
Visualising Software Dynamics through
Architecture Mining

Master Thesis Business Informatics

Carlijn Quik
6151000

Department of Information and Computing Sciences
Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands

c.j.m.quik@students.uu.nl
26-09-2019

Primary Supervisor
Dr. J. Hage

J.Hage@uu.nl

Secondary Supervisor
Dr. ir. J.M.E.M. van der Werf
J.M.E.M.vanderWerf@uu.nl

External Supervisor
Lucas Jellema

lucas.jellema@amis.nl

Abstract

Techniques that aim at reconstructing the design or architecture of a system, such
as software architecture reconstruction, mainly focus on functional aspects of a system
and tend to ignore quality attributes [1]. Approaches that do take quality attributes into
account emphasise the reconstruction of architectural artefacts, rather than compliance
checking of quality attributes during the operational phase of the software [2]. This is
why run-time software execution data is most suitable to evaluate and evolve software
architecture.

When reconstructing software architecture based on data extracted from a running
system, the amount of extracted data can become overwhelming (i.e. dozens of gigabytes)
and difficult to comprehend. The field of visual analytics builds better and more effective
ways to understand and analyse such large datasets [3]. Despite this, there is a lack of
research that studies how dynamic system data can be used to visualise architectural
information effectively. Moreover, the gap between research and practice in the field of
software architecture visualisation is emphasised by several researchers [4, 5, 6].

We present Architecture Miner, a web-based interactive dashboard that makes it pos-
sible to extract architectural intelligence from large-scale Java applications. It provides
an overview of both run-time structure and metrics given a scenario chosen by the user.
The hierarchical interactions between class objects in Java systems are represented using
a node-link diagram that is enhanced with the Group-In-A-Box Layout for Multi-faceted
Analysis [7]. It groups nodes that represent class objects into clusters based on their
(design-time) package depth. The treemap space filling technique is used to size boxes
that contain nodes according to the size of the corresponding cluster. The chronological
order of calls is shown using a bar chart with their start time on the x-axes, and their
duration on the y-axes.

We applied Architecture Miner to the acceptance environment of a Java application
with 225,000 LOC, 1,921 classes and 348 packages. The application is being developed
in the Netherlands by a DevOps team consisting of four DevOps Engineers, a Product
Owner and a Software Architect. To depict which architectural information would be of
value to them, we interviewed the DevOps Engineer with the most experience with the
system, the Architect and the Product Owner. After prioritising the requirements through
a survey with twenty participants, including the complete DevOps team, five questions
were formulated that the dashboard should provide an answer to.

The required data is collected using AJPOLog to instrument the system (AJPOLog
stands for AspectJ Partially Ordered Logging tool). AJPOLog captures software behaviour
by logging method calls including their caller and callee, and the (design-time) locations
of the classes’ package from which the caller and callee class objects are instantiated [8].
This enables us to partially extract the path that method calls take through the system,
as well as the corresponding method execution times and static location.

It is not possible to capture the functional features and quality attributes of a complex
system in a single view that is understandable by, and of value to, all of its stakeholders
[9]. For different viewpoints and perspectives in software architecture, different visu-
alisations, formalisms, and abstractions are required. To scope this research, we have
focused on architectural information that is valuable to the stakeholders of the system
analysed in our case study.

Based on the validation results we can conclude that, within the context of the case
study, the designed visualisations are effective in providing valuable architectural infor-
mation to the system’s stakeholders. We consider our results to be a good indication that
the insights extracted with Architecture Miner can be valuable within multiple use cases
in different contexts.

Keywords— Software Architecture Visualisation, Trace Visualisation, Software Archi-
tecture Reconstruction, Group-In-A-Box Layout, Network Analysis

1

Acknowledgements

First of all, I would like to thank Jurriaan Hage for always being willing to help out and
supporting me in the decisions I have made. Next, I would like to thank Jan Martijn van
der Werf for his everlasting and inspiring enthusiasm for the topic and his solid advise, in
particular his advise to take the Information Visualisation course at Técnico Lisboa – which
turned out to be a key source of knowledge to conduct this research.

Special thanks goes out to Lucas Jellema for our many challenging and fruitful dis-
cussions and for providing me with a platform to connect with and learn from experts in
the field. It has been of tremendous value. Last but not least, I would like to thank the
members of the DevOps team: Jeffrey Resodikromo, Rosanna Denis, Michael van Gastel,
Cees-Pieter Franx, Marcos Klaver, and Nico Klasens. Their willingness to help out and de-
bate each visualisation and its value has been essential to successfully apply the research
in practice.

2

Contents

Page

1 Introduction 6
1.1 Problem statement . 6
1.2 Research contribution . 6

2 Research Approach 7
2.1 Research method selection . 7
2.2 Problem investigation . 8
2.3 Treatment design . 9
2.4 Treatment validation . 9

3 Architecture Mining 10
3.1 Grasping software architecture . 10
3.2 Software architecture reconstruction . 11
3.3 Architecture mining framework . 13
3.4 Collecting software execution data . 15
3.5 Conclusions . 18

4 Visualisation Techniques and Tools 20
4.1 Types of visualisation techniques . 20
4.2 Characteristics of techniques and tools to consider 22
4.3 Designing and evaluating information visualisations 24
4.4 Conclusions . 27

5 Stakeholder Requirements 28
5.1 Purposes of Software Architecture visualisation 28
5.2 Project Manager Requirements . 29
5.3 Software Architect Requirements . 30
5.4 Developer Requirements . 31
5.5 Conclusions . 32

6 Case Study Interview Results 33
6.1 System Under Study . 33
6.2 Stakeholder Roles and Tasks . 33
6.3 Sources of information about the system . 37
6.4 Information needs . 37
6.5 Current visualisation tools and techniques . 38
6.6 Conclusions . 40

7 Case Study Survey Results 41
7.1 Subjects . 41
7.2 Ranking of information needs . 41
7.3 Reasons for Ranking . 42
7.4 Conclusions . 44

8 Idiom Selection 46
8.1 Task identification . 46
8.2 Relating tasks to data . 46
8.3 Visualising structure . 47
8.4 Visualising metrics . 50
8.5 Conclusions . 50

9 Presenting Architecture Miner 51
9.1 Solution overview . 51

3

9.2 Interaction . 53

10 Dashboard Implementation 62
10.1 Data collection . 62
10.2 Extracting the required information . 63
10.3 Visualisation framework selection . 63
10.4 Data processing . 63
10.5 Back-end design . 64

11 Dashboard Verification: Running Example 65
11.1 Which part(s) of the system contain calls that take relatively longer than the

other calls to execute? . 65
11.2 The calls that take a long time: how often are those called? 66
11.3 The calls that take a long time: which path do those follow through the system? 66
11.4 Which classes are called most often (and therefore important)? 66
11.5 What are the run-time dependencies of the system on (third-party) libraries? . 66

12 Dashboard Validation 67
12.1 Participants . 67
12.2 Selected scenarios . 67
12.3 Interviews . 68
12.4 Focus group . 72
12.5 Conclusions . 73

13 Discussion and Limitations 75
13.1 Instrumentation . 75
13.2 External validity . 75
13.3 Effectiveness of the used techniques . 75
13.4 Defining sub-calls . 76

14 Conclusions 76

15 Future Work 79
15.1 Proving effectiveness . 79
15.2 Architecture Conformance Checking . 79
15.3 Scalability . 79
15.4 Completing the hierarchy of dynamic views . 80
15.5 Adding functionality . 80

References 81

List of Definitions 86

List of Figures 87

List of Tables 89

A Appendix 1: Interview protocol 90

A Appendix 2: Interview Quotes 92
A.1 DevOps Engineer Quotes (13/03/2019) . 92
A.2 Software Architect Quotes (05/04/2019) . 95
A.3 Product Owner Quotes (05/04/2019) .101

A Appendix 3: Survey 106

A Appendix 4: Instrumenting Java applications with AjpoLog 109

4

A JSON Structure 111

A Appendix 5: Running the visualisation 112

A Appendix 6: Dashboard Design Enlarged 113

A Appendix 7: Validation Protocol: Interviews 114

A Appendix 8: Validation Protocol: Focus Group 117

5

1 Introduction

Since a system’s software architecture captures its most significant properties and design
constraints, changes and additions made to a system that violate its architectural princi-
ples can degrade its performance and shorten its useful lifetime [10]. However, the rapidly
changing stakeholder requirements and business conditions of a system, and with that the
potential frequency and scale of software adaptations, make it difficult to control such ar-
chitecture erosion. As this happens, architectural documentation often does not stay up to
date (if present in the first place) and the people working on the system change over time
[11]. At the same time, the architecture of a system cannot be re-established using solely
the source code of a system, since it does not explicitly specify it [12].

Van der Werf and Brinkkemper (2017) [1] argue that techniques that aim at recon-
structing the design or architecture of a system, such as software architecture reconstruc-
tion (SAR), mainly focus on functional aspects of a system and tend to ignore quality at-
tributes. Approaches that do take quality attributes into account emphasise the reconstruc-
tion of architectural artefacts, rather than compliance checking of quality attributes during
the operational phase of the software [2]. This is why run-time software execution data
(SED) is most suitable to evaluate and evolve software architecture. SED are a combina-
tion of static context data and behaviour data, and can be collected by applying static and
behaviour data extractors to a running system.

The amount of extracted information can, however, become overwhelming (i.e. dozens
of gigabytes) and difficult to comprehend. The field of visual analytics builds better and
more effective ways to understand and analyse such large datasets [3]. The human brain
processes images 60,000 times faster than text, and 90 percent of information transmitted
to the brain is visual [13]. The purpose of this research is to explore how visualising the
combination of static and dynamic system data can provide valuable architectural informa-
tion to large-scale system’s stakeholders. The main research question therefore is:
RQ: Which visualisation(s) of large-scale system’s software dynamics are effective
in providing valuable architectural information to its stakeholders?

1.1 Problem statement

When reconstructing software architecture based on data extracted from a running system,
the amount of extracted data can become overwhelming (i.e. dozens of gigabytes) and
difficult to comprehend. The field of visual analytics builds better and more effective ways
to understand and analyse such large datasets [3]. Despite this, there is a lack of research
that studies how the combination of static and dynamic system data can be used to visualise
architectural information effectively. Moreover, the gap between research and practice in
the software architecture visualisation (SAV) field is emphasised by several authors [4, 5, 6].
There is a need to not only consider design principles but also human factors to ensure that
techniques and tools satisfy the audience’s needs [4].

1.2 Research contribution

This research contributes to the field of software architecture by visualising both static
and dynamic data of a real-world large-scale software system. Moreover, an application
of SAV in practice will be performed, while taking into account stakeholder requirements.
Fundamental to this research is the combination of best practices of the fields of software
architecture and visual analytics, and additions to the knowledge bases of both.

6

2 Research Approach

The methods used for this research are structured according to the design science frame-
work by Roel Wieringa [14]. An overview of the research approach is shown in Figure 1. In
this chapter, the selection of research methods as shown in this figure is explained in sec-
tion 2.1. In order to provide an answer to the main research question, several supporting
research questions are defined which are set forth per research phase in sections 2.2, 2.3,
and 2.4.

Figure 1: Research approach.

2.1 Research method selection

To begin with, a literature review is conducted to gain understanding of the current state-
of-the-art in the several fields that are relevant for this research. In addition, since the gap
between research and practice in the field of software architecture visualisation (SAV) is
emphasised by several authors [4, 5, 6], interviews are conducted with the stakeholders
of the system to which the visualisations will be applied in the treatment validation phase.
Though this data has poor external validity [15], it will give some insight into how SAV is
currently used at the company, how the envisioned visualisations can be valuable to the sys-
tem’s stakeholders, and a means to validate the treatment design. Both the interviewees
and the interview questions are chosen based on the literature review. The interview proto-
col is provided in Appendix A. The interviews are held in the Dutch language and therefore
the transcripts are too. The quotes that are used in this report are translated to English
and can be found in Appendices A.1, A.2, and A.3.

Based on the interviews, questions are identified that the stakeholders have about the
system. Subsequently, these questions are prioritised by the system’s stakeholders through
a survey. The chosen prioritisation technique is ranking, which is based on an ordinal scale,
but the requirements are ranked without ties in rank [16]. This means that the most impor-
tant requirement/question is ranked as 1 and the least important as n (for n requirements,
10 in this case). To see the relative difference between the requirements, and simultane-
ously align the views of the different subjects, the average priority of each requirement will
be calculated. This technique is chosen because it ensures that the stakeholders choose
which requirement is more important than another instead of putting equal emphasis on all
of them. Compared to a technique in which the stakeholders can distribute a certain amount
of points over the requirements, the results are also more representative of the group of
subjects as a whole, because one subject putting a requirement in first place which others
put in tenth place will not skew the results much. Besides sending the survey to the stake-
holders of the system the visualisations will be applied to, the survey is also sent to other
IT experts within the same company. The aim of this is to provide a broader perspective
on how the visualisations can provide valuable insights to system stakeholders. The survey
can be found in Appendix A.

7

2.2 Problem investigation

The problem investigation phase is meant to explore the domain of the research project
and to learn more about the problem that the researchers aim to solve. The part of the
report that describes this phase is structured using two frameworks. The first used is
Maletic’s framework, which presents a space of possible visualisation systems with respect
to software engineering tasks [17]. This framework consists of five dimensions which are
enumerated below along with the corresponding chapter(s) in this report:

• Target - What data source should be represented? (chapter 3)

• Representation - How should it be represented? (chapter 4)

• Medium - Where should the visualisation be represented? (chapter 4)

• Tasks - Why is the visualisation needed? (chapter 5 and 6 and 7)

• Audience - Who will use the visualisation? (chapter 5 and 6 and 7)

The second framework is the three-part analysis framework for a visualisation in-
stance: why is the task being performed, what data is shown in the views, and how is
the visualisation idiom constructed in terms of design choices [18]. This is shown in the
figure below and the reason why the “tasks” and “audience”, and “representation” and
“medium” parts of Maletic’s framework are combined into one sub-research question each.
These sub-research questions are explained next.

Figure 2: Three-part analysis framework for a visualisation instance [18].

SQ 1. How can architectural information be extracted from a running software
system?
It is evident that before data can be visualised, it needs to be collected. Ideally, the visuali-
sations should be applicable to various systems in different domains. It is important to gain
an understanding of the state-of-the-art in architecture mining to select the right data and
corresponding collection methods. This sub-research question will be answered in chapter
3, while simultaneously answering the question within Maletic’s framework: “What is the
data source to represent?".

SQ 2. Which questions should visualisations of software dynamics be able to an-
swer in order to be valuable to system stakeholders?
Software architecture plays an important role in numerous aspects of software develop-
ment, such as understanding, reuse, and management [19]. Therefore, there is an abun-
dance of tasks that visualisations can (potentially) support. It is important to identify the
tasks that this research should focus on. Since the tasks that can be supported by SAV
depend highly on the audience of the visualisations, chapter 5.1 describes the possible
stakeholders of SAV and their needs as found in the literature, and chapter 6 summarises
the most important results of the interviews with stakeholders of the system under study. In
this way, both the “why?" and “who?" questions as defined by Maletic should be answered.

8

SQ 3. How are visualisation techniques and supporting tools currently used to
represent software architecture?
Answering this research question will give insight into the current state-of-the-art in SAV
and corresponding tools. Additionally, best practices in the field of information visualisation
will be discussed in order to provide a reference against which the quality of the treatment
design can be evaluated. This analysis can be found in Chapter 4, which will answer the
“how?" and “where?" questions as prescribed by Maletic.

2.3 Treatment design

Based on the results of the problem investigation phase, a dashboard will be designed and
programmed. To do this, the most suitable visualisation techniques will be selected, and de-
cisions will be made about which data structures the visualisations will be able to support,
how the visualisations are connected to one another, and how the user can interact with
them. In this phase, two sub-research questions are answered which are explained next.

SQ 4. Which visualisations can answer the questions identified in SQ 2?
Visualisation design can be broken down into what-why-how questions that have data-task-
idiom answers [18]. It is therefore expected that one visualisation will not be sufficient to
support all the tasks that are needed to answer the questions that will be identified while
answering SQ 2. This research question will help select the right existing visualisation
techniques, and reveal whether the design of new ones is needed. While designing the vi-
sualisations, the dashboard design and how the user interacts with the visualisations in it
should also be taken into account.

2.4 Treatment validation

To verify whether the dashboard provides valuable insights to the stakeholders of the sys-
tem it is based on, a case study will be conducted. The visualisations will be applied to a
’real-world’ Java application. The stakeholders of the real-world system will be interviewed
again to assess whether the dashboard aids in answering the research questions, whether
they perceive it as easy to use and useful. Additionally, a focus group will be held with
all interviewees to discuss the most important results. This should answer the following
sub-research question:

SQ 5. What are the strengths and weaknesses of the created dashboard?
The expected outcome of this is knowledge regarding the value of the dashboard to the
stakeholders of the system it will be applied to. Additionally, the improvements that should
be made to the visualisations in the future can be identified.

9

3 Architecture Mining

This section aims at answering the question:

SQ 1. How can architectural information be extracted from a running software
system?

It starts with an explanation of software architecture and how it can be represented (section
3.1). After that, the different sources of information that can be used as an input to recon-
struct software architecture are set forth (3.2). Next, the architecture mining framework
and the use of SED are explained (3.3). The last section contains an analysis of existing
tools that can be used to collect SED (3.4).

3.1 Grasping software architecture

According to Garlan [19], software architecture plays an important role in at least the fol-
lowing six aspects of software development: understanding, reuse, construction, evolution,
analysis and management. Knowledge about the architecture of the system is therefore
vital to fulfill its purpose. Software architecture is defined as follows:

Definition 1 (Software architecture). Software architecture is the set of structures needed
to reason about the system, which comprises software elements, relations among them, and
properties of both [9].

Rozanski and Woods (2011) [9] identify two types of structures: static and dynamic.
Static structures define a system’s internal design-time elements and their arrangement,
while dynamic structures define the system’s run-time elements and their interactions.

3.1.1 Architectural views

To portray the elements of the architecture that are relevant, architectural views can be
used as presented below in definition 2. To construct a view, a viewpoint can be used which
is described by definition 3.

Definition 2 (View). A view is a representation of a set of system elements and relations
associated with them [9].

Definition 3 (Viewpoint). A viewpoint is a collection of patterns, templates, and conven-
tions for constructing one type of view. It defines the stakeholders whose concerns are re-
flected in the viewpoint and the guidelines, principles, and template models for constructing
its views [9].

The principle behind this is that it is not possible to capture the functional features
and quality attributes of a complex system in a single model that is comprehensible for, and
of value to, its stakeholders. Therefore, it is more effective to represent a system using a
set of interrelated views.

The seven core viewpoints for information systems architecture are shown in Figure 3
[9]. The context viewpoint over-arches the other viewpoints and describes the relationships,
dependencies, and interactions between the system and its environment. The environment
in this context comprises the people, systems, and other external entities with which the
system interacts. The functional, information, and concurrency viewpoints characterise the
fundamental organization of the system. Next, the development viewpoint supports the
system’s development process. Lastly, the deployment and operational viewpoints depict
the system in its live environment.

The relative importance of each viewpoint depends on the type of information sys-
tem. For example, for decision support systems, the context, information, and deployment
viewpoints are the most important, whereas for a high-volume website the functional, de-
velopment, and deployment views have the highest priority.

10

Figure 3: Viewpoint groupings [9].

3.1.2 Architectural perspectives

Although the combination of views can form a representation of the whole architecture,
they are considered to be largely independent of one another. Quality attributes of a sys-
tem, however, affect multiple or all of the aforementioned views, and can therefore not be
considered as a separate view. Quality attributes are defined in definition 4, and need to be
integrated into the existing views of a system to address the relevant concerns.

Definition 4 (Quality attribute). Quality attributes are measurable or testable properties of
a system that are used to indicate how well the system satisfies the needs of its stakeholders
[20].

Rozanski and Woods (2011) [9] call a specific set of quality attributes an architectural
perspective as described in definition 5. Examples of architectural perspectives are: avail-
ability, evolution, internationalisation, performance and scalability, security, and usability.

Definition 5 (Perspective). An architectural perspective is a collection of architectural
activities, tactics, and guidelines that are used to ensure that a system exhibits a particular
set of related quality properties, that require consideration across a number of the system’s
architectural views [9].

3.2 Software architecture reconstruction

Since a system’s software architecture captures its most significant properties and design
constraints, changes and additions made to a system that violate its architectural princi-
ples can degrade its performance and shorten its useful lifetime [10]. However, the rapidly
changing stakeholder requirements and business conditions of a system, and with that the
potential frequency and scale of software adaptations, make it difficult to control such ar-
chitecture erosion. In other words, the realised architecture (see definition 6) drifts away
from the intended architecture (definition 7). As this happens, architectural documentation
often does not stay up to date (if present in the first place) and the people working with
the system change over time [11]. At the same time, the architecture of a system cannot be
re-established using solely the source code of a system, since it does not explicitly specify
it [12].

Definition 6 (Realised architecture). The realised architecture refers to the architecture
that is derived from source code.

Definition 7 (Intended architecture). The intended architecture refers to the architecture
that exists in human minds or in the software documentation.

11

The aim of the field of Software Architecture Reconstruction (SAR) is to re-establish
software abstractions. It can therefore be defined as:

Definition 8 (Software architecture reconstruction). Software architecture reconstruction
(SAR) is a reverse engineering approach that aims at reconstructing viable architectural
views of a software application [12].

3.2.1 SAR state-of-the-art

Ducasse and Pollet (2009) [12] present the state-of-the-art in SAR approaches. An overview
of their taxonomy is shown in Figure 4. They divide the field along five axes: goals, pro-
cesses, inputs, techniques, and outputs. Since this chapter aims at answering the question
“How can architectural information be extracted from a running software system?”, the
input axis is explained next.

Figure 4: A process-oriented taxonomy for SAR [12].

3.2.2 SAR inputs

Inputs of SAR can be both architectural and non-architectural. Architectural inputs can
be viewpoints which are explained in section 3.1, and styles, which represent recurrent
architectural situations such as data flow:

Definition 9 (Architectural style). An architectural style is a vocabulary of components and
connector types, and a set of constraints on how they can be combined [21].

However, to conduct meaningful SAR, non-architectural inputs are of vital importance.
Reconstructing an architecture from only architectural inputs would mean to merely rewrite
it. Non-architectural inputs for SAR as shown in Figure 4 are:

• Source code: Can be analysed as text, but mostly the meta-data of the code is used.

• Textual information: An example is comments in the source code, but these are
mostly of poor quality [11].

• Dynamic information: Static information is often insufficient as it only provides lim-
ited insight into the run-time behaviour of a system. Dynamic information is extracted
from a system execution and obtaining it is technically challenging.

12

• Physical organization: This refers to the source code’s storage structure, which
is almost always done in a tree structure. This structure can be used to identify
connected code.

• Human organization: The structure of a system often reflects the communication
structure of the organization [22].

• Historical information: This can be the version history of a project or other docu-
ments indicating how the system evolved over time. It is rarely used as an input for
SAR, and only in (co-)evolution approaches.

• Human expertise: Although not as trustworthy as other inputs, it is essential for
SAR. Examples are knowledge of business goals and design constraints.

3.3 Architecture mining framework

Van der Werf and Brinkkemper (2017) [1] propose the notion of Architecture Mining to close
the gap between software architecture and the realised software system. They argue that
techniques that aim at reconstructing the design, or even the architecture of a system such
as SAR, mainly focus on functional aspects of a system and tend to ignore quality attributes.
Approaches that do take quality attributes into account emphasise the reconstruction of
architectural artefacts, rather than compliance checking of quality attributes during the
operational phase of the software [2].

Many quality attributes are better assessed at run-time when the software system is
in operation. By doing so, the architect gains insight into how the software is actually being
used, which can serve to shape the next releases of the software product. For example,
frequently used features can be grouped differently to improve overall performance.

This is why Van der Werf and Brinkkemper (2017) [1] advocate the use of run-time SED
to assess the quality of software architecture. In this way, the realised software system can
be monitored and analysed using data analytics techniques, which aids in making a step
forward towards continuous architecting. Architecture mining can therefore be defined as:

Definition 10 (Architecture mining). Architecture mining is the collection, analysis, and
interpretation of software execution data to foster architecture evaluation and evolution
[1].

3.3.1 Conceptual overview

The conceptual overview of Architecture Mining is shown in Figure 5. It is a combination
of the Software Operation Knowledge Framework, which is a method to drive the evolution
of software products based on operation knowledge [23], with insights from process mining
(see definition 11). It encompasses five main activities to support the architecture process
which are listed below and will be explained next.

1. Software Architecture Reconstruction;

2. Architecture Conformance Checking;

3. Runtime Analyzer;

4. Evolution Analyzer;

5. Architecture Improvement Recommender.

Definition 11 (Process mining). Process mining is a technique that enables extracting
knowledge by analysing event logs of information systems [24].

13

Figure 5: Architecture Mining Framework.

In the framework shown in Figure 5, the architecture is shown as a set of structures
which are represented by architectural views, and quality attributes that define quality
constraints on the set of structures [20]. The black arrows indicate dependencies between
the different elements, whereas the red arrows indicate which steps can benefit from SED.
It should be noted that this does not imply a (fixed) order between the phases. The intended
and realised architecture (see definitions 7 and 6) are separated to represent the notion of
architectural erosion which is explained in section 3.2. System realisation encompasses
many different artefacts, of which most are discussed in section 3.2.2, such as source code
and documentation.

The intended architecture is used to derive the software artefacts from. These soft-
ware artefacts are then used as an input for Software Architecture Reconstruction (activity
1, see definition 8) and Architecture Conformance Checking (ACC, activity 2, see definition
12). SAR results in a realised architecture, which together with the intended architec-
ture and ACC results in a set of deviations from the intended architecture. The Evolution
Analyzer (4) analyzes how the realised architecture drifted apart from the intended archi-
tecture, which results in a set of changes with respect to the intended architecture. Once
the software artefacts are deployed and the system is operational in some environment,
it starts collecting SED. Based on this data, the Runtime Analyzer (3) analyzes to which
degree quality attributes specified in the intended architecture are satisfied. The output of
the Runtime Analyzer is a set of metrics.

The derived realised architecture, metrics, deviations and changes are input for the
Architecture Improvement Recommender (5), which ultimately results in an improved in-
tended architecture.

Definition 12 (Architecture conformance checking). Architecture conformance checking
(ACC) is a measure for testing to which degree the realised architecture conforms to the
intended software architecture [25].

14

3.4 Collecting software execution data

SED are logs that describe the operation of the software system [2]. Ipskamp (2018) [26]
defines an information flow model to show how SED can be extracted from running systems,
and converted into a suitable format in which it can be stored. This model is shown in Figure
6. The extraction of static and behaviour data as shown in this figure are explained below.

Figure 6: Information flow model of SED [26].

3.4.1 Extracting static data

To extract the required static data a Static Data Extractor can be used to obtain context
data about the source code. Most available Static Data Extractors can be applied to multiple
technologies. Examples of Static Data Extractors are Doxygen [27] and Sonargraph [28,
29]. Doxygen is a tool for generating documentation from source code which includes
code structure and supports the programming languages: C++, C, Objective-C, C#, PHP,
Java, and Python. Sonargraph is a static code analyzer that allows for monitoring software
systems for technical quality, and enforcing rules regarding software architecture, metrics,
and other aspects. Sonargraph supports Java, C#, Python 3, and C/C++.

3.4.2 Extracting behaviour data

Most software systems log events raised by the system [30]. These events can be at system
or application level. Examples of system level events are warning, error or informational
events. Examples of application level events are the completion and start of a functional
element in the system. However, not all systems produce sufficient logging data, and there-
fore need to be enhanced to support the level of logging that is required [24]. When doing
so, the architect should already consider during system design how quality attributes can
be measured and which data needs to be collected [1]. Besides this, the use of Behaviour
Data Extractor tools also depends highly on the system under analysis and its underlying
technologies, version, and setup. As definition 13 shows, the behaviour of the system is the
result of how the user interacts with it.

Definition 13 (Software behaviour). Software behaviour is the order of actions performed
given a certain scenario i.e. a use case with all its context [26].

15

The most common way of extracting software behaviour is to record a set of method or
function calls by the user (the words method and function are interchangeable and depend
on the programming language being used). This involves defining an execution scenario so
that only the parts of interest of the software system are captured [31]. Some approaches
for recording software behaviour record only the original call or method entry, which is
the moment a method is called, while other approaches record both method entry and exit.
Method exit is recorded either when the method returns or when it stops without returning
anything. As described by Cornelissen (2009) [31], the benefits of dynamic analysis are
precision and the use of a goal-oriented strategy. However, limitations are the inherent
incompleteness (which is also true for software testing), difficulty of determining scenarios,
scalability due to large amounts of data, and the observer effect i.e. the phenomenon in
which software acts differently when under observation.

From a historical perspective, dynamic analysis was used for debugging, testing, and
profiling [31]. The purpose of testing is the verification of correctness and profiling is used
to measure (and optimise) performance. Debugging is not only used for locating faults, but
also to understand the program under analysis. The use of dynamic analysis for program
comprehension, as software became increasingly large and complex, thus originates from
the discipline of debugging.

Many log analysis tools exist which can process terabytes of log data per day. Exam-
ples of this are Logentries [32], Loggly [33] and LogicMonitor [34]. However, these tools
mostly log performance statistics such as server load and error rates. These measurements,
though usable in conformance checking, offer little architectural insight.

3.4.3 Logging architectural information

The conceptual model of SED shown in Figure 7 can be used to validate whether the struc-
tural components of software can be derived from the gathered logging data. The model
is divided into three parts: architectural, software artefacts and run-time. The first two
represent structural elements and the latter represents the run-time aspects of software.

Figure 7: Conceptual model of SED for Architecture Mining [1].

16

Ritmeester (2018) [35] studies existing logging methods and accompanying tools to
test whether they capture enough relevant information to be used for SAR (3.2). The tested
tools are: Java Flight Recorder (JFR) for the collection of data in combination with Java Mis-
sion Control for its analysis, InTrace, and Java Platform Debugger Architecture (JPDA). The
quality of the logs is determined based on five quality levels as proposed by Van der Aalst
[24]. To reach the highest quality level, an event log has to be trustworthy, complete, and
include well-defined events. Also, the events should be recorded in an automatic, system-
atic, reliable, and safe manner. Lastly, the events should have clear semantics and consider
privacy and security adequately. In his study, Ritmeester (2018) [35] classifies JFR as level
2/3 (where level 1 is the highest quality level), and InTrace and JPDA as level 2. He notes
that JPDA contains information on threads and method entry and exit location, which makes
it the most useful tool for SAR out of the three.

An example of a log created by Ritmeester (2018) [35] with JPDA is shown in Figure
8. The log captures a run of the program under study, and in this run several methods/func-
tions are called and executed such as “Hello.count” and “Hello.getname”. These method
calls can occur through different events with different types (e.g. entry and exit), which in
this case are method entry or exit. A method call is performed on a process which has one
or more threads (see definition 14), in this case: “Thread-0” and “Thread-1”.

Definition 14 (Thread). A thread of execution is the smallest sequence of programmed
instructions that can be managed independently by a scheduler, which is typically a part of
the operating system [36].

Figure 8: Log created with Java Platform Debugger [35].

As can be seen in Figure 7, the connection between the run-time elements and soft-
ware artefacts is the call of a method. In this case, the line on which the method is posi-
tioned within the source code is also shown: “@Hello: 20”. The file in which the source
code is stored belongs to a project, of which neither are shown in this log. The organization
of methods/functions depends on the programming language used, which is why a generic
container data type is shown in the model. A container can for example be a class, package,
or namespace in which the method is defined. In the log this information is captured when
the method is called: “Hello” in “Hello.count” is the container. The information that is miss-
ing in this log are the callers of the methods, i.e. the log shows which method is called, but
not what called the method. Method and class/object hierarchy of a system can therefore
not be determined based on this log.

17

De Jong (2019) [8] fills this gap by creating a non-intrusive tool that outputs logs con-
sisting of method calls with their callers and callees registered. The tool is called AjpoLog,
which stands for AspectJ Partially Ordered Logging, as it uses AspectJ to instrument sys-
tems [37]. As an example, a piece of a log created by AjpoLog is shown in Figure 9. The
first two columns show the start and end time of the method being called, from which the
duration of the method execution can be derived. In the third column the thread on which
the method is executed is shown. The fourth and fifth column show the identifiers of the
calling object and the object that contains the method being called. The last column shows
the fully qualified name of the method being called. To give an example, on line 1 of the
log shown in Figure 9, the class “Band” (caller) calls the method “getName()” (message),
which is part of the class “Song” (callee).

Figure 9: Piece of a log created with AjpoLog (after conversion to csv format) [8].

3.4.4 Merging static and behaviour data

When both static context data and behaviour data are extracted from a system, these need
to be merged by a Data Merger to allow for efficient storage and interfacing. To do this,
both datasets need to have one or more attributes through which they can be linked. In
object-oriented programming, the fully qualified name of a function is often a good property
to link on. If this name is not unique, it can be combined with the file path of the source file
to create a unique identifier for the function.

3.5 Conclusions

Software architecture plays an important role in various aspects of software development
[19]. Rozanski and Woods (2011) [9] argue that to portray the elements of the architecture
that are relevant, architectural views can be used. These are representations of a set of
system elements and relations associated with them. Within these views, architectural
perspectives can be integrated to ensure that a system exhibits a particular set of related
quality properties.

The field of SAR aims at reconstructing architectural views of software when the in-
tended architecture (see definition 7) has drifted from the realised architecture (definition
6) due to architectural erosion. Ducasse and Pollet (2009) [12] present the state-of-the-art
in SAR approaches. In their framework, both architectural inputs such as viewpoints, and
non-architectural inputs such as source code are important.

18

Van der Werf and Brinkkemper (2017) [1] argue that techniques that aim at recon-
structing the design or architecture of a system such as SAR, mainly focus on functional
aspects of a system and tend to ignore quality attributes. Approaches that do take quality
attributes into account emphasise the reconstruction of architectural artefacts, rather than
compliance checking of quality attributes during the operational phase of the software [2].
This is why run-time SED are most suitable to evaluate and evolve software architecture.

SED are a combination of static context data and behaviour data, and can be collected
by applying static and behaviour data extractors on a running system. A variety of static
data extractor tools can be used to obtain the needed context data. However, of the studied
dynamic data extractor tools, only one is suitable for architecture mining: AjpoLog. This
is because this is the only tool studied so far that captures not only the method being
called (callee), but also the calling object (caller). To merge static and behaviour data
into SED, in object-oriented programming, the fully qualified name of functions can be
used. These conclusions answer the sub-research question: SQ 1. How can architectural
information be extracted from a running software system?

19

4 Visualisation Techniques and Tools

This chapter aims at answering the sub-research question:

SQ 3. How are visualisation techniques and supporting tools currently used to rep-
resent software architecture and its evolution over time?

First the four types of SAV techniques as identified by Shahin, Liang, and Babar (2014)
[5] are explained. Second, characteristics of techniques and tools that should be considered
when designing them are set forth. Next, the techniques and tools that different types of
stakeholders of the system require are described. Last, best practices found in the field of
information visualisation are summarised.

4.1 Types of visualisation techniques

Graduleva and Adibi Dahaj (2017) [38] interviewed project managers, architects, and de-
velopers to identify their current usage of SAV techniques and corresponding tools. They
found out that most interviewees used UML diagrams to support their work. For architects
this were mainly component, state machine and sequence diagrams, and for developers
class diagrams. Additionally, architects used a few graph-based diagrams when UML failed
to visualise a high level of architecture.

Shahin, Liang, and Babar (2014) [5] systematically review and classify the visualisa-
tion techniques and associated tools reported for software architecture, and how they have
been assessed and applied. They identify four types of visualisation techniques used in
the architecting process: graph-based, notation-based, matrix-based, and metaphor-based
visualisation. These four types of techniques are now described using several examples.

4.1.1 Graph-based techniques

Of the four techniques, graph-based visualisation is most popular in industry [5]. Graph-
based visualisations use nodes and links to represent the structural relationships between
architecture elements. This puts more emphasis on the overall properties of a structure
than on the types of nodes. Two examples of this are shown in Figure 10. In geometry,
nodes and links are called vertices and edges. Throughout this report vertices and edges
will be referred to as nodes and links, because this is the jargon used in the literature about
visualisation techniques that this report refers to. For clarity, all four definitions from the
Oxford dictionary are provided below.

Figure 10: Examples of graph-based techniques [39, 40].

20

Definition 15 (Vertex/node). In geometry, a vertex is a meeting point of two lines that form
an angle [41]. A node is a point in a network or diagram at which lines or pathways intersect
or branch [42].

Definition 16 (Edge/link). The outside limit of an object, area, or surface [43]. In comput-
ing, a link is a code or instruction which connects one part of a program or an element in a
list to another. [44].

4.1.2 Notation-based techniques

This category of visualisations is the second-most popular [5]. It is a combination of three
modeling techniques: unified modeling language (UML), systems modeling language (SysML),
and specific notation-based visualisation. UML is an industry standard and general-purpose
visual modeling language to specify, design, construct, and document software-intensive
systems [45]. SysML is built on UML and reuses and extends it for system engineering
applications, including software, hardware, and information systems [46]. Notation-based
visualisations represent the relationship between and role of elements in a structure using
various notations. The name and type/label of the nodes and links are therefore of major im-
portance in contrast to graph-based notations in which the overall properties of a structure
are more important.

Figure 11: Examples of notation-based techniques [47, 48].

4.1.3 Matrix-based techniques

Matrix visualisation is a graphical technique that can simultaneously explore the associa-
tions of up to thousands of subjects, variables, and their interactions, without first reducing
dimension [49]. Matrix-based visualisation can support a graph-based visualisation by giv-
ing complementary information when the graph is large or dense [5]. Only 8 % of the studies
reviewed by Shahin et. al used this technique. Two examples of matrix-based techniques
are shown in Figure 12.

4.1.4 Metaphor-based techniques

This category uses familiar physical world contexts (such as cities) to visualise SA entities
and their relationships [52]. There is an increasing tendency to utilize real metaphors as
opposed to abstract ones as a means to amplify cognition. However, opinions are divided
when it comes to the effectiveness of these visualisations. According to Balzer et. al (2004)
[53], the use of metaphors makes the visualisation process particularly intuitive and ef-
fective. On the other hand, Carpendale et. al (2008) [4] state that there is no empirical
evidence of the added benefits of these real metaphors, and thus it is yet to be scientifically
justified. Examples of this technique are shown in Figure 13.

21

Figure 12: Examples of matrix-based techniques [50, 51].

Figure 13: Examples of metaphor-based techniques [54, 55].

4.2 Characteristics of techniques and tools to consider

4.2.1 Multiplicity of view

Carpendale et. al (2008) [4] identify two schools of thought regarding multiplicity of view.
The first school asserts that any visualisation should support multiple views of the archi-
tecture, at different levels of detail, to satisfy the audience’s different interests. The other
school of thought claims that a carefully designed single view of the visualisation might
be more effective and meaningful in conveying multiple aspects of the architecture than a
multiple view approach. They think a single view can provide different levels of detail, in
the sense that the user can draw their own mental maps based upon it.

As mentioned before, Gallagher et. al (2008) [56] derive and construct a qualitative
framework, with seven key areas and 31 features, for the assessment of SAV tools. The
authors claim multiple views of software architecture are a requirement for a good visuali-
sation tool. Additionally, a representation of the viewpoint definition should be displayed.

4.2.2 Dimensionality

Munzner (2014) [18] states that 3D visualisation should not be used without the right
justification. When the user’s task involves understanding the shape of inherently three-
dimensional structures, the benefits of 3D certainly outweigh the costs. In that case, of
which an example is studying human anatomy, designers can use the many existing inter-
action idioms to mitigate the costs of using 3D. In all other contexts, a careful justification
is needed.

Munzner also notes that most tasks involving abstract data do not benefit from 3D. For
example, a study tested subjects’ ability to quickly locate web page images, and showed that

22

this ability deteriorated as their freedom to use the third dimension increased. This was true
for both real-world physical models as well as an equivalent computer-based virtual system.
Their subjective responses also indicated that they found the 3D interfaces more cluttered
and less efficient [57].

Mostly, rather than choosing a visual encoding using three dimensions of spatial po-
sition, a better answer is to visually encode using only two dimensions of spatial position
[18]. An appropriate 2D encoding usually follows from a different choice of data abstrac-
tion, where the original dataset is transformed by computing derived data. Cues that convey
depth information to our visual system include: occlusion, perspective distortion, shadows
and lighting, familiar size, and stereoscopic disparity. These should be analysed before
making the decision to use a 3D encoding of data.

According to Carpendale et. al (2008) [4], the main reason for using 3D visualisation
in the field of software architecture is that the representation of highly dimensional data
can cause occlusion using 2D or even 1D visualisations. However, the distinction between
2D and 3D representations refers to the dimensionality of the graphical visuals, not the
dimensionality of the data itself. Therefore, a carefully designed 2D representation of an
architecture should be capable of representing more than two dimensions in the dataset.
This conforms to the arguments by Munzner.

4.2.3 Medium

Merino et. al (2017) [58] study the impact of the medium in the effectiveness of 3D soft-
ware visualisations. They deploy 3D city visualisations across a standard computer screen,
an immersive 3D environment, and a physical 3D printed model. They show that even
though developers using a 3D printed model required the least time to identify outliers,
they perceived less difficulty when using visualising systems based on a standard computer
screen. Notably, developers using an immersive 3D environment obtained the highest rec-
ollection. This emphasises the need of the explicit inclusion for the medium and technique
as properties for benchmarks that evaluate software visualisations.

4.2.4 Interactivity

In addition to their other recommendations, Gallagher et. al (2008) [56] also prescribe the
types of interactivity a visualisation should be able to support. First, the user should be able
to browse the visualisation by following concepts within the visualisation. Second, the user
should be able to search the visualisation for arbitrary architectural information. Next,
query drilling architectural information should be possible. This means the user should
be able to search the data space and then recursively search within the resulting dataset.
Finally, inter- and within- view navigation should be possible.

Munzner (2014) [18] argues that there is always a trade-off between finding automat-
able aspects of a visualisation, and relying on the human using the visualisation to detect
patterns. The benefit of interaction is that people can explore a larger information space
compared to a single static image. Despite this, interaction requires the time and atten-
tion of the human using the visualisation. A best practice in this regard is to automatically
detect features of interest to explicitly bring to the user’s attention via the visual encoding.

23

4.2.5 Implementation

In the study of Graduleva et. al (2017) [38], both project managers and architects used
hand-drawn or manually controlled tools more often than automatic tools. Developers used
automatic tools only slightly more often than hand-drawn tools. The main reason for not us-
ing automatic tools was a lack of IDE-integrated tools which are able to generate readable
diagrams from a large number of entities quickly. An ideal automatic tool would substitute
a collection of tools, and generate scalable diagrams that visualise the composition and
relations between entities at different levels of abstraction. To compress and improve read-
ability, "details-on-demand" by for instance filtering and searching would be useful. Based
on this, the authors argue that graph-based hierarchical edge bundles, semantic depen-
dency matrices, clustered graph layout, and/or edge evolution filmstrip techniques can be
used.

Of the analysed studies by Shahin et. al (2014) [5], 42 percent provide automatic tool
support for the used visualisation techniques, 47 percent semi-automatic tool support, and
11 percent manual tool support. They note that (semi-)automatic tool support improves the
practical applicability of visualisations by practitioners.

For the implementation of SAV tools, Gallagher et. al (2008) [56] prescribe that au-
tomatic generation of the visualisations should be possible. Besides that, it is important
to consider platform dependence. If platform choice prohibits remote capture of system
data, the visualisation should be able to execute on the same platform as the software it
is intended to visualise. Remote capture may be preferred for its potential in reducing un-
wanted interaction with the software. As there are many stakeholders of a software system,
there may also be a one-to-one mapping of role to physical user. The visualisation should
therefore also be able to support multiple users concurrently and asynchronously.

4.2.6 Data representation

Gallagher et. al (2008) [56] prescribe which features an SAV tool should have to appropri-
ately represent static and dynamic data. To begin with, it should support an appropriate set
of static and dynamic data sources, large volumes of data, and a multitude of software ar-
chitectures. Next, recovery of architectural information from sources that are not directly
architectural is preferable. Also, dynamic events should be associated with elements of
software architecture, and dynamic data should be collected in a non invasive way. Finally,
live collection of data should be possible as well as recording dynamic data for subsequent
replay.

4.3 Designing and evaluating information visualisations

The field of visual analytics builds better and more effective ways to understand and analyse
large datasets [3]. The main reason to use visualisation of data is that the human brain
processes images 60,000 times faster than text, and 90 percent of information transmitted
to the brain is visual [13]. Card, Mackinlay, and Shneiderman (2009) [59] define information
visualisation as:

Definition 17 (Information visualisation). Information visualisation (InfoVis) is the use of
computer-supported, interactive visual representations of data to amplify cognition.

4.3.1 Designing information visualisations

Munzner (2014) [18] describes how to effectively design the marks and channels that com-
pose a visualisation. According to her, the core of the design space of visual encodings can
be described as an orthogonal combination of two aspects: graphical elements called marks
(see definition 18), and visual channels to control their appearance (see definition 19).

24

Definition 18 (Mark). A mark is a basic graphical element in an image i.e. geometric
elements that depict items or links [18].

Definition 19 (Visual channel). A visual channel is a way to control the appearance of
marks, independent of the dimensionality of the geometric primitive [18].

Marks are classified according to the number of spatial dimensions they require as
shown using examples in Figure 14. A zerodimensional (0D) mark is a point, a one-dimensional
(1D) mark is a line, and a two-dimensional (2D) mark is an area. A threedimensional (3D)
volume mark is possible, but they are not frequently used. There are two link mark types:
(1) connection, which shows a pairwise relationship between two items, using a line, and
(2) containment, which shows hierarchical relationships using areas by nesting connection
marks within each other at multiple levels (Munzner does not mention overlap of 2D areas
as a link mark type).

Figure 14: Marks as geometric primitives [18].

Examples of the many visual channels that can encode information are: colour, shape,
position, tilt, size, and volume. The human perceptual system has two fundamentally differ-
ent kinds of sensory modalities. Identity channels tell us information about what something
is or where it is, and magnitude channels tell us how much of something there is. Not all
channels are equal: the same data attribute encoded with two different visual channels will
result in different information content. Therefore, the use of marks and channels is guided
by two principles: expressiveness and effectiveness.

Figure 15: Channels ranked by effectiveness according to data and channel type [18].

25

The expressiveness principle states that the visual encoding of a visualisation should
express all of, and only, the information in the attributes of the dataset. This means that
if one of the visual encodings does not have an attribute mapped to it, it violates the ex-
pressiveness principle. The most important expression of this principle is that ordered data
should be shown in a way that our perceptual system intrinsically understands as ordered.
At the same time, unordered data should not be shown in a way that perceptually implies an
ordering that does not exist. The identity channels are the correct match for the categorical
attributes that have no intrinsic order. The magnitude channels are the correct match for
the ordered attributes, both ordinal and quantitative.

The effectiveness principle prescribes that the importance of an attribute should match
the salience of the channel, that is, its noticeability. In other words, the most important at-
tributes should be encoded with the most effective channels in order to be most noticeable,
and then decreasingly important attributes can be matched with less effective channels.
Figure 5.6 shows the effectiveness rankings for each visual channel. The effectiveness of
channels is defined according to accuracy, discriminability, separability, the ability to pro-
vide visual popout, and the ability to provide perceptual groupings.

4.3.2 Evaluating information visualisations

Evaluation is a key research challenge within the information visualisation community.
Forsell and Johansson (2010) [60] present a set of general heuristics to evaluate common
and important usability problems in information visualisation techniques. They evaluated
the 63 heuristics of 6 earlier published heuristic sets, by letting subjects use them to explain
a collection of 74 usability problems derived from earlier InfoVis evaluations. The resulting
set provided the highest explanatory coverage, and contains the following ten heuristics:

• Information coding: Perception of information is directly dependent on the map-
ping of data elements to visual objects. This should be enhanced by using realistic
characteristics/techniques or the use of additional symbols.

• Minimal actions: Concerns workload with respect to the number of actions neces-
sary to accomplish a goal or a task.

• Flexibility: Flexibility is reflected in the number of possible ways of achieving a given
goal. It refers to the means available to customization in order to take into account
working strategies, habits and task requirements.

• Orientation and help: Functions like support to control levels of details, redo/undo
of actions and representing additional information.

• Spatial organization: Concerns users’ orientation in the information space, the dis-
tribution of elements in the layout, precision and legibility, efficiency in space usage
and distortion of visual elements.

• Consistency: Refers to the way design choices are maintained in similar contexts,
and are different when applied to different contexts.

• Recognition rather than recall: The user should not have to memorize a lot of
information to carry out tasks.

• Prompting: Refers to all means that help to know all alternatives when several ac-
tions are possible depending on the context.

• Remove the extraneous: Concerns whether any extra information can be a distrac-
tion and take the eye away from seeing the data or making comparisons.

• Data set reduction: Concerns provided features for reducing a data set, their effi-
ciency and ease of use.

26

4.4 Conclusions

To conclude this chapter, a concrete answer to sub-research question 3 is formulated:

SQ 3. How are visualisation techniques and supporting tools currently used to rep-
resent software architecture?

Shahin, Liang, and Babar (2014) [5] systematically review and classify the visualisa-
tion techniques and associated tools reported for software architecture, and how they have
been assessed and applied. They identify four types of visualisation techniques used in the
architecting process; graph-based, notation-based, matrix-based, and metaphor-based visu-
alisation. 42 percents of the analysed studies by Shahin et. al (2014) [5] provide automatic
tool support for the used visualisation techniques, 47 percent semi-automatic tool support,
and 11 percent manual tool support.

In the studied articles, several characteristics of techniques and tools to consider when
designing SAVs are identified: multiplicity of view [4, 56], dimensionality [4], medium [58],
interactivity [56], implementation [5, 56], and data representation [56].

Since the studied articles are written by researchers in the field of software visual-
isation, additional research in the field of visualisation analysis and design is consulted.
Section 4.3 provides an overview of best practices in the field of visualisation design, which
can be used as a reference during the treatment design phase. In this analysis, the work of
Munzner et al. [18] is emphasised due to the high citation count of the work and perceived
usefulness of the research.

27

5 Stakeholder Requirements

Since the requirements of SAV depend highly on the needs of the stakeholder who is using
the visualisation (see defintion 20), this section describes the possible stakeholders of SAV
and their needs. The chapter starts by describing the various purposes SAV can have, after
which the possible tasks SAV can support are set forth per type of stakeholder. In this way,
this chapter aims to answer the question:

SQ 2.Which questions should visualisations of software dynamics be able to answer
in order to be valuable to system stakeholders?

Since (project) managers [61, 55, 62, 63], architects [61, 55, 56, 4], and develop-
ers [61, 55, 63, 4] are mentioned most often in the reviewed articles, these stakeholder
groups are selected to discuss in more detail in sections 5.2, 5.3, and 5.4. However, it
should be noted that Gallagher et. al (2008) [56] also identify testers, operators, designers,
development managers, sales, field support, and system administrators as stakeholders.
Carpendale et. al (2008) [4] add customers to this list, and Panas et. al (2007) [55] view
maintainers as a group separate from developers. Finally, technical users and consultants
are mentioned as stakeholders by Telea et. al (2010) [62].

Definition 20 (Stakeholder). A stakeholder in the architecture of a system is an individual,
team, organization, or classes thereof, having an interest in the realisation of the system
[9].

5.1 Purposes of Software Architecture visualisation

According to Diehl (2007) [64], the main motivation for using software visualisation in gen-
eral is to help stakeholders understand different aspects of software systems during the
software development process, and to reduce the cost of software evolution. To create an
SAV, entities in a software system domain are mapped to their graphical representation
to aid comprehension and development [65]. Software architecture visualisation (SAV) is
defined as:

Definition 21 (Software architecture visualisation). Software architecture visualisation is
a visual representation of architectural models, and some or all of the architectural design
decisions about the models [66].

Shahin, Liang and Babar (2014) [5] identify ten categories of purposes for using vi-
sualisation in the field of software architecture based on a systematic literature review of
papers published between 1 February 1999 and 1 July 2011. The most frequently reported
purposes identified by them are:

1. Improving the understanding of architecture evolution (26% of reviewed papers) .

2. Improving the understanding of static characteristics of architecture (24%).

3. Improving search, navigation, and exploration of architecture design (24%).

4. Improving the understanding of architecture design through design decision visuali-
sation (21%).

5. Supporting architecture re-engineering and reverse engineering (13%).

6. Detecting violations, flaws, and faults in architecture design (11%).

7. Providing traceability between architecture entities and software artefacts (11%).

8. Improving the understanding of behavioural characteristics of architecture (6%).

9. Checking compatibility and synchronization between architecture design and imple-
mentation (6%).

28

10. Supporting for model-driven development using architecture design (2%).

A systematic literature review of articles on software visualisation from 2010 to 2015
describes several purposes software visualisations can have in general [61]. Most of the
reviewed articles are related to software structure, behaviour, and evolution. The authors
argue that software visualisation researchers should consider if there is synergy between
the goals and visual means and tools that could be applied to understand software, software
process and communication. The review also notes that collaboration and engagement
are mentioned often as goals of visualisations. For SAV in particular this is supported by
Gallagher et. al [56] (2008), who claim that a good SAV should aid communication of the
architecture to intended stakeholders.

Carpendale and Ghanam (2008) [4] show the groups of stakeholders along with the
level of detail in software architecture they are interested in (Figure 16).

Figure 16: Various levels of interest of the software visualisation audience [4].

5.2 Project Manager Requirements

As can be seen in Figure 16, Carpendale and Ghanam (2008) [4] claim that managers are
mostly interested in the project-level information of a software system. They want to moni-
tor the progress of the project and determine the completion of the envisioned development
goals. Visualisations can be useful in determining whether the next deadline will be met,
and how to allocate team members to each part of the system [55]. This is in line with the
definition of a project manager:

Definition 22 (Project manager). A project manager is the person in overall charge of the
planning and execution of a particular project [67].

Telea et. al (2010) [62] also claim that it could be useful to managers if an SAV supports
the monitoring of the evolution i.e. progress of a system over time. In this way, trends such
as architectural erosion, rule violation, and quality decay can be identified. Managers are
not interested in individual lines of code or call relations, but rather in coarser detail levels
such as file, class, and user (author). Therefore, they need visualisation techniques with a
high level of abstraction that can simultaneously display numerous attributes or metrics.
Examples of this are parallel coordinates, dense pixel charts, tree maps, and timelines.
Another study suggested the use of clustered graph layout for this purpose [38].

29

Besides this, Panas et. al (2007) [55] pose that managers could use visualisations to
identify components of a system that need improvement, such as components with high
maintenance costs. This is confirmed by a case study conducted by Graduleva and Adibi
Dahaj (2017) [38], who interviewed managers of software system projects. They found
that manager’s requirements towards SAV are mostly the high-level representation of the
composition of systems, and relationships between systems and subsystems. Moreover,
they found visualisation useful when communicating, making decisions, and understanding
architecture. Especially visualisation of system implementation in relation to requirements
would be useful to them. This is in line with the research by Cleland (2013) [68], who
argues that visualisations can aid the understanding, and then the communication of system
architecture to a variety of project stakeholders.

5.3 Software Architect Requirements

As shown in Figure 16, architects are most interested in the high-level design of a system,
followed by a significant interest in the low-level design and a slight interest in the project-
level information. Architects find it important to realise the different characteristics of the
architecture they design, such as complexity, coupling, cohesion, and other attributes [4].
They are not interested in the source code on its own. Rozanski and Woods (2011) define
the role of a software architect as follows:

Definition 23 (Software Architect). The architect is responsible for designing, document-
ing, and leading the construction of a system that meets the needs of all its stakeholders
[9].

Shahin, Liang and Babar (2014) [5] identify the architecting activities that are sup-
ported by the SAV techniques as found in the reviewed studies. They based this classifi-
cation on the proposed architecting activities by Li et al. (2013) [69], which compose the
entire architecture life-cycle and are supported by the general architecting activities. The
activities "architecture understanding" and "architecture description" as proposed by Li et
al. are excluded, since visualisations are by nature expected to support these.

As can be seen in Figure 17, the most common architecting activities supported by
visualisation techniques are architecture recovery, evolution, and evaluation. The other
identified architecting activities are: change impact analysis, architectural analysis, archi-
tectural synthesis, architectural implementation, and architecture reuse.

Figure 17: Distribution of architecting activities supported by visualisation techniques [5].

Interviews of Graduleva and Adibi Dahaj (2017) [38] with both system and design ar-
chitects show that architects require information about (1) composition of and relations be-
tween (clusters of) systems, subsystems, classes, and components, (2) most used or "prob-
lematic" components, (3) relationships between systems, classes and components, and (4)
implications of new flows to old flows. In this study, they were the stakeholders with the
highest demand for additional information and metrics, such as types of signals, implica-
tions of a new flow to the old ones, implementation in relation to requirements, and test
coverage.

30

5.4 Developer Requirements

As shown in Figure 16, developers are interested in all levels of abstraction, but mostly in
the lowest ones. They focus on understanding the system [4, 5, 6], while monitoring code
changes and their impact [4]. Rozanski and Woods (2011) define the role of a developer as:

Definition 24 (Software Developer). A developer constructs and deploys a system from
specifications (or leads the teams that do this) [9].

This is confirmed by Telea et al. (2010) [62], who state that developers are concerned
with a low level of abstraction just like testers and maintainers. They studied 23 developers
using four different visualisation tools, and all of them found correlated views of code,
metrics, structure, and dependencies indispensable. Techniques they are interested in are
therefore similar to those in which architects are interested. Examples of this are tree-maps
and hierarchically bundled edges. These would be able to represent clutter-free layouts of
thousands of entities and relationships with zero user intervention.

When studying the requirements of developers, Graduleva et. al (2017) [38] observe
that information about the composition and relationships between classes and packages are
useful to them. Other information needed, but currently lacking or not supported by the
techniques they used, included types of signals, CPU heavy parts of the code, and revision
history.

LaToza et al. (2010) [70] categorised the problem domains that developers deal with
as follows: (1) changes, (2) elements, and (3) element relationships. Merino, Ghafari, and
Nierstrasz (2016) [6] estimate the importance of these problem domains for practitioners.
They claim that the more types of questions a problem domain contains, the more impor-
tant that domain is for developers. Figure 18 shows the results of their study. In this
figure, the problem domains are shown on the y-axis and encoded according to the cat-
egory they belong to: "changes" are coloured green, "elements" are coloured blue, and
"element relationships" are coloured red. In the figure, the importance of developer needs
(red bars) is compared to the number of visualisation techniques that address these needs
(grey bars). From this analysis, the authors learned that practitioners are mostly concerned
about changes, while existing visualisation distribute their attention among all three cate-
gories. Because of that, problem domains that are very important to developers have little
visualisation support, and less important domains receive a good degree of attention.

Figure 18: Comparing the degree of importance of developer needs vs. their visualisation support
by problem domain. [6].

31

5.5 Conclusions

In this chapter, sub-research question 2 is answered by analysing related work:

SQ 2. Which questions should visualisations of software dynamics be able to an-
swer in order to be valuable to system stakeholders?

According to Diehl (2007) [64], the main motivation for using software visualisation in
general is to help stakeholders understand and comprehend different aspects of software
systems during the software development process, and to reduce the cost of software evo-
lution. The stakeholders that are identified most often in the reviewed articles are project
managers [61, 55, 62, 63], architects [61, 55, 56, 4], and developers [61, 55, 63, 4].

Managers are interested in project-level information [4]. The information that is useful
to them is about quality related trends, system evolution, system implementation in rela-
tion to requirements, composition of and relations between (sub-)systems, and most used
or "problematic" components [38]. Examples of tasks that this information can support
are: allocating team members and costs [55], monitoring progress [62, 4], determining
deadlines [4], communicating [68], decision-making [38], and understanding the system’s
architecture [38, 68].

Software architects are most interested in the high- and low-level design information
of a system [4]. This is mainly information about system implementation in relation to re-
quirements, composition of and relations between (sub-)systems, composition of clusters
of classes, most used or "problematic" components, relations between classes and compo-
nents, and implications of old flows to new flows [38]. This information can support them
in the tasks identified in Figure 17.

Developers are interested in all levels of abstraction, but mostly in the lowest ones [4].
Developers find correlated views of code, metrics, structure, and dependencies indispens-
able [62]. The problem domains they encounter can be put into three categories: changes,
elements, and element relationships [70]. When comparing the importance of developer
needs in these problem domains to the number of visualisation techniques that address
those needs, discrepancies can be found as shown in Figure 18. Graduleva et. al (2017)
[38] observe that their information need in the relationships and composition categories
concerns classes and packages. Other information needed includes: types of signals, CPU
heavy parts of the code, and revision history.

32

6 Case Study Interview Results

This section summarises the most important and relevant results of the interviews, which
were conducted with the DevOps team of the system to which the visualisations will be
applied to. As described in chapter 2, though this data has poor external validity [15], it
will give some insight into how SAV is currently used at the company, how the envisioned
visualisations can be valuable to the system’s stakeholders, and a means to validate the
dashboard design. By doing so, it aims at answering sub-research question 2 for the spe-
cific context in which the envisioned visualisations will be applied:

SQ 2. Which questions should visualisations of software execution data be able to
answer in order to be valuable to system stakeholders?

Three interviews were held, one with the DevOps Engineer in the team with the most
experience with the system [A.1.2 Quote 1], one with the Software Architect of the system
[A.2.2 Quote 4], and one with the Product Owner of the system. These interviewees are from
here on referred to with their position title as specified by themselves in the interviews. The
interview protocol is provided in Appendix A. An overview of the quotes from the interviews
this section is based on can be found in Appendices A.1, A.2, and A.3.

The correspondence of answers given by interviewees was checked against reality by
studying the team during their daily work. One of the researchers worked in the same room
as the team for six months and was therefore able to observe the team’s work process.

6.1 System Under Study

The system under study is part of an application landscape that is used in the Netherlands
as a central information system for 7,300 users. It has 1.7 millions registrations, and every
month 170,000 manual and 1.2 million automatic checks are done in the system. It is an
application landscape that consists of three applications which are all written in the JAVA
programming language [A.2.1 Quote 1], and make use of cloud computing services [A.2.1
Quote 4]. From now on these applications will be referred to as application 1, 2, and
3. The three applications are actually composed of several sub-applications, for example
application 1 contains six sub-applications [A.2.1 Quote 1 and 2].

The applications are connected to several supporting applications such as a mail
server [A.2.1 Quote 3] and a support portal in which tickets are registered [A.2.1 Quote
5]. For development specific purposes there is also an issue management system called
JIRA. In this system progress can be tracked such as which functionalities have to be build,
and which bugs need to be solved [A.2.1 Quote 6].

So far the development of the system has been about transitioning it to the current
supplier and resolving the issues that this caused. Application 1 is the oldest application
in the landscape originating from 2006, and consists of around 225,000 lines of code. The
second oldest application is application 2 [A.2.1 Quote 7]. Application 3 was added last and
is used by only around 40-50 people. This makes it a lot less traffic intensive than the other
two applications [A.1.1 Quote 1]. The first time the system was run in production by the
DevOps team was in December 2018 [A.1.1 Quote 8]. Despite the trouble of transitioning it
from the previous supplier, the moment that new functionality can be developed instead of
just resolving issues is coming close according to one of the interviewees [A.1.1 Quote 2].

6.2 Stakeholder Roles and Tasks

The system’s team consists of six members whose roles and experience are specified in
Table 1. The team members all work on all three applications comprising the application
landscape, which is described in the previous section (6.1). At the moment of the inter-
views, there was a database administrator working on the system one day a month, and
another DevOps Engineer who worked on the system one day a week. However, these team
members have left as of May 2019 [A.3.1 Quote 13].

33

Figure 19: Simplified representation of the work process of the DevOps team.

Table 1: Members of the system’s DevOps team and their experience (on April 2019).

Role FTE Experience
with the sys-
tem in months

Previous ex-
perience in a
similar role in
years

Experience
with software
design tools

Product Owner 1 16 4 Yes
Software Architect 0.6 18 20 Yes
DevOps Engineer 1 1 12 2.5 No
DevOps Engineer 2 1 3 6 Yes
DevOps Engineer 3 1 9 0 No
DevOps Engineer 4/
Scrum Master

0.8 2 0 No

The software design method that is used to develop the system is called DevOps, which
means that every person is expected to be able to do both development and operations tasks
[A.1.2 Quote 2]. In Figure 19, a simplified version of the work process of the team is shown
based on the UML Activity Diagram technique [45] and explained next.

34

Based on the interview results, four categories of activities are identified and shown
in the figure in grey blocks: (1) resolving support tickets and calls, (2) system performance
monitoring, (3) sprint planning, and (4) bi-weekly sprint: application development. The
process starts when the customer or a user of the system has a request. This can be either
a support ticket [A.1 Quote 15], a phone call [A.3.1 Quote 17], requests to one of the system
servers such as the web proxy [A.1.5 Quote 9], or a new service the customer would like to
provide to its end users [A.2.2 Quote 19].

6.2.1 Resolving support tickets and calls

If the request is a support ticket or a call, the team usually has to explain to a user how the
system works, or resolve an issue that arises with the system [A.1.2 Quote 17]. This can
in turn result in checking the logs of the servers for errors and warnings [A.1.2 Quote 13].
For example, the interviewed DevOps Engineer uses the e-mail address of the customer
certificate and the time the problem occurred to trace in the logs where in the system it
went wrong [A.1.4 Quote 1]. All members of the team take on these system support tasks
one day a week [A.3.1 Quote 15]. The reason this decision was made is so that everyone
keeps a good understanding of what is going on, what operations is struggling with, and
which processes could be optimised because they cause recurring issues [A.3.1 Quote 12].

Table 2: Tasks of the category “resolving support tickets and calls” per role within the DevOps team.

Tasks / role Product
Owner

Software
Architect

DevOps
Engi-
neer

Scrum
Master

Resolve support tickets x x x x
Answer calls x x x x

6.2.2 System performance monitoring

User requests within the application can result in alarm bells going off in the office of the
team [A.1.2 Quote 10]. In that case, the team checks the performance metrics shown by the
LogicMonitor tool to identify what is going on [A.1.5 Quote 5]. LogicMonitor is explained
in more detail in section 6.5. The team plans to also start using Kibana in the future [A.1.4
Quote 10, [71]]. They intend to use Kibana to follow what happens with a request from the
moment it enters the system up until it is completed [A.1.4 Quote 9].

Table 3: Tasks of the category “system performance monitoring” per role within the DevOps team.

Tasks / role Product
Owner

Software
Architect

DevOps
Engi-
neer

Scrum
Master

Check logging of servers x x x x
Check LogicMonitor x x x x

35

6.2.3 Sprint planning

The Product Owner is the main person in the team who does the direct coordination with
the customer [A.2.2 Quote 16]. If the customer wants to provide a new service to its par-
ticipants, the Product Owner, Software Architect, and customer come together to identify
the process that is needed to realise this service [A.2.2 Quote 16, 20 and 21]. Once that
is clear, the Product Owner and Software Architect identify how the system can support
that process, and what is needed to integrate the new parts of the system in the current
system infrastructure [A.2.2 Quote 16, 20 and 22]. This results in a set of identified system
requirements that they translate to a sprint planning [A.2.2 Quote 23]. One sprint is a set
of tasks that can potentially be finished in two weeks [A.3.1 Quote 23]. The planning of the
sprints happens in collaboration with the customer, to prioritise the issues according to her
wishes [A.3.1 Quote 24].

Table 4: Tasks of the category “sprint planning” per role within the DevOps team.

Tasks / role Product
Owner

Software
Architect

DevOps
Engi-
neer

Scrum
Master

Identify customer requirements x
Identify required (business) process x x
Identify required technology x
Identify system requirements x
Compose/change sprint planning x x x

6.2.4 Bi-weekly sprints: application development

As mentioned before, the team uses bi-weekly sprints for which issues/tasks are registered
on a so called backlog, which need to be completed at the end of the two weeks [A.1.2 Quote
3]. At the end of a sprint, the issues that are solved or not solved are evaluated to see how
the work process can be improved [A.1.2 Quote 4]. The Scrum Master in the team takes the
lead in this, and monitors the progress of the sprint, so that imperfections are solved and
team members have the resources they need [A.3.1 Quote 20].

The DevOps Engineers in the team are the ones who take issues as registered on the
sprint backlog [A.1.2 Quote 16] from TODO to production [A.2.2 Quote 18]. To manage the
sprint planning a tool called JIRA is used [A.1.2 Quote 5]. This tool is also used to assign
tasks [A.1.2 Quote 6]: in JIRA “you can drag an issue to active or in progress and then
you can mark yourself as executor” [A.1.2 Quote 7]. Examples of tasks that the DevOps
Engineers perform to solve issues are: writing and editing source code [A.1.2 Quote 12],
application maintenance [A.1.2 Quote 9], server maintenance [A.1.2 Quote 8], and infras-
tructure deployment / networking [A.1.2 Quote 10 and A.1.2 Quote 11]. Solving issues can
take between five minutes and two hours [A.1.2 Quote 14].

Table 5: Tasks of the category “bi-weekly sprint” per role within the DevOps team.

Tasks / role Product
Owner

Software
Architect

DevOps
Engi-
neer

Scrum
Master

Divide work as registered on the back
log

x

Take on issues from TODO to production x
Evaluate progress on issues x x

36

6.3 Sources of information about the system

Besides the manual of the system minimal documentation is available [A.1.3 Quote 5 and
A.3.2 Quote 4]. There are also some comments in the code that describe what the code does.
Despite this, the names of entities in the code are clear and therefore of good quality [A.1.3
Quote 6]. The table below shows which sources of information the interviewees mentioned
using to gain understanding of the system. As can be seen, the source code of the system
is leading together with the experience of the Software Architect (“colleague(s) with more
experience with the system") [A.2.3 Quote 4 and A.3.2 Quote 5]. The Software Architect of
the system is also the only one who mentioned using tools to gain a deeper understanding
of the source code. An example of this is Sonarcube, which is a static analysis tool that
is mainly used to detect bad practices [A.2.3 Quote 8]. The architect does note that it is
not very useful for getting an overview of how the system is composed. For that he drew
diagrams himself which will be shown and explained in section 6.5.

Table 6: Sources of information used to gain understanding of the system [A.1.3, A.2.3, and A.3.2].

Tasks / role Product
Owner

Software
Architect

DevOps
Engi-
neer

Logs on server performance and requests x x x
LogicMonitor x x x
Manual of the system x
Phone calls with the customer x
Source code x x
Own memory x
Colleague(s) with more experience with the system x x
Diagrams with system overview x
Sonarcube x
Oracle Cloud metrics: CPU, disk usage, networks etc. x

6.4 Information needs

The information needs as mentioned by the interviewees can be translated to questions
they would like an answer to. As can be seen in Table 7, it would be useful to the team to
have a better overview of relations between objects/methods in the source code, so they
have a better way to communicate about the system and identify where pieces of code are
located. This could additionally be of use when the team transfers the monolithic architec-
ture the system has now to a more micro-service like architecture [A.2.4 Quote 9]. By for
example identifying closely coupled components, they can depict which things they would
like separate in the application.

Second, information about the process requests follow through the system could help
identify bottlenecks, "dead" code, and the methods exceptions originate. If this information
would be available, the team could focus more on development instead of operations in the
future.

37

Table 7: Information needs of the interviewed stakeholders [A.1.4, A.2.4, and A.3.3].

No. Information needs / role Product
Owner

Software
Architect

DevOps
Engi-
neer

1 What are the relations between objects/meth-
ods in the system?

x x x

2 Which path does a request follow through the
system? (what is the chain of objects and meth-
ods)

x x x

3 Which objects/methods are called most often? x x
4 Which methods take a long time to execute?

(bottlenecks)
x x

5 Which objects are closely coupled together? x x
6 In which methods do exceptions originate? x x
7 What are the dependencies of the system on

third-party libraries?
x

8 Where are design flaws and poor code quality? x x
9 Which code seems to never be executed?

("dead code")
x x

10 How often are features used? ("dead features") x x

6.5 Current visualisation tools and techniques

6.5.1 LogicMonitor

The only visualisation of the system that the Product Owner and DevOps Engineer use is
shown in Figure 20. The three graphs in this figure are used to visualise how many requests
enter the system [A.1.5 Quote 1], how much traffic there is [A.1.5 Quote 2], and how many
workers are busy and available in the web proxy/server [A.1.5 Quote 3 and 4].

The visualisations are generated by a tool called LogicMonitor, which is the only moni-
toring system that the team uses at the moment [A.1.5 Quote 8]. It is coupled to the system
under study and automatically retrieves the required information from it [A.1.5 Quote 9].
The DevOps Engineer finds LogicMonitor very useful to monitor the status of the servers.
It however misses a way to monitor application specific things. If the Tomcat server reacts
normally it for example does not notice when an application is not working [A.1.5 Quote
11].

In the graph at the top left of Figure 20, the green line represents the number of
free workers and the purple line the number of busy workers. Therefore, the green line
is usually above the purple one which means the workers can handle all the request that
come into the system. If those lines turn around or cross something is going on [A.1.5 Quote
5]. When that happens, peeps and buzzers go off in the office so the team is alerted [A.1.5
Quote 10].

38

Figure 20: LogicMonitor graphs.

39

6.5.2 System Overview

Besides LogicMonitor, the Software Architect of the system also uses some diagrams that
give an overview of the application landscape [A.2.5 Quote 1]. He created these using Archi-
Mate, which is an open-source tool in which the business, application, and infrastructure
layers can be modelled [72]. To give an impression of what this looks like, the used diagram
to provide a high-level overview is shown in Figure 21. The picture shows what the func-
tional applications are and how they collaborate [A.2.5 Quote 2]. Besides this picture, there
are some pictures that internally to the functional applications describe which libraries are
used and how that is composed [A.2.5 Quote 3].

Figure 21: Image called “Application Interfaces” as used by the DevOps team.

6.6 Conclusions

This chapter answers sub-research question two for the specific system under study:

SQ 2. Which questions should visualisations of software dynamics be able to an-
swer in order to be valuable to system stakeholders?

The questions identified by holding interviews with three different types of system
stakeholders are shown in Table 7.

40

7 Case Study Survey Results

To prioritise the stakeholder requirements the envisioned dashboard of visualisations has
to fulfil, a survey was carried out. The survey can be found in Appendix A. It was sent out
to IT experts who work with Java systems, within the company at which the case study was
executed. A total of 20 experts responded, including all six members of the DevOps team of
the system the visualisations will be applied to.

7.1 Subjects

The survey was sent out through Google forms between May 10 and May 28 2019. Seven
out of 20 respondents were Software Developers, five were Software Architects, and 3
were Product Owners. Additionally, one Solution Architect, one Enterprise Architect, one
Implementation and Migration Consultant, and two DevOps Engineers responded. Three
of the DevOps Engineers of the DevOps team in which the case study is executed called
themselves Software Developers when asked in the survey. The team member who was
identified as the architect of the system called himself a DevOps Engineer. This shows
that there is an overlap in the definitions of a Software Developer and a DevOps Engineer,
and a Software Architect and a DevOps Engineer. This should be taken into account when
interpreting the results.

Half of the respondents had 0-4 years of working experience in a similar role when the
survey was conducted. Four had 5-9 years of experience, three 10-14, two 15-19, and one
20+.

Figure 22: Position and experience of survey participants.

7.2 Ranking of information needs

The table below shows the average ranking that the respondents assigned to the different
questions. It stands out that when Product Owners rank the questions, the question they
find most important is: "Where are design flaws and poor code quality?". Software Archi-
tects rank the question: "What are the dependencies of the system on third-party libraries?"
much higher than the other types of stakeholders (5.0 versus 6.0 and 7.4). This would be
their fourth most important question. Software Developers rank the question: "In which
methods do exceptions originate?" very highly (3.9 versus 5.7 and 7.6).

41

Table 8: Information needs of the interviewed stakeholders [A.1.4, A.2.4, and A.3.3].

No. Information needs / role All
(20)

Product
Owners
(3)

Software
Archi-
tects (5)

Software
Devel-
opers
(7)

1 Which path does a user request follow
through the system? (what is the chain of
classes and methods)

2.9 4 2.2 2.0

2 Which methods take a long time to execute?
(bottlenecks)

3.9 4.3 2.4 4.6

3 Which classes/methods are called most of-
ten?

5.3 5.3 4.2 6.0

4 Where are design flaws and poor code qual-
ity?

5.5 3.0 6.0 6.3

5 What are the relations between class-
es/methods in the system?

5.9 5.7 5.4 6.0

6 What are the dependencies of the system on
third-party libraries?

6.0 6.0 5.0 7.4

7 Which code seems to never be executed?
("dead code")

6.1 6.7 6.8 5.6

8 In which methods do exceptions originate? 6.2 5.7 7.6 3.9
9 Which classes are closely coupled together? 6.5 7.7 7.0 7.1
10 How often are features used? ("dead fea-

tures")
6.9 6.7 8.4 6.1

7.3 Reasons for Ranking

To gain more insight into the reasons why the respondents ranked the ten proposed ques-
tions as shown in Table 8, four additional questions were asked of which the results will
now be discussed.

7.3.1 Are there questions in the list above that you can already quickly answer for
the system(s) that you work with today? How? Which sources of information
do you use to answer these questions?

As an answer to this question, the respondents named a number of tools and techniques
that they use to answer the questions in Table 8.

One of the DevOps Engineer notes that in his team they are implementing the so called
ELK Stack (Elasticsearch, Logstash, and Kibana) to extract information from their logs such
as: user access, errors logs, and stack traces. One Product Owner mentions that they only
know the time of the total user request through monitoring from log files, not the path it
follows through the system. Another Product Owner confirms this by noting that they only
know the relations between total software components or network/cloud components, for
example how many times the system calls the database or multiple databases.

One Software Developer notes that dead code is already highlighted by the IDE (Inte-
grated Development Environment) that he uses. Another Software Developer notes that he
uses the tool called Jacoco to identify dead code (if unit tests are properly build). He also
notes that Java stack-traces already provide a good way to show the origin of exceptions.

One Software Architect mentions that he generates UML class diagrams of the sys-
tems he works with. One Software Developer also mentions that class diagrams are a
means to display relations between classes, but notes that automatically generated class
diagrams are very difficult to interpret for complex programs.

42

The static source code analysers mentioned by the respondents are: PMD, FindBugs,
and Sonarqube. The respondents use these technologies to discover static dependencies
of the system and analyse design (flaws) and code quality. Other techniques used are the
Maven dependency trees and POM files, that show the dependencies of an application in
a Maven based application. One of the Software Architects also notes that the Oracle
technology they use includes a dependency view for databases.

One Product Owner mentions that he primarily relies on the team he works with for
information about software quality. The Enterprise Architect that responded notes that the
most important source of information to him are the stakeholders. In this case this would
be the administrators, testers, and end users. He uses this to compose a process and an
information model if required and to describe the dependencies of the system.

7.3.2 Consider the question in the list above that you rated as most needed (1)?
How would you make use of the answer to this question? What value does it
have to you?

Six participants rated question number 1 as most important. The first reason that is given
for this is that it can help understand how functionality can be changed and how monitoring
can be set up for the highest value chains. Second, it could provide knowledge of the system
while tracing and debugging problems. Third, it could explain how data flows through the
system, though it should be noted that this participant viewed user requests as messages.
Fourth, it could answer multiple questions at once, and knowing the path within the code
would also give insight in what parts are used often or not. The last reason given is that it
would make it easier to understand programs and isolate problems.

Out of the 20 subjects, four rated question 2 as being most important. The reasons
provided are that it would be easier to identify where the "quick wins" are. Additionally, it
would be useful to identify where performance efforts should be focused, and since better
performance would mean better user experience the customers would be more satisfied.
Moreover, it would be useful to optimise code and analyse whether the architecture should
be adapted. Finally, it would pinpoint which parts of the code slow down user requests,
which can support investigating why it is slow and making changes to it, or tuning the set-
tings to gain performance. There might be badly implemented code or wrong architecture.

None of the participants ranked questions 3 and 5 as most needed. One Product
Owner rated question 4 as most needed, because according to him it predicts future costs
and failure the most. The Solution Architect did so too, because he thinks this information
would help define the quality of custom made software systems, how they are structured,
and whether modules/components are decoupled.

Two participants ranked question 6 as most needed. The reasons for this were that
according to them, the dependencies of a system are a major factor in pinpointing how
complex an application is in a maintenance environment. Only by fully understanding these
dependencies can the application be maintained. It would also be required to solve perfor-
mance issues.

Both DevOps Engineers rated question 7 as most needed. One of them rated the
question as such because it could help remove waste from the system and make the context
of the system smaller and easier to understand. The second engineer simply states "we
probably have a lot of dead code".

One Software Developer ranked question 8 as number one, to know which errors are
most common and improve the code that causes the exceptions. Another developer ranked
question 9 as such, because it would help limiting the number of bottlenecks or even make
sure they are completely removed. One Product Owner ranked question 10 as most needed.
According to this participant it would help reduce source code, and with that the number
of bugs, which would in turn reduce the cost of maintenance.

43

7.3.3 Are there pieces of information about the system(s) you work with that you
would like to have but are not present in the list above? Why would you like
to have these pieces of information?

One of the DevOps Engineers was interested in the role of classes in the system: whether
a class is an "Entity, ValueObject, Repository, Service, Helper, Action, Event etc." Based on
characteristics such as method names or interaction with others, it should be possible to
group them. This would be important because it might give insight into the importance of
the class or package in the system.

According to the other DevOps Engineer the information model could together with
the dependencies help define the complexity of the system. Applications that are maintained
for one business object without complex relations would in principle be easier to maintain
than applications that are used for multiple business objects and multiple (complex) rela-
tions. The complexity would increase when these relations are additionally maintained by a
third party. Besides that, the issue list would be useful, including priorities. A system with
low code quality without issues would be a good system from a business perspective.

One Product Owner commented that he/she would like to know the unit test coverage
of the system he/she works with. Another Product Owner wanted to know the interdepen-
dence between losely coupled system parts / micro services.

One of the Software Architects that responded commented live monitoring insights
would be a good addition, because then the stakeholders can act proactively when perfor-
mance degrades. Another architect would like to see the definition of API’s, used frame-
works, and size of traffic i.e. how much data is send/received through the application. The
fourth architect that responded would like more information on memory usage of instances,
and the instance creation / destruction rate. The last architect that responded would like to
see code quality numbers.

Two of the Software Developers that responded filled out ideas for additional infor-
mation. The first noted that he would like to have information on bottlenecks, to see if
performance and responsiveness can be improved. The second developer noted that a logi-
cal view of the software architecture would be useful. It would show the modules and from
there enable drilling down to details. He/she would like to see a representation of that in
a graph model. According to this developer code quality can already be measured by the
Software Improvement Group (SIG). He/she claims that a lot of the things in the list can
also be delivered by them, so the solution should be an add on to that.

7.3.4 Do you have any feedback or suggestions?

Two respondents added another suggestion as an answer to this question. One said that the
research should be expanded to functional interdependence. The second one said it would
be useful to have the ability to look at figures of a specific slow request or one failing.

7.4 Conclusions

The participants mention several static code analysers that they use to analyse design flaws
and poor code quality. They note that tools already exist that can be used to identify dead
code design- and run-time. Additionally, they claim that there is a tool that can show in
which methods exceptions originate. This makes questions 4, 7 and 8 less important to
answer.

Several reasons were given for ranking the questions in the list as such. Most of the
reasons provided are related to performance such as: identify where performance efforts
should be focused, pinpoint which parts of the code slow down user requests, and limit
the number of bottlenecks. The second most mentioned reasons are related to improving
understanding of the system. This is in line with the two questions that are ranked as most
important by the respondents which are numbered as 1 and 2 in Table 8.

44

Information that is missing in the provided list is: the importance of a class or package
in the system, information/data flow, the issue list including priorities, unit test coverage,
interdependence between loosely coupled system parts (micro services), the definition of
API’s and used frameworks, memory usage of instances, and instance creation and destruc-
tion rate.

In conclusion, the survey results show that the most important questions that the
stakeholders have about the system, which cannot already be answered by the currently
available tools, are questions 1, 2, 3, and 6. Based on the comments in the survey, these
questions can be reformulated to:

1. Which part(s) of the system contain calls that take relatively long to execute?

2. The calls/methods that take a long time: how often are those called?

3. The calls/methods that take a long time: which path do those follow through the sys-
tem?

4. Which classes are called most often (and therefore important)?

5. What are the run-time dependencies of the system on (third-party) libraries?

45

8 Idiom Selection

This chapter describes the selection of idioms to include in the dashboard design. Since the
selection and design of visualisation idioms is dependent on the task(s) at hand and the data
available [18], sections 8.1 and 8.2 first provide the key characteristics of both. After that,
the selection of idioms based on this information is described. By doing so, this chapter
aims to answer sub-research question 4:

SQ 4. Which visualisation(s) can answer the questions identified in SQ 2?

8.1 Task identification

The questions identified through the analyses in chapters 5, 6, and 7 result in a number
of tasks that a user should be able to perform with the dashboard. To answer the first
question, the user should be able to obtain an overview of the system’s structure given a
specific scenario, and identify through which parts calls are made that take relatively long
to execute. To do this, the user should be able to compare different execution times of calls
to evaluate which ones are considered as "relatively long".

Once the user has identified these calls, it is important to know how often those calls
are made. If a call is only made once a month, it might not be worth the effort to optimise
the source code that controls this call. If the user has decided that a call is important to
optimise, it would be interesting to know which path these ’long’ calls take through the
system. This could aid in understanding whether the call itself takes longer to execute, or
it is due to the subsequent call.

Next, it would be interesting to know which classes are called often in general, be-
cause this indicates that they are important within the system. Last, when a call takes
’longer’ to execute or is in any other way interesting, it is important to know whether the
call is part of a (third-party) library. The user should therefore be able to quickly make a
distinction between internal and external class objects i.e. class objects that the user can
change or not.

8.2 Relating tasks to data

The identified tasks can be broken down into two key components: questions about the run-
time structure of the software and questions about performance metrics in relation to this
structure. Therefore, the dashboard should include a visualisation of the overall structure
of the software as well as ways to visualise metrics in relation to this structure.

The structure to be visualised can be viewed as a hierarchical network of interactions
between class objects that call each other. The Java programming language has an inherent
hierarchy within the used software elements: programs are organised as sets of packages,
which have a hierarchical structure, and members that are class and interface typed objects
[73]. An example of a class that calls a method of another class is provided in Figures 23
and 24. The class named "CallerClass" creates an instance of the class "CalleeClass" and
calls the method "foobar()" that is present in the called class. Because of these hierarchical
interactions, we studied idioms that could potentially visualise structure, interaction and
flow through a system in a scalable way.

46

Figure 23: Example of a class (that could be called).

package example.callee;

public class CalleeClass {
public void foobar () {

System.out.println("Hello World");
}

}

Figure 24: Example of a caller class calling a method in the callee class.

package example.caller;
import example.callee;

public class CallerClass {
public void someMethod () {

CalleeClass calleeInstance = new CalleeClass ();
calleeInstance.foobar ();

}
}

8.3 Visualising structure

According to Munzner et. al [18], there are three design choices for arranging networks:
1) node-link diagrams, 2) adjacency matrix, and 3) enclosure, which can only be applied to
tree data. These choices are illustrated in Figure 25.

An adjacency matrix is a representation in which all nodes in the network are laid out
along the vertical and horizontal edges of a square region. Matrix views of networks can
achieve very high information density, up to a limit of one thousand nodes and one million
edges, just like cluster heat-maps and all other matrix views that use small area marks. The
key weakness of matrix views however is their lack of support for investigating topological
structure, since links are shown in a more indirect way than the direct connections of
node-link diagrams. The study of Ghoniem et al. [74] confirms this: by comparing the
effectiveness of matrix and node-link diagrams their study found that for most tasks matrix
views are more effective, except when identifying multiple-link paths between nodes.

Figure 25: Design choices for arranging networks according to Munzner et. al [18].

47

The second category of network arrangement is enclosure. Treemaps are a good exam-
ple of this: hierarchical relationships are shown with containment rather than connection.
All of the children of a tree node are enclosed within the area allocated to that node, and the
size of nodes is mapped to some attribute of the node. These idioms are very scalable, with
up to one million nodes and links [18]. However, these are also not as effective as pairwise
connection marks for tasks focused on topological structure such as path tracing through
the tree. Since path tracing is an important part of the tasks that our dashboard should be
able to fulfil (8.1), we choose node-link diagrams as the type of idiom to visualise software
structure with within the dashboard design. The connection marks in node-link diagrams
support path tracing via measuring the number of discrete ’hops’ of links between nodes.
While it is algorithmically straightforward to design 3D layout algorithms, it is rarely an
effective choice because of the many perceptual problems discussed in chapter 4.2. This is
why we choose to use a two dimensional representation.

One of the most used idioms for node-link network layouts is force-directed placement
of the marks. This type of placement has many variants though one common weakness: the
layout quickly degenerates into a hairball of visual clutter with even a few hundred nodes.
Therefore, more recent approaches to scalable network drawing are multi-level network
idioms, where the original network is augmented with a derived cluster hierarchy to form
a compound network. This can scale to 1,000-10,000 nodes and 1,000 to 10,000 links, with
a node/link density of L < 4N [18].

8.3.1 Radial charts

Two examples of the use of clustering to make node-link diagrams less cluttered are shown
in Figure 26. Both figures use a radial layout. The first figure, Figure 26a, utilises hierar-
chical edge bundling to reduce the clutter of links and groups nodes by a certain category,
whereas the second figure, Figure 26b, does so by aggregating links and nodes according
to their source, target and direction. Though the edge bundling used in Figure 26a shows
a clever way of reducing link clutter, a study by Draper et al. [75] found that cartesian
visualisations tend to outperform their radial counterparts, especially with respect to an-
swer times. They are mostly suitable for tasks that focus on a particular dimension, rather
than several. Moreover, the visualisations are less scalable in the number of nodes that can
be used, for the maximum number of nodes is limited to the size of the circumference of
the circle. Because we are looking for a network diagram that is scalable and effective for
multidimensional data, this type of layout is not preferable.

Figure 26: Radial approaches.

(a) Radial chart with hierarchical edge bundling
[76]. (b) Chord diagram [77].

48

8.3.2 Sankey diagrams

Another considered option, which aggregates links and nodes according to link’s shared
sources and targets, is the sankey diagram. It was originally designed to analyse flow in
energy and material management systems and is widely used in the field of industrial ecol-
ogy [78]. Its efficiency in visualising flow makes it a very interesting candidate to answer
questions regarding flow in a software system. As can be seen in Figure 27, it can be very
insightful when comparing categories of components, or even hierarchical, bi-directional
flow as shown in Figure 27b. However, the low-level nature of our research questions ask
for the representation of specific method calls within the system, not aggregated relations
between packages or modules. This level of detail makes sankey diagrams less suitable for
our needs.

Figure 27: Sankey diagrams.

(a) Sankey diagram [79].
(b) Bi-directional hierarchical sankey diagram
applied to the application "BandExample" [80].

8.3.3 Combining node-link diagrams with enclosure

This brings us to our chosen solution: the Group-In-a-Box Layout for Multi-faceted Analysis,
which was created for the analysis of communities. It uses the treemap space filling tech-
nique to display each graph cluster or category group within its own box, sized according to
the number of nodes therein [7]. This enables us to include the inherent hierarchical nature
of our data in the visualisation. Also, it offers a choice of layout algorithms for optimising
the layout of the sub-graphs within each region, and the assignment of visual properties to
vertices and edges within and across clusters and category groups.

49

Figure 28: Group-In-a-Box Layout for Multi-faceted Analysis of communities.

(a) Harel-Koren (HK) fast multi-scale layout of a
clustered network of Twitter users, using colour
to differentiate among the vertices in different
clusters. The layout produces a visualization
with overlapping cluster positions [81] .

(b) Group-in-a-Box (GIB) layout of the same
Twitter network: clusters are distributed in a
treemap structure that partitions the drawing
canvas based on the size of the clusters and the
properties of the rendered layout. Inside each
box, clusters are rendered with the HK layout"
[7].

8.4 Visualising metrics

As Tufte, the famous scientist in the field of data visualisation, said as early as 1983 [82]:
"Examine the data carefully enough to know what they have to say, and then let them say
it with a minimum of adornment." To keep the visualisation of metrics in relation to time as
simple as possible, a bar chart is chosen. The bar chart is a well-known idiom that is easy to
read. It can show the change in method duration over time, and with that highlight methods
that take relatively more time than other methods. Additionally, the colours of the bars can
be used to represent different characteristics of methods. When potentially having to show
more than a hundred methods at the same time, the bar chart is more scalable than a line
chart, which would only be able to represent methods with individual lines. This would
get cluttered more easily than a bar chart does. Moreover, the bar chart could potentially
enable showing concurrency, by stacking bars which represent methods that occur at the
same time.

8.5 Conclusions

The identified tasks can be broken down into two key components: questions about the run-
time structure of the software and questions about performance metrics in relation to this
structure. Therefore, the dashboard should include a visualisation of the overall structure
of the software as well as ways to visualise metrics in relation to this structure.

The structure to be visualised can be viewed as a hierarchical network of interactions
between class objects that call each other. Because of these hierarchical interactions, id-
ioms were studied that could potentially visualise structure, interaction and flow through a
system in a scalable way.

According to Munzner et al. [18], network diagram designs can be broken down into
three categories: 1) adjacency matrix, 2) node-link diagrams, and 3) enclosure. Since the
key weakness of matrix views is their lack of support for investigating topological structure,
multi-level node-link diagrams were studied. These can scale to 1,000-10,000 nodes and
1,000 to 10,000 links, with a node/link density of L < 4N [18]. Of the studied idioms, the
node-link diagram utilising the Group-In-a-Box Layout for Multi-faceted Analysis best suits
our needs. For visualising metrics, the most clear and understandable idiom that could be
used to perform the required analysis was selected: the bar chart idiom.

50

9 Presenting Architecture Miner

This chapter describes the chosen dashboard design, which is created to answer sub-
research question 4:

SQ 4. Which visualisation(s) can answer the questions identified in SQ 2?

9.1 Solution overview

We present Architecture Miner, a web-based interactive dashboard with which architectural
intelligence can be mined from large-scale Java applications. An overview of the dashboard
is shown in Figure 29, of which an enlarged version is attached in Appendix A. The dash-
board contains three so called idioms: a tree diagram, network diagram, and bar chart. The
network diagram shows the run-time structure of the application given a specified scenario.
The bar chart can change to show either: 1) the sequence and duration of calls that conform
to a specified threshold of duration and number of occurrences, or 2) the number of times
interactions/links occur given the same type of specified threshold.

Additionally, an options menu and a timeline are shown which can be used to control
the idioms. The options menu also contains key statistics about the selected scenario,
namely: the number of calls being made from class object to class object, the number of
unique connections between two class objects (links), the number of unique classes on
which the class objects are based (nodes), and the number of packages by which the class
objects are clustered in the network diagram. This will be explained in the next sections.

Tables 9, 10, and 11 show the attributes and metrics that are visualised in the dash-
board, along with the corresponding encoding and an explanation where needed.

Figure 29: Overview of the dashboard design.

51

Table 9: Encoding of the attributes and metrics represented by the tree diagram.

Encoding Attribute/metric Explanation

Tree leaf: white Package (static) A package in the static storage
structure of the code

Tree leaf: blue Class or ’ROOT’ (static) A class in the static storage
structure of the code, except
for the ’ROOT’ of the tree

Table 10: Encoding of the attributes and metrics represented by the network diagram.

Encoding Attribute/metric Explanation

Box Package
Size of box Number of class objects

within the package
The more nodes, the larger the
box

Title of box Package name If the box is too small to display
a title, it is now shown

Node Class object
Node position Package The cluster the node belongs to
Node radius Number of instances of the

corresponding class object
The more instances, the larger
the radius (logarithmic scale)

Node colour Package Each package has its own dis-
tinct colour

Node colour: green Negative fan in/out ratio More outgoing than incoming
connections

Node colour: red Positive fan in/out ratio More incoming than outgoing
connections

Node colour: orange Equal fan in/out ratio Equal amount of incoming and
outgoing connections

Node colour: blue External class object The class object is part of a
third-party library

Link Interaction between two
class objects

Can be bi-directional

Link colour: blue External interaction The interaction is with a class
object from a third-party li-
brary

Link colour: red scale Sum of duration of calls
over that link

The redder a link is, the longer
the calls that are made over
that link take in total (sum of
duration)

Table 11: Encoding of the attributes and metrics represented by the bar chart

Encoding Attribute/metric Explanation

Bar Call Call made from one class ob-
ject to another

Bar colour Thread on which the call oc-
curred

Bar pattern Sub-call The call is also a sub-call of an-
other call

X-axis bar chart Start time of call
Y-axis bar chart Duration or count of call

52

9.2 Interaction

In this section, all possible types of user interactions and their result are described. The
accompanying figures illustrate what the interaction looks like in the dashboard. These
figures are a result of applying the dashboard to the small Java application called "BandEx-
ample".

9.2.1 Select scenario

The options menu can be used to select the dataset i.e. scenario that the user wants to
visualise. This can be done using a drop down menu as shown in Figure 30.

Figure 30: Options menu: select scenario.

9.2.2 Filter data

Additionally, the menu contains the option to filter out class objects from the dataset on the
network diagram is based. This can be done by the name of the root package of the class
object. For example, all class objects which are instances of the class named "java.io.File"
can be filtered out by selecting "java" in the drop down filter menu, and subsequently click-
ing the "filter" button. This is illustrated in Figure 31. The application statistics that are
shown in the column called "selected" in the options menu and the network diagram will
now be changed according to the number of calls and corresponding packages selected.

Figure 31: Options menu: select filters.

(a) Before filtering. (b) After filtering.

53

9.2.3 Browse through the storage structure

The tree diagram can be used to look through the static storage structure of the applica-
tion. This can be done by clicking on a white leaf of the tree, which will make the underlying
packages and classes unfold. If the selected package contains another package, this pack-
age can also be clicked and thus a dynamic way to search through the storage space is
provided.

Figure 32: Tree diagram: look through storage structure.

(a) Before selecting tree leaf ".band". (b) After selecting tree leaf ".band".

9.2.4 Select package depth

As mentioned before, the layout of the network diagram is structured according to the
Group-In-a-Box layout, which uses the treemap space filling technique to display each graph
cluster or category group within its own box, sized according to the number of nodes therein
[7]. For example, in Figure 33a, the left box is larger than the right box because the left
box contains four nodes and the right box contains three nodes.

The class objects i.e. nodes are clustered according to their package which is rep-
resented by the box in which nodes are positioned. For example, in Figure 33a, the left
box represents the package called "band" and the right box represents the package called
"instruments". These packages can however differ according to the chosen package depth,
which the user can specify. In Figure 33a, the user has selected a package depth of 2, while
in Figure 33b, the user has selected a package depth of 1, which results in both packages
being coloured green. To decide which package depth to choose, the tree diagram might
aid the user to look through the different package levels in the storage hierarchy.

Figure 33: Network diagram: select package depth.

(a) Package depth 2. (b) Package depth 1.

54

9.2.5 Show/hide template

A template is used to show the names of packages and the sizes of the corresponding boxes
to the user. Since the position of nodes already encodes to which cluster they belong, this
template can be turned on and off as illustrated in Figure 34.

Figure 34: Network diagram: show/hide template.

(a) Showing the template. (b) Hiding the template.

9.2.6 Select colour overlay

The colours of nodes and links in the network diagram can be changed by choosing a colour
overlay. These provide the user with additional information about the interactions shown in
the network diagram. The first colour overlay, which is set as a default setting and shown
in Figure 35a, is colouring the nodes of the diagram by their package. When the network
diagram scales up, making it harder to gain an overview, this can provide a means to the
user to see the distinctions between nodes from different packages more easily.

Figure 35: Network diagram: types of colour overlays.

(a) Colour by package. (b) Colour by fan in/out ratio.

(c) Colour by internal/external interactions. (d) Colour by traffic.

Figure 36: Red colour scale used in the network diagram.

55

Second, the user can colour nodes by the corresponding class objects’ fan in/out ratio.
This shows the user whether the class object has more incoming links (red), more outgoing
links (green), or an equal amount of incoming and outgoing links (orange). An example of
this is shown in Figure 35c.

The third overlay shows which nodes are part of or interact with a third-party library,
by colouring them blue. This can be used to identify how dependent certain parts of the
system are on these libraries, which is illustrated in Figure 35c. Last, links can be coloured
by the amount of ’traffic’ over that link. This is measured by the total duration of all calls
made over that link. For example, if two calls are made over a link of respectively 0.02 and
0.5 seconds, the total duration is 0.52 seconds. The more traffic over the link, the redder
the link is coloured. The used colour scale is shown in Figure 36. The scale goes from white
to dark red, which is why most links will become white since their relative ’traffic’ is very
low. In Figure 35d, only two links stand out since they are more red.

9.2.7 Hover over a node, link or box: tool-tips

Nodes, links and boxes can be hovered over to show additional information. This is illus-
trated in Figure 37. For a node i.e. class object the name of the class is shown, together
with the number of times it is being instantiated and the container it corresponds to. In the
example in Figure 37a, the class "BandMember" is instantiated 12 times and has a parent
package called "org.architecturemining.program.example.band".

The information about a link that is shown is: the class objects between which the link
represents interaction, the number of messages/calls executed over the link, and the sum
of the duration of all calls over that link. In the example in Figure 37b, the link between
the class objects "BandMember" and "Drums" is hovered over. The number of calls made
over the link amount to six, and the total duration of those six calls added together is 0.026
seconds. The tooltip also shows "(Click for more info)", since the link can be clicked to show
more info about the underlying calls in the bar chart.

When hovering over a box, the full name of the corresponding package is shown. This
is especially useful when the box is too small to display a title and the title is otherwise
unknown. An example of this is shown in Figure 37c, in which the box corresponding to the
package "org.architecturemining.program.example.band" is hovered over.

Figure 37: Network diagram: hover over a node, link or box.

(a) Hovering over a node. (b) Hovering over a link.

(c) Hover over a box.

56

9.2.8 Click on a node in the network diagram

When clicking on a node in the network diagram, the links connected to that node are
highlighted. To make a distinction between incoming and outgoing links, incoming links
are shown with a dashed line. This design is inspired by the research by Holten et. al, who
study the readibility of directed-edge representations in node-link diagrams [83]. The node
colour takes on the colour of its fan in/out ratio, which is red in the example in Figure 38
since there are only incoming links. If there are calls belonging to this class object that take
longer than 0.1 seconds in duration, these appear in the bar chart when clicking a node.

Figure 38: Network diagram: click on a node.

9.2.9 Click on a link in the network diagram

Clicking on a link in the network diagram makes the underlying calls appear in the bar
chart. This is illustrated in Figure 39. In the example, the link between the class objects
"Band" and "Song" is clicked, which reveals the underlying call to "getLyrics()".

Figure 39: Network diagram: click on a link.

(a) Clicking on a link. (b) Hovering over the corresponding call(s).

9.2.10 Hover over a bar: tool-tips and highlight corresponding node and links

Hovering over a bar in the bar chart shows additional information about that bar, as well as
its location in the network diagram. The node that corresponds to the bar is shown in the
network diagram with a black fill and stroke to draw attention to it. The link over which
the caller class calls the selected class is dashed, because it is an incoming link from the
caller to the callee. The link that the called/selected class uses to call the next class object
is shown with a regular fill. In this way, the incoming and outgoing link in respect to the
hovered over class object are highlighted to the user.

57

For example, in Figure 40, the hovered over bar/call corresponds to the method "prac-
tice()" that is being called in the class object named "Band". This method is being called by
the class object "BandPractice", which is the node connected to the dashed line in the net-
work diagram. The next method that is called is "play()", which is called in the class object
"BandMember", which corresponds to the node connected to the regularly styled link. As
can be seen by the information provided in the tooltip, the measured duration of the method
is 4.104 seconds. Within the scenario, it is instantiated one time.

Bars that represent calls that are also a sub-call of another call (see the definition in
chapter 10.2), are shown with a print with diagonal lines over the bars. In Figure 40, all
bars except the one corresponding to "practice()" have such a print, because they are all
sub-calls of "practice()".

If the selected call has sub-calls, the first sub-call is seen as the next call of the call. If
the call has no sub-calls, the start time of the call is used to define the next call. If the next
call is unknown, this is because there is no next call, or it could not be retrieved from the
data.

Figure 40: Bar chart: hover over a bar.

9.2.11 Toggle duration/instances

The user can toggle the bar chart view between showing call sequence and duration, and
number of link occurrences. When the user has selected the "duration" view, the bars
represent calls, the x-axes represent the start time of calls, the y-axes show the duration of
the calls, and the colouring shows the thread on which the call was made. When the user
has selected the "instances" view, the bars and x-axes represent unique links between class
objects, the y-axes represent the number of occurrences of that link on a logarithmic scale,
and the colouring has no meaning.

58

Figure 41: Bar chart: toggle duration/instances.

(a) Duration view.

(b) Instances view.

9.2.12 Set thresholds

The user can set two types of thresholds to filter the data shown in the bar chart: 1) the
duration of the calls, and 2) the number of occurrences. For example, in Figure 42a, the
duration view is filtered to show only calls with a duration that is longer than two seconds.
In Figure 42b, the instances view is filtered to show only links that are used more than five
times. A combination of filters is possible.

Figure 42: Bar chart: defining thresholds.

(a) Duration view filtered by more than two seconds.

(b) Instances view filtered by more than 5 occurences.

59

9.2.13 Click a bar in the bar chart and reset it

When clicking a bar in the bar chart, information about the underlying calls is shown. This
can always be reset by the user to show the initial view again, by clicking the "reset" button.

In Figure 43a, a bar is clicked while the bar chart is set to the duration view. This
results in showing the sub-calls of this call, in this case the sub-calls of "practice()". How
sub-calls are defined is explained in chapter 10.2. As can be seen in the figure, the sub-
calls of practice() are the four calls made to the "play()" method. It should be noted that in
the duration view, the bar chart is filtered by calls that have a duration of longer than 0.1
seconds. It could therefore be possible that not all underlying methods are shown i.e. the
methods that take shorter than 0.1 seconds are not shown. This is done to reduce clutter.
As scenarios become larger, it becomes impossible to show all corresponding calls in the
bar chart, which could be tens of thousands of calls.

Figure 43: Bar chart: clicking a bar in the duration view.

(a) Clicking a bar in the duration view.

(b) Result of clicking the bar.

When a bar is clicked while in the instances view, the underlying calls are shown. In
the example in Figure 44a, the bar corresponding to the link between the class objects
"Band" and ""KeyIterator" is clicked. As a result, two bars appear in the bar chart, each
representing a call made over this link. In this case, the methods "hasNext()" and "next()"
are being called over the clicked bar/link.

60

Figure 44: Bar chart: clicking a bar in the instances view.

(a) Clicking a bar in the instances view.

(b) Result of clicking the bar.

9.2.14 Drag the timeline or click play

The user can drag the timeline to see which system parts are being used at a specific time.
These are highlighted with a thicker stroke width of both nodes and links. The nodes that
represent class objects that are being called at that time have the thickest stroke width,
followed by nodes that represent calling objects. Instead of dragging the timeline, the user
can also click "play", which results in the timeline being dragged automatically.

Figure 45: Timeline controlling the network diagram layout.

(a) Step 1. (b) Step 2.

(c) Step 3. (d) Step 4.

61

10 Dashboard Implementation

This chapter describes how the required data is collected and processed. It starts by ex-
plaining AJPOLog and the data it produces. After that, how the required information is
extracted from this information is described. Next, the selection of a visualisation frame-
work is discussed, after which the data processing and back-end design are presented.

10.1 Data collection

As described in chapter 3, the AjpoLog tool is selected to collect the data necessary to
answer the research questions. Appendix A describes how to use AjpoLog to instrument
Java applications. The attributes captured by this tool are [8]:

1. Timestamp

2. Name of the thread on which the call happened

3. Whether the event refers to a method entry or exit

4. Identifier (fully qualified name + object identityHashCode) of the calling object

5. Identifier of the object that contains the method being called

6. Method signature and fully qualified name of the method being called

Since De Jong (2019) [8] does not report on the influence of the tool on the duration
of calls, we measure this with a small experiment. We measured the start and end time of a
run of the small application called "BandExample", and repeated it ten times with and ten
times without the tool. Table 12 shows the results and calculated duration of the runs with
and without instrumentation with AjpoLog. It is noticeable that the runs without AjpoLog
have a duration that is consistent throughout all ten runs (4.004 seconds), and the runs with
AjpoLog vary consistently between 4.004, 5.005, and 6.006 seconds. The average duration
of the runs with AjpoLog is 5.005 seconds. Based on these results, the tool would have an
influence of 20% on the duration ((5.005-4.004)/4.004)). Although more experimentation is
needed with applications of varying sizes and types to be able to generalise, it provides an
indication of the influence of the tool on the instrumented system’s performance.

Table 12: Duration of ten runs of the BandExample application with and without AjpoLog.

Without AjpoLog With AjpoLog

Run Start Time End Time Duration Start Time End Time Duration

1 04:45:30.648 04:45:34.791 00:04.004 04:55:13.297 04:55:18.082 00:05.005
2 04:46:55.316 04:46:59.362 00:04.004 04:56:07.006 04:56:12.474 00:05.005
3 04:47:36.987 04:47:41.042 00:04.004 04:57:15.462 04:57:21.391 00:06.006
4 04:48:24.965 04:48:29.014 00:04.004 04:57:40.186 04:57:45.185 00:05.005
5 04:48:57.728 04:49:01.78 00:04.004 04:58:01.756 04:58:06.037 00:04.004
6 04:49:22.84 04:49:26.889 00:04.004 04:58:28.479 04:58:33.078 00:05.005
7 04:49:54.74 04:49:58.784 00:04.004 04:58:56.193 04:59:01.374 00:05.005
8 04:50:24.43 04:50:28.473 00:04.004 04:59:34.383 04:59:39.122 00:05.005
9 04:50:51.72 04:50:55.762 00:04.004 04:59:55.68 05:00:00.734 00:05.005
10 04:51:19.133 04:51:23.181 00:04.004 05:00:19.867 05:00:24.975 00:05.005

62

10.2 Extracting the required information

With the information collected with AJPOLog, all caller-callee relations given a specified
scenario can be collected. Moreover, the data provides insight in the location of the calls by
specifying the path to the called class. For example, if “org.architecturemining.program.
example.band.BandMember" is being logged as a callee, it indicates that the class "Band-
Member" is being called, which is located in the package “org.architecturemining.program.
example.band". The duration of calls can be depicted by subtracting the start time of the
end time of the call. The number of times a class is called can be calculated by taking
the accumulated sum of calls in which the object class is the callee. The number of times
a method is called can be calculated by taking the accumulated sum of calls in which the
"method signature and fully qualified name of the method being called" is equal to that
method. External libraries can be defined by comparing the package and class names of
the system under study by the names of the class objects found in the generated interaction
logs.

As the duration of a call/method, AjpoLog measures the start and end of a call as
the moment of method entry and exit. This means that the duration of all methods that that
method calls is added to the duration of the method, since the methods that the method calls
are executed before the method exits. Therefore, we estimate which calls are most likely
sub-calls of the call/method in question, so that we can estimate the duration of individual
methods. Under the assumption that all methods are synchronous i.e. blocking until they
are finished, we state that: if Call2.source equals Call1.target, and interval Call2 is within
interval Call1, then Call2 is a sub-call of Call1. With this information we can calculate the
total duration of the sub-calls of a call, and therefore the duration of the call itself.

10.3 Visualisation framework selection

The selected visualisation framework is JavaScript:D3, which stands for Data Driven Doc-
uments. It was created by Michael Bostock as part of his PhD at the Interactive Data Lab
of the University of Washington [84]. There are several reasons this framework was cho-
sen. First of all, the authors of the framework test it against other frameworks, showing
it has better performance. In their article, they describe several implemented mechanisms
to optimise data management [85]. Second, since it is part of the JavaScript language, it
is added to the front-end of a web application. This is a convenient type of application to
be able to share the dashboard within the research community. Finally, the researcher al-
ready had (positive) experience with the framework, which made it possible to program the
dashboard and try out different things in a relatively short amount of time.

10.4 Data processing

To convert the data from a LOG format to a JSON format, which is compatible with JS:D3,
two Python scripts are used. The first script converts the data from a .log format to a
CSV format, which is based on the script written by De Jong (2019) [8] as part of his re-
search. The second script converts the data from a CSV format to a JSON format, and
simultaneously calculates the required parameters. For example, the LOG shown in Table
46 is converted to the CSV shown in Table 47. A step-by-step instruction of how to run the
scripts and use the result as an input for the visualisation is provided in Appendix A.

An illustration of the chosen JSON format can be found in Figure 57 and will now be
explained. The object contains two main arrays that are called "nodes" and "links". This
structure is chosen since the network diagram has nodes and links, of which the data can
in this way be retrieved all at once. Links are unique connections between two classes in
the system, over which calls are made. Therefore, calls are saved within the object of the
link they are sent over. Sub-calls are in turn saved in the object of the call they belong to.
This way the calls corresponding to links, and the sub-calls corresponding to calls can be
retrieved.

63

Figure 46: One method entry and exit as logged by AjpoLog [8].

Figure 47: One method entry and exit as logged by AjpoLog, converted to CSV format.

10.5 Back-end design

It should be noted that this format is chosen solely to suit the purpose of quickly creating a
proof-of-concept: ’if it works, it works’, and not to find the most efficient way of managing
the data. The main purpose of this research is to test a prototype of the designed dashboard.
If the visualisation should need to be more performant in the future, the back-end design
shown in Figure 48 can be applied.

The log files could initially be stored in a blob storage, after which they can be pro-
cessed by the Python scripts to CSV/JSON format. After that, the individual calls/objects
could be posted to a database in unique key-value pairs. The web application would then
be able to do GET requests to the database to retrieve the required data.

Figure 48: Back-end design that can be applied to increase the performance of the dashboard.

64

11 Dashboard Verification: Running Example

In this chapter, we will verify whether the dashboard is able to answer the research ques-
tions. We will do this by answering the questions with a small java application. The appli-
cation selected to verify with is the same application that was used in chapter 9.2 to show
the possible interactions with the dashboard. It is a small Java application which has 206
lines of code, 8 classes and 6 packages. The only library it uses is the Java library itself. The
application has only one possible scenario, that can be executed by running the application
from the command prompt.

11.1 Which part(s) of the system contain calls that take relatively
longer than the other calls to execute?

There are two ways in which this question can be answered using the dashboard. Firstly,
the user can look at the bar chart and compare the bars to find the calls that take relatively
longer to execute. Hovering over the bar will reveal the location of this method call that
is relatively longer in duration. In this case, it could be argued that the method named
"practice()" relatively takes up the most time. The tool-tip shows that this method is located
in the container "org.architecturemining.program.example.band". This can also be seen
by looking at the network diagram, which shows a line with a thicker stroke inside the
container labelled "band".

Figure 49: Hovering over the highest bar.

Second, the user can switch to the "colour by traffic" view to identify the links that
have the most dark red colour. Once the user has identified the link with the most dark red
colour, the user can click this link to view the underlying calls in the bar chart. In this case,
the link corresponds to the call to "practice()", which is why the bar corresponding to this
call shows up in the bar chart.

Figure 50: Clicking the most dark red link in the network diagram.

65

11.2 The calls that take a long time: how often are those called?

Viewing how often the calls that take a long time are made can be done by hovering over
the calls which reveals the tool-tip. Here a field named "instances" shows how many times
that call is made during the selected scenario. In the case of the "practice()" method, this
is only one time as can be seen in Figure 49.

11.3 The calls that take a long time: which path do those follow
through the system?

Hovering over calls of interest also reveals the path that they take through the system.
On the lower line of the tool-tip as shown in Figure 49, the name of the caller class is
shown, as well as the name of the class that will be called next (if known). In this case, the
caller class is named "BandPractice()" and the class in which "practice()" is called is named
"Band". Next, "play()" will be called in the class "BandMember". As mentioned before,
hovering over a bar also reveals this path in the network diagram, with a dashed line for
the incoming link and a regular line for the outgoing link.

11.4 Which classes are called most often (and therefore important)?

The radius of the nodes is defined with a logarithmic scale according to the number of times
the corresponding class object is instantiated. Although area is not a the most effective way
to encode ordered attributes as can be seen in Figure 15 [18], and it is difficult to compare
two nodes of roughly the same size, this can be an effective way to identify which nodes
"stand out". In this case as shown in Figure 51, it is clear that the nodes corresponding
to the class objects "Band" and "Song" are biggest (marked as 1), followed by "Drums"
(marked as 2). To compare the relative sizes of nodes, the tool-tip can be used which shows
the exact numbers (12,12 and 6).

Figure 51: Identifying the biggest nodes in the network diagram.

11.5 What are the run-time dependencies of the system on (third-
party) libraries?

To answer this question, the user can switch to the "colour by internal/external" view. From
there it becomes apparent that the application uses the packages "java.util", "java.io", and
"java.lang" from the Java library.

66

Figure 52: Identifying the libraries that the application uses.

12 Dashboard Validation

This chapter describes the results of validating the dashboard through interviews and a fo-
cus group, both with all four DevOps Engineers and the Software Architect. The protocols
of both validation methods including the used scenario’s can be found in Appendix A and A.
This chapter aims at answering the sub-research questions:

SQ 4. Which visualisations can answer the questions identified in SQ 2?
SQ 5. What are the strengths and weaknesses of the created dashboard?

12.1 Participants

An overview of the system stakeholders and their experience is provided in Table 1. Since
the validation took place in August 2019, four months should be added to the experience in
this table. In the mean time, DevOps Engineer 3 left the team and was replaced by a new
DevOps Engineer, who will be numbered DevOps Engineer 5. This new DevOps Engineer
is working fulltime on the system since May, and had about one and a half year of previous
working experience in a similar role. Throughout the chapter, comments will be labelled by
the stakeholder who made the comments. These labels are as follows:

• DE-ME: DevOps Engineer 1, who has the most experience with the system.

• DE-MJ: DevOps Engineer 2, who has the most experience with the Java language.

• DE-SM: DevOps Engineer 4, who is also the Scrum Master.

• DE-LE: DevOps Engineer 5, who has the least experience with the system.

• SA: Software Architect.

12.2 Selected scenarios

Within the application landscape, two out of three sub-applications were instrumented with
AjpoLog. The reason for this is that the third application is almost never used. A scenario
is defined as follows:

Definition 25 (Scenario). A scenario is a sequence of features that trigger actions of the
system and yield an observable result to the user [86].

Definition 26 (Feature). A feature is a realised functional or non-functional requirement
[87].

Since the definitions of a scenario and a feature are not unambiguous, we let the
architect of the system select a scenario for validating the tool. In this way, the definition
of a scenario was made by a stakeholder of the visualisation, which would be the case if
the tool would be in actual use by the DevOps team. The scenarios are included in the
validation protocol in Appendix A and A.

67

12.3 Interviews

12.3.1 Answering the questions without the dashboard

To identify which parts of the system contain methods that take relatively long, all intervie-
wees would first look at the logs produced by the monitoring systems, which are already in
place in the production environment of the application. Here the total time of requests can
be depicted, along with the order of classes being called, which include timestamps. The
information that is missing to answer the question is the execution time of methods.

One of the interviewees (DE-MJ) would run part of the code locally, because "that is
not easy in production". He would then debug the code to log information. This information
would however not be complete enough to answer the question without looking into the
source code.

Two of the interviewees (DE-LE, SA) note that they would additionally use a profiler
to retrieve the information. Only one of them can specify which profiler he would use:
Java Mission Control (SA). This profiler provides a dashboard showing the Stack Trace of
program executions which is shown in Figure 53. This is noteworthy, since during the
interviews held to identify the information needs of the architect, he claimed not to have
this information (Table 7).

Figure 53: Java Mission Control Call Tree [88]

None of the four DevOps Engineers can answer the question about how often methods
are being called. One of them replies that you can speculate about it by looking into the code
in debug mode (DE-SM). Another notes that it can be speculated about from the logging,
but only if the line of logging is unique (DE-ME). Another replies that he would add logging
to the test build, but does not specify how he would approach this (DE-LE). The Software
Architect would again use JMC to view the number of times that a method is used.

To identify which classes are called most often within a certain scenario, one of the
DevOps Engineers would count the times the class’s name occurs in the log files (DE-ME).
Two others reply that they have no way of finding this out (DE-MJ and DE-SM). The last
DevOps Engineer would put logging in the constructor of the class, but admits that this is
a difficult task (DE-LE). The Software Architect would again look into it using JMC.

68

None of the interviewees are able to depict the specific path calls take through the
system, with the tools they currently have available. One of the interviewees (ME-DE)
replies that this can be speculated about by looking at the order of the lines of log together
with timestamps and request IDs, and then into the code. This would however take a long
time and it cannot be specified with certainty. Two of the interviewees (DE-SM, DE-MJ)
would try to depict it by using debug mode in their development environment, and looking
at timestamps in the logging. This information would however not be complete, and it takes
a lot of time because break lines have to be set per individual line of code and the log files
generated are very large. The architect notes that in JMC the precise order of calls does
not become clear, so the source code is needed to depict that.

The fifth question can also not be depicted with the tools the interviewees currently
have. The architect notes that JMC does not make a distinction between internal and exter-
nal libaries. The others reply that they can only depict the static dependencies by looking
into the pom.xml file of the project (DE-SM and DE-LE), look into the information that their
IDE provides (DE-SM and DE-LE), or simply look into the code to see which imports each
class uses (DE-MJ).

12.3.2 Answering the questions with the dashboard

The interviewees could answer all questions using the dashboard. One of the interviewees
even asked: "Why are you asking me these questions, while what you have made is ex-
actly customised to answering these questions?" When asked directly, the interviewees also
replied that they could formulate a complete answer to all questions.

Nevertheless, the interviewees did have ideas for improvement that could make it
easier to answer the questions. Regarding the first question: "which part(s) of the system
contain calls that take relatively longer than the other calls to execute", the architect noted
that it is difficult to depict to which call the shown sub-calls belong. Calls that are "deeper"
in the call hierarchy are more interesting, and with the current visualisation this is hard to
depict. Also, one of the DevOps Engineers (DE-MJ) found the threshold of calls that take
longer than 0.1 seconds already quite high. He would like to see the bar chart in even more
detail.

To all interviewed stakeholders, depicting the path that a call takes through the system
is clear regarding the caller class and the class that the callee class calls next. However, the
information about the class that the callee class will call next is sometimes missing (DE-ME
and DE-LE). One of the interviewees (DE-MJ) noted that it would be useful to see not only
the caller class, but also the method within this class that caused the callee class being
called. Another interviewee (DE-SM) replied that she could answer the question, but finds
further path tracing difficult sometimes. It would be useful to not only see the previous and
next step highlighted in the network diagram, but multiple steps before and after the call is
being made. Also, it would help if the layout in the network diagram would stay fixed to the
selected call when a bar in the bar chart is clicked. Lastly, one of the interviewees (DE-LE)
noted that relatively many class objects call methods within themselves, and he would be
interested in seeing the call that led to this behaviour, and how many steps this was before
the behaviour started to occur.

Only one of the interviewees (DE-LE) found that the way in which external libraries
are visualised is not entirely clear. This is because the links in the view are fairly cluttered,
which would make depicting the exact interactions difficult. Despite this, he was able to
name all external libraries in the validated scenario.

12.3.3 Perceived usefulness

The answers of the interviewees regarded perceived new insights, speed of finding infor-
mation, and tasks that the interviewees would use the dashboard for in their daily work.
These are now described.

69

All interviewees replied that the dashboard provides them with new insights, because
there is more detailed information about the calls being made. Especially the information
about when and how often methods are being called, in combination with their duration.
Moreover, it is possible to see which methods call other methods (DE-LE), and gain detailed
insights into methods that are slow (DE-MJ) or could be potential bottlenecks (DE-LE). The
software architect added: "I have never seen a visualisation with metrics in combination
with structure before. This provides a better overview than other profilers do."

The stakeholders also agree that the dashboard would save them a lot of time. One
even notes (DE-ME): "It would potentially spare me days of work looking into log files when
issues arise, if it was running in production." Other reasons given for saving time are that
the engineers would not have to figure out themselves where to look in the code, nor select
scenarios to test (DE-MJ).

The interviewees name two types of use cases for the dashboard: 1) improving per-
formance (DE-RD, DE-MG, DE-CP and DE-MJ), and 2) improving code quality and structure
(SA, DE-MJ). To begin with, the architect thinks the dashboard would be useful to improve
the structure of the application. Currently, he has no tools available that can visualise the
run-time structure of applications. The visualisation would support identifying points for
improvements, and looking at the application with an open view. Still, he thinks that per-
formance tuning using the dashboard would be less useful, since he has profilers available
that provide more insight in this and additional metrics such as CPU. He would not use the
tool in his daily work, but to lift the code to a higher level. One of the DevOps Engineers
agrees (DE-MJ), stating that as a developer he would use the dashboard to look into test
scenarios. In this way, he would for example be able to spot redundant method calls that
are being made more times than needed. He adds that he thinks the dashboard provides a
useful overview.

Four out of five interviewees would use the dashboard for performance related tasks.
One of them (DE-ME) even claims that if the dashboard would collect live data within the
production environment, he would have it open on one of his screens 24/7 to immediately
see where in the system it goes wrong when performance issues arise. He stresses that
he finds the "colour by traffic" in the network diagram very useful, and would imagine
links turning redder according to the severity of the issue. He adds that he finds it a good
decision to make links that do not have a lot of traffic white, so the red links pop out even
more. He thinks using the dashboard would be a great improvement to the way in which
they optimise performance, especially because the dashboard provides so many details. He
adds that their current tool, LogicMonitor, does not collect live data. Another interviewee
(DE-SM) notes that she would use the the dashboard to identify where development efforts
should be focused, and then look into the source code to see how it can be improved.

12.3.4 Perceived ease of use

Generally, the stakeholders found the dashboard easy to use. The words "intuitive", "clear",
and "understandable" were used by all of them during the interviews to describe their
interaction with the dashboard. Despite this, after diving deeper into their previously given
answers, they did have some ideas to improve the dashboard.

First of all, two of the interviewees found some of the naming used for elements un-
clear (DE-ME, SA). Yet, the architect notes that naming conventions are difficult to get
right, since it is highly dependent on personal preferences. One of the engineers (DE-ME)
adds that some of the functionalities would stay unknown if not explained by the interviewer
beforehand. For example, when a user does not know that clicking a link will result in show-
ing extra information in the bar chart, there is a chance he will never find out. Two of the
interviewees mention that the effect of clicking a bar in the bar chart is not very clear, as
well as what a sub-call is (DE-SM and DE-LE). One of them adds that it would be nice to be
able to drag over multiple bars to see information about all of them at once (DE-LE).

70

Also, the filter check-boxes should be designed the other way around: checking a box
should mean that the information is selected, not removed. The filter is also hidden a bit, it
should be stressed more (DE-LE). A legend would be very helpful to solve most of these is-
sues, including instructions that can be unfolded and folded again when not needed. Lastly,
one of the interviewees found it unexpected that the nodes where continuously moving on
the screen (DE-ME).

12.3.5 Strengths of the dashboard design

At the end of the interviews, the interviewees were asked to provide a top three of strengths
and weaknesses of the dashboard. This resulted in the following list of strengths:

• The dashboard provides a good overview of the inputted scenario (SA, DE-LE).

• The network diagram is very well constructed: it is simple, and clear what the size of
the nodes, and links represent (DE-LE).

• The combination of metrics and structure is perceived as innovative and useful (SA).

• The dashboard is a good means to explore the software: lots of questions about the
software arise when looking at the visualisation (SA). Examples of this are further
discussed in section 12.4.

• A large amount of information is shown which opens up a wide range of possible
applications (DE-ME).

• The dashboard provides more details than the profilers currently available to the team
(SA, DE-SM).

• It is very useful to have drill-down options (SA).

• Because of the method call level of detail, including the duration of the individual
method calls, it is possible to identify problems (DE-SM, DE-LE).

• The paths that calls take from A-Z are very clear (DE-SM).

• It is very clear which methods are called in which parts of the system and when (DE-
SM).

• The dashboard is very reactive, interacting with it is fast and smooth. Only when
loading a new dataset it takes some time (DE-ME).

• The timeline is very intuitive and useful. It gives the user a good feeling about the
flow of control through the application. Especially if he or she has never worked with
the application before (DE-LE).

• The bar chart works very well, as well as filtering it. Using colours to encode threads
is a good choice (DE-MJ).

• The colour overlays are very useful (DE-MJ).

12.3.6 Ideas for improvement

At the end of the interviews, the interviewees were asked to provide a top three of improve-
ments that could be made to enhance the dashboard. We intentionally kept asking for more
feedback, to grasp the opportunity for generating ideas. This resulted in the following list
of improvements to be made:

• Overall filtering of data should be improved to reduce the "interference" of data that
is not of interest (SA). Four types of filters were mentioned: 1) filtering by thread (SA),
2) filtering on a deeper level (rather than just the root of the element’s names) (SA,
DE-LE), 3) filtering by time interval (DE-MJ), and 4) filtering by type of object (SA).

71

• A distinction should be made between different types of objects (SA and DE-ME).
Applications are made up of different layers, which are generally the presentation,
business, and data access layers. Especially differentiating between value objects and
entities could be very useful for architectural insight (SA).

• The steps composing a scenario should be kept to a minimum (SA).

• It would be a nice addition if the user can annotate elements in the visualisations
themselves, to add their knowledge of the used frameworks to their classification
(SA).

• Adding a better view of the aggregated interactions between packages (SA).

• As mentioned before, add a way to see clearer which calls belong to which sub-calls
in the bar chart (SA and DE-LE), like how this is done in Call Tree visualisations (Fig
53) (SA).

• It should be clearer what is meant by duration and duration of sub-calls (DE-MJ). Also,
it should be clearer what a sub-call is (DE-SM and DE-MJ).

• It would be interesting to see in one overview which calls belong to a class (SA).

• It takes some time to understand what you see, and know all the possibilities (DE-SM).
Adding a legend or instruction could improve this (DE-SM and DE-LE).

• As mentioned before, clicking a bar should fix the corresponding layout in the network
diagram for further inspection. In this way, the network diagram can make the path
of the call more clear, instead of having to look at the tool-tip of the bar (DE-SE and
DE-MJ).

• Nodes should be less overlapping to make a better distinction between them (DE-SE
and DE-MJ).

• It can be difficult to compare the sizes of nodes (DE-SM, DE-ME), adding a third view
to the bar chart that shows the instances per class object could solve this (DE-ME).

• Sometimes the next call is unknown which would be nice information to have (DE-ME).

• It would be a major addition to collect live data from the production environment
(DE-ME).

• It would be nice to not only see the caller class but also the method in that class that
calls the selected method (DE-MJ).

12.4 Focus group

12.4.1 General questions

Both questions are related to the way in which the used frameworks operate. The proxy
classes should indeed always represent the same class, because the Spring framework cre-
ates an object between the methods called. Therefore, it might be a good idea to replace
the proxy numbers with the class object names they represent in the data, to shift focus to
the actual caller and callee. When a callee class of a call does not conform to the class in
which the corresponding method is being called, this is because of inheritance. The way in
which this is visualised now is however correct and should not be changed.

72

12.4.2 Scenario 1

Regarding application 2 being used within the scenario, the participants agree that it is log-
ical since it is necessary for the request to retrieve the right information. When asked about
the duration of the interaction between "SelfPopulatingCache" and "List-CacheService", the
architect answered that this is a perfect example of a background process that happens to
co-occur during the selected scenario, but has nothing to do with it. This is one of the rea-
sons why he thinks there should be better filters on the visualisation, because interactions
like these interfere with the results that actually matter.

One of the engineers found it noteworthy that the class object corresponding to the
"OnExecute()" method is connected to a lot of other class objects. She thinks this is because
the code is badly written which causes the many connections to occur. She also wondered
why the "MenuComponent" class object is used so often (19,152 times). The architect
had an explanation for this, namely that the front-end of the application checks every item
shown in the menu recursively, to see if the user is allowed to view it. He thinks it is a good
idea to look into the "PermissionsAdapter" class and optimise this process. Another notable
result is that "gebruikersbeheer" is used a lot within the scenario. The team expects that
the reason for this is that the scenario is run with admin permissions, which may cause this
class object being called more often to check permissions. Also, a package called "weblogic"
is used within the scenario. The team uses Tomcat as a server, so it would not make sense
that a class object is named after another type of server. Finally, the external company
register seems to be slow and in need of optimisation.

12.4.3 Scenario 2

The fact that the method "getListFieldLabel()" is called 152 times is not a problem, since
this is part of a front-end process. It is also logical that "hiquality" is the most used package,
as most of the scenario is a request to this external service.

The team did not see a lot of results in the visualisation that they found notewor-
thy. One of the engineers wondered why the class objects: "KlantInformatieServiceImpl",
"AjaxViewRoot", "ApplicationImpl", and "TaskThread" are being called so often. The team
was not able to specify what the role of the "KlantInformatieServiceImpl" object is within
the scenario. They found it an interesting result to dive into with the source code.

12.4.4 Scenario 3

The team found the fact that the method "listBedrijven(List)" takes a long time to execute
very interesting. After a long discussion, they agreed that this is probably the case due
to the admin rights with which the scenario is executed. Since the admin is not assigned
to any companies, the entire list of companies known to the application is checked, while
for a regular user the list of companies would be small. The second question was already
answered during the discussion of scenario 1.

The team again pointed out that there is a class object used within the scenario that
they did not expect to be used. There were no other results that they found noteworthy.

12.5 Conclusions

With the tools that the DevOps team currently has available they cannot depict the specific
run-time path calls take through the system, nor can they depict which of the libraries are
used run-time. To depict how often methods and classes are being called, and what the
execution times of method calls are, the architect of the team uses Java Mission Control. It
is notable that the DevOps Engineers of the team do not use this tool. For them, retrieving
this information costs a lot of time, and is not complete enough to depict the execution
times of specific method calls and the times they are being executed.

73

The interviewees could answer all questions using the dashboard. With this result, the
dashboard design answers sub-research question 4:
SQ 4. Which visualisations can answer the questions identified in SQ 2?

During the focus group, there were various insights that the visualisation provided
that the team found interesting. First of all, some of the packages and corresponding class
objects that appeared in the visualisation were not expected to be part of the scenario. An
example of this is the package "Weblogic", which should not be present since this is a server
package and the team uses a different server to run the web application on. Second, the
large number of instances of several of the class objects was noteworthy. An example of
this is the class "MenuComponent", which should not be instantiated so many times. Third,
some objects such as "onExecute()" had a large number of connections to other objects
which could indicate badly written code. Finally, some of the methods that took a long time
to execute resulted in a discussion within the team as to why this was the case. For the
method "listBedrijven(List)", they agreed on the potential cause of this.

The most important strengths of the dashboard as pointed out by the interviewees
are: 1) the combination of metrics and structure, which would be innovative and provide a
good overview, 2) the large amount of information shown which opens up a wide range of
possible applications, and 3) the level of detail with which the information is shown, which is
not available in the tools currently available to the team. The interviewees name two types
of use cases for the dashboard: 1) improving performance (DE-RD, DE-MG, DE-CP and DE-
MJ), and 2) improving code quality and structure(SA and DE-MJ). The stakeholders also
agree that the dashboard would save them a lot of time. They used the words "intuitive",
"clear", and "understandable" to describe their interaction with it.

Nonetheless, there is room for improvement. To be able to answer the identified ques-
tions in more detail and with less effort, the interviewees gave several ideas for improve-
ment and additional functionality. To begin with, the distinction between calls and sub-calls
should be visualised in a clearer way. To several of the interviewees, the definition of a
sub-call was not clear and they were confused by what clicking a bar in the bar chart actu-
ally showed them. Next, the interviewees proposed four types of filtering mechanisms that
could reduce "interference" of data that is perceived as unimportant. These are 1) filtering
on a deeper level than just the root package, and filtering by: 2) thread, 3) time interval,
and 4) type of object. Especially differentiating between value objects and entities could be
very useful for architectural insight. Finally, the information about the path a call takes is
not always complete, because the call that comes next is sometimes unknown, and the bar
tool-tip does not show the method call that resulted in the selected method call. In these
cases, the path a call takes is not entirely clear. To increase the usefulness of the dashboard
the data collection process should be improved. Having the dashboard plugged into the
production environment of the application would increase its applicability regarding per-
formance related tasks. The ease of use of the dashboard could be improved by providing
an instruction that can be unfolded and folded again when not needed. This answers sub-
research question 5:
SQ 5. What are the strengths and weaknesses of the created dashboard?

74

13 Discussion and Limitations

13.1 Instrumentation

As mentioned in section 3.4.3, AJPOLog was the only tool we found that could collect data
with the required level of detail. Though this tool is non-intrusive in the sense that the
source code of the analysed application does not need to be adapted, it does have it short-
comings. The most important of its shortcomings is that it remains unknown what the
overhead of the tool is, both in terms of execution speed and size. In section 10.1 we
provided an indication of the influence of the tool on execution speed, yet without test-
ing the instrumentation on multiple Java programs these results remain inconclusive. This
makes the instrumentation unsuitable to run in a production environment, and, moreover,
the correctness of the measured execution times of method calls unknown. This is a major
limitation, especially because the created dashboard focuses on execution times of method
calls to answer research questions.

13.2 External validity

This research focuses solely on the Java programming language and is therefore only appli-
cable to systems that are written in this or similar programming languages (such as C#).
The dashboard design is based on the characteristics of the inputted data, and thus will
be poorly applicable when the inherent nature of the data changes. For example, a key
strength of the dashboard design is the use of the Group-In-A-Box layout, which enables us
to include the hierarchical package and class structure of the Java language in the visuali-
sation. The size of boxes in the layout and the characteristic by which nodes are clustered
would have to be assigned to other attributes. Still, when applying the visualisation to a
system written in a different programming language, this might not be the best approach.

Another limitation is that both the dashboard design and validation are based on a
small case study that was conducted in the Netherlands. This makes the usefulness and
applicability of the dashboard in other contexts uncertain. Five out of twenty participants
also work together on a daily basis in the same office space. This increases the possibility
that participants might have influenced each other’s opinions throughout the research pro-
cess. To reach external validity, the dashboards should be applied to Java applications that
are running in different contexts, and encompass various sizes, architectural patterns and
frameworks.

This would also be necessary to draw conclusions about the scalability of the dash-
board. The largest application that the dashboard has been applied to consists of 225,000
lines of code. Out of the tested scenario’s, the largest number of measured calls is 94,175.
When an application consists of millions of lines of code, it is likely that even a small sce-
nario will result in more than 94,175 calls.

13.3 Effectiveness of the used techniques

Within our visualisation, we have used colour as an encoding for several attributes. While
colour is the second most effective identify channel, this naturally does not take into account
people who are colour blind. An estimated eight percent of men and two percent of women
is known to be colour blind.

This is an example of how the effectiveness of visualisations can be highly subjective.
Within our case study this also became apparent, because the participants showed to have
different preferences for encoding and each gave discrepant suggestions to improve them
within the dashboard.

75

13.4 Defining sub-calls

As explained in chapter 10.2, AjpoLog measures the start and end of a method call as the
moment of method entry and exit. This means that the duration of all methods that that
method calls is added to the duration of the method, since the methods that the method
calls are executed before the method exits. We aim to make a distinction between calls and
sub-calls under the assumption that all methods are synchronous i.e. blocking until they
are finished. To accurately distinguish calls from sub-calls, data about the methods that are
called within a method, as defined in the source code, should be added.

14 Conclusions

In this thesis we have presented Architecture Miner, an interactive web-based dashboard
which takes software execution data (SED) as an input to mine architectural intelligence.
To answer our main research question as presented in chapter 2, sub-questions were formu-
lated that each address a part of the main research question. These will now be discussed
first after which the main research question will be answered.

SQ 1. How can architectural information be extracted from a running software sys-
tem? Techniques that aim at reconstructing the design or architecture of a system, such as
software architecture reconstruction (SAR), mainly focus on functional aspects of a system
and tend to ignore quality attributes [1]. Approaches that do take quality attributes into
account emphasise the reconstruction of architectural artefacts, rather than compliance
checking of quality attributes during the operational phase of the software [2]. This is why
run-time SED is most suitable to evaluate and evolve software architecture.

SED can be collected by applying static and behaviour data extractors on a running
system. A variety of static data extractor tools can be used to obtain the needed context
data. However, of the studied dynamic data extractor tools, only one is suitable for archi-
tecture mining: AJPOLog. This is because this is the only tool studied so far that captures
not only the method being called (callee), but also the calling object (caller).

SQ 2. Which questions should visualisations of software dynamics be able to an-
swer in order to be valuable to system stakeholders? Based on the analyses in chapters
6 and 7, five questions that visualisations of software dynamics should be able to answer in
order to be valuable to the case study’s system stakeholders are formulated:

1. Which part(s) of the system contain calls that take relatively long to execute?

2. The (method) calls that take a long time: how often are those called?

3. The (method) calls that take a long time: which path do those take through the system?

4. Which classes are called most often (and therefore important)?

5. What are the run-time dependencies of the system on (third-party) libraries?

Based on a short literature review, we found that the answers to these questions might
not only be valuable within the context of the case study. According to the study by Grad-
uleva et al. [38], both managers and architects are interested in the composition of and
relations between (sub-)systems, and most used or "problematic" components [38]. Archi-
tects are also interested in the composition of clusters of classes, relations between classes
and components, and implications of old flows to new flows. Developers find correlated
views of code, metrics, structure, and dependencies indispensable [62], and are interested
in class and package information [38].

SQ 3. How are visualisation techniques and supporting tools currently used to rep-
resent software architecture?
Shahin, Liang, and Babar (2014) [5] systematically review and classify the visualisation

76

techniques and associated tools reported for software architecture, and how they have
been assessed and applied. They identify four types of visualisation techniques used in the
architecting process: graph-based, notation-based, matrix-based, and metaphor-based visu-
alisation. 42 percents of the analysed studies by Shahin et. al (2014) [5] provide automatic
tool support for the used visualisation techniques, 47 percent semi-automatic tool support,
and 11 percent manual tool support.

In the studied articles, several characteristics of techniques and tools to consider when
designing SAVs are identified: multiplicity of view [4, 56], dimensionality [4], medium [58],
interactivity [56], implementation [5, 56], and data representation [56].

SQ 4. Which visualisations can answer the questions identified in SQ 2? The iden-
tified questions can be broken down into two key components: questions about the run-
time structure of the software and questions about performance metrics in relation to this
structure. Therefore, the dashboard includes a visualisation of the overall structure of the
software as well as ways to visualise metrics in relation to this structure. The structure to
be visualised can be viewed as a hierarchical network of interactions between class objects
that call each other. Of the studied network idioms, the node-link diagram utilising the
Group-In-a-Box Layout for Multi-faceted Analysis was chosen due to its ability to be both
scalable and visualise hierarchy. For visualising metrics, the most clear and understandable
idiom that could be used to perform the required analysis was selected: the bar chart idiom.
The interviewees could answer all questions using the dashboard. The visualisations shown
in the dashboard design can thus be used to answer the questions identified in sub-research
question 2.

During the focus group, there were various insights that the visualisation provided
that the team found interesting. First of all, some of the packages and corresponding class
objects that appeared in the visualisation were not expected to be part of the scenario. An
example of this is the package "Weblogic", which should not be present since this is a server
package and the team uses a different server to run the web application on. Second, the
large amount of instances of several of the class objects was noteworthy. An example of
this is the class "MenuComponent", which should not be instantiated so many times. Third,
some objects such as "onExecute()" had a large amount of connections to other objects
which could indicate badly written code. Finally, some of the methods that took a long time
to execute resulted in a discussion within the team as to why this was the case. For the
method "listBedrijven(List)", they agreed on the potential cause of this.

SQ 5. What are the strengths and weaknesses of the created dashboard? The most
important strengths of the dashboard as pointed out by the interviewees are: 1) the com-
bination of metrics and structure, which would be innovative and provide a good overview,
2) the large amount of information shown which opens up a wide range of possible applica-
tions, and 3) the level of detail with which the information is shown, which is not available
in the tools currently available to the team. The interviewees name two types of use cases
for the dashboard: 1) improving performance, and 2) improving code quality and structure.
The stakeholders also agree that the dashboard would save them a lot of time. They used
the words "intuitive", "clear", and "understandable" to describe their interaction with it.

77

Nonetheless, to be able to answer the identified questions in more detail and with less
effort, the interviewees gave several ideas for improvement and additional functionality.
To begin with, the distinction between calls and sub-calls should be visualised in a clearer
way. To several of the interviewees, the definition of a sub-call was not clear and they were
confused by what clicking a bar in the bar chart actually showed them. Next, the intervie-
wees proposed four types of filtering mechanisms that could reduce "interference" of data
that is perceived as unimportant. These are 1) filtering on a deeper level than just the root
package, and filtering by: 2) thread, 3) time interval, and 4) type of object. Especially differ-
entiating between value objects and entities could be very useful for architectural insight.
Finally, the information about the path a call takes is not always complete, because the call
that comes next is sometimes unknown, and the bar tool-tip does not show the method call
that resulted in the selected method call. In these cases, the path a call takes is not entirely
clear. To increase the usefulness of the dashboard the data collection process should be im-
proved. Having the dashboard plugged into the production environment of the application
would increase its applicability regarding performance related tasks. The ease of use of the
dashboard could be improved by providing an instruction that can be unfolded and folded
again when not needed.

RQ: Which visualisation(s) of large-scale system’s software dynamics are effective
in providing valuable architectural information to its stakeholders?
It is not possible to capture the functional features and quality attributes of a complex
system in a single view that is understandable by, and of value to all of its stakeholders [9].
For different viewpoints and perspectives in software architecture, different visualisations,
formalisms, and abstractions are required. To scope this research, we have focused on
architectural information that is valuable to the stakeholders of the system analysed in our
case study.

Based on the validation results we can conclude that, within the context of the case
study, Architecture Miner is effective in providing valuable architectural information to the
system’s stakeholders. We consider our results to be a good indication that the insights
extracted with Architecture Miner can be valuable within multiple use cases in different
contexts.

78

15 Future Work

15.1 Proving effectiveness

As described in chapter 4.2, there are different schools of thought regarding visualisation
techniques. We have chosen our visualisation design based on findings in literature, but the
selection bias of the researchers should be taken into account when drawing conclusions
about the effectiveness of the used techniques. We have chosen to use multiplicity of view
instead of a single view, two dimensions instead of three, a standard computer screen as a
medium to display the visualisations, interaction instead of a static image, and implementa-
tion in the form of a web application. These choices all influence the way in which the user
perceives the visualisation.

To prove the effectiveness of the used visualisations in a way that is externally valid,
controlled experiments should be conducted. In these experiments, the participants could
be given a number of tasks to perform with two different types of visualisations that encode
the same attributes. The speed and accurateness in which the tasks are being executed by
them can then be compared for the two different treatments, to show which one is the most
effective.

15.2 Architecture Conformance Checking

An attempt to perform ACC was made using the Architecture Diagram used by the DevOps
team of the case study, which is shown in Figure 21. Unfortunately, the monolithic nature
of the application resulted in a package that is used by all of the modules shown in the
Architecture Diagram. This makes checking whether there are architecture violations an
impossible task, since the rules established with the diagram are not applied within the
application.

An interesting use case for Architecture Miner would be to check the conformance of
the architecture as found in the dashboard, to the architecture as intended by the system
stakeholders. This could be added to the functionality of the dashboard, by enabling the
user to define rules which the dashboard than automatically checks to show violations.
An example of a tool that integrates this statically is HUSSACT [89]. The practices used
within this tool could be used as a benchmark to implement this functionality in Architecture
Miner.

15.3 Scalability

An idea to increase the scalability of Architecture Miner is to add different layers of ab-
straction to the network diagram. By aggregating nodes with the same path to one, levels
of depth can be defined. Also, the back-end design should be improved to handle a larger
amount of data. The performance of the current design starts decreasing as the number of
calls increase. In chapter 33, an example of such a back-end design can be found.

As can be seen in Figure 26a, using the edge bundling technique to bundle links/edges
together that have the same source and target can substantially reduce link clutter. This
could improve the scalability and effectiveness of the network diagram, as well as provide
a means to show the aggregated interactions between packages.

79

15.4 Completing the hierarchy of dynamic views

Salah and Mancoridis [90] present a hierarchy of dynamic views based on program ex-
ecution traces. In this hierarchy, object- and class-interaction are the base and middle-
view. The third and highest abstraction level are the feature-interaction and implementa-
tion views, which capture the inter-feature dependencies and classes that implement these
features. The mapping of the interactions between class objects and the features they im-
plement is not possible based on the data we have used. It would be a valuable addition to
the research to add this abstraction. To do this, Feature Location techniques could be used.
Feature Location is a SAR technique which reconstructs pieces of Software Architecture by
focusing on one or more features. A feature is defined as the combination of an intension
i.e. goal of the feature, an extension i.e. implementation of the feature, and the name that
binds the two together [91]. Feature Location techniques aim to find the extension of a
certain intension.

15.5 Adding functionality

During the validation of the dashboard, several ideas for additional functionality were gen-
erated to improve the dashboard. An extensive overview of these is provided in chapter
12.

80

References

[1] van der Werf, J., Schuppen, C.v., Brinkkemper, S., Jansen, S., Boon, P., van der Plas,
G.: Architectural intelligence: a framework and application to e-learning, EMMSAD
(2017)

[2] van der Werf, J.M.E., Verbeek, H.: Online compliance monitoring of service landscapes.
In: International Conference on Business Process Management, Springer (2014) 89–
95

[3] Ellis, G., Mansmann, F.: Mastering the information age solving problems with visual
analytics. In: Eurographics. Volume 2. (2010) 5

[4] Carpendale, S., Ghanam, Y.: A survey paper on software architecture visualization.
Technical report, University of Calgary (2008)

[5] Shahin, M., Liang, P., Babar, M.A.: A systematic review of software architecture visu-
alization techniques. Journal of Systems and Software 94 (2014) 161–185

[6] Merino, L., Ghafari, M., Nierstrasz, O.: Towards actionable visualisation in software
development. In: Software Visualization (VISSOFT), 2016 IEEE Working Conference
on, IEEE (2016) 61–70

[7] Rodrigues, E.M., Milic-Frayling, N., Smith, M., Shneiderman, B., Hansen, D.: Group-
in-a-box layout for multi-faceted analysis of communities. In: 2011 IEEE Third Inter-
national Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Inter-
national Conference on Social Computing, IEEE (2011) 354–361

[8] de Jong, T.: From package to process: Dynamic software architecture reconstruction
using process mining (2019)

[9] Rozanski, N., Woods, E.: Software systems architecture: working with stakeholders
using viewpoints and perspectives. Pearson Education (2012)

[10] De Silva, L., Balasubramaniam, D.: Controlling software architecture erosion: A sur-
vey. Journal of Systems and Software 85(1) (2012) 132–151

[11] de Souza, S.C.B., Anquetil, N., de Oliveira, K.M.: A study of the documentation es-
sential to software maintenance. In: Proceedings of the 23rd annual international
conference on Design of communication: documenting & designing for pervasive in-
formation, ACM (2005) 68–75

[12] Ducasse, S., Pollet, D.: Software architecture reconstruction: A process-oriented tax-
onomy. IEEE Transactions on Software Engineering 35(4) (2009) 573–591

[13] Vogel, D.R., Dickson, G.W., Lehman, J.A., et al.: Persuasion and the role of visual
presentation support: The UM/3M study. Management Information Systems Research
Center, School of Management . . . (1986)

[14] Wieringa, R.J.: Design science methodology for information systems and software
engineering. Springer (2014)

[15] Cook, T.D., Campbell, D.T.: Quasi-experimentation: Design and analysis for field set-
tings. Volume 3. Rand McNally Chicago (1979)

[16] Berander, P., Andrews, A.: Requirements prioritization. In: Engineering and managing
software requirements. Springer (2005) 69–94

[17] Maletic, J.I., Marcus, A., Collard, M.L.: A task oriented view of software visualization.
In: Visualizing Software for Understanding and Analysis, 2002. Proceedings. First
International Workshop on, IEEE (2002) 32–40

81

[18] Munzner, T.: Visualization analysis and design. AK Peters/CRC Press (2014)

[19] Garlan, D.: Software architecture: a roadmap. In: Proceedings of the Conference on
the Future of Software Engineering, ACM (2000) 91–101

[20] Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Addison-Wesley
Professional (2003)

[21] Mary, S., David, G.: Software architecture: Perspectives on an emerging discipline.
Prentice-Hall (1996)

[22] Conway, M.E.: How do committees invent. Datamation 14(4) (1968) 28–31

[23] van der Schuur, H., Jansen, S., Brinkkemper, S.: Reducing maintenance effort through
software operation knowledge: An eclectic empirical evaluation. In: 2011 15th Euro-
pean Conference on Software Maintenance and Reengineering, IEEE (2011) 201–210

[24] Van Der Aalst, W., Adriansyah, A., De Medeiros, A.K.A., Arcieri, F., Baier, T., Blickle, T.,
Bose, J.C., Van Den Brand, P., Brandtjen, R., Buijs, J., et al.: Process mining manifesto.
In: International Conference on Business Process Management, Springer (2011) 169–
194

[25] Knodel, J., Popescu, D.: A comparison of static architecture compliance check-
ing approaches. In: 2007 Working IEEE/IFIP Conference on Software Architecture
(WICSA’07), IEEE (2007) 12–12

[26] Ipskamp, T.: A graph-based approach to capture software behavior in architecture
(2018)

[27] van Heesch, D.: Generate documentation from source code. http://www.doxygen.nl/
Accessed: 2019-04-24.

[28] van Heesch, D.: Sonargraph product family. http://www.doxygen.nl/ Accessed: 2019-
04-24.

[29] Fontana, F.A., Roveda, R., Zanoni, M.: Tool support for evaluating architectural debt
of an existing system: An experience report. In: Proceedings of the 31st Annual ACM
Symposium on Applied Computing, ACM (2016) 1347–1349

[30] Chen, B., Jiang, Z.M.J.: Characterizing logging practices in java-based open source
software projects–a replication study in apache software foundation. Empirical Soft-
ware Engineering 22(1) (2017) 330–374

[31] Cornelissen, B., Zaidman, A., Van Deursen, A., Moonen, L., Koschke, R.: A systematic
survey of program comprehension through dynamic analysis. IEEE Transactions on
Software Engineering 35(5) (2009) 684–702

[32] Logentries: The fastest way to analyze your log data. https://logentries.com/ Ac-
cessed: 2019-04-24.

[33] Loggly: Fast, powerful searching over massive volumes of log data. https://www.
loggly.com/ Accessed: 2019-04-24.

[34] LogicMonitor: Learn how the logicmonitor platform works. https://www.
logicmonitor.com/ Accessed: 2019-04-24.

[35] Ritmeester, J.: How to get logs (2018)

[36] Lamport, L.: How to make a multiprocessor computer that correctly executes multi-
process progranm. IEEE transactions on computers (9) (1979) 690–691

[37] de Jong, T.: Aspectj instrumentation tool. https://github.com/tijmendj/AJPOLog Ac-
cessed: 2019-04-24.

82

http://www.doxygen.nl/
http://www.doxygen.nl/
https://logentries.com/
https://www.loggly.com/
https://www.loggly.com/
https://www.logicmonitor.com/
https://www.logicmonitor.com/
https://github.com/tijmendj/AJPOLog

[38] Graduleva, A., Adibi Dahaj, M.: Visualization of software architecture based on stake-
holders’ requirements: Empirical investigation based on 4 industrial cases. (2017)

[39] Beyer, D., Hassan, A.E.: Evolution storyboards: Visualization of software struc-
ture dynamics. In: 14th IEEE International Conference on Program Comprehension
(ICPC’06), IEEE (2006) 248–251

[40] Cornelissen, B., Zaidman, A., van Deursen, A.: A controlled experiment for program
comprehension through trace visualization. IEEE Transactions on Software Engineer-
ing 37(3) (2011) 341–355

[41] Oxford: Definition of vertex. https://en.oxforddictionaries.com/definition/vertex
(2019 (URL accessed on 2019-07-05))

[42] Oxford: Definition of node. https://en.oxforddictionaries.com/definition/node
(2019 (URL accessed on 2019-03-04))

[43] Oxford: Definition of edge. https://en.oxforddictionaries.com/definition/edge
(2019 (URL accessed on 2019-07-05))

[44] Oxford: Definition of link. https://en.oxforddictionaries.com/definition/link (2019
(URL accessed on 2019-03-04))

[45] OMG: Unified Modeling Language (UML) Specification. (November 2007) Version
2.1.2.

[46] OMG: Systems Modeling Language (SysML) Specification. (September 2007) Version
1.0.

[47] Byelas, H., Telea, A.: Visualization of areas of interest in software architecture dia-
grams. In: Proceedings of the 2006 ACM symposium on Software visualization, ACM
(2006) 105–114

[48] Zalewski, A., Kijas, S., Sokołowska, D.: Capturing architecture evolution with maps
of architectural decisions 2.0. In: European Conference on Software Architecture,
Springer (2011) 83–96

[49] Wu, H.M., Tzeng, S., Chen, C.h.: Matrix visualization. In: Handbook of data visualiza-
tion. Springer (2008) 681–708

[50] Langelier, G., Sahraoui, H., Poulin, P.: Visualization-based analysis of quality for large-
scale software systems. In: Proceedings of the 20th IEEE/ACM international Confer-
ence on Automated software engineering, ACM (2005) 214–223

[51] De Boer, R.C., Lago, P., Telea, A., Van Vliet, H.: Ontology-driven visualization of archi-
tectural design decisions. In: Software Architecture, 2009 & European Conference on
Software Architecture. WICSA/ECSA 2009. Joint Working IEEE/IFIP Conference on,
IEEE (2009) 51–60

[52] Wettel, R., Lanza, M.: Visualizing software systems as cities. In: 2007 4th IEEE
International Workshop on Visualizing Software for Understanding and Analysis, IEEE
(2007) 92–99

[53] Balzer, M., Noack, A., Deussen, O., Lewerentz, C.: Software landscapes: Visualizing
the structure of large software systems. In: IEEE TCVG. (2004)

[54] Rooimans, R.: Architecture mining with architecturecity (2017)

[55] Panas, T., Epperly, T., Quinlan, D., Saebjoernsen, A., Vuduc, R.: Comprehending soft-
ware architecture using a single-view visualization. Technical report, Lawrence Liver-
more National Lab.(LLNL), Livermore, CA (United States) (2007)

83

https://en.oxforddictionaries.com/definition/vertex
https://en.oxforddictionaries.com/definition/node
https://en.oxforddictionaries.com/definition/edge
https://en.oxforddictionaries.com/definition/link

[56] Gallagher, K., Hatch, A., Munro, M.: Software architecture visualization: An evalua-
tion framework and its application. IEEE Transactions on Software Engineering 34(2)
(2008) 260–270

[57] Cockburn, A., McKenzie, B.: Evaluating the effectiveness of spatial memory in 2d and
3d physical and virtual environments. In: Proceedings of the SIGCHI conference on
Human factors in computing systems, ACM (2002) 203–210

[58] Merino, L., Fuchs, J., Blumenschein, M., Anslow, C., Ghafari, M., Nierstrasz, O.,
Behrisch, M., Keim, D.A.: On the impact of the medium in the effectiveness of 3d
software visualizations. In: 2017 IEEE Working Conference on Software Visualization
(VISSOFT), IEEE (2017) 11–21

[59] Card, S., Mackinlay, J., Shneiderman, B.: Information visualization. Human-computer
interaction: Design issues, solutions, and applications 181 (2009)

[60] Forsell, C., Johansson, J.: An heuristic set for evaluation in information visualization.
In: Proceedings of the International Conference on Advanced Visual Interfaces, ACM
(2010) 199–206

[61] Mattila, A.L., Ihantola, P., Kilamo, T., Luoto, A., Nurminen, M., Väätäjä, H.: Software
visualization today: Systematic literature review. In: Proceedings of the 20th Interna-
tional Academic Mindtrek Conference, ACM (2016) 262–271

[62] Telea, A., Voinea, L., Sassenburg, H.: Visual tools for software architecture under-
standing: A stakeholder perspective. IEEE software 27(6) (2010) 46–53

[63] McNair, A., German, D.M., Weber-Jahnke, J.: Visualizing software architecture evo-
lution using change-sets. In: Reverse Engineering, 2007. WCRE 2007. 14th Working
Conference on, IEEE (2007) 130–139

[64] Diehl, S.: Software visualization: visualizing the structure, behaviour, and evolution of
software. Springer Science & Business Media (2007)

[65] Babu, K.D., Govindarajulu, P., Kumari, A.: Development of a conceptual tool for com-
plete software architecture visualization: Darch. Int’l J. Computer Science and Net-
work Security 9(4) (2009) 277–286

[66] Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software architecture: Foundations, the-
ory, and practice. 2009 (2009)

[67] Oxford: Definition of project manager in english. https://en.oxforddictionaries.
com/definition/project_manager (2019 (URL accessed on 2019-02-15))

[68] Cleland-Huang, J., Hanmer, R.S., Supakkul, S., Mirakhorli, M.: The twin peaks of
requirements and architecture. IEEE Software 30(2) (2013) 24–29

[69] Li, Z., Liang, P., Avgeriou, P.: Application of knowledge-based approaches in software
architecture: A systematic mapping study. Information and Software technology 55(5)
(2013) 777–794

[70] LaToza, T.D., Myers, B.A.: Hard-to-answer questions about code. In: Evaluation and
Usability of Programming Languages and Tools, ACM (2010) 8

[71] Kibana: Your window into the elastic stack. https://www.elastic.co/products/kibana
Accessed: 2019-05-03.

[72] Iacob, M.E., Jonkers, H., Lankhorst, M., Proper, E., Quartel, D.: Archimate 2.0 specifi-
cation. (2012)

[73] Joy, B., Steele, G., Gosling, J., Bracha, G.: The java language specification (2000)

84

https://en.oxforddictionaries.com/definition/project_manager
https://en.oxforddictionaries.com/definition/project_manager
https://www.elastic.co/products/kibana

[74] Ghoniem, M., Fekete, J.D., Castagliola, P.: On the readability of graphs using node-link
and matrix-based representations: a controlled experiment and statistical analysis.
Information Visualization 4(2) (2005) 114–135

[75] Draper, G.M., Livnat, Y., Riesenfeld, R.F.: A survey of radial methods for information
visualization. IEEE transactions on visualization and computer graphics 15(5) (2009)
759–776

[76] Bostock, M.: Hierarchical edge bundling. https://bl.ocks.org/mbostock/1044242 Ac-
cessed: 2019-04-24.

[77] Bremer, N.: Storytelling with chord diagram. http://bl.ocks.org/nbremer/
94db779237655907b907 Accessed: 2019-04-24.

[78] Schmidt, M.: The sankey diagram in energy and material flow management: Part i:
History. Journal of industrial ecology 12(1) (2008) 82–94

[79] d3noob: Sankey diagram using a csv file with v4. https://bl.ocks.org/d3noob/
06e72deea99e7b4859841f305f63ba85 Accessed: 2019-04-24.

[80] Atkinson, N.: Bi-directional hierarchical sankey diagram. http://bl.ocks.org/Neilos/
584b9a5d44d5fe00f779 Accessed: 2019-04-24.

[81] Harel, D., Koren, Y.: A fast multi-scale method for drawing large graphs. In: Interna-
tional symposium on graph drawing, Springer (2000) 183–196

[82] Tufte, E.R.: Improving Data Display. The Visual Display of Quantitative Information,
Cheshire, Conn.: Graphics Press (1983)

[83] Holten, D., Isenberg, P., Van Wijk, J.J., Fekete, J.D.: An extended evaluation of the
readability of tapered, animated, and textured directed-edge representations in node-
link graphs. In: 2011 IEEE Pacific Visualization Symposium, IEEE (2011) 195–202

[84] : Uw interactive data lab. https://idl.cs.washington.edu/about/ Accessed: 2019-08-
16.

[85] Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE transactions on
visualization and computer graphics 17(12) (2011) 2301–2309

[86] Rumbaugh, J., Jacobson, I., Booch, G.: Unified modeling language reference manual,
the. Pearson Higher Education (2004)

[87] Sartipi, K., Dezhkam, N.: An amalgamated dynamic and static architecture reconstruc-
tion framework to control component interactions 259. In: 14th Working Conference
on Reverse Engineering (WCRE 2007), IEEE (2007) 259–268

[88] Oracle: Java mission control. https://www.oracle.com/technetwork/java/
javaseproducts/mission-control/index.html Accessed: 2019-08-21.

[89] Pruijt, L.J., Köppe, C., van der Werf, J.M., Brinkkemper, S.: Husacct home. http:
//husacct.github.io/HUSACCT/ Accessed: 2019-04-24.

[90] Salah, M., Mancoridis, S.: A hierarchy of dynamic software views: From object-
interactions to feature-interactions. In: 20th IEEE International Conference on Soft-
ware Maintenance, 2004. Proceedings., IEEE (2004) 72–81

[91] Rubin, J., Chechik, M.: A survey of feature location techniques. In: Domain Engineer-
ing. Springer (2013) 29–58

[92] Janis, I.L.: Victims of groupthink: A psychological study of foreign-policy decisions
and fiascoes. (1972)

85

https://bl.ocks.org/mbostock/1044242
http://bl.ocks.org/nbremer/94db779237655907b907
http://bl.ocks.org/nbremer/94db779237655907b907
https://bl.ocks.org/d3noob/06e72deea99e7b4859841f305f63ba85
https://bl.ocks.org/d3noob/06e72deea99e7b4859841f305f63ba85
http://bl.ocks.org/Neilos/584b9a5d44d5fe00f779
http://bl.ocks.org/Neilos/584b9a5d44d5fe00f779
https://idl.cs.washington.edu/about/
https://www.oracle.com/technetwork/java/javaseproducts/mission-control/index.html
https://www.oracle.com/technetwork/java/javaseproducts/mission-control/index.html
http://husacct.github.io/HUSACCT/
http://husacct.github.io/HUSACCT/

List of Definitions

1 Definition (Software architecture) . 10
2 Definition (View) . 10
3 Definition (Viewpoint) . 10
4 Definition (Quality attribute) . 11
5 Definition (Perspective) . 11
6 Definition (Realised architecture) . 11
7 Definition (Intended architecture) . 11
8 Definition (Software architecture reconstruction) 12
9 Definition (Architectural style) . 12
10 Definition (Architecture mining) . 13
11 Definition (Process mining) . 13
12 Definition (Architecture conformance checking) 14
13 Definition (Software behaviour) . 15
14 Definition (Thread) . 17
15 Definition (Vertex/node) . 21
16 Definition (Edge/link) . 21
17 Definition (Information visualisation) . 24
18 Definition (Mark) . 25
19 Definition (Visual channel) . 25
20 Definition (Stakeholder) . 28
21 Definition (Software architecture visualisation) 28
22 Definition (Project manager) . 29
23 Definition (Software Architect) . 30
24 Definition (Software Developer) . 31
25 Definition (Scenario) . 67
26 Definition (Feature) . 67

86

List of Figures

1 Research approach. 7
2 Three-part analysis framework for a visualisation instance [18]. 8
3 Viewpoint groupings [9]. 11
4 A process-oriented taxonomy for SAR [12]. 12
5 Architecture Mining Framework. 14
6 Information flow model of SED [26]. 15
7 Conceptual model of SED for Architecture Mining [1]. 16
8 Log created with Java Platform Debugger [35]. 17
9 Piece of a log created with AjpoLog (after conversion to csv format) [8]. 18
10 Examples of graph-based techniques [39, 40]. 20
11 Examples of notation-based techniques [47, 48]. 21
12 Examples of matrix-based techniques [50, 51]. 22
13 Examples of metaphor-based techniques [54, 55]. 22
14 Marks as geometric primitives [18]. 25
15 Channels ranked by effectiveness according to data and channel type [18]. 25
16 Various levels of interest of the software visualisation audience [4]. 29
17 Distribution of architecting activities supported by visualisation techniques [5]. 30
18 Comparing the degree of importance of developer needs vs. their visualisation support

by problem domain. [6]. 31
19 Simplified representation of the work process of the DevOps team. 34
20 LogicMonitor graphs. 39
21 Image called “Application Interfaces” as used by the DevOps team. 40
22 Position and experience of survey participants. 41
23 Example of a class (that could be called). 47
24 Example of a caller class calling a method in the callee class. 47
25 Design choices for arranging networks according to Munzner et. al [18]. 47
26 Radial approaches. 48
27 Sankey diagrams. 49
28 Group-In-a-Box Layout for Multi-faceted Analysis of communities. 50
29 Overview of the dashboard design. 51
30 Options menu: select scenario. 53
31 Options menu: select filters. 53
32 Tree diagram: look through storage structure. 54
33 Network diagram: select package depth. 54
34 Network diagram: show/hide template. 55
35 Network diagram: types of colour overlays. 55
36 Red colour scale used in the network diagram. 55
37 Network diagram: hover over a node, link or box. 56
38 Network diagram: click on a node. 57
39 Network diagram: click on a link. 57
40 Bar chart: hover over a bar. 58
41 Bar chart: toggle duration/instances. 59
42 Bar chart: defining thresholds. 59
43 Bar chart: clicking a bar in the duration view. 60
44 Bar chart: clicking a bar in the instances view. 61
45 Timeline controlling the network diagram layout. 61
46 One method entry and exit as logged by AjpoLog [8]. 64
47 One method entry and exit as logged by AjpoLog, converted to CSV format. 64
48 Back-end design that can be applied to increase the performance of the dashboard. . . 64
49 Hovering over the highest bar. 65
50 Clicking the most dark red link in the network diagram. 65
51 Identifying the biggest nodes in the network diagram. 66
52 Identifying the libraries that the application uses. 67
53 Java Mission Control Call Tree [88] . 68

87

Page
54 Survey part 1/3. .106
55 Survey part 2/3. .107
56 Survey part 3/3. .108
57 Structure of the JSON Object used by the dashboard.111
58 Overview of the dashboard design applied to a scenario with 94,175 calls.113
59 Overview of the dashboard design applied to the selected scenario.115
60 Overview of the dashboard design applied to scenario 2, package depth 4.118
61 Overview of the dashboard design applied to scenario 3, package depth 3.119

88

List of Tables

1 Members of the system’s DevOps team and their experience (on April 2019). . 34
2 Tasks of the category “resolving support tickets and calls” per role within the DevOps

team. 35
3 Tasks of the category “system performance monitoring” per role within the DevOps

team. 35
4 Tasks of the category “sprint planning” per role within the DevOps team. 36
5 Tasks of the category “bi-weekly sprint” per role within the DevOps team. 36
6 Sources of information used to gain understanding of the system [A.1.3, A.2.3, and

A.3.2]. 37
7 Information needs of the interviewed stakeholders [A.1.4, A.2.4, and A.3.3]. 38
8 Information needs of the interviewed stakeholders [A.1.4, A.2.4, and A.3.3]. 42
9 Encoding of the attributes and metrics represented by the tree diagram. 52
10 Encoding of the attributes and metrics represented by the network diagram. 52
11 Encoding of the attributes and metrics represented by the bar chart 52
12 Duration of ten runs of the BandExample application with and without AjpoLog. 62

89

A Appendix 1: Interview protocol

Note: These questions are based on the article by Graduleva et. al (2017) [38]. A pilot
interview was held to evaluate the protocol. After that it was decided to take this interview
into account as an official result, because only the sequence of the interview questions was
changed and some questions were removed. The pilot interview therefore resulted in the
same information as the improved version of the interview. The results based on the inter-
view that was initially meant to be a pilot can be found in Appendix A.1.

Thank you for making the time for this interview. The goal of this interview is to gain insight
in your role within the development of the system, and which information about the system
can support your work. For result processing purposes, I will record this session. Do you
have any questions before we start?

To begin with, I would like to ask you some questions about your role within the team.

Part 1: Stakeholder type and tasks
1.1. What is your name?
1.2. With which system(s) do you work? Can you briefly describe them? How long do they
exist?
1.3. How long have you been working with the system(s)?

Position and experience
2.1. Do you have a title for your position? What is it?
2.2. How long have you been working in a position like this one?
2.3. Do you have any experience with software design (CASE tools? UML?)

2.3.1. If yes, how long have you been working with software design?

Tasks and system design process
3.1. Can you briefly describe one of your typical work days? What are your main tasks?
3.2. (Do you work in a team?) How many people are there in your team?
3.3. How do you divide the work within the team? What role do you usually take on?
3.4. Can you briefly explain the software design process of the system that you are working
with? Where are you involved in the process?

We will now move on to the second part of the interview, which is about the sources of
information about the system that you use to support your work.

Part 2: Information about the system
5.1. What information (about the system) do you use? Which sources do you consult to
retrieve that information?
5.2. Can you name information that you are currently missing in your work?

5.2.1. In an ideal world, what knowledge about the system would you have that
you are now missing?

5.2.2. Can you name the "grey" or "black" boxes of the system?

The last part of the interview is about existing visualisations of the system (see next page).

90

Part 3: Existing visualisation of the system
7. Are you using any visualisation of the system to support your work? If yes: go to ques-
tions 8 and 10. If no: go to question 9.

visualisation techniques
8.1. Which visualisation(s) do you use? Can you show them to me? In which context do
you use the visualisation(s)? For which specific tasks and purposes? 8.1.1. How many
visulizations are used? Which do you like most and why?
8.2. Does it provide the information that you need? What kind of information is it?

8.2.1. If no, what information is lacking? what visualisation could be used
to complement the existing ones?

8.3. Do you create the visualisations yourself?
8.3.1. If yes, which methods (and techniques) of visualisation do you use
and why?

Reasons for not using visualisation
9.1. What are the reasons for not using visualisation?
9.2. Do you think visualisation would be useful? Why?
9.3. (Do you have a mind map of the system? What does it look like?) Which information is
missing that visualisation could provide you?

visualisation tools
10.1. Do you use any tools for/to support the visualisation(s)?

10.1.1. If yes, what kind of tools (automatic, semi-automatic, or manual)?
What do you use them for and why?
10.1.2. If yes, do you think these tools are useful?
How could the tools be improved?
10.1.3. If no, what are the reasons for not using tools?
10.1.4. If no, do you think tools would be useful? Why?

Thank you again for your time. Is there anything you would like to add or mention before
we finish?

91

A Appendix 2: Interview Quotes

In this attachment, the quotes selected from the interview transcripts that are used as a
result in this research are listed per interviewee. The interviewees validated that these
quotes are an accurate representation of their answers to the interview questions. The full
Dutch transcripts can be requested by e-mailing the researcher.

A.1 DevOps Engineer Quotes (13/03/2019)

A.1.1 System Under Study

1. “I think there are 40 or 50 people who use it, something like that. That is really very
little in comparison.”

2. “there will be a moment at which we can really start building new things. I think
that moment is coming close too, because we are already busy with improving small
things”.

A.1.2 Stakeholder roles and tasks

1. “DevOps Engineer of the system”

2. “officially we are DevOps, which means that every person can do or has to do both
development and operations.”

3. “Then we use bi-weekly sprints in which we, certain issues are registered in the sprint
which should be completed in two weeks.”

4. “at the end of the sprint of two weeks we evaluate which issues are completed and
which are not and why.”

5. “that is that program where the entire backlog is registered.”

6. “During sprint planning we do discuss it. Like this is what I do and this is what you do
but not explicitly”

7. “In JIRA you can drag an issue to active or in progress and then you can mark yourself
as executor.”

8. “server maintenance so to say, making sure the servers keep running”

9. “making sure applications keep running”

10. “making sure the required infrastructure is in place”

11. “all those infrastructure things and how networks work together”

12. “development is mainly writing and editing code”

13. “then I check all the logging of the servers to check whether I see something weird.”

14. “sometimes I know what it is within five minutes and sometimes I am really searching
for two hours.”

15. “if that is support, that is just resolving support tickets”

16. “actually I just continue with the issues of the sprint”

17. “...that is a kind of ticketing system that they developed besides it, and there the
tickets enter like there is a problem with this and that system.”

92

A.1.3 Sources of information about the system

1. “mainly source code and logs”

2. “for functional questions I generally just call [name of customer]”

3. “my own memory”

4. “actually [name software architect], he works on it since I think December not last
year but already the year before that. So generally he knows where everything or a
lot of things are.”

5. “We did not receive a lot of documentation about that. We do have the manual.”

6. “the naming is however good, so it is mostly reasonably clear what it does”

7. “there are quite a lot of things that the program logs on a wrong level.”

8. “we found out that all of that was going wrong for months without us knowing, because
it was never logged somewhere that it went completely wrong”’

A.1.4 Information needs

1. “the first things I searched for then was how late it happened and what is the e-mail
address of your certificate. And with those two things you could just trace at the
entrance from which they enter our service what happened and finally you then end
up at the error in some log.”

2. “Yes, the hardest part is currently still HI.”

3. “But I do know what happens there but only because it is closed source we cannot
really look into it but we do know what it approximately does.”

4. “it is written in C, C++ one of the two. That is just a fuzzy search, which is just a
search engine. It looks if you search for a specific name, what is could be.”

5. “That HI process is really our bottleneck so to speak, all our information passes
through there and if it is really super busy then it cannot process that information.
But what happens then is that the application previous to that, FISH or CC, that one
gets no answer from HI and keeps waiting like yes I require an answer from HI. That
means that that connection in the web proxy also keeps waiting and that at a certain
moment the worker overflows. Then the entire system crashes.”

6. “No you cannot edit it. And that would actually be illegal because, it is really licensed.”

7. “Yes what we do really miss is a fast way to see what calls what. Because that is
sometimes just a complete maze.”

8. “Then you just really have to walk through the code and see like this happens there
and this happens there and that calls that piece.”

9. “what actually happens with a request from the moment it enters the system up until
it is completed”

10. “we will probably do that with Kibana in the future.”

11. “So it will become easy and you can see in one look like this user enters there, that
request goes there, and there it goes wrong.”

12. “How many requests go wrong per second, or per minute or per hour or whatever.
How many requests do not give a status 200, say 304 or whatever, statuses that are
not good.”

93

13. “Yes because there are quite a lot of things in the program that are logged on a wrong
level. Things that I would categorize as an error because it really is, that appear in
debug.”

14. “But there is a lot of information that we never received from the previous supplier,
such as how much traffic we could expect.”

A.1.5 Current visualisation tools and techniques

1. “How many requests enter the system”

2. “Yes and traffic”

3. “How many workers are busy in the web proxy and therefore in our web-server”

4. “And how many are still free, because when those are all occupied no one can enter
the system”

5. “If those lines turn around so to say, usually that line of the workers that are free are
all at the top and the workers that are occupied are at the bottom. If that suddenly
crosses then something is going on.”

6. “Actually we just need more of those dashboards or more of those graphs. In which
we can see different information. Such as for example how many request go wrong,
how many enter the system, how long they take.”

7. “That is all present in the logging and we could extract it if we had time to arrange
that.”

8. “That is actually the only monitoring system we have at the moment”

9. “Yes that is indeed coupled to it. It looks at the servers to see whether it is still up for
instance, what it also does is for example with our Tomcat is that it goes looking, that is
coupled to the tomcat at a certain port. Then it goes looking to see how many requests
enter and how long it takes to process those requests and those sort of things.”

10. “And moreover when that takes to long it also goes skewed again and then you hear
those peeps and buzzers that you can sometimes hear in our office.”

11. “Indeed. LogicMonitor is very useful, mainly for monitoring the status of the servers.
We generally know it very fast when a server is out of the air. What LM still cannot
do, but what is necessary, is the monitoring of logs. LM does not show us whether the
copylist job for example completely fails, or every other application that really goes
out of the air. As long as the tomcat server reacts normally, LM does not notice it when
the application is not working. Actually everything that is really application specific
LM cannot manage, and that is really the disadvantage because that is something that
we do need.”

94

A.2 Software Architect Quotes (05/04/2019)

A.2.1 System Under Study

1. “...and had three functional applications. And those applications are all JAVA applica-
tions that are composed of several sub-applications.”

2. “There is an, application 1 is actually composed of six sub-applications.”

3. “But then besides that around it it has some more supporting applications, such as the
company register and the mail servers and those sort of things.”

4. “Well that actually all runs in the Oracle Cloud and there we eventually use systems to
do the provisioning through Terraform, Ansible and continuous devlivery server and
things like that.”

5. “And then for maintenance we also have a support portal for ourselves in which we
register tickets.”

6. “For development we have an issue management system in which we track which new
functionalities have to be build, which bugs need to be solved, those sort of things.”

7. “The customer started in 1995 as a foundation. The oldest application that we have
taken over originates from 2006. So that one is now rebuild, before that there was
another system. That is application 1, I think in 2009 or 2013 application 2 was
included.”

8. “...last December we already started running it in production.”

9. “So we are actually working on the application for 1.5 years now.”

A.2.2 Stakeholder roles and tasks

1. “Yes I was included in the project right away...”

2. “...initially I fulfilled the role of drawing up the application and the development that
was needed to at least get it operational. And during the year it is actually the solution
architect that was initially on it who was constructing and designing the networking
systems and Cloud, that person started working less and started doing other things
and now I also do a part of those tasks.”

3. “Yes, I do have some other projects that I am working on. But mainly this is my main
project on which I spend at least 60 percent of my time and often more.”

4. “Partly it is senior developer being the, architect, yes it is in that area.”

5. “It is a bit of everything what I am doing. I also do a lot of operational things so, not
really one thing, it is really we are a DevOps team and everyone actually has the same
role and you just have a specialisation in your role.”

6. “I know the application the longest. I also know best what exactly happens and I was
present when most of the important decisions were made.”

7. “I’ve been working in IT for 20 years and with every project I have a slightly different
role.”

8. “Initially it is actually only that you take decisions in the software in the architecture,
and that grows more towards not only software but also how the network is con-
structed, how the applications talk to each other and how you will do the architecture
to the external world. How that has to go, which security measures you want to take,
which performance measures, which availability measures. More in the direction of
infrastructure...”

95

9. “...first I check whether there are urgent things in the system, the monitoring or what-
soever whether there is something that we in any case need to look at today.”

10. “I always try to focus on which issues there are in the sprint that are important, to
then push so those will be realised.”

11. “So when nothing needs to happen there I go on to which functional things need to
be build and where I think that I can help other people with the functionality to build
on.”

12. “Besides that I also have a role that other days I spend more time on the present
issues. That the customer likes to have, to work those out in what exactly needs to
happen. Also the technological, to translate those more to the technology.”

13. “Yes in the end we now do have the others that do more of the development part. And
I try to work more around that so that the development happens the right way.”

14. “But also in the trajectory that comes before that I want to be present and take care
that in any case that operationally everything runs well.”

15. “So I take that responsibility, that in the end officially belong to the entire team, but
because I am the most senior person I want to be sure that it happens.”

16. “Yes [name Product Owner] is mainly the person that does the direct coordination
with the customer. Because that is also really the Product Owner within our team.
But of course the role of analysing issues, what needs to happen and making things
clear before you develop it at all. That is where I also have contact with the customer.
If there needs to be communicated on a more technical level with customers or [type
of participants] then I always join.”

17. “Yes I rather have that people look at the issues and based on the priorities that
issues have and the issues that they think they can solve, that people just take it on
themselves. Than you have that people know well what they are doing and therefore
solve it quickly ór that they can choose to take something that is very unknown to
them but that they would like to learn. In both cases it is often a motivating step to
people to really work on it actively.”

18. “It is the case that if you have taken on an issue that you are the person that needs to
take care that it will be finished. So that you take responsibility for completely taking
it from a TODO to production.”

19. “Often it is actually that the customer says we want to do about this. This is a service
that we want to deliver to our participants.”

20. “And actually at that moment [Product Owner name] and I sit together to see which
procedure, which process is actually behind that, and which parts of that process will
we have to support, with the software, with the technology.”

21. “Then next week we will first sit down with the customer to see like which process do
you actually have now. And which parts do you have that we can automate.”

22. “After that we look into which software components we have that can fulfil that for
them and which things that are. Then we can look into where that fits in our infras-
tructure, what we need to put that into our infrastructure.”

23. “Then they can work at it in the sprint as in we create a sprint planning at the begin-
ning, to see what we have to take on when an issue is included.”

96

A.2.3 Sources of information about the system

1. “Well we have minimal documentation in the end even from the past trajectory about
how the application is composed and where everything passes through. So in a couple
of simple diagrams how the system is composed.”

2. “In production mainly a lot of logging of the servers, the statistics of what CPU and
memory usage and that sort of things do. So actually the metrics that come out of
that.”

3. “Besides that we have in production some more log files where we can find information
about how requests go. So that we can follow a bit how requests pass through the
system.”

4. “And furthermore it is more the source code that is leading in how it goes. There is
not a lot of documentation about how the source code is composed.”

5. “...we actually only received the source code. In that a little bit of documentation
about SOAP WSTL’s and things like that was included, but no single document about
the source code itself. Even within the source code there is very little documentation.
So it is purely the source code itself that tells us how things work.”

6. “And with that the Oracle Cloud does help us by telling us how much disk space we
have used, this amount of network we use. Those are metrics that just come out of
the environment in terms of netwerk and in terms of CPU and in terms of disk usage,
those sort of things.”

7. “At this moment that is actually just our IDE on its own. And a little bit where you
can see how good it is is that we use Sonarcube. But that is more a static analysis
tool about how good the software is and still does not help that well in showing how
everything is composed.”

8. “The static analysis for constructions that you do for bugs and some complexity rules
are in there, and circular dependencies for between packages and the like. So a bit
you can retrieve from that, but it detects more bad practices than that you can really
get an overview out of that about how it is composed. And you actually only get that
by using some plug-ins in that IDE that can show some more how the modules work
together. And which classes work together, those sort of things.”

A.2.4 Information needs

1. “Well a lot of things that were really missing for us, was more how the infrastructure
is configured and eventually how things work together. And what we have in the
mean while recorded in pictures ourselves. That was actually initially missing when
the system was transferred to us by the previous party, about how they designed
the network how they divided the applications on different servers, how they talk to
each other. Yes, more those lines, the high-level lines about the software were really
missing. And therefore we had to create that documentation ourselves.”

2. “Exactly. So actually a lot of information about how the system is being used, how big
it has to be, how much data enters, we got very little information about that from the
previous supplier. And then we had to guess ourselves how we think it would be. And
over time we can now adjust it now we see ourselves how it is.”

3. “But that does not really help with making your application itself insightful.”

4. “Well initially we constructed it in the most simple way in which we thought it ran
at the other supplier. And now we are already looking into how we are going to
develop it further towards other things. At the moment we have it running on virtual
machines physically. While we want to go more towards that we use a virtual machine

97

from Oracle Cloud and that we run containers inside, and that we can run multiple
containers on a virtual machine. While at the moment it is more that we have an
application running on a machine. So we hope that we can soon shift in that more
easily with where the application is running and that we are not stuck in that so much
in the way we have defined it right now for ourselves. Because at the moment we say
like okay this virtual machine on which this application runs talks to this other virtual
machine and that will soon if we say that more like okay these two virtual machines
are our docker cluster or our container-cluster and in there the containers run and on
which machine that runs would not be that interesting to us anymore. And then you
will look more into how many users and where that has to be shifted to then.”

5. “Well I am actually someone that is quire low-level with a lot of things, so I read
source code quickly and I can fairly well create a global picture for myself about how
something works. I do notice that a lot of others have more difficulty with that, and
then it would help to sketch more how everything works together and which parts are
in the application itself.”

6. “That is more for communication yes. It is mainly a tool in which you can easily
browse and view on a more global level how everything is composed, that would for
some people really help in developing the application.”

7. “We now have three applications that are fairly monolithic, that really have a lot of
source code and that is included in one application, and we are going more towards
some smaller applications that are a lot less complex in composition and that those
are more spread over each other.”

8. “So that one also has a very clear functionality and how it is composed is often a lot
more easy to understand.”

9. “Well, what would be easier to begin with is depicting which things in the application
are very closely coupled together, and which things you actually would like to cut from
each other. Because I am sure that in this application that a lot of things do not have a
clear context where they need to stay in. And that they secretly branch out to another
piece. While if that would all be properly composed it should not do that. And what
you mainly get with micro-services is that you lay a network layer between it, so that
you cannot even do that type of branching out. And that you really have to shield
that clearer in your code. And those contexts decide where those are located in the
application, for that you do need some tooling to decide where that is located.”

10. “Mainly it will initially be on package level. Probably even first on library level, which
libraries actually talk to, because in the end every application consists of a lot of
separate modules that are composed and that becomes one big application.”

11. “And those small libraries you would actually want to put more separately from each
other in the first place. So first on library level you would like to view what everything
communicates with each other and then in that library view like okay, where does that
communicate with each other, to see whether you maybe want to separate that from
each other some more.”

12. “Well we still learn a lot from the system, based on the source code how it works.
There are enough libraries that we only received in binary form, so only closed source,
of which we also do not have a clear idea how it is composed. But those closed libraries
we have to replace under any circumstance the coming time for our own sources and
build one from that. And that is a black box at the moment, that will have to change.”

13. “And that structure because in the end the main structure that Spring composes for
you is some sort of fundamental structure how the application works together and
how requests go through it. So that is actually the only thing you really need maybe
to understand how the application and everything works when it runs.”

98

14. “Well in the end you do not have how the beans are connected to each other at the
moment. We did not really make a visualisation of that right now. And you do have
plug-ins for that in several IDE’s to show that. But most of those plug-ins work with
Spring frameworks that are a lot newer and the current applications are therefore
less easy to visualise in that. That is purely if you would really want to view how an
application is running in production, how things are connected to each other there.”

15. “Well one of the things that we with our current application would be interesting to
know is, we have received code from 2006, and you can see that over time they added
a lot of things and there is really a lot of code in that that is eventually not being
touched anymore. That maybe was very active but which is not the case anymore.
And the maintenance of the application makes it fairly difficult to now the code that is
present but with which you do not do anything in the end, that is also in the way a bit
to know what does happen. So the identification of code and the removal of the code.
Or it is more optimising of what a lot of people copied and pasted to remove that. That
visualisation would be very useful.”

A.2.5 Current visualisation tools and techniques

1. “If I am working on architecture related things I make use of ArchiMate. That is
an open-source tool in which you can fairly easily type out the different layers, for
example the application layer but also more, the infrastructure layer and the, well,
about the different layers in more detail.”

2. “The first picture shows what the functional applications are and how they collabo-
rate.”

3. “Then there are some pictures that internally to the functional applications describe
which libraries are used and how that is composed.”

4. “But everyone does it in a slightly different way, because [DevOps Engineer 5] who
did the network designed it a bit in his own tool.”

5. “...and eventually those pictures do come together. Yes that just depends on which
tool you know and what do you then use for that to make it insightful.”

6. “Not really a lot, I have a couple of pictures: which libraries are in it, and I made those
last year to analyse which dependencies there were and what we were still missing
and what we needed from the other supplier. That is actually the foundation of the
visualisation now. But that will quickly change in, when we will really take on the code
and change it. Other then that we do not really have a lot of visualisations other then
what a dependency hierarchy is and things like that show from Maven.”

7. “Well you can ask Maven like tell me the libraries that these other libraries use. In
the project file of every library is defined which other dependencies or which other
libraries are being used by this library. And based on that you can get a reasonably
large picture of who makes use of what.”

8. “...besides that it comes on a lower level regarding packages and classes. And then
at the moment I did not use any other visualisation tool for that. A while ago for the
previous project I did use a visualisation tool for that to identify more the circular
dependencies. Yes that will probably still happen in the future.”

9. “There are some plug-ins in Eclipse that can help with that very well to show some
sort of graph, a star diagram with all sort of things in which you say like this package
with which other packages is that connected and which packages refer again to itself
and then there, that can also very clearly show of how many packages how close they
are to other packages. So how much you use of the other packages and then it often
lies more close together. And based on that you can for example see how well the code
is structured.”

99

10. “Yes because in the end when you perform that visualisation you want to see a very
clean picture, some sort of tree structure, and if you do not see that then you actually
know already that you have to change that.”

11. “So far yes, for this project, because that is more on a higher level and not yet very
much in detail. But it does show how much is working together and which things are
or are not used in the system.”

12. “Yes mainly the only visualisation that we have used is more on source code level and
not that much in how the code eventually is connected in a running application. All
applications make use of Spring at the moment, of the Spring framework, and the
Spring framework actually has a lot of singleton beans that in the end are connected
and are put together when starting the application. And that visualisation we do not
have at all how that structure is connected. That you have to really read from the code
yourself.”

100

A.3 Product Owner Quotes (05/04/2019)

A.3.1 Stakeholder roles and tasks

1. “I think it is full-time from March 2018 and I also did a part of the pre-sales so actually
it is from January 2018 that I work with this system.”

2. “That company in the Netherlands was four years during which I also did software
development project management...”

3. “...but as a Product Owner you are of course looking more into the trends in the market
and what it is that we can do to improve. And besides that a more broad horizon to
see where the future goes. Because with product development you are always behind
on the facts so you have to track very carefully what the needs are and which needs
will emerge. Which technologies are available or will become available, that part I try
to fill in and that is still not quite, let me put it this way, it is still not quite carved in
stone to put it that way. Because I of course also worked in the maintenance group for
the past months with the DevOps team to support people in the process. Because the
processes were not ready yet.”

4. “Check briefly whether everything still works and whether it worked well during the
night.”

5. “...looking through tickets, to see whether there is something going on...”

6. “...and then the things that need to be delivered, each month I have to create a monthly
report.”

7. “I usually have a meeting with the customer one time a week, one or two times a
week, so you have to do some things for that and then it are a lot of questions from the
customer: I need this, and how does that work, and can you give me this information.”

8. “I interfere a bit with all tasks of all people as a project manager. Actually that is not
necessary, [DevOps Engineer 4/ Scrum Master name] should do that.”

9. “I try to take the time to work out the tasks or the new stories, where I do at this
moment not come too that often by the way.”

10. “Well that are a lot of things, meetings, QA meetings, and then is this meeting and
that meeting, people need your input.”

11. “Yes or people from the customer that need me. That just takes a lot of time and there
should actually just be or come a standard answer for that. And maintain and collect
that so you can in the future just refer to that like well this is the answer to your
question.”

12. “I do support one day a week, also to keep understanding what is going on at the
moment and to see where ops actually struggles with. And things that you know you
have to do every day.”

13. “Normally the Scrum Master works 80 percent and the others a hundred. But [DevOps
Engineer name] is not part of the team anymore as of next month and [DBA name]
actually also not anymore.”

14. “...well I do point out the work that needs to be done, what we are going to do in the
next sprint and what the future will be.”

15. “We all do a day of support, including me...”

16. “And the team divides the work between themselves that is present in the sprint. And
additionally they have to take into account that, the teams are coupled two by two,
so [Devops Engineer 4/Scrum Master] is coupled to [Devops Engineer 2] and [DevOps
Engineer 1] to [DevOps Engineer 3], for now, that will probably change some time in
the future...”

101

17. “...at this moment we started to do some sort of pair programming type of implemen-
tation. That you code with two people and that means that the other team, that the
other two people or one of them has to ttest it and look into it.”

18. “And after each sprint a retrospective is done, what went well and what went wrong.
”

19. “...and for that they have the stand-up, so if they stand up in the morning at 10 o’clock
and say like well what I will do today, what I did yesterday, what did not go well and
who do I think I need, they can in that quarter of an hour that they are together, they
can say I have done this yesterday, this did not go well, I have to continue that, but I
need some help from you or who can help we with this and that.”

20. “...she has to coordinate that everyone, that if someone says like yes but I have no
time. Look that is a bit difficult because she is also a team member, so in principle
the Scrum Master does not need to be part of the team. So she has to solve all
imperfections, that is the role of the Scrum Master. So if someone says something
like: you know, you want me to test something for OSX but I do not have a MAC,
how can I test it then? Then she has to take care there is a MAC, if that would be a
requirement.”

21. “So, she has to remind people like he we are doing a stand-up, take care that you
tested everything, and monitoring that so that I do actually not have to do anything
with that.”

22. “At the moment we do agile development, with which we do create a general outline.
For the customer we have had two innovation sessions in which we try to define the
cornerstones for them: what do they find important and what needs to happen with
their system or systems.”

23. “... with which we work in small parts, try to deliver small parts of functionality
so there is a requirement that is very large and those are split into tasks or stories
actually and those include one or more tasks and those tasks need to be so small that
you can usually work them out in one sprint.”

24. “Then we try to prioritise and then every time things are added, and then we say like
well what do you find important.”

25. “...when the sprint is close to being finished then we, it has to be demonstrated and
then the functionality is shown, these are the tasks that we did. These are finished,
these are not finished, these are demo ready, we do a demo, and this is what you are
going to get. And then it is very possible that a customer says well, I would like to see
it differently. Well fine, then we disapprove it and pull it to the next sprint. And if it is
okay then it can go to acceptance or production.”

26. “Then usually right before or right after that you receive the first phone calls already,
like he I think we get a time out, it is not working.”

27. “No that will just be with the maintenance group, because [name database adminis-
trator] cannot be a single point of failure.”

28. “And that is why it is important that the process is very clear and that you take people
along in the process and say like yes, hee but look this are all the things that we still
need to do and you can put them in a priority list.”

29. “Yes and in principle we decide together what is included in a sprint, that is the idea,
that does not always happen but you have to decide together what will be included
in a sprint like this will be in the sprint and then after two weeks then you have to
be finished with your sprint. Whether things will be ready we cannot really estimate
at this moment, because you have to be able to really estimate how big, how difficult

102

something is, or how complex something is, because you estimate with Story Points,
yes that are that: that are hours or minutes, yes it are points, are it apples or pears...”

30. “Alright then you have to put Story Points in the sprint with your team...”

31. “And that point has to be spend and we assign those to an item and then you know
how many Story Points are included in a sprint. And then you also know how many
Story Points you completed at the end of a sprint, so then you know like well it is
more work than we thought, and if the team would always work the same hours with
the same composition then over time you can better estimate something and complete
your sprint quicker and also that you can do more points.”

A.3.2 Sources of information about the system

1. “Well the tickets I withdraw from the ticketing system, I export those to Excel and
then I hand them over.”

2. “the performance numbers come out of the logging, so at this moment [DevOps Engi-
neer 1] extracts those for me. And then I put those in an Excel pivot table, an external
data source, that will hopefully change in the future that we can just present those on
a dashboard in Kibana, because that is just present in the logging so that can just be
extracted.”

3. “and the requests are registered in that, specific information about that request is
separate and that you do get with Excel then, with a pivot table actually all those
information from that. And if I see an abnormalities then I really look into that further
to see when it happened, which specific customers it where, what happened with the
system then, why is it slow, or why is that, why does this one fall out, do I see a lot of
errors, or do I see a lot of unauthorised enter or something like that.”

4. “...at this moment we work with a piece of software that is not documented.”

5. “And at this moment we are dependent on the knowledge of [name software architect].
And the ease with which he analysis and debugs things.”

A.3.3 Information needs

1. “...so first of all extra detail needs to be added to the log I think.”

2. “So unlocking the data, and understanding where things lie, that is something that is
high on the list.”

3. “...why at specific moments specific things take a long time for example, that is purely
from a SLA (service level agreement) perspective. I want to know why specific re-
quests go slow at what kind of moment specifically.”

4. “...well this moment from two to three it was very slow. Well what happened in the
system that is was that slow?”

5. “And you also do not know at this moment which code that is written, whether it is
bad? What is really the bottleneck in the entire process? Because some parts we can
time and say this is here now and it is now here, that went pretty fast. But you cannot
see very well whether there are specific parts of code of which you can say: if we want
to become efficient, where do we have to start?”

6. “...maybe you can tackle 80% of performance by hitting one piece of code somewhere
because there something very impractical is being done. And that information is just
not present now.”

7. “of course you want to know a lot more about the system and what happens exactly
and whether it is useful to change certain things.”

103

8. “When a request enters that we can just follow it through the entire chain. Sometimes
things happen in the system that you cannot explain. In the sense that you can of
course explain it when you go through the code entirely, but even if you put it in
debug mode you still do not know entirely where it now goes, if it goes. And that is
something that is being improved by repeatedly changing the logging.”

9. “...that you as a matter of speaking can visualise where it went through, and which
code it hit.”

10. “If you, at the moment that you say like well we have a visualisation that helps us
to decide where, how the streams of data go through the system and what is exactly
being hit, then you also know at a certain moment very easily whether certain parts
of data, whether we will refactor certain pieces of software at all.”

11. “Because if something is never used or very little then you should maybe think about
not putting effort into it, because it works, but it will take a lot of time to adjust it.”

12. “Things that are used a lot in that you would maybe want to invest. And that is very
unclear at the moment of course.”

13. “...but the goal is of course in the future to, at least of application 1, what is build on
a framework that is completely undocumented, because you can almost not even find
it on the internet, to refactor that. And then you should know at a certain moment
within the sources that you have now, which ones are really being used? Because
maybe there are parts that are just death, which has never been hit by something,
and those are the ones that you would actually want to amputate or remove maybe.
And then you put a piece against it somewhere if that is difficult or something like
that.”

14. “If you can make that very clear, that you can say like this code was being hit this
many times in that month and this one this often, then you know exactly which classes
you should touch.”

15. “...if you would have had a very nice architecture picture and we would have said
like yes, I make this thing black but here is a connection somewhere and here is a
connection and there is a connection, and that piece that circle there, black surface
but you do see five lines going to it, you don’t know what it does but he. Then you
at least know that those are the important things so I have to go do something with
those, so that goes into that and into that, there. Because now a flow is being followed
from a certain position, that goes into such a black thing, that you do find, well you
know here I need a connection.”

16. “There are a lot of surprises along the way that you encounter and have to solve
again.”

17. “Actually everything was an assumption, because we did not have a knowledge trans-
fer at all.”

18. “if you say like I know how to present my software in such a way as islands with lines
between them in which every class or I don’t know what is an island, then you can
see how things are connected, sometimes it of course become a big spider web, but if
you could zoom into that. That would of course help tremendously, because then you
identify things a lot quicker.”

19. “No idea. Module I think...”

20. “...for me the highest level is the most important, because I have to look at it from a
helicopter view...”

21. “And otherwise you have to puzzle and the system only says like it is buisy here...”

104

A.3.4 Current visualisation tools and techniques

1. “Well we never use CASE tools or UML.”

2. “...but I always use Bizagi for describing processes. That is some sort of workflow,
yes, what you often see is that process description is done in Visio, but I do not find
Visio very useful. In Bizagi, that is an open-source or at least freeware, but you can
also get a payed version, you can more easily draw workflow type of things...”

3. “Well we of course have the LogicMonitoring like visualisations at the moment, in
which we can view how the system works, or how LogicMonitoring thinks the system
works, because that is still not always the same.”

4. “LogicMonitoring only says whether the servers are online and whether they are buisy
and furthermore it does not say anything about reqest times or other things.”

5. “It does not say anything about the application on its own, how many requests, you
can see something because there is Apache access is in there so you can see how
many Apache workers are buisy...”

105

A Appendix 3: Survey

Figure 54: Survey part 1/3.

106

Figure 55: Survey part 2/3.

107

Figure 56: Survey part 3/3.

108

A Appendix 4: Instrumenting Java applications with AjpoLog

AjpoLog stands for AspectJ partially ordered Logging. It was created by Tijmen de Jong
(2019) [8].

Step 1: Download AjpoLog: The source code of the aspects can be found at [37].
Download it and save it in a folder called "trace-aspects".

Step 2: Add the plugin: In the pom.xml file that contains the plugin management of
your application, add the following plugin:

<build>
<pluginManagement>
<plugins>

<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>aspectj-maven-plugin</artifactId>
<version>1.11</version>

<configuration>
<complianceLevel>8</complianceLevel>
<source>8</source>
<target>8</target>
<showWeaveInfo>false</showWeaveInfo>
<verbose>false</verbose>
<Xlint>ignore</Xlint>
<encoding>UTF-8</encoding>

<!Optional>
<excludes>
<exclude>**/*.java</exclude>
</excludes>
<forceAjcCompile>true</forceAjcCompile>
<sources/>
<!Optional>

<aspectLibraries>
<aspectLibrary>
<groupId>your.groupID</groupId>
<artifactId>trace-aspects</artifactId>
</aspectLibrary>
</aspectLibraries>

</configuration>
<executions>

<execution>
<id>default-compile</id>
<phase>process-classes</phase>
<goals>
<! use this goal to weave all your main classes >

<goal>compile</goal>
</goals>
<configuration>

<weaveDirectories>
<weaveDirectory>${project.build.directory}classes </weaveDi-

rectory> </weaveDirectories>
</configuration>

</execution>
<execution>

<id>default-testCompile</id>
<phase>process-test-classes</phase>

109

<goals>
<!– use this goal to weave all your test classes –>
<goal>test-compile</goal>

</goals>
<configuration>

<weaveDirectories>
<weaveDirectory>${project.build.directory}test-classes

</weaveDirectory> </weaveDirectories>
</configuration>

</execution>
</executions>
</plugin>

</plugins>
</pluginManagement>

</build>
Step 3: Add the references: In the pom.xml files of all sub-applications, add a refer-

ence to the plugin:

<build>
<plugins>

<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>aspectj-maven-plugin</artifactId>

</plugin>
</plugins>

</build>
Step 4: Add the logger: In the Log4j.xml file of your application, add the appender

and logger. Make sure the file the logger writes to is a file that you can access.

<appender name="AJPOLog-FILE" class="org.apache.log4j.DailyRollingFileAppender">
<param name="append" value="true" />
<param name="encoding" value="UTF-8" />
<param name="File" value="${catalina.base}/logs/AJPOLog-&appName;.log"/>
<param name="DatePattern" value="’.’yyyy-MM-dd" />
<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="="%-25d{ISO8601};[%t];%m

n" />
</layout>

</appender>

<logger name="AJPOLog" additivity="false">
<level value="DEBUG"/>
<appender-ref ref="AJPOLog-FILE" />

</logger>

110

A JSON Structure

Figure 57: Structure of the JSON Object used by the dashboard.

{"nodes": [
{"name": "org.architecturemining.program.example.band.Band",
"parent": "org.architecturemining.program.example.band",
"root": "org",
"count": 1},

{"name": "org.architecturemining.program.example.band.Song",
"parent": "org.architecturemining.program.example.band",
"root": "org",
"count": 12},

{node3},{node4},etc.],

"links": [
{"source": "org.architecturemining.program.example.band.Band",
"target": "org.architecturemining.program.example.band.Song",
"count": 3,
"sum_calls": 0.001, (sum of the duration of calls over this

link)
"calls":

[{"startDate": "2019-08-08",
"startTime": "12:14:30.273000",
"endDate": "2019-08-08",
"endTime": "12:14:30.273000",
"callerID": "CallerPsuedoId: 1920387277",
"calleeID": "CallerPsuedoId: 775931202",
"source":

"org.architecturemining.program.example.band.Band",
"target":

"org.architecturemining.program.example.band.Song",
"thread": "[main]",
"message": "public java.lang.String

org.architecturemining.program.example.band.Song.getName ()",
(method called)

"duration": 0.0,
"duration_sum": 0.001, (sum of the duration of calls of

this type)
"count": 3, (number of times calls of this type are made)
"avg_duration": 0.0003333333333333333, (duration_sum

divided by count)
"sub_calls": [

{sub -call1},{sub -call2},etc.]},
{call2},{call3},etc.]

},{link2},{link3},etc.]
}

111

A Appendix 5: Running the visualisation

After producing the log files using AjpoLog, the following steps can be taken to run the
visualisation:

1. Download the source code by executing "git clone https://github.com/carlijnq/architecture-
visualisation.git" in the command prompt.

2. In the downloaded folder, there is a sub-folder called "datasets". Place the log files in
this folder.

3. To convert the log files to the right json format that the visualisation uses, run "python
data-processing/main.py datasets/filename.log", inputting the file that you would like
to convert.

4. If the filename was not present in the visualisation before, add it to the file selection
drop-down on line 152 in the index.html. For example: <option value="band">BandExample
scenario 1</option>, make sure that "value=filename" corresponds to the name of the
JSON file.

5. Now run the visualisation by executing "http-server" in the command line that is set
to the location of the root folder of the source code ("architecture-visualisation"), and
go to the IP address of the started server.

It is important to note that the log file has to be formatted in the following way:
“date time ;[thread];type;caller;callee;message”. An example: "2019-08-08 12:14:30,248
;[main];Entry;org.architecturemining.program.example.band.BandPractice.Static;
java.util.ArrayList.CallerPsuedoId: 2092769598;public boolean java.util.ArrayList.add(java.lang.Object)".
The format in which the logger writes to the log file is specified in the "log4j.xml" file as
described in Appendix A, for example: "<param name="ConversionPattern" value="="%-
25d{ISO8601};[%t];%m
n" />". This can be edited, but the files "log_to_csv.py" and "csv_to_json.py" then have to be
changed too to be able to run correctly with that type of formatting.

112

A Appendix 6: Dashboard Design Enlarged

Figure 58: Overview of the dashboard design applied to a scenario with 94,175 calls.

113

A Appendix 7: Validation Protocol: Interviews

Thank you for making the time for this interview. The goal of this interview is to test
whether the visualisation that I will show you aids you in answering a set of questions. For
result processing purposes, I will record this session. Do you have any questions before we
start?

Part 1: Questions for the not previously interviewed participants
To begin with, I would like to ask you some questions about your role and experience.

1. How long have you been working with the system(s)?

2. Do you have a title for your position? What is it?

3. How long have you been working in a position like this one?

4. Do you have any experience with software design (CASE tools? UML?) If yes, how
long have you been working with software design?

Part 2: Questions without the dashboard
The participant is asked how he or she would answer the following questions with the tools
that are currently available to him/her:

1. Which part(s) of the system contain calls that take relatively longer than the other
calls to execute?

2. The calls that take a long time: how often are those called?

3. The calls that take a long time: which path do those follow through the system?

4. Which classes are called most often (and therefore important)?

5. What are the run-time dependencies of the system on (third-party) libraries?

Part 3: Questions with the dashboard A short demonstration of the dashboard is given.
Then part 2 is repeated for a specific scenario, while the participant can make use of the
dashboard. The chosen scenario is shown and explained to the participant using screen-
shots of the system. The scenario has the following steps:

1. Open form

2. Search for a company

3. Select the company of interest

4. Click search without selecting any filters

5. Confirm search to be done by clicking search again

6. Open one of the tabs with details about the company

The resulting log file contains 94,175 calls. Out of the 348 packages in the system,
55 were used within the scenario. Besides that, 262 out of 1,921 classes were used. The
94,175 calls made resulted in 497 unique (bi-)directional links between class objects. The
dashboard using this scenario as an input is shown in Figure 59.

114

Figure 59: Overview of the dashboard design applied to the selected scenario.

1. Which part(s) of the system contain calls that take relatively longer than the other
calls to execute? If there are multiple name three.

2. The calls that take a long time: how often are those called? If there are multiple calls
name three.

3. The calls that take a long time: which path do those follow through the system? If
there are multiple calls provide an answer for one of them

4. Which classes are called most often (and therefore important)? If there are multiple
classes name three.

5. What are the run-time dependencies of the system on (third-party) libraries? If there
are multiple libraries name three.

Part 4: Perceived usefulness

1. Do you think the dashboard provided a complete answer to the questions?

2. Do you think the dashboard provides you with insights you would otherwise not have?

3. Do you think using the dashboard would enable you to answer the questions more
quickly?

4. Do you think you would use the dashboard in your daily work? What would you use it
for? Do you think the dashboard would make your job easier?

115

Part 5: Perceived ease of use

1. Do you think it is easy to learn how to use the dashboard?

2. Once you know how to use it, do you think the dashboard is easy to use? Is it clear
and understandable?

3. Which information took you the most effort to retrieve?

4. Did the dashboard behave in an unexpected way while using it?

Part 6: Overall rating

1. What do you think are the three most positive aspects of the dashboard?

2. What do you think are the three most negative aspects of the dashboard?

116

A Appendix 8: Validation Protocol: Focus Group

Thank you for making the time for this focus group. The goal of this focus group is to dis-
cuss the results of the visualisation(s). For result processing purposes, I will record this
session. Do you have any questions before we start?

Part 1: General questions
I would first like to discuss some general patterns I have found within the visualisations.

1. I have noticed that a certain proxy number always represents the same class being
called, do you have an explanation for this? For example, $Proxy48 always represents
the class Bevragingservice.

2. I have noticed that the callee class of a call does not always conform to the class in
which the called method is being called, do you have an explanation for this? For
example, the call to the method onExecute() has as a callee the class SearchBedrijve-
nAction(), but the method is called in the class BaseAction().

Part 2: Discussing three scenarios
I would now like to ask you some questions about results that I have found within the sce-
narios. I will first ask the DevOps Engineers to reply, after which I will ask the Architect to
reply. The reason for this is that I want to avoid groupthink (’a mode of thinking that people
engage in when they are deeply involved in a cohesive group, when members striving for
unanimity override their motivation to realistically appraised alternative courses of action’
[92]).

Scenario 1: Scenario used during the interviews (app. 1)

1. In the scenario we discussed during the interviews, I noticed that the other application
"application 2" is used, do you have an explanation for this?

2. Besides this, I noticed that the interactions between the class "SelfPopulatingCache"
and "List-CacheService" take up relatively much time, do you have an explanation for
this?

3. Are there other results that you find noticeable?

Scenario 2: Request details (app. 2)
The second scenario selected has the following steps:

1. Open form

2. Fill out request form

3. Click on the request button

The resulting log file contains 5,392 calls. Out of the 91 packages in the system, 18
were used within the scenario. Besides that, 112 out of 1921 classes were used. The 5,392
calls made resulted in 212 unique (bi-)directional links between class objects. The resulting
dashboard is shown in Figure 60.

117

Figure 60: Overview of the dashboard design applied to scenario 2, package depth 4.

1. In the scenario "request details", I noticed that the method getListFieldLabel() is being
called 152 times, do you have an explanation for this?

2. I also noticed that "hiquality" is the most used package, do you have an explanation
for this?

3. Are there other results that you find noticeable?

Scenario 3: Upload check (app. 1)
The third scenario selected has the following steps:

1. Click the upload button

2. Select the file to upload from your computer

This scenario is chosen because the DevOps team has noticed that executing this sce-
nario is slow, and they do not know why it is slow. The resulting log file contains 37,486. Out
of the 348 packages in the system, 37 were used within the scenario. Besides that, 98 out
of 1,921 classes were used. The 37,486 calls made resulted in 129 unique (bi-)directional
links between class objects. The resulting dashboard is shown in Figure 61.

118

Figure 61: Overview of the dashboard design applied to scenario 3, package depth 3.

1. In the scenario "upload check", I noticed that the method listBedrijven(List) takes a
long time (9.025s - 3.902s). Do you have an explanation for this?

2. I also noticed that the class "menucomponent" is used a lot (1368 times), do you have
an explanation for this?

3. Are there other results that you find noticeable?

119

	Introduction
	Problem statement
	Research contribution

	Research Approach
	Research method selection
	Problem investigation
	Treatment design
	Treatment validation

	Architecture Mining
	Grasping software architecture
	Software architecture reconstruction
	Architecture mining framework
	Collecting software execution data
	Conclusions

	Visualisation Techniques and Tools
	Types of visualisation techniques
	Characteristics of techniques and tools to consider
	Designing and evaluating information visualisations
	Conclusions

	Stakeholder Requirements
	Purposes of Software Architecture visualisation
	Project Manager Requirements
	Software Architect Requirements
	Developer Requirements
	Conclusions

	Case Study Interview Results
	System Under Study
	Stakeholder Roles and Tasks
	Sources of information about the system
	Information needs
	Current visualisation tools and techniques
	Conclusions

	Case Study Survey Results
	Subjects
	Ranking of information needs
	Reasons for Ranking
	Conclusions

	Idiom Selection
	Task identification
	Relating tasks to data
	Visualising structure
	Visualising metrics
	Conclusions

	Presenting Architecture Miner
	Solution overview
	Interaction

	Dashboard Implementation
	Data collection
	Extracting the required information
	Visualisation framework selection
	Data processing
	Back-end design

	Dashboard Verification: Running Example
	Which part(s) of the system contain calls that take relatively longer than the other calls to execute?
	The calls that take a long time: how often are those called?
	The calls that take a long time: which path do those follow through the system?
	Which classes are called most often (and therefore important)?
	What are the run-time dependencies of the system on (third-party) libraries?

	Dashboard Validation
	Participants
	Selected scenarios
	Interviews
	Focus group
	Conclusions

	Discussion and Limitations
	Instrumentation
	External validity
	Effectiveness of the used techniques
	Defining sub-calls

	Conclusions
	Future Work
	Proving effectiveness
	Architecture Conformance Checking
	Scalability
	Completing the hierarchy of dynamic views
	Adding functionality

	References
	List of Figures
	List of Tables
	Appendix 1: Interview protocol
	Appendix 2: Interview Quotes
	DevOps Engineer Quotes (13/03/2019)
	Software Architect Quotes (05/04/2019)
	Product Owner Quotes (05/04/2019)

	Appendix 3: Survey
	Appendix 4: Instrumenting Java applications with AjpoLog
	JSON Structure
	Appendix 5: Running the visualisation
	Appendix 6: Dashboard Design Enlarged
	Appendix 7: Validation Protocol: Interviews
	Appendix 8: Validation Protocol: Focus Group

