)︸ ︷︷ ︸
classification loss

+λ
1

Nreg

∑
i

piLreg(t̂i, ti)︸ ︷︷ ︸
regression loss

(15)

where i is the index of an anchor in a batch, p̂i is its predicted objectness, pi is its ground truth (1 if it is a positive anchor,
0 otherwise), t̂i is a vector of its four parameterized predicted regression coordinates, ti are the parameterized coordinates
of the ground truth box associated with it if it is a positive anchor. The parameterizations of the predicted box coordinates
t̂ and ground truth box coordinates t are carried out as follows:

t̂x = (x̂− xa)/wa t̂y = (ŷ − ya)/ha
t̂w = log(ŵ/wa) t̂h = log(ĥ/ha)
tx = (x− xa)/wa ty = (y − ya)/ha
tw = log(w/wa) th = log(h/ha)

where x and y are a box’s center’s coordinates, h and w are its height and width, and x̂, xa and x denote predicted, anchor,
and ground truth values respectively (similarly for y, h and w). The classification loss Lcls takes the log loss over the two
classes. The regression loss Lreg(t̂i, ti) = R(t̂− t), where R is the robust loss function (smooth L1), defined in 14.

As noted before, on each image with width w and height h there exist w · h · 9 possible anchors. Approximately 70%
of these anchors cross the image boundaries, and such anchors are ignored, since they inhibit training to converge. As
a result only around 0.3 ∗ wh9 anchors remain.† The majority of these will be negative samples, and in order to avoid
network bias, Ren et al. sample 128 positive and 128 negative samples. If there are less than 128 positive samples, then
the remainder is padded with negative samples.

The RPN is likely to propose many highly overlapping regions. Ren et al. apply non-maximum suppression to proposals
with at least 0.7 IoU with the same ground truth bounding box. In other words, for a group of proposals that all have 0.7
IoU or larger with the same bounding box, only the proposal with the largest IoU is kept. Finally, only the top-N ranked
proposals (in terms of IoU) are being passed to Fast R-CNN for detection.

Training is done by first training RPN, then using the resulting proposals to train Fast R-CNN. Up until this point, the
backbone convolutional layers are not shared and have been trained separately (initialized using parameters pretrained on
ImageNet), and therefore this finetuned Fast R-CNN network is used to initialize RPN’s backbone, though the backbone
convolutional layers are now fixed and only the mininetwork is trained. The backbone is now shard between the two
networks, and after the RPN mininetwork is finetuned, we lastly finetune Fast R-CNN unique layers.

Faster R-CNN brings object detection to interactive speeds: 0.2 seconds test time during Ren et al.’s experiments. Lin et
al. note that the RPN can be implemented using an FPN [56]. In that case, the RPN simply slides equisized windows
across the different scales of the FPN, effectively proposing regions of different sizes.

Mask R-CNN is an extension of Faster R-CNN, transforming it into an instance segmentation architecture rather than
object detection [37]. The idea is conceptually simple: Figure 31 shows how, for each RoI proposal, a branching FCN
predicts the segmentation mask of the object that is ostensibly present in the proposed region, parallel to the already exist-

∗Though this property only holds up to the networks total stride, as is the case with all FCNs. In other words, if a detected object is translated to an
unlucky position between strides, it is not guaranteed to be detected again.
†During testing, all anchors are considered, and overlapping prediction boxes are clipped.
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Figure 30: Developments towards Mask R-CNN. (a) R-CNN processes each of the RoI suggested by selective search
by a separate CNN, after the RoI has been warped to a fixed size. (b) Fast R-CNN first processes the entire image using
a CNN, after which selective search proposed RoIs on top of the resulting features representation. (c) Faster R-CNN
outsourced the RoI selection to an RPN, a separate model that is now trained simultaneously along with the rest of the
architecture. (a) and (b) reproduced from [32] and [31], respectively, with permission.

ing classifier branch.∗ Each RoI therefore gets class probabilities, bounding box offsets and a binary segmentation mask,
indicating which pixels belong to it. However, the rounding of the bin boundaries during RoI pooling causes misalignment
between the input pixels and the mask output pixels, which was not a problem for object detection. The authors therefore
replace the RoIPool layer with the sample based RoIAlign. Four bilinear interpolation values are computed at four reg-
ularly spaced points within each bin, which are aggregated using either an average or the maximum. The avoidance of
rounding mitigates the misalignment.

At the time of writing, six architectures of the top 7 in the COCO Object Detection Task (using segmentation) leaderboard
are based on Mask R-CNN. Many use the combination of Mask R-CNN with FPN as backbone. Mask R-CNN itself
currently holds the ninth place. The frontrunner is Sun et al.’s FishNet [84], a fish-shaped network that can be found in
Figure 34. A CNN backbone, e.g. ResNet, constitutes the tail of the fish. The fish body upsamples its downsampled
output again, in order to get strong semantics at a higher resolution, after which these are downsamples again by the fish
head. Additionally, each layer in the network is concatenated along the depth dimension with the first preceding layer that
has the same resolution. Sun et al. state that leveraging the complementarity of feature maps at different locations in the
architecture improves the diversity of those features. They moreover point out that the skip connections in ResNet and
ResNeXt are not actually identity mappings, but rather, what they call, I-convs. These I-convs are 1x1 convolutions in the
skip connections, meant to change a layer’s depth and make input and output layers of a residual block compatible for
element-wise addition. Sun et al. claim that these hinders the gradient flow during backpropagation. They avoid I-convs,
and therefore allow for an unhindered and unaltered gradient flow over the skip connections. Sun et al. note that FishNet
is a framework, which does not specify the building block it consists of. They used both ResNet and ResNeXt’s residual

∗Using only one extra output and corresponding loss in the classification branch, Mask R-CNN can additionally be trained to perform pose estima-
tion à la Figure 6b. Each vertex in the pose skeleton is then a one-hot binary mask which is additionally predicted. We also note that COCO has the
Keypoint Detection Task for pose estimation.
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Figure 31: The Mask R-CNN process, clarifying the branching structure. The first half and top branch are essentially
the same as Faster R-CNN, but Mask R-CNN adds the FCN branch additionally predicting segmentation masks for
each RoI. Reproduced from [37] with permission.

blocks in their FishNet, with the latter combination termed FishNeXt.

All of these detectors and instance segmentators belong to the family of two-stage detectors, since they consists of two
stages: first a sparse set of candidate locations are proposed, after which these are classified (as a class or as background)
and their bounding boxes further regressed. Another family of object detectors is that of the one-stage or single-shot
detectors. Such detectors do not bother with first proposing promising regions, and instead directly predict on a regular,
dense grid of locations, scales and aspect ratios. One of the first such deep learning one-shot detectors was 2013’s Overfeat
[78], which has since been superseded by 2016’s YOLO (short for You Only Look Once) [71] and SSD (for Single Shot
Detector) [60]. YOLO and SSD are faster than state-of-the-art two-stage predictors, but trail behind in terms of accuracy.
Their ideas are similar: an input image is divided into an n×n course grid, and each grid cell center has b bounding boxes
of different scales and aspect ratios centered on top of it. From each bounding box, five regression coordinates (dx, dy,
dh, dw, confidence) predict the offset of a potential object’s true location. For each grid cell, class scores are predicted for
each of c classes that estimate how likely the respective class is present at that grid cell. The network therefore predicts
n2(5b+ c) outputs in one "shot".

Lin et al. investigated why such detectors lack in accuracy [57]. They found the problem to be the large amount of easily
classifiable background proposals that result from the regular sampling, and propose a dynamically scaled cross entropy
loss function whose scaling factor decays to zero as confidence in the ground truth class increases. In other words, it
decreases the contribution of the easy background samples, thereby obstructing it from polluting the loss. Their focal loss
is defined as:

LFL(pt) = − log(pt)αt(1− pt)γ (16)

where pt is either the predicted probability p when predicting the ground truth class or 1 − p when predicting the back-
ground class∗, − log(pt) is the familiar cross entropy loss, γ is a hyperparameter, and αt is a weighting factor defined as
some inverse of class frequency α and analogously to pt, αt = 1 − α for the background class. When pt is small, i.e.
the network is unsure of the correct class, then the modulating term (1− pt)γ is close to 1 and the loss is barely affected.
For easy samples with a large pt, the modulating term will be small and the loss will be diminished. The focusing hyper-
parameter γ determines the magnitude of this effect. Whith γ = 0, focal loss is equal to cross entropy. A loss curve for
different values of γ is shown in Figure 32. Lin et al. found γ = 2 to be optimal, and add the extra α-weighting because
it provided improved results over the loss without the α term.

Focal loss’s effectiveness is demonstrated by using it in Lin et al.’s one-shot detector: RetinaNet. RetinaNet consists of an
ResNet-FPN [56] backbone, on top of which two branching subnetworks perform classification and regression, as seen
in Figure 33. The feature pyramid has levels P3 through P7, where level Pl’s resolution is 2l times as small as the input
resolution. Each level has depth 256.† The regular sampling of the grid is highly similar to that of RPN, but windows are
∗Lin et al. explain their focal loss in a binary classification context, but note that extending it to a multinomial setting is straightforward.
†This feature pyramid is slightly different than the original pyramid proposed in [56]: the highest resolution level P2 is omitted for computational

reasons, level P6 is introduced and computed by a 3x3 stride-2 convolution instead of downsampling, and level P7 is also introduced and calculated by
applying ReLU and a 3x3 stride-2 convolution on P6 in order to improve large object detection. These modifications improve speed while maintaining
accuracy.
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Figure 32: The focal loss for different network certainties and different values of γ. The blue line (γ = 0) is the
regular cross entropy loss function, which has a more even distribution of loss values across certainties. Whenever
there are many easy-to-classify examples, these can overwhelm the total loss of a batch. Setting γ to larger values will
downweight the loss of easy samples more, which gives more room for the loss of hard examples, were the potential
for learning lies. Reproduced with permission from [57].
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Figure 33: The network design of RetinaNet Reproduced with permission from [57].

naturally assigned to all levels of the pyramid. The receptive fields of these windows are 322, 642, 1282, 2562 and 5122

for the respective levels. For each window, the same three aspect ratios are evaluated, and again at three different sizes:
1, 2

1
3 and 2

2
3 times the window size, resulting in 9 anchors per window as per regular FPN. Because RetinaNet samples

anchors both at different levels and different sizes per level, the scale coverage is even more dense than regular RPN.

In comprising the training set, each anchor is associated to the ground truth box with which it has the largest IoU, as long
as this IoU is larger than 0.5. It is assigned a one-hot encoded class and a 4-vector of box regression targets, which are
derived from said box. If there is no ground truth box with which its IoU is 0.4 or larger, it is designated as background,
and the class and regression targets become irrelevant.∗ The classification subnetwork consists of four 3x3 convolutional
layers, each followed by ReLU, and a 3x3 convolution with 9c filters (one filter for each class and each anchor) followed
by sigmoid or softmax activations. That is, each spatial location in the final output map contains c class scores for the
9 anchors centered around that location. The network is the same for each pyramid layer, including parameters. The
regression network, though completely separate from and parallel to the classification network, is highly similar apart
from the fact that it ends with 4 · 9 regression coordinates per spatial location. To improve speed, Lin et al. only decode
box predictions from at most the 1,000 top-scoring predictions per FPN level, after thresholding detector confidence at
0.05. These top predictions from all levels are merged and non-maximum suppression with a threshold of 0.5 is applied
to yield the final detections.

2.5 Panoptic segmentation

Panoptic segmentation, coined by Kirillov et al. [49], unifies the tasks of semantic segmentation and instance segmenta-
tion. At the time of writing, of all the currently ranked contenders of the Panoptic Segmentation Task, only one published
a technical report [26]. The others either submitted proprietary architectures or have not published their work. Moreover,
the state-of-the-art methods on this joint task use separate, architecturally distinct networks for both tasks, and simply
aggregate the results. Recently, however, Kirillov et al. proposed Panoptic FPN [48], though it is not listed in the Panoptic
∗All anchors which have an IoU between 0.4 and 0.5 with any box are ignored during training.
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Figure 34: FishNet. The fish tail is a CNN backbone, like ResNet or ResNeXt. The fish body takes the condesned
features representation and upsamples it. The fish head, downsamples the representation again, for stronger semantics
and more features refinement. The dotted lines indicate skip connections, which, in contrast with the skip connections in
ResNet and ResNeXt, are pure identity mappings, allowing for unhindered gradient flow. The layers with red outlines
indicate the layers that are involved in these skip connections. These layers use concatenation to combine their previous
layer in the network with the first preceding layer having the same resolution. Reproduced with permission from [84].

Segmentation Task leaderboards. Panoptic FPN aims to solve both tasks using a single network, namely Mask R-CNN
with an FPN backbone (with this FPN backbone in turn having a ResNet/ResNeXt backbone). They show a synergistic
effect which causes both semantic segmentation and instance segmentation to benefit from one another.

Similarly to how Mask R-CNN was birthed by adding a branch after the region proposal network, Panoptic FPN in
turn was conceptualized by adding a branch, this time for semantic segmentation, to Mask R-CNN. In this case, it is
positioned right after the FPN backbone and before the RPN (which is only necessary for instance segmentation). Figure
35 shows how Panoptic FPN uses the four scales resulting from FPN for the two respective tasks. Instance segmentation
remains practically unchanged, with Mask R-CNN’s region proposal network working on top of the feature pyramid. For
semantic segmentation, all pyramid scales (with the exception of the largest) are upsampled to all have resolution equal
to the largest scale. The resulting equisized feature maps are element-wise summed, after which they are processed one
time – using a 1x1 convolution, 4x bilinear upsampling and softmax – to yield the final dense segmentation prediction.
In addition to stuff classes, this branch also outputs a special wildcard class for all pixels belonging to things in order to
avoid overlapping output with the instance segmentation branch. Any remaining overlap is resolved by favouring instance
segmentations. The Panoptic FPN network without the instance segmentation branch – which then only does semantic
segmentation – is given a separate name: Semantic FPN.

Kirillov et al. achieve semantic segmentation performance comparable with current state-of-the-art semantic segmentation
methods, e.g. the heavily-engineered and performance enhanced DeepLabv3+ [15, 16, 17]. They achieve state-of-the-
art results with only half the computational complexity. With a network equalling the state-of-the-art computational
complexity, Panoptic FPN improves upon the performance otherwise acquired by two separate networks by a 1.1 PQ on
the COCO dataset. The authors emphasize the modularity of their network, and stress that other backbones can be used
as well.
The effects of joint training of instance and semantic segmentation on instance segmentation was also investigated, and
in doing so Kirillov et al. employed a loss scaling weight λs for the instance segmentation branch. They found that the
optimal scaling weight of λs = 0.1 offered only a 0.1 increase in AP on COCO. Interestingly enough, when testing on
Cityscapes [21] – a dataset with high similarity to CycloMedia’s data – the optimal weight is λs = 1, in which case
the semantic segmentation loss counts as severely as the instance segmentation loss in the combined loss. What’s more,
simultaneously training semantic segmentation increases instance segmentation’s AP by 1.

2.6 Material segmentation

In material segmentation, the goal is to classify every pixel in an input image from a predefined set of material classes. It
is a specific subtask of the more general semantic segmentation, previously discussed in Section 2.3, where the classes do
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Figure 35: Panoptic FPN. As the name sug-
gests, this network uses FPN as its backbone,
which gives it a featurized image pyramid –
four feature maps at different scales – to work
with. The instance segmentation is nearly iden-
tical to Mask R-CNN, accept it now predicts on
four feature maps instead of one. The seman-
tic segmentation branch, called Semantic FPN,
merges the four scales and convolves the merger
into a prediction map.

conv→2×→conv→2×→conv→2×

conv→4×

256 × 1/16

256 × 1/8

256 × 1/4

C × 1

128 × 1/4

128 × 1/4

128 × 1/4

1/32

conv→2×→conv→2×

conv→2×

conv

128 × 1/4

Figure 36: Semantic FPN, Panoptic FPN’s semantic
segmentation branch, in more detail. The smallest
three feature maps are iteratively convolved with a
3x3 glskernel, batch normalized, ReLU activated,
and bilinearly doubled in resolution, until the small-
est three scales have the same resolution (128x128)
as the largest scale. The equisized scales are subse-
quently element-wise summed, after which a final
1x1 convolution yields the segmentation map.

not necessarily have to be and typically are not materials, but can be any sort of perceptible attribute. This is a difficult
endeavor, because wholly different materials may look visually similar in RGB images. An extreme examples is that of
fake, plastic food and real, organic food, which tend to be difficult to distinguish, especially in an image.

Bell et al. employ a sliding-window approach for segmenting an image, in which every pixel in the image is classified
by a CNN taking only a small region, or patch, around it as input. For training, they introduce the Material in Context
Database (MINC), which contains three million images with material annotations. These annotations come in the form of
segments, polygons demarcating materials, and clicks, single pixels for which a material is distinguished. In training the
CNN, clicks are converted to training patches by centering the patch on the click point, and segments are converted into
approximately nine patches by using Poisson-disc subsampling. Prior to training the CNN (or rather finetuning it, which
takes the parameters from a model previously trained and adapts those to the dataset at hand), it was first pretrained on
ImageNet. The writers ended up with 2,996,674 labeled patches, generated from 436,749 images.

During test time, they slide this trained CNN over an input image at three different scales, producing three probability
maps that are upsampled and averaged together. Lastly, a fully connected conditional random field (CRF) predicts a
final label for each pixel. They achieve 73.1% mean class accuracy (which calculates the error rate over all pixels) when
ensembling, or combining, AlexNet and GoogLeNet. The main drawback of this work is its use of the sliding-window
approach, which results in comparatively bad segmentation quality and slow compute, and has been superseded by fully
convolutional network [30].

Bell et al. conclude that including the surrounding context and object shape is essential for material classification. How-
ever, Schwartz et al. doubt this claim, and argue that "we may only speculate as to the actual importance of context
when simply given large patches as input and materials as output" [77]. Since Bell et al. use a highly specific dataset
(mainly consisting of professional real-estate images), Schwartz et al. argue that Bell et al.’s network instead recognizes
objects that are often made out of the same material, and classify the object with that material. In other words, they
merely perform a semantic segmentation variant of object detection, but with the labels referring to materials instead of
objects. Schwartz et al. agree that global context is important, as context may influence the probability distribution over
possible materials, but claim this needs to be processed separately from the appearance of the material. Therefore, their
work takes only small patches within objects’ boundaries, ensuring shape and surroundings are not taken into account.
They concatenate the penultimate feature layer at the end of their VGG16-based FCN with two additional feature layers
containing the context. The first is a semantic segmentation – of which Schwartz et al. do not specify the network whence
it came – with pixel-wise object predictions. The second is a probability distribution over the type of location the image
was taken, acquired with the MIT Places CNN [102] and duplicated for every pixel, yielding a homogeneous feature layer.
In this way, context information that Schwartz et al. deem essential is taken into account, but only after prior distributions
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are calculated based only on materials’ visual appearance. Schwartz et al. tried the introduction of context at multiple
levels, and found that, indeed, introduction at the penultimate layer provided the highest accuracy. They also demonstrate
that both object and location context provide more accuracy compared to either of the isolated contexts accounted for
singularly, and compared to not taking context into account at all. Since all data in our research depicts the same type of
location, i.e. cities, municipalities or highways, this result is less relevant to this work. More importantly, their fully con-
volutional network with context outperforms the patch-based network by Bell et al., even though the latter was pretrained
on the three million samples of the MINC database whereas the former did not have this advantage.
Zhang et al. perform material segmentation on hyperspectral images [100].

More recent developments make use of time-of-flight (ToF) cameras for material segmentation. Such cameras measure
the time is takes for a particle or wave to bounce back from a surface and use that time to infer the distance of that surface.
This is done for every point in an image to obtain a depth map. Laser-based ToF is part of the broader class of scanner-
less∗ LiDAR sensors. Tanaka et al. exploit the fact that the measured depth of translucent objects are overestimations.
Phrased differently, a time delay of the traveling signal incurred because of subsurface scattering, the depth of (partially)
translucent surfaces is often erroneously predicted as being further away than they are in reality.

Hyperspectral images capture radiation across the entire electromagnetic spectrum, as opposed to merely within the visible
range. Since this work concerns regular RGB images, [100] is noteworthy, though not relevant.

2.7 Datasets for material and instance segmentation

Table 1 gives a non-exhaustive overview of currently prominent datasets for material segmentation and instance segmen-
tation. Most recent of these is the Natural Environment Dataset [5].† It was generated by Baslamisli et al. from 3D models
depicting gardens and parks with the aim of intrinsic image decomposition. This entails separating an RGB image into
what Baslamisli et al. call an albedo, or reflectance, map and a shading map. The former approximates the diffuse surface
reflectance, or intuitively, the "true colour" of a surface. The latter indicates, confusingly, the reflectivity of the objects in
the image. For each pixel, this depends on the direction of incoming light towards to surface, the direction of outgoing
light from the surface to the camera sensor, the surface normal, and the surface’s bidirectional reflectance distribution
function (BRDF): the ratio of incoming irradiance to outgoing radiance. Using this data, they train a network in order to
train this separation; they employ a three-headed FCN called ShapeNet [80], each predicting a reflectance map, a shading
map, and a semantic segmentation, respectively. An overview of the architecture is shown in Figure 37. They claim that
jointly learning the reflectance and albedo with semantic segmentation benefits the latter. The dataset itself was rendered
using Blender, an open-source 3D modeling suite. However, the datasets’ main subjects being gardens and parks renders
it rather unsuitable for our purposes.

Another noteworthy dataset is Mapillary’s Vistas dataset [67]. It contains 25,000 high-resolution images depicting street
scenes, similar to CycloMedia’s cyclorama’s. It is used to perform panoptic segmentation, and since it concerns things and
stuff, but not materials, also this dataset is ill-purposed for material segmentation. However, since it contains both things
and stuff, it is highly suitable for panoptic segmentation. Cityscapes is similar, containing the same amount of images,
also from street-level viewpoints [21]. This dataset contains fine segmentations for only 5,000 images though, with the
other 20,000 being only coarsely and shoddily annotated. It also contains significantly less classes: where Mapillary
Vistas contains 152 object classes‡, Cityscapes only maintains 30.

The only dataset with semantic segmentations related to materials is MINC [7], introduced in 2015. It is an extension of
the much smaller OpenSurfaces [6]; OpenSurfaces contains 105,000 segmented images, while MINC sports three million
training samples. OpenSurfaces has many of its 28 supported classes under-sampled, and hence MINC brings the total
number of images to three million, making sure each material category has sufficient samples. Each sample can contain
both full-fledged segments (polygons denoting materials, originating from the OpenSurfaces dataset), as well as clicks
(single points denoting materials), which were less costly to obtain. The dataset supports 23 material classes, meaning
Bell et al. dropped five classes from OpenSurfaces. They use this dataset to train a material segmentation network.
While MINC’s purpose is material segmentation, it focuses almost exclusively on indoor imagery and contains classes
of materials which are seldom found outside. For this reason, also MINC is not suitable for our street-view material
segmentation task. Table 1 further highlights why none of the currently existing datasets can be used in this work.

∗"Scannerless" here refers to a methodology which records its environment or image instantaneously, as opposed to pixel-by-pixel; this is known
as scanning LiDAR.
†At the time of writing, the dataset has not yet been published, with the publication’s website stating it is "coming soon".
‡Their Research Edition offers only 66 of the 152 classes available in the Commercial Edition.
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Name Publication Objective Contents Advantages Disadvantages

NED (Natural
Environment Dataset) [5] 2018 - 2019

Intrinsic image
decomposition,
semantic
segmentation

•35K images
•40 different gardens
•5 lighting conditions
•16 classes

Contains RGB , albedo
and shading images
(apart from ground truth
segmentations).

Depicts only gardens
and parks.

COCO (Common
Objects in Context) [58] 2016 - 2018

Panoptic
segmentation,
keypoint
detection

•330K images (>200K labeled)
•1.5 million object instances
•80 object categories
•91 stuff categories
•250,000 people with keypoints

No material segmentation;
stuff annotations are rarely
actual materials.
Small percentage are
street-view images.

Mapillary Vistas [67] 2018
Panoptic
segmentation

•25,000 HD images covering global reach
•152 object categories
•100 instance annotated categories

Mainly street-view
images.

No material segmentation;
stuff annotations are rarely
actual materials.
Research Edition only contains
annotations for 66 of 152 classes.

Places2 [101] 2017
Image
classification

•>10 million images
•>400 classes
•5,000 - 30,000 images per class

Improved version
of Places.

Only image classification.
No material annotations.

ADE20K [103, 104] 2016 - 2017

Semantic
segmentation,
instance
segmentation

•~20,000 images
Categorized by
scene category.

Only about 20% of dataset is
street-level imagery.

Cityscapes [21] 2016
Semantic
segmentation

•5,000 HQ annotations
•20,000 coarse annotations
•Semantic, instance-wise,
and dense pixel annotations
•30 classes

Mainly street-view images.
More popular than Mapillary.

No material segmentation;
stuff annotations are rarely
actual materials.

MINC (Materials in
Context Database) [7] 2015

Material
segmentation

•3M labeled point samples
•7061 labeled material segmentations
•23 material categories

Annotates materials.
Contains realistic and
"difficult" images.

Mostly restricted to indoor scenes
with man-made, indoor materials.

Places [102] 2014 Image classification
•2.5 million images
•205 scene categories

Only image classification.
No material annotations.

DTD (Describable
Textures Dataset) [19] 2014

Texture
classification

•5,640 images
•47 terms (categories)
• 120 images per category

Only perceptible texture
property annotations.

PASCAL-Context 2010

Panoptic
segmentation,
semantic
segmentation

•21,738 images
(from PASCAL VOC 2010)
•540 classes

Semantic segmentation
extension to PASCAL
VOC 2010, which only
contains instance
segmentations.

No material segmentation;
stuff annotations are rarely
actual materials

Stanford Background
Dataset [35] 2009

Semantic
segmentation

•715 images
•7 classes

No material segmentation;
stuff annotations are rarely
actual materials.
Comparably small set.

CIFAR-10 [50] 2009
Image
classification

•60K 32x32 images
•10 classes

No material segmentation;
stuff annotations are rarely
actual materials.
Only 10 classes.

Table 1: A non-exhaustive comparison of annotated computer vision image datasets. The last two columns give an
impression of a dataset’s suitability for outdoor material segmentation. As apparent from this comparison, none of the
datasets are inherently fit for the purpose of material segmentation.

3 Methodology

The methodology of this work is discussed in this section. An overview of the process is given in Section 3.2, in which
the structure of this research is discussed. Before that, however, it is necessary to discuss our method, which is essentially
Semantic FPN [48], in Section 3.1.

3.1 Method

This section describes our methods and settings used in training Semantic FPN [48] for each of our experiments. We
reimplemented the recent Semantic FPN in TensorFlow, faithful to the specifications given in [48]. We selected this
network as our material segmentation network of choice, due to its reportedly good performance despite its architectural
simplicity, and its potential for further improvement. On the Cityscapes dataset [21], Semantic FPN performs 0.5% worse
than DeepLabV3+ with a ResNeXt-101 backbone and 1.9% worse with a ResNet-101 backbone, while being significantly
simpler to implement. It fuses a number of architectural concepts together. It start with ResNet-FPN: the input image is
convolved to a small representation using ResNet-50 [39], a fairly typical CNN of which the outputs of residual blocks
can be regarded as constituting a bottom-up pyramid. In the reverse direction and starting from the deepest feature layer,
a top-down featurized image pyramid is built from this bottom-up pyramid by repeatedly bilinearly upscaling a previous
feature layer and element-wise summing this with the corresponding feature layer in the bottom-up pyramid (i.e. ResNet).
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Figure 37: The ShapeNet FCN, predicting a semantic segmentation as well as a reflectance map and a shading map. The
three decoders for the three output maps share the same encoder. In order to further strengthen the correlation between
features in the three components, they are piece-wise connected using inter-connections. Additionally, features layers
in the encoder are connected with the separate decoders with what Baslamisli et al. call mirror-links, in order to mix
high-resolution, low-level semantics with the low-resolution, high-level semantics in the style of FPN, DenseNet and
FishNet. Reproduced with permission from [5].
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Figure 38: Our method, comprised mostly of Semantic FPN [48]. The 16x16 feature representation of ResNet-50 is
taken and continually bilinearly doubled in size and element-wise summed with the corresponding layer in ResNet-50’s
pipeline. This creates four feature representations of different scales, which are convolved with 1x1 kernels in order to
reduce depth. They are then bilinearly upscaled to make them equisized, after which they are element-wise summed,
1x1 convolved, and bilinearly quadrupled to yield the final predicted segmentation image. Only selected regions within
our dataset images are annotated with ground truth, which only allows for taking the loss and evaluating performance
within these ground truth regions.

This results in multiple feature representations of the input image at different scales. In our case, we obtain four scales:
16x16, 32x32, 64x64, and 128x128. To each of these, a 1x1 convolution is applied in order to reduce the depth of each
feature scale from 1024 to 256. The network up until this point is known as FPN [56], with a diagram in Figure 23d. The
second part combines the differently sized feature maps into a semantic probability map. The smallest three of the feature
representations are upscaled to be of the same 128x128 resolution as the largest. Each doubling in size is effectuated
by a 3x3 convolution, followed by batch normalization, followed by ReLU, followed by a 2x bilinear upscaling. This
sequence of operations is, for example, executed three times for the smallest scale, and only once for the 64x64 scale.
The now equisized feature layers are element-wise summed, and a final 1x1 convolution and 4x bilinear upsampling gives
the segmented probability layer. Semantic FPN’s way of transforming the FPN feature scales to the probabily image
is summarized in 36. Semantic FPN is also discussed in Section 2.5. There it is explained how Semantic FPN is a
subnetwork of Panoptic FPN, which, besides semantic segmentation, adds another instance segmentation branch which
works on top of the four feature map scales. Our whole method is schematically summarized in Figure 38.
One essential deviation from the original specification of FPN [56] is the switch from nearest neighbour upsampling to
bilinear upsampling. FPN was originally conceived for the task of object detection, which does not require feature maps
of a very high resolution. For pixel-wise predictions, however, high resolution feature maps are essential.

As with any FCN, this network can take input images of any resolution. We chose 512x512 as our input dimensions,
which seemed to strike a good balance between output resolution and memory consumption, and the images in the dataset
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are scaled accordingly prior to their processing. The depth maps are stored on disk as 1536x1536 PNG files. Before
network processing, these are also downscaled to 512x512 using nearest neighbour, after which they are decoded into
a depth map and concatenated with the RGB channels. Nearest neighbour is the most logical choice for the job, since
any interpolation may cause non-existent, intermediate surfaces to appear between object boundaries. We initialize the
weights of the ResNet-50 backbone with weights pretrained on ImageNet. For a network taking four-channeled input,
such weights are not publicly available as far as we are aware. We simply initialized the additionally required weights – for
the depth of the filters in the first convolutional layer – with reflected values (stemming from the same filters). Practically,
this means that the weights for the depth channel take on the same initial values as those of the green colour channel.

3.2 Approach

This section discusses how we are to answer our RESEARCH QUESTION: "what material segmentation performance are
we able to obtain on outdoor imagery?" We quantify material segmentation performance as mIoU. Our network that
we use, Semantic FPN, is a subnetwork of Panoptic FPN, and by adding one branch can be turned into a panoptic
segmentation network. This allows for simultaneous street-level imagery segmentation and street furniture detection,
which, on the Cityscapes dataset, results in an increase of 1 of both mIoU (for semantic segmentation) and AP (for
instance segmentation).

As described in the previous section, we annotated only certain segments (approximately 30%) of 800 street-level images.
In training the network, these images are processed and predicted upon – as a whole – by a Semantic FPN network.
However, since ground truth data is only available within the annotated regions, the loss is calculated only for the pixels
contained in the annotated segments. Besides there being substantially less training data than when the images were more
densely annotated, another important drawback is that the network will not learn about material boundaries. The edges of
foliage look remarkably different than those of cloud, soil, water, or steel. With only patches of data to work
with, the network only gets glimpses of the material texture at the center of segmentations. The network never learns the
patterns of material edges, and we can therefore hardly expect it to accurately segment materials contours.

SUBQUESTION I
"What measures significantly reduce either class imbalance or the adverse effect of class imbalance on material segmentation

performance?"

We distinguish and investigate three aspects which influence material segmentation performance, with the help of three
subquestions. SUBQUESTION I deals with the severe class imbalance in our dataset. A dataset has class imbalance
when the difference in size of the smallest and largest classes is disproportionately large, i.e. the dataset’s ground truth
follows a long tail distribution over its classes. We define class size as the number of ground truth pixels in our dataset
pertaining to a class. The smaller classes are expected to perform worse than the large classes, which would drag down
our performance. With the aim of reducing class imbalance and answering SUBQUESTION I, we try a number of methods:
class-weighted loss, where we multiply the loss of each class with a weight that is inversely proportional to its relative
size and thereby increases the importance of loss taken over pixels from small classes [52]; Dice loss, a different loss
function which optimizes mIoU more directly and is therefore supposed to give equal importance to the small classes
[83]; focal loss, which places more importance on classes which are more difficult to predict (with this difficulty expressed
as network uncertainty) [57], and a number of combinations of class-weighted loss and one of the other loss functions.
These measures fall under the category of cost sensitive learning, which addresses class imbalance on a classifier level.
Another category of class imbalance countering measures instead operate on the dataset itself and aim to level the actual
class sizes directly. The method of oversampling belongs to this category. Buda et al. found this to be the most optimal
countermeasure when dealing with class imbalance for image classification [12], though they have not considered any
cost sensitivity learning methods and it is uncertain whether their results carry over to the more complex task of semantic
segmentation.∗

In case none of these measures manage to significantly reduce the adverse effects of class imbalance, we resort to merging
the smallest classes together. Of course, some important information is lost in this process. As an example, iron
is amongst the smallest classes, and merging it with other classes would mean discarding useful information for, say,
manhole detection. However, reasonable performance for all classes allows us to draw conclusions with respect to all those
classes, instead only to the largest and most well-performing ones. Practically speaking, a sufficient overall performance
due to all classes showcasing high mIoU would allow material segmentation to be used in production without extensive

∗"Complexity" here refers to the number of predictions done on an image; image classification predicts one label per image, while semantic
segmentation predicts one label per pixel.
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manual correcting labour (which would otherwise be needed to correct the worst performing classes).
With this reduced set of classes, we train using cross entropy loss and focal loss, both with and without class weights.
For each of these, we try three ways of dealing with the segmentation of the omitted classes: merging them into one
background class, only using the other class as background (in which case it is simply renamed), and removing
all those segmentations altogether without using them any further. The best method out of the 12 is chosen for use in the
subsequent experiments.

SUBQUESTION II
"How much does the performance of material segmentation with additional depth input improve compared to our network only

receiving colour information?"

Next, we compare two types of input data to the network: one only has colour information encoded in the RGB format,
while the other adds a depth channel to these, which gives RGBD input. We determine whether one performs better
than the other with SUBQUESTION II: "How much does the performance of material segmentation with additional depth
input improve compared to our network only receiving colour information?" If RGBD appears to perform significantly
better than RGB input, then this corresponds to our expectations. If RGBD input performs similar to or worse than
RGB, we start by determining whether our depth maps hold any discriminitive value for material segmentation in the first
place by training only on the depth. Then we train and test only with a selection of classes for which depth is clearly
distinct. The classes we select in this latter experiment are preferably classes which have not performed too well on our
initial experiment(s). This is because the performance of those classes might already be saturated with RGB input, in
which case it becomes harder for a depth map to further increase it. By isolating these "depth-discriminatory" classes, we
ensure that classes of which the depth could be noisy and confuse the network are ignored. This experiment allows the
network to focus purely on classes of which the depth map contains helpful information, and therefore should theoretically
benefit performance. If these classes show the same performance in this isolated experiment, then this suggests that depth
provides no additional help to the network if it already works with RGB input, i.e. colours make depth superfluous and
unnecessary.

In either case, we investigate the effect of pretraining on the difference between the respective input formats. Even though
pretrained networks only have to be "finetuned" instead of trained from scratch, they start off with a bias for the task and/or
dataset on which they have been pretrained. Our network was pretrained on ImageNet, which has little resemblance to
our dataset, and which does not work with depth as input. It is possible that pretraining makes the network start on a
suboptimal spot on the loss landscape, where it has started to converge based on colour information and where depth
has little influence over the gradient direction anymore. We therefore train Semantic FPN from scratch, using Xavier
initialization to initialize the weights, also known as Glorot initialization [34]. For each filter, Xavier initialization draws
samples from a uniform distribution ranging between −

√
6/(win + wout) and

√
6/(win + wout), where win is the number

of input units to the weight tensor (the filter) and wout is the number of output units in the weight tensor (which equals
1, since each filter outputs one activation at each location of the input).∗ Xavier initialization ensures that the weights
have variance equal to the input, which ideally is unity variance. If this experiment yields a measurable improvement of
RGBD performance, then this suggests that the pretraining on ImageNet obstructs the depth map from being sufficiently
exploited.
When loading our depth maps from disk in order to use them as a channel, we downscale them using nearest neighbour,
in order to avoid any interpolation artifacts. We are curious whether the method of downscaling has any effect at all, and
therefore attempt to train on depth that is bilinearly interpolated instead of downscaled with nearest neighbour.

SUBQUESTION III
"How much does material segmentation performance increase with more training data?"

Lastly, 800 sparsely annotated images can be considered a small amount of data for this relatively complex deep learning
objective. SUBQUESTION III asks to what extent the small amount of data bottlenecks material segmentation performance:
"How much does material segmentation performance increase with more training data on a similar dataset?" Accurately
answering this question would require us to actually annotate a larger dataset. Instead, we perform a number of experi-
ments in which we control the training data that we have, in order to estimate whether an increase in training data offers
an increase in performance.

The first of these experiments concerns the relation between segmentation size and class IoU. We train with only with
a selection of large classes: asphalt, brick, foliage, and sky, of which we will repeatedly reduce asphalt in
number of ground truth pixels by "shrinking" each of its segmentations. All other classes are completely ignored, and no

∗We assume here that each filter is initialized independently, instead of all filters of the same convolutional layer together. However, we are not
certain if this is the common method, or even the method used by our implementation.
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Figure 39: The process of eroding a binary, pixel-wise segmentation mask. In this examply, a kernel of size 3x3 is used.
At each spatial location where the kernel contains at least one "inactive" pixel, i.e. a pixel that does not belong to the
mask, then the pixel centered around the kernel will also by deactivated. Only pixels around which the kernel contains
only active pixels will be kept. The inverse to erosion is called dilation, in which pixels are activated if its surrounding
kernel contains at least one active pixel.

Dropped Dropped Dropped

Images containing asphalt segmentations

KeptKept

Figure 40: The selection of images with asphalt from which asphalt is removed, or dropped. The larger the
dropout rate, the less segmentation will be trained with. The dropout rate is 32 in this example.

background class is used. The shrinking of asphalt’s segmentations is done using erosion, a common operation in
computer vision which works on binary segmentations. It reduces the area of the target segmentation by skiving off pixels
around its edges. The magnitude of this erasing of edge pixels its determined by the size of the kernel. The process is
visualized in Figure 39. If all pixels of a segmentation are under the kernel at a certain location, then the segmentation’s
pixel in the center of the kernel at that location is kept, otherwise it is eroded (removed). In other words, only pixels for
which a square kernel, centered on top of it, "fits" in the segment are retained. In this way, the larger the kernel size,
the more ground truth is removed. We train with multiple kernel sizes with which asphalt is eroded: 0 (no erosion),
50x50, 100x100, 150x150, and 200x200. If its performance decreases accordingly, we can confirm that the typical size
of a class’s segmentations is proportional to its performance.

We also use another method of reducing the class size of asphalt, namely by discarding, or dropping, asphalt
segmentations. Each run has a set value, which we will refer to as the dropout rate for ease of notation, and which
determines the number of images containing asphalt from which asphalt’s ground truth is removed, after which
asphalt is kept in one image. In other words, the dropout rate fixes a pattern upon the images with available asphalt
ground truth; this patterns designates, say, 32 of such images to have their asphalt removed, after which one image gets
to keep its asphalt, after which, again, 32 asphalt-containing images are stripped, etc. This pattern is visualized
in Figure 40. We chose this method to ensure determinism. It also allowed us to make sure that asphalt ground truth
decreases more or less proportionally with the dropout rate; setting a dropout probability does not necessarily ensure
this. We also opted to additionally erode all asphalt segmentation with a 128x128 kernel, since the small classes have
smaller segmentations than the large classes, and we felt this to result in a more fair comparison.

Lastly, we employ the two largest datasets, the instance-as-semantic and instance-as-material datasets, that were derived
from the original instance segmentation dataset. The former will keep the original 96 instance classes, while the other
has each instance class translated to a material class (the translations can be found in Appendix A). Both these new
datasets have problems – which are summarized in Table 3 – and are not expected to perform as well. However, they can
be useful in assessing the plot of mIoU (or any other measure of performance) against training set size, of the material
segmentation problem. In this work, we will refer to such a curve as a "performance curve". We can only plot such a
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(a) Material dataset (b) Instance-as-semantic dataset

Figure 41: An example image with annotations from the three respective datasets. The material dataset is much sparser
than the instance-as-semantic and instance-as-material datasets, besides it containing annotations for many fewer im-
ages.

Code Resolution Range (in m)
00 1 mm 0 - 16.384
01 4 mm 0 - 65.536
10 16 mm 0 - 262.144
11 64 mm 0 - 1048.576

Table 2: The four depth resolutions in which pixel values in a depth map can be expressed. The resolution defines the
difference in depth between two consecutive values, and indicates how precise and fine-grained the depth measurements
are. Every quadruple in maximum range forces the resolution to be four times as low.

curve for experiments on our material segmentation dataset for up to 600 images, since 200 images out of the total 800
are reserved for the test and validation sets. Performance curves for the other transformed dataset can be plotted up to
3800 images, and should give an indication of the performance potential for material segmentation.

4 Experiments and results

The experiments ran in order to answer the posed research questions, and the results obtained by performing these exper-
iments are reported upon in this section. We start by giving an overview of the setup of our experimentation. Section 4.1
treats the datasets with which we train and test, one of which we annotated while the other two are transformations of an
existing dataset. This section also names the 21 material classes that we adhere to, and motivates this selection. After that,
we discuss our metrics in Section 4.2. Section 4.3 gives specifics of our training procedure and implementation. Section
4.4 then discusses the results of the experiments.

4.1 Datasets

This section concerns the data that we work with. The procurement of our training and evaluation data is illustrated in
Section 4.1.1, which describes the data we had to our disposal from the outset, and Section 4.1.2, where we discuss the
datasets we ourselves derived from the data we started with. Lastly, Section 4.1.3 mentions and motivates the classes we
maintain in our material dataset.
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Figure 42: CycloMedia way of storing depth in the red and green channels of a PNG file. The first two bits of the red
channel indicate the resolution at hand. There are four possible resolutions, given in Table 2. The remaining 14 bits
represent the actual depth value at the indicated resolution. Naturally, depth is encoded at the highest possible resolution
for which the value is still in range. This means that the resolution quarters right after the indicated range boundaries.

4.1.1 Pre-existing dataset

We have 4,000 street-view images, property of CycloMedia. They depict a variety of environments: residential areas,
shopping districts, highways, industrial areas, rural landscapes, etc. The first half of the images were taken in Schiedam,
The Netherlands, and the other half in the United States. For each of these RGB colour images there is a depth map
available, which has been generated from 3D meshes constructed from LiDAR point clouds (we refer the reader to Figure
1. These depth maps are encoded and stored as PNG [93] files using the red and green colour channel, leaving the blue
and alpha channels for future additional information.∗ The depth format they employ is shown in Figure 42. The first two
bits of the red channel indicate one of four possible depth resolutions (not to be confused with image resolution) in which
the rest of the bits – the remaining six bits in the red channel concatenated with the bits in the green channel – represent
their depth value. The depth maps cover a total distance of 1,048.576 meters. Each of the four resolutions work with a
different range, all starting from 0 up to at most the maximum depth. With two bits occupied to indicate the resolution,
there are 14 bits left for the depth value itself, with which 214 different values can be encoded. Each resolution uses 14 bits
of precision to cover values across its range, meaning that depth values falling within a smaller range will be represented
more accurately than those exceeding that range. The resolution of depth is therefore dependent on its magnitude. The
four resolutions and their ranges are given in 2.
Before CNN processing, these two channels are converted back to a single channel of float values, which is how depth
would logically be represented. We could supply the two channels directly to the network as RGBRG input, but this
would require the network to additionally learn the transformation from two channels to one floating point channel, which
we have now preprocessed for it. Some examples of the depth map can be found in Figure 4, showing that depth maps are
noisy, though the severity and texture of this noise can be considered distinguishing characteristics for some classes. On
the other hand, Figure 49 contains examples of materials where depth seems useless.

CycloMedia also provides their instance segmentation dataset, containing segmentations on all 4,000 images adhering to
96 instance classes (the table in Appendix A gives the class names). As is apparent from Figure 41b, this dataset contains
much denser ground truth; nearly all pixels in an image have a label. Only distant buildings and vegetation, water, some
small, enclosed regions of sky, and some incidental objects are missing. Even though the classes concern objects rather
than materials, this dataset may prove useful in determining the increase in segmentation performance that a larger dataset
can provide.

4.1.2 Constructed datasets

We created our own three separate ground truth datasets on top of (a subset of) the same 4,000 images. The first dataset,
which we will refer to as the material dataset, contains material segmentations for 21 material classes as defined in
Section 4.1. In order to keep the annotation effort at a minimum, only selected regions within an image are annotated,
and most of the pixels remain unlabeled, as exemplified in Figure 41a. Some of these annotations have a rectangular
or parallelogram shape – which are faster to draw though rarely cover the entirety of a material’s surface – and others
are material (instance) encompassing polygons. The latter were taken from CycloMedia’s instance segmentation dataset,

∗According to CycloMedia, as stated in their in-house documentation.
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Figure 43: In creating our dataset for material segmentation, we copied the segmentations of selected classes from the
instance dataset, and repurposed those as material segmentations. Those classes which often correspond to one material
were taken. Manual verification ensured that these segmentations are correct. Sometimes, when an instance class can
exist in multiple material forms, the labels had to be corrected. Sometimes a segmentation had to be removed, but since
deleting a segmentation is more efficient than creating one, reusing instance segmentations still proved helpful in our
annotation efforts.

as shown in Figure 43. Some of these classes in the instance segmentation dataset represent objects that in the real
world often consist of the same material. For example, objects of class object | support | pole are likely to be
made of steel, and object | fire hydrants are nearly always made of iron. The segmentations of these materially
uniform classes were taken from this instance segmentation dataset and their labels translated to their associated materials,
after each of these segmentation was verified for correctness. That is, if the translated material did not correspond with the
material it encapsulated, this was corrected. If a translated segmentation contained multiple materials, and reshaping the
polygon to encapsulate only on of the materials was deemed to much effort, we discarded it. We copied construction
| flat | road annotations from the instance segmentation dataset because of its generally large image occupancy
and translated it to asphalt. However, it is this class which often needs correcting, since our images contain brick or
even tiled roads as well. The material dataset annotates on average approximately 30% of an image, and only contains
annotations for the first 800 images in the dataset, i.e. the dataset only annotates images captured in The Netherlands.

The instance segmentation dataset has additionally been directly transformed into our second semantic dataset: the
instance-as-semantic dataset. Transformation of the instance segmentation dataset into a dataset for semantic segmenta-
tion was a somewhat involved process, and a difficult one to optimize. An instance segmentation dataset generally has
segmentation masks for multiple objects within an image, and these masks may overlap. For example, the segmentation
mask of a manhole or a pothole may intersect the segmentation mask of a road. In order to "flatten" the instance segmenta-
tions to a semantic segmentation map, for each such overlapping segment it has to be determined which of the conflicting
masks is supposed to be "on top". We do this by representing the colour and depth distributions of the pixels within
the overlap as a histogram. Both conflicting masks are also each represented by such a histogram, and the mask with
histogram distance closest to the histogram of their overlap gets its label selected and applied to the overlapping pixels.
This ordering is only defined between every pair of masks, and thus constitutes a topological ordering. A topological
order is not a total order, because it does not adhere to the properties of antisymmetry (if a ≤ b and b ≤ a then a = b)
and transitivity (if a ≤ b and b ≤ c then a ≤ c), and therefore cannot be solved with regular sorting algorithms. For
ease of implementation, we opted for a brute-force approach, which simply keeps swapping masks in the ordering as long
as a pair of out-of-order masks is detected. Though inefficient, this approach works relatively well according to a visual
inspection, and manages to successfully resolve most overlap. Edge cases are sparsely present though; Figure 41b shows
the pole of a lamppost being buried under masks which should be under it. Such inaccuracies happen infrequently enough
for us to expect the network to be invariant to them. This dataset has annotations for nearly all pixels in an image, and
does so for all 4,000 images.
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(b) In order to “flatten”, or merge, the separate instance maps
together, the overlap for each pixel needs to be resolved.

(a) Each instance segmentation is a binary map, indicating which pixels
belong to the instance. These instances may overlap.
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Figure 44: An intuitive visualization of instance segmentations, and the semantic map obtained by flattening them. This
flattening requires resolving overlap, which we did by comparing colour histograms of overlapping segmentations with
the histogram of their overlap.

Material dataset Instance-as-material dataset Instance-as-semantic dataset
• Correct labels • All 4,000 images annotated

• Each image densely annotated
• Correct labels
• All 4,000 images annotated
• Each image densely annotated

• Only 800 of 4,000 images annotated
• Roughly 30% of each image annotated
• Severely imbalanced

• Erroneous labels • Object labels rather than materials
• Many (96) classes

Table 3: Positive and negative aspects of each of the three datasets. The former are indicated with green box colours,
and the latter with red box colours.

The third dataset we call the instance-as-material dataset. We transformed the instance segmentation dataset in the same
manner as described in the previous paragraph, and we additionally translate the instance labels to material labels, using a
mapping from the 96 instance classes to the 21 material classes. This mapping can be found in Appendix A. The instance-
as-material dataset therefore covers the same pixels as the instance-as-semantic dataset for the same number of images,
but with different classes. Naturally, many of the instance classes from the instance segmentation dataset (can) consist of
more than one material type, making the translation often erroneous. For instance, construction | flat | road
could be translated to asphalt, brick, and even tile. In our experience of annotating roads, we found them most
often to be made of asphalt, and we therefore decided that all roads are annotated as such, but this entails that all brick
and tile will be wrongly annotated.

As may be clear, none of these datasets have full coverage, i.e. provide a label for every pixel in the image. The material
dataset covers few images, has little coverage (per image), and is severely imbalanced. This latter downside makes
training difficult, as CNNs are prone to be biased towards the larger classes, which results in poor performance for the
small classes. The instance-as-material dataset annotates all 4,000 images and has a much denser coverage for each, but
its mask labels are often erroneous, labeling the wrong material(s). The instance-as-semantic dataset has both a dense
coverage as well as correct labels – excluding the discussed edge cases – but these labels address objects rather than
materials. We recapitulate these points in Table 3.

4.1.3 Material classes

We define and maintain the following material classes: aluminium, asphalt, brick, cloud, concrete, fabric,
foliage, glass, grass, gravel, iron, living, other, plastic, sky, steel, stone, soil, tile,
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aluminium asphalt brick cloud concrete fabric foliage glass grass gravel

iron living plastic sky soil stone steel tile water wood

Figure 45: Samples of material segmentations. These highlight the difference in appearance, due to, for instance,
differing lighting and weather conditions, but especially because the same material can be fashioned and processed into
a variety of objects or constructions.

water, wood. We note that not all classes are actually materials, with cloud, living and brick being notable
examples of classes that are not materials, but are descriptive and commonly occurring. The distinction between sky and
cloud is not directly relevant to CycloMedia’s objectives, but we still thought it interesting to investigate the extent the
network would manage to distinguish the two, especially given the fact that their depth values are always zero, and their
classification therefore relies purely on the colour channels. Moreover, though not currently relevant, the separation of
aerial pixels into sky and cloud could be used for potential future purposes of determining whether pictures are taken
on a sunny or on an overcast day, and even in determining the cloud cover.

In case multiple classes encompass the same material, we make sure the onthological boundaries between these is unam-
biguous. In case the encompassing material itself is also a class, this class serves as a catch-all for any instantiations of
that material that do not belong to the more specific classes. For instance, brick and tiles are often stone, with the
latter class designated for all stone that is not formed in bricks or tiles. Bricks and tiles both are made up of rectangular
blocks of stone, but they differ in pattern: tiles are laid in such a way that all edges of a tile touch exactly one edge of a
neighbouring tile, while a brick’s edge may touch multiple other bricks, and are usually interleaved. Similarly, soil in-
cludes surfaces covered by leaves and fabric includes canvas and sailcloth. other serves as a catch-all for everything
that does not naturally fall under the other categories; only pixels of which we were completely uncertain as to what they
depicted are classified as other. Samples of the material classes can be found in Figure 45.

Some experiments involve the omission of certain classes, meaning materials are segmented with respect to only a sub-
set of our original set of 21 material classes. Whenever classes are omitted, a new background class is technically
supposed to replace those, or else the network is not able to correctly predict pixels belonging to omitted classes. The
arrangement of this shift in classes can be effectuated in multiple ways. The first one merges all the omitted classes into
the background class, in which case all their segmentation are relabeled to background. This makes intuitive sense,
as background would factually contain all materials that are not primarily searched for. The downsize to this method is
the possibility of background obtaining too much ground truth, depending on which classes are absorbed by it, which
could exacerbate class imbalance. The second method simply translates the other class to background, and ignores
(the annotations of) all omitted classes. Whereas the background class runs the risk of getting too large with the first
method, it will be too small when using this method, since other is one of the smallest classes, with only a handful of
annotations. A last method would be to completely ignore all omitted classes and to also forego the background class.
Like the second method, this would be a waste of annotations, however, and this would technically be an improper way
of organizing classes. After all, this method declares that all pixels in an image belong to one of the remaining classes,
which clearly does not hold. This is no problem for our evaluation of this method, since we would only evaluate regions
of the image annotated as one of the remaining classes, while everything outside will be disregarded. This appeal of this
method lied in the fact that it focuses purely on the task of predicting the "foreground" classes, and any confusion which
may arise from other classes is avoided. This method cannot be used in production though, because all pixels labeled as
an omitted class will then be misclassified. Since there is no clear best method, we try all three when we select the optimal
loss function for our reduced set of classes in our answering of SUBQUESTION I.
Whenever we do use background, it will not be taken into account in averaged performance metrics, since background
contains all classes that er explicitly not of interest. Besides, this would be unfair in comparisons to methods without
background.
The distinction between other and background may need clarification: whereas other has specifically been an-
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union

intersection

IoU  =

Figure 46: A depiction of both the union and the intersection of two shapes or regions. In the context of IoU calculation,
one of these regions is a ground truth mask, while the other is a prediction. IoU is then their union, in red, divided
by their intersection, in green. In this instance, one could reasonably state that the relative positioning of these two
particular regions yield a rather low IoU.

Predicted
Positive Negative

Positive True positive False negative

Tr
ue

Negative False positive True negative

Table 5: The four types of classification that can be made. "Positive" and "negative" refer to the classification predicting
that an object is present or is not present. "True" and "false" refer to whether or not the classification is correct.

notated for and, in that sense, can be regarded as a material in itself, the function of a background class is purely to
allow the network to predict something else in case none of the other classes used in a certain experiment are suitable.
This stems from the fact that every pixel in an image should theoretically belong to one or more of the original classes.
When certain classes are disregarded in an experiment, this may no longer be the case. A background class is therefore
needed to represent the omitted classes.

The visualizations of ground truth or predictions concerning the material and instance-as-material datasets make use of
the colour coding of the material classes given in Table 4.

aluminium asphalt brick cloud concrete fabric foliage glass grass gravel

iron living other plastic sky soil stone steel tile water wood

Table 4: The colour coding of material classes as maintained in this work.

4.2 Metrics

The most prominent metric in our evaluation of material segmentations is the mIoU metric (alternatively called the Jaccard
index), the de facto metric for semantic segmentations. COCO uses mIoU to effectuate a ranking among Stuff Segmenta-
tion Task contenders, which was originally introduced by PASCAL VOC [28]. It is calculated by dividing the number of
pixels of the intersection between the predicted and ground-truth class segmentations by the union of these segmentations,
averaged over classes [13]. Phrased differently, intersection over union (IoU) is the ratio of the intersection of a predicted
mask with the corresponding ground truth mask to their union. The intersection and union of two regions are visualized
in Figure 46. All IoU values for all class instances in all images are averaged to get the mIoU. This means that smaller
segmentations are given as much weight in the final mIoU score as larger ones.
mIoU can alternatively be expressed in terms of individual pixels. Within machine learning, TP, FN and FP are common
performance metrics for evaluating models, and are summarized in Table 5. TP (true positives) is the number of correct
predictions, FP (false positives) – sometimes called Type I errors – are the incorrect predictions, and FN (false negatives)
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– sometimes called Type II errors – are all ground truth instances the ML model did not manage to distinguish. A fourth
class, TN (true negatives), containing correct predictions for something not being true or not being present, appears less
frequently in metrics for computer vision. For instance, in object detection and instance segmentation, there are an infinite
number of objects not present in every image, making it impossible to keep track of true negatives.
If we regard each pixel as a separate classification, a mask’s IoU can be formulized as:

IoU =
|TP |

|TP |+ |FP |+ |FN |
(17)

An image’s mIoU is then calculated by averaging over the IoUs of the ground truth classes present in the image. Each
class contributes equally in this averaging. A variation of mIoU is fIoU (frequency-weighted intersection over union),
which weights a class’s IoU by the relative frequency of its ground truth pixels. In a sense, fIoU is better at capturing
how good a segmented image looks, since it rewards high IoUs of classes which take up the largest portion of the image.
In contrast, mIoU disregards class size, and punishes small classes in the same way as large ones. However, mIoU will
remain the leading metric, as we consider each class equally important regardless of the number of ground truth pixels.
For instance, correctly predicting the pixels for a traffic sign is as desirable as correctly predicting the pixels of a road,
even if the sign occupies a much smaller portion of the image. After all, one of the potential uses of material segmentation
is to aid object detection or instance segmentation, in which case the IoU per object instance is what matters most.
If a class is both not predicted and not present in an image, then this class is ignored in mIoU and fIoU calculation for that
image. This means that once even a single pixel of a class is present but not predicted, or predicted but not present, then
this will significantly punish mIoU, as this class’s IoU of zero is now mixed in, and with weight equal to the other classes.
We feel that this is the biggest downside to the mIoU metric, and in this regard, fIoU might be more lenient.

Additional metrics are (pixel) accuracy, the fraction of correctly classified pixels, and mean accuracy, the fraction of
correctly classified pixels per class averaged over classes [61]. For binary problems, accuracy is formally defined as:

Accuracy =
|TP |+ |TN |

|TP |+ |TN |+ |FP |+ |FN |
(18)

Since we are not tackling a binary problem and true negatives are irrelevant to our overall semantic segmentation perfor-
mance (it is dependent on the number of classes), this formula cannot be applied. We instead opt to define accuracy simply
as the percentage of correctly classified pixels, which ultimately has the same outcome. For class-specific accuracy, the
above formula can be used, since true negatives can be calculated per class. These class-specific accuracies can in turn
be averaged to obtain mean average. However, in our case, class-specific accuracy is always extremely high, regardless
of class size; if a class is large, then large regions are likely to be correctly predicted, resulting in a lot of true positive,
whereas if a class is small, then it will be rarely predicted, which will yield a high number of true negatives. This means
that mean accuracy and true negatives are not useful measures in our studies.

4.2.1 Precision and recall

The precision of a model is the percentage of correct predictions (over all predictions):

Precision =
|TP |

|TP |+ |FP |
(19)

This formula and the following ones are applicable to both binary and multinomial problems, and is therefore the formula
as we use it. Its recall is the percentage of ground truth instances, i.e. the things or stuff that are actually present in an
image, that the model managed to correctly identify, or detect:

Recall =
|TP |

|TP |+ |FN |
(20)

A high precision with low recall is seldom informative. In such a case, only a small number of predictions have been
done, and even though these were largely correct, they only detected a small portion of ground truth, which is not very
impressive. This also goes the other way around; a high recall paired with a low precision only tells us that the class at
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hand has been severely overpredicted. This naturally causes most ground truth to be found, but also yields many false
positives. Therefore, precision and recall are often consolidated in the F1 measure, or F-score:

F1 = 2
Precision ∗ Recall
Precision + Recall

(21)

Unlike averaging precision or recall over all classes with instance segmentation, averaging precision or recall for semantic
segmentation can be done in multiple ways [89]. The first calculates precision and recall for each class, and then averages
them over the classes. This is called macro-averaging. It weights each class equally, similarly to mIoU, and punishes
the mistakes of small class mispredictions as severely as the more easily avoided mispredictions of large classes. We
consider all classes equally important, regardless of screen presence, and therefore macro-averaged precision and recall
therefore will be most significant to our research. Another method, micro-averaging, aggregates all true positives, false
positives and false negatives over all pixels (possibly after thresholding), and calculates precision and recall based on
these totals. However, each false positive for one class is a false negative for another, meaning the total number of false
positives will always equal the number of false negatives, and thus precision will equal recall (and F1). In other words,
micro-averaging weights each pixel prediction equally, while macro-averaging weights each class equally [65]. Lastly, we
could macro-average the classes, but weight the classes with respect to their relative size, which is referred to as weighted
macro-averaging and is comparable to fIoU.

When looking at the performance of individual classes, we value recall over precision. The reason is that it is easier and
more efficient to remove (extraneous) mispredictions in a binary segmentation than it is to fill in any missed ground truth,
given the right tools. Anyone with any raster graphics editing experience is likely to concur that erasing mispredicted
segments is generally quicker than tracing regions which have not been predicted. Because of this, we will discuss
precision and recall separately instead of using the F1 score. Because macro-averaging averages over the precision and
recall of the classes, the same holds for the overall performance. F1 is reported in the complete accounts of our experiments
in Appendix G, however. Our complete results in the appendices include precision-recall curves, though we do not use
those in our analysis in this section. Some notes on precision-recall curves are in Appendix C.

The last analytical tool we discuss is the confusion matrix. A confusion matrix is a table denoting the number of predic-
tions for each pair of predicted class and actual class. Each row contains the number of predictions done on pixels of the
corresponding ground truth class per class that was predicted. Conversely, each column contains the numbers of times
that class was predicted per actual class. Ideally, all counts are in the matrix diagonal, in which case all pixels would be
predicted correctly. The number of counts in this diagonal as a percentage of the matrix sum equals accuracy. A confusion
matrix is most useful in detecting whether a class is often confused for another. A relatively large number of predictions
in a cell outside the matrix diagonal indicates such a situation.

4.3 Training

Our initial experiment uses a multinomial cross entropy loss function, calculated only over the pixels for which ground
truth is available.
We tried 0.1, 0.01, 0.001, and 0.0001 for starting learning rates, with a value of 0.01 performing the best for cross entropy
loss and Dice loss, and a value of 0.001 performing the best for focal loss. A learning rate of 0.1 converged infeasibly
slow and gave worse performance, one of 0.001 converges slightly faster, but performed approximately 16% worse, and
0.0001 again performed and converged significantly worse. Next, we tested batch sizes and quickly found that the higher
the batch size, the better the performance, as is nearly always the case in deep learning. Our available VRAM allows
a batch size of 8 when using cross entropy loss, but this no longer fits when using focal loss, which forced us to use
a batch size of 6 for all experiments in order to provide for a fair comparison. The reason for using a fixed batch size
across experiments while adjusting the learning rate to the loss function between experiments, is the fact that batch size
increases proportionally for all loss functions and is limited by external factors, while each loss functions has a specific
optimal learning rate. We do not wish to unfairly favour some experiments because unimportant external factors happen
to benefit their performance, and compare their results to those of experiments which are unfortunate enough to not get
this advantage, which would not be very informative. Learning rate, however, is something we ourselves determine, and
since we do want to get the most out of each experiment while keeping external factors fixed, it is a small effort to test for
an experiment’s optimal learning rate.
Lastly, we tried momentum values of 0.7, 0.8, and 0.9, and found 0.8 to perform slightly better than the other values. After
three epochs without an improvement of at least 0.0001 in the validation loss, the learning rate is divided by four. This
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allows the network to more precisely converge to an optimum. In order to prevent overfitting, training is stopped after six
epochs without improvement in the validation loss. Our prioritisation did not permit the investigation of other loss decay
and patience values.

Across all experiments, we fix the test set to each contain the same 100 images, which establishes the most informative and
valuable comparison, even if the annotations on those images (between datasets) differ. We also keep the validation set the
same, using a different set of 100 images. As we explained earlier, the validation set determines for how long the network
is trained and when training has converged. Keeping the validation set fixed means that training for each experiment stops
whenever there is no improvement in that same set, ensuring that each experiment is maximally exploited in the same
way. We could have opted to keep the number of training epochs fixed rather than keeping the validation set fixed; the
network would see each sample the same number of times for each experiment. In this case, we could better compare
experiments on the same dataset with differing training set sizes, as training set size would be the only difference between
them. However, when comparing experiments on different datasets, it is more informative to train to convergence in an
equal manner, since we’ll know what kind of segmentation performance is achievable for each experiment.
Our material dataset only concerns the first 800 images of the 4,000 images provided by CycloMedia, and therefore only
contains images captured in The Netherlands (recall that the first half of our images was captured in The Netherlands,
with the other half captured in the USA). Since we wish to have the same validation and test sets for experiments on the
instance-as-material and instance-as-semantic datasets as well as the material dataset, the validation and test sets must
contain images exclusively taken in The Netherlands. This might unfairly evaluate experiments in which Semantic FPN
is trained on images from the United States. While naturally occurring materials have the same characteristics regardless
of country, like foliage, water or wood, materials that constitute man-made constructs often differ in appearance
across nations. For instance, aluminium, a class mostly made up by traffic signs, and iron, consisting of manholes,
fire hydrants and catch basins, tend to look different across the Pacific. Networks trained on datasets of all 4,000 images
will additionally need to adapt to US images, but are only evaluated on the Dutch images. Their learned representations
will be more general, while networks trained exclusively on Dutch images are expected to be better at segmenting Dutch
images. It is likely that this will negatively impact the results of experiments trained on the whole set of images. On the
other hand, such training might improve the network’s ability to generalize.

We attempted for as deterministic a training procedure to the extent to which this was feasible. The images were shuffled
before being distributed across the training, validation, and test set, which remain fixed across experiments. No further
shuffling is being done, and there are no other stochastic elements in our entire pipeline. However, training on a GPU is
generally non-deterministic, due to asynchronous floating point operations.

Our code has been exclusively written in Python 3.5. In implementing, training and testing Semantic FPN, we use
the Keras API of TensorFlow 1.12, Google’s machine learning framework [2, 1]. Though images are represented as
TensorFlow’s Tensor objects when being processed by the network, they are supplied and evaluated on as NumPy’s
multidimensional (nd)array objects [69], though the two formats are highly similar and conversion between them is
easy. Images are read, written, and transformed with opencv-python, an unofficial wrapper package for the Python
API of OpenCV 2 [8, 9], for which a Python wrapper package is readily available. For writing confusion matrices and
AUC calculation, we use two corresponding functions from the Scikit-learn library [70]. Some models are trained using
two Nvidia Tesla P100 PCIe GPUs, and some were trained on a single Nvidia Tesla K40m. Both GPUs sport 12 GB of
VRAM. We use CUDA [76] 8.0.61 with cuDNN [18] 7.1.4. We include snippets of code for our loss function and network
definition in Appendices D and E, respectively.

4.4 Experiments

We report on our experiments in more or less chronological order. We start with training and evaluation of Semantic
FPN on our material dataset, which we consider our core experiment. All subsequent experiments are deviations from
this experiment, and aim at a deeper understanding of this problem and investigate areas of improvement. Only figures of
interest are included in this section; all figures for each experiment are printed in Appendix G.

4.4.1 Initial experiment

Figure 47 showcases Semantic FPN’s predictions after having been trained on 600 images of our material dataset with
cross entropy loss. Especially the large segmentations adhere somewhat to the shapes they try to encompass. We see
difficulties in cluttered and distant areas, however. This was to be expected, since such far-away cityscapes are likely to
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(a) Original image

(b) Ground truth annotations

(c) RGB, full segmentation

(d) RGBD, full segmentation

(e) RGB, within ground truth

(f) RGBD, within ground truth

(g) RGB, heatmap

(h) RGBD, heatmap
Figure 47: Visualizations of Semantic FPN’s predictions after being trained on 600 images of our material dataset. (a)
shows the original test image, (b) shows the ground truth annotations for the image, (c) and (d) show the visualized
predicted segmentations when trained on RGB and RGBD respectively, (e) and (f) show the predictions only within
the annotated regions, and (g) and (h) show the corresponding confidence of the softmax probabilities of the predicted
classes. The "heatmaps" with which we visualize confidence range from blue, for low probabilities, to green, for
probabilities around 50%, to red, for high probabilities. The center two columns show messy predictions, and the
confidence indicate that the network is generally uncertain about its predictions.

be perceived similarly as noise by Semantic FPN and are too detailed and of too low a resolution to be usable. It is no
wonder that RGBD does not perform better for these image regions; a small image region with a high variance in RGB
values (i.e. a cluttered image region) is likely to entail a high variance in the corresponding depth map, and the depth map
has a comparatively low depth resolution at large values. For pixels where ground truth is given, the network predicts
correct in 86% of the time. The tiled sidewalk and the stone curb perform worse, though. The confidence (visualized as
"heatmaps" in Figures 47g and 47h) indicate the network’s certainty within large segmentations, and its uncertainty on
borders and within smaller, more cluttered segmentations. This is in accordance with the training data, which focuses on
large regions of uniform material rather than smaller regions. Especially the distant horizon is rarely annotated, mainly
because the effort yields less ground truth than the large patches, but also because far-away materials are more difficult
to determine. Another reason for the uncertain borders could be due to the training data giving the network little to
no concept of pixel-wise boundaries, since its only frame of reference consists of variably shaped segments of singular
materials. The actual boundaries between materials in an image are rarely covered with ground truth, and we therefore
already expected the network to be bad at predicting border regions. The confidence shows the network’s uncertainty
around segmentation edges, of which it has seldom seen the patterns. Obviously, the differences in depth are then also
not taken into account, while boundaries are potentially even more distinct in depth maps. We expect full image semantic
training data to significantly improve segmentation quality. A more thorough account of our data is given in Section 4.1.
More segmentations can be found in Appendix F.

Contrary to expectations, this experiment shows how the segmentation quality between RGB and RGBD predictions is
nearly identical, especially for the large classes. It could be that depth maps either possess less discriminitive value than
we expected, or their discriminitive value is made superfluous by the presence of RGB information. The similarities
between the two become more apparent in Table 6. This table shows how the segmentations of some classes improve
marginally, while those of others slightly deteriorate. We reserve the high similarity of both input types for later, when we
investigate SUBQUESTION II, and instead focus first on class imbalance.
Overall mIoU for this experiment is a rather low 0.49 for RGB and 0.51 for RGBD. In general, we can observe a trend of
a decreasing IoU with a decreasing class size. There are some notable exceptions to this rule, though. tile performs bad
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RGB RGBD RGBD - RGB
IoU Precision Recall IoU Precision Recall IoU Precision Recall

Overall 0.494 0.636 0.576 0.507 0.630 0.594 +0.013 -0.006 +0.018
Weighted overall 0.809 0.879 0.886 0.802 0.874 0.882 -0.007 -0.005 -0.004

brick 0.832 0.899 0.918 0.820 0.893 0.909 -0.012 -0.006 -0.009
sky 0.982 0.998 0.984 0.980 0.998 0.981 -0.002 0.000 -0.003

asphalt 0.858 0.907 0.940 0.832 0.880 0.937 -0.026 -0.027 -0.003
tile 0.597 0.796 0.704 0.583 0.807 0.677 -0.014 +0.011 -0.027

foliage 0.826 0.890 0.920 0.862 0.914 0.938 +0.036 +0.024 +0.018
cloud 0.963 0.967 0.996 0.958 0.962 0.995 -0.005 -0.005 -0.001
grass 0.715 0.785 0.889 0.663 0.766 0.831 -0.052 -0.019 -0.058
glass 0.674 0.753 0.865 0.702 0.784 0.870 +0.028 +0.031 +0.005
stone 0.340 0.563 0.461 0.369 0.578 0.505 +0.029 +0.015 +0.044
steel 0.569 0.712 0.739 0.596 0.733 0.761 +0.027 +0.021 +0.022

concrete 0.824 0.924 0.883 0.819 0.921 0.881 -0.005 -0.003 -0.002
water 0.563 0.837 0.632 0.644 0.792 0.776 +0.081 -0.045 +0.144
wood 0.402 0.683 0.495 0.473 0.740 0.568 +0.071 +0.057 +0.073
soil 0.265 0.501 0.359 0.191 0.348 0.298 -0.074 -0.153 -0.061
other 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

aluminium 0.412 0.509 0.685 0.432 0.558 0.657 +0.020 +0.049 -0.028
gravel 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
iron 0.000 0.002 0.000 0.004 0.022 0.005 +0.004 +0.020 +0.005

living 0.447 0.779 0.512 0.541 0.833 0.607 +0.094 +0.054 +0.095
fabric 0.105 0.843 0.108 0.048 0.455 0.051 -0.057 -0.388 -0.057

plastic 0.002 0.004 0.006 0.134 0.242 0.232 +0.132 +0.238 +0.226

Table 6: Evaluation metrics of training Semantic FPN on 600 images of our material dataset. Results are given both for
a pipeline with RGB as input as well as RGBD. The overall metrics are unweighted averaged: mIoU, macro-averaged
precision and macro-averaged recall, respectively. Naturally, the weighted overall metrics are fIoU, weighted macro-
averaged precision and weighted macro-averaged recall. The materials are sorted descendingly by size; their number
of available ground truth pixels in the training set. The cells are color coded to ease interpretation, with the colors
ranging from light yellow (for zero values) to red (for 1’s). RGB and RGBD perform highly similar, with some classes
benefitting slightly from the additional depth map, and some being worse off. The third columns gives the difference
between performance on the two input types.

compared to its neighbours of similar size. Looking at the confusion matrices in Table 8, it can be seen that approximately
one-seventh of tile’s pixels are confused as brick, which makes sense given the similarity of their pattern. Conversely,
approximately a tenth of all tile predictions were actually brick. To a lesser extent, a similar confusion between
classes happens between tile and stone, which is also understandable. stone largely consists of curbs, curb cuts or
ramps, and small barriers, all of which appear relatively smooth and light grey (see Figure 45, which contains two stone
samples, though from different lighting conditions). Tiles, more so than bricks, are often of the same appearance, which
provides a possible explanation for the confusion. stone itself also performs badly relative to its class size. Naturally,
the confusions between tile and stone will reflect even worse on stone, since is stone is smaller than tile.
However, stone is most often misclassified as brick, even though we would say that stone and brick are less
similar than stone and tile. We conjecture that this is due to brick’s overwhelming class size. For RGB, plastic,
iron, gravel, other are barely predicted, and significantly impact mIoU.

There are also classes that perform better than their size suggests: concrete, living, fabric, and aluminium are
the most notable ones. The latter is easy to explain; aluminium almost exclusively comprises traffic signs, which have
very recognizable patterns and colours. fabric, on the other hand, seems to perform well relative to its size, though
this is partly an illusion caused by its high precision. Precision is less interesting than recall, and fabric exemplifies
why. fabric only has 27,300 pixels annotated in the test set, according to Table 7. This is the same as a 165x165 square
image, and only about a tenth of these pixels have been correctly detected with RGB input. In other words, the network
predicted 3,497 pixels as fabric, and even though 2,951 of these were correct, 27, 300− 2, 951 = 24, 349 pixels were
missed.
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aluminium asphalt brick cloud concrete fabric foliage glass grass gravel
0.004 0.179 0.307 0.07 0.011 0.003 0.05 0.015 0.026 0.0001

iron living other plastic sky soil stone steel tile water wood
0.002 0.003 0.005 0.0003 0.196 0.005 0.023 0.024 0.075 0.002 0.006

(a) Class size ratios; the ratio of a class’s number of ground truth pixels to the total number of ground truth pixels.

aluminium asphalt brick cloud concrete fabric foliage glass grass gravel
39,487 1,707,777 2,934,132 664,716 100,685 27,300 477,708 145,727 244,105 1,064

iron living other plastic sky soil stone steel tile water wood
14,609 31,918 4,490 3,421 1,876,419 48,792 216,358 228,386 721,283 18,817 57,269

(b) Class sizes; expressed in number of ground truth pixels.

Table 7: Two tables, giving the sizes of the material classes within our test set in three different representations. (a)
gives the relative class ratios. (b) gives the absolute number of ground truth pixels.

A first glance at the confusion matrices in Table 8 suggests decent segmentation quality, as most predictions are in the
matrix diagonal. The sum of the diagonal – the number of correct predictions, or true positives – divided by the total
number of ground truth pixels gives our accuracy. For both RGB and RGBD this accuracy is 0.89, meaning 89% of
all pixels are predicted correctly. mIoU is still a low 0.49 for RGB and 0.51 for RGBD. The difference between these
two metrics highlights an important observation. As discussed in Section 4.2, mIoU averages IoUs equally over classes,
whereas accuracy is a percentage of the number of pixels in an image. This tells us that the accuracy is dominated by the
large classes, which the network has the least trouble predicting and give the accuracy its high value. Contrast this with
mIoU, which is being held back by the small classes with low IoUs. The network’s difficulty of segmenting small classes
is therefore at least partially responsible for the low mIoU. This can be read from the confusion matrices; there seems to
be a proportional relation between the recall of a class (indicated by the redness of the class’s cell in the diagonal) and its
size.

Cells outside of the diagonal that show a large recall indicate a class which the network often confuses with another.
Looking at the matrix for RGB input, most striking seems to be the mistaking of other pixels for brick and of
gravel for stone, though the former ameliorates with additional depth input (indicating that depth helps distinguish
other from brick) and the latter only concerns a relatively small number of mispredictions. Another salient confusion
is that of both fabric and aluminium being predicted as steel. For fabric, this was to be expected, since plenty
of steel annotations are painted or printed, in which case it resembles a coloured fabric. steel is the larger class,
and it therefore makes sense that the network is biased towards steel and mistakes fabric for steel instead of the
other way around. The confusion of aluminium and steel is more puzzling, since the aluminium class almost
exclusively consists of traffic signs, which have, again, easily recognizable and repetitive colour patterns, and is therefore
expected to be easily distinguishable from steel. However, traffic signs are frequently turned away from the camera, in
which case the backside is visible. In nearly all cases, this backside is a smooth grey, which is easy to mistake for steel.
The worst confusion, however, is that of iron being mistaken for both asphalt and brick; together they form 10,830
missed pixels out of the total 14,909. iron consists mostly of manholes, which are in turn mostly embedded in either
asphalt or brick roads. A smaller portion of iron consists of catch basins, which in The Netherlands are most often
built into curbs. Visually, iron is rather distinct from the classes with which it is confused, and we have trouble coming
up with a reason. A possible explanation is that iron segmentations are simply too small. The larger scales of Semantic
FPN’s feature pyramid contain the fine details, like manholes, but these are mixed with the low-resolution feature scales
(which contain more semantic information). The iron segmentations could potentially get muddled or faded by the
large, encompassing asphalt or brick segmentations.

We ran the same experiment again, and determined that the small classes are rather volatile, i.e. the distribution of
predictions among the small classes differs measurably between two runs of same experiment. This makes it difficult to
draw any conclusions regarding those classes regarding the pattern on where and how the network makes its mistakes. We
printed the results of this second run in Appendix G.3.

4.4.2 SUBQUESTION I, concerning class imbalance

At this point, the most pressing issue is that of the class imbalance hampering our performance. Our first attempt at
mitigating class imbalance is to use per-class loss weights proportional to class size. All other hyperparameters and
settings remain the same. The weight of a class is the ratio of its size to the size of the smallest class. Class weighing
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Predicted labels

Tr
ue

la
be

ls

aluminium asphalt brick cloud concrete fabric foliage glass grass gravel iron living other plastic sky soil steel stone tile water wood Total
aluminium 27060 53 400 67 557 34 896 738 106 0 0 562 0 31 0 12 7760 71 267 45 828 39487

asphalt 0 1606151 80027 0 0 0 155 5 4209 0 0 0 0 88 0 1989 649 9150 5285 0 69 1707777
brick 4290 102103 2693963 0 2079 41 2592 15911 2510 39 442 174 162 0 781 3679 10255 18906 71139 25 5041 2934132
cloud 0 0 76 662268 0 0 94 0 0 0 0 0 0 0 1923 0 150 0 205 0 0 664716

concrete 38 0 5720 0 89000 119 103 985 54 27 8 0 0 16 27 0 3549 0 1018 0 21 100685
fabric 8603 0 1302 38 206 2951 13 7880 86 0 0 21 154 0 249 0 3846 1354 571 9 17 27300
foliage 272 97 2997 133 532 0 439810 154 23073 20 10 333 0 34 3 1107 5088 2249 457 171 1168 477708

glass 2508 6 5635 0 9 194 173 126184 151 0 0 727 89 178 0 0 6495 54 2460 0 864 145727
grass 26 1175 2854 0 1554 0 6541 6 217142 0 0 22 0 11 0 911 3701 5940 3203 458 561 244105

gravel 0 0 22 0 0 0 49 0 0 0 0 0 0 0 0 0 69 820 104 0 0 1064
iron 0 5076 5754 0 5 0 20 0 104 0 9 5 0 0 0 0 49 2425 1129 0 33 14609

living 283 1063 1837 0 0 9 1161 3650 37 32 69 16352 1183 87 117 11 3377 200 2389 0 61 31918
other 0 12 3256 0 0 0 64 0 15 0 9 0 0 17 0 0 84 39 990 0 4 4490

plastic 204 1 389 503 0 15 87 0 0 0 0 741 0 21 0 0 1032 37 313 0 78 3421
sky 95 0 227 20195 0 16 7680 0 0 0 0 0 121 0 1847543 0 129 0 413 0 0 1876419

soil 70 10226 4227 0 0 0 902 0 9981 0 0 3 0 0 0 17560 1602 2242 1005 345 629 48792
steel 7901 2198 16955 1543 1789 116 1870 4636 2232 1 1130 1402 0 2165 15 227 160061 4736 5496 93 1792 216358
stone 335 19635 49254 0 135 0 813 940 5852 48 1912 509 18 2444 74 3352 3897 105369 32006 1018 775 228386
tile 631 21654 115390 36 360 2 21258 301 10431 88 187 22 57 0 0 6165 3375 32954 508135 29 208 721283
water 169 217 424 0 0 0 4017 548 0 0 0 0 0 0 0 0 56 107 382 11904 993 18817
wood 665 30 5165 7 21 0 5746 5576 530 0 445 100 0 81 0 8 9365 224 813 123 28370 57269
Total 53150 1769697 2995874 684790 96247 3497 494044 167514 276513 255 4221 20973 1784 5173 1850732 35021 224589 186877 637780 14220 41512 9564463

(a) RGB
Predicted labels

Tr
ue

la
be

ls

aluminium asphalt brick cloud concrete fabric foliage glass grass gravel iron living other plastic sky soil steel stone tile water wood Total
aluminium 25959 3 344 98 386 287 1428 611 110 0 0 45 0 28 10 0 8117 515 106 3 1437 39487

asphalt 59 1601384 83862 0 0 0 212 77 5129 0 2 0 10 12 0 1909 1157 10574 3196 31 163 1707777
brick 2374 156426 2669142 0 844 0 1295 5919 3019 0 571 877 14 111 68 2460 7537 19244 60540 1213 2478 2934132
cloud 0 0 60 661891 89 0 0 41 0 0 0 0 0 0 1762 0 481 0 392 0 0 664716

concrete 0 0 2528 0 88713 0 143 856 0 0 0 0 0 12 22 0 6714 0 1697 0 0 100685
fabric 4531 1345 1665 0 60 1393 80 10608 0 0 8 0 116 0 213 427 6099 0 329 0 426 27300
foliage 1422 542 2282 163 680 0 448399 1014 13759 0 49 217 17 54 1 1056 3371 2363 475 213 1631 477708

glass 2232 43 3984 0 1024 343 703 126881 0 0 0 1452 13 0 176 0 6913 726 874 0 363 145727
grass 6 2543 5981 0 1672 0 13142 58 202856 0 84 0 0 0 0 3742 3274 6208 2848 751 940 244105

gravel 0 0 13 0 0 0 44 0 0 0 0 0 0 0 0 0 10 724 273 0 0 1064
iron 0 4236 6400 0 0 0 0 6 125 0 81 10 0 0 0 5 118 2257 1371 0 0 14609

living 432 501 4395 0 0 0 203 3325 55 0 37 19386 0 77 647 10 1153 310 1208 30 149 31918
other 0 12 1641 0 0 0 29 0 0 0 3 0 0 0 0 0 29 572 2179 25 0 4490

plastic 14 0 203 417 0 0 88 52 0 0 64 298 41 797 0 0 1107 180 160 0 0 3421
sky 0 0 32 25145 0 0 7691 23 0 0 0 0 0 0 1842102 0 85 0 1341 0 0 1876419

soil 0 9498 2737 0 0 0 222 0 15643 0 0 7 0 0 0 14582 2114 2078 1085 0 826 48792
steel 8246 2088 11604 64 2652 886 2400 5072 2792 0 347 800 23 954 11 383 164830 3564 6757 832 2053 216358
stone 157 14851 50315 0 14 0 607 938 7297 0 495 147 0 1112 85 2048 3514 115396 30665 557 188 228386
tile 628 24738 128934 10 119 79 9031 1524 12910 73 987 3 0 0 72 15122 4269 34048 488560 23 153 721283
water 363 1 708 0 0 0 152 0 268 0 837 0 0 95 0 0 822 359 0 14608 604 18817
wood 77 63 10292 0 39 70 4596 4640 694 0 11 7 0 39 10 55 2947 200 843 156 32530 57269
Total 46500 1818274 2987122 687788 96292 3058 490465 161645 264657 73 3576 23249 234 3291 1845179 41799 224661 199318 604899 18442 43941 9564463

(b) RGBD

Table 8: Confusion matrices for predictions made by Semantic FPN on our material dataset with RGB and RGBD
input. A cell’s color reflects the ratio of its number of predictions to the total number of ground truth pixels for the
corresponding true class. For cells in the diagonal, this ratio equals the class’s precision.

increases the loss taken over pixels belonging to a small class, and devaluates the loss for large class pixels. This increases
gradient magnitude for the small classes, allowing those to learn more and take steeper gradient descent steps than without
class weights. The class weights, together with class sizes within our training set, are given in Table 9a.

The results in Table 10 show how a class-weighted cross entropy loss performs marginally better. The small classes are
most affected by the weighted loss, which is to be expected, though they not always change for the better. There does
not seem to be a coherent pattern in the difference between class-weighted and unweighted loss, both between classes
and between RGB and RGBD; it seems rather arbitrary. fabric sees a significant increase in precision. In order to
avoid any unnecessary analysis, we also ran this exact experiment again, with the outcomes, differences to the current
experiment, and a small analysis located in Appendix G.4. This time also, the small classes appear highly volatile. We
think that using class weights is insufficient, given the extremity of our class imbalance (as indicated by the ratios in Table
9b). Literature agrees that class-weighted loss function are suitable for datasets with a slight imbalance, but does not work
well for datasets with a severe imbalance [75].

We next try Dice loss. Since we express performance in mIoU, and since Dice loss theoretically optimizes for mIoU
directly, Dice loss is expected to be a viable alternative. The results are disappointing however. The results for both class-
weighted and unweighted Dice loss are summarized in Table 11, and a more complete account can be found in Appendix
G.5 and G.6. Apparently, Dice loss’s idea of increasing mIoU is to not predict most classes, and instead to gamble on
others. It is strange, however, that it neglects to predict brick, the biggest class, but chooses to predict living – it
manages to detect half of the latter class. We ran the experiment before, though with a different learning rate and batch
size, and found that another set of classes were not predicted. When combining Dice loss with class weights, performance
increases somewhat, yet again a different set of classes is skipped.
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aluminium asphalt brick cloud concrete fabric foliage glass grass gravel
0.166 0.004 0.003 0.012 0.049 0.805 0.011 0.03 0.013 0.396

iron living other plastic sky soil stone steel tile water wood
0.402 0.516 0.146 1 0.004 0.09 0.035 0.034 0.011 0.071 0.088

(a) Class weights; the weight of a class is the ratio of its size to the size of the smallest class.

aluminium asphalt brick cloud concrete fabric foliage glass grass gravel
0.004 0.182 0.256 0.061 0.015 0.001 0.065 0.024 0.055 0.002

iron living other plastic sky soil stone steel tile water wood
0.002 0.001 0.005 0.0007 0.189 0.008 0.021 0.021 0.067 0.010 0.008

(b) Class size ratios; the ratio of a class’s number of ground truth pixels to the total number of ground truth pixels.

aluminium asphalt brick cloud concrete fabric foliage glass grass gravel
258,488 10,677,635 15,048,695 3,605,311 884,032 53,374 3,824,702 1,427,588 3,240,765 108,582

iron living other plastic sky soil stone steel tile water wood
106,922 83,242 293,620 42,988 11,127,619 475,160 1,212,214 1,249,003 3,931,732 608,546 487,980

(c) Class sizes; expressed in number of ground truth pixels.

Table 9: Three tables, giving the sizes of the material classes within our training set in three different quantities. (a)
gives the weights as we use them for weighting our loss. (b) gives the relative class ratios. (c) gives the absolute number
of ground truth pixels.
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Figure 48: A plot of the gradient of Dice loss with respect to logits against the probability resulting from the logits.
Ideally, this plot should be monotonically decreasing, since Dice loss only optimizes for probabilities of true labels (i.e.
true positives or false negatives). Now, false negatives get the same loss as true positives, which results in the low recall
we observe when using Dice loss.

The derivative of Dice loss with respect to the logits z is:

∂LDice

∂z
=
−2yŷ2(1− y)

(y + ŷ)2
(22)

which results in unstable training; whenever both y and ŷ are small, the gradient quickly becomes unwieldily large.
Compare this to the more stable binary cross entropy loss, whose gradient with respect to the logits is:

∂LCE

∂z
= y − ŷ (23)

Also, Dice loss only gives a gradient for true positives and false negatives, since there is no gradient whenever ŷ = 0. For
all possible probabilities of a true class, the gradient of Dice loss with respect to logits is plotted against probability in Fig
48. This function should be monotonically decreasing, but is not. This means that false negatives are getting incorrect
gradients, which results in a low recall. The stronger optimization of true positives reduces false positives, improving the
precision. This is a possible explanation for Dice loss’s erratic behaviour.
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Class-weighted cross entropy loss
RGB RGBD

IoU Precision Recall IoU Precision Recall
Overall 0.509 0.659 0.591 0.503 0.646 0.586

Weighted overall 0.808 0.879 0.886 0.807 0.880 0.886
brick 0.830 0.892 0.922 0.828 0.902 0.909
sky 0.975 0.994 0.980 0.977 0.998 0.979

asphalt 0.858 0.901 0.947 0.825 0.881 0.928
tile 0.604 0.816 0.698 0.621 0.808 0.728

foliage 0.843 0.903 0.926 0.849 0.894 0.944
cloud 0.945 0.957 0.986 0.952 0.954 0.997
grass 0.691 0.795 0.841 0.711 0.827 0.835
glass 0.710 0.798 0.864 0.715 0.785 0.888
stone 0.332 0.567 0.444 0.398 0.617 0.529
steel 0.573 0.703 0.757 0.614 0.718 0.809

concrete 0.806 0.870 0.916 0.829 0.908 0.905
water 0.652 0.774 0.805 0.467 0.614 0.660
wood 0.406 0.709 0.487 0.440 0.720 0.531
soil 0.237 0.531 0.299 0.339 0.636 0.421

other 0.000 0.000 0.000 0.000 0.000 0.000
aluminium 0.450 0.600 0.643 0.501 0.671 0.665

gravel 0.143 0.542 0.163 0.000 0.000 0.000
iron 0.006 0.062 0.007 0.044 0.297 0.049

living 0.394 0.764 0.449 0.353 0.695 0.418
fabric 0.235 0.660 0.268 0.092 0.639 0.098

plastic 0.003 0.008 0.004 0.007 0.013 0.017

Difference with unweighted cross entropy loss
RGB RGBD

IoU Precision Recall IoU Precision Recall
+0.015 +0.023 +0.015 -0.004 +0.016 0.000
-0.001 0.000 0.000 +0.005 +0.006 +0.004
-0.002 -0.007 +0.004 +0.008 +0.009 0.000
-0.007 -0.004 -0.004 -0.003 0.000 -0.002
0.000 -0.006 +0.007 -0.007 +0.001 -0.009

+0.007 +0.020 -0.006 +0.038 +0.001 +0.051
+0.017 +0.013 +0.006 -0.013 -0.020 +0.006
-0.018 -0.010 -0.010 -0.006 -0.008 +0.002
-0.024 +0.010 -0.048 +0.048 +0.061 +0.004
+0.036 +0.045 -0.001 +0.013 +0.001 +0.018
-0.008 +0.004 -0.017 +0.029 +0.039 +0.024
+0.004 -0.009 +0.018 +0.018 -0.015 +0.048
-0.018 -0.054 +0.033 +0.010 -0.013 +0.024
+0.089 -0.063 +0.173 -0.177 -0.178 -0.116
+0.004 +0.026 -0.008 -0.033 -0.020 -0.037
-0.028 +0.030 -0.060 +0.148 +0.288 +0.123
0.000 0.000 0.000 0.000 0.000 0.000

+0.038 +0.091 -0.042 +0.069 +0.113 +0.008
+0.143 +0.542 +0.163 0.000 0.000 0.000
+0.006 +0.060 +0.007 +0.040 +0.275 +0.044
-0.053 -0.015 -0.063 -0.188 -0.138 -0.189
+0.130 -0.183 +0.160 +0.044 +0.184 +0.047
+0.001 +0.004 -0.002 -0.127 -0.229 -0.215

Table 10: Results obtained by training Semantic FPN with class-weighted cross entropy loss for both RGB and RGBD
input. The differences with unweighted cross entropy loss are on the right hand side.

The last loss function we try is focal loss. Focal loss downweights the contribution of samples for which the softmax
probability is high, which indicates that the sample is already easy to predict. In this way, the more difficult samples –
of which the network is uncertain – get a higher priority. The confidence in Figures 47g and 47h show the network’s
uncertainty on small or cluttered regions, and these are the pixels which will therefore contribute more to the loss. Ideally,
this makes the network more skilled at predicting the smallest classes, which in turn decreases their contribution and
makes the network focus on the next difficult class.
Table 12 contains the results. Performance is slightly worse than that of cross entropy loss, though not nearly as bad as
Dice loss. Instead of getting better at predicting smaller classes than cross entropy loss, this loss is less capable at it.
Results of weighted focal loss are in Appendix G.8. Performance of class-weighted focal loss is highly similar, though
the deviations in the small classes are slightly exacerbated.

We conjecture that the class imbalance is so severe that it renders our dataset unusable. The volatility of the small classes
in our cross entropy experiments suggests the same. Table 9a shows how the ratio of the smallest to the largest class is
0.003. fabric and plastic both have around 50,000 pixels with which they are trained. Besides the imbalance in the
training set, we also evaluate with very little data. Table 7b tells us that gravel and plastic are evaluated on only
3,421 and 1,064 ground truth pixels, respectively.

A potential solution aimed at improving the performance of the small classes would be to predict those classes using
an instance segmentator, e.g. Mask R-CNN [37], or even using object detectors with an added segmentation head, e.g.
RetinaNet [57]. The predicted instances can then be flattened into a semantic segmentation map and merged with the
semantic predictions of the other material classes. Most of the small classes largely consists of small, recognizable
objects. For instance, the majority of plastic’s annotation exist in the form of traffic lights, traffic cones, and small
movable guiding signs as shown in Figure 45 as the left plastic example. iron exclusively consists of catch basins,
fire hydrants and manholes, and fabric contains flags, billboards and banners. Especially RetinaNet, when used with
the focal loss with which it was introduced, is adept at detecting infrequently occurring objects. The others materials
are semantically segmented in isolation, after which the resulting segmented image is "overwritten" with the instance
segmentations of the small classes. Evaluating this method is outside the scope of this research, however.

In order to analyze any subsequent experiment without the negative effects of class imbalance, we resort to merging the
smallest, worst performing classes. Those with mIoU near zero across experiments are plastic, fabric, iron,
gravel, and other. We attempt three methods of eliminating these five classes: merging them into a background
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Unweighted Dice loss
RGB RGBD

IoU Precision Recall IoU Precision Recall
Overall 0.330 0.780 0.387 0.420 0.783 0.474

Weighted overall 0.554 0.615 0.593 0.631 0.716 0.685
brick 0.000 — 0.000 0.783 0.874 0.882
sky 0.985 0.997 0.987 0.981 0.996 0.984

asphalt 0.823 0.889 0.917 0.000 — 0.000
tile 0.484 0.796 0.553 0.550 0.828 0.621

foliage 0.882 0.943 0.931 0.847 0.899 0.935
cloud 0.970 0.978 0.991 0.958 0.969 0.988
grass 0.654 0.803 0.778 0.628 0.761 0.783
glass 0.720 0.813 0.862 0.739 0.849 0.851
stone 0.000 — 0.000 0.360 0.658 0.443
steel 0.571 0.776 0.684 0.589 0.795 0.694

concrete 0.000 — 0.000 0.780 0.945 0.817
water 0.000 — 0.000 0.416 0.990 0.418
wood 0.243 0.870 0.253 0.269 0.927 0.275
soil 0.000 — 0.000 0.000 — 0.000

other 0.000 — 0.000 0.000 — 0.000
aluminium 0.000 — 0.000 0.566 0.801 0.659

gravel 0.000 — 0.000 0.000 — 0.000
iron 0.112 0.578 0.122 0.064 0.293 0.075

living 0.494 0.910 0.519 0.284 0.944 0.289
fabric 0.000 — 0.000 0.000 — 0.000

plastic 0.000 0.000 0.528 0.000 0.000 0.242

Class-weighted Dice loss
RGB RGBD

IoU Precision Recall IoU Precision Recall
0.426 0.835 0.480 0.468 0.787 0.524
0.766 0.849 0.857 0.784 0.866 0.872
0.764 0.817 0.921 0.769 0.842 0.899
0.984 0.997 0.986 0.985 0.999 0.985
0.814 0.870 0.926 0.791 0.843 0.928
0.566 0.840 0.634 0.562 0.811 0.646
0.867 0.901 0.958 0.885 0.930 0.948
0.966 0.975 0.990 0.974 0.976 0.997
0.677 0.773 0.844 0.712 0.815 0.849
0.748 0.817 0.898 0.700 0.765 0.890
0.321 0.631 0.395 0.364 0.654 0.450
0.578 0.741 0.724 0.619 0.766 0.763
0.000 — 0.000 0.804 0.967 0.826
0.231 0.978 0.233 0.681 0.903 0.734
0.284 0.922 0.291 0.266 0.873 0.277
0.010 0.444 0.010 0.101 0.458 0.115
0.000 — 0.000 0.000 — 0.000
0.552 0.766 0.665 0.514 0.810 0.584
0.000 — 0.000 0.000 — 0.000
0.000 — 0.000 0.110 0.961 0.111
0.555 0.946 0.573 0.000 — 0.000
0.029 0.946 0.029 0.000 — 0.000
0.000 — 0.000 0.000 0.000 0.000

Table 11: Per-class results of training Semantic FPN with both unweighted and class-weighted Dice loss on RGB and
RGBD input.

class, renaming other to background and removing the others, and removing all of them. All these methods are tried
with our four best performing loss functions: both unweighted and class-weighted cross entropy loss, and both unweighted
and class-weighted focal loss. The results per loss function are in Appendices G.9, G.10, G.11, and G.12, respectively. For
all three methods and all four loss functions, mIoU increases significantly, although this is largely due to the absence of
any non-performing classes. The performance of the remaining classes has not changed much. When merging the omitted
classes into background and thereby increases its size, it now gets a small number of predictions across all experiments,
even though the recall of these classes is insignificantly small. Two experiments are tied in terms of mIoU on RGB input:
cross entropy loss without background, and class-weighted cross entropy loss where the background is made up of
all irrelevant classes (in order to serve as a catch-all for anything that does not fall under any of the remaining classes).
Since the former is technically an incorrect way of segmenting an image, since there is no way of correctly labeling pixels
from one of the deleted classes, our preference goes towards the latter method: class-weighted cross entropy loss with a
composite background class. This is also the method that performs the best on RGBD input, which further confirms
our choice.

We can now answer SUBQUESTION I: the most optimal measures to combat the adverse effects of class imbalance on
material segmentation performance – as far as we have found – are to combine the worst five performing classes into a
background class, and to use class-weighted cross entropy loss. Using instance segmentation for the small classes is a
promising alternative, but we can only speculate as to its effectiveness in our situation.

4.4.3 SUBQUESTION II, concerning the difference between RGB and RGBD performance

Having obtained an optimal loss function in class-weighted cross entropy, and a way to remedy class imbalance, we next
investigate why material segmentation performance on RGB and RGBD input are as similar as they are. The method from
the previous section becomes our new baseline to which we compare the experiments in this section.
We first ascertain whether a depth channel holds any discriminatory power in the first place; if it does not, then that already
answers SUBQUESTION II. This we do by training only on depth. The results are given in Table 13, which shows the
outcome using three different methods of depth weight initialization. It seems that predicting based solely on depth is
feasible to some extent. Depth is not nearly as indicative of material than colour is, but that was to be expected based on
visual inspections like those in Figure 4. These findings are corroborated by comparing the activation maps of training on
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Unweighted focal loss
RGB RGBD

IoU Precision Recall IoU Precision Recall
Overall 0.470 0.666 0.555 0.434 0.554 0.517

Weighted overall 0.782 0.859 0.870 0.771 0.849 0.860
brick 0.797 0.881 0.893 0.792 0.874 0.894
sky 0.978 0.998 0.980 0.980 0.996 0.983

asphalt 0.816 0.869 0.930 0.814 0.880 0.914
tile 0.568 0.779 0.677 0.547 0.739 0.678

foliage 0.851 0.914 0.926 0.844 0.900 0.932
cloud 0.955 0.958 0.996 0.956 0.964 0.991
grass 0.618 0.721 0.812 0.597 0.698 0.804
glass 0.668 0.750 0.860 0.659 0.739 0.859
stone 0.293 0.510 0.408 0.247 0.449 0.355
steel 0.529 0.662 0.725 0.525 0.668 0.711

concrete 0.740 0.846 0.855 0.664 0.783 0.813
water 0.672 0.747 0.869 0.358 0.604 0.468
wood 0.409 0.631 0.537 0.353 0.631 0.445
soil 0.186 0.375 0.270 0.134 0.314 0.189

other 0.000 0.000 0.000 0.000 0.000 0.000
aluminium 0.398 0.708 0.476 0.373 0.579 0.512

gravel 0.000 0.000 0.000 0.000 0.000 0.000
iron 0.000 0.000 0.000 0.001 0.032 0.002

living 0.293 0.689 0.337 0.281 0.784 0.304
fabric 0.106 0.617 0.114 0.000 0.004 0.000

plastic 0.000 0.000 0.000 0.000 0.000 0.000

Difference with unweighted cross entropy loss
RGB RGBD

IoU Precision Recall IoU Precision Recall
-0.024 +0.030 -0.021 -0.073 -0.076 0.000
-0.027 -0.020 -0.016 -0.031 -0.025 -0.022
-0.035 -0.018 -0.025 -0.028 -0.019 -0.015
-0.004 0.000 -0.004 0.000 -0.002 +0.002
-0.042 -0.038 -0.010 -0.018 0.000 -0.023
-0.029 -0.017 -0.027 -0.036 -0.068 +0.001
+0.025 +0.024 +0.006 -0.018 -0.014 -0.006
-0.008 -0.009 0.000 -0.002 +0.002 -0.004
-0.097 -0.064 -0.077 -0.066 -0.068 -0.027
-0.006 -0.003 -0.005 -0.043 -0.045 -0.011
-0.047 -0.053 -0.053 -0.122 -0.129 -0.150
-0.040 -0.050 -0.014 -0.071 -0.065 -0.050
-0.084 -0.078 -0.028 -0.155 -0.138 -0.068
+0.109 -0.090 +0.237 -0.286 -0.188 -0.308
+0.007 -0.052 +0.042 -0.120 -0.109 -0.123
-0.079 -0.126 -0.089 -0.057 -0.034 -0.109
0.000 0.000 0.000 0.000 0.000 0.000

-0.014 +0.199 -0.209 -0.059 +0.021 -0.145
0.000 0.000 0.000 0.000 0.000 0.000
0.000 -0.002 0.000 -0.003 +0.010 -0.003

-0.154 -0.090 -0.175 -0.260 -0.049 -0.303
+0.001 -0.226 +0.006 -0.048 -0.451 -0.051
-0.002 0.000 -0.006 -0.134 -0.242 -0.232

Table 12: Results of Semantic FPN working with unweighted focal loss, and the difference between focal loss and
unweighted cross entropy loss.

depth in Appendix G.13 and G.10, which shows how the activations of colour information hold more semantic information
than those resulting from depth.

A quick glance is enough to designate which classes have the most distinct depth characterstics: foliage, which has by
far the most coarse and bumpy texture pattern (see Figure 4), and sky, of which the depth is strictly zero. It is interesting
to see how sky performs better than cloud. Both classes have the exact same depth, but sky is the larger class, hence
its better performance. It is strange that, given this fact, cloud still performs reasonably well. It is our guess that the
network predicts randomly according to the ground truth distribution of the two respective classes. We also noticed that,
more often than not, clouds appear in the lower half of aerial pixel regions, which might entice the network to develop
a bias towards cloud at lower parts of image regions where depth is zero. Indeed we see that cloud predictions are
often in the lower regions. They also somewhat adhere to the shapes of our annotations, which may indicate that cloud
is inferred purely on the basis of the shape of segmentations and the location of those segmentation in the images.

glass, concrete, and water all have a high recall, but a low precision. This is because the network predicts those
classes rather carelessly, and therefore incurs a lot of mispredictions. water and glass both have noisy depth seg-
mentations; Figure 49 shows examples. LiDAR signals are reflected away from the sensor when colliding with water.
Therefore, water pixels should all have a depth of zero. However, many objects that are reflected in the water in an RGB
image are also present in the depth map, and are captured relatively accurately at that. It cannot be that the light signals are
bouncing back and forth over the water and return to the sensor, since the chance of a signal following the exact same path
back over water is nil. We therefore suspect these depth reflections to be postprocessing artifacts. This is not necessarily
an issue, especially since sky and cloud already have zero depth. The combination of zero depth pixels interspersed
with strictly positive depth pixels can ultimately be rather characterstics. Even though such a mixture of zero and positive
depth values is also typical for foliage, which sometimes has sky visible through the leafs around the contours of trees,
the network rarely confuses the two, as evident from the confusion matrix in Table 14. It may be that, because water
can contain the depth map for whatever material or object is reflected in the water, instead indirectly learns those reflected
materials. This could have led to the network overconfidently predicting such materials as water. A similar reasoning
can be applied to glass. Light signals simply travel through it, and instead capture everything behind it, making glass
invisible in depth maps.

The confusion matrix in Table 14 also shows the obvious confusion between sky and cloud. soil is frequently
mistaken for grass, but not the other way around. This is similar to what we see for cloud and sky; grass is the
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Reflection initialized
D

IoU Precision Recall
Overall 0.399 0.547 0.561

Weighted overall 0.529 0.674 0.685
brick 0.527 0.689 0.691

sky 0.770 0.867 0.873
asphalt 0.464 0.619 0.650

tile 0.306 0.508 0.435
foliage 0.770 0.839 0.903
cloud 0.456 0.641 0.612
grass 0.314 0.488 0.469
glass 0.451 0.531 0.751
stone 0.328 0.535 0.458
steel 0.398 0.589 0.551

concrete 0.471 0.524 0.822
water 0.484 0.560 0.781
wood 0.303 0.566 0.395
soil 0.191 0.426 0.256

aluminium 0.136 0.199 0.302
living 0.021 0.167 0.024

background 0.027 0.107 0.034

Average RGB initialized
D

IoU Precision Recall
0.423 0.559 0.598
0.553 0.694 0.709
0.540 0.712 0.692
0.793 0.868 0.902
0.494 0.651 0.672
0.294 0.508 0.411
0.799 0.860 0.918
0.470 0.693 0.593
0.383 0.495 0.628
0.514 0.600 0.783
0.429 0.606 0.594
0.455 0.620 0.630
0.472 0.529 0.814
0.488 0.542 0.830
0.305 0.517 0.426
0.137 0.306 0.199
0.178 0.226 0.454
0.022 0.205 0.024
0.016 0.034 0.030

Xavier initialized
D

IoU Precision Recall
0.404 0.550 0.564
0.537 0.678 0.695
0.530 0.703 0.684
0.790 0.852 0.916
0.488 0.621 0.696
0.246 0.478 0.336
0.780 0.863 0.891
0.452 0.711 0.554
0.319 0.422 0.567
0.455 0.583 0.675
0.377 0.576 0.521
0.388 0.525 0.598
0.526 0.623 0.771
0.481 0.546 0.800
0.264 0.456 0.386
0.179 0.547 0.210
0.181 0.243 0.413
0.005 0.050 0.005
0.017 0.067 0.022

Table 13: Per-class results for training solely on depth, using three ways of initializing the weight of the first con-
volution. Reflection simply takes the weights of the RGB network’s green channel, the second method averaged the
pretrained RGB weights over the three channels, and the latter does not use any pretrained weights, but instead uses
glorot initialization.

dominant class and therefore suffers less from the resemblance of their depth maps. Also striking are the many incorrect
predictions for brick. It impacts the recall of asphalt, living, tile, and wood, but the precision of brick itself
is still a reasonable 0.712. The confusion with tile, asphalt, and to a lesser extent with wood, are understandable,
but the confusion with living is more puzzling. Whether a person or animal is captured in the depth map depends on
the speed with which it moves. Even a person walking at a slow pace is rarely encoded. This is due to postprocessing; a
cluster of points present in one point of view but absent in another are removed. It is fair to assume that most living being
in the public space are moving, in which case the underlying depth is recorded, just like glass. If a lot of images depict
people moving in front of brick buildings, then the network learns living as brick.

Looking at these results, it becomes clear why RGBD shows so little improvement. If the network already has much
more discriminitive colour information at its disposal, it is no wonder that the less discriminitive depth information offers
little additional help. Comparing the different initialization methods, we see that they are perform more similar than we
expected – initialization is known to have a larger influence on performance than we observe here – but taking the aver-
age of the RGB channels does perform noticeably better. This concurs with expectation, as this method uses pretrained
weights from all three colour channels, rather than only one channel or no channels. Our foliage example in Figure 49
illustrates how colour and depth tend to correspond in texture.

We trained two networks, one on RGBD with the depth weights Xavier initialized and one on RGBD with the average
RGB weights (making this experiment similar to the previous one, except we add colours), in order to determine the effect
of different weight initialization when colour information is present. Without reproducing the results here, we refer the
reader to Appendices G.16 and G.17. In summary, while the method of initialization has some effect on performance
when training only with depth, this effect is further diminished when RGB channels are used besides the depth. This
reinforces our hypothesis that depth offers nearly no valuable information that colour has not already supplied. Also,
the different initialization methods only affect a small portion of the weights: 64 ∗ 7 ∗ 7 ∗ 1 = 3, 136 compared to the
38,535,953 weights in the rest of Semantic FPN, hence the insignificant difference between them.

We nevertheless experiment with Xavier initialized weights rather than weights pretrained on ImageNet. Such pretraining
may start the network on a suboptimal location on the loss landscape as it exists with depth input. Results are in Appendix
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Predicted labels

Tr
ue

la
be

ls

background aluminium asphalt brick cloud concrete foliage glass grass living sky soil steel stone tile water wood Total
background 1536 1601 4385 20004 0 584 1579 7480 2750 311 178 197 3629 3303 2329 50 968 50884
aluminium 1278 17914 0 1092 0 529 2522 2999 154 284 160 0 6501 103 1093 268 4590 39487

asphalt 20320 14 1146896 434456 0 18473 840 543 19854 72 9 61 1835 10154 51237 2990 23 1707777
brick 8195 54657 487777 2030477 6 24888 13023 44548 24281 292 2452 9058 15051 23119 188350 1844 6114 2934132
cloud 1121 0 0 665 394392 2 16492 58 0 0 251129 0 660 0 197 0 0 664716

concrete 3 5 18 9133 0 81965 482 411 50 619 647 0 6221 487 570 74 0 100685
foliage 831 1521 155 3849 285 747 438528 949 6085 51 711 54 13689 988 2873 1622 4770 477708

glass 778 62 8092 9831 195 5 1348 114068 379 185 164 0 9305 107 1187 0 21 145727
grass 4144 19 16987 13350 0 4170 3944 105 153266 7 0 6553 8981 13253 17252 1647 427 244105
living 191 188 177 13812 0 32 1858 5851 374 764 0 0 4425 1116 522 259 2349 31918

sky 244 80 0 100 174111 299 7755 0 0 0 1693120 0 630 0 0 0 80 1876419
soil 168 0 3448 717 0 0 2315 0 26465 71 0 9726 1195 2128 2033 221 305 48792

steel 1424 2543 1001 23494 208 9658 8862 7642 8307 285 2132 456 136402 4176 5653 1351 2764 216358
stone 2015 89 17441 32849 0 0 2303 132 15615 123 3 3041 4484 135613 13698 854 126 228386
tile 1377 135 76548 233790 0 13713 5263 4664 51288 666 18 2624 3744 29058 296481 1740 174 721283

water 1207 8 0 110 0 0 1481 0 31 5 0 0 250 0 23 15616 86 18817
wood 487 378 76 25444 0 0 1209 751 556 0 0 8 2980 60 642 259 24419 57269
Total 45319 79214 1763001 2853173 569197 155065 509804 190201 309455 3735 1950723 31778 219982 223665 584140 28795 47216 9564463

Table 14: Confusion matrix for training on depth, with weight initialized from the average of the RGB weights.

RGB RGBD RGBD - RGB
IoU Precision Recall IoU Precision Recall IoU Precision Recall

Overall 0.489 0.495 0.961 0.473 0.479 0.945 -0.016 -0.016 -0.016
Weighted overall 0.592 0.595 0.990 0.589 0.592 0.989 -0.003 -0.003 -0.001

sky 0.737 0.739 0.996 0.733 0.735 0.995 -0.004 -0.004 -0.001
foliage 0.661 0.669 0.983 0.653 0.659 0.987 -0.008 -0.010 +0.004
concrete 0.201 0.203 0.951 0.203 0.205 0.944 +0.002 +0.002 -0.007

water 0.345 0.362 0.880 0.274 0.294 0.802 -0.071 -0.068 -0.078
brick 0.501 0.502 0.995 0.503 0.504 0.996 +0.002 +0.002 +0.001

Table 15: Per-class results.

G.18, which gives mIoUs of 0.36 and 0.39 for RGB and RGBD – compared to 0.49/0.51 with pretraining – which is a
noticeably bigger difference. However, running the experiment again (Appendix G.19), this difference does not repeat,
and we expect the difference in the first experiment to be due to luck. Since we use no pretraining, it can be interpreted
that the network has no preconceived notions of patterns and object; that its learning process is starting from scratch,
and it needs to learn more. We therefore repeated the experiment again with a learning rate of 0.1 (rather than 0.01, the
default for cross entropy experiments). This did result in a large difference, though this time in favour of RGB instead
of RGBD. These experiments thus do not offer a clue as to the cause of RGB and RGBD similarity. They do tell us that
pretraining not only speeds up training, but also gives quite a significant performance boost. Without pretraining, our
network is prone to overfitting given the scarce amount of training data, which is likely the cause to the performance we
see here. Using a pretrained network prevents this, at least to some extent. Performance is significantly worse across the
board, with the smallest classes being slightly more affected. It turns out that, in this instance, pretraining not only makes
the network converge faster, but proves also essential for its performance. What’s more, RGB and RGBD are still highly
similar, and this experiment only emphasized the essence of pretraining.

We use nearest neighbour to downscale the depth maps as stored on disk to the network’s input resolution. Purely to
determine whether the method of scaling has any influence at all, we tried our baseline experiment, but with bilinear
downsampling instead of nearest neighbour. Again, we leave the results for Appendix G.21, and note here that it barely
influences material segmentation performance. This is not altogether strange, given the fact that the method of downscal-
ing mostly affects edges of objects: bilinear interpolation will create non-existent surfaces between objects at different
distances, while nearest neighbour does not. Since our dataset does not contain any boundaries, this has barely an effect.

Up until now, everything points to superfluity of depth when colour is supplied. A last experiment tests this. We select
classes which, when predicted in isolation, have to increase in IoU with extra depth information: brick, concrete,
foliage, sky, and water. We chose these classes based on their performance in Table 13, and ascertain that no pair
is easy to confuse. With "predicting in isolation" we mean that we only work with these classes, i.e. no background
class is used or evaluated with, and no other classes can therefore confuse the network. Class-weighted cross entropy loss
is used. Results are in Table 15. Metrics for RGB and RGBD are, once again highly similar. We answer SUBQUESTION
II therefore with the conclusion that additional depth offers no benefit to material segmentation performance, and that
we suspect this to be because performance is already saturated on colour information. We reiterate that depth maps are
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Predicted labels

Tr
ue

la
be

ls

brick concrete foliage sky water Total
brick 5803672 376185 223527 658452 28998 7090834

concrete 4478 95797 31 379 0 100685
foliage 7012 856 469654 0 186 477708

sky 22 1 7709 1868687 0 1876419
water 1162 0 1093 0 16562 18817

Total 5816346 472839 702014 2527518 45746 9564463

Predicted labels
brick concrete foliage sky water Total
5783664 366384 232696 672529 35561 7090834

4192 95124 1257 112 0 100685
4703 367 471925 48 665 477708
121 0 7691 1868607 0 1876419

1382 0 2343 0 15092 18817
5794062 461875 715912 2541296 51318 9564463

Confusion matrices containing the five classes that are worked with. Left: RGB, right: RGBD

Class
asphalt brick foliage sky

K
er

ne
ls

iz
e

0 0.2625 0.3699 0.0940 0.2735
50 0.1481 0.4273 0.1086 0.3160
100 0.0625 0.4703 0.1195 0.3477
150 0.0225 0.4903 0.1246 0.3626
200 0.0081 0.4976 0.1265 0.3679
250 0.0030 0.5001 0.1271 0.3698
300 0.0008 0.5012 0.1274 0.3706

(a) Reduction through erosion. With a kernel size of 300, this
experiment closely resembles the class imbalance as present in
our material dataset.

N
o.

of
co

ns
ec

ut
iv

e
dr

op
s Class

asphalt brick foliage sky
1 0.0362 0.4834 0.1229 0.3575
2 0.0149 0.4941 0.1256 0.3654
4 0.0073 0.4979 0.1266 0.3682
8 0.0038 0.4997 0.1270 0.3695
16 0.0022 0.5004 0.1272 0.3701
32 0.0011 0.5011 0.1273 0.3705
64 0.0008 0.5012 0.1274 0.3706

(b) Reduction through erosion with kernel size 128 and drop-
ping asphalt segmentations. When ignoring 64 asphalt
segmentations after keeping one, this experiment closely resem-
bles the class imbalance as present in our material dataset.

Table 17: Class size ratios among the four classes with decreasing size of asphalt. This decreasing of class size is
done in two ways, for two experiments.

inherently noisy, and for some material classes often useless. We compiled some depth visualizations that cement these
point in Figure 49.

4.4.4 SUBQUESTION III, concerning the estimation of performance curves

We investigated both class imbalance and prediction difference between RGB and RGBD input. What remains is to
assess to what extent our lack of data is responsible for the disappointing performance. Our dataset is deficient in four
respects: number of images, image coverage, number of segmentations, and segmentation size. We start with examining
the correlation between segmentation area size and class performance by selecting a few large classes: asphalt; brick;
foliage; and sky, and train those in a couple of successive experiments, each time shrinking all of asphalt’s
segmentations further using erosion. We use cross entropy loss, and we completely ignore the other classes, i.e. we do not
make use of a background class, and therefore have four-dimensional output. The continual reduction of asphalt’s
segmentation size changes the relative ground truth distribution among the four classes. The ratios for each kernel size
we use to erode asphalt are in Table 17a. It is only with a kernel size of 300, 34% of an image, with which the degree
of class imbalance in our dataset is simulated. At that kernel size asphalt shares 0.08% of available ground truth,
while in plastic occupies 0.07% of our training set (plastic and gravel furthermore occupy 0.03% and 0.01%,
respectively, of our test set).

Plots of both the IoU of asphalt and mIoU for different kernel sizes, and both for weighted and unweighted cross
entropy loss, are in Figure 50. Both IoU curves start with a slight increase, suggesting that the edges of asphalt seg-
mentations are most difficult to predict. A possible explanation is that dirt and other such natural waste often accumulate
in the grooves between road and curb, as seen in Figure 51. We repeat that nearly all segmentations for roads are derived
from the instance dataset, and therefore completely encapsulates these roads. There is also frequently a tiled lining at the
road edges. These may confuse the network into misclassifying these pixels. On top of that, our network is expected to
be bad at predicting material edges and boundaries, as those are not annotated in our dataset. Surprisingly, the curves
for asphalt remain relatively stagnant up until a kernel size of 250. It is only the last reduction which considerably
decreases their performance. This fact leads us to believe that small segmentation size is not as much of a detriment to
performance as we thought. It is only after there is barely any asphalt left that the erosion suddenly impacts perfor-
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glass is not captured, meaning its depth
is arbitrary.

iron manholes and catch basin are invisi-
ble in depth maps.

water generally has zero depth, but arti-
facts frequently appear.

Some wood depth maps contains charac-
terstic patterns.

Other wood depth maps do not. A large
artifact is also visible.

Colour information of foliage already is
highly distinct, making depth obsolete.

There is no perceptible difference between
the depth of asphalt and brick.

The same goes for brick and tile. ...and for grass and soil.

Moving living instances rarely get cap-
tured, or they cause depth artifacts.

Stationary or slow moving living do
get captured, but depth representation is as
variable as its colour counterpart.

Road surface markings often protrude. Re-
search pointed out that this is due to the
sensor reacting quicker to the larger light
intensity reflected by these markings.

Figure 49: A compilation of materials and examples where depth is either worthless or adds noise and confusion. These
examples are not incidental, but appear frequently.

mance significantly. fabric, living, gravel, and iron’s ratios are all between 0.01% and 0.02%, while the ratio
of asphalt after being eroded with a 250x250 kernel is 0.03%. The mIoU of these classes can therefore be expected
to be between 0.3 and 0.8. The actual results are much worse, however, with mIoUs near zero. At a loss for a better
explanation, we ascribe their low performance to their difficulty caused by their diverging appearances.

We execute a similar series of experiments, this time adjusting for the number of asphalt segmentations rather than their
surface area. The controlled variable in this experiment is a parameter which we refer to as the dropout rate. The higher
the dropout rate, the more asphalt segmentations are removed. How this variable affects the number of segmentations
is shows in Figure 40. The relative class sizes for each dropout rate are in Table 17b, and the resulting curves are plotted
in Figure 50b. It is clear that this method sees mIoU decrease sooner, i.e. for less severe class imbalances. We note that
the degree of class imbalance between the two methods differs greatly at the first iterations of class size reduction, but this
difference decreases exponentially as the class sizes are reduced more. After a dropout rate of 8, the ratios share the same
order of magnitude, and we deem the class imbalances comparable in severity. It is from that point that using dropout
seems to affect performance, and more than using only erosion does. Using a class-weighted loss has the mIoU decrease
only after a dropout rate of 16, however.

From these graphs we can infer that a large number of segmentations is more important than the size of the segmentations.
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(a) Using erosion to reduce asphalt’s class size.
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(b) Using dropout to reduce asphalt’s class size.

Figure 50: Plots of the IoU of asphalt and mIoU, for different kernel sizes and both for weighted and unweighted
cross entropy loss. This decreasing of class size is done in two ways, using erosion to shrink segmentations, and by
dropping whole segmentations.

This makes intuitive sense, as a wider range of segmentations is likely to introduce the network to a larger variety of
material appearances. In contrast, having a same set of segmentations increase in size is less informative for the network,
since the added pixels are probably similar to the ones that were already there. We also note that asphalt is rather
uniform of appearance, whereas the classes we found to be problematic exists in a much wider variety of colours and
shapes.

Lastly, we employ our other two datasets to estimate the extent to which lack of training images impacts overall perfor-
mance. We do this by adjusting for the number of training images while plotting performance. Initial experiments with
the instance-as-semantic dataset showed alarmingly low performance, which was caused by the severe undersampling
of some classes. Five classes had no ground truth whatsoever. We therefore merged all classes with less than 83,242
annotated pixels (the size of the smallest material class with some performance) together, which left us with only 43
classes, given in Appendix B. Figure 52 makes clear that the material dataset outperforms the other datasets, undoubtedly
caused by the flaws of the instance-as-material and instance-as-semantic listed in Table 3. The instance-as-material likely
deals with too unpredictable a set of classes, and the instance-as-semantic dataset likely has too many classes to warrant
reasonable performance for each, even after we merged the smallest ones together. We also observe that performance for
the instance-as-material and instance-as-semantic datasets is saturated; adding more images to the training set will barely
entail a performance improvement. This is not true for the material dataset, whose curve is still sloping upwards, though
decreasingly so. We regressed this curve, and estimate that performance will saturate around a thousand training images
with an mIoU around 0.7.

We answer SUBQUESTION III as follows: in terms of the number of training images, we expect that 400 additional
training images, with a ground truth class distribution equal to that of the existing 600 images, will increase material
segmentation performance by a reasonable margin. The biggest improvement in performance is anticipated to be attained
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Figure 51: Two images of the sides of roads. Often, there is a significant amount of natural waste, or the paving is
of a different material, like stone or brick. Water could also accumulate there, though CycloMedia usually drives
in good weather. The fact that these road edges can deviate from the usual appearance of a road, it is likely that the
network has most trouble with segmenting such edges.
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Figure 52: Performance curves of all three datasets trained with both unweighted as well as class-weighted cross entropy
loss.

by additional annotations for the smallest classes, however. We therefore recommend focusing on the smaller classes
when annotating additional images. Table 17b and Figure 50b convey that doubling a class’s proportion of ground truth
by adding segmentations is anticipated to significantly increase mIoU. In turn, ameliorating the performance of small
classes will greatly benefit overall performance. Our recommendation would be to annotate at least 400 images in the
same manner as the first 600, and then to focus the annotation effort on small classes.

5 Conclusions

Our research tackled the problem of material segmentation; semantic segmentation with respect to materials. To this
end, we chose Semantic FPN, due to its reportedly good performance, especially in regard to the conceptual simplicity
of its architecture [48]. It performs slightly worse than state-of-the-art semantic segmentation networks, even though
those mostly use complicated techniques for improving performance, e.g. CRFs and atrous convolutions. What’s more,
Semantic FPN is part of Panoptic FPN, which additionally performs instance segmentation simultaneous to semantic
segmentation, and the authors observed an increase in the quality of both outputs when performed together. This bodes
well for any potential joint material segmentation and street furniture detection which may be performed by CycloMedia.

Our dataset has a severe class imbalance. Class imbalance in a dataset makes any network working with it biased towards
the large classes; since the prior distribution gets shifted in favour of the large classes, it will teach itself to predict the
larger classes more often, because such predictions have a higher a priori chance of being correct. The applicability of
conclusions regarding a class are proportional to its performance; conclusions on classes with low and volatile perfor-
mance are seldom valid or serviceable. SUBQUESTION I asked whether the impact on material segmentation performance
caused by this class imbalance was salvageable with different training procedures. We tried a number of promising loss
functions, but found none to improve the situation; the best loss function was class-weighted cross entropy loss, but only
by a slight margin. Our conjecture is that the class imbalance is too extreme to be solved without creating additional
ground truth. We proposed to handle the segmentation of small classes using an instance segmentator like RetinaNet with
focal loss, and then to then mix the results with a material segmentation of the large classes, but we did not try this method.
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We instead merged the five smallest and worst performing classes together into one background class, and performed
our next experiments with this setup.

SUBQUESTION II treated the difference in material segmentation when working with and without additional depth input.
Our experiments carried out for SUBQUESTION I already showed that working with per-pixel depth values did not improve
performance, even though those do encode the material characterstics of some classes. We trained and tested exclusively
on depth maps, and the outcomes hinted that depth does have distinguishing characterstics, though not as much as colour
information. Subsequent experiments reinforced our conclusion that colour information already saturates performance,
making depth obsolete.

Lastly, we looked into our data scarcity, and asked to what extent additional training data is expected to benefit perfor-
mance with SUBQUESTION III. We found the number of a class’s segmentations to be correlated with its performance,
more so than the size of its segmentations. Accumulating plenty of segmentations is therefore essential for a class to per-
form satisfactory, even if those additional segmentation are comparatively small. We advocate to focus on small classes
for future annotation efforts. This is not to say that more training images with ground truth distribution similar to the
existing images is not worthwhile; we anticipate that an extra 400 training images will increase material segmentation
performance up to 0.7 mIoU.

We starting this research with the following RESEARCH QUESTION: "What material segmentation performance are we
able to obtain on outdoor imagery?" As an answer, we are able to achieve a performance of 0.67 with class-weighted cross
entropy loss, but we only achieved this after merging the smallest, non-performing classes into a background class.
With the material dataset as it currently stands, we suspect a higher performance is viable by using instance segmentation
for small classes. Furthermore, we conclude that an increase in performance can be gained by either annotating 400
additional training images, or by only focusing new annotations on the small classes. A doubling of the ground truth
of a small class can already result in at least a tripling of its performance. In short, a satisfying material segmentation
performance is achievable, though likely not with our current dataset.

5.1 Future research

While we have shown an additional depth channel to have little to no effect on segmentation performance, we note that
some LiDAR systems return reflectivity values in addition to the depth. This reflectivity is a ratio of incoming (returned)
light to outgoing (sent) light, and is therefore dependent on the reflectivity – or inversely, the roughness – of a surface.
This is obviously a very revealing characterstic of a material, and we therefore expect that an reflectivity map, added with
colour and/or depth information into an RGBI or RGBDI representation, will benefit material segmentation performance.
The LiDAR used by CycloMedia – Velodyne’s HDL-32E – "measures reflectivity of an object independent of laser power
and distances involved. [...] For each laser measurement, a reflectivity byte is returned in addition to distance. Reflectivity
byte values are segmented into two ranges, allowing software to distinguish diffuse reflectors (e.g. tree trunks, clothing) in
the low range from retroreflectors (e.g. road signs, license plates) in the high range." [91] This makes it a highly promising
direction for research.

Naturally, a larger dataset entails a higher performance. While we concluded that the typical size of a class’s segmen-
tations have little effect on its performance, we expect that an actual semantic segmentation dataset – with all pixels
annotated – will be beneficial. In this case, all edges are annotated, and therefore the network will be better at dividing
material boundaries. Such boundaries are already apparent with colour information, but they still can be blurry or am-
biguous, e.g. around trees, or due to interpolation or aliasing. Depth does not have this issue (when downscaled using
nearest neighbour), and always shows "hard", or discrete, boundaries. A full semantic dataset will teach the network such
boundaries, which is anticipated to improve segmentation boundaries.

tile also includes roof tiles, as we initially felt these did not occur often enough in our images to warrant a separate
class, and that such a class would aggravate class imbalance. We expected the network to have little trouble in recognizing
two types of manifestation of a material. However, it would have been better to create a separate rooftile class, since
the materials used in roof tiles (e.g. ceramic, clay, concrete, or even plastic) are different from those in (stone) sidewalk
tiling. Though not as visually present as one might think, there is still plenty of roof tiling visible in CycloMedia imagery,
and amassing a reasonably sized rooftile class should be feasible.

Though we did not do so, it would in hindsight have been a good idea to designate pixels containing distant enough
scenery as other, since those pixels may contain materials from multiple different classes, and since other is the only
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logical prediction the network could make for these regions. We encourage future research to actively annotate distant
pixels as other or background.

A potentially informative way of evaluating material segmentation performance which we did not carry out is to analyze it
per instance segmentation class. In other words, we isolate one of the classes from the instance segmentation dataset, and
measure material segmentation performance only within the segmentations of the selected instance class. In this way, the
segmentation quality between classes can be compared, and objects of which the materials are easily segmented can be
distinguished from the hard-to-material-segment objects. This could provide valuable insights into material segmentation
bottlenecks.

Our set of classes could be considered rather fine-grained. Instead of annotating one larger metal class, we distinguish
between different types of metal, namely aluminium and steel, and instead of only stone, we gave brick and
tile their own classes. Alternatively, one could create a hierarchy of classes. In this way, if the network is bad at
distinguishing different metals, but better at detecting metal in general, then one could roll those prediction into one
metal class and be assured of sufficient performance.

In our creation of the instance-as-material dataset, we mapped each instance class to one material class, resulting on many
erroneous labelings. Another method would be a one-t-many instance-to-material translation. A car often consists of both
steel and glass, and one could translate the object | vehicle | car class to both steel and glass, in
which case those pixels get a two-hot encoding (rather than a one-hot encoding). During evaluation and loss taking, high
certainties of either class are rewarded.

We only supplied our depth information to the network as a single channel of float values. Alternatively, the depth map
can be transformed into a normal map, which encodes the direction of the surface normal for each pixel in another set
of three RGB channels. The network then receives RGBRGB input, of which the latter three channels contain the depth
information. Such an encoding essentially preprocesses depth into more meaningful information, as the orientation of a
surface might hint at its material type. The distance information is lost however, but we have shown depth to have no
effect anyways.

Lastly, we wish to discuss the potential for the use of material segmentations in object detection or instance segmentation.
Since the type of an object and the material of which it consists are often, sometimes highly, correlated, it is expected that
object detectors and instance segmentators will perform better with material segmentations. Knowing, for example, that
an object is made of wood, will drastically change its posterior probability distribution, since the range of possible and/or
probable object candidates is significantly reduced. This also holds for the opposite direction; knowing an object will, in
most cases, reduce the possible set of materials that it encapsulates. Trees are never made of wood, for example.∗ This
synergistic effect between material segmentation and instance segmentation is a promising research direction. Possibly
the best way to exploit it would be to use Panoptic FPN, which outputs both instance and material segmentations and
is trained with a unifying loss function [48]. Kirillov et al. found that the two tasks reinforce each other when trained
simultaneously, and it is reasonable to expect a similar increase for material segmentation.

Acronyms

AUC Area-under-(the)-curve. 80

BRDF Bidirectional Reflectance Distribution Function. 35

CNN Convolutional neural network. 6, 16–19, 22, 25, 27, 30, 33, 34, 36, 42, 44, 67

COCO Common Objects in Context. 24, 25, 27, 30, 33

CRF Conditional random field. 34, 63

DAG Directed acyclic graph. 10, 70

DCR Digital cyclorama recorder. 68

∗Any art installation that defies this rule is likely not annotated as tree.
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DSC Dice score coefficient. 26

FCN fully convolutional network. 25, 27, 29, 31, 34, 35, 37

FPN Feature pyramid network. 22, 29–34, 36–38, 49

GDL Generalized dice loss. 26

GDS Generalized dice score. 26

GIS Geographic information system. 5, 68

GPS Global positioning system. 5

GPU Graphics processing unit. 19, 49

HOG Histogram of oriented gradients. 22

ILSVRC ImageNet Large Scale Visual Recognition Challenge. 18, 20

IMU Inertial measurement unit. 5

IoU Intersection-over-union. 29, 32, 39

LiDAR Light Detection and Ranging. 6, 64, 69

MINC Material in Context Database. 34, 35

mIoU Mean intersection-over-union. 26, 38

MIT Massachusetts Institute of Technology. 34

NLP Natural language processing. 25

RGB Red-green-blue. 5, 23, 34–36, 38, 39, 42, 68

RGBD Red-green-blue-depth. 5, 39

RoI Region-of-interest. 27–31

RPN Region porposal network. 28–33

SGD Stochastic gradient descent. 16, 67, 68, 71

SIFT Scale-invariant feature transform. 22

SLAM Simultaneous localization and mapping. 5

SSD Single Shot Detector. 31

SVM Support-vector machine. 27

ToF Time-of-flight. 35

YOLO You Only Look Once. 31
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Glossary

activation The value of a node as a reaction to the activations of preceding nodes and indirectly to the input data, reflecting
the degree to which the node responds to the input, and therefore the extent to which the feature that the node
represents is present in the input. 9–14, 16–27, 32, 67, 68, 71, 72

activation function A function used in calculating a neuron’s activation, or output. It takes as input the summed activa-
tions of previous neurons multiplied by weights, and non-linearly scales this to a fixed range for output activations.
The non-linearity is needed for the network to solve a much larger number of non-trivial problems without using an
intractable number of nodes. 11–15, 17, 23

affine Allowing for or preserving parallel relationships. 27

architecture A specific instance of neural network, with a predetermined structure, depth, and number of neurons per
layer. The term "network" is often used more loosely to mean "architecture". 11

autodidacticism The property of being self-taught. Within the context of neural networks, this refers to metalearning;
the network teaches itself how to learn. 21

backbone A core CNN architecture on top of which more complicated CNNs can be built. A backbone is at least able to
output smaller feature representation of input images. 22, 25, 28–31, 33, 34

backpropagation Shorter synonym of backward propagation. 12, 23, 27, 30, 67, 72

backward propagation The calculation of the gradient of the loss with respect to each parameter in the network, which
determines the adjustments for those parameters. The gradient of the loss with respect to each parameter is calcu-
lated from the deepest layer to the shallowest, hence the name. Called "backpropagation" or "backprop" for short.
12, 67, 69

batch A subset of the dataset into which training samples are grouped, and which are processed simultaneously when
performing minibatch SGD. 16, 21, 23, 24, 29, 32, 69, 71

batch size The number of samples contained in each batch during SGD. 11, 24, 48, 69

bias A type of parameter associated with a neuron in a network. 11–15, 17, 18, 26, 29, 70

bounding box Rectangular outlines demarcating the spatial extent of objects, i.e. the collection of all pixels that make it
up – in images as tightly as possible. 6, 9, 10, 27, 28, 31, 69, 70

channel A slice of a three-dimensional tensor representing an image. Each channel is two-dimensional, with each value
corresponding to a pixel of the image. Such a tensor often consists of three channels: one for the red, one for the
greed, and one for the blue colour values, though many other colour representations are also possible. In this work,
we additionally concern ourselves with a fourth channel: the depth map. 5, 16, 17, 21, 23–25, 38, 42, 45, 68

class One of multiple (named) categories which can be predicted during multinomial classification and segmentation
tasks. When referring to the chosen category of a specific predictions, we use "label". 9, 10, 13, 14, 25–36, 38–46,
49, 52–54, 63, 64, 67, 69

class imbalance A significant difference between the number of samples of at least two classes in a dataset. 25, 38, 45,
63

cloud cover The fraction of sky covered by clouds. 45

computer vision An interdisciplinary field, though overlapping mostly with computer science and artificial intelligence,
that researches the automatic analysis and interpretation of digital imagery. 6, 9, 10, 16, 18, 22

convolution A transition between two layers in a CNN, in which the second layer has different dimensions, and is
calculating by moving a filter, or kernel, over the first layer and computing the summed products between activations
in the first layer and weights in the filter. 16–21, 25, 26, 30, 31, 34, 37, 67, 68, 71

convolutional neural network A neural network which contains convolutional layers, specialized in processing images
and videos. Abbreviated as CNN. 6, 9, 16–19, 22, 65, 68, 71
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cyclorama Historically, a large cylindrical image or painting, designed to give the spectator the impression to be stand-
ing in the middle of the depicted scenery. Within CycloMedia, this term has been repurposed to refer to the
360◦panoramic images captured by their car-mounted DCR-system, and even colloquially extends to any street-
level image. 5–7, 35, 68

deep learning A subfield of machine learning, which uses (artificial) neural networks to achieve the inference of charac-
terstics, or features, from training data. 6, 9, 18, 23, 25, 26, 39, 68

depth map An "image", or rather a channel, which instead of an RGB colour value contains a single depth value; gener-
ally a decimal value. Can also refer to the image file into which depth information is encoded and stored. 5, 6, 8,
35, 41, 42, 50, 51, 67, 70

digital cyclorama recorder Car-mounted capture devices designed and operated by Dutch company CycloMedia, which
captures the public space at five meter intervals. The panoramic image camera captures 360◦, 250 megapixel cyclo-
ramas, and a LiDAR sensor sends light signals in order to record depth in the form of points in three-dimensional
space. 65

epoch One iteration over all training samples. 48, 49, 68, 71

equisized The property of being of the same size. 22, 29, 33, 34, 37

feature An attribute of data. Traditional machine learning techniques uses manually designed features, while deep learn-
ing has models infer these automatically. The range of possible data points spanned by the collection of its features
is known as the feature space of a certain type of data. 9–12, 16, 18–23, 25–31, 33, 34, 36, 37, 66–68, 70, 71

featurized image pyramid The ideal feature image pyramid, which, instead of a regular colour image at different scales,
contains (condensed) feature representations of the differently sized images. Useful for predicting objects of varying
size upon. 22, 34, 36

filter A small, three-dimensional matrix of convolution weights, which is moved across a layer in order to produce
activations for the subsequent layer. Used synonymously with kernel. 17, 19, 32, 67, 69

forward propagation The processing of input data by a neural network, which results in output data, or predictions. The
activations of the nodes are calculating from the shallowest input layer to the deepest layer, hence the name. 11, 13,
16

fully connected A layer’s property of having each of its nodes be connected to every node in the preceding and/or
succeeding layer. 18–21, 23, 25, 27, 28, 34, 68

fully convolutional network A convolutional neural network without any fully connected layers, instead outputting a
three-dimensional feature representation of the input image. 25, 34, 35, 66

geographic information system An umbrella term encompassing (computer) systems designed to capture, store, manip-
ulate, analyze, manage, and present spatial or geographic data. Abbreviated as GIS. 66

gradient A generalization of the derivative for multivariate functions. It is an array, vector or matrix, of the same shape
as the function input, containing the partial derivatives of the function with respect to each variable. Analogously to
how a derivative indicates the slope at a certain point on a curve, a gradient point in the direction of steepest ascent
at any point (i.e. specific set of inputs), and essentially tells how the inputs should be changed in order to increase
the function output. 12, 14–16, 20, 21, 23, 68–72

gradient descent An algorithm for optimizing a loss function. In an iterative manner, and until the network has con-
verged, the gradient of the loss with respect to the network parameters are determined at the network’s current point
on the loss landscape, and the parameters are adjusted based on the magnitude and (opposite) direction of that gra-
dient, which makes the network take a step in the direction of steepest descent. Gradient descent only takes a step
after calculation of and based on the gradient of a whole epoch. While the steps taken are better approximations
of the gradient and the optimal direction, gradient descent converges slow, and has therefore been superseded by
(minibatch) SGD. 12–16, 71
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gradient flow An intuition for how the gradients of the loss with respect to all network parameters are calculated. Since
the gradient of the parameter of a layer are dependent on the gradients of the succeeding layer, and all gradients
are therefore being calculated from front to back during backward propagation, this calculation of the gradient
calculation can be regarded as a flow going back through the network. 12, 14, 23, 30, 33

ground truth Manually annotated truth or true values belonging. Ground truth can be regarded as the answer that a
network is supposed or desired to give when supplied with the associated input data, and is therefore also sometimes
called the "golden standard" of the data; it is the ideal prediction. 7, 12–15, 25–27, 29, 31, 32, 36–40, 42, 45, 46,
48, 50, 52, 54, 69, 71

hyperparameter A metaparameter that is not learned or otherwise part of the network, but which is set manually before
training and defines an aspect of the network or the training procedure. Examples are learning rate, network depth,
batch size, etc. 11, 15, 17, 19, 20, 31

image classification The computer vision objective of classifying an image (with one label) with respect to the depicted
subject. 9, 10, 38, 80

image pyramid A series of the same image at regularly spaced scales. A specific type of pyramid. 22, 68

instance segmentation Either a specific collection of detected objects in an image and their pixel-wise segmentation
masks – demarcating their exact spatial extent, or the general computer vision objective of generating these instance
segmentations. Similar to object detection, except segmentation masks are used to denote an object’s spatial extent
rather than a mere bounding box. 5, 6, 9, 10, 27, 29, 32–35, 37, 38, 42–44, 70, 80

kernel Used synonymously with filter. 17–22, 25, 26, 37, 67, 68, 71

label Often used synonymously with "class", though we use "label" to refer to the category of a specific prediction. 9,
26, 34, 42–44, 67

layer An organizational unit into which neurons of a neural network are grouped. Each layer can be considered as an
exhaustive feature space of the input data, and the collection of activations in a layer as a complete representation
of particular input. 10–30, 32–37, 67–69, 71, 72

learning rate A multiplier between 0 and 1 with which the gradient of the weights is multiplied before it is added to
the weights. This determines the pace at which a network is learning. Too large a learning rate might lead to
too aggressive steps across the loss landscape, while too slow a learning rate might make the network take an
impractically long time to converge. 11, 15, 48, 69

LiDAR A three-dimensional capturing system which sends light signals in many outgoing directions and measures the
time between their emission and their return. Using the speed of light, the distance between the sensor and the point
of collision can be calculated. This results in a three-dimensional point for every received signal. It stands for Light
Detection and Ranging. 5, 8, 35, 42, 68, 70

loss A measure of the difference between a networks output, or prediction, and the prediction it is supposed and desired to
output according to the ground truth of the training data. There are multiple loss functions, each of which calculate
loss in a different way and thereby prioritize different aspects of performance. 12–16, 25–33, 48, 49, 54, 69, 71

loss function A function that calculates loss given a networks output and the ground truth corresponding to the network
input. Also sometimes called a cost function or an objective function, though this would not be strictly correct. A
loss function calculates the difference of a data point, or batch of data points, while a cost function is more general,
and can sum losses over a dataset and potentially adds a regularization penalty. An objective function is even more
general, and refers to any function that is optimized during training. Cost and objective are not used in this work
however, and we always refer to any difference as loss. There are multiple loss functions, each of which calculate
loss in a different way and thereby prioritize different aspects of performance. 13–16, 24–27, 29, 31, 32, 38, 48, 68,
69

loss landscape The multivariate function with all parameters of a neural network as domain and with a loss, as calculated
according to a loss function and depending on the input data, as output. In non-realistic examples featuring a
network with only two weights (for visualization purposes), such a function tends to resemble a hilly landscape,
hence the name. Naturally, the actual landscape depends on the selection of input. 15, 16, 68, 69
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machine learning A subfield of artificial intelligence, studying the (meta-)algorithms and statistical models that make
computers infer patterns and characterstics – needed to perform a certain task – automatically from training data,
instead of having these features explicitly programmed. Machine learning allows for efficiently carrying out com-
plicated tasks, like image recognition and natural language processing, and increased scalability compared to tradi-
tional algorithms, though it is notorious for its trend of requiring large amounts of training data. 6, 9, 10, 16, 18,
24, 49, 68, 71

mask A subset, or selection, of specific pixels of an image (or feature representation), usually encoded as a binary map.
9, 10, 27, 29–31, 43, 44, 71

material segmentation Either a specific per-pixel image classification with respect to a predefined set of labels relating
to materials, or the general computer vision objective of generating these material segmentations. A sub-objective
of semantic segmentation, with the extra constraint that labels have to refer to materials or something resembling
material properties. 5–9, 35, 36, 38–42, 46

momentum A different method of gradient calculation, which takes the moving average of past gradients into account
when updating parameters. This reduces the chance of the learning process stagnating whenever the gradient is
(close to) zero. 15, 16, 48

neural network Complicated functions resembling DAGs and involving many operations and parameters, the values of
which have to be inferred from training data, that are able to perform complicated tasks by transforming input values
into output values. 9–16, 18, 25, 67–72

neuron Can be used synonymously with "node", although we use this term when discussing the biological basis of neural
networks. 9, 10, 16, 18, 23, 67, 69, 70, 72

node A single unit of compute which serves as the building block of a neural network. It received an input, which is the
activated sum of products of node activations in the previous layer with the weights associated with the connections
to the node at hand. It outputs this value to all neurons in the following layer. Also referred to as "neuron", though
we reserve that for the biological context. 9–14, 28, 67, 68, 70–72

normalization The operation of transforming (translating and scaling) a set of values in such a way that the set has zero
mean and unit variance. 14, 23, 24, 37

object detection The computer vision objective of detecting one or more subjects in an image and demarcating them with
bounding boxes. Similar to instance segmentation, but more simple, since only bounding boxes are used instead of
the more complex binary segmentation masks. 9, 10, 18, 24, 27, 29–31, 34, 37, 69, 70, 80

object localization The computer vision objective of labeling the image with respect to the depicted subject and demar-
cating this subject with a bounding box (or perhaps even a segmentation mask). Similar to object detection, except
that only one subject of interest is being detected for. 9, 10

objective A specific form of analysis to be performed on imagery data. It defines a format of prediction that should be
inferred from images. 9, 24, 71

overfitting The overtailoring of a network to its training data. In overfitted network has adapted itself too much to the
data with which it was trained, and thereby has lost its ability to generalize to other data. Since testing or production
data is likely to have different characterstics than training data, such a model often performs worse when needing
to process such alien data. 20, 49, 71

panoptic segmentation The computer vision objective combining both instance and semantic segmentation, i.e. instance
segmentations are returned and pixels are labeled. 9, 10, 25, 32, 35, 38

parameter One of many values that embody a neural network’s learned representation of the data that is has seen during
training. In most neural networks, these consist of weights and biases. 11–21, 23, 29, 32, 34, 67–72

point cloud A collections of three-dimensional points, collected using a LiDAR sensor and corresponding to surfaces in
the public space. Using surface reconstruction algorithms, these point clouds can be transformed into a 3D mesh,
and these meshes are used to generate depth maps. 5–8, 42
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pooling A layer in a convolutional network which reduces the dimension of the activation map and which is not learned,
i.e. the activation map is reduced using straightforward operation, like taking the maximum value within each 4x4
square of activations. 18–21, 27, 30, 72

pyramid A series of activation maps (or other multidimensional arrays) at regularly spaced scales. 36, 69

receptive field The subset of input neurons to a convolutional neural network which are connected to, and which therefore
influence the activation of, a certain node. 18, 28

regularization Any measure used to prevent overfitting by forcing the machine learning model to stay simple and inter-
pretable, as complex models are more susceptible to capturing noise, outliers and irregular data. The most common
form of regularization is a penalty added to the loss function, based on the models complexity. 23, 24, 69, 71

sample A pair of input data and correct, ground truth output data, which are used to train and test a network with. Also
called "examples", because it intuitively shows a network what to learn and look for. 11, 13–16, 23, 29–32, 35, 36,
68, 71

segmentation Either a subset, or selection, of specific pixels of an image (or feature representation), or a per-pixel,
potentially multinomial classification of an image. The former is synonymous with a mask. 25–27, 29–31, 33–35,
37, 42, 43, 45, 49

semantic segmentation Either a specific per-pixel image classification with respect to a predefined set of labels relating
to either things or stuff, or the general computer vision objective of generating these semantic segmentations. 9, 10,
24–26, 32–35, 37, 38, 43, 70, 80

softmax A function taking a range of arbitrary values and dividing each by their sum, in order to make them sum to 1. A
softmax function is used at the output layer of neural networks, to transform the activations received by the output
layer – which can have any value – to interpretable probabilities. 13, 27

stochastic gradient descent A variant of gradient descent, in which the gradient calculation and parameter update is done
after each processed training sample, instead of after each epoch. When the updating is done after processing of a
batch of samples instead of just one sample, then this is called minibatch stochastic gradient descent. Abbreviated
as SGD. 66

stuff Uncountable material matter. 24, 25, 33, 35, 71

supervised learning A training procedure in which a network is being explicitly told what to learn. More concretely,
besides the input training data to a model, it also receives associated ground truth with which it can be evaluated and
adapted. This contrasts with unsupervised learning, where only input data is given. Common supervised models
are (supervised) neural networks, support vector machines, and random forests. 9

task Synonymous with objective. 9, 25, 32, 33, 67

tensor A multidimensional array. Within the context of this work, this generally means a three-dimensional array con-
taining the colour values and potentially the depth values of an image. 49, 67

thing A countable unit of material matter, or object. 24, 25, 33, 35, 71

training The process of feeding specially compiled training data to an (untrained) neural network, quantifying the dif-
ference between the network output and the desired output – called the loss, and tweaking the networks many
parameters using the derivative of the loss with respect to these parameters, in order to make it perform better next
time. This process is iterated until some condition defining satisfactory performance is met, in which case the
network has converged. 9, 11–16, 20, 21, 23, 24, 27–29, 32–36, 38–41, 49, 50, 67–71

transpose convolution The inverse of a convolution. Synonymous with upsampling. 25, 26

unsupervised learning A training procedure in which a model is only given input data, and has to infer patterns and
features on its own. Common unsupervised models are clustering models and autoencoders. 9, 71

upsampling The inverse of a convolution; a learned layer which increases instead of decreasing an activation map’s
resolution using learned kernels. 22, 25, 33, 71
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upscaling The inverse of a pooling operation; a layer which increases instead of decreasing an activation map’s resolution
by remembering how the activation map was originally pooled. 36, 37

vanishing gradient The problematic phenomenon present in deep neural networks, where repeated application of the
chain rule diminishes the gradient during backpropagation, until the weights at the shallowest nodes receive next to
no gradient signal. 20, 21

weight A type of parameter associated with the connection between two neurons in a network, the value of which is
learned and depends on the correlation of their activations . 11–18, 21, 23, 25, 26, 33, 38, 53, 54, 67, 68, 70, 72
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Appendix A Instance-to-material mapping

Instance class Material class
animal | ground animal living

construction | barrier | fence steel
construction | barrier | guard rail steel

construction | barrier | other barrier stone
construction | barrier | separator tile

construction | barrier | wall brick
construction | flat | bike lane brick

construction | flat | crosswalk plain asphalt
construction | flat | curb stone

construction | flat | curb cut stone
construction | flat | parking brick

construction | flat | pedestrian area stone
construction | flat | rail track asphalt

construction | flat | road asphalt
construction | flat | road shoulder asphalt
construction | flat | service lane asphalt

construction | flat | sidewalk tile
construction | flat | traffic island stone

construction | structure | bridge concrete
construction | structure | building brick
construction | structure | garage steel
construction | structure | pylon steel
construction | structure | tunnel concrete

human | person | group living
human | person | individual living
human | rider | bicyclist living

human | rider | motorcyclist living
human | rider | other rider living

marking | continuous | dashed asphalt
marking | continuous | solid line asphalt

marking | discrete | crosswalk zebra asphalt
marking | discrete | other marking asphalt

marking | discrete | stop line asphalt
marking | discrete | symbol asphalt

marking | discrete | text / number asphalt
nature | desert soil
nature | grass grass

nature | mountain stone
nature | other terrain soil

nature | sand soil
nature | sky sky

nature | vegetation | high | group foliage
nature | vegetation | high | single foliage
nature | vegetation | low | group foliage
nature | vegetation | low | single foliage

nature | water water
object | object | banner fabric
object | object | bench wood

Instance class Material class
object | object | bike rack steel
object | object | billboard plastic

object | object | catch basin iron
object | object | cctv-camera plastic
object | object | fire hydrant iron
object | object | junction box steel

object | object | mailbox steel
object | object | manhole iron

object | object | parking meter steel
object | object | phone booth glass

object | object | pothole asphalt
object | object | street light plastic
object | object | traffic cone plastic

object | object | trash can plastic
object | object | wire group sky

object | support | pole steel
object | support | traffic sign frame plastic

object | support | utility pole steel
object | traffic-sign | back aluminium
object | traffic-sign | front aluminium

object | traffic light | back | 1 light plastic
object | traffic light | back | 2 light plastic
object | traffic light | back | 3 light plastic
object | traffic light | front | 1 light plastic
object | traffic light | front | 2 light plastic
object | traffic light | front | 3 light plastic

object | vehicle | bicycle | group steel
object | vehicle | bicycle | single steel

object | vehicle | boat | group plastic
object | vehicle | boat | single plastic

object | vehicle | bus | group steel
object | vehicle | bus | single steel
object | vehicle | car | group steel

object | vehicle | car | single steel
object | vehicle | caravan plastic

object | vehicle | motorcycle | group steel
object | vehicle | motorcycle | single steel

object | vehicle | on rails steel
object | vehicle | other vehicle | single steel

object | vehicle | trailer steel
object | vehicle | truck steel

object | vehicle | wheeled slow steel
void | car mount other

void | dynamic other
void | ego vehicle other

void | ground other
void | static other

void | unlabeled other

Table 18: Our choice of instance classes to material classes mapping that we used in constructing the instance-as-
material dataset.

Table 18 outlines for each of the 96 instance classes in CycloMedia’s instance segmentation dataset to which of the 21
material classes it was translated when we constructed our instance-as-material dataset. Some of our choices of translation
are obvious some may raise questions. When we were in doubt as to which material class an instance class should be
translated we inspected a few ground truth instances to get an impression of which material is visually most prominent
and based our choice on that small sample of segmentations. A good example is that of object | object | wire
group a class which segments (overhead) power lines. In the selection of segmentations which we inspected the power
lines themselves occupied only a small portion of the segmentation pixels but encompassed much larger regions of sky.
Hence it would be more apt to translate this class to sky as this would cause the least number of pixels to be mislabeled.
Some instance class names were unclear to us. We did not know beforehand what a construction | barrier
| separator or a object | vehicle | other vehicle | single would look like. Other classes like
construction | flat | road can assume a number of material classes. Naturally such segmentations will often
get mislabeled. In all these cases we resolved the material class by visual inspection as described above.
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Appendix B Instance classes included in the instance-to-semantic dataset

Instance class In instance-as-semantic?
animal | ground animal No

construction | barrier | fence Yes
construction | barrier | guard rail Yes

construction | barrier | other barrier Yes
construction | barrier | separator Yes

construction | barrier | wall Yes
construction | flat | bike lane Yes

construction | flat | crosswalk plain No
construction | flat | curb Yes

construction | flat | curb cut Yes
construction | flat | parking Yes

construction | flat | pedestrian area Yes
construction | flat | rail track No

construction | flat | road Yes
construction | flat | road shoulder No
construction | flat | service lane Yes

construction | flat | sidewalk Yes
construction | flat | traffic island Yes

construction | structure | bridge Yes
construction | structure | building Yes
construction | structure | garage No
construction | structure | pylon No
construction | structure | tunnel No

human | person | group No
human | person | individual No
human | rider | bicyclist No

human | rider | motorcyclist No
human | rider | other rider No

marking | continuous | dashed Yes
marking | continuous | solid line Yes

marking | discrete | crosswalk zebra No
marking | discrete | other marking Yes

marking | discrete | stop line No
marking | discrete | symbol No

marking | discrete | text / number No
nature | desert No
nature | grass Yes

nature | mountain No
nature | other terrain Yes

nature | sand Yes
nature | sky Yes

nature | vegetation | high | group Yes
nature | vegetation | high | single Yes
nature | vegetation | low | group Yes
nature | vegetation | low | single Yes

nature | water Yes
object | object | banner No
object | object | bench No

Instance class Material class
object | object | bike rack No
object | object | billboard Yes

object | object | catch basin No
object | object | cctv-camera No
object | object | fire hydrant No
object | object | junction box No

object | object | mailbox No
object | object | manhole No

object | object | parking meter No
object | object | phone booth No

object | object | pothole No
object | object | street light No
object | object | traffic cone No

object | object | trash can Yes
object | object | wire group No

object | support | pole Yes
object | support | traffic sign frame No

object | support | utility pole No
object | traffic-sign | back No
object | traffic-sign | front Yes

object | traffic light | back | 1 light No
object | traffic light | back | 2 light No
object | traffic light | back | 3 light No
object | traffic light | front | 1 light No
object | traffic light | front | 2 light No
object | traffic light | front | 3 light No

object | vehicle | bicycle | group Yes
object | vehicle | bicycle | single No

object | vehicle | boat | group Yes
object | vehicle | boat | single No

object | vehicle | bus | group No
object | vehicle | bus | single No
object | vehicle | car | group No

object | vehicle | car | single Yes
object | vehicle | caravan No

object | vehicle | motorcycle | group No
object | vehicle | motorcycle | single No

object | vehicle | on rails No
object | vehicle | other vehicle | single No

object | vehicle | trailer Yes
object | vehicle | truck Yes

object | vehicle | wheeled slow No
void | car mount No

void | dynamic No
void | ego vehicle No

void | ground No
void | static Yes

void | unlabeled Yes

Table 19: Selection of classes which we trained with when using our instance-as-semantic dataset.

Table 19 outlines which of the 96 instance classes in CycloMedia’s instance segmentation dataset are included in our
instance-as-semantic dataset. All classes with less than 83,242 ground truth pixels were merged into a background
class, resulting in a total of 43 remaining classes.
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Appendix C Notes on precision-recall curves

Recall

Pr
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Figure 53: AUC calculation for curves which do not touch either the x-axis or the y-axis, i.e. curves that do not span
the full domain of recall values and/or do not span the full range of precision values. Calculating AUC strictly under
the curve would bias curves that occupy the widest interval of recall values. Instead, we attach a straight horizontal line
from the leftmost endpoint (containing the smallest recall) to the y-axis, and a straight vertical from the right endpoint
(with the largest recall) to the x-axis. AUC is then calculated for this resulting curve. AUC is indicated with light grey.

Precision can be plotted against recall in a precision-recall curve. This is often a decreasing function, since an increased
recall might indicate a more careless prediction policy, causing more instances to be found at the cost of precision.
However, a model that increases its number of predictions might consistently guess correct, in which case precision
stagnates or even increases (with increasing recall), though this is admittedly a rare occurrence. Recall, on the other hand,
is always monotonically decreasing with an increasing threshold. The predictions done at a high threshold always form
a subset of the predictions done at any lower threshold, and such a subset can therefore only omit any detections from a
lower threshold, resulting in an equal or lower recall.

We plot precision-recall curves by thresholding on prediction probability. Within the context of instance segmentation,
thresholding can then be done by simply considering only predicted instances above a certain threshold of prediction
certainty. The more thresholding and precision-recall pairs, the more faithfully this curve can be assessed. Such a curve
can be drawn for each class separately, as well as for all classes combined. For semantic segmentation, it might initially
be less obvious how this thresholding is accomplished, as every pixel needs exactly one label. For each class and each
threshold, we remove any prediction of that class with softmax probability lower than the threshold, in which case those
pixels have no predicted labels and will incur false negatives. In this way, a higher threshold will incur more mispredictions
and a lower recall, but the remaining predictions are more likely to be correct, increasing precision.

Precision-recall curves can be a useful tool in determining optimal thresholding values, especially for the tasks of image
classification, object detection, and instance segmentation. Based on the relative importance of precision versus recall for
the purposes of the analysis, an optimal trade-off between the two can be found easily using such graphs. For semantic
segmentation, however, PR curves prove less useful, as each pixel needs a predictions anyways, and thresholding will
only remove pixel predictions. This can be done when performing binary segmentation, though, in which case PR curves
might prove a useful analytical tool. A measure integrating precision and recall over all thresholds is the area under the
precision-recall curve: the AUC, which stands for area-under-curve. In this work, we do not discuss PR curves or their
AUC, but they are enclosed, for each experiment, in the appendices. Figure 53 shows how AUC is calculated.

For the sake of clarity, we mention that we require both precision and recall to be valid values for each threshold for
them to get plotted. If no predictions have been made for a certain class, then the precision on that class constitutes a
zero-division and is therefore undefined. Likewise, when there is no ground truth present for a certain class, recall is
undefined. If either one or both of these measures is undefined, then the pair cannot be assigned a location in the graph
and is skipped. In practice, though, precision-recall pairs can only get omitted at one of either ends of a curve. The
predictions done at a high threshold always form a subset of the predictions done at any lower threshold, and therefore it
cannot happen that precision is defined at threshold A, while there suddenly is no valid precision at a threshold B (> A),
and at another threshold C (> B) there exists a valid precision again (the same holds for recall). As a consequence,
"intermediate" points are never omitted.
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Appendix D Code for loss functions

Loss functions play an important role in our research, especially SUBQUESTION I. For reference, we reproduce here our
code for loss functions we used. These can be readily used in Keras’ tf.keras.Model or tf.keras.Model.fit_generator
functions. Class weighting was effectuated using the class_weight parameter of these functions.

def cross_entropy_loss(onehots_true, logits): # Inputs are [BATCH_SIZE, height, width, 3]
logits, onehots_true = mask_pixels(onehots_true, logits)
return tf.losses.softmax_cross_entropy(onehots_true, logits)

def dice_loss(onehots_true, logits):
logits, onehots_true = mask_pixels(onehots_true, logits) # Both become of shape (num_pixels,

num_classes)
probabilities = tf.nn.softmax(logits)
numerator = 2 * tf.reduce_sum(onehots_true * probabilities, axis=0)
denominator = tf.reduce_sum(onehots_true + probabilities, axis=0)
loss = 1.0 - (numerator + 1) / (denominator + 1)
return loss

def focal_loss(onehots_true, logits):
GAMMA = 2
probabilities = tf.nn.softmax(logits)
probabilities = tf.clip_by_value(probabilities, tf.keras.backend.epsilon(), 1 -

tf.keras.backend.epsilon())
cross_entropy = cross_entropy_loss(onehots_true, logits)
loss = cross_entropy * tf.pow(1-probabilities, GAMMA) * onehots_true
return tf.reduce_sum(loss, axis=1)
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Appendix E Code for network definition

For reference, we include code implementing Semantic FPN:

def bilinearly_upsample(input_tensor, size):
output_tensor = tf.image.resize_bilinear(images=input_tensor, size=size, align_corners=True)
return output_tensor

def get_fpn(num_channels, config):
input = tf.keras.Input(shape=(SCALED_HEIGHT, SCALED_WIDTH, num_channels))

x = tf.keras.layers.Conv2D(64, (7, 7), strides=(2, 2), padding=’same’, name=’conv1’)(input)
x = tf.keras.layers.BatchNormalization(axis=3, name=’bn_conv1’)(x)
x = tf.keras.layers.Activation(’relu’)(x)
x = tf.keras.layers.MaxPooling2D((3, 3), strides=(2, 2), padding=’same’)(x)
x = conv_block(x, 3, [64, 64, 256], stage=2, block=’a’, strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=2, block=’b’)
bottomup_xl = identity_block(x, 3, [64, 64, 256], stage=2, block=’c’) # (?, 127, 127, 256)

x = conv_block(bottomup_xl, 3, [128, 128, 512], stage=3, block=’a’)
x = identity_block(x, 3, [128, 128, 512], stage=3, block=’b’)
x = identity_block(x, 3, [128, 128, 512], stage=3, block=’c’)
bottomup_l = identity_block(x, 3, [128, 128, 512], stage=3, block=’d’) # (?, 64, 64, 512)

x = conv_block(bottomup_l, 3, [256, 256, 1024], stage=4, block=’a’)
x = identity_block(x, 3, [256, 256, 1024], stage=4, block=’b’)
x = identity_block(x, 3, [256, 256, 1024], stage=4, block=’c’)
x = identity_block(x, 3, [256, 256, 1024], stage=4, block=’d’)
x = identity_block(x, 3, [256, 256, 1024], stage=4, block=’e’)
bottomup_m = identity_block(x, 3, [256, 256, 1024], stage=4, block=’f’) # (?, 32, 32, 1024)

x = conv_block(bottomup_m, 3, [512, 512, 2048], stage=5, block=’a’)
x = identity_block(x, 3, [512, 512, 2048], stage=5, block=’b’)
bottomup_s = identity_block(x, 3, [512, 512, 2048], stage=5, block=’c’) # (?, 16, 16, 2048)

topdown_s = tf.keras.layers.Conv2D(1024, (1, 1), padding=’same’)(bottomup_s) # (?, 16, 16, 1024)
# x = tf.keras.layers.UpSampling2D(size=(2,2))(topdown_s) # For nearest neighbour upscaling
x = tf.keras.layers.Lambda(lambda x : bilinearly_upsample(x, (32,32)))(topdown_s) # For bilinear

upsampling
topdown_m = tf.keras.layers.add([x, tf.keras.layers.Conv2D(1024, (1, 1),

padding=’same’)(bottomup_m)])

# x = tf.keras.layers.UpSampling2D(size=(2, 2))(topdown_m) # (?, 64, 64, 1024) # For nearest
neighbour upsampling

x = tf.keras.layers.Lambda(lambda x: bilinearly_upsample(x, (64, 64)))(topdown_s) # For bilinear
upsampling

topdown_l = tf.keras.layers.add([x, tf.keras.layers.Conv2D(1024, (1, 1),
padding=’same’)(bottomup_l)])

# x = tf.keras.layers.UpSampling2D(size=(2, 2))(topdown_l) # (?, 128, 128, 1024) # For nearest
neighbour upsampling

x = tf.keras.layers.Lambda(lambda x: bilinearly_upsample(x, (128, 128)))(topdown_s) # For
bilinear upsampling

topdown_xl = tf.keras.layers.add([x, tf.keras.layers.Conv2D(1024, (1, 1),
padding=’same’)(bottomup_xl)])

pyramid_s = tf.keras.layers.Conv2D(256, (3, 3), padding=’same’)(topdown_s)
pyramid_m = tf.keras.layers.Conv2D(256, (3, 3), padding=’same’)(topdown_m)
pyramid_l = tf.keras.layers.Conv2D(256, (3, 3), padding=’same’)(topdown_l)
pyramid_xl = tf.keras.layers.Conv2D(256, (3, 3), padding=’same’)(topdown_xl)

resnet = applications.resnet50.ResNet50(include_top=False, weights=’imagenet’,
input_shape=(SCALED_HEIGHT, SCALED_WIDTH, 3), pooling=None)

weights = resnet.get_weights()
if "d" in CHANNELS:

if DEPTH_WEIGHT_INITIALIZATION == "glorot":
glorot_input = tf.keras.Input(shape=(SCALED_HEIGHT, SCALED_WIDTH, num_channels))
glorot_layer = tf.keras.layers.Conv2D(64, (7, 7), strides=(2, 2), padding=’same’,

kernel_initializer=tf.keras.initializers.glorot_uniform())(glorot_input)
glorot_model = tf.keras.Model(glorot_input, glorot_layer)
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weights[0] = np.concatenate([weights[0], glorot_model.weights[0][:,:,np.newaxis,-1,:]],
axis=-2)

elif DEPTH_WEIGHT_INITIALIZATION == "average_rgb":
averaged_weights = np.expand_dims(np.average(weights[0], axis=-2), axis=-2)
weights[0] = np.concatenate([weights[0], averaged_weights], axis=-2)

else:
paddings = tf.constant([[0, 0, ], [0, 0], [0, 1], [0, 0]])
weights[0] = tf.pad(weights[0], paddings, mode=’REFLECT’)

if CHANNELS == "d": weights[0] = tf.expand_dims(weights[0][:,:,-1,:], axis=-2)

model = tf.keras.Model(input, [pyramid_s, pyramid_m, pyramid_l, pyramid_xl])
if not NO_PRETRAINING: model.set_weights(weights)
return model

def get_semantic_fpn(num_channels, config):
def upsample(tensor, repetitions):

if repetitions == 0:
tensor = tf.keras.layers.Conv2D(128, (3, 3), padding=’same’)(tensor)
tensor = tf.keras.layers.BatchNormalization()(tensor)
#tensor = tf.contrib.layers.group_norm(tensor)
return tf.keras.layers.ReLU()(tensor)

# for _ in range(repetitions): # For nearest neighbour upscaling
for dim in [32, 64, 128][repetitions-1:]: # For bilinear upscaling

tensor = tf.keras.layers.Conv2D(128, (3, 3), padding=’same’)(tensor)
tensor = tf.keras.layers.BatchNormalization()(tensor)
tensor = tf.keras.layers.ReLU()(tensor)
# tensor = tf.keras.layers.UpSampling2D(size=(2, 2))(tensor) # For nearest neighbour

upscaling
tensor = tf.keras.layers.Lambda(lambda x: bilinearly_upsample(x, (dim, dim)))(tensor) #

For bilinear upscaling
return tensor

input = tf.keras.Input(shape=(SCALED_HEIGHT, SCALED_WIDTH, num_channels))
fpn = get_fpn(num_channels, config)
#fpn = get_fpn_resnext152(num_channels)
pyramid_s, pyramid_m, pyramid_l, pyramid_xl = fpn(input)
from_s = upsample(pyramid_s, 3)
from_m = upsample(pyramid_m, 2)
from_l = upsample(pyramid_l, 1)
from_xl = upsample(pyramid_xl, 0)

x = tf.keras.layers.add([from_s, from_m, from_l, from_xl])
x = tf.keras.layers.Conv2D(len(LABELS), (1, 1), padding=’same’)(x)
# output = tf.keras.layers.UpSampling2D(size=(4, 4))(x) # (?, 512, 512, 21) # For nearest

neighbour upscaling
output = tf.keras.layers.Lambda(lambda x: bilinearly_upsample(x, (512, 512)))(x) # For bilinear

upscaling
return tf.keras.Model(input, output)
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Appendix F Prediction visualizations

RGB RGBD

Prediction visualizations of Semantic FPN after training on 600 images of our material dataset. Only either RGB or
RGBD predictions are shows for each unique image, since RGB and RGBD predictions are highly similar, to the extent
shows in Figure 47c and 47d. Predictions were selected arbitrarily without bias towards higher quality segmentations.
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Appendix G Full experimental results

G.1 learning rate 0.01 • all 21 classes • cross entropy loss

RGB
mIoU 0.494
fIoU 0.809

accuracy 0.894
micro-averaged precision/recall/F1 0.894

macro-averaged precision 0.636
macro-averaged recall 0.576

macro-averaged F1 0.588
weighted macro-averaged precision 0.879

weighted macro-averaged recall 0.886
weighted macro-averaged F1 0.881

RGBD
0.507
0.802
0.890
0.890
0.630
0.594
0.602
0.874
0.882
0.877

Performance overview

RGB RGBD RGBD - RGB
IoU Precision Recall IoU Precision Recall IoU Precision Recall

Overall 0.494 0.636 0.576 0.507 0.630 0.594 +0.013 -0.006 +0.018
Weighted overall 0.809 0.879 0.886 0.802 0.874 0.882 -0.007 -0.005 -0.004

brick 0.832 0.899 0.918 0.820 0.893 0.909 -0.012 -0.006 -0.009
sky 0.982 0.998 0.984 0.980 0.998 0.981 -0.002 0.000 -0.003

asphalt 0.858 0.907 0.940 0.832 0.880 0.937 -0.026 -0.027 -0.003
tile 0.597 0.796 0.704 0.583 0.807 0.677 -0.014 +0.011 -0.027

foliage 0.826 0.890 0.920 0.862 0.914 0.938 +0.036 +0.024 +0.018
cloud 0.963 0.967 0.996 0.958 0.962 0.995 -0.005 -0.005 -0.001
grass 0.715 0.785 0.889 0.663 0.766 0.831 -0.052 -0.019 -0.058
glass 0.674 0.753 0.865 0.702 0.784 0.870 +0.028 +0.031 +0.005
stone 0.340 0.563 0.461 0.369 0.578 0.505 +0.029 +0.015 +0.044
steel 0.569 0.712 0.739 0.596 0.733 0.761 +0.027 +0.021 +0.022

concrete 0.824 0.924 0.883 0.819 0.921 0.881 -0.005 -0.003 -0.002
water 0.563 0.837 0.632 0.644 0.792 0.776 +0.081 -0.045 +0.144
wood 0.402 0.683 0.495 0.473 0.740 0.568 +0.071 +0.057 +0.073
soil 0.265 0.501 0.359 0.191 0.348 0.298 -0.074 -0.153 -0.061

other 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
aluminium 0.412 0.509 0.685 0.432 0.558 0.657 +0.020 +0.049 -0.028

gravel 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
iron 0.000 0.002 0.000 0.004 0.022 0.005 +0.004 +0.020 +0.005

living 0.447 0.779 0.512 0.541 0.833 0.607 +0.094 +0.054 +0.095
fabric 0.105 0.843 0.108 0.048 0.455 0.051 -0.057 -0.388 -0.057

plastic 0.002 0.004 0.006 0.134 0.242 0.232 +0.132 +0.238 +0.226
Per-class results
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Predicted labels
Tr

ue
la

be
ls

RGB aluminium asphalt brick cloud concrete fabric foliage glass grass gravel iron living other plastic sky soil steel stone tile water wood Total
aluminium 27060 53 400 67 557 34 896 738 106 0 0 562 0 31 0 12 7760 71 267 45 828 39487

asphalt 0 1606151 80027 0 0 0 155 5 4209 0 0 0 0 88 0 1989 649 9150 5285 0 69 1707777
brick 4290 102103 2693963 0 2079 41 2592 15911 2510 39 442 174 162 0 781 3679 10255 18906 71139 25 5041 2934132
cloud 0 0 76 662268 0 0 94 0 0 0 0 0 0 0 1923 0 150 0 205 0 0 664716

concrete 38 0 5720 0 89000 119 103 985 54 27 8 0 0 16 27 0 3549 0 1018 0 21 100685
fabric 8603 0 1302 38 206 2951 13 7880 86 0 0 21 154 0 249 0 3846 1354 571 9 17 27300
foliage 272 97 2997 133 532 0 439810 154 23073 20 10 333 0 34 3 1107 5088 2249 457 171 1168 477708

glass 2508 6 5635 0 9 194 173 126184 151 0 0 727 89 178 0 0 6495 54 2460 0 864 145727
grass 26 1175 2854 0 1554 0 6541 6 217142 0 0 22 0 11 0 911 3701 5940 3203 458 561 244105

gravel 0 0 22 0 0 0 49 0 0 0 0 0 0 0 0 0 69 820 104 0 0 1064
iron 0 5076 5754 0 5 0 20 0 104 0 9 5 0 0 0 0 49 2425 1129 0 33 14609

living 283 1063 1837 0 0 9 1161 3650 37 32 69 16352 1183 87 117 11 3377 200 2389 0 61 31918
other 0 12 3256 0 0 0 64 0 15 0 9 0 0 17 0 0 84 39 990 0 4 4490

plastic 204 1 389 503 0 15 87 0 0 0 0 741 0 21 0 0 1032 37 313 0 78 3421
sky 95 0 227 20195 0 16 7680 0 0 0 0 0 121 0 1847543 0 129 0 413 0 0 1876419

soil 70 10226 4227 0 0 0 902 0 9981 0 0 3 0 0 0 17560 1602 2242 1005 345 629 48792
steel 7901 2198 16955 1543 1789 116 1870 4636 2232 1 1130 1402 0 2165 15 227 160061 4736 5496 93 1792 216358
stone 335 19635 49254 0 135 0 813 940 5852 48 1912 509 18 2444 74 3352 3897 105369 32006 1018 775 228386
tile 631 21654 115390 36 360 2 21258 301 10431 88 187 22 57 0 0 6165 3375 32954 508135 29 208 721283
water 169 217 424 0 0 0 4017 548 0 0 0 0 0 0 0 0 56 107 382 11904 993 18817
wood 665 30 5165 7 21 0 5746 5576 530 0 445 100 0 81 0 8 9365 224 813 123 28370 57269
Total 53150 1769697 2995874 684790 96247 3497 494044 167514 276513 255 4221 20973 1784 5173 1850732 35021 224589 186877 637780 14220 41512 9564463

Tr
ue

la
be

ls

RGBD aluminium asphalt brick cloud concrete fabric foliage glass grass gravel iron living other plastic sky soil steel stone tile water wood Total
aluminium 25959 3 344 98 386 287 1428 611 110 0 0 45 0 28 10 0 8117 515 106 3 1437 39487

asphalt 59 1601384 83862 0 0 0 212 77 5129 0 2 0 10 12 0 1909 1157 10574 3196 31 163 1707777
brick 2374 156426 2669142 0 844 0 1295 5919 3019 0 571 877 14 111 68 2460 7537 19244 60540 1213 2478 2934132
cloud 0 0 60 661891 89 0 0 41 0 0 0 0 0 0 1762 0 481 0 392 0 0 664716

concrete 0 0 2528 0 88713 0 143 856 0 0 0 0 0 12 22 0 6714 0 1697 0 0 100685
fabric 4531 1345 1665 0 60 1393 80 10608 0 0 8 0 116 0 213 427 6099 0 329 0 426 27300
foliage 1422 542 2282 163 680 0 448399 1014 13759 0 49 217 17 54 1 1056 3371 2363 475 213 1631 477708

glass 2232 43 3984 0 1024 343 703 126881 0 0 0 1452 13 0 176 0 6913 726 874 0 363 145727
grass 6 2543 5981 0 1672 0 13142 58 202856 0 84 0 0 0 0 3742 3274 6208 2848 751 940 244105

gravel 0 0 13 0 0 0 44 0 0 0 0 0 0 0 0 0 10 724 273 0 0 1064
iron 0 4236 6400 0 0 0 0 6 125 0 81 10 0 0 0 5 118 2257 1371 0 0 14609

living 432 501 4395 0 0 0 203 3325 55 0 37 19386 0 77 647 10 1153 310 1208 30 149 31918
other 0 12 1641 0 0 0 29 0 0 0 3 0 0 0 0 0 29 572 2179 25 0 4490

plastic 14 0 203 417 0 0 88 52 0 0 64 298 41 797 0 0 1107 180 160 0 0 3421
sky 0 0 32 25145 0 0 7691 23 0 0 0 0 0 0 1842102 0 85 0 1341 0 0 1876419

soil 0 9498 2737 0 0 0 222 0 15643 0 0 7 0 0 0 14582 2114 2078 1085 0 826 48792
steel 8246 2088 11604 64 2652 886 2400 5072 2792 0 347 800 23 954 11 383 164830 3564 6757 832 2053 216358
stone 157 14851 50315 0 14 0 607 938 7297 0 495 147 0 1112 85 2048 3514 115396 30665 557 188 228386
tile 628 24738 128934 10 119 79 9031 1524 12910 73 987 3 0 0 72 15122 4269 34048 488560 23 153 721283
water 363 1 708 0 0 0 152 0 268 0 837 0 0 95 0 0 822 359 0 14608 604 18817
wood 77 63 10292 0 39 70 4596 4640 694 0 11 7 0 39 10 55 2947 200 843 156 32530 57269
Total 46500 1818274 2987122 687788 96292 3058 490465 161645 264657 73 3576 23249 234 3291 1845179 41799 224661 199318 604899 18442 43941 9564463

Confusion matrices
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fabric, AUC: 0.034
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Precision-recall curves, legend sorted by class size. Top: RGB, bottom: RGBD
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G.2 learning rate 0.01 • all 21 classes • class-weighted cross entropy loss

RGB
mIoU 0.509
fIoU 0.808

accuracy 0.895
micro-averaged precision/recall/F1 0.895

macro-averaged precision 0.659
macro-averaged recall 0.591

macro-averaged F1 0.610
weighted macro-averaged precision 0.879

weighted macro-averaged recall 0.886
weighted macro-averaged F1 0.881

RGBD
0.503
0.807
0.895
0.895
0.646
0.586
0.599
0.880
0.886
0.882

Performance overview

Class-weighted cross entropy loss
RGB RGBD

IoU Precision Recall IoU Precision Recall
Overall 0.509 0.659 0.591 0.503 0.646 0.586

Weighted overall 0.808 0.879 0.886 0.807 0.880 0.886
brick 0.830 0.892 0.922 0.828 0.902 0.909
sky 0.975 0.994 0.980 0.977 0.998 0.979

asphalt 0.858 0.901 0.947 0.825 0.881 0.928
tile 0.604 0.816 0.698 0.621 0.808 0.728

foliage 0.843 0.903 0.926 0.849 0.894 0.944
cloud 0.945 0.957 0.986 0.952 0.954 0.997
grass 0.691 0.795 0.841 0.711 0.827 0.835
glass 0.710 0.798 0.864 0.715 0.785 0.888
stone 0.332 0.567 0.444 0.398 0.617 0.529
steel 0.573 0.703 0.757 0.614 0.718 0.809

concrete 0.806 0.870 0.916 0.829 0.908 0.905
water 0.652 0.774 0.805 0.467 0.614 0.660
wood 0.406 0.709 0.487 0.440 0.720 0.531
soil 0.237 0.531 0.299 0.339 0.636 0.421

other 0.000 0.000 0.000 0.000 0.000 0.000
aluminium 0.450 0.600 0.643 0.501 0.671 0.665

gravel 0.143 0.542 0.163 0.000 0.000 0.000
iron 0.006 0.062 0.007 0.044 0.297 0.049

living 0.394 0.764 0.449 0.353 0.695 0.418
fabric 0.235 0.660 0.268 0.092 0.639 0.098

plastic 0.003 0.008 0.004 0.007 0.013 0.017

Difference with unweighted cross entropy loss
RGB RGBD

IoU Precision Recall IoU Precision Recall
+0.015 +0.023 +0.015 -0.004 +0.016 0.000
-0.001 0.000 0.000 +0.005 +0.006 +0.004
-0.002 -0.007 +0.004 +0.008 +0.009 0.000
-0.007 -0.004 -0.004 -0.003 0.000 -0.002
0.000 -0.006 +0.007 -0.007 +0.001 -0.009

+0.007 +0.020 -0.006 +0.038 +0.001 +0.051
+0.017 +0.013 +0.006 -0.013 -0.020 +0.006
-0.018 -0.010 -0.010 -0.006 -0.008 +0.002
-0.024 +0.010 -0.048 +0.048 +0.061 +0.004
+0.036 +0.045 -0.001 +0.013 +0.001 +0.018
-0.008 +0.004 -0.017 +0.029 +0.039 +0.024
+0.004 -0.009 +0.018 +0.018 -0.015 +0.048
-0.018 -0.054 +0.033 +0.010 -0.013 +0.024
+0.089 -0.063 +0.173 -0.177 -0.178 -0.116
+0.004 +0.026 -0.008 -0.033 -0.020 -0.037
-0.028 +0.030 -0.060 +0.148 +0.288 +0.123
0.000 0.000 0.000 0.000 0.000 0.000

+0.038 +0.091 -0.042 +0.069 +0.113 +0.008
+0.143 +0.542 +0.163 0.000 0.000 0.000
+0.006 +0.060 +0.007 +0.040 +0.275 +0.044
-0.053 -0.015 -0.063 -0.188 -0.138 -0.189
+0.130 -0.183 +0.160 +0.044 +0.184 +0.047
+0.001 +0.004 -0.002 -0.127 -0.229 -0.215

Per-class results
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Predicted labels
Tr

ue
la

be
ls

RGB aluminium asphalt brick cloud concrete fabric foliage glass grass gravel iron living other plastic sky soil steel stone tile water wood Total
aluminium 25415 0 547 45 464 1256 776 968 186 0 0 155 24 0 107 0 8381 369 43 36 715 39487

asphalt 65 1617394 79728 0 0 0 50 21 1657 0 0 0 17 78 0 62 452 5568 1815 650 220 1707777
brick 794 119366 2706214 0 10639 102 3154 7132 2121 0 5 80 2 0 376 3401 10566 12599 55703 564 1314 2934132
cloud 0 0 288 656024 0 0 2 0 0 0 0 0 0 0 8342 0 60 0 0 0 0 664716

concrete 1828 10 220 0 92254 223 173 4 90 0 0 0 0 0 83 0 3395 0 1753 409 243 100685
fabric 6508 19 1276 37 0 7332 8 8332 0 0 0 0 0 32 40 0 2439 29 0 0 1248 27300

foliage 555 44 1116 605 335 48 442452 1065 21194 2 0 297 2 0 109 638 4875 1288 1432 255 1396 477708
glass 1837 24 4872 0 0 102 153 126046 81 0 0 2738 0 0 0 0 7215 48 1950 34 627 145727
grass 5 3568 5705 0 196 0 7797 12 205430 0 88 83 0 0 0 2786 6260 6733 4146 924 372 244105
gravel 0 0 194 0 0 0 68 0 0 174 0 0 0 0 0 0 41 334 253 0 0 1064

iron 0 4727 6220 0 0 0 374 6 104 0 108 0 0 2 0 185 165 1935 783 0 0 14609
living 446 289 3248 3 0 39 1722 2794 90 0 2 14347 0 146 241 0 6163 2237 151 0 0 31918
other 0 18 3600 0 0 0 456 8 20 0 0 0 0 0 0 0 12 58 288 30 0 4490

plastic 221 0 361 452 0 0 138 0 0 0 7 177 0 17 0 0 1630 152 266 0 0 3421
sky 0 0 23 27601 0 2 7818 74 0 0 0 0 0 0 1840163 0 3 0 728 0 7 1876419
soil 0 9320 4082 0 27 0 1107 0 11702 0 0 81 0 0 0 14636 1092 3664 2317 0 764 48792

steel 2590 1699 19211 148 1926 1973 2570 4505 1394 0 849 533 5 110 337 275 163798 3478 7140 573 3244 216358
stone 401 21247 56843 0 161 30 366 267 2861 0 593 72 0 1419 0 3027 5175 101462 33309 619 534 228386
tile 411 16229 128262 0 2 2 14919 812 10513 138 38 135 796 17 86 2254 3727 38226 504032 78 606 721283

water 433 0 330 0 0 0 1956 0 50 0 0 0 0 0 0 1 575 183 0 15150 139 18817
wood 825 22 9183 0 0 0 3464 5772 748 7 40 59 299 142 174 280 6831 277 1011 232 27903 57269
Total 42334 1793976 3031523 684915 106004 11109 489523 157818 258241 321 1730 18757 1145 1963 1850058 27545 232855 178640 617120 19554 39332 9564463

Tr
ue

la
be

ls

RGBD aluminium asphalt brick cloud concrete fabric foliage glass grass gravel iron living other plastic sky soil steel stone tile water wood Total
aluminium 26269 0 1383 203 579 312 821 1355 599 0 0 889 0 23 18 0 5972 208 0 141 715 39487

asphalt 0 1586394 89590 0 167 0 634 58 6881 5 197 0 0 53 1 1650 285 10370 11357 12 123 1707777
brick 2974 150908 2669977 8 1885 452 2558 6389 1457 0 252 52 1 495 60 2704 12444 21247 57154 659 2456 2934132
cloud 0 0 0 662879 64 0 81 0 0 0 0 0 0 0 1248 0 444 0 0 0 0 664716

concrete 113 0 335 0 91185 0 0 757 0 0 0 0 532 57 321 0 5859 0 1432 0 94 100685
fabric 2181 216 657 11 122 2677 372 12512 0 0 0 53 9 0 458 0 6616 167 932 0 317 27300

foliage 1257 1757 778 247 1029 0 451415 727 9378 0 83 739 0 0 6 476 3845 1164 1518 260 3029 477708
glass 1238 351 5144 0 152 497 110 129530 39 0 0 967 0 0 11 11 5845 26 1459 0 347 145727
grass 453 3383 3735 0 1212 0 10846 264 204011 72 0 0 13 68 0 231 5692 4140 3459 5754 772 244105
gravel 0 0 10 0 0 0 262 0 0 0 0 0 0 0 0 0 18 608 166 0 0 1064

iron 0 2468 7227 0 0 0 385 3 133 0 730 5 0 10 0 0 58 2752 836 0 2 14609
living 775 195 8177 0 0 0 443 3748 49 0 0 13359 0 899 0 0 1689 1031 1543 0 10 31918
other 0 12 1350 0 0 0 81 656 0 0 0 0 0 0 0 0 97 51 2137 25 81 4490

plastic 142 0 264 0 90 0 129 0 0 0 0 398 0 60 0 0 1701 154 483 0 0 3421
sky 0 0 68 31014 0 0 7719 14 0 0 0 0 0 0 1837216 0 2 0 386 0 0 1876419
soil 21 12536 2497 0 0 0 846 0 6333 0 0 27 0 5 0 20546 1821 1805 1105 143 1107 48792

steel 2172 3918 12467 24 2783 75 2338 2477 1019 0 588 1661 20 956 331 89 175122 4747 4286 189 1096 216358
stone 43 16920 42801 0 12 0 297 145 4631 0 554 261 8 1456 0 1671 3873 120900 34232 462 120 228386
tile 480 16989 107781 0 936 0 21061 1696 11399 8 0 673 0 298 36 4844 3458 25566 525505 74 479 721283

water 843 0 277 0 0 0 2003 40 104 0 31 0 0 0 0 21 1773 240 0 12438 1047 18817
wood 167 3368 4313 0 176 176 2518 4540 483 0 19 113 49 175 843 61 7196 642 1928 84 30418 57269
Total 39128 1799415 2958831 694386 100392 4189 504919 164911 246516 85 2454 19197 632 4555 1840549 32304 243810 195818 649918 20241 42213 9564463

Confusion matrices
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Precision-recall curves, legend sorted by class size. Top: RGB, bottom: RGBD
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G.3 learning rate 0.01 • all 21 classes • cross entropy loss, second run

Cross entropy loss, second run
RGB RGBD

IoU Precision Recall IoU Precision Recall
Overall 0.496 0.615 0.580 0.502 0.619 0.588

Weighted overall 0.804 0.876 0.883 0.815 0.883 0.890
brick 0.825 0.891 0.917 0.838 0.899 0.925
sky 0.979 0.998 0.981 0.980 0.997 0.983

asphalt 0.832 0.884 0.935 0.876 0.925 0.942
tile 0.614 0.829 0.703 0.588 0.794 0.694

foliage 0.856 0.926 0.918 0.843 0.889 0.942
cloud 0.955 0.960 0.993 0.961 0.966 0.994
grass 0.711 0.802 0.862 0.721 0.794 0.888
glass 0.660 0.730 0.872 0.727 0.788 0.903
stone 0.354 0.597 0.465 0.349 0.543 0.495
steel 0.538 0.700 0.698 0.561 0.712 0.726

concrete 0.850 0.914 0.923 0.806 0.913 0.873
water 0.607 0.822 0.699 0.551 0.867 0.601
wood 0.333 0.673 0.398 0.535 0.777 0.632
soil 0.232 0.339 0.426 0.129 0.406 0.160
other 0.000 0.000 0.000 0.000 0.000 0.000

aluminium 0.452 0.599 0.648 0.448 0.555 0.699
gravel 0.000 0.000 0.000 0.002 0.028 0.002
iron 0.013 0.109 0.014 0.093 0.304 0.118

living 0.552 0.766 0.664 0.456 0.721 0.553
fabric 0.016 0.318 0.017 0.001 0.012 0.001
plastic 0.026 0.060 0.044 0.079 0.111 0.216

Difference with first run
RGB RGBD

IoU Precision Recall IoU Precision Recall
+0.002 -0.021 +0.004 -0.005 -0.011 0.000
-0.005 -0.003 -0.003 +0.013 +0.009 +0.008
-0.007 -0.008 -0.001 +0.018 +0.006 +0.016
-0.003 0.000 -0.003 0.000 -0.001 +0.002
-0.026 -0.023 -0.005 +0.044 +0.045 +0.005
+0.017 +0.033 -0.001 +0.005 -0.013 +0.017
+0.030 +0.036 -0.002 -0.019 -0.025 +0.004
-0.008 -0.007 -0.003 +0.003 +0.004 -0.001
-0.004 +0.017 -0.027 +0.058 +0.028 +0.057
-0.014 -0.023 +0.007 +0.025 +0.004 +0.033
+0.014 +0.034 +0.004 -0.020 -0.035 -0.010
-0.031 -0.012 -0.041 -0.035 -0.021 -0.035
+0.026 -0.010 +0.040 -0.013 -0.008 -0.008
+0.044 -0.015 +0.067 -0.093 +0.075 -0.175
-0.069 -0.010 -0.097 +0.062 +0.037 +0.064
-0.033 -0.162 +0.067 -0.062 +0.058 -0.138
0.000 0.000 0.000 0.000 0.000 0.000

+0.040 +0.090 -0.037 +0.016 -0.003 +0.042
0.000 0.000 0.000 +0.002 +0.028 +0.002

+0.013 +0.107 +0.014 +0.089 +0.282 +0.113
+0.105 -0.013 +0.152 -0.085 -0.112 -0.054
-0.089 -0.525 -0.091 -0.047 -0.443 -0.050
+0.024 +0.056 +0.038 -0.055 -0.131 -0.016

Per-class results. The right hand side shows the difference with the exact same experiment retrained and retested. This
table highlight the volatility of some of the small classes. Strangely enough, the probabilities are very similar between
RGB and RGBD for both runs of the experiment, even though those are themselves separate experiments. Both runs
have been run on different GPUs and were executed a few days apart (which might have an influence on any random
seed derived from a datetime), but we are still unable to pinpoint were the similarity comes from.

Predicted labels

Tr
ue

la
be

ls

RGB aluminium asphalt brick cloud concrete fabric foliage glass grass gravel iron living other plastic sky soil steel stone tile water wood Total
aluminium -1449 -15 +928 -67 -67 +211 -148 +257 +31 +0 +3 +35 +0 +411 +64 +8 -807 +285 +220 -45 +145 +0

asphalt +2 -9201 +10196 +0 +361 +0 -149 -2 -546 +0 +0 +0 +0 -88 +0 +1380 +364 -2112 -227 +10 +12 +0
brick -4061 +34817 -2362 +1000 +3064 -32 -806 -10209 +730 +40 +419 +1109 +81 +64 +185 +579 +5750 -2425 -26150 +1576 -3369 +0
cloud +0 +0 +119 -1581 +0 +0 +59 +58 +0 +0 +0 +0 +0 +0 -91 +6 +1474 +0 -44 +0 +0 +0

concrete +501 +0 -4053 +0 +4020 -119 -82 -490 -54 -27 -8 +81 +0 -16 +155 +0 -367 +968 -1007 +0 +498 +0
fabric -2232 +414 -974 +352 +12 -2471 +6 +6653 -86 +0 +0 -21 -154 +0 +9 +0 -1545 -1174 +883 -9 +337 +0

foliage +2236 +6 -1091 +38 -263 +31 -1094 +554 -688 -20 +179 -327 +0 -30 +8 +101 +218 -1347 -260 +123 +1626 +0
glass -1497 -6 +2120 +0 -5 -57 -101 +995 -78 +0 +0 +1090 -89 -178 +0 +15 -779 +117 -741 +0 -806 +0
grass -5 +1279 +477 +0 -1160 +0 +1859 +190 -6497 +5 +8 +110 +0 -11 +0 +5909 -642 -2500 +1264 -352 +66 +0
gravel +0 +0 -22 +0 +0 +0 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 -44 -168 +233 +0 +0 +0

iron +0 -482 +185 +0 -5 +0 +2 +0 +133 +0 +205 -5 +0 +0 +0 +0 +88 -308 +210 +10 -33 +0
living +198 -1019 +2767 +0 +0 +10 -1092 -1218 -32 -32 -36 +4866 -1176 -63 -117 -11 -957 -157 -1984 +5 +48 +0
other +0 +0 +109 +0 +0 +0 -58 +102 -11 +0 -9 +0 +0 -17 +0 +0 -34 +613 -780 +25 +60 +0

plastic +10 -1 -101 -456 +0 -15 +0 +8 +0 +0 +0 -426 +0 +130 +0 +0 +895 +76 -43 +0 -77 +0
sky -95 +0 +290 +4783 +0 -16 +90 +0 +0 +0 +0 +0 -121 +0 -5374 +0 +346 +0 +97 +0 +0 +0

soil -69 +987 -396 +0 +0 +0 -162 +0 -3421 +0 +65 +28 +0 +1 +0 +3246 -1558 +654 +1093 -345 -123 +0
steel -3319 +1939 -2457 -1342 -82 +168 +169 +10278 +304 +12 -888 +150 +0 -1199 -5 -122 -8848 +5792 -1308 -49 +807 +0
stone -43 -2487 +3056 +0 -134 +71 -517 -877 +514 +42 -1674 +116 -11 -1613 -74 -566 +349 +997 +3887 -490 -546 +0
tile -453 +8634 +6056 -36 -353 +10 -17342 +1075 -4348 -46 -85 +7 -56 +4 +311 +15670 +402 -9103 -542 +37 +158 +0

water +225 -217 +336 +0 +0 +0 -1067 -548 +0 +0 +0 +0 +0 +1 +0 +0 +735 +550 -379 +1264 -900 +0
wood -410 +1988 +8116 +251 +73 +220 -225 -312 -63 +0 -443 -100 +38 -65 +30 +121 -3847 +293 -146 +39 -5558 +0
Total -10461 +36636 +23299 +2942 +5461 -1989 -20657 +6514 -14112 -26 -2264 +6713 -1488 -2669 -4899 +26336 -8807 -8949 -25724 +1799 -7655 +0

Tr
ue

la
be

ls

RGBD aluminium asphalt brick cloud concrete fabric foliage glass grass gravel iron living other plastic sky soil steel stone tile water wood Total
aluminium +1651 +9 -56 -98 -55 +499 -488 +128 +355 +0 +43 +387 +0 -15 -10 +0 -751 -438 -34 -2 -1125 +0

asphalt +21 +7391 -7074 +0 +208 +0 +141 -67 -1703 +0 -2 +3 -10 -12 +0 -1686 -245 +1713 +1148 -31 +205 +0
brick -1269 -71633 +47434 +1 +379 +300 +759 +2391 -896 +0 +61 -115 -4 -96 +277 -10 +8516 +7919 +6949 -518 -445 +0
cloud +3 +0 -60 -753 -89 +129 +0 +18 +0 +0 +0 +0 +0 +0 +1375 +0 -335 +0 -288 +0 +0 +0

concrete +8 +78 +1411 +0 -796 +0 +1636 -200 +45 +0 +0 +0 +0 +39 -22 +0 -1709 +323 -975 +0 +162 +0
fabric +4470 -1193 +879 +66 +1196 -1358 -74 -2575 +0 +0 -8 +11 -99 +0 +482 -427 -3631 +24 +2612 +0 -375 +0
foliage -55 -542 -753 +85 -417 +0 +1945 -809 -2222 +83 -49 +874 -17 +43 +3 -866 +1615 -1031 +346 +63 +1704 +0
glass -1363 +168 -539 +0 -1004 -138 -663 +4838 +36 +0 +0 -328 -5 +101 -176 +0 +290 -708 -332 +0 -177 +0
grass +4 -1100 -2469 +0 -949 +0 -6635 -18 +13979 +0 +67 +3 +0 +12 +0 -2516 +409 -910 +1147 -600 -424 +0

gravel +0 +0 -13 +0 +0 +0 -39 +0 +0 +3 +0 +0 +0 +0 +0 +0 +12 -245 +282 +0 +0 +0
iron +4 -1550 -67 +0 +0 +0 +63 -6 -47 +0 +1652 -5 +0 +0 +0 +23 -32 -314 +277 +2 +0 +0

living -132 -177 -1175 +0 +0 +0 +165 +3235 -32 +0 +58 -1714 +150 -39 -349 -10 +495 -62 -379 -23 -11 +0
other +0 +4 +746 +0 +0 +0 -17 +0 +0 +0 +22 +0 +0 +0 +0 +0 +52 -546 -236 -25 +0 +0

plastic +144 +17 +91 -173 +0 +90 +20 +43 +0 +0 -64 +386 -41 -55 +0 +0 -272 -136 -50 +0 +0 +0
sky +8 +0 -32 -2861 +0 +3 +9 +115 +0 +0 +0 +0 +0 +0 +2867 +0 +606 +0 -715 +0 +0 +0

soil +0 -896 +296 +0 +0 +0 -160 +0 +7393 +0 +0 +82 +0 +0 +0 -6771 -1096 +343 +776 +42 -9 +0
steel -583 -910 +7843 +226 +1538 -732 +743 +1790 -1354 +2 +262 +761 -23 +1433 +215 -201 -7611 +115 -2403 -830 -281 +0
stone +61 +502 -4577 +0 -14 +399 -193 -646 -848 +0 +1207 +717 +0 +2020 -85 -1290 -722 -2250 +5947 -178 -50 +0
tile -488 -10986 -3566 -10 +12 -78 +15028 -468 -5828 -72 -987 +148 +0 +23 +75 -8912 -1446 +5048 +12528 +10 -31 +0
water +291 -1 -294 +0 +0 +332 +3780 +34 -268 +0 -208 +0 +0 -75 +0 +0 -164 +23 +0 -3282 -168 +0
wood +428 -29 -3629 +22 -18 +364 +2 -2430 -210 +15 +61 +38 +0 -39 +21 +104 +2024 +38 -442 -18 +3698 +0
Total +3203 -80848 +34396 -3495 -9 -190 +16022 +5373 +8400 +31 +2115 +1248 -49 +3340 +4673 -22562 -3995 +8906 +26158 -5390 +2673 +0

Difference in confusion matrices between the two runs
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G.4 learning rate 0.01 • all 21 classes • class-weighted cross entropy loss, second run

Class-weighted cross entropy loss, second run
RGB RGBD

IoU Precision Recall IoU Precision Recall
Overall 0.515 0.636 0.601 0.504 0.648 0.590

Weighted overall 0.809 0.880 0.888 0.811 0.881 0.888
brick 0.824 0.898 0.908 0.840 0.900 0.926
sky 0.977 0.997 0.979 0.982 0.997 0.983

asphalt 0.841 0.887 0.941 0.853 0.906 0.935
tile 0.598 0.813 0.694 0.618 0.812 0.722

foliage 0.844 0.889 0.944 0.840 0.901 0.925
cloud 0.952 0.955 0.996 0.965 0.967 0.997
grass 0.731 0.830 0.859 0.689 0.785 0.849
glass 0.710 0.786 0.880 0.683 0.776 0.850
stone 0.355 0.588 0.472 0.370 0.579 0.507
steel 0.571 0.681 0.780 0.575 0.724 0.736

concrete 0.832 0.907 0.909 0.778 0.890 0.860
water 0.660 0.761 0.832 0.491 0.656 0.662
wood 0.471 0.736 0.567 0.418 0.682 0.519
soil 0.439 0.679 0.554 0.262 0.508 0.352
other 0.000 0.000 0.000 0.000 0.000 0.000

aluminium 0.506 0.678 0.665 0.460 0.616 0.645
gravel 0.008 0.027 0.012 0.000 0.000 0.000
iron 0.014 0.075 0.017 0.019 0.075 0.025

living 0.431 0.690 0.534 0.475 0.753 0.562
fabric 0.036 0.419 0.038 0.083 0.694 0.086
plastic 0.023 0.068 0.033 0.177 0.389 0.246

Difference with first run
RGB RGBD

IoU Precision Recall IoU Precision Recall
+0.006 -0.023 +0.010 +0.001 +0.002 0.000
+0.001 +0.001 +0.002 +0.004 +0.001 +0.002
-0.006 +0.006 -0.014 +0.012 -0.002 +0.017
+0.002 +0.003 -0.001 +0.005 -0.001 +0.004
-0.017 -0.014 -0.006 +0.028 +0.025 +0.007
-0.006 -0.003 -0.004 -0.003 +0.004 -0.006
+0.001 -0.014 +0.018 -0.009 +0.007 -0.019
+0.007 -0.002 +0.010 +0.013 +0.013 0.000
+0.040 +0.035 +0.018 -0.022 -0.042 +0.014

0.000 -0.012 +0.016 -0.032 -0.009 -0.038
+0.023 +0.021 +0.028 -0.028 -0.038 -0.022
-0.002 -0.022 +0.023 -0.039 +0.006 -0.073
+0.026 +0.037 -0.007 -0.051 -0.018 -0.045
+0.008 -0.013 +0.027 +0.024 +0.042 +0.002
+0.065 +0.027 +0.080 -0.022 -0.038 -0.012
+0.202 +0.148 +0.255 -0.077 -0.128 -0.069

0.000 0.000 0.000 0.000 0.000 0.000
+0.056 +0.078 +0.022 -0.041 -0.055 -0.020
-0.135 -0.515 -0.151 0.000 0.000 0.000
+0.008 +0.013 +0.010 -0.025 -0.222 -0.024
+0.037 -0.074 +0.085 +0.122 +0.058 +0.144
-0.199 -0.241 -0.230 -0.009 +0.055 -0.012
+0.020 +0.060 +0.029 +0.170 +0.376 +0.229

Per-class results. As with unweighted cross entropy loss, performance of the smallest classes appears to change mea-
surably between different runs of the same experiment. other remains unchanged in that it is still not being predicted.
aluminium and living have changed little, but they already performed quite well. gravel and iron show vari-
able precision values, but these can be ascribed to noise given their low recalls. fabric and plastic are the most
volatile, which reinforces the fact that they are most susceptible to noise due to their class size.

Predicted labels

Tr
ue

la
be

ls

RGB aluminium asphalt brick cloud concrete fabric foliage glass grass gravel iron living other plastic sky soil steel stone tile water wood Total
aluminium +859 +36 +171 -22 +570 -761 +397 -437 +37 +0 +97 +871 -24 +51 -107 +15 -1706 -333 +249 +148 -111 +0

asphalt -65 -9511 -832 +0 +0 +0 -3 +554 +2559 +73 +26 +0 -6 -64 +0 +58 -1 +3043 +4437 -582 +314 +0
brick -416 +23764 -39363 +188 -8665 +50 -303 -319 -983 +0 +1630 +1563 +96 +30 +849 +2549 +9435 +10019 -1015 +1247 -356 +0
cloud +79 +0 +114 +6501 +0 +0 +533 +0 +0 +0 +0 +0 +0 +0 -7502 +0 +233 +0 +42 +0 +0 +0

concrete -1799 -10 +1759 +10 -701 -223 -159 +321 -21 +0 +0 +0 +0 +0 -83 +0 +1048 +1065 -1231 -409 +433 +0
fabric -2529 +262 -79 -9 +127 -6272 +25 +2911 +0 +0 +211 +115 +1116 -32 +492 +23 +4275 +276 +300 +0 -1212 +0
foliage +132 +1415 +2869 -188 -173 -48 +8715 -1004 -10407 -2 +454 +79 +55 +25 -109 +178 -844 -378 -902 +13 +120 +0
glass +399 -24 -1817 +0 +43 +37 -153 +2337 -49 +0 +0 -2077 +0 +126 +1089 +0 +1035 +126 -778 -34 -260 +0
grass -5 -456 -3454 +0 +209 +0 +4566 +124 +4351 +181 -88 -83 +0 +195 +5 -248 -3081 -2979 +87 +71 +605 +0

gravel +0 +0 -194 +0 +0 +0 +71 +0 +0 -161 +0 +0 +0 +0 +0 +0 -41 +408 -174 +0 +91 +0
iron +0 +46 -579 +0 +3 +0 -9 +34 -67 +0 +153 +2 +0 -2 +0 -172 -60 +407 +244 +0 +0 +0

living -34 -177 -1485 -3 +0 +472 -1520 +1556 -79 +0 +3 +2713 +0 -145 -241 +0 -1264 -1786 +1858 +29 +103 +0
other +42 +49 -2573 +0 +0 +0 -345 +693 +53 +0 +0 +0 +0 +120 +0 +8 +80 +56 +1788 -30 +59 +0

plastic +102 +1 +27 -284 +0 +0 +50 +0 +10 +0 -7 +340 +0 +99 +0 +0 -433 -138 +216 +0 +17 +0
sky +150 +0 -23 +1772 +0 -2 -138 -74 +0 +0 +0 +0 +0 +0 -1339 +0 +181 +0 -520 +0 -7 +0

soil +8 -2769 -565 +0 -27 +0 -898 +0 -6213 +0 +0 +12 +0 +0 +0 +12437 +157 -2273 -300 +0 +431 +0
steel +254 +1498 -5580 +112 +1395 -1968 -352 +370 +484 +0 -674 +794 +50 +277 -67 -246 +5128 +3453 -4560 -402 +34 +0
stone -160 -2411 -10456 +0 -108 -30 +276 -146 +4996 +12 -293 +146 +22 -1035 +0 -1797 +2342 +6403 +1947 +449 -157 +0
tile +111 +4846 +3794 +0 -2 +2 +7989 +2281 -759 +53 +254 +491 -796 +126 -86 -272 -954 -13492 -3329 +26 -283 +0
water -352 +69 -213 +0 +0 +0 -595 +0 -50 +0 +0 +219 +0 +0 +0 -1 -97 +127 +0 +519 +374 +0
wood -400 +214 -4010 +40 +2224 +160 -229 -3775 +372 -7 -32 +755 -299 -46 +364 -224 -297 +509 +125 -22 +4578 +0
Total -3624 +16842 -62489 +8117 -5105 -8583 +17918 +5426 -5766 +149 +1734 +5940 +214 -275 -6735 +12308 +15136 +4513 -1516 +1023 +4773 +0

Tr
ue

la
be

ls

RGBD aluminium asphalt brick cloud concrete fabric foliage glass grass gravel iron living other plastic sky soil steel stone tile water wood Total
aluminium -797 +208 -492 -179 -142 +150 +327 -500 -438 +0 +20 -486 +7 +31 -9 +0 +1073 +465 +141 -102 +723 +0
asphalt +218 +12019 -8850 +0 -167 +0 -315 -19 -4306 -5 -75 +0 +0 -53 -1 +1345 +334 +6650 -6848 -10 +83 +0
brick -2055 -44675 +49563 -8 -65 -451 +834 -1224 +2727 +0 +979 -18 +102 -495 +118 +2619 -4037 -1360 -1570 -424 -560 +0
cloud +0 +0 +709 +157 -64 +9 -81 +174 +0 +0 +0 +0 +0 +0 -460 +0 -444 +0 +0 +0 +0 +0

concrete +111 +79 +3302 +0 -4537 +0 +0 -226 +0 +0 +238 +0 -532 -57 -210 +0 +1576 +22 +328 +0 -94 +0
fabric +2619 +2070 +993 +30 -122 -306 +13 -2661 +0 +0 +0 -46 -9 +0 +434 +0 -3758 +1152 -369 +0 -40 +0

foliage -965 -1264 +961 -104 -599 +0 -9165 -192 +9054 +2 +87 -361 +0 +152 -3 +15 +305 +1102 +549 +120 +306 +0
glass +246 -341 +176 +0 +618 -479 -99 -5604 -23 +0 +0 +1628 +487 +101 -7 -11 +1852 +18 -41 +0 +1479 +0
grass -450 -1175 +3291 +0 -851 +0 -2406 -261 +3324 -61 +10 +91 -13 -43 +0 +1532 -3219 +1444 +303 -1175 -341 +0
gravel +0 +194 -10 +0 +0 +0 -236 +0 +0 +0 +0 +0 +0 +0 +0 +0 +1 -134 +185 +0 +0 +0
iron +0 +1867 -2232 +0 +0 +0 -211 -1 -46 +0 -354 -3 +0 -10 +0 +9 +42 -109 +1037 +13 -2 +0

living -705 +75 -4902 +0 +11 +0 +889 +2276 -22 +0 +92 +4606 +0 -793 +277 +0 -234 -490 -1270 +0 +190 +0
other +0 +0 +131 +0 +0 +0 -33 -656 +0 +0 +0 +0 +0 +0 +0 +0 +2 +6 +631 +0 -81 +0

plastic -11 +0 -154 +439 -35 +0 +11 +63 +0 +0 +0 -222 +0 +783 +0 +0 -764 +181 -295 +0 +4 +0
sky +0 +0 +451 -9879 +0 +0 +26 -14 +0 +0 +0 +0 +0 +0 +9164 +0 +24 +0 +228 +0 +0 +0

soil -21 -2270 +1817 +0 +0 +0 -453 +0 +6287 +0 +0 -2 +0 -5 +0 -3339 -854 -576 -135 -143 -306 +0
steel +3086 +162 +424 +142 +2879 +469 +182 +3429 +1503 +21 +61 -789 +309 -355 +865 +98 -15752 +2471 -760 +31 +1524 +0
stone +321 -1320 -1608 +0 -12 +0 -211 -88 +2120 +0 +853 +231 +112 -1361 +0 +46 +577 -5062 +4945 +162 +295 +0
tile -136 -819 +14611 +95 -276 +8 -6105 +1400 -3772 +39 +193 -226 +44 -114 +268 -788 +1425 -1232 -4663 +249 -201 +0

water -322 +0 +403 +0 +0 +0 +932 -40 +333 +0 +425 +222 +0 +0 +0 -21 -1034 -87 +91 +21 -923 +0
wood +1038 -609 +2108 +1 +280 -176 +1927 -1209 +810 +0 -19 +9 -49 -174 -826 +32 -1038 -438 -1024 -3 -640 +0
Total +2177 -35799 +60692 -9306 -3082 -776 -14174 -5353 +17551 -4 +2510 +4634 +458 -2393 +9610 +1537 -23923 +4023 -8537 -1261 +1416 +0

Difference between the confusion matrices of the two runs.
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G.5 learning rate 0.01 • all 21 classes • dice loss

RGB
mIoU 0.330
fIoU 0.554

accuracy 0.566
micro-averaged precision/recall/F1 0.566

macro-averaged precision 0.780
macro-averaged recall 0.387

macro-averaged F1 0.384
weighted macro-averaged precision 0.615

weighted macro-averaged recall 0.593
weighted macro-averaged F1 0.600

RGBD
0.420
0.631
0.700
0.700
0.783
0.474
0.502
0.716
0.685
0.696

Performance overview

Dice loss
RGB RGBD

IoU Precision Recall IoU Precision Recall
Overall 0.330 0.780 0.387 0.420 0.783 0.474

Weighted overall 0.554 0.615 0.593 0.631 0.716 0.685
brick 0.000 — 0.000 0.783 0.874 0.882
sky 0.985 0.997 0.987 0.981 0.996 0.984

asphalt 0.823 0.889 0.917 0.000 — 0.000
tile 0.484 0.796 0.553 0.550 0.828 0.621

foliage 0.882 0.943 0.931 0.847 0.899 0.935
cloud 0.970 0.978 0.991 0.958 0.969 0.988
grass 0.654 0.803 0.778 0.628 0.761 0.783
glass 0.720 0.813 0.862 0.739 0.849 0.851
stone 0.000 — 0.000 0.360 0.658 0.443
steel 0.571 0.776 0.684 0.589 0.795 0.694

concrete 0.000 — 0.000 0.780 0.945 0.817
water 0.000 — 0.000 0.416 0.990 0.418
wood 0.243 0.870 0.253 0.269 0.927 0.275
soil 0.000 — 0.000 0.000 — 0.000

other 0.000 — 0.000 0.000 — 0.000
aluminium 0.000 — 0.000 0.566 0.801 0.659

gravel 0.000 — 0.000 0.000 — 0.000
iron 0.112 0.578 0.122 0.064 0.293 0.075

living 0.494 0.910 0.519 0.284 0.944 0.289
fabric 0.000 — 0.000 0.000 — 0.000

plastic 0.000 0.000 0.528 0.000 0.000 0.242

Difference with cross entropy loss
RGB RGBD

IoU Precision Recall IoU Precision Recall
-0.164 +0.144 -0.189 -0.087 +0.153 0.000
-0.255 -0.264 -0.293 -0.171 -0.158 -0.197
-0.832 — -0.918 -0.037 -0.019 -0.027
+0.003 -0.001 +0.003 +0.001 -0.002 +0.003
-0.035 -0.018 -0.023 -0.832 — -0.937
-0.113 0.000 -0.151 -0.033 +0.021 -0.056
+0.056 +0.053 +0.011 -0.015 -0.015 -0.003
+0.007 +0.011 -0.005 0.000 +0.007 -0.007
-0.061 +0.018 -0.111 -0.035 -0.005 -0.048
+0.046 +0.060 -0.003 +0.037 +0.065 -0.019
-0.340 — -0.461 -0.009 +0.080 -0.062
+0.002 +0.064 -0.055 -0.007 +0.062 -0.067
-0.824 — -0.883 -0.039 +0.024 -0.064
-0.563 — -0.632 -0.228 +0.198 -0.358
-0.159 +0.187 -0.242 -0.204 +0.187 -0.293
-0.265 — -0.359 -0.191 — -0.298
0.000 — 0.000 0.000 — 0.000

-0.412 — -0.685 +0.134 +0.243 +0.002
0.000 — 0.000 0.000 — 0.000

+0.112 +0.576 +0.122 +0.060 +0.271 +0.070
+0.047 +0.131 +0.007 -0.257 +0.111 -0.318
-0.105 — -0.108 -0.048 — -0.051
-0.002 -0.004 +0.522 -0.134 -0.242 +0.010

Per-class results
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Predicted labels
Tr

ue
la

be
ls

aluminium asphalt brick cloud concrete fabric foliage glass grass gravel iron living other plastic sky soil steel stone tile water wood Total
aluminium 0 4 0 0 0 0 939 264 24 0 0 8 0 33470 174 0 4582 0 0 0 22 39487

asphalt 0 1566542 0 0 0 0 201 0 3988 0 0 0 0 135639 0 0 8 0 1392 0 7 1707777
brick 0 136203 0 0 0 0 967 5122 1166 0 1300 4 0 2735901 0 0 5474 0 47909 0 86 2934132
cloud 0 0 0 659108 0 0 137 116 0 0 0 0 0 1931 3377 0 44 0 3 0 0 664716

concrete 0 0 0 0 0 0 0 0 0 0 0 0 0 90731 90 0 8729 0 1135 0 0 100685
fabric 0 0 0 0 0 0 34 6405 0 0 0 0 0 18168 16 0 2676 0 0 0 1 27300
foliage 0 5212 0 98 0 0 445035 183 6799 0 0 0 0 16073 12 0 3355 0 183 0 758 477708

glass 0 0 0 0 0 0 60 125702 0 0 0 1456 0 11453 0 0 5750 0 1306 0 0 145727
grass 0 3763 0 0 0 0 5054 183 190074 0 0 0 0 38127 0 0 3869 0 3020 0 15 244105

gravel 0 0 0 0 0 0 3 0 0 0 0 0 0 1049 0 0 12 0 0 0 0 1064
iron 0 3081 0 0 0 0 168 0 18 0 1784 0 0 8247 0 0 1 0 1310 0 0 14609

living 0 790 0 0 0 0 337 5038 157 0 0 16595 0 7044 0 0 1033 0 924 0 0 31918
other 0 12 0 0 0 0 38 0 0 0 0 0 0 1584 0 0 4 0 2812 0 40 4490

plastic 0 0 0 417 0 0 111 0 0 0 0 25 0 1808 0 0 798 0 262 0 0 3421
sky 0 0 0 13603 0 0 7681 0 0 0 0 0 0 2682 1852330 0 123 0 0 0 0 1876419

soil 0 15010 0 0 0 0 74 0 14728 0 0 11 0 16751 0 0 394 0 1243 0 581 48792
steel 0 997 0 50 0 0 1313 3365 1315 0 0 121 0 58094 74 0 148101 0 2484 0 444 216358
stone 0 16674 0 0 0 0 286 48 5025 0 0 0 0 168091 0 0 1064 0 37189 0 9 228386
tile 0 12894 0 0 0 0 5599 3577 9152 0 0 0 0 289840 0 0 1088 0 398961 0 172 721283
water 0 0 0 0 0 0 1650 0 2465 0 0 0 0 14668 0 0 12 0 0 0 22 18817
wood 0 74 0 0 0 0 1979 4520 1670 0 0 0 0 30226 0 0 3617 0 689 0 14494 57269
Total 0 1761256 0 673276 0 0 471666 154523 236581 0 3084 18220 0 3681577 1856073 0 190734 0 500822 0 16651 9564463

Predicted labels

Tr
ue

la
be

ls

aluminium asphalt brick cloud concrete fabric foliage glass grass gravel iron living other plastic sky soil steel stone tile water wood Total
aluminium 26035 0 1534 0 381 0 584 464 89 0 0 47 0 3912 84 0 4909 8 1323 0 117 39487

asphalt 0 0 98022 0 0 0 596 98 6779 0 0 0 0 1594107 0 0 133 6882 1159 0 1 1707777
brick 263 0 2589952 0 539 0 3622 4195 2708 0 0 54 0 265779 0 0 7749 15118 43900 0 253 2934132
cloud 21 0 547 657201 0 0 184 0 0 0 0 0 0 1065 5649 0 24 0 25 0 0 664716

concrete 0 0 566 0 82306 0 0 465 0 0 0 0 0 10648 0 0 5031 0 1669 0 0 100685
fabric 3971 0 2135 7 0 0 17 4033 0 0 0 0 0 16604 41 0 492 0 0 0 0 27300
foliage 46 0 3246 153 111 0 446908 138 11305 0 0 97 0 10879 0 0 3905 27 269 44 580 477708
glass 196 0 8074 0 0 0 199 124028 0 0 0 0 0 7752 0 0 4838 11 629 0 0 145727
grass 7 0 7868 0 1415 0 12342 0 191139 0 0 0 0 25504 0 0 2344 2389 1095 0 2 244105

gravel 0 0 0 0 0 0 228 0 0 0 0 0 0 221 0 0 24 204 387 0 0 1064
iron 0 0 5757 0 0 0 365 0 77 0 1108 0 0 4279 0 0 1 1611 1411 0 0 14609

living 181 0 6894 0 0 0 462 5824 29 0 1 9230 0 5068 0 0 1882 2178 169 0 0 31918
other 0 0 268 0 0 0 0 0 0 0 0 0 0 159 0 0 13 0 4050 0 0 4490

plastic 153 0 437 145 0 0 95 0 0 0 0 64 0 831 0 0 862 5 829 0 0 3421
sky 0 0 147 20379 0 0 7703 0 0 0 0 0 0 403 1847700 0 87 0 0 0 0 1876419

soil 13 0 5319 0 0 0 407 0 16194 0 0 0 0 23219 0 0 502 1382 1671 0 85 48792
steel 1426 0 16345 4 2328 0 2590 2268 1769 0 498 285 0 32907 0 0 150287 1197 4329 0 125 216358
stone 35 0 54862 0 0 0 638 0 5345 0 2168 0 0 33854 0 0 1144 101345 28942 8 45 228386
tile 65 0 151678 0 0 0 12666 1534 13313 0 0 0 0 71342 4 0 1433 21292 447937 0 19 721283
water 46 0 337 0 0 0 2797 4 0 0 0 0 0 7589 0 0 140 31 0 7873 0 18817
wood 36 0 8183 0 0 0 4229 3025 2400 0 0 0 0 19340 0 0 3193 135 953 23 15752 57269
Total 32494 0 2962171 677889 87080 0 496632 146076 251147 0 3775 9777 0 2135462 1853478 0 188993 153815 540747 7948 16979 9564463

Confusion matrices
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mAUC: 0.607

brick, AUC: -

sky, AUC: 0.987

asphalt, AUC: 0.898

tile, AUC: 0.515

foliage, AUC: 0.898

cloud, AUC: 0.966

grass, AUC: 0.730

glass, AUC: 0.829

stone, AUC: -

steel, AUC: 0.634

concrete, AUC: -

water, AUC: -

wood, AUC: 0.242

soil, AUC: -

other, AUC: -

aluminium, AUC: -

gravel, AUC: -

iron, AUC: 0.106

living, AUC: 0.477

fabric, AUC: -

plastic, AUC: 0.000
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mAUC: 0.578

brick, AUC: 0.843

sky, AUC: 0.984

asphalt, AUC: -

tile, AUC: 0.578

foliage, AUC: 0.910

cloud, AUC: 0.953

grass, AUC: 0.721

glass, AUC: 0.831

stone, AUC: 0.366

steel, AUC: 0.652

concrete, AUC: 0.813

water, AUC: 0.418

wood, AUC: 0.270

soil, AUC: -

other, AUC: -

aluminium, AUC: 0.613

gravel, AUC: -

iron, AUC: 0.018

living, AUC: 0.278

fabric, AUC: -

plastic, AUC: 0.000

Precision-recall curves, legend sorted by class size. Top: RGB, bottom: RGBD
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G.6 learning rate 0.01 • all 21 classes • class-weighted dice loss

RGB
mIoU 0.426
fIoU 0.766

accuracy 0.874
micro-averaged precision/recall/F1 0.874

macro-averaged precision 0.835
macro-averaged recall 0.480

macro-averaged F1 0.504
weighted macro-averaged precision 0.849

weighted macro-averaged recall 0.857
weighted macro-averaged F1 0.845

RGBD
0.468
0.784
0.878
0.878
0.787
0.524
0.549
0.866
0.872
0.864

Performance overview

Class-weighted dice loss
RGB RGBD

IoU Precision Recall IoU Precision Recall
Overall 0.426 0.835 0.480 0.468 0.787 0.524

Weighted overall 0.766 0.849 0.857 0.784 0.866 0.872
brick 0.764 0.817 0.921 0.769 0.842 0.899
sky 0.984 0.997 0.986 0.985 0.999 0.985

asphalt 0.814 0.870 0.926 0.791 0.843 0.928
tile 0.566 0.840 0.634 0.562 0.811 0.646

foliage 0.867 0.901 0.958 0.885 0.930 0.948
cloud 0.966 0.975 0.990 0.974 0.976 0.997
grass 0.677 0.773 0.844 0.712 0.815 0.849
glass 0.748 0.817 0.898 0.700 0.765 0.890
stone 0.321 0.631 0.395 0.364 0.654 0.450
steel 0.578 0.741 0.724 0.619 0.766 0.763

concrete 0.000 — 0.000 0.804 0.967 0.826
water 0.231 0.978 0.233 0.681 0.903 0.734
wood 0.284 0.922 0.291 0.266 0.873 0.277
soil 0.010 0.444 0.010 0.101 0.458 0.115

other 0.000 — 0.000 0.000 — 0.000
aluminium 0.552 0.766 0.665 0.514 0.810 0.584

gravel 0.000 — 0.000 0.000 — 0.000
iron 0.000 — 0.000 0.110 0.961 0.111

living 0.555 0.946 0.573 0.000 — 0.000
fabric 0.029 0.946 0.029 0.000 — 0.000

plastic 0.000 — 0.000 0.000 0.000 0.000

Difference with cross entropy loss
RGB RGBD

IoU Precision Recall IoU Precision Recall
-0.068 +0.199 -0.096 -0.039 +0.157 0.000
-0.043 -0.030 -0.029 -0.018 -0.008 -0.010
-0.068 -0.082 +0.003 -0.051 -0.051 -0.010
+0.002 -0.001 +0.002 +0.005 +0.001 +0.004
-0.044 -0.037 -0.014 -0.041 -0.037 -0.009
-0.031 +0.044 -0.070 -0.021 +0.004 -0.031
+0.041 +0.011 +0.038 +0.023 +0.016 +0.010
+0.003 +0.008 -0.006 +0.016 +0.014 +0.002
-0.038 -0.012 -0.045 +0.049 +0.049 +0.018
+0.074 +0.064 +0.033 -0.002 -0.019 +0.020
-0.019 +0.068 -0.066 -0.005 +0.076 -0.055
+0.009 +0.029 -0.015 +0.023 +0.033 +0.002
-0.824 — -0.883 -0.015 +0.046 -0.055
-0.332 +0.141 -0.399 +0.037 +0.111 -0.042
-0.118 +0.239 -0.204 -0.207 +0.133 -0.291
-0.255 -0.057 -0.349 -0.090 +0.110 -0.183
0.000 — 0.000 0.000 — 0.000

+0.140 +0.257 -0.020 +0.082 +0.252 -0.073
0.000 — 0.000 0.000 — 0.000
0.000 — 0.000 +0.106 +0.939 +0.106

+0.108 +0.167 +0.061 -0.541 — -0.607
-0.076 +0.103 -0.079 -0.048 — -0.051
-0.002 — -0.006 -0.134 -0.242 -0.232

Per-class results

93



Predicted labels
Tr

ue
la

be
ls

aluminium asphalt brick cloud concrete fabric foliage glass grass gravel iron living other plastic sky soil steel stone tile water wood Total
aluminium 26268 12 2740 0 0 46 2137 792 293 0 0 6 0 0 246 0 6255 78 505 0 109 39487

asphalt 0 1582766 104446 0 0 0 1639 0 6984 0 0 0 0 0 0 105 535 9981 1321 0 0 1707777
brick 36 165595 2702632 0 0 0 2861 3541 2041 0 0 14 0 0 376 0 7202 10449 39166 0 219 2934132
cloud 0 0 3719 658255 0 0 42 0 0 0 0 0 0 0 2669 0 31 0 0 0 0 664716

concrete 0 52 91535 0 0 0 4 419 0 0 0 0 0 0 584 0 8091 0 0 0 0 100685
fabric 4797 500 7982 15 0 817 45 7092 0 0 0 0 0 0 466 0 5551 0 0 0 35 27300
foliage 343 896 8335 71 0 0 457681 0 6679 0 0 0 0 0 65 0 2695 289 150 0 504 477708
glass 60 399 6936 0 0 0 394 130936 0 0 0 724 0 0 0 0 5590 44 644 0 0 145727
grass 0 2933 17600 0 0 0 6486 0 206236 0 0 0 0 0 0 0 4436 4730 1674 0 10 244105

gravel 0 0 855 0 0 0 209 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1064
iron 0 3928 7529 0 0 0 0 0 196 0 0 0 0 0 0 0 23 1400 1533 0 0 14609

living 489 495 6904 0 0 0 3 4146 72 0 0 18299 0 0 0 0 1418 18 74 0 0 31918
other 0 12 2478 0 0 0 482 258 25 0 0 0 0 0 0 0 10 0 1225 0 0 4490

plastic 155 25 1146 245 0 0 89 0 0 0 0 22 0 0 163 0 665 34 877 0 0 3421
sky 3 0 824 16066 0 0 7960 0 0 0 0 0 0 0 1851404 0 162 0 0 0 0 1876419

soil 0 14967 12497 0 0 0 136 0 16466 0 0 0 0 0 0 536 860 938 2060 0 332 48792
steel 1611 5147 36653 5 0 0 3540 5037 1918 0 0 272 0 0 57 0 156716 1486 3778 0 138 216358
stone 29 19033 78136 0 0 0 325 66 5178 0 0 0 0 0 0 564 2435 90351 32242 0 27 228386
tile 85 19898 184557 0 0 0 14358 3619 16161 0 0 0 0 0 30 0 1625 22926 457996 0 28 721283
water 374 779 3428 0 0 0 5063 0 2459 0 0 0 0 0 3 0 2111 197 14 4388 1 18817
wood 36 14 23032 0 0 0 4247 4230 1789 0 0 0 0 0 211 0 5009 191 1707 98 16705 57269
Total 34286 1817451 3303964 674657 0 863 507701 160136 266497 0 0 19337 0 0 1856274 1205 211420 143112 544966 4486 18108 9564463

Predicted labels

Tr
ue

la
be

ls

aluminium asphalt brick cloud concrete fabric foliage glass grass gravel iron living other plastic sky soil steel stone tile water wood Total
aluminium 23098 0 5962 0 97 0 1912 735 204 0 0 0 0 0 138 0 6841 7 196 0 297 39487

asphalt 0 1585492 99867 0 0 0 330 0 6870 0 0 0 0 0 0 924 589 9593 4085 0 27 1707777
brick 98 203878 2638360 0 0 0 1225 6097 2608 0 65 0 0 0 45 4829 9383 8283 58482 612 167 2934132
cloud 0 0 983 663098 0 0 63 0 0 0 0 0 0 0 568 0 4 0 0 0 0 664716

concrete 16 254 8669 0 83233 0 135 107 1 0 0 0 0 0 163 0 6813 0 1294 0 0 100685
fabric 2245 4 4759 36 0 0 85 16250 0 0 0 0 0 0 186 0 3675 0 0 0 60 27300

foliage 298 655 9050 233 251 0 453344 867 6007 0 0 0 0 0 0 172 4832 70 895 171 863 477708
glass 208 484 9891 0 0 0 84 129838 124 0 0 0 0 0 0 0 4480 0 618 0 0 145727
grass 0 5185 18005 0 788 0 3953 31 207435 0 0 0 0 0 0 0 3157 3329 2209 0 13 244105
gravel 0 0 446 0 0 0 387 0 0 0 0 0 0 0 0 0 43 109 79 0 0 1064

iron 0 3528 6005 0 0 0 6 0 37 0 1623 0 0 0 0 0 3 2520 887 0 0 14609
living 239 532 28293 0 0 0 0 754 59 0 0 0 0 0 0 0 1229 457 355 0 0 31918
other 0 12 2329 0 0 0 38 39 0 0 0 0 0 0 0 0 21 0 2051 0 0 4490

plastic 169 19 1583 30 0 0 154 0 0 0 0 0 0 0 0 0 557 59 850 0 0 3421
sky 0 0 2891 15559 0 0 7716 0 0 0 0 0 0 0 1850112 0 139 0 2 0 0 1876419
soil 10 18368 9925 0 0 0 134 0 10427 0 0 0 0 0 0 5648 1173 1691 829 0 587 48792

steel 1235 2851 26105 65 1680 0 1819 4563 2472 0 0 0 0 17 10 0 165292 6017 4068 0 164 216358
stone 98 22315 65120 0 0 0 101 158 5630 0 0 0 0 0 0 754 750 102970 29977 513 0 228386
tile 501 36881 169687 0 0 0 9043 3189 11097 0 0 0 0 0 65 0 2345 21908 466481 17 69 721283

water 286 0 2219 0 0 0 172 0 36 0 0 0 0 0 0 0 2099 90 35 13830 50 18817
wood 0 121 22188 0 0 0 6751 6909 1410 0 0 0 0 0 0 0 2195 117 1546 159 15873 57269
Total 28501 1880579 3132337 679021 86049 0 487452 169537 254417 0 1688 0 0 17 1851287 12327 215620 157220 574939 15302 18170 9564463

Confusion matrices
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sky, AUC: 0.986

asphalt, AUC: 0.906

tile, AUC: 0.603

foliage, AUC: 0.925

cloud, AUC: 0.984

grass, AUC: 0.779

glass, AUC: 0.865

stone, AUC: 0.316

steel, AUC: 0.661

concrete, AUC: -

water, AUC: 0.233

wood, AUC: 0.285

soil, AUC: 0.003

other, AUC: -

aluminium, AUC: 0.628

gravel, AUC: -

iron, AUC: -

living, AUC: 0.563

fabric, AUC: 0.029

plastic, AUC: -
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mAUC: 0.617

brick, AUC: 0.852

sky, AUC: 0.986

asphalt, AUC: 0.896

tile, AUC: 0.612

foliage, AUC: 0.921

cloud, AUC: 0.988

grass, AUC: 0.777

glass, AUC: 0.853

stone, AUC: 0.369

steel, AUC: 0.703

concrete, AUC: 0.824

water, AUC: 0.708

wood, AUC: 0.266

soil, AUC: 0.068

other, AUC: -

aluminium, AUC: 0.561

gravel, AUC: -

iron, AUC: 0.111

living, AUC: -

fabric, AUC: -

plastic, AUC: 0.000

Precision-recall curves, legend sorted by class size. Top: RGB, bottom: RGBD
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G.7 learning rate 0.001 • all 21 classes • focal loss

RGB
mIoU 0.470
fIoU 0.782

accuracy 0.877
micro-averaged precision/recall/F1 0.877

macro-averaged precision 0.666
macro-averaged recall 0.555

macro-averaged F1 0.565
weighted macro-averaged precision 0.859

weighted macro-averaged recall 0.870
weighted macro-averaged F1 0.863

RGBD
0.434
0.771
0.871
0.871
0.554
0.517
0.527
0.849
0.860
0.854

Performance overview

Unweighted focal loss
RGB RGBD

IoU Precision Recall IoU Precision Recall
Overall 0.470 0.666 0.555 0.434 0.554 0.517

Weighted overall 0.782 0.859 0.870 0.771 0.849 0.860
brick 0.797 0.881 0.893 0.792 0.874 0.894
sky 0.978 0.998 0.980 0.980 0.996 0.983

asphalt 0.816 0.869 0.930 0.814 0.880 0.914
tile 0.568 0.779 0.677 0.547 0.739 0.678

foliage 0.851 0.914 0.926 0.844 0.900 0.932
cloud 0.955 0.958 0.996 0.956 0.964 0.991
grass 0.618 0.721 0.812 0.597 0.698 0.804
glass 0.668 0.750 0.860 0.659 0.739 0.859
stone 0.293 0.510 0.408 0.247 0.449 0.355
steel 0.529 0.662 0.725 0.525 0.668 0.711

concrete 0.740 0.846 0.855 0.664 0.783 0.813
water 0.672 0.747 0.869 0.358 0.604 0.468
wood 0.409 0.631 0.537 0.353 0.631 0.445
soil 0.186 0.375 0.270 0.134 0.314 0.189

other 0.000 0.000 0.000 0.000 0.000 0.000
aluminium 0.398 0.708 0.476 0.373 0.579 0.512

gravel 0.000 0.000 0.000 0.000 0.000 0.000
iron 0.000 0.000 0.000 0.001 0.032 0.002

living 0.293 0.689 0.337 0.281 0.784 0.304
fabric 0.106 0.617 0.114 0.000 0.004 0.000

plastic 0.000 0.000 0.000 0.000 0.000 0.000

Difference with unweighted cross entropy loss
RGB RGBD

IoU Precision Recall IoU Precision Recall
-0.024 +0.030 -0.021 -0.073 -0.076 0.000
-0.027 -0.020 -0.016 -0.031 -0.025 -0.022
-0.035 -0.018 -0.025 -0.028 -0.019 -0.015
-0.004 0.000 -0.004 0.000 -0.002 +0.002
-0.042 -0.038 -0.010 -0.018 0.000 -0.023
-0.029 -0.017 -0.027 -0.036 -0.068 +0.001
+0.025 +0.024 +0.006 -0.018 -0.014 -0.006
-0.008 -0.009 0.000 -0.002 +0.002 -0.004
-0.097 -0.064 -0.077 -0.066 -0.068 -0.027
-0.006 -0.003 -0.005 -0.043 -0.045 -0.011
-0.047 -0.053 -0.053 -0.122 -0.129 -0.150
-0.040 -0.050 -0.014 -0.071 -0.065 -0.050
-0.084 -0.078 -0.028 -0.155 -0.138 -0.068
+0.109 -0.090 +0.237 -0.286 -0.188 -0.308
+0.007 -0.052 +0.042 -0.120 -0.109 -0.123
-0.079 -0.126 -0.089 -0.057 -0.034 -0.109
0.000 0.000 0.000 0.000 0.000 0.000

-0.014 +0.199 -0.209 -0.059 +0.021 -0.145
0.000 0.000 0.000 0.000 0.000 0.000
0.000 -0.002 0.000 -0.003 +0.010 -0.003

-0.154 -0.090 -0.175 -0.260 -0.049 -0.303
+0.001 -0.226 +0.006 -0.048 -0.451 -0.051
-0.002 0.000 -0.006 -0.134 -0.242 -0.232

Per-class results
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Predicted labels
Tr

ue
la

be
ls

RGB aluminium asphalt brick cloud concrete fabric foliage glass grass gravel iron living other plastic sky soil steel stone tile water wood Total
aluminium 18818 17 2373 0 642 173 2847 1611 607 0 0 674 0 0 202 0 9611 7 410 61 1434 39487

asphalt 2 1588986 91290 0 2080 0 67 135 4906 0 12 0 0 0 0 2456 1369 11122 4390 930 32 1707777
brick 423 170703 2620797 97 5532 570 5565 15853 4049 79 0 839 0 0 540 2729 11401 28475 61607 1132 3741 2934132
cloud 0 0 7 662712 0 0 18 34 0 0 0 0 0 0 1431 0 400 0 114 0 0 664716

concrete 624 0 3017 0 86105 628 99 56 408 0 0 0 0 0 0 0 6317 5 3117 143 166 100685
fabric 2718 1643 492 64 287 3116 49 7396 0 0 0 4 0 0 316 0 5380 32 536 2 5265 27300

foliage 205 754 2110 197 583 6 442372 520 22797 0 0 376 0 0 17 575 3619 856 984 363 1374 477708
glass 1370 104 6242 0 221 402 69 125363 116 0 0 1258 0 0 91 0 8684 15 1502 0 290 145727
grass 0 5550 3223 0 560 0 10849 116 198250 0 105 13 0 0 0 1723 7187 4704 10165 883 777 244105
gravel 0 0 346 0 0 0 368 0 0 0 0 0 0 0 0 0 26 0 324 0 0 1064

iron 0 5376 5282 0 7 0 422 0 69 0 0 0 0 0 0 0 76 2171 1206 0 0 14609
living 113 871 5867 41 0 0 506 5408 141 0 0 10780 0 0 0 0 6131 647 1255 9 149 31918
other 5 12 1173 0 0 0 136 53 25 0 0 101 0 0 0 24 24 4 2866 0 67 4490

plastic 164 24 811 209 0 0 128 0 0 0 0 241 0 0 99 0 1447 47 216 0 35 3421
sky 0 0 451 27882 40 0 7886 12 0 0 0 0 0 0 1839754 0 9 0 385 0 0 1876419
soil 1 12307 4906 0 22 0 1169 0 12865 13 0 27 0 0 0 13180 1916 667 1404 0 315 48792

steel 1423 3776 18414 256 3451 109 3550 6572 4416 0 6 1117 0 0 484 47 156961 6243 5798 131 3604 216358
stone 415 21086 57209 0 221 0 536 54 8325 2 0 109 0 0 0 3487 1941 93308 40693 863 137 228386
tile 53 17181 142286 35 2004 42 2845 1506 16871 0 129 41 0 0 210 10689 4088 34059 488399 414 431 721283

water 16 0 736 0 10 0 594 88 0 0 0 0 0 0 0 0 295 319 227 16366 166 18817
wood 221 33 6967 0 0 0 3859 2290 1020 0 0 52 0 0 0 198 9892 183 1177 588 30789 57269
Total 26571 1828423 2973999 691493 101765 5046 483934 167067 274865 94 252 15632 0 0 1843144 35108 236774 182864 626775 21885 48772 9564463

Tr
ue

la
be

ls

RGBD aluminium asphalt brick cloud concrete fabric foliage glass grass gravel iron living other plastic sky soil steel stone tile water wood Total
aluminium 20240 11 2241 411 554 142 2407 3695 76 0 0 1164 1 0 47 0 6036 149 922 39 1352 39487

asphalt 5 1562243 106318 0 3469 0 556 90 11507 0 44 5 0 0 0 1085 1087 13476 7214 398 280 1707777
brick 1104 130787 2623321 0 1861 258 5599 14197 7461 0 482 206 822 179 136 3255 15596 28835 93318 2818 3897 2934132
cloud 7 0 508 658829 15 117 243 237 0 0 0 0 0 0 4719 0 0 0 41 0 0 664716

concrete 0 560 3538 0 81867 41 1284 876 468 0 0 0 0 5 0 1 10206 0 1805 34 0 100685
fabric 7903 3350 2504 42 0 3 51 8258 0 0 0 32 0 0 638 0 3270 0 297 0 952 27300

foliage 1460 411 3629 219 1130 10 445343 868 17213 6 0 50 0 0 5 94 3695 917 316 357 1985 477708
glass 849 75 6196 0 19 121 311 125257 14 0 0 653 47 0 0 0 9561 81 1807 0 736 145727
grass 0 4596 10706 0 295 0 6230 0 196446 36 0 0 0 0 0 4662 9189 4916 6108 363 558 244105
gravel 0 0 386 0 0 0 390 0 0 0 0 0 0 0 0 0 13 0 275 0 0 1064

iron 0 4932 6225 0 20 0 416 0 128 0 31 0 0 0 0 0 47 1701 1101 0 8 14609
living 817 1105 5546 0 0 0 1742 1492 63 0 369 9732 0 903 0 57 3045 4446 2426 5 170 31918
other 0 12 2042 0 0 0 372 25 0 0 0 0 0 0 0 0 44 34 1961 0 0 4490

plastic 123 8 639 391 0 0 253 0 0 0 0 134 0 0 0 0 808 264 780 21 0 3421
sky 1 0 113 22470 0 0 7730 0 0 0 0 0 0 4 1845034 0 98 0 969 0 0 1876419
soil 0 14903 3825 0 22 0 908 165 14275 0 0 85 0 0 0 9268 1389 1821 1127 0 1004 48792

steel 1532 4169 17247 365 8909 43 4569 6924 1869 0 29 258 49 16 31 126 153838 8865 5530 228 1761 216358
stone 208 22890 66409 0 13 0 504 40 6368 0 0 16 10 0 1 2797 1768 81187 45135 916 124 228386
tile 445 23111 126093 0 954 9 10225 1081 23832 18 0 41 0 0 1 7921 4050 33466 489491 258 287 721283

water 27 27 541 0 0 0 3561 698 684 46 0 10 0 0 0 0 2448 177 1 8816 1781 18817
wood 224 186 11784 0 5332 2 1995 5455 902 0 0 13 59 0 15 192 4038 223 1034 327 25488 57269
Total 34945 1773376 2999811 682727 104460 746 494689 169358 281306 106 955 12399 988 1107 1850627 29458 230226 180558 661658 14580 40383 9564463

Confusion matrices

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

mAUC: 0.576

brick, AUC: 0.863

sky, AUC: 0.980

asphalt, AUC: 0.917

tile, AUC: 0.637

foliage, AUC: 0.913

cloud, AUC: 0.990

grass, AUC: 0.732

glass, AUC: 0.836

stone, AUC: 0.291

steel, AUC: 0.660

concrete, AUC: 0.838

water, AUC: 0.839

wood, AUC: 0.483

soil, AUC: 0.187

other, AUC: -

aluminium, AUC: 0.435

gravel, AUC: 0.000

iron, AUC: 0.000

living, AUC: 0.280

fabric, AUC: 0.067

plastic, AUC: -

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

mAUC: 0.480

brick, AUC: 0.865

sky, AUC: 0.983

asphalt, AUC: 0.899

tile, AUC: 0.631

foliage, AUC: 0.920

cloud, AUC: 0.983

grass, AUC: 0.743

glass, AUC: 0.832

stone, AUC: 0.240

steel, AUC: 0.644

concrete, AUC: 0.790

water, AUC: 0.366

wood, AUC: 0.413

soil, AUC: 0.087

other, AUC: 0.000

aluminium, AUC: 0.409

gravel, AUC: 0.000

iron, AUC: 0.000

living, AUC: 0.267

fabric, AUC: 0.000

plastic, AUC: 0.000

Precision-recall curves, legend sorted by class size. Top: RGB, bottom: RGBD
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G.8 learning rate 0.001 • all 21 classes • class-weighted focal loss

RGB
mIoU 0.447
fIoU 0.783

accuracy 0.878
micro-averaged precision/recall/F1 0.878

macro-averaged precision 0.558
macro-averaged recall 0.531

macro-averaged F1 0.534
weighted macro-averaged precision 0.857

weighted macro-averaged recall 0.870
weighted macro-averaged F1 0.862

RGBD
0.445
0.780
0.876
0.876
0.581
0.526
0.531
0.855
0.869
0.860

Performance overview

Class-weighted focal loss
RGB RGBD

IoU Precision Recall IoU Precision Recall
Overall 0.447 0.558 0.531 0.445 0.581 0.526

Weighted overall 0.783 0.857 0.870 0.780 0.855 0.869
brick 0.808 0.876 0.912 0.804 0.879 0.903
sky 0.981 0.998 0.982 0.977 0.995 0.981

asphalt 0.834 0.892 0.928 0.827 0.892 0.919
tile 0.561 0.774 0.670 0.534 0.730 0.666

foliage 0.811 0.887 0.905 0.853 0.904 0.938
cloud 0.963 0.965 0.997 0.950 0.959 0.990
grass 0.610 0.710 0.812 0.608 0.680 0.851
glass 0.661 0.738 0.863 0.626 0.685 0.879
stone 0.272 0.504 0.370 0.281 0.535 0.371
steel 0.510 0.647 0.706 0.520 0.658 0.712

concrete 0.713 0.867 0.801 0.747 0.877 0.834
water 0.672 0.739 0.881 0.557 0.728 0.703
wood 0.288 0.490 0.411 0.441 0.697 0.546
soil 0.134 0.322 0.187 0.104 0.285 0.142

other 0.000 0.000 0.000 0.000 0.000 0.000
aluminium 0.455 0.669 0.587 0.451 0.728 0.543

gravel 0.000 0.000 0.000 0.000 0.000 0.000
iron 0.000 0.000 0.000 0.000 0.000 0.000

living 0.124 0.630 0.134 0.070 0.976 0.071
fabric 0.000 0.014 0.000 0.000 0.000 0.000

plastic 0.000 0.000 0.000 0.000 0.000 0.000

Difference with unweighted cross entropy loss
RGB RGBD

IoU Precision Recall IoU Precision Recall
-0.047 -0.078 -0.045 -0.062 -0.049 0.000
-0.026 -0.022 -0.016 -0.022 -0.019 -0.013
-0.024 -0.023 -0.006 -0.016 -0.014 -0.006
-0.001 0.000 -0.002 -0.003 -0.003 0.000
-0.024 -0.015 -0.012 -0.005 +0.012 -0.018
-0.036 -0.022 -0.034 -0.049 -0.077 -0.011
-0.015 -0.003 -0.015 -0.009 -0.010 0.000
0.000 -0.002 +0.001 -0.008 -0.003 -0.005

-0.105 -0.075 -0.077 -0.055 -0.086 +0.020
-0.013 -0.015 -0.002 -0.076 -0.099 +0.009
-0.068 -0.059 -0.091 -0.088 -0.043 -0.134
-0.059 -0.065 -0.033 -0.076 -0.075 -0.049
-0.111 -0.057 -0.082 -0.072 -0.044 -0.047
+0.109 -0.098 +0.249 -0.087 -0.064 -0.073
-0.114 -0.193 -0.084 -0.032 -0.043 -0.022
-0.131 -0.179 -0.172 -0.087 -0.063 -0.156
0.000 0.000 0.000 0.000 0.000 0.000

+0.043 +0.160 -0.098 +0.019 +0.170 -0.114
0.000 0.000 0.000 0.000 0.000 0.000
0.000 -0.002 0.000 -0.004 -0.022 -0.005

-0.323 -0.149 -0.378 -0.471 +0.143 -0.536
-0.105 -0.829 -0.108 -0.048 -0.455 -0.051
-0.002 -0.004 -0.006 -0.134 -0.242 -0.232

Per-class results
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Predicted labels
Tr

ue
la

be
ls

RGB aluminium asphalt brick cloud concrete fabric foliage glass grass gravel iron living other plastic sky soil steel stone tile water wood Total
aluminium 23207 12 1099 57 329 290 1710 1273 232 0 0 1252 0 62 73 0 8213 394 429 103 752 39487

asphalt 16 1585051 97546 0 116 0 529 12 4142 0 0 17 0 0 0 936 1288 12045 5367 358 354 1707777
brick 1073 112131 2677499 333 6499 17 2704 8556 4923 0 0 10 116 0 58 8119 12922 24187 66071 409 8505 2934132
cloud 112 0 528 663146 0 0 18 0 0 0 0 0 0 0 779 0 133 0 0 0 0 664716

concrete 114 0 6337 85 80654 382 316 288 417 0 0 0 0 0 3 219 8805 12 2620 0 433 100685
fabric 2324 714 1491 28 105 21 41 11805 0 0 0 125 689 0 1021 606 5371 1398 364 0 1197 27300

foliage 479 678 3356 170 456 0 432556 256 26448 0 0 38 0 8 3 238 8375 888 790 178 2791 477708
glass 1308 1 6075 0 500 3 225 125865 139 0 0 0 0 67 0 0 8410 127 1259 0 1748 145727
grass 3 6765 5438 0 144 7 10026 90 198275 0 0 86 0 0 0 3856 6277 6864 4106 1476 692 244105
gravel 0 0 429 0 0 0 158 0 11 0 0 0 0 0 0 0 33 126 307 0 0 1064

iron 0 3671 7221 0 0 0 135 0 34 0 0 1 0 0 0 15 61 1736 1711 0 24 14609
living 71 1 9536 0 0 132 361 7876 12 19 19 4299 45 413 0 135 5228 1077 844 16 1834 31918
other 0 12 4086 0 0 0 59 1 25 0 0 0 0 0 0 0 21 0 286 0 0 4490

plastic 87 161 635 133 0 0 219 95 0 0 0 248 0 0 0 0 877 24 828 113 1 3421
sky 456 0 50 22496 21 0 7954 273 0 0 0 0 0 0 1843561 0 355 0 1245 0 8 1876419
soil 0 13879 4424 0 37 0 842 0 15473 0 0 0 0 0 0 9130 949 1638 1244 249 927 48792

steel 2794 7478 19878 594 1698 518 3184 7644 2512 0 167 628 68 0 112 147 152910 3146 8524 653 3703 216358
stone 496 26804 57595 1 82 35 415 408 6053 0 55 62 44 0 0 3818 3165 84726 42761 963 903 228386
tile 1003 17566 140658 0 361 0 21458 1679 18930 0 0 0 0 24 295 1033 3697 29055 483873 1164 487 721283

water 323 24 600 0 0 0 438 5 245 0 0 0 0 0 0 0 197 40 186 16594 165 18817
wood 810 821 9293 0 1951 0 4275 4304 1118 0 0 47 0 0 0 63 8729 303 1815 162 23578 57269
Total 34676 1775769 3053774 687043 92953 1405 487623 170430 278989 19 241 6813 962 574 1845905 28315 236016 167786 624630 22438 48102 9564463

Tr
ue

la
be

ls

RGBD aluminium asphalt brick cloud concrete fabric foliage glass grass gravel iron living other plastic sky soil steel stone tile water wood Total
aluminium 21451 0 2743 11 411 0 3088 1359 725 0 0 0 0 0 20 0 7729 372 375 168 1035 39487

asphalt 0 1569494 107088 0 133 0 433 142 7504 0 0 0 0 0 0 3785 577 9424 9128 2 67 1707777
brick 754 114281 2652348 12 5081 15 5210 14538 6422 0 124 0 0 0 32 2482 15894 18518 93448 847 4126 2934132
cloud 0 0 548 658328 0 0 158 0 0 0 0 0 0 0 5401 0 139 0 142 0 0 664716

concrete 14 18 4070 327 84002 0 64 148 202 0 0 0 0 0 0 0 9389 110 2341 0 0 100685
fabric 1639 2837 1995 60 42 0 103 12241 0 0 0 0 0 0 19 0 7453 234 559 0 118 27300

foliage 185 266 3252 134 646 0 448236 353 15262 0 0 0 282 0 13 753 4406 780 1150 240 1750 477708
glass 1056 76 4352 0 1 0 60 128175 1 0 0 55 0 1 0 0 9639 31 1528 0 752 145727
grass 0 4703 5132 0 616 0 8566 0 207976 0 0 0 0 0 1 1844 4289 2555 6437 1669 317 244105
gravel 0 0 607 0 0 0 185 0 0 0 0 0 0 0 0 0 26 0 246 0 0 1064

iron 8 3562 6531 0 18 0 106 0 408 0 0 0 0 0 0 85 51 1966 1868 0 6 14609
living 765 1562 6150 0 0 0 598 6585 508 0 49 2270 0 0 0 86 7898 1294 2443 123 1587 31918
other 0 12 905 0 0 0 38 447 0 0 0 0 0 0 0 0 33 28 3027 0 0 4490

plastic 87 27 536 485 0 0 153 0 0 0 0 0 0 0 0 0 1154 96 883 0 0 3421
sky 3 0 38 26649 0 0 7776 21 0 0 0 0 0 0 1841223 0 1 0 708 0 0 1876419
soil 32 13575 2464 0 0 0 30 19 19037 0 0 0 4 0 0 6944 661 2371 3078 70 507 48792

steel 2547 3063 15512 340 4209 3 3457 12011 4233 0 0 0 0 0 441 332 154163 7811 6423 106 1707 216358
stone 141 18997 62392 0 15 0 288 402 11628 0 353 0 0 0 0 3356 2363 84879 41780 602 1190 228386
tile 371 25973 131232 0 193 0 13363 1442 29620 2 0 0 0 0 1921 4585 3759 27081 480463 898 380 721283

water 315 9 722 0 0 0 1237 850 939 0 0 0 0 0 0 0 965 509 0 13241 30 18817
wood 97 51 7563 0 309 0 2372 8300 1145 0 0 0 0 0 112 45 3584 332 1852 201 31306 57269
Total 29465 1758506 3016180 686346 95676 18 495521 187033 305610 2 526 2325 286 1 1849183 24297 234173 158391 657879 18167 44878 9564463

Confusion matrices

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
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ci
si

on

mAUC: 0.495

brick, AUC: 0.886

sky, AUC: 0.982

asphalt, AUC: 0.915

tile, AUC: 0.636

foliage, AUC: 0.887

cloud, AUC: 0.984

grass, AUC: 0.722

glass, AUC: 0.831

stone, AUC: 0.260

steel, AUC: 0.633

concrete, AUC: 0.769

water, AUC: 0.824

wood, AUC: 0.343

soil, AUC: 0.113

other, AUC: 0.000

aluminium, AUC: 0.527

gravel, AUC: 0.000

iron, AUC: 0.000

living, AUC: 0.082

fabric, AUC: 0.000

plastic, AUC: 0.000
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mAUC: 0.496

brick, AUC: 0.864

sky, AUC: 0.981

asphalt, AUC: 0.908

tile, AUC: 0.622

foliage, AUC: 0.924

cloud, AUC: 0.978

grass, AUC: 0.793

glass, AUC: 0.837

stone, AUC: 0.271

steel, AUC: 0.631

concrete, AUC: 0.825

water, AUC: 0.670

wood, AUC: 0.494

soil, AUC: 0.043

other, AUC: 0.000

aluminium, AUC: 0.497

gravel, AUC: 0.000

iron, AUC: 0.000

living, AUC: 0.071

fabric, AUC: 0.000

plastic, AUC: 0.000

Precision-recall curves, legend sorted by class size. Top: RGB, bottom: RGBD
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G.9 learning rate 0.01 • -5 small classes • cross entropy loss

Cross entropy loss, without five small classes
RGB RGBD

IoU Precision Recall IoU Precision Recall
Overall 0.642 0.781 0.748 0.644 0.782 0.755

Weighted overall 0.820 0.891 0.895 0.817 0.888 0.895
brick 0.837 0.895 0.928 0.830 0.896 0.917
sky 0.975 0.996 0.979 0.980 0.997 0.982

asphalt 0.853 0.906 0.936 0.859 0.905 0.944
tile 0.603 0.817 0.697 0.605 0.805 0.709

foliage 0.873 0.924 0.941 0.857 0.910 0.936
cloud 0.947 0.955 0.991 0.959 0.961 0.997
grass 0.751 0.846 0.869 0.694 0.813 0.825
glass 0.690 0.775 0.863 0.665 0.738 0.871
stone 0.351 0.568 0.479 0.354 0.588 0.471
steel 0.564 0.706 0.738 0.556 0.700 0.730

concrete 0.764 0.872 0.860 0.772 0.883 0.859
water 0.438 0.714 0.532 0.528 0.670 0.713
wood 0.491 0.730 0.600 0.390 0.700 0.468
soil 0.277 0.548 0.360 0.379 0.533 0.567

aluminium 0.399 0.516 0.636 0.440 0.627 0.596
living 0.465 0.739 0.557 0.445 0.791 0.504

background 0.067 0.204 0.090 0.065 0.190 0.090

Difference with cross entropy loss, all classes
RGB RGBD

IoU Precision Recall IoU Precision Recall
+0.148 +0.145 +0.172 +0.137 +0.152 0.000
+0.011 +0.012 +0.009 +0.015 +0.014 +0.013
+0.005 -0.004 +0.010 +0.010 +0.003 +0.008
-0.007 -0.002 -0.005 0.000 -0.001 +0.001
-0.005 -0.001 -0.004 +0.027 +0.025 +0.007
+0.006 +0.021 -0.007 +0.022 -0.002 +0.032
+0.047 +0.034 +0.021 -0.005 -0.004 -0.002
-0.016 -0.012 -0.005 +0.001 -0.001 +0.002
+0.036 +0.061 -0.020 +0.031 +0.047 -0.006
+0.016 +0.022 -0.002 -0.037 -0.046 +0.001
+0.011 +0.005 +0.018 -0.015 +0.010 -0.034
-0.005 -0.006 -0.001 -0.040 -0.033 -0.031
-0.060 -0.052 -0.023 -0.047 -0.038 -0.022
-0.125 -0.123 -0.100 -0.116 -0.122 -0.063
+0.089 +0.047 +0.105 -0.083 -0.040 -0.100
+0.012 +0.047 +0.001 +0.188 +0.185 +0.269
-0.013 +0.007 -0.049 +0.008 +0.069 -0.061
+0.018 -0.040 +0.045 -0.096 -0.042 -0.103

— — — — — —

(a) Omitted classes merged into background
Cross entropy loss, without five small classes

RGB RGBD
IoU Precision Recall IoU Precision Recall

Overall 0.658 0.784 0.769 0.626 0.768 0.731
Weighted overall 0.824 0.891 0.900 0.813 0.883 0.894

brick 0.838 0.894 0.930 0.829 0.895 0.918
sky 0.983 0.998 0.984 0.981 0.999 0.982

asphalt 0.859 0.915 0.933 0.852 0.904 0.936
tile 0.591 0.809 0.687 0.616 0.796 0.731

foliage 0.871 0.913 0.950 0.858 0.906 0.941
cloud 0.965 0.969 0.996 0.964 0.965 0.998
grass 0.716 0.809 0.862 0.647 0.748 0.828
glass 0.712 0.770 0.903 0.678 0.733 0.900
stone 0.364 0.571 0.502 0.344 0.584 0.456
steel 0.603 0.725 0.781 0.571 0.710 0.745

concrete 0.780 0.919 0.837 0.774 0.890 0.856
water 0.520 0.659 0.712 0.565 0.747 0.699
wood 0.377 0.646 0.475 0.379 0.689 0.458
soil 0.304 0.500 0.436 0.164 0.405 0.217

aluminium 0.498 0.731 0.609 0.405 0.566 0.588
living 0.543 0.708 0.699 0.389 0.754 0.445

background 0.000 0.000 0.000 0.000 0.000 0.000

Difference with cross entropy loss, all classes
RGB RGBD

IoU Precision Recall IoU Precision Recall
+0.164 +0.148 +0.193 +0.119 +0.138 0.000
+0.015 +0.012 +0.014 +0.011 +0.009 +0.012
+0.006 -0.005 +0.012 +0.009 +0.002 +0.009
+0.001 0.000 0.000 +0.001 +0.001 +0.001
+0.001 +0.008 -0.007 +0.020 +0.024 -0.001
-0.006 +0.013 -0.017 +0.033 -0.011 +0.054
+0.045 +0.023 +0.030 -0.004 -0.008 +0.003
+0.002 +0.002 0.000 +0.006 +0.003 +0.003
+0.001 +0.024 -0.027 -0.016 -0.018 -0.003
+0.038 +0.017 +0.038 -0.024 -0.051 +0.030
+0.024 +0.008 +0.041 -0.025 +0.006 -0.049
+0.034 +0.013 +0.042 -0.025 -0.023 -0.016
-0.044 -0.005 -0.046 -0.045 -0.031 -0.025
-0.043 -0.178 +0.080 -0.079 -0.045 -0.077
-0.025 -0.037 -0.020 -0.094 -0.051 -0.110
+0.039 -0.001 +0.077 -0.027 +0.057 -0.081
+0.086 +0.222 -0.076 -0.027 +0.008 -0.069
+0.096 -0.071 +0.187 -0.152 -0.079 -0.162

— — — — — —

(b) other renamed to background
Cross entropy loss, without five small classes

RGB RGBD
IoU Precision Recall IoU Precision Recall

Overall 0.666 0.790 0.774 0.655 0.788 0.762
Weighted overall 0.827 0.893 0.902 0.819 0.888 0.898

brick 0.841 0.894 0.934 0.832 0.899 0.917
sky 0.983 0.999 0.983 0.986 0.998 0.987

asphalt 0.864 0.918 0.936 0.840 0.896 0.931
tile 0.611 0.814 0.710 0.600 0.787 0.716

foliage 0.864 0.916 0.938 0.876 0.921 0.946
cloud 0.964 0.966 0.997 0.975 0.977 0.997
grass 0.705 0.793 0.864 0.673 0.755 0.859
glass 0.771 0.833 0.912 0.721 0.798 0.882
stone 0.356 0.577 0.482 0.366 0.611 0.477
steel 0.580 0.713 0.757 0.566 0.693 0.756

concrete 0.756 0.904 0.822 0.754 0.869 0.850
water 0.617 0.711 0.823 0.693 0.851 0.788
wood 0.424 0.748 0.495 0.403 0.678 0.499
soil 0.235 0.457 0.327 0.302 0.543 0.404

aluminium 0.493 0.615 0.713 0.454 0.574 0.684
living 0.584 0.784 0.697 0.434 0.759 0.504

Difference with cross entropy loss, all classes
RGB RGBD

IoU Precision Recall IoU Precision Recall
+0.172 +0.154 +0.198 +0.148 +0.158 0.000
+0.018 +0.014 +0.016 +0.017 +0.014 +0.016
+0.009 -0.005 +0.016 +0.012 +0.006 +0.008
+0.001 +0.001 -0.001 +0.006 0.000 +0.006
+0.006 +0.011 -0.004 +0.008 +0.016 -0.006
+0.014 +0.018 +0.006 +0.017 -0.020 +0.039
+0.038 +0.026 +0.018 +0.014 +0.007 +0.008
+0.001 -0.001 +0.001 +0.017 +0.015 +0.002
-0.010 +0.008 -0.025 +0.010 -0.011 +0.028
+0.097 +0.080 +0.047 +0.019 +0.014 +0.012
+0.016 +0.014 +0.021 -0.003 +0.033 -0.028
+0.011 +0.001 +0.018 -0.030 -0.040 -0.005
-0.068 -0.020 -0.061 -0.065 -0.052 -0.031
+0.054 -0.126 +0.191 +0.049 +0.059 +0.012
+0.022 +0.065 0.000 -0.070 -0.062 -0.069
-0.030 -0.044 -0.032 +0.111 +0.195 +0.106
+0.081 +0.106 +0.028 +0.022 +0.016 +0.027
+0.137 +0.005 +0.185 -0.107 -0.074 -0.103

(c) No background class is used

Results of training without the five smallest classes, using class-weighted cross entropy loss. The omission of these
classes and the generation of a background class is carried out in three different ways. When a background class
is used, its performance is not recorded in the averaging metrics. The difference of the results of the corresponding
classes when trained with all classes, and also using cross entropy loss, are in the right table for comparison. The rows
are sorted by class size, except for background, which has been manually moved to the bottom.
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G.10 learning rate 0.01 • -5 small classes • class-weighted cross entropy loss

Class-weighted cross entropy loss, without five small classes
RGB RGBD

IoU Precision Recall IoU Precision Recall
Overall 0.666 0.800 0.771 0.659 0.799 0.760

Weighted overall 0.820 0.892 0.897 0.819 0.890 0.897
brick 0.827 0.895 0.916 0.828 0.894 0.917
sky 0.986 0.999 0.987 0.982 0.997 0.984

asphalt 0.845 0.894 0.939 0.856 0.905 0.940
tile 0.608 0.819 0.703 0.594 0.783 0.711

foliage 0.854 0.919 0.923 0.863 0.909 0.944
cloud 0.972 0.976 0.995 0.965 0.969 0.996
grass 0.691 0.794 0.843 0.703 0.808 0.844
glass 0.713 0.791 0.879 0.666 0.740 0.869
stone 0.358 0.602 0.470 0.351 0.634 0.440
steel 0.577 0.701 0.766 0.588 0.715 0.767

concrete 0.803 0.933 0.853 0.779 0.935 0.823
water 0.674 0.912 0.720 0.632 0.826 0.730
wood 0.428 0.679 0.536 0.504 0.714 0.631
soil 0.448 0.634 0.605 0.264 0.434 0.403

aluminium 0.398 0.526 0.622 0.536 0.720 0.678
living 0.470 0.723 0.573 0.438 0.808 0.489

background 0.051 0.144 0.074 0.025 0.094 0.034

Difference with cross entropy loss, all classes
RGB RGBD

IoU Precision Recall IoU Precision Recall
+0.172 +0.164 +0.195 +0.152 +0.169 0.000
+0.011 +0.013 +0.011 +0.017 +0.016 +0.015
-0.005 -0.004 -0.002 +0.008 +0.001 +0.008
+0.004 +0.001 +0.003 +0.002 -0.001 +0.003
-0.013 -0.013 -0.001 +0.024 +0.025 +0.003
+0.011 +0.023 -0.001 +0.011 -0.024 +0.034
+0.028 +0.029 +0.003 +0.001 -0.005 +0.006
+0.009 +0.009 -0.001 +0.007 +0.007 +0.001
-0.024 +0.009 -0.046 +0.040 +0.042 +0.013
+0.039 +0.038 +0.014 -0.036 -0.044 -0.001
+0.018 +0.039 +0.009 -0.018 +0.056 -0.065
+0.008 -0.011 +0.027 -0.008 -0.018 +0.006
-0.021 +0.009 -0.030 -0.040 +0.014 -0.058
+0.111 +0.075 +0.088 -0.012 +0.034 -0.046
+0.026 -0.004 +0.041 +0.031 -0.026 +0.063
+0.183 +0.133 +0.246 +0.073 +0.086 +0.105
-0.014 +0.017 -0.063 +0.104 +0.162 +0.021
+0.023 -0.056 +0.061 -0.103 -0.025 -0.118

— — — — — —

(a) Omitted classes merged into background
Class-weighted cross entropy loss, without five small classes

RGB RGBD
IoU Precision Recall IoU Precision Recall

Overall 0.649 0.791 0.754 0.646 0.782 0.758
Weighted overall 0.816 0.889 0.894 0.810 0.883 0.892

brick 0.825 0.892 0.916 0.816 0.897 0.900
sky 0.982 1.000 0.983 0.976 0.997 0.979

asphalt 0.845 0.895 0.938 0.844 0.890 0.942
tile 0.589 0.798 0.693 0.596 0.780 0.716

foliage 0.860 0.913 0.937 0.879 0.920 0.952
cloud 0.962 0.963 0.998 0.947 0.954 0.991
grass 0.725 0.821 0.862 0.665 0.761 0.840
glass 0.686 0.761 0.874 0.672 0.753 0.862
stone 0.364 0.580 0.494 0.358 0.592 0.476
steel 0.590 0.725 0.760 0.588 0.701 0.783

concrete 0.829 0.916 0.898 0.764 0.929 0.811
water 0.529 0.920 0.555 0.589 0.803 0.689
wood 0.353 0.687 0.421 0.471 0.720 0.576
soil 0.295 0.463 0.449 0.272 0.475 0.390

aluminium 0.450 0.563 0.691 0.423 0.529 0.678
living 0.500 0.767 0.590 0.480 0.814 0.539

background 0.000 0.000 0.000 0.000 0.000 0.000

Difference with cross entropy loss, all classes
RGB RGBD

IoU Precision Recall IoU Precision Recall
+0.155 +0.155 +0.178 +0.139 +0.152 0.000
+0.007 +0.010 +0.008 +0.008 +0.009 +0.010
-0.007 -0.007 -0.002 -0.004 +0.004 -0.009
0.000 +0.002 -0.001 -0.004 -0.001 -0.002

-0.013 -0.012 -0.002 +0.012 +0.010 +0.005
-0.008 +0.002 -0.011 +0.013 -0.027 +0.039
+0.034 +0.023 +0.017 +0.017 +0.006 +0.014
-0.001 -0.004 +0.002 -0.011 -0.008 -0.004
+0.010 +0.036 -0.027 +0.002 -0.005 +0.009
+0.012 +0.008 +0.009 -0.030 -0.031 -0.008
+0.024 +0.017 +0.033 -0.011 +0.014 -0.029
+0.021 +0.013 +0.021 -0.008 -0.032 +0.022
+0.005 -0.008 +0.015 -0.055 +0.008 -0.070
-0.034 +0.083 -0.077 -0.055 +0.011 -0.087
-0.049 +0.004 -0.074 -0.002 -0.020 +0.008
+0.030 -0.038 +0.090 +0.081 +0.127 +0.092
+0.038 +0.054 +0.006 -0.009 -0.029 +0.021
+0.053 -0.012 +0.078 -0.061 -0.019 -0.068

— — — — — —

(b) other renamed to background
Class-weighted cross entropy loss, without five small classes

RGB RGBD
IoU Precision Recall IoU Precision Recall

Overall 0.663 0.797 0.768 0.635 0.778 0.743
Weighted overall 0.823 0.891 0.901 0.807 0.881 0.890

brick 0.835 0.894 0.927 0.818 0.894 0.906
sky 0.981 0.996 0.984 0.979 0.997 0.983

asphalt 0.855 0.904 0.940 0.836 0.888 0.934
tile 0.618 0.832 0.706 0.591 0.780 0.710

foliage 0.865 0.921 0.934 0.853 0.912 0.929
cloud 0.962 0.970 0.991 0.955 0.963 0.991
grass 0.691 0.769 0.871 0.664 0.756 0.845
glass 0.728 0.801 0.889 0.734 0.808 0.888
stone 0.353 0.586 0.470 0.359 0.576 0.488
steel 0.611 0.728 0.793 0.546 0.678 0.737

concrete 0.736 0.862 0.833 0.699 0.842 0.804
water 0.643 0.792 0.774 0.560 0.773 0.670
wood 0.523 0.734 0.646 0.441 0.731 0.527
soil 0.284 0.571 0.362 0.265 0.448 0.393

aluminium 0.488 0.665 0.647 0.508 0.654 0.696
living 0.432 0.721 0.518 0.346 0.745 0.393

Difference with cross entropy loss, all classes
RGB RGBD

IoU Precision Recall IoU Precision Recall
+0.169 +0.161 +0.192 +0.128 +0.148 0.000
+0.014 +0.012 +0.015 +0.005 +0.007 +0.008
+0.003 -0.005 +0.009 -0.002 +0.001 -0.003
-0.001 -0.002 0.000 -0.001 -0.001 +0.002
-0.003 -0.003 0.000 +0.004 +0.008 -0.003
+0.021 +0.036 +0.002 +0.008 -0.027 +0.033
+0.039 +0.031 +0.014 -0.009 -0.002 -0.009
-0.001 +0.003 -0.005 -0.003 +0.001 -0.004
-0.024 -0.016 -0.018 +0.001 -0.010 +0.014
+0.054 +0.048 +0.024 +0.032 +0.024 +0.018
+0.013 +0.023 +0.009 -0.010 -0.002 -0.017
+0.042 +0.016 +0.054 -0.050 -0.055 -0.024
-0.088 -0.062 -0.050 -0.120 -0.079 -0.077
+0.080 -0.045 +0.142 -0.084 -0.019 -0.106
+0.121 +0.051 +0.151 -0.032 -0.009 -0.041
+0.019 +0.070 +0.003 +0.074 +0.100 +0.095
+0.076 +0.156 -0.038 +0.076 +0.096 +0.039
-0.015 -0.058 +0.006 -0.195 -0.088 -0.214

(c) No background class is used
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Activation maps when training on RGB with cross entropy loss and merging the five smallest classes. Only the first 64
channels of each layer are shown. Top: The XL bottom-up layer, bottom: the XL feature pyramid layer
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G.11 learning rate 0.001 • -5 small classes • focal loss

Focal loss, without five small classes
RGB RGBD

IoU Precision Recall IoU Precision Recall
Overall 0.621 0.778 0.723 0.592 0.744 0.698

Weighted overall 0.799 0.874 0.885 0.790 0.866 0.877
brick 0.809 0.883 0.906 0.803 0.886 0.895
sky 0.977 0.993 0.984 0.980 0.998 0.982

asphalt 0.816 0.871 0.928 0.820 0.874 0.931
tile 0.595 0.787 0.709 0.572 0.766 0.693

foliage 0.875 0.935 0.931 0.846 0.902 0.931
cloud 0.953 0.968 0.984 0.957 0.961 0.995
grass 0.651 0.737 0.848 0.638 0.733 0.832
glass 0.658 0.723 0.879 0.641 0.716 0.858
stone 0.266 0.514 0.355 0.282 0.504 0.391
steel 0.528 0.689 0.694 0.489 0.640 0.675

concrete 0.783 0.922 0.839 0.759 0.884 0.843
water 0.608 0.727 0.788 0.392 0.607 0.526
wood 0.354 0.642 0.441 0.375 0.612 0.492
soil 0.327 0.658 0.394 0.150 0.404 0.193

aluminium 0.425 0.662 0.542 0.445 0.672 0.568
living 0.312 0.733 0.352 0.326 0.739 0.368

background 0.086 0.367 0.101 0.036 0.162 0.044

Difference with cross entropy loss, all classes
RGB RGBD

IoU Precision Recall IoU Precision Recall
+0.127 +0.142 +0.147 +0.085 +0.114 0.000
-0.010 -0.005 -0.001 -0.012 -0.008 -0.005
-0.023 -0.016 -0.012 -0.017 -0.007 -0.014
-0.005 -0.005 0.000 0.000 0.000 +0.001
-0.042 -0.036 -0.012 -0.012 -0.006 -0.006
-0.002 -0.009 +0.005 -0.011 -0.041 +0.016
+0.049 +0.045 +0.011 -0.016 -0.012 -0.007
-0.010 +0.001 -0.012 -0.001 -0.001 0.000
-0.064 -0.048 -0.041 -0.025 -0.033 +0.001
-0.016 -0.030 +0.014 -0.061 -0.068 -0.012
-0.074 -0.049 -0.106 -0.087 -0.074 -0.114
-0.041 -0.023 -0.045 -0.107 -0.093 -0.086
-0.041 -0.002 -0.044 -0.060 -0.037 -0.038
+0.045 -0.110 +0.156 -0.252 -0.185 -0.250
-0.048 -0.041 -0.054 -0.098 -0.128 -0.076
+0.062 +0.157 +0.035 -0.041 +0.056 -0.105
+0.013 +0.153 -0.143 +0.013 +0.114 -0.089
-0.135 -0.046 -0.160 -0.215 -0.094 -0.239

— — — — — —

(a) Omitted classes merged into background
Focal loss, without five small classes
RGB RGBD

IoU Precision Recall IoU Precision Recall
Overall 0.578 0.724 0.700 0.590 0.743 0.695

Weighted overall 0.785 0.861 0.877 0.795 0.868 0.880
brick 0.802 0.874 0.906 0.804 0.886 0.896
sky 0.982 0.998 0.983 0.983 0.997 0.985

asphalt 0.800 0.870 0.908 0.829 0.879 0.935
tile 0.573 0.786 0.678 0.563 0.756 0.688

foliage 0.864 0.929 0.925 0.871 0.914 0.949
cloud 0.961 0.965 0.996 0.965 0.972 0.992
grass 0.611 0.685 0.849 0.651 0.745 0.838
glass 0.642 0.724 0.850 0.625 0.706 0.845
stone 0.255 0.505 0.340 0.277 0.489 0.389
steel 0.520 0.672 0.698 0.523 0.673 0.702

concrete 0.669 0.726 0.894 0.804 0.891 0.891
water 0.418 0.482 0.757 0.255 0.442 0.377
wood 0.414 0.764 0.475 0.378 0.620 0.491
soil 0.083 0.277 0.106 0.270 0.492 0.375

aluminium 0.419 0.605 0.577 0.426 0.696 0.524
living 0.238 0.716 0.263 0.219 0.733 0.238

background 0.000 0.000 0.000 0.000 — 0.000

Difference with cross entropy loss, all classes
RGB RGBD

IoU Precision Recall IoU Precision Recall
+0.084 +0.088 +0.124 +0.083 +0.113 0.000
-0.024 -0.018 -0.009 -0.007 -0.006 -0.002
-0.030 -0.025 -0.012 -0.016 -0.007 -0.013
0.000 0.000 -0.001 +0.003 -0.001 +0.004

-0.058 -0.037 -0.032 -0.003 -0.001 -0.002
-0.024 -0.010 -0.026 -0.020 -0.051 +0.011
+0.038 +0.039 +0.005 +0.009 0.000 +0.011
-0.002 -0.002 0.000 +0.007 +0.010 -0.003
-0.104 -0.100 -0.040 -0.012 -0.021 +0.007
-0.032 -0.029 -0.015 -0.077 -0.078 -0.025
-0.085 -0.058 -0.121 -0.092 -0.089 -0.116
-0.049 -0.040 -0.041 -0.073 -0.060 -0.059
-0.155 -0.198 +0.011 -0.015 -0.030 +0.010
-0.145 -0.355 +0.125 -0.389 -0.350 -0.399
+0.012 +0.081 -0.020 -0.095 -0.120 -0.077
-0.182 -0.224 -0.253 +0.079 +0.144 +0.077
+0.007 +0.096 -0.108 -0.006 +0.138 -0.133
-0.209 -0.063 -0.249 -0.322 -0.100 -0.369

— — — — — —

(b) other renamed to background
Focal loss, without five small classes
RGB RGBD

IoU Precision Recall IoU Precision Recall
Overall 0.588 0.724 0.699 0.582 0.725 0.705

Weighted overall 0.789 0.864 0.878 0.793 0.866 0.882
brick 0.797 0.875 0.899 0.812 0.888 0.903
sky 0.982 0.997 0.985 0.979 0.996 0.982

asphalt 0.812 0.870 0.924 0.830 0.883 0.933
tile 0.541 0.744 0.666 0.560 0.762 0.679

foliage 0.856 0.913 0.932 0.856 0.911 0.933
cloud 0.960 0.968 0.992 0.957 0.962 0.995
grass 0.656 0.767 0.819 0.616 0.721 0.808
glass 0.629 0.702 0.857 0.626 0.694 0.863
stone 0.294 0.543 0.390 0.254 0.513 0.335
steel 0.506 0.671 0.672 0.507 0.631 0.720

concrete 0.819 0.902 0.899 0.732 0.820 0.872
water 0.559 0.651 0.798 0.470 0.540 0.784
wood 0.348 0.562 0.478 0.443 0.726 0.532
soil 0.081 0.184 0.126 0.219 0.402 0.326

aluminium 0.446 0.620 0.615 0.425 0.601 0.593
living 0.125 0.616 0.136 0.024 0.555 0.025

Difference with cross entropy loss, all classes
RGB RGBD

IoU Precision Recall IoU Precision Recall
+0.094 +0.088 +0.123 +0.075 +0.095 0.000
-0.020 -0.015 -0.008 -0.009 -0.008 0.000
-0.035 -0.024 -0.019 -0.008 -0.005 -0.006
-0.000 -0.001 +0.001 -0.001 -0.002 +0.001
-0.046 -0.037 -0.016 -0.002 +0.003 -0.004
-0.056 -0.052 -0.038 -0.023 -0.045 +0.002
+0.030 +0.023 +0.012 -0.006 -0.003 -0.005
-0.003 +0.001 -0.004 -0.001 0.000 0.000
-0.059 -0.018 -0.070 -0.047 -0.045 -0.023
-0.045 -0.051 -0.008 -0.076 -0.090 -0.007
-0.046 -0.020 -0.071 -0.115 -0.065 -0.170
-0.063 -0.041 -0.067 -0.089 -0.102 -0.041
-0.005 -0.022 +0.016 -0.087 -0.101 -0.009
-0.004 -0.186 +0.166 -0.174 -0.252 +0.008
-0.054 -0.121 -0.017 -0.030 -0.014 -0.036
-0.184 -0.317 -0.233 +0.028 +0.054 +0.028
+0.034 +0.111 -0.070 -0.007 +0.043 -0.064
-0.322 -0.163 -0.376 -0.517 -0.278 -0.582

(c) No background class is used
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G.12 learning rate 0.001 • -5 small classes • class-weighted focal loss

Class-weighted focal loss, without five small classes
RGB RGBD

IoU Precision Recall IoU Precision Recall
Overall 0.601 0.755 0.712 0.560 0.731 0.660

Weighted overall 0.795 0.871 0.881 0.782 0.859 0.870
brick 0.808 0.882 0.906 0.803 0.870 0.912
sky 0.982 0.998 0.984 0.967 0.991 0.975

asphalt 0.822 0.878 0.928 0.841 0.899 0.928
tile 0.572 0.773 0.688 0.521 0.754 0.628

foliage 0.849 0.926 0.911 0.849 0.897 0.940
cloud 0.963 0.966 0.997 0.924 0.943 0.978
grass 0.620 0.721 0.816 0.607 0.706 0.813
glass 0.647 0.715 0.872 0.664 0.744 0.861
stone 0.267 0.504 0.363 0.265 0.484 0.369
steel 0.503 0.666 0.673 0.536 0.669 0.729

concrete 0.823 0.911 0.895 0.736 0.858 0.837
water 0.484 0.675 0.631 0.120 0.261 0.182
wood 0.356 0.597 0.469 0.345 0.606 0.445
soil 0.403 0.619 0.536 0.180 0.501 0.220

aluminium 0.398 0.543 0.599 0.428 0.654 0.553
living 0.117 0.714 0.122 0.177 0.865 0.182

background 0.020 0.107 0.024 0.024 0.110 0.030

Difference with cross entropy loss, all classes
RGB RGBD

IoU Precision Recall IoU Precision Recall
+0.107 +0.119 +0.136 +0.053 +0.101 0.000
-0.014 -0.008 -0.005 -0.020 -0.015 -0.012
-0.024 -0.017 -0.012 -0.017 -0.023 +0.003
-0.000 0.000 -0.000 -0.013 -0.007 -0.006
-0.036 -0.029 -0.012 +0.009 +0.019 -0.009
-0.025 -0.023 -0.016 -0.062 -0.053 -0.049
+0.023 +0.036 -0.009 -0.013 -0.017 +0.002

0.000 -0.001 +0.001 -0.034 -0.019 -0.017
-0.095 -0.064 -0.073 -0.056 -0.060 -0.018
-0.027 -0.038 +0.007 -0.038 -0.040 -0.009
-0.073 -0.059 -0.098 -0.104 -0.094 -0.136
-0.066 -0.046 -0.066 -0.060 -0.064 -0.032
-0.001 -0.013 +0.012 -0.083 -0.063 -0.044
-0.079 -0.162 -0.001 -0.524 -0.531 -0.594
-0.046 -0.086 -0.026 -0.128 -0.134 -0.123
+0.138 +0.118 +0.177 -0.011 +0.153 -0.078
-0.014 +0.034 -0.086 -0.004 +0.096 -0.104
-0.330 -0.065 -0.390 -0.364 +0.032 -0.425

— — — — — —

(a) Omitted classes merged into background
Class-weighted focal loss, without five small classes

RGB RGBD
IoU Precision Recall IoU Precision Recall

Overall 0.582 0.734 0.681 0.602 0.766 0.710
Weighted overall 0.788 0.865 0.876 0.791 0.867 0.878

brick 0.813 0.876 0.919 0.802 0.879 0.901
sky 0.962 0.995 0.966 0.984 0.996 0.988

asphalt 0.833 0.889 0.930 0.836 0.892 0.929
tile 0.556 0.761 0.674 0.547 0.744 0.673

foliage 0.846 0.907 0.927 0.830 0.885 0.930
cloud 0.913 0.923 0.988 0.972 0.979 0.992
grass 0.631 0.753 0.797 0.588 0.726 0.755
glass 0.650 0.720 0.870 0.576 0.642 0.848
stone 0.246 0.475 0.338 0.260 0.476 0.364
steel 0.515 0.673 0.687 0.534 0.667 0.727

concrete 0.799 0.918 0.861 0.812 0.928 0.866
water 0.463 0.662 0.607 0.548 0.646 0.783
wood 0.386 0.635 0.496 0.405 0.675 0.503
soil 0.081 0.231 0.111 0.254 0.489 0.346

aluminium 0.411 0.697 0.500 0.441 0.751 0.516
living 0.204 0.634 0.231 0.238 0.878 0.246

background 0.000 0.000 0.000 0.000 0.000 0.000

Difference with cross entropy loss, all classes
RGB RGBD

IoU Precision Recall IoU Precision Recall
+0.088 +0.098 +0.105 +0.095 +0.136 0.000
-0.021 -0.014 -0.010 -0.011 -0.007 -0.004
-0.019 -0.023 +0.001 -0.018 -0.014 -0.008
-0.020 -0.003 -0.018 +0.004 -0.002 +0.007
-0.025 -0.018 -0.010 +0.004 +0.012 -0.008
-0.041 -0.035 -0.030 -0.036 -0.063 -0.004
+0.020 +0.017 +0.007 -0.032 -0.029 -0.008
-0.050 -0.044 -0.008 +0.014 +0.017 -0.003
-0.084 -0.032 -0.092 -0.075 -0.040 -0.076
-0.024 -0.033 +0.005 -0.126 -0.142 -0.022
-0.094 -0.088 -0.123 -0.109 -0.102 -0.141
-0.054 -0.039 -0.052 -0.062 -0.066 -0.034
-0.025 -0.006 -0.022 -0.007 +0.007 -0.015
-0.100 -0.175 -0.025 -0.096 -0.146 +0.007
-0.016 -0.048 +0.001 -0.068 -0.065 -0.065
-0.184 -0.270 -0.248 +0.063 +0.141 +0.048
-0.001 +0.188 -0.185 +0.009 +0.193 -0.141
-0.243 -0.145 -0.281 -0.303 +0.045 -0.361

— — — — — —

(b) other renamed to background
Class-weighted focal loss, without five small classes

RGB RGBD
IoU Precision Recall IoU Precision Recall

Overall 0.615 0.763 0.719 0.600 0.761 0.709
Weighted overall 0.802 0.877 0.885 0.789 0.865 0.878

brick 0.819 0.890 0.911 0.804 0.884 0.899
sky 0.985 0.997 0.987 0.980 0.998 0.982

asphalt 0.821 0.875 0.930 0.831 0.884 0.933
tile 0.585 0.783 0.698 0.555 0.757 0.675

foliage 0.846 0.899 0.934 0.812 0.866 0.928
cloud 0.968 0.974 0.994 0.961 0.965 0.995
grass 0.662 0.788 0.804 0.582 0.705 0.770
glass 0.691 0.770 0.870 0.640 0.694 0.891
stone 0.306 0.525 0.423 0.295 0.530 0.399
steel 0.554 0.695 0.732 0.528 0.676 0.707

concrete 0.736 0.864 0.832 0.770 0.842 0.900
water 0.516 0.736 0.633 0.533 0.703 0.688
wood 0.396 0.695 0.480 0.329 0.574 0.435
soil 0.197 0.378 0.292 0.186 0.463 0.238

aluminium 0.455 0.604 0.648 0.460 0.706 0.568
living 0.305 0.737 0.343 0.334 0.933 0.342

Difference with cross entropy loss, all classes
RGB RGBD

IoU Precision Recall IoU Precision Recall
+0.121 +0.127 +0.143 +0.093 +0.131 0.000
-0.007 -0.002 -0.001 -0.013 -0.009 -0.004
-0.013 -0.009 -0.007 -0.016 -0.009 -0.010
+0.003 -0.001 +0.003 0.000 0.000 +0.001
-0.037 -0.032 -0.010 -0.001 +0.004 -0.004
-0.012 -0.013 -0.006 -0.028 -0.050 -0.002
+0.020 +0.009 +0.014 -0.050 -0.048 -0.010
+0.005 +0.007 -0.002 +0.003 +0.003 0.000
-0.053 +0.003 -0.085 -0.081 -0.061 -0.061
+0.017 +0.017 +0.005 -0.062 -0.090 +0.021
-0.034 -0.038 -0.038 -0.074 -0.048 -0.106
-0.015 -0.017 -0.007 -0.068 -0.057 -0.054
-0.088 -0.060 -0.051 -0.049 -0.079 +0.019
-0.047 -0.101 +0.001 -0.111 -0.089 -0.088
-0.006 +0.012 -0.015 -0.144 -0.166 -0.133
-0.068 -0.123 -0.067 -0.005 +0.115 -0.060
+0.043 +0.095 -0.037 +0.028 +0.148 -0.089
-0.142 -0.042 -0.169 -0.207 +0.100 -0.265

(c) No background class is used
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G.13 learning rate 0.01 • -5 small classes • class-weighted cross entropy loss • only depth
• reflect init.

D
mIoU 0.399
fIoU 0.529

accuracy 0.685
micro-averaged precision/recall/F1 0.682

macro-averaged precision 0.546
macro-averaged recall 0.560

macro-averaged F1 0.542
weighted macro-averaged precision 0.674

weighted macro-averaged recall 0.685
weighted macro-averaged F1 0.677

Overall results

Reflection initialized
D

IoU Precision Recall
Overall 0.399 0.547 0.561

Weighted overall 0.529 0.674 0.685
brick 0.527 0.689 0.691

sky 0.770 0.867 0.873
asphalt 0.464 0.619 0.650

tile 0.306 0.508 0.435
foliage 0.770 0.839 0.903

cloud 0.456 0.641 0.612
grass 0.314 0.488 0.469
glass 0.451 0.531 0.751
stone 0.328 0.535 0.458
steel 0.398 0.589 0.551

concrete 0.471 0.524 0.822
water 0.484 0.560 0.781
wood 0.303 0.566 0.395
soil 0.191 0.426 0.256

aluminium 0.136 0.199 0.302
living 0.021 0.167 0.024

background 0.027 0.107 0.034

Per-class results
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Predicted labels

Tr
ue

la
be

ls

background aluminium asphalt brick cloud concrete foliage glass grass living sky soil steel stone tile water wood Total
background 1752 510 4612 16267 0 649 1640 9396 350 90 564 0 6984 2693 5307 12 58 50884
aluminium 1472 11916 17 2995 225 537 5095 4493 247 698 224 0 5632 4 70 15 5847 39487

asphalt 1056 0 1109582 465900 0 18902 863 14 23770 123 3 343 1185 9907 76012 50 67 1707777
brick 4177 42288 546109 2026794 0 25669 23606 53561 7371 793 1816 2689 18246 18871 159052 357 2733 2934132
cloud 211 5 0 432 407010 0 12666 2968 0 0 241241 0 90 41 52 0 0 664716

concrete 547 165 7 8805 644 82741 838 2286 17 0 0 0 3097 31 1334 173 0 100685
foliage 1301 1565 178 5022 298 229 431596 8064 6592 19 55 200 15556 1319 2672 1255 1787 477708

glass 321 0 8138 13593 0 1094 2296 109444 703 31 0 0 7498 15 880 205 1509 145727
grass 280 41 17376 32246 0 7681 4912 312 114514 57 31 4020 9714 18308 29624 4782 207 244105
living 403 302 47 16596 0 509 3205 4530 550 751 0 0 3037 593 833 197 365 31918

sky 0 0 0 806 226738 101 9343 0 0 0 1638589 0 556 5 274 0 7 1876419
soil 1 0 1219 1502 0 0 889 0 26054 173 0 12509 429 2545 2920 200 351 48792

steel 2853 2049 1133 28699 165 11187 9932 7760 10907 304 1994 4946 119297 4162 4464 2375 4131 216358
stone 1404 38 7177 70314 0 0 2819 713 12667 89 21 3268 3674 104682 20289 1147 84 228386
tile 377 139 96669 227136 42 7145 932 1110 30336 486 4781 1261 3911 32198 313881 741 138 721283

water 0 86 47 133 0 0 2751 60 270 365 0 0 265 0 75 14704 61 18817
wood 183 680 36 24535 0 1378 1110 1503 266 523 0 98 3507 146 634 55 22615 57269
Total 16338 59784 1792347 2941775 635122 157822 514493 206214 234614 4502 1889319 29334 202678 195520 618373 26268 39960 9564463

Confusion matrices

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0
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on

mAUC: 0.425

brick, AUC: 0.547

sky, AUC: 0.799

asphalt, AUC: 0.527

tile, AUC: 0.293

foliage, AUC: 0.872

cloud, AUC: 0.486

grass, AUC: 0.337

glass, AUC: 0.626

stone, AUC: 0.360

steel, AUC: 0.449

concrete, AUC: 0.744

water, AUC: 0.734

background, AUC: 0.007

wood, AUC: 0.312

soil, AUC: 0.202

aluminium, AUC: 0.043

living, AUC: 0.005

Precision-recall curves, legend sorted by class size.
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Activation maps when training only on depth. Only the first 64 channels of each layer are shown. Top: The XL
bottom-up layer, bottom: the XL feature pyramid layer

106



G.14 learning rate 0.01 • -5 small classes • class-weighted cross entropy loss • only depth
• Avg RGB init.

RGB
mIoU 0.423
fIoU 0.553

accuracy 0.703
micro-averaged precision/recall/F1 0.702

macro-averaged precision 0.558
macro-averaged recall 0.598

macro-averaged F1 0.564
weighted macro-averaged precision 0.693

weighted macro-averaged recall 0.708
weighted macro-averaged F1 0.698

Overall results

Initialization by averaging RGB
D

IoU Precision Recall
Overall 0.423 0.559 0.598

Weighted overall 0.553 0.694 0.709
brick 0.540 0.712 0.692

sky 0.793 0.868 0.902
asphalt 0.494 0.651 0.672

tile 0.294 0.508 0.411
foliage 0.799 0.860 0.918

cloud 0.470 0.693 0.593
grass 0.383 0.495 0.628
glass 0.514 0.600 0.783
stone 0.429 0.606 0.594
steel 0.455 0.620 0.630

concrete 0.472 0.529 0.814
water 0.488 0.542 0.830
wood 0.305 0.517 0.426
soil 0.137 0.306 0.199

aluminium 0.178 0.226 0.454
living 0.022 0.205 0.024

background 0.016 0.034 0.030

Per-class results
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Predicted labels

Tr
ue

la
be

ls

background aluminium asphalt brick cloud concrete foliage glass grass living sky soil steel stone tile water wood Total
background 1536 1601 4385 20004 0 584 1579 7480 2750 311 178 197 3629 3303 2329 50 968 50884
aluminium 1278 17914 0 1092 0 529 2522 2999 154 284 160 0 6501 103 1093 268 4590 39487

asphalt 20320 14 1146896 434456 0 18473 840 543 19854 72 9 61 1835 10154 51237 2990 23 1707777
brick 8195 54657 487777 2030477 6 24888 13023 44548 24281 292 2452 9058 15051 23119 188350 1844 6114 2934132
cloud 1121 0 0 665 394392 2 16492 58 0 0 251129 0 660 0 197 0 0 664716

concrete 3 5 18 9133 0 81965 482 411 50 619 647 0 6221 487 570 74 0 100685
foliage 831 1521 155 3849 285 747 438528 949 6085 51 711 54 13689 988 2873 1622 4770 477708

glass 778 62 8092 9831 195 5 1348 114068 379 185 164 0 9305 107 1187 0 21 145727
grass 4144 19 16987 13350 0 4170 3944 105 153266 7 0 6553 8981 13253 17252 1647 427 244105
living 191 188 177 13812 0 32 1858 5851 374 764 0 0 4425 1116 522 259 2349 31918

sky 244 80 0 100 174111 299 7755 0 0 0 1693120 0 630 0 0 0 80 1876419
soil 168 0 3448 717 0 0 2315 0 26465 71 0 9726 1195 2128 2033 221 305 48792

steel 1424 2543 1001 23494 208 9658 8862 7642 8307 285 2132 456 136402 4176 5653 1351 2764 216358
stone 2015 89 17441 32849 0 0 2303 132 15615 123 3 3041 4484 135613 13698 854 126 228386
tile 1377 135 76548 233790 0 13713 5263 4664 51288 666 18 2624 3744 29058 296481 1740 174 721283

water 1207 8 0 110 0 0 1481 0 31 5 0 0 250 0 23 15616 86 18817
wood 487 378 76 25444 0 0 1209 751 556 0 0 8 2980 60 642 259 24419 57269
Total 45319 79214 1763001 2853173 569197 155065 509804 190201 309455 3735 1950723 31778 219982 223665 584140 28795 47216 9564463

Confusion matrices

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8
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mAUC: 0.453

brick, AUC: 0.547

sky, AUC: 0.830

asphalt, AUC: 0.553

tile, AUC: 0.297

foliage, AUC: 0.898

cloud, AUC: 0.535

grass, AUC: 0.387

glass, AUC: 0.708

stone, AUC: 0.502

steel, AUC: 0.555

concrete, AUC: 0.746

water, AUC: 0.744

wood, AUC: 0.344

soil, AUC: 0.073

aluminium, AUC: 0.065

living, AUC: 0.013

background, AUC: 0.003

Precision-recall curves, legend sorted by class size.
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G.15 learning rate 0.01 • -5 small classes • class-weighted cross entropy loss • only depth
• Xavier init.

D
mIoU 0.403
fIoU 0.536

accuracy 0.691
micro-averaged precision/recall/F1 0.688

macro-averaged precision 0.549
macro-averaged recall 0.563

macro-averaged F1 0.544
weighted macro-averaged precision 0.677

weighted macro-averaged recall 0.694
weighted macro-averaged F1 0.682

Overall results

Xavier initialized
D

IoU Precision Recall
Overall 0.404 0.550 0.564

Weighted overall 0.537 0.678 0.695
brick 0.530 0.703 0.684

sky 0.790 0.852 0.916
asphalt 0.488 0.621 0.696

tile 0.246 0.478 0.336
foliage 0.780 0.863 0.891

cloud 0.452 0.711 0.554
grass 0.319 0.422 0.567
glass 0.455 0.583 0.675
stone 0.377 0.576 0.521
steel 0.388 0.525 0.598

concrete 0.526 0.623 0.771
water 0.481 0.546 0.800
wood 0.264 0.456 0.386
soil 0.179 0.547 0.210

aluminium 0.181 0.243 0.413
living 0.005 0.050 0.005

background 0.017 0.067 0.022

Per-class results
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Predicted labels

Tr
ue

la
be

ls

background aluminium asphalt brick cloud concrete foliage glass grass living sky soil steel stone tile water wood Total
background 1107 361 5154 19666 0 281 1049 5395 414 97 409 0 5490 3281 7779 12 389 50884
aluminium 387 16307 113 569 2 382 4306 808 220 437 274 0 8763 0 154 250 6515 39487

asphalt 4065 0 1189089 387418 0 0 947 81 41999 6 8 3094 766 9054 71242 5 3 1707777
brick 4208 39439 588704 2006000 1568 25254 18383 44838 25676 626 1352 873 17630 18253 131207 1004 9117 2934132
cloud 533 13 0 0 368451 0 1322 0 0 0 294166 0 231 0 0 0 0 664716

concrete 0 0 0 3378 0 77664 3807 369 366 0 644 0 13623 651 139 0 44 100685
foliage 900 3863 17 8647 499 3090 425448 722 9727 57 326 61 12019 3251 4962 758 3361 477708

glass 233 1162 8083 13593 0 1859 5485 98437 681 1076 0 0 13992 24 655 55 392 145727
grass 490 83 33503 18002 0 1284 2394 444 138377 2 0 3990 14297 14579 12529 3825 306 244105
living 228 112 361 14090 0 569 2768 3620 1282 159 0 0 3571 1219 1553 279 2107 31918

sky 6 102 0 94 147040 0 9697 8 77 0 1718904 0 378 56 15 9 33 1876419
soil 13 0 1475 3211 0 0 565 0 16946 0 0 10246 4037 3643 8316 167 173 48792

steel 1653 5313 1318 28840 614 7471 8361 3596 14302 177 1431 206 129294 2929 5125 2843 2885 216358
stone 822 152 17062 49413 0 0 1242 620 10275 42 0 111 7836 119076 19859 1473 403 228386
tile 1560 0 71252 281924 11 6715 2378 9493 66732 487 264 163 6133 30565 242374 840 392 721283

water 0 23 0 57 0 0 841 2 646 0 0 0 1005 27 958 15063 195 18817
wood 388 141 41 20613 0 0 4202 505 472 6 0 0 7354 72 399 985 22091 57269
Total 16593 67071 1916172 2855515 518185 124569 493195 168938 328192 3172 2017778 18744 246419 206680 507266 27568 48406 9564463

Confusion matrices

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0
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mAUC: 0.420

brick, AUC: 0.517

sky, AUC: 0.804

asphalt, AUC: 0.562

tile, AUC: 0.255

foliage, AUC: 0.868

cloud, AUC: 0.481

grass, AUC: 0.396

glass, AUC: 0.552

stone, AUC: 0.424

steel, AUC: 0.458

concrete, AUC: 0.728

water, AUC: 0.670

wood, AUC: 0.192

soil, AUC: 0.174

aluminium, AUC: 0.134

living, AUC: 0.000

background, AUC: 0.015

Precision-recall curves, legend sorted by class size.
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G.16 learning rate 0.01 • -5 small classes • class-weighted cross entropy loss • with colour
• Xavier init.

RGBD RGB
mIoU 0.663 -0.002
fIoU 0.823 +0.003

accuracy 0.903 +0.003
micro-averaged precision/recall/F1 0.901 +0.004

macro-averaged precision 0.796 -0.003
macro-averaged recall 0.773 +0.003

macro-averaged F1 0.781 0.000
weighted macro-averaged precision 0.893 +0.001

weighted macro-averaged recall 0.899 +0.003
weighted macro-averaged F1 0.895 +0.002

Performance overview

Xavier initialized
RGBD

IoU Precision Recall
Overall 0.663 0.796 0.773

Weighted overall 0.824 0.893 0.900
brick 0.842 0.904 0.925
sky 0.985 1.000 0.985

asphalt 0.862 0.917 0.935
tile 0.617 0.810 0.721

foliage 0.820 0.890 0.913
cloud 0.971 0.973 0.999
grass 0.697 0.772 0.879
glass 0.652 0.735 0.852
stone 0.351 0.579 0.471
steel 0.580 0.719 0.750

concrete 0.800 0.896 0.882
water 0.533 0.789 0.621
wood 0.512 0.746 0.619
soil 0.482 0.734 0.584

aluminium 0.443 0.574 0.661
living 0.462 0.702 0.575

background 0.059 0.165 0.084

Difference with reflect initialization
RGBD

IoU Precision Recall
-0.002 -0.003 +0.003
+0.004 +0.001 +0.004
+0.015 +0.010 +0.009
-0.000 +0.002 -0.002
+0.018 +0.024 -0.004
+0.010 -0.008 +0.019
-0.034 -0.029 -0.010
0.000 -0.003 +0.005

+0.006 -0.021 +0.037
-0.061 -0.055 -0.027
-0.007 -0.022 +0.002
+0.003 +0.018 -0.016
-0.003 -0.036 +0.030
-0.140 -0.122 -0.099
+0.085 +0.067 +0.083
+0.034 +0.101 -0.020
+0.045 +0.049 +0.040
-0.007 -0.020 +0.002
+0.008 +0.021 +0.011

Per-class results
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Predicted labels
Tr

ue
la

be
ls

background aluminium asphalt brick cloud concrete foliage glass grass living sky soil steel stone tile water wood Total
background 4249 5906 3216 8278 113 1447 544 9433 161 410 253 49 8131 3414 3914 57 1309 50884
aluminium 1844 26086 225 822 26 134 449 946 69 785 20 16 6855 184 157 89 780 39487

asphalt 82 9 1596266 81784 0 0 466 0 6946 0 0 400 2046 11927 7141 619 91 1707777
brick 5870 2073 98873 2714323 410 3731 1164 10663 2882 1697 360 1032 13401 18270 56951 225 2207 2934132
cloud 0 0 0 12 663853 0 3 0 0 0 204 0 319 0 325 0 0 664716

concrete 62 347 0 922 0 88822 36 474 0 0 51 0 2407 133 6129 619 683 100685
foliage 210 2641 1 1168 385 216 436145 2017 26263 262 14 851 4342 871 807 171 1344 477708

glass 978 4229 180 5289 0 0 189 124220 3 2315 0 0 5995 165 1387 0 777 145727
grass 258 0 1506 6506 0 1356 8332 187 214526 276 0 962 2782 4379 2522 130 383 244105
living 525 299 81 3207 0 0 603 6707 14 18356 0 0 1721 71 249 0 85 31918

sky 7 41 0 1046 17808 0 7884 37 0 0 1848734 0 323 0 539 0 0 1876419
soil 106 0 2507 3006 0 0 527 0 7122 138 0 28500 2025 1471 2322 0 1068 48792

steel 3216 2585 2264 10961 13 1478 2171 11306 3136 984 0 281 162279 8271 5081 173 2159 216358
stone 5665 843 15707 53560 0 150 473 95 4938 139 0 1133 3237 107629 33693 721 403 228386
tile 2055 92 19658 106552 0 1467 21375 1049 11193 241 0 5488 3200 28547 520174 0 192 721283

water 145 99 0 140 0 0 6009 0 0 0 0 0 48 122 0 11682 572 18817
wood 555 184 12 5527 0 350 3769 1875 804 537 0 122 6469 379 904 311 35471 57269
Total 25827 45434 1740496 3003103 682608 99151 490139 169009 278057 26140 1849636 38834 225580 185833 642295 14797 47524 9564463

Confusion matrices

0.0 0.2 0.4 0.6 0.8 1.0

Recall
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mAUC: 0.680

brick, AUC: 0.903

sky, AUC: 0.985

asphalt, AUC: 0.925

tile, AUC: 0.691

foliage, AUC: 0.893

cloud, AUC: 0.989

grass, AUC: 0.819

glass, AUC: 0.819

stone, AUC: 0.377

steel, AUC: 0.706

concrete, AUC: 0.880

water, AUC: 0.604

wood, AUC: 0.576

soil, AUC: 0.544

aluminium, AUC: 0.570

living, AUC: 0.485

background, AUC: 0.022

Precision-recall curves, legend sorted by class size.
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G.17 learning rate 0.01 • -5 small classes • class-weighted cross entropy loss • with colour
• Avg RGB init.

RGBD RGB
mIoU 0.648 -0.017
fIoU 0.822 +0.002

accuracy 0.902 +0.002
micro-averaged precision/recall/F1 0.899 +0.002

macro-averaged precision 0.787 -0.012
macro-averaged recall 0.758 -0.012

macro-averaged F1 0.766 -0.015
weighted macro-averaged precision 0.893 +0.001

weighted macro-averaged recall 0.898 +0.002
weighted macro-averaged F1 0.894 +0.001

Performance overview

Initialized using averaged RGB
RGBD

IoU Precision Recall
Overall 0.649 0.788 0.758

Weighted overall 0.823 0.893 0.898
brick 0.834 0.902 0.917

sky 0.982 0.999 0.983
asphalt 0.856 0.905 0.940

tile 0.626 0.815 0.730
foliage 0.847 0.899 0.936

cloud 0.963 0.965 0.998
grass 0.737 0.840 0.857
glass 0.703 0.794 0.860
stone 0.346 0.543 0.488
steel 0.575 0.711 0.750

concrete 0.736 0.854 0.841
water 0.479 0.609 0.692
wood 0.529 0.765 0.633
soil 0.336 0.717 0.387

aluminium 0.468 0.595 0.687
living 0.364 0.693 0.433

background 0.038 0.103 0.057

Difference with reflect initialization
RGBD

IoU Precision Recall
-0.016 -0.011 -0.012
+0.003 +0.001 +0.002
+0.007 +0.008 +0.001
-0.003 +0.001 -0.004
+0.012 +0.012 +0.001
+0.019 -0.003 +0.028
-0.007 -0.020 +0.013
-0.008 -0.011 +0.004
+0.046 +0.047 +0.015
-0.010 +0.004 -0.019
-0.012 -0.058 +0.019
-0.002 +0.010 -0.016
-0.067 -0.078 -0.011
-0.194 -0.302 -0.028
+0.102 +0.086 +0.097
-0.112 +0.084 -0.217
+0.070 +0.070 +0.066
-0.105 -0.029 -0.140
-0.013 -0.041 -0.016

Per-class results

113



Predicted labels
Tr

ue
la

be
ls

background aluminium asphalt brick cloud concrete foliage glass grass living sky soil steel stone tile water wood Total
background 2895 8284 6268 8909 243 4 807 6338 136 449 83 47 7731 3723 4719 17 231 50884
aluminium 1157 27115 1 454 143 418 931 755 185 413 0 0 6790 59 92 62 912 39487

asphalt 141 0 1605828 80434 0 93 275 0 3025 3 0 340 468 9016 6773 1280 101 1707777
brick 7040 1181 115235 2692024 0 5567 3372 6874 562 596 2 1158 12564 31815 54872 776 494 2934132
cloud 0 3 0 57 663685 0 135 0 0 0 421 0 244 0 171 0 0 664716

concrete 789 297 0 6123 0 84704 17 299 23 0 163 4 4995 791 2084 0 396 100685
foliage 185 614 383 2431 90 517 447044 281 13683 559 20 696 4863 2594 383 327 3038 477708

glass 147 2182 1 5607 0 110 88 125323 124 2327 0 0 7470 66 883 0 1399 145727
grass 702 0 2540 3190 0 858 9210 64 209270 144 0 921 3784 4791 4363 4074 194 244105
living 1100 377 227 4085 0 0 941 8066 9 13831 0 0 1818 499 325 8 632 31918

sky 0 0 64 61 23433 0 7680 9 0 0 1844685 0 170 0 317 0 0 1876419
soil 32 83 7008 7870 0 0 1654 0 6999 12 0 18901 1893 3083 855 0 402 48792

steel 4901 2917 2538 13448 109 5954 2435 4062 2732 1146 256 26 162373 6681 5011 50 1719 216358
stone 6805 436 14262 47547 0 149 845 88 5063 136 0 639 3935 111471 35961 584 465 228386
tile 1139 1056 20524 101944 274 701 20372 3594 5593 138 382 3588 3843 30253 526504 975 403 721283

water 467 180 38 37 0 0 1070 0 986 202 0 0 627 226 1212 13012 760 18817
wood 537 877 87 9813 43 91 405 2160 765 0 0 34 4693 148 1201 192 36223 57269
Total 28037 45602 1775004 2984034 688020 99166 497281 157913 249155 19956 1846012 26354 228261 205216 645726 21357 47369 9564463

Confusion matrices

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0
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0.4

0.6

0.8
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mAUC: 0.659

brick, AUC: 0.894

sky, AUC: 0.983

asphalt, AUC: 0.927

tile, AUC: 0.697

foliage, AUC: 0.919

cloud, AUC: 0.989

grass, AUC: 0.828

glass, AUC: 0.817

stone, AUC: 0.375

steel, AUC: 0.697

concrete, AUC: 0.824

water, AUC: 0.564

wood, AUC: 0.604

soil, AUC: 0.339

aluminium, AUC: 0.614

living, AUC: 0.355

background, AUC: 0.007

Precision-recall curves, legend sorted by class size.
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G.18 learning rate 0.01 • -5 small classes • class-weighted cross entropy loss • no pretrain-
ing

RGB
mIoU 0.359
fIoU 0.579

accuracy 0.715
micro-averaged precision/recall/F1 0.712

macro-averaged precision 0.502
macro-averaged recall 0.459

macro-averaged F1 0.455
weighted macro-averaged precision 0.688

weighted macro-averaged recall 0.709
weighted macro-averaged F1 0.695

RGBD
0.390
0.568
0.714
0.711
0.604
0.493
0.508
0.703
0.705
0.692

Performance overview

No pretraining
RGB RGBD

IoU Precision Recall IoU Precision Recall
Overall 0.359 0.502 0.459 0.391 0.605 0.493

Weighted overall 0.579 0.688 0.709 0.569 0.703 0.705
brick 0.530 0.659 0.731 0.565 0.632 0.842
sky 0.968 0.991 0.976 0.922 0.992 0.929

asphalt 0.486 0.647 0.661 0.407 0.675 0.506
tile 0.140 0.292 0.212 0.160 0.372 0.220

foliage 0.738 0.785 0.924 0.753 0.833 0.888
cloud 0.925 0.941 0.981 0.809 0.830 0.969
grass 0.445 0.596 0.636 0.456 0.619 0.635
glass 0.385 0.559 0.552 0.483 0.623 0.682
stone 0.119 0.318 0.161 0.117 0.346 0.149
steel 0.283 0.459 0.425 0.265 0.452 0.390

concrete 0.515 0.615 0.759 0.623 0.690 0.866
water 0.077 0.152 0.135 0.309 0.750 0.344
wood 0.047 0.098 0.082 0.111 0.301 0.150
soil 0.036 0.243 0.040 0.138 0.556 0.155

aluminium 0.042 0.139 0.057 0.098 0.312 0.124
living 0.004 0.539 0.004 0.039 0.690 0.040

background 0.012 0.095 0.014 0.017 0.073 0.022

Difference with pretraining
RGB RGBD

IoU Precision Recall IoU Precision Recall
-0.306 -0.297 -0.311 -0.268 -0.194 0.000
-0.241 -0.204 -0.187 -0.250 -0.187 -0.192
-0.297 -0.235 -0.185 -0.263 -0.262 -0.075
-0.017 -0.007 -0.011 -0.060 -0.005 -0.055
-0.358 -0.246 -0.278 -0.449 -0.230 -0.434
-0.467 -0.526 -0.490 -0.434 -0.411 -0.491
-0.116 -0.134 +0.001 -0.110 -0.076 -0.056
-0.046 -0.035 -0.013 -0.156 -0.139 -0.027
-0.246 -0.197 -0.206 -0.247 -0.189 -0.209
-0.328 -0.231 -0.327 -0.183 -0.117 -0.187
-0.239 -0.283 -0.308 -0.234 -0.288 -0.291
-0.294 -0.242 -0.341 -0.323 -0.263 -0.377
-0.288 -0.317 -0.093 -0.156 -0.245 +0.043
-0.596 -0.759 -0.585 -0.323 -0.076 -0.386
-0.380 -0.581 -0.454 -0.393 -0.413 -0.481
-0.412 -0.390 -0.564 -0.126 +0.122 -0.248
-0.356 -0.386 -0.564 -0.438 -0.408 -0.554
-0.465 -0.183 -0.569 -0.399 -0.118 -0.449
-0.039 -0.049 -0.059 -0.008 -0.021 -0.012

Per-class results
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Predicted labels
Tr

ue
la

be
ls

background aluminium asphalt brick cloud concrete foliage glass grass living sky soil steel stone tile water wood Total
background 742 4900 5030 14485 387 114 821 10000 478 33 138 68 5906 2349 4351 132 950 50884
aluminium 590 2252 371 3702 100 499 4628 2579 5760 0 221 17 10784 206 4143 348 3287 39487
asphalt 2 257 1130051 500259 0 6160 6995 333 15083 0 0 288 3210 11680 33182 76 201 1707777
brick 1713 2023 389425 2145960 2454 26203 17559 16638 18274 31 74 2016 16000 18842 253077 786 23057 2934132
cloud 0 0 0 1309 652423 0 0 29 0 0 9918 0 1020 0 17 0 0 664716

concrete 12 10 0 10172 0 76512 390 70 0 0 133 0 9097 44 2998 0 1247 100685
foliage 89 115 539 2775 253 2 441765 1548 21210 0 5 4 5459 2396 1129 7 412 477708
glass 628 2496 967 18422 0 122 6675 80491 0 12 2540 0 24667 134 4476 0 4097 145727
grass 87 11 5470 13344 0 242 37630 836 155435 0 0 941 8596 12861 7099 627 926 244105
living 414 279 0 11525 0 0 2318 6228 403 142 0 0 3681 1180 2825 24 2899 31918

sky 60 2 0 177 35411 0 7385 338 0 0 1831961 0 833 0 252 0 0 1876419
soil 129 0 143 13908 0 5543 616 9 14448 0 0 1988 2422 5859 2612 42 1073 48792

steel 203 1515 15994 43258 1404 8467 13444 5884 1695 45 2196 266 92005 11231 16008 816 1927 216358
stone 674 103 40437 87831 0 291 1734 8890 15307 0 0 2228 3799 36771 28604 1446 271 228386
tile 371 516 154222 369229 189 105 6648 4398 6946 0 40 166 3758 11202 153320 9704 469 721283

water 0 0 725 1307 0 0 1171 219 3545 0 0 182 3617 366 2468 2550 2667 18817
wood 2070 1639 603 15552 0 0 12831 5280 1795 0 0 0 5194 332 7081 151 4741 57269
Total 7784 16118 1743977 3253215 692621 124260 562610 143770 260379 263 1847226 8164 200048 115453 523642 16709 48224 9564463

Predicted labels

Tr
ue

la
be

ls

background aluminium asphalt brick cloud concrete foliage glass grass living sky soil steel stone tile water wood Total
background 1109 59 4370 16370 30 536 720 12915 633 27 305 26 8865 2103 2429 39 348 50884
aluminium 1361 4910 6 4236 55 1077 3231 1146 7383 45 474 0 12037 442 1320 101 1663 39487

asphalt 39 45 864378 749485 0 14914 1196 676 6656 0 0 1848 13186 11166 43535 102 551 1707777
brick 453 3275 217433 2471518 4438 8965 7507 12356 6708 0 0 1053 16980 13797 164060 101 5488 2934132
cloud 76 0 0 10496 644208 0 0 30 0 0 8830 0 1076 0 0 0 0 664716

concrete 210 0 24 4186 0 87189 766 181 155 0 514 0 3621 106 3312 0 421 100685
foliage 655 1469 535 4784 123 412 423995 3754 30626 164 9 154 4475 1541 2829 28 2155 477708

glass 4145 2251 614 18703 105 140 2716 99387 199 158 946 0 11092 381 3060 261 1569 145727
grass 901 3 22093 12004 0 1727 27494 359 154941 0 0 922 8356 6688 7198 542 877 244105
living 1472 119 947 11541 0 0 1760 4563 155 1262 0 0 4382 1259 3286 0 1172 31918

sky 0 18 0 383 124126 0 7143 1557 0 0 1742850 0 305 0 37 0 0 1876419
soil 158 0 1438 19708 0 0 261 33 8158 0 0 7540 1697 5912 3292 192 403 48792

steel 2173 2427 9381 51213 2680 10353 9947 8113 8948 127 3283 1196 84469 7683 10317 320 3728 216358
stone 503 315 31080 123230 252 63 2099 4583 8818 0 0 103 2353 34104 20526 133 224 228386
tile 495 474 125451 390647 1 852 9847 4313 9991 43 208 591 5334 13213 158548 109 1166 721283

water 85 77 2072 140 0 0 571 135 5004 0 0 0 3043 43 1047 6482 118 18817
wood 1419 287 43 21636 2 148 9935 5532 1897 3 224 136 5608 3 1601 229 8566 57269
Total 15254 15729 1279865 3910280 776020 126376 509188 159633 250272 1829 1757643 13569 186879 98441 426397 8639 28449 9564463

Confusion matrices

0.0 0.2 0.4 0.6 0.8 1.0

Recall
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mAUC: 0.346

brick, AUC: 0.556

sky, AUC: 0.975

asphalt, AUC: 0.521

tile, AUC: 0.084

foliage, AUC: 0.892

cloud, AUC: 0.979

grass, AUC: 0.519

glass, AUC: 0.388

stone, AUC: 0.097

steel, AUC: 0.306

concrete, AUC: 0.718

water, AUC: 0.016

wood, AUC: 0.016

soil, AUC: 0.007

aluminium, AUC: 0.007

living, AUC: 0.003

background, AUC: 0.001
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0.4
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mAUC: 0.377

brick, AUC: 0.623

sky, AUC: 0.928

asphalt, AUC: 0.429

tile, AUC: 0.101

foliage, AUC: 0.861

cloud, AUC: 0.915

grass, AUC: 0.508

glass, AUC: 0.552

stone, AUC: 0.075

steel, AUC: 0.276

concrete, AUC: 0.842

water, AUC: 0.286

wood, AUC: 0.080

soil, AUC: 0.122

aluminium, AUC: 0.034

living, AUC: 0.025

background, AUC: 0.002

Precision-recall curves, legend sorted by class size. Top: RGB, bottom: RGBD
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G.19 learning rate 0.01 • -5 small classes • class-weighted cross entropy loss • no pretrain-
ing, second run

RGB
mIoU 0.383
fIoU 0.563

accuracy 0.702
micro-averaged precision/recall/F1 0.699

macro-averaged precision 0.520
macro-averaged recall 0.498

macro-averaged F1 0.499
weighted macro-averaged precision 0.681

weighted macro-averaged recall 0.701
weighted macro-averaged F1 0.688

RGBD
0.388
0.583
0.723
0.720
0.540
0.496
0.498
0.700
0.717
0.704

Performance overview

No pretraining
RGB RGBD

IoU Precision Recall IoU Precision Recall
Overall 0.383 0.520 0.498 0.388 0.540 0.496

Weighted overall 0.563 0.681 0.701 0.583 0.700 0.717
brick 0.515 0.654 0.709 0.552 0.659 0.773
sky 0.939 0.990 0.947 0.948 0.994 0.953

asphalt 0.461 0.631 0.631 0.470 0.679 0.605
tile 0.152 0.303 0.233 0.191 0.387 0.274

foliage 0.690 0.730 0.927 0.733 0.781 0.922
cloud 0.844 0.871 0.965 0.873 0.890 0.977
grass 0.444 0.576 0.659 0.439 0.550 0.684
glass 0.386 0.498 0.633 0.420 0.562 0.625
stone 0.109 0.282 0.151 0.104 0.268 0.146
steel 0.307 0.510 0.434 0.298 0.484 0.438

concrete 0.640 0.752 0.812 0.676 0.753 0.868
water 0.217 0.472 0.287 0.090 0.272 0.118
wood 0.080 0.240 0.108 0.119 0.309 0.163
soil 0.131 0.274 0.201 0.094 0.354 0.114

aluminium 0.217 0.543 0.266 0.195 0.414 0.269
living 0.000 0.002 0.000 0.006 0.290 0.007

background 0.004 0.022 0.005 0.008 0.040 0.010

Difference with pretrainng
RGB RGBD

IoU Precision Recall IoU Precision Recall
-0.282 -0.279 -0.272 -0.271 -0.259 0.000
-0.257 -0.211 -0.195 -0.236 -0.190 -0.180
-0.312 -0.240 -0.207 -0.276 -0.235 -0.144
-0.046 -0.008 -0.040 -0.034 -0.003 -0.031
-0.383 -0.262 -0.308 -0.386 -0.226 -0.335
-0.455 -0.515 -0.469 -0.403 -0.396 -0.437
-0.164 -0.189 +0.004 -0.130 -0.128 -0.022
-0.127 -0.105 -0.029 -0.092 -0.079 -0.019
-0.247 -0.217 -0.183 -0.264 -0.258 -0.160
-0.327 -0.292 -0.246 -0.246 -0.178 -0.244
-0.249 -0.319 -0.318 -0.247 -0.366 -0.294
-0.270 -0.191 -0.332 -0.290 -0.231 -0.329
-0.163 -0.180 -0.040 -0.103 -0.182 +0.045
-0.456 -0.439 -0.433 -0.542 -0.554 -0.612
-0.347 -0.439 -0.428 -0.385 -0.405 -0.468
-0.317 -0.359 -0.403 -0.170 -0.080 -0.289
-0.181 +0.018 -0.355 -0.341 -0.306 -0.409
-0.469 -0.720 -0.573 -0.432 -0.518 -0.482
-0.047 -0.122 -0.068 -0.017 -0.054 -0.024

Per-class results
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Predicted labels
Tr

ue
la

be
ls

background aluminium asphalt brick cloud concrete foliage glass grass living sky soil steel stone tile water wood Total
background 274 4775 4852 15150 54 517 1226 13087 139 12 194 0 5220 2232 1720 90 1342 50884
aluminium 917 10522 96 5136 11 907 3960 1431 2635 20 74 0 10134 259 965 281 2139 39487

asphalt 336 0 1078346 495513 0 14654 3618 6726 21963 0 0 4007 1312 23558 56675 363 706 1707777
brick 5141 434 446383 2080890 2390 4514 34495 27514 17331 16 0 8322 12604 26118 257673 951 9356 2934132
cloud 0 0 0 7448 641688 0 0 175 0 0 11559 0 2124 0 1722 0 0 664716

concrete 120 0 0 8385 0 81809 1962 376 0 0 520 0 3389 0 3703 0 421 100685
foliage 112 19 18 4744 114 207 442922 637 19051 0 1 348 4938 461 2955 9 1172 477708

glass 1087 112 19 15180 0 0 10673 92255 0 280 1935 0 18027 570 4307 13 1269 145727
grass 61 46 4250 17898 0 206 33524 1289 161050 0 0 1883 8835 5627 8882 424 130 244105
living 838 1 60 12475 0 0 5219 5768 58 1 0 13 4401 1058 623 0 1403 31918

sky 0 0 0 24 90777 0 7590 42 0 0 1777252 0 734 0 0 0 0 1876419
soil 0 0 8846 5277 0 16 807 0 12758 0 0 9830 1828 5904 2880 0 646 48792

steel 723 2868 7292 49520 1522 4268 19729 10601 3559 51 1990 1114 94084 7837 8314 2083 803 216358
stone 1593 90 41100 83910 0 930 3396 8003 18454 0 0 1419 3730 34647 30630 466 18 228386
tile 20 235 116323 363272 0 731 18084 8228 15833 98 0 8512 6341 13791 168391 1218 206 721283

water 803 17 0 112 0 0 4858 87 4627 0 0 0 1809 182 824 5408 90 18817
wood 315 252 73 15299 0 0 14205 8764 1866 0 0 299 4612 563 4663 133 6225 57269
Total 12340 19371 1707658 3180233 736556 108759 606268 184983 279324 478 1793525 35747 184122 122807 554927 11439 25926 9564463

Predicted labels

Tr
ue

la
be

ls

background aluminium asphalt brick cloud concrete foliage glass grass living sky soil steel stone tile water wood Total
background 529 3301 4915 14848 230 12 4402 4582 374 0 100 24 11326 1624 4072 6 539 50884
aluminium 1150 10635 0 3963 4 818 4911 3272 1284 0 37 0 8890 280 768 59 3416 39487

asphalt 624 0 1033974 533453 0 12549 4734 1469 30903 0 0 2631 9143 22046 55948 94 209 1707777
brick 2105 1909 339237 2269617 353 725 32021 20994 20023 0 40 1519 14607 30079 194073 133 6697 2934132
cloud 4 0 0 5647 649814 0 0 99 0 0 7655 0 1055 0 442 0 0 664716

concrete 0 1273 0 5583 0 87401 640 0 468 0 179 0 3012 0 2125 0 4 100685
foliage 255 652 50 5536 121 208 440528 1603 17040 0 2 353 4353 2733 1998 1163 1113 477708

glass 172 2058 111 23127 0 75 8673 91091 58 102 0 0 16381 130 3034 0 715 145727
grass 208 107 4567 24295 0 2443 25622 1231 167044 34 0 2235 6017 5545 3383 679 695 244105
living 1417 136 33 11533 0 0 489 5803 66 224 0 0 8012 1378 1093 98 1636 31918

sky 65 136 0 809 76849 0 6822 650 0 0 1789097 0 762 0 0 0 1229 1876419
soil 58 1 1172 7517 0 0 1201 38 20315 0 0 5601 429 5488 6700 63 209 48792

steel 1835 4191 10428 39971 1950 10018 9522 11157 4230 392 1727 363 94808 7332 14380 2243 1811 216358
stone 2476 6 37066 105450 0 965 3085 5721 13925 0 0 1492 2524 33356 21519 669 132 228386
tile 1010 312 89428 373603 81 593 6530 8200 22963 0 13 946 4235 14021 198241 745 362 721283

water 737 178 745 81 0 0 427 115 3738 0 0 0 5974 256 2154 2230 2182 18817
wood 314 732 8 18766 0 113 14144 5995 1017 18 0 618 4013 173 1979 0 9379 57269
Total 12959 25627 1521734 3443799 729402 115920 563751 162020 303448 770 1798850 15782 195541 124441 511909 8182 30328 9564463

Confusion matrices
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mAUC: 0.383

brick, AUC: 0.547

sky, AUC: 0.946

asphalt, AUC: 0.516

tile, AUC: 0.099

foliage, AUC: 0.890

cloud, AUC: 0.959

grass, AUC: 0.546

glass, AUC: 0.458

stone, AUC: 0.067

steel, AUC: 0.350

concrete, AUC: 0.793

water, AUC: 0.181

wood, AUC: 0.032

soil, AUC: 0.075

aluminium, AUC: 0.218

living, AUC: 0.000

background, AUC: 0.000
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mAUC: 0.381

brick, AUC: 0.612

sky, AUC: 0.953

asphalt, AUC: 0.545

tile, AUC: 0.165

foliage, AUC: 0.895

cloud, AUC: 0.967

grass, AUC: 0.549

glass, AUC: 0.518

stone, AUC: 0.066

steel, AUC: 0.319

concrete, AUC: 0.836

water, AUC: 0.036

wood, AUC: 0.081

soil, AUC: 0.036

aluminium, AUC: 0.129

living, AUC: 0.004

background, AUC: 0.000

Precision-recall curves, legend sorted by class size. Top: RGB, bottom: RGBD
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G.20 learning rate 0.1 • -5 small classes • class-weighted cross entropy loss • no pretraining

RGB
mIoU 0.357
fIoU 0.581

accuracy 0.727
micro-averaged precision/recall/F1 0.724

macro-averaged precision 0.513
macro-averaged recall 0.463

macro-averaged F1 0.454
weighted macro-averaged precision 0.705

weighted macro-averaged recall 0.718
weighted macro-averaged F1 0.703

RGBD
0.315
0.499
0.656
0.653
0.469
0.422
0.407
0.644
0.641
0.620

Performance overview

No pretraining
RGB RGBD

IoU Precision Recall IoU Precision Recall
Overall 0.357 0.513 0.463 0.315 0.469 0.422

Weighted overall 0.581 0.705 0.718 0.499 0.644 0.641
brick 0.584 0.664 0.829 0.480 0.549 0.794

sky 0.909 0.995 0.913 0.932 0.994 0.937
asphalt 0.486 0.717 0.601 0.269 0.664 0.312

tile 0.195 0.407 0.273 0.159 0.289 0.261
foliage 0.752 0.807 0.916 0.655 0.727 0.869

cloud 0.792 0.803 0.983 0.815 0.854 0.945
grass 0.514 0.684 0.675 0.285 0.451 0.437
glass 0.346 0.411 0.687 0.406 0.456 0.789
stone 0.081 0.329 0.098 0.031 0.236 0.035
steel 0.256 0.439 0.380 0.255 0.606 0.306

concrete 0.628 0.725 0.824 0.608 0.667 0.872
water 0.060 0.177 0.083 0.138 0.355 0.184
wood 0.041 0.197 0.049 0.006 0.066 0.007
soil 0.015 0.087 0.019 0.000 0.000 0.000

aluminium 0.060 0.260 0.073 0.006 0.121 0.006
living 0.000 — 0.000 0.000 — 0.000

background 0.001 0.016 0.002 0.001 0.009 0.002

Difference with pretraining
RGB RGBD

IoU Precision Recall IoU Precision Recall
-0.308 -0.286 -0.307 -0.344 -0.330 0.000
-0.239 -0.187 -0.178 -0.320 -0.246 -0.256
-0.243 -0.230 -0.087 -0.348 -0.345 -0.123
-0.076 -0.003 -0.074 -0.050 -0.003 -0.047
-0.358 -0.176 -0.338 -0.587 -0.241 -0.628
-0.412 -0.411 -0.429 -0.435 -0.494 -0.450
-0.102 -0.112 -0.007 -0.208 -0.182 -0.075
-0.179 -0.173 -0.011 -0.150 -0.115 -0.051
-0.177 -0.109 -0.167 -0.418 -0.357 -0.407
-0.367 -0.379 -0.192 -0.260 -0.284 -0.080
-0.277 -0.272 -0.371 -0.320 -0.398 -0.405
-0.321 -0.262 -0.386 -0.333 -0.109 -0.461
-0.175 -0.207 -0.028 -0.171 -0.268 +0.049
-0.613 -0.734 -0.637 -0.494 -0.471 -0.546
-0.386 -0.482 -0.487 -0.498 -0.648 -0.624
-0.433 -0.546 -0.585 -0.264 -0.434 -0.403
-0.338 -0.265 -0.548 -0.530 -0.599 -0.672
-0.469 — -0.573 -0.438 — -0.489
-0.050 -0.128 -0.071 -0.024 -0.085 -0.032

Per-class results
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Predicted labels
Tr

ue
la

be
ls

background aluminium asphalt brick cloud concrete foliage glass grass living sky soil steel stone tile water wood Total
background 106 538 4478 13777 322 194 598 14289 142 0 144 230 9531 1584 4370 0 581 50884
aluminium 135 2910 0 5935 108 498 4250 8277 448 0 151 59 15007 175 1426 20 88 39487

asphalt 652 80 1027376 598690 0 370 0 1780 19857 0 0 1051 2377 10942 44597 0 5 1707777
brick 2308 873 276963 2433829 2779 9320 10337 32232 3830 0 91 265 9116 4282 144045 24 3838 2934132
cloud 0 0 0 213 654057 0 0 827 0 0 4249 0 2404 0 2966 0 0 664716

concrete 0 0 0 10204 69 82976 0 120 0 0 64 0 4533 0 2692 0 27 100685
foliage 0 664 0 3453 27 2050 437912 12189 11828 0 6 318 5858 1100 1055 326 922 477708

glass 273 3027 387 15568 528 18 2611 100232 0 0 677 0 17990 1000 2427 0 989 145727
grass 0 84 402 9503 0 1678 28713 3916 164816 0 0 3421 8262 9960 11091 455 1804 244105
living 1831 263 175 12249 0 0 3045 5984 46 0 0 0 6981 414 779 0 151 31918

sky 0 58 91 0 154654 0 4193 477 0 0 1713729 0 3159 0 58 0 0 1876419
soil 0 0 618 27252 0 0 2249 1298 10606 0 0 934 2355 1714 1074 0 692 48792

steel 27 1861 5702 34818 1659 14018 5258 29322 1830 0 1619 257 82364 3572 28703 4955 393 216358
stone 177 29 24164 120970 0 54 1425 1483 15231 0 0 1638 2999 22466 37341 394 15 228386
tile 694 430 91117 356975 2 1462 26003 13568 8162 0 113 2430 10201 10773 197170 774 1409 721283

water 35 0 0 1928 0 0 3525 5197 2786 0 0 109 2374 0 721 1568 574 18817
wood 22 369 25 19713 0 1755 12365 12581 1184 0 0 18 2083 262 3757 313 2822 57269
Total 6260 11186 1431498 3665077 814205 114393 542484 243772 240766 0 1720843 10730 187594 68244 484272 8829 14310 9564463

Predicted labels

Tr
ue

la
be

ls

background aluminium asphalt brick cloud concrete foliage glass grass living sky soil steel stone tile water wood Total
background 116 84 1252 21160 526 834 3587 14627 69 0 251 0 3929 1694 2728 0 27 50884
aluminium 0 270 29 10383 444 1291 5311 6475 3922 0 309 12 7406 84 2059 37 1455 39487

asphalt 2355 0 533074 1053105 0 2703 6030 1503 26818 0 0 33 1362 3450 77086 258 0 1707777
brick 5020 260 162141 2329983 2084 15251 36934 37642 15601 0 558 0 2678 6933 318340 437 270 2934132
cloud 0 0 14073 13766 628782 0 0 426 0 0 6412 0 1013 0 241 3 0 664716

concrete 0 222 0 6189 129 87896 2456 294 0 0 0 0 1629 0 1660 0 210 100685
foliage 0 19 0 35678 234 93 415166 4927 15045 0 4 258 4218 594 819 244 409 477708

glass 0 178 0 18575 0 0 3325 115041 18 0 294 0 4383 1342 2413 0 158 145727
grass 6 0 2641 75031 0 2742 36892 1127 106829 0 0 16 7545 3973 5545 51 1707 244105
living 993 0 98 10699 0 0 4089 11737 956 0 0 0 1006 585 1462 65 228 31918

sky 3311 0 4366 543 100676 0 1 8374 0 0 1758655 0 478 0 0 15 0 1876419
soil 0 0 0 24260 0 71 996 0 18038 0 0 0 870 684 3332 107 434 48792

steel 0 677 881 72175 2580 16415 9200 25777 4301 0 1370 0 66284 1604 10529 4434 131 216358
stone 287 0 16122 160737 0 998 3736 1487 4514 0 0 0 837 8014 30901 360 393 228386
tile 103 0 67242 387280 0 3020 21298 12978 32909 0 0 0 3000 4053 188895 132 373 721283

water 0 0 0 150 0 265 1078 8 6890 0 0 0 654 737 5535 3464 36 18817
wood 0 513 0 21271 0 42 20615 9679 765 0 0 0 2071 75 1696 124 418 57269
Total 12191 2223 801919 4240985 735455 131621 570714 252102 236675 0 1767853 319 109363 33822 653241 9731 6249 9564463

Confusion matrices
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mAUC: 0.376
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asphalt, AUC: 0.552
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foliage, AUC: 0.889

cloud, AUC: 0.893

grass, AUC: 0.607

glass, AUC: 0.486

stone, AUC: 0.042

steel, AUC: 0.283

concrete, AUC: 0.790

water, AUC: 0.009

wood, AUC: 0.008

soil, AUC: 0.001

aluminium, AUC: 0.025

living, AUC: -

background, AUC: 0.000
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mAUC: 0.340

brick, AUC: 0.492

sky, AUC: 0.932

asphalt, AUC: 0.222

tile, AUC: 0.097

foliage, AUC: 0.833

cloud, AUC: 0.913

grass, AUC: 0.283

glass, AUC: 0.639

stone, AUC: 0.012

steel, AUC: 0.251

concrete, AUC: 0.842

water, AUC: 0.068

wood, AUC: 0.000

soil, AUC: 0.000

aluminium, AUC: 0.001

living, AUC: -

background, AUC: 0.000

Precision-recall curves, legend sorted by class size. Top: RGB, bottom: RGBD
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G.21 learning rate 0.01 • -5 small classes • class-weighted cross entropy loss • bilinear
depth downscaling

RGB
mIoU 0.665
fIoU 0.820

accuracy 0.900
micro-averaged precision/recall/F1 0.897

macro-averaged precision 0.799
macro-averaged recall 0.770

macro-averaged F1 0.781
weighted macro-averaged precision 0.892

weighted macro-averaged recall 0.896
weighted macro-averaged F1 0.893

RGBD
0.646
0.819
0.899
0.896
0.788
0.747
0.760
0.890
0.896
0.892

Performance overview. The RGB metrics are from Appendix G.10, our baseline.

RGB RGBD RGBD - RGB
IoU Precision Recall IoU Precision Recall IoU Precision Recall

Overall 0.665 0.799 0.770 0.647 0.788 0.748 -0.018 -0.011 -0.022
Weighted overall 0.820 0.892 0.896 0.820 0.891 0.896 -0.000 -0.001 0.000

brick 0.827 0.894 0.916 0.825 0.893 0.916 -0.002 -0.001 -0.000
sky 0.985 0.998 0.987 0.986 0.999 0.987 +0.001 +0.001 -0.000

asphalt 0.844 0.893 0.939 0.854 0.902 0.941 +0.010 +0.009 +0.002
tile 0.607 0.818 0.702 0.602 0.809 0.702 -0.005 -0.009 -0.000

foliage 0.854 0.919 0.923 0.858 0.917 0.930 +0.004 -0.002 +0.007
cloud 0.971 0.976 0.994 0.971 0.975 0.995 -0.000 -0.001 +0.001
grass 0.691 0.793 0.842 0.685 0.778 0.851 -0.006 -0.015 +0.009
glass 0.713 0.790 0.879 0.746 0.822 0.889 +0.033 +0.032 +0.010
stone 0.358 0.601 0.469 0.335 0.552 0.460 -0.023 -0.049 -0.009
steel 0.577 0.701 0.766 0.562 0.698 0.742 -0.015 -0.003 -0.024

concrete 0.803 0.932 0.852 0.823 0.931 0.876 +0.020 -0.001 +0.024
water 0.673 0.911 0.720 0.638 0.898 0.688 -0.035 -0.013 -0.032
wood 0.427 0.679 0.536 0.502 0.680 0.658 +0.075 +0.001 +0.122
soil 0.448 0.633 0.604 0.310 0.604 0.388 -0.138 -0.029 -0.216

aluminium 0.398 0.525 0.621 0.374 0.489 0.613 -0.024 -0.036 -0.008
living 0.469 0.722 0.573 0.283 0.663 0.331 -0.186 -0.059 -0.242

background 0.051 0.144 0.073 0.100 0.289 0.132 +0.049 +0.145 +0.059

Per-class results. The RGB metrics are from Appendix G.10, our baseline.
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Predicted labels
Tr

ue
la

be
ls

background aluminium asphalt brick cloud concrete foliage glass grass living sky soil steel stone tile water wood Total
background 3760 11172 2294 8468 275 11 284 5459 71 715 136 0 9918 3829 3774 53 665 50884
aluminium 1514 24560 2 641 142 460 842 690 63 720 19 0 8384 8 365 0 1077 39487

asphalt 895 2 1604133 81415 0 0 28 0 3708 0 0 0 917 9343 7280 0 56 1707777
brick 3862 913 140081 2689008 0 385 782 7421 1142 1589 327 1108 12993 15456 57193 0 1872 2934132
cloud 0 74 0 961 661384 0 8 25 0 0 1696 0 447 0 121 0 0 664716

concrete 0 381 0 2572 0 85845 0 882 13 0 77 0 7996 586 1099 0 1234 100685
foliage 1142 1217 137 3438 141 849 441161 542 20067 239 58 634 4628 1458 197 397 1403 477708

glass 1179 3070 156 4179 0 40 81 128132 38 1155 0 0 5691 5 716 0 1285 145727
grass 666 18 5082 2955 0 717 12025 0 205678 0 0 5248 3926 4172 3030 6 582 244105
living 1097 215 33 1196 0 0 50 5726 14 18296 0 0 1111 221 3939 0 20 31918

sky 127 0 0 7 15269 0 7698 19 0 0 1852721 0 60 0 518 0 0 1876419
soil 52 0 3172 2822 0 178 836 0 6673 44 0 29506 834 2228 1000 0 1447 48792

steel 3003 3650 1287 14303 146 3229 2114 6424 2296 1713 185 170 165750 4444 4618 100 2926 216358
stone 4885 154 18333 55883 0 335 910 56 4857 802 0 1991 4062 107319 27984 706 109 228386
tile 2196 915 20490 130659 0 7 6111 691 13059 34 116 7885 4021 28188 506718 24 169 721283

water 210 159 0 0 0 0 1683 421 416 0 0 0 365 297 34 13556 1676 18817
wood 1501 215 47 6431 0 0 5226 5568 972 1 0 25 5313 795 427 24 30724 57269
Total 26089 46715 1795247 3004938 677357 92056 479839 162056 259067 25308 1855335 46567 236416 178349 619013 14866 45245 9564463

Predicted labels

Tr
ue

la
be

ls

background aluminium asphalt brick cloud concrete foliage glass grass living sky soil steel stone tile water wood Total
background 6739 10178 4538 8842 350 65 238 5177 160 344 39 9 7520 3019 2663 0 1003 50884
aluminium 1074 24219 67 1492 27 573 904 644 108 413 0 0 8353 40 128 0 1445 39487

asphalt 43 0 1607274 76549 0 0 87 0 3059 0 0 36 240 12253 7982 0 254 1707777
brick 3459 3068 126053 2687646 350 2480 2920 8934 3038 235 63 1637 11973 20316 57959 39 3962 2934132
cloud 46 0 0 908 661457 0 13 0 0 0 1282 0 1010 0 0 0 0 664716

concrete 0 1297 0 3434 0 88192 0 776 0 0 292 0 4965 59 1670 0 0 100685
foliage 216 900 698 2839 490 225 444371 512 14587 171 35 7 5168 1489 1678 312 4010 477708

glass 140 1292 12 4385 0 102 250 129603 78 931 35 0 7432 177 481 0 809 145727
grass 856 21 2121 5883 0 1515 10097 53 207702 260 0 2815 4832 6018 1347 456 129 244105
living 2216 428 294 6462 0 0 976 5965 36 10564 0 2 2121 367 2152 0 335 31918

sky 0 13 0 0 14970 52 7681 0 0 0 1851891 0 312 0 1500 0 0 1876419
soil 13 0 4789 2143 0 52 66 0 15193 0 0 18946 2162 1810 2422 0 1196 48792

steel 2303 7116 3821 21103 57 1411 2069 4650 1741 1587 98 0 160444 2517 4712 1 2728 216358
stone 4744 32 18379 54727 0 31 359 98 5181 994 0 1832 3652 105082 32805 276 194 228386
tile 554 172 13902 126736 0 0 10932 461 15108 60 81 5996 3935 36862 506136 87 261 721283

water 48 640 0 193 0 0 2218 0 258 320 0 0 261 255 265 12942 1417 18817
wood 855 148 252 7475 562 0 1278 834 710 47 0 86 5379 219 1456 301 37667 57269
Total 23306 49524 1782200 3010817 678263 94698 484459 157707 266959 15926 1853816 31366 229759 190483 625356 14414 55410 9564463
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brick, AUC: 0.890
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grass, AUC: 0.789
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stone, AUC: 0.391

steel, AUC: 0.717
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water, AUC: 0.663

background, AUC: 0.029

wood, AUC: 0.490

soil, AUC: 0.451
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stone, AUC: 0.356
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wood, AUC: 0.566

soil, AUC: 0.344
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living, AUC: 0.291

background, AUC: 0.048

Precision-recall curves, legend sorted by class size. Top: RGB, bottom: RGBD
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G.22 learning rate 0.01 • only discriminatory classes • class-weighted cross entropy loss •
no background

RGB
mIoU 0.488
fIoU 0.592

accuracy 0.993
micro-averaged precision/recall/F1 0.561

macro-averaged precision 0.494
macro-averaged recall 0.961

macro-averaged F1 0.631
weighted macro-averaged precision 0.595

weighted macro-averaged recall 0.990
weighted macro-averaged F1 0.734

RGBD
0.473
0.589
0.993
0.561
0.479
0.945
0.614
0.592
0.989
0.732

Performance overview.

RGB RGBD RGBD - RGB
IoU Precision Recall IoU Precision Recall IoU Precision Recall

Overall 0.489 0.495 0.961 0.473 0.479 0.945 -0.016 -0.016 -0.016
Weighted overall 0.592 0.595 0.990 0.589 0.592 0.989 -0.003 -0.003 -0.001

brick 0.817 0.998 0.818 0.814 0.998 0.816 -0.003 0.000 -0.002
sky 0.737 0.739 0.996 0.733 0.735 0.995 -0.004 -0.004 -0.001

foliage 0.661 0.669 0.983 0.653 0.659 0.987 -0.008 -0.010 +0.004
concrete 0.201 0.203 0.951 0.203 0.205 0.944 +0.002 +0.002 -0.007

water 0.345 0.362 0.880 0.274 0.294 0.802 -0.071 -0.068 -0.078

Per-class results.

Predicted labels

Tr
ue

la
be

ls

brick concrete foliage sky water Total
brick 5803672 376185 223527 658452 28998 7090834

concrete 4478 95797 31 379 0 100685
foliage 7012 856 469654 0 186 477708

sky 22 1 7709 1868687 0 1876419
water 1162 0 1093 0 16562 18817

Total 5816346 472839 702014 2527518 45746 9564463

Predicted labels
brick concrete foliage sky water Total
5783664 366384 232696 672529 35561 7090834

4192 95124 1257 112 0 100685
4703 367 471925 48 665 477708
121 0 7691 1868607 0 1876419

1382 0 2343 0 15092 18817
5794062 461875 715912 2541296 51318 9564463

Confusion matrices. Left: RGB, right: RGBD
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concrete, AUC: 0.592

water, AUC: 0.701

brick, AUC: 0.738

Precision-recall curves, legend sorted by class size. Top: RGB, bottom: RGBD
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G.23 learning rate 0.01 • instance-as-material • 3800 images • class-weighted cross entropy
loss

RGB
mIoU 0.506
fIoU 0.818

accuracy 0.888
micro-averaged precision/recall/F1 0.887

macro-averaged precision 0.669
macro-averaged recall 0.633

macro-averaged F1 0.618
weighted macro-averaged precision 0.882

weighted macro-averaged recall 0.898
weighted macro-averaged F1 0.889

RGBD
0.502
0.820
0.888
0.888
0.675
0.622
0.612
0.882
0.899
0.889

Performance overview.

RGB RGBD RGBD - RGB
IoU Precision Recall IoU Precision Recall IoU Precision Recall

Overall 0.506 0.669 0.633 0.502 0.675 0.622 -0.004 +0.006 -0.011
Weighted overall 0.818 0.882 0.898 0.820 0.882 0.899 +0.002 0.000 +0.001

asphalt 0.787 0.834 0.933 0.793 0.836 0.939 +0.006 +0.002 +0.006
foliage 0.894 0.943 0.945 0.891 0.937 0.948 -0.003 -0.006 +0.003

sky 0.972 0.985 0.986 0.973 0.983 0.989 +0.001 -0.002 +0.003
brick 0.805 0.909 0.875 0.819 0.922 0.880 +0.014 +0.013 +0.005
other 0.916 0.950 0.962 0.923 0.959 0.961 +0.007 +0.009 -0.001
steel 0.659 0.795 0.794 0.680 0.805 0.814 +0.021 +0.010 +0.020
tile 0.494 0.718 0.613 0.457 0.703 0.566 -0.037 -0.015 -0.047

grass 0.641 0.718 0.857 0.617 0.722 0.808 -0.024 +0.004 -0.049
stone 0.336 0.550 0.464 0.331 0.505 0.490 -0.005 -0.045 +0.026
soil 0.307 0.570 0.400 0.320 0.566 0.425 +0.013 -0.004 +0.025

concrete 0.000 0.000 — 0.000 0.000 — 0.000 0.000 —
plastic 0.300 0.632 0.364 0.177 0.459 0.223 -0.123 -0.173 -0.141
water 0.294 0.476 0.435 0.200 0.685 0.220 -0.094 +0.209 -0.215
iron 0.109 0.382 0.132 0.199 0.444 0.265 +0.090 +0.062 +0.133

living 0.298 0.539 0.400 0.298 0.590 0.376 0.000 +0.051 -0.024
aluminium 0.291 0.700 0.333 0.352 0.686 0.419 +0.061 -0.014 +0.086

Per-class results.
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Predicted labels

Tr
ue

la
be

ls

aluminium asphalt brick concrete foliage grass iron living other plastic sky soil steel stone tile water Total
aluminium 14743 140 20401 0 6085 216 0 233 410 3154 923 93 5724 119 135 0 52376

asphalt 75 4898245 122787 0 1762 3519 504 354 16554 299 0 2242 10702 29793 161462 0 5248298
brick 1998 441075 5910626 5842 59791 9385 838 3584 7838 9769 37369 2445 92705 23332 139626 1439 6747662

concrete 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
foliage 602 2329 76099 0 3013059 22405 30 155 93 756 34954 3582 26187 3325 2854 934 3187364

grass 0 1603 3132 0 19852 251385 237 0 1 0 0 6521 3694 3608 2841 403 293277
iron 0 8827 1326 0 84 87 2686 0 0 162 0 113 406 4869 1716 0 20276

living 8 1097 5863 0 254 0 0 13808 1327 1282 0 0 10296 219 354 0 34508
other 0 15250 10390 0 1010 133 0 109 867784 771 95 334 3255 1299 1172 0 901602

plastic 986 2396 38664 54 4194 983 106 20 286 46798 1878 433 24199 138 7187 0 128322
sky 84 2 26034 2153 40830 0 0 0 0 1036 5560724 0 3798 27 0 0 5634688

soil 0 3120 3871 0 8606 34759 0 48 105 3 0 44054 5650 4181 5498 96 109991
steel 1280 14754 135415 47 26839 8254 1010 5147 4173 7480 8786 2573 958431 11425 20683 51 1206348
stone 701 71285 34102 0 3786 8899 748 401 7246 1187 299 2822 25511 199414 73019 242 429662
tile 21 410644 109667 0 4693 10025 858 1712 7375 1269 0 12013 32241 80294 1066690 868 1738370
water 0 0 848 0 1795 61 0 0 6 1 0 9 1581 0 439 3664 8404

Total 20498 5870767 6499225 8096 3192640 350111 7017 25571 913198 73967 5645028 77234 1204380 362043 1483676 7697 25741148

Tr
ue

la
be

ls

aluminium asphalt brick concrete foliage grass iron living other plastic sky soil steel stone tile water Total
aluminium 18518 71 16060 0 5565 220 0 18 329 3672 962 105 6644 80 132 0 52376

asphalt 3 4929819 81002 0 2344 3654 2440 294 17522 407 0 1297 14671 36601 158244 0 5248298
brick 3079 382374 5941026 29456 67325 9021 556 1928 4683 12300 37885 4936 64721 33239 154584 549 6747662

concrete 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
foliage 1241 1465 67623 1044 3022923 16295 0 108 304 413 41059 4259 26096 1456 3062 16 3187364
grass 0 2742 1477 0 27531 237211 299 0 2 0 0 13841 3283 3783 2945 163 293277
iron 0 6873 1676 0 664 137 5391 0 0 37 0 59 155 3409 1875 0 20276

living 10 866 8432 0 522 1 0 13004 986 1717 0 0 8264 383 323 0 34508
other 0 16746 9824 0 1035 156 13 1 866632 1570 118 324 2834 893 1456 0 901602

plastic 453 4310 40523 0 4507 638 23 42 116 28715 1734 715 39010 1842 5694 0 128322
sky 193 0 17582 306 33805 0 0 0 11 892 5575788 0 6103 8 0 0 5634688

soil 0 2060 2303 0 13457 29114 30 37 66 17 0 46771 5808 4677 5651 0 109991
steel 2701 11078 109298 2976 34199 8955 787 3911 4018 8735 8669 627 982695 8962 18737 0 1206348
stone 112 68617 31747 0 3159 11231 1331 234 3381 2253 469 2325 31533 210555 62715 0 429662
tile 18 467988 112015 0 6340 11127 1267 2450 5621 1598 0 7367 27380 110496 984578 125 1738370
water 31 135 1187 3 2779 563 0 0 0 148 0 0 1462 0 240 1856 8404

Total 26359 5895144 6441775 33785 3226155 328323 12137 22027 903671 62474 5666684 82626 1220659 416384 1400236 2709 25741148

Confusion matrices. Left: RGB, right: RGBD
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