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“Hiding within those mounds of data is the knowledge that could change the 

life of a patient, or change the world.” – Atul Butte 
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Abstract 

Keywords: Automated Machine Learning, Applied Data Science, 

Healthcare Analytics, Benchmark, Researcher-physicians 

 

Introduction: The healthcare industry has been lagging in the adoption of analytics. 

One of the reasons for lagging is the shortage of data scientists in the healthcare sector. 

Advancements in Machine Learning (ML) and research on its accessibility for non-

experts sparked the research field of Automated Machine Learning (AutoML). Because 

AutoML is designed to make ML accessible to non-expert users, this research aims to 

find out how researcher-physicians can be supported in their knowledge discovery pro-

cess by applying AutoML as part of the research field of Applied Data Science (ADS). 

This is the first study, to the best of our knowledge, to test AutoML methods with do-

main experts in the healthcare domain. 

 

Method: The method used in this research is design science. First, we selected TPOT 

as AutoML method based on the results of a benchmark test and requirements from 

researcher-physicians. We integrated TPOT into two artefacts, a web-application and a 

notebook. We have evaluated the artefacts with the framework for evaluation in design 

science to find out which method suits researcher-physicians best.                                                                                                                                                                               

 

Results: The benchmark test found that there was no AutoML method that consistently 

outperformed all other methods one-hour and four-hour budgets. However, TPOT and 

Auto-Sklearn performed best on both tests. As TPOT was the method that satisfied 

most requirements, we integrated TPOT into two artefacts. Both artefacts had a similar 

workflow, but different user interfaces because of a conflict in requirements. Artefact 

A, a web-application, was perceived better for uploading a dataset and comparing re-

sults. Artefact B, a Jupiter notebook, was perceived better regarding the workflow and 

being in control of model construction. Thus, a hybrid artefact would be best for re-

searcher-physicians. However, both artefacts missed model explainability and an ex-

planation of variable importance for the created model. Hence, the researcher-physi-

cians indicated that they would only use AutoML for the explorative phase of their 

knowledge discovery process. 

 

Discussion: The results suggest that AutoML methods need work on explaining the 

created models and their route to model creation. Another issue is the stability of the 

(Auto)ML models; the models created by an evolutionary algorithm based AutoML 

methods are hard to reproduce due to their random inception. As much as changing the 

seed can change the outcome for a single patient. 
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1 Introduction 

This chapter introduces this research in three sections. First, we introduce the problem 

statement and research objective. Second, we discuss the research questions. Finally, 

we discuss the scientific and social relevance of this research.  

1.1 Problem statement & Research objective  

Data is considered to be ‘the new oil’ in modern society (The Economist, 2017). 

Where the trade, refinery and smart use of oil could bring one great prosperity in the 

twentieth century, data is the way to go in the twenty-first century. Data differs from 

oil in the sense that it is not a physical asset. However, both products have in common 

that they increase significantly in value when refined in the right way. The most valu-

able companies in 19991 were thriving on oil or oil-related products (Fortune, 2019). In 

contrast, the five2 most valuable companies today thrive on smart refinery of data 

(Statista, 2018). Because of the success of these five companies, many industries have 

adopted analytics to get the most value out of the ‘new oil’ that they possess.  

In the healthcare industry, the adoption of data analytics can be used for cost reduc-

tion, improvements of treatment, and increasing patient satisfaction (Feldman, Martin, 

& Skotnes, 2012; Lee & Yoon, 2017; Malik, Abdallah, & Ala’raj, 2016; X. Wang, 

Noor-E-Alam, Islam, Hasan, & Germack, 2018; Y. Wang, Kung, & Byrd, 2016). 

Although there is enormous potential in analytics, the healthcare sector has been 

slow in adopting it in their daily practice compared to other industries (Koh & Tan, 

2005). Because of the late adoption of analytics, the healthcare industry is lagging com-

pared to other industries considering analytics. When asked, a medical researcher stated 

the following about the state of analytics in healthcare: “I seriously believe that we are 

in the middle ages. I look at my iPhone and think about everything that’s possible and 

yet here in the hospital, you still get a piece of paper with your appointment.”(Vries 

de, 2018, p. 20). 

In addition to that there is a shortage of data scientists in healthcare (Gibert, 

Horsburgh, Athanasiadis, & Holmes, 2018; Harris, Shetterley, Alter, & Schnell, 2017; 

Manyika et al., 2011; Markow, Braganza, Taska, Hughes, & Miller, 2017). This ever-

growing shortage of data scientists hinders the adoption and development of analytics 

in the healthcare sector (Davenport & Patil, 2012). To improve the adoption of 

healthcare analytics, one of the focus areas in healthcare research should be making 

analytics accessible to domain experts (X. Wang et al., 2018).  

Enabling domain experts to perform analytics is referred to as Applied Data Science 

(ADS) (Spruit & Jagesar, 2016). One of the challenges in ADS is making Machine 

Learning (ML) accessible for domain experts. Making ML available for domain experts 

is part of the selection vs configuration challenge: As no algorithm configuration works 

best on all datasets, one cannot provide a single algorithm to domain experts to solve 

                                                           
1 Exxon mobile, Ford Motor, General Electric, General Motors and Wall-Mart 
2Amazon, Apple, Facebook, Google and Microsoft 
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all problems. Domain experts, on the other hand, do not have the expertise to choose 

and configure an algorithm given their problem and corresponding dataset.  

The ML community has been working on making ML more accessible to non-expert 

users. Thornton, Hutter, Hoos, & Leyton-Brown (2013) developed a tool, Auto-

WEKA, to automatically select an algorithm and its optimal settings, given a dataset 

and a performance metric. The inception of Auto-WEKA sparked a sub-discipline of 

ML research: Automated Machine Learning (AutoML) (Hutter, Kotthoff, & 

Vanschoren, 2019). The goal of AutoML is to automate the creation of a machine learn-

ing pipeline in order to make ML accessible to non-expert users and create reproducible 

solutions (Hutter et al., 2019; Thornton et al., 2013). 

 

The objective of this research is to find out how healthcare practitioners can be sup-

ported in their knowledge discovery process by using AutoML. 

1.2 Research questions 

In this research, we defined the main research question as: How can we support 

healthcare professionals in their knowledge discovery process by applying AutoML? 

The healthcare professionals that we refer to in this research are researcher-physicians. 

Researcher-physicians are domain experts who are active in both medical research and 

clinical practice. The main research question is split up into five sub-research questions 

to structure this research: 

 

1. What is the knowledge discovery process for healthcare professionals in 

their research? 

To answer this question, we first provide a brief overview of the history of data 

science, a definition of data science, and introduce ADS. Second, we provide an over-

view of knowledge discovery (KD) methods. Finally, we discuss the application of data 

science in healthcare in Chapter 3.  

 

2. What are the capabilities of AutoML? 

To answer this question, we define ML and introduce core concepts. Second, we 

provide insight into the architecture of AutoML methods. Finally, we provide an over-

view and synthesis of currently available AutoML methods in Chapter 4. 

 

3. Which AutoML method performs best on a benchmark test, given medical 

datasets? 

To answer this question, we will use a benchmark suite on a set of AutoML methods 

with medical datasets. Building on the work of (Gijsbers et al., 2019), we answer this 

question in Chapter 5. 

 

4. What are the requirements of healthcare professionals for starting to use 

AutoML in their daily practice? 

To answer this question, we elicit requirements from healthcare professionals re-

garding analytics. Based on these requirements, we select a subset of AutoML methods 
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that are considered suitable to support the data mining process for healthcare profes-

sionals. The results are available in Chapter 6.  

  

5. How does the selected AutoML method suit healthcare professionals in 

their knowledge discovery process? 

To answer this question, we create two artefacts containing an AutoML method. We 

evaluate the artefacts containing the AutoML method with the healthcare professionals 

to see how the artefacts and the AutoML method are perceived. The artefact description 

and evaluation are available in Chapter 7. 

1.3 Relevance of research  

Scientific relevance 

After reviewing the literature on the state of (big) data analysis in healthcare, it be-

comes evident that there is a lot of progress to be made (Chawla & Davis, 2013; X. 

Wang et al., 2018). Progress in the automation of the KD process in healthcare is rele-

vant to this research (X. Wang et al., 2018). Automation of the KD process can increase 

the adoption of analytics by domain experts. 

In addition to this focus area of automating healthcare analytics, the ML community 

has noticed the need to enable access for non-expert users to ML techniques. The need 

to enable non-experts to use machine learning is one of the drivers that gave birth to 

the fast-paced research area of AutoML (Hutter et al., 2019; Thornton et al., 2013). The 

AutoML community aims to automate all steps in the process of creating a machine 

learning pipeline. However, to the best of our knowledge, no AutoML applications 

were tested in real-world situations with non-expert users in the healthcare domain.  

AutoPrognosis (Alaa & van der Schaar, 2018) is an AutoML method that is devel-

oped for healthcare but has not been made available at the time of writing. In addition 

to its core functionality, AutoPrognosis has an explanation function to justify its choices 

to clinicians, something that is regarded as valuable in medicine (Cabitza, Rasoini, & 

Gensini, 2017; Dedding, 2018). This research aims to explore and overcome the bound-

aries to AutoML adoption in healthcare with a method-agnostic approach as it is the 

first study, to the best of our knowledge, to experiment with the usage of AutoML 

methods by domain experts in the medical domain.  

Societal relevance: 

 In the Netherlands, 10% of the GDP is spent on healthcare (OECD, 2019). With an 

ageing population, this spending is expected to double in 2040 (Rijksinstituut voor 

Volksgezondheid en Milieu, 2019). With the growing burden of healthcare costs on 

society, it is vital to improve efficiency and reduce the costs of healthcare. Improve-

ments can be in the supply chain of hospitals (Y. Wang & Hajli, 2016), development 

of personalised care plans to improve quality and experience of patients (X. Wang et 

al., 2018) and improve operational efficiency (Y. Wang et al., 2016). This research aims 

to catalyse the adoption of analytics in healthcare by finding out how we can support 

the knowledge discovery process of domain experts with AutoML. 
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2 Research method 

This chapter describes the research method used in this research. First, we discuss de-

sign science. After that, we discuss how we answer every research question. Finally, 

we connect the different research questions to the design science cycles.  

2.1 Research approach 

This research is conducted using the design science method as proposed by Hevner, 

Ram, March, and Park (2004). Design science is a method which is useful in applied 

information systems science. Because this research is on ADS, and we developed an 

information system to aid data analysis, design science is the right choice according to 

the norms. We position our research as improvement design science (Gregor & Hevner, 

2013). The goal of improvement in design science is to create a more efficient and 

effective product for self-service data science. To do so, we create a ‘level 1’ artefact 

to create specific knowledge about this topic (Gregor & Hevner, 2013).  

Design science uses a three-cycle research approach combining the relevance, de-

sign and rigor cycle, as Figure 1 illustrates (Hevner et al., 2004). The relevance cycle 

initiates and concludes design science research. With the initiation, the relevance cycle 

identifies the problem or opportunity that is addressed by design science. The second 

part of the initiation is used to ask the question: “Does the design artefact improve the 

environment and how can this improvement be measured?” (Hevner, 2007, p. 3). After 

the research, the relevance cycle is used to measure the success of the artefact within 

the application domain.  

The rigor cycle is what distinguishes design science from application development. 

The rigor cycle ensures that design science research is grounded in a knowledge base 

consisting of scientific theories, existing expertise in the application domain of the re-

search and existing application in research (Hevner, 2007). More importantly, we add 

results from the study to the existing knowledge base. 

The design cycle is the heart of design science research. The goal is to create alter-

native designs and evaluate these based on requirements and the requested methods and 

theories. These requirements are derived from the relevance cycle, whereas we draw 

evaluation methods from the rigor cycle. We use the framework for evaluation in design 

science research  (FEDS) to evaluate the artefacts using the technical risk and efficacy 

strategy (Venable, Pries-Heje, & Baskerville, 2016). We selected the risk and efficacy 

strategy for two reasons. First, it is too expensive to evaluate and integrate the proposed 

artefacts within the real setting. Second, the significant design risk is technically ori-

ented, as AutoML is a new technique. FEDS states that the properties of an artefact are 

evaluated after choosing a strategy for evaluation. The final step is creating an evalua-

tion to assess these properties based on the selected strategy. 
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Figure 1: Adapted Information Systems Research Framework  

2.2 Literature study 

A literature study answered the first two research questions. The literature study is 

part of the rigor cycle and is conducted by back and forth snowballing after selecting 

influential papers based on a set of search queries (Appendix 1: Search queries). We 

snowballed for at least two levels and used literature from recent AutoML conferences 

as starting points to find literature. Furthermore, we used literature that is written by 

the founders of the CASH problem to reverse-snowball as they were the first authors to 

address AutoML in literature. Snowballing is considered to be an efficient method for 

a literature study (Webster & Watson, 2002). Besides that, its results do not signifi-

cantly differ from the results of a systematic literature review (Jalali & Wohlin, 2012). 

Due to the time constraints as well as the novelty of the topic of this research, we choose 

snowballing over a systematic literature review.  

2.3 Benchmark test 

A benchmark test answered the third research question as part of both the design- 

and rigor cycle. To benchmark the AutoML methods, we used the AutoML framework 

provided by Gijsbers et al. (2019). We used this open-source framework to ensure a 

reproducible benchmark test by using the default settings (Balaji & Allen, 2018). Four 

medical datasets from the OpenCC18 (Rijn van, 2019) are used to benchmark the Au-

toML methods. The OpenCC18 is the successor of the OpenML100 (Bischl et al., 

2017), a collection of datasets selected for benchmarking. The requirements for inclu-

sion in the OpenML100 are available in Appendix 2: Requirements for OpenML100 

datasets. All tests have been run on Amazon Web Services using m5.2xlarge machines,3 

                                                           
3 32 GB memory, 8 vCPUs (Intel Xeon Platinum 8000 series Skylake-SP processor with a sus-

tained all core Turbo CPU clock speed of up to 3.1 GHz). The operating system on these 

machines is Amazon Linux. https://aws.amazon.com/ec2/instance-types/m5/ 
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to get constant circumstances and enough computing power for the AutoML methods. 

The machines are chosen to build on the work of Gijsbers et al. (2019). 

All selected methods received a time budget of one hour in a 10-fold cross-validation 

set-up to create the best pipeline on the given datasets. The time limit is set on one hour, 

as longer runs do not significantly provide better results (Gijsbers et al., 2019). To base-

line the performance of the AutoML methods in the benchmark test, we added a deci-

sion tree and a constant predictor. Following Gijsbers et al. (2019), we used Area Under 

the Receiver Operator Curve (AUROC) for scoring. 

To validate the statements of Gijsbers et al. (2019) about performance improvement 

of the AutoML methods with a longer time budget, we have selected three methods to 

run again on the same datasets with a time budget of four hours. We chose one evolu-

tionary algorithm (EA) and a Bayesian Optimization (BO) method based on their per-

formance in the one-hour test. A third method was selected because its performance 

lagged significantly in the 1-hour test, to see if a larger time budget would help improve 

its score. 

2.4 Requirements elicitation 

Requirements elicitation was used to answer the fourth research question using in-

terviewees that participated in the study as part of the relevance cycle. We describe the 

interviewees that participated in the next paragraph. The requirements were elicited 

using semi-structured interviews. We selected semi-structured interviews as the best 

method for requirements elicitation for three reasons. 1) Semi-structured interviews are 

considered to be the most effective way for requirements elicitation (Davis, Dieste, 

Hickey, Juristo, & Moreno, 2006); 2) It is an accepted method for conducting qualita-

tive research in healthcare (Al-Busaidi, 2008); 3) Semi-structured interviews have the 

benefits of eliciting people’s own views and uncovering issues or concerns that have 

not been considered beforehand by the researcher (Pope, van Royen, & Baker, 2002). 

To get a complete view of requirements in healthcare, we analysed five interviews 

that are part of an earlier, related, research project by De Vries (2018) for requirements 

elicitation.  

For our interviews, we constructed an interview protocol following the guidelines 

for interview research (Castillo-Montoya, 2016). The interview protocol is available in 

Appendix 11.4. We transcribed all the interviews, which lasted between 30 and 45 

minutes the transcripts are available in Appendix 11.5.  

From the interviews, we elicited requirements. We sent the requirements to the in-

terviewees for confirmation. After the confirmation, we categorised and analysed the 

requirements. We tested the functional capabilities of the AutoML methods that partic-

ipated in the benchmark test against the elicited requirements. 

Sample  

All interviewees are related to the scientific department of a regional hospital in the 

Netherlands. The interviewees have decided to participate voluntarily and hold differ-

ent roles and medical expertise within the hospital. The interviewees are active in the 
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research fields of cancer, orthopedy, and cardiology and participate in medical research, 

either full-time or part-time. The sample consists of three women and two men. The 

sample is restricted to five interviewees for the interviews and the case study due to the 

time constraints of this study. An overview of the sample is available in Table 1. 

 
Table 1: Sample description 

Interviewee Experience Speciality Hospital type 

Interviewee 1 3 years Oncology Non-academic 

Interviewee 2 6 years Orthopaedic sur-

gery 

Non-academic 

Interviewee 3 10 years Research, no spe-

cific field 

Non-academic 

Interviewee 4 18 years Cardiology Non-academic 

Interviewee 5 22 years Immunology Non-academic 

 

2.5 Evaluation of AutoML artefacts 

As part of the relevance cycle, we answered the fifth research question. In this pro-

cess, the interviewees evaluate the created artefacts. Design evaluation is crucial to de-

sign science (Hevner et al., 2004). To evaluate the artefacts, we combine two of the 

methods that Hevner et al. (2004) suggest: an observational and experimental evalua-

tion. We study the artefacts in depth using mock data as part of the experimental set-

up. However, the interviewees were allowed to use their data to execute the experiment 

if preferred. The observational part of the evaluation method is used to study the arte-

facts in a simulated business environment during the experiment.  

According to Hevner et al. (2004), observational evaluation is part of a case study. 

The choice for a case study is supported by Roethlisberger (1977), as he argues that 

case-research is well-suited for problems in which research about phenomena is at the 

early and formative stages, as is the case of the application of AutoML for KD in the 

medical domain. Furthermore, case-study research allows answering “how” questions 

(Benbasat, Goldstein, & Mead, 1987). 

To evaluate the artefacts, we used artificial summative evaluation as part of the 

framework for evaluating design science research (Venable et al., 2016). We evaluated 

the artefacts on the user-story categories from the previous research question. To be 

able to evaluate the artefact properties, we have created refined hypotheses (Offermann, 

Levina, Schönherr, & Bub, 2009). Based on these refined hypotheses, we created an 

artefact evaluation protocol available in Appendix 11.7. The first artefact presented to 

the interviewees will differ per participant to decrease learning bias. The interviewees 

evaluated the artefacts based on the artefact evaluation protocol. 
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2.6 Conclusion 

We answer all sub-research questions as part of one of the cycles in the design sci-

ence research method. A literature study is conducted to provide a theoretical founda-

tion for this study. After that, two research questions are asked to be able to select the 

ideal AutoML method based on functional requirements and performance. Finally, we 

evaluate the created artefacts containing an AutoML method with the interviewees. 

A summary of each research question, including the corresponding design cycle type 

and execution, is listed in Table 2.  

  
Table 2: Research approach overview 

Research question Cycle Practical execution 

RQ1 Rigor Literature review 

RQ2 Rigor Literature review 

RQ3 Design & 

Rigor 

Compare AutoML methods in a benchmark 

test. 

RQ4 Relevance Elicit requirements from literature. 

Conduct interviews. 

Elicit requirements from interview transcripts. 

Revise requirements based on interviewee 

feedback. 

RQ5 Relevance Evaluate the implementation of the selected 

AutoML method. 
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3 Theoretical background 

This chapter describes the theoretical background of this research. The first section 

elaborates on the inception of data science, various definitions of data science, and Ap-

plied Data Science (ADS) as a sub-discipline of data science. The second section dis-

cusses seven Knowledge Discovery (KD) methods. The third section covers the appli-

cation of data science in the healthcare domain. The final section provides a conclusion 

of this chapter to scope the remainder of this research by answering the first research 

question. 

3.1 Data science 

Within the statistics community, there has been a lively debate about the role of 

statisticians in data science, as statisticians long dominated data science (Chang et al., 

2018). John Tukey was the first statistician to argue in 1962 that statisticians should 

look beyond the theory of statistics (Cao, 2017; Donoho, 2017). He identified four driv-

ing forces in statistics that have led to what we know as data science today: 1) The 

formal theory of statistics; 2) Accelerating developments in computers and display de-

vices; 3) The challenge, in many fields, of more and ever-larger bodies of data; 4) The 

emphasis on quantification in an ever-wider variety of disciplines (Tukey, 1962). In the 

remainder of this section, we describe different views on data science and conclude 

with our definition based on the literature. After that, we will discuss views on ADS as 

a sub-discipline of data science and conclude with a definition. 

The definition of data science  

Since Tukey’s argument in 1962, the term data science was first coined by Peter 

Daur in 1974 (Cao, 2017). Since then, there has been an active discussion on the defi-

nition of data science. Jeff Wu (1997) was a statistician who asked the question if sta-

tistics is the same as data science in his lecture: ‘Statistics = Data Science?’. Many 

disagree with Wu on this and see statistics as one of the fundamental parts of data sci-

ence but argue that data science is broader than just statistics. Some view data science 

as a culture, whereas others see it as an interdisciplinary field. We agree with the latter 

and view data science as an interdisciplinary field of domain knowledge, mathematics 

& statistics, and computer science. 

Data science as an interdisciplinary field 

There are four perspectives on data science as an interdisciplinary field. All perspec-

tives state that data science is the intersection or superset of three disciplines but differ 

in what these disciplines are. Cao defines data science as “a new interdisciplinary field 

that synthesises and builds on computing, communication, management, and sociology 

to study data” (2017, p. 9).  

Yu (2014), just like Cao, defined data science as an interdisciplinary field. She states 

that Data science has three pillars: computer science, statistics/mathematics, and do-

main knowledge. She leaves it in the middle whether data science is the union or the 
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intersection of these three fields. She disagrees with Cao over the fields that create the 

interdisciplinary field of data science. Yu mentions statistics/mathematics as part of the 

triangle, whereas Cao does not.  

Blei and Smyth (2017) state that there are three perspectives on data science: The 

statistical perspective, the computational perspective, and the human perspective. They 

state that the potential of data science is in crossing the boundaries of each perspective. 

Furthermore, they state that it is more than a combination of the disciplines; it is about 

fitting them in a broader framework to answer discipline-specific questions. Hence, 

Blei and Smith agree with both Cao and Yu that data science is an interdisciplinary 

field. We can map the three views presented by Blei and Smith to the three pillars that 

make up Data science as described by Yu when we argue that the human perspective 

in a specific discipline is the equivalent to domain knowledge.  

Chang et al. (2018) provide a Venn diagram, depicted in Figure 2, in the NIST Big 

Data Interoperability framework building on an earlier version of Pritzker and May 

(2015). It shows three pillars of data science: math & statistics, domain expertise, and 

computer science. They state that: “Data Science is a super-set of the fields of statistics 

and DM and machine learning (ML) to include the analysis of big data.” (Chang et al., 

2018, p. 23). We find that these three fields that are similar to those mentioned by Yu, 

Blei and Smith. Furthermore, they agree with the notion that data science is a multidis-

ciplinary field. 

 
Figure 2: Data science and its sub-disciplines (Chang et al., 2018) 

The Data Science Body of Knowledge (DS-BoK) agrees with the definition of Pritz-

ker and May after evaluating relevant bodies of knowledge regarding data science 

(Demchenko, Manieri, & Belloum, 2017). The goal of the DS-BoK is to create a com-

petency framework and a standard for the Data science community. This standard and 

framework should be for both professionals and academics but is still in a draft phase. 

In the literature we see a consensus on the definition of data science: it is an inter-

disciplinary field, and it consists of three pillars: domain knowledge, mathematics & 

statistics, and computer science (Chang et al., 2018; Demchenko et al., 2017; Pritzker, 

P., and May, 2015; B. Yu, 2014). Hence, we use the definition of Chang et al. (2018) 
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in the remainder of this research when we discuss data science “Data Science is a su-

per-set of the fields of statistics and data mining and machine learning to include the 

analysis of big data.” (Chang et al., 2018, p. 23). 

Applied Data Science 

The DS-BoK (Demchenko et al., 2017) describes the practitioners of data science as 

data scientists. Because of the reduction of economic costs, algorithmic advances (see 

Chapter 4) and improved software for data analysis, data scientists are becoming in-

creasingly important, and the demand for these specialists is soaring (Carmichael & 

Marron, 2018). Davenport and Patil (2012) recognised the growing demand for data 

scientists earlier and branded the job of data scientist as: “the sexiest job of the 21st 

century”. Besides Davenport and Patil, many others in literature predicted and noted a 

growing shortage of data scientists (Gibert et al., 2018; Harris et al., 2017; Manyika et 

al., 2011; Markow et al., 2017). This shortage of data scientists gave birth to a sub-

discipline of data science: Applied Data Science (ADS). ADS aims to enable domain 

experts to do data science by developing information systems suited to them. 

ADS covers a part of the three-pillar Venn diagram in Figure 2 as it is a sub-disci-

pline of data science. There is not such an extensive discussion around the formal def-

inition of ADS as is the case for data science. We review three takes on the definition 

of ADS. 

An interdisciplinary focus group of scientists on ADS from Utrecht University de-

fines ADS as: “All applications of Data science methodology and engineering to sci-

entific domains. Including the fundamental research from which new methodologies 

and tools are created and studied from an application-oriented perspective for one or 

more domains” (Eijnatten et al., 2017, p. 4).  

The KDD conference has a distinct call for ADS papers next to the call for data 

science papers. ADS papers have a specific distinction in this call: “ADS papers focus 

on real-world problems and systems that are deployed or are in the process of being 

deployed.” (KDD, 2019, p. 1). 

 In the paper Power to the people! Spruit & Jagesar define ADS as: “The knowledge 

discovery process in which analytical applications are designed and evaluated to im-

prove the daily practices of domain experts.” (Spruit & Jagesar, 2016, p. 1).  

All three views on ADS emphasise the use of tools or applications to solve data-

driven, domain-specific problems. We use the definition of Spruit and Jagesar (2016) 

for ADS in the remainder of this research, as it is the most comprehensive definition 

and builds on the definition of data science provided above. The KD process mentioned 

in this definition is elaborated on in the section on Knowledge Discovery Methods. 

Figure 3 displays which part of data science is covered by ADS. 
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Figure 3: ADS in Context (Spruit & Jagesar, 2016) 

3.2 Knowledge Discovery Methods 

The KD process in ADS is often referred to as Data Mining (DM). Fayyad et al. 

define DM as: “The nontrivial process of identifying valid, novel, potentially useful, 

and ultimately understandable patterns in data.” (Fayyad, Piatetsky-Shapiro, & Smyth, 

1996a, p. 30). We consider the KD and DM processes as the same processes. All DM 

methodologies have evolved from the Knowledge Discovery in Databases (KDD) pro-

cess or its benchmark successor, the Cross-Industry Standard Process for Data Mining 

(CRISP-DM) (Mariscal, Marbán, & Fernández, 2010). In this section, we discuss seven 

available methods. KDD, CRISP-DM and, SEMMA are discussed because they are 

well-established methods in DM (Azevedo & Santos, 2008; Mariscal et al., 2010; 

Shafique & Qaiser, 2014). 

Additionally, we evaluate The Three Phases Method (3PM) and the Advanced Analyt-

ics project methodology, as these are both methods that focus on value delivery for a 

client organisation. Finally, we discuss the Epicycles of Analysis and the Human-Cen-

tred process. The focus of the latter two is on self-service data science. Thus, these 

could be more useful for interpretability by domain experts, as most practitioners do 

not use scientific literature due to its limited availability and complexity (Vlaanderen, 

Brinkkemper, & van de Weerd, 2012). 

KDD 

KDD was the first structured method for knowledge discovery in databases, de-

scribed by Fayyad, Piatetsky-Shapiro, and Smyth (1996b). The focus of the method is 

on extracting knowledge from databases from a scientific perspective and hence might 

be perceived as technical. 
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KDD consists of nine steps: learning the application domain, creating a target data 

set, data cleaning and pre-processing, data reduction and projection, choosing the func-

tion of data mining, choosing data mining algorithm(s), data mining, interpretation, and 

discovering knowledge (Fayyad et al., 1996b). Figure 4 summarises the KDD process. 

The visualisation shows that the process is iterative. 

 
Figure 4: KDD process (Fayyad et al., 1996b) 

CRISP-DM 

CRISP-DM is a method developed by a consortium of DaimlerChrysler, NCR and, 

SPSS using Clementine, a tool for data mining. The goal of the method is to have a 

standardised process for the usage of data mining within organisations (Chapman et al., 

2000). CRISP-DM is the most widely used data mining method in practice (Mariscal 

et al., 2010; Piatetsky, 2014). 

CRISP-DM consists of six phases and is flexible but carefully described based on 

the hierarchical levels below the phases. The six phases in the CRISP-DM method are 

business understanding, data understanding, data preparation, modelling, evaluation, 

and deployment. Each phase consists of one or more generic tasks, specific tasks, and 

process instances. Generic tasks are created to cover all possible data mining situations 

in a phase. Specific tasks are created to describe how generic tasks should be completed, 

given a specific situation and goal. The process instances record what happened in an 

actual engagement of the method (Chapman et al., 2000). Figure 5 visualises the hier-

archy of the CRISP-DM methodology. 

An example of a generic task for business understanding is to determine business 

objectives. A specialised task that is accompanying this generic task is identifying key 

persons in the business.  
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Figure 5: CRISP-DM method hierarchy (Chapman et al., 2000) 

  

According to Chapman et al., one does not have to follow the phases in a specific 

order. Although Figure 6 depicts an order. Furthermore, the stages are not to be com-

pleted once, as the method is iterative.  

 
Figure 6: CRISP-DM reference model (Chapman et al., 2000) 

SEMMA 

The SAS Institute developed SEMMA, SEMMA stands for sampling, exploring, 

modifying, model, and assessing the data. It is developed to complement their ERP 

package and their analysis tool Enterprise Miner (Rohanizadeh & Moghadam, 2009). 

Hence, we conclude that SEMMA focusses on data mining in organisations that use 

SAS. Although SAS presents SEMMA as a method, it solely focusses on the technical 

part of data mining, the organisation side of the process is neglected (Marbon, Mariscal, 

& Segovi, 2009). The focus of SEMMA is on sampling the dataset at hand, as can be 

deduced from the acronym’s meaning (SAS, 2018). As can be deducted from Figure 7, 

SEMMA is a linear method.  
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Figure 7: SEMMA method (Mariscal et al., 2010) 

Three Phases Method (3PM) 

Vleugel et al. (2010) developed the 3PM for organisations that outsource their data 

mining process and organisations that deliver value by performing the DM process. 

Building on both CRISP-DM and KDD the method was constructed with a clear dis-

tinction in roles for the case company and the third party who executes the data mining. 

The method is created to support both companies in the outsourcing process (Vleugel 

et al., 2010).  

The method consists of three phases: data retrieval, data analysis, and results imple-

mentation. The goal of the first phase is to align the case company and the third party. 

The data analysis phase is about selecting the right data mining technique to solve the 

case company’s questions. The final phase aims to embed the results in the business 

processes or to deliver a recommendation report. All phases consist of activities with 

their corresponding sub-activities and deliverables. 3PM is an iterative method; all its 

activities are executed by either one party or collaboratively (Ooms, Spruit, & 

Overbeek, 2019). The 3PM is an iterative method as can be deducted from Figure 8.  

 

 
Figure 8: 3PM (Vleugel et al., 2010) 
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Advanced Analytics project methodology 

The Advanced Analytics project methodology is designed to have a standard process 

for performing projects at clients of Deloitte. The focus of the method is on the assign-

ment of tasks within the project team and the deliverables for the client in each phase 

of the project. The method consists of five project phases at the client: 1) Problem fram-

ing; 2) Acquire and understand data; 3) Prepare and structure data; 4) Analysis and 

modelling; 5) Report and implement (Deloitte, 2016). Besides the phases during the 

project, there are two phases outside of the project: Proposal and preliminary activities, 

and project evaluation. These two phases are not performed at the client but are crucial 

for the business processes within Deloitte. All deliverables and the division of roles 

within a project team are carefully described, as well as the criteria to go to the next 

phase of the project. The methodology is an iterative method, as is shown in Figure 9. 

 

 
Figure 9: Advanced Analytics project method (Deloitte, 2016) 

Epicycles of analysis 

The Epicycles of analysis is a general framework to take in mind when working with 

data. The epicycles of analysis are for ‘anyone who works with data’, researchers and 

business people, professionals and amateurs. It describes five core activities: Stating 

and refining the question, exploring the data, building formal statistical models, inter-

preting the results, and communicating the results (Peng & Matsui, 2016). At each of 

the activities, it is crucial to engage in three steps: 1) Setting expectations 2) Collecting 

information and compare these to the expectations. If these do not match: 3) Revising 

expectations or fix the data, so your data and your expectations match (Peng & Matsui, 

2016). The epicycles of analysis are an iterative method as can be inferred from Figure 

10. 
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Figure 10: Epicycles of analysis (Peng & Matsui, 2016) 

Human-centred process 

The human-centred approach is an elaboration on the KDD method described above. 

Because the KDD method can be complicated to solve real-life tasks Brachman and 

Anand (1996) developed the human-centred process. Gertosio and Dussauchoy (2004) 

describe the human-centred process as the realistic steps of the KDD approach. The 

focus of the human-centred process is on the decisions that the data scientist has to take. 

Furthermore, it describes general tools and deliverables for the process steps. The six 

steps in the process are similar to those in KDD process: 1) Task discovery; 2) Data 

discovery; 3) Data cleaning; 4) Model development; 5) Data analysis; 6) Output gener-

ation. Figure 11 depicts the iterative nature of the method, and the process, inputs, and 

outputs.  
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Figure 11: Human-centred process (Gertosio & Dussauchoy, 2004) 

Data mining method overview 

In this section, we described seven methods: Three methods focus on data mining 

conducted by a single party. Two methods focus on delivering value for a client organ-

isation when outsourcing the data mining process. The last two methods focus on the 

decisions that have to be made by practitioners during the KD process.  

Besides SEMMA, all models described above are iterative. This finding is not surpris-

ing, as iterative development is efficient in KD (Larson & Chang, 2016). Besides that, 

we find that the Deloitte phases during the project identically resemble the CRISP-DM 

phases. This observation is unsurprising, as Mariscal et al. (2010) observed that most 

methods evolved from either CRISP or KDD and CRISP-DM is the most widely used 

method in practice (Piatetsky, 2014). The addition of the extra phases is to support the 

business processes of the company.  

We choose CRISP-DM as the default KD method in this research. It is the base of 

most methods (Mariscal et al., 2010) and is the most used method in data science 

(Piatetsky, 2014). CRISP-DM is highly flexible to adapt to healthcare due to its hierar-

chical structure (Koh & Tan, 2005). When discussing the KD process of the ADS def-

inition, we are referring to CRISP-DM in the remainder of this research. A tabular over-

view of the methods, the level of detail of the method description in literature and 

method characteristics are in Table 3. 

 



28 

Table 3: Data mining method overview 

Method Process type Description Characteristics 

KDD Iterative General For on scientific discovery in da-

tasets, technically oriented 

CRISP-

DM 

Iterative Detailed Focus on industry applications, the 

most used model for data mining. 

Easily adaptable. 

SEMMA Linear General Focus on SAS applications covers the 

technical part of the process. 

3PM Iterative Detailed Focus on two parties in the data min-

ing process 

Advanced 

Analytics 

project 

methodol-

ogy 

Iterative 

 

 

 

Detailed Focus on delivering value for the cli-

ent, deliverable focussed. Sets re-

quirements for going to the next step. 

Epicycles 

of analysis 

Iterative General General method focussed on non-ex-

perts in data mining 

Human-

Centred 

process 

Iterative General Emphasis on the perspective of the 

data scientists. Shows input and out-

put 

3.3 Knowledge Discovery in healthcare 

Compared to other industries, the healthcare industry has been late in the adoption 

of data mining (Koh & Tan, 2005). Hence, the healthcare industry has not yet grasped 

the full potential of DM (Feldman et al., 2012; Lee & Yoon, 2017; Malik et al., 2016; 

X. Wang et al., 2018; Y. Wang & Hajli, 2016). Well documented reasons for this are: 

a lack of understanding of the impact on strategic and managerial perspective 

(Raghupathi & Raghupathi, 2014; X. Wang et al., 2018); the complexity of the 

healthcare system (Spruit & Lytras, 2018); costs of adoption (Dedding, 2018; Neff, 

2013), patient privacy (Neff, 2013; Patil & Seshadri, 2014), data quality in Electronic 

Health Records (EHR) (Koh & Tan, 2005; Lee & Yoon, 2017) and integration of vari-

ous data sources (Koh & Tan, 2005; Y. Wang et al., 2016). 

Besides these barriers to adoption, healthcare can benefit from implementing analyt-

ics in three ways: cost reduction (Bates, Saria, Ohno-Machado, Shah, & Escobar, 2014), 

increased operational efficiency (Malik et al., 2016) and increased patient satisfaction 

(Kimberly & Cronk, 2016). Viewing hospitals and their suppliers as a supply chain and 

operations costs can be used to reduce costs (Malik et al., 2016). Another option is 

identifying high-risk patients at an early stage (Bates et al., 2014). Approaching 

healthcare as a value delivery process could help improve the patient’s satisfaction 

(Kimberly & Cronk, 2016). Finally, implementing patient-centric analysis is proposed 

as a benefit for healthcare by creating unique treatment plans for each patient. Imple-
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menting a patient-centric analysis could reduce costs and improve both patient satisfac-

tion and operational efficiency (Chawla & Davis, 2013; Duan, Street, & Xu, 2011; 

Martin & Félix-Bortolotti, 2014).  

DM is used in healthcare by researcher-physicians for research purposes and KD. 

Researcher-physicians are former medical students who perform research in order to 

obtain a medical PhD degree or people who do research next to their clinical practice 

(Ley & Rosenberg, 2005). As medical students have limited knowledge in statistics, 

this is often the case for researcher-physicians. Skills outside of the medical domain in 

statistics or computer science are needed for clinical research but not mastered by re-

searcher-physicians (Sung et al., 2003). The need for clinical data analysis is surging, 

but the lack of skilled professionals is hindering this development (Markow et al., 

2017). 

3.4 Conclusion 

In this chapter, we defined ADS as “The knowledge discovery process in which ana-

lytical applications are designed and evaluated to improve the daily practices of do-

main experts.” (Spruit & Jagesar, 2016, p. 1). We refer to CRISP-DM as the KD pro-

cess in this definition. Because CRISP-DM is the most widely adopted method in data 

science (Piatetsky, 2014), it is easily adaptable and many different models have been 

derived from CRISP-DM (Mariscal et al., 2010). Finally, we described the possibilities 

of applying analytics in healthcare. Because of the surge in clinical data analysis and 

the lack of data scientists, there is enormous potential for the application of KD and 

ADS in healthcare (Markow et al., 2017; X. Wang et al., 2018). While designing new 

analytical systems, constraints and barriers to adoption need to be taken into account to 

increase the adoption rate with healthcare professionals (Neff, 2013).  
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4 Automated Machine Learning 

This chapter describes AutoML by discussing its origin, related concepts, and defini-

tion. Furthermore, it provides an overview of AutoML methods. The first section intro-

duces ML and related concepts to provide context for the remainder of this chapter. The 

second section describes AutoML, including related concepts. The third section de-

scribes a selection of AutoML methods and their contribution to literature. The last 

section provides a synthesis of the AutoML methods discussed in section 4.3.  

4.1 Machine Learning  

Machine Learning (ML) is formally defined as: “A computer program is said to 

learn from experience E with respect to some class of tasks T and performance measure 

P, if its performance at tasks in T, as measured by P, improves with experience E.” 

(Mitchell, 1997, p. 2). ML first originated in the 1950s as a sub-discipline of statistics 

(Portugal, Alencar, & Cowan, 2018) and is often characterised as teaching computers 

to learn from experience by developing algorithms (Breiman, 2001; Jordan & Mitchell, 

2015; Obermeyer & Emanuel, 2011). Another take on ML is teaching computers how 

to learn without being explicitly programmed (Olson & Moore, 2016). Next, we will 

discuss essential concepts in ML: The ML pipeline, Learning functions, Model evalu-

ation, and Model tuning. 

ML Pipeline 

Data scientists often refer to a ‘pipeline’ when they are talking about the result of 

their work. This pipeline is an analogy for the process through which the data pro-

gresses during data analysis. A pipeline consists of data collection, data pre-procession, 

and analytical processing. When projecting a pipeline on CRISP-DM (section 3.2), it 

covers the phases of data preparation, and modelling (Aggarwal, 2015). ML techniques 

are often used as the building blocks of the analytical processing part of the pipeline, 

as shown in Figure 12. These building blocks consist of algorithms and pre-processing 

methods. Data scientists spend most of their time on data pre-processing and the con-

figuration of the ML techniques (Olson, Bartley, Urbanowicz, & Moore, 2016).  

 

 
Figure 12: DM Pipeline (Aggarwal, 2015) 
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Learning functions 

ML techniques have different ways to learn patterns from data. In ML, there are four 

types of learning functions: supervised, unsupervised, semi-supervised, and reinforce-

ment learning (Antonoglou et al., 2015; Gareth, Witten, Hastie, & Tibshirani, 2013). 

For the same purpose, different learning types are suitable. Learning types are families 

of algorithms. For example, classification can be done by both supervised learning us-

ing logistic regression, and unsupervised learning using k-means clustering.  

Supervised learning is learning from a set of input variables, 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑘} for 

which the output label Y is known. Supervised learning is used to gain understanding 

in which variables in xk in X influence the outcome Y, as it does not deliver the best 

predictive performance on a dataset (Gareth et al., 2013; Kotsiantis, 2007). Examples 

of supervised learning models are linear and logistic regression, decision trees, and Na-

ïve Bayes classifiers (Kotsiantis, 2007).  

Unsupervised learning is the opposite of supervised learning. There is no output la-

bel Y for the input variables in X. The goal of unsupervised learning is to find similar 

cases or to find similarities between variables in X. Examples of unsupervised learning 

models are principal component analysis and K-means clustering (Gareth et al., 2013).  

Semi-supervised learning is a form of learning in which a dataset contains both la-

belled and unlabelled data. Semi-supervised learning is used in situations where it is 

cheap to find the input variables in X and expensive to label the data with output vari-

able Y (Gareth et al., 2013; Zhu, 2005). With semi-supervised learning, both labelled 

and unlabelled data is used to train the algorithm. Under the right assumptions, it is 

possible to use the unlabelled data to improve the performance of the learning model 

(Zhu, 2005).  

Reinforcement learning is training an algorithm by a feedback loop. The algorithm 

does not know what its goal is but gets both positive and negative feedback based on 

the decisions that it takes. In this way, the system is learning from experience 

(Antonoglou et al., 2015). This way of learning is often used to teach a computer to 

play games.  

Model tuning 

The performance of each algorithm can be fine-tuned using model parameters and 

hyperparameters. Model parameters are variables in X which are in- or excluded in the 

model. An example of tuning model parameters is the in- or exclusion of gender for a 

model on credit card fraud (Gareth et al., 2013). Hyperparameters are used to configure 

the selected algorithm to optimise performance (Mohr, Wever, & Hüllermeier, 2018). 

The number of trees in a random forest is an example of a hyperparameter setting 

(Olson et al., 2016). The actual model consists of a selected algorithm and its tuned 

(hyper)parameters (Bergstra & Bengio, 2012). As model tuning is complex and time 

consuming for data scientists, research has focussed on its automation (Bergstra, 

Bardenet, Bengio, & Kégl, 2011; Bergstra & Bengio, 2012; Thornton et al., 2013).  
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Model evaluation 

In the world of a data scientist, there is no free lunch (Wolpert & Macready, 1996). 

That is, no model performs best on all datasets. To evaluate models, data scientists 

divide the dataset at hand in a training set and a validation set. After training, data sci-

entists test a model on a validation set to find out if a model generalises well to unseen 

data. The validation is executed to make sure that the created model has not adapted 

too much on extremes within the training set.  

A model that is sensitive to extremes in a training set is said to have high variance 

and low bias. If a model predicts the mean of the outcome variable, it is said to have 

high bias and low variance. The goal of training the model is to get the right balance 

between bias and variance, so the model performs well on unseen data. This balancing 

act between model complexity and model performance is the bias-variance trade-off 

(Figure 13) (Gareth et al., 2013; L. Yu, Lai, Wang, & Huang, 2006).  

 
Figure 13: Bias-variance trade-off and model error (L. Yu et al., 2006) 

Besides the choice of model complexity, there are two other choices to be made by 

the data scientist when evaluating a model: the division of data into a training- and 

validation set, and the evaluation metric. The method of data division and the evaluation 

metric is essential, as it has a significant impact on the performance of the algorithm on 

an unseen dataset (Mohr et al., 2018). To divide a dataset into a training- and validation 

set for evaluation, one can use a single divide, k-fold cross-validation, bagging or boost-

ing (Gareth et al., 2013). Examples of evaluation metrics are accuracy, precision, recall, 

F1-score, area under the curve, root mean squared error, and the R2 adjusted statistic 

(Gareth et al., 2013).  

4.2 Automated Machine Learning 

AutoML aims to automate the creation of an ML pipeline in order to make ML ac-

cessible to non-experts and to improve the reproducibility of ML solutions (Feurer et 
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al., 2015; Hutter et al., 2019; Thornton et al., 2013). AutoML aims to improve the qual-

ity of solutions as some AutoML systems can outperform human experts in configuring 

pipelines. (Jin, Song, & Hu, 2018; Sá de, Pinto, Oliveira, & Pappa, 2017).  

Based on the definition of ML in section 4.1, Quanming et al. (2018) define AutoML 

as: “AutoML attempts to construct machine learning programs (specified by E, T, and 

P in the definition of ML), without human assistance and within limited computational 

budgets.”. From this definition, we can derive that there is a focus on automating the 

construction of the ML pipeline with the constraint of a computational budget. Next, 

we will discuss essential concepts in AutoML: The CASH problem, search strategies 

and the architecture of AutoML systems.  

The CASH problem 

AutoML has converged from the fields of automatic model selection and hyperpa-

rameter configuration. Thornton et al. (2013) were the first to combine both model se-

lection and hyperparameter configuration. They did so by defining the combined algo-

rithm selection and hyperparameter optimisation problem (CASH). The CASH equa-

tion, available in Equation 1, consists of algorithms A = {A(1), ... , A(n)} with an as-

sociated hyperparameter space Λ(1), ... , Λ(n), a loss function ℒ, and a dataset D. The 

dataset D is divided into a training and validation set for each fold, denoted by k. The 

goal of the CASH problem is to select an algorithm A* as the optimal value for A and 

associated hyperparameters λ* as the optimal values of the hyperparameters that mini-

mise the loss on the given dataset.  

 

 
Equation 1: CASH problem (Thornton et al., 2013).  

By defining the CASH problem, Thornton et al. (2013) defined the search space in 

which AutoML methods have to work: all combinations of algorithms and their hy-

perparameter configuration. As algorithm evaluation is expensive in terms of compu-

ting power and time, it is vital to use an efficient search strategy to find a solution to 

the CASH problem.  

Search Strategies 

Due to the budget constraint in AutoML and the high costs of evaluation, it is crucial 

to use the optimal search strategy for pipeline construction. As the search space for 

AutoML systems is highly dimensional, it is not feasible to use brute-force search strat-

egies. This section describes different search strategies. First, we discuss grid and ran-

dom search. Second, we discuss Bayesian Optimization (BO) methods. Third, we dis-

cuss warm-starting the search process. Fourth, we discuss Evolutionary Algorithms 

(EA) as a strategy for search. Finally, we discuss a way to search for suitable neural 

architectures.  
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Grid and Random search 

Grid search structurally explores the combination of different dimensions in set in-

tervals. Random search does the same but with random intervals. Both grid- and ran-

dom search are slightly more efficient than a manual search for hyperparameter opti-

misation (HPO) (Bergstra & Bengio, 2012). Grid and random search are slightly better 

than humans as they do not use feedback from previous loops and thus spend less time 

evaluating infeasible ranges of hyperparameter values.  

Random search is considered to be more effective than grid search. When one pa-

rameter is more important than the other parameter in a search space with two axes, 

random search is more likely to find optima as it tests on nine different points on each 

parameter instead of three points for each parameter, as is illustrated with the dots on 

green surface in Figure 14 (Bergstra & Bengio, 2012).  

 

 
Figure 14: Grid vs Random search (Bergstra & Bengio, 2012) 

Bayesian Optimization  

Bayesian Optimization (BO) methods use a probabilistic model based on expecta-

tions and past experiences to create a new model in the search process. BO starts with 

a simple function called a ‘surrogate’. This function is iteratively improved based on 

the scores of evaluating the surrogate model. (Dewancker, McCourt, & Clark, 2015; 

Fenton, 2019). 

Sequential Model-Based global Optimization (SMBO) is a BO method used in Au-

toML (Dewancker et al., 2015; Hutter, Hoos, & Leyton-Brown, 2010). SMBO first 

selects an algorithm before selecting the hyperparameter configurations. In SMBO im-

plementations two types of probabilistic models are used: Gaussian processes (Bergstra 

et al., 2011; Rasmussen & Williams, 2006), and Tree Parzen Estimators (TPE) 

(Bergstra et al., 2011; Dewancker et al., 2015). Sequential Model-based Algorithm 

Configuration (SMAC) and Random Online Adaptive Racing (ROAR) (Hutter et al., 

2010) are adaptations of SMBO to improve the performance of searching for the right 

configurations based on random forests. SMAC is an extension of ROAR and is often 

used in the first AutoML methods (Hutter et al., 2010). All SMBO variants work with 

a feedback loop of expected improvement based on BO. In each iteration, they evaluate 
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where to search in the search space to get the most substantial expected improvement 

on the score of the current algorithm-hyperparameter configuration. Figure 15 illus-

trates BO on a one-dimensional function. The dotted line demonstrates the objective 

function, the black dots demonstrate points in which the objective function is evaluated, 

the solid line demonstrates the function created by BO. The blue area depicts the 

guessed uncertainty ratio and the orange area depicts amount of information that can 

be gained by a new observation (Hutter et al., 2019). 

 
Figure 15: Bayesian Optimisation (Hutter et al., 2019) 

Warm-start 

Warm-starting is a strategy to speed search in HPO for BO methods. Based on sta-

tistical similarities between the dataset at hand and previously seen datasets, it creates 

a surrogate model (Feurer et al., 2015). The creation of a surrogate model is called 

meta-learning and is similar to how data scientists work. Data scientists use experiences 

and approaches that have worked on similar sets to speed up their search. (Brazdil, 

Carrier, Soares, & Vilalta, 2008). AutoML methods save the statistical properties of 

previous datasets in conjunction with their optimal algorithm configuration to apply 

meta-learning. Meta-learning has proven to speed up search significantly (Kalousis, 

2002). 

Evolutionary Algorithms 

An alternative to the Bayesian methods for pipeline construction is Evolutionary Al-

gorithms (EA)s. ‘EAs automatically solve problems based on a high-level statement of 
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what needs to be done’ (Poli, Landon, McPhee, & Koza, 2007, p. 5). Genetic program-

ming (GP) is a form of EA based on genetic evolution in biological processes. GP as-

sembles primitives into individuals who make up populations. A population is a set of 

multiple constructed pipelines. Initial populations consist of individuals that represent 

random combinations of primitives. Before moving on to the next generation, the algo-

rithm assesses each population member’s fitness. In other words, the algorithm evalu-

ates each pipeline’s performance. The best pipelines of a population can then cross-

over with each other to create a new generation by randomly recombining pipelines. 

Another option is to alter the best pipelines by pre-defined mutations. Mutations can be 

the removal, replacement or addition of a primitive. GP is iterative and can use many 

generations to find an optimal solution. When the stopping conditions are satisfied, GP 

stops breeding and evolving (Poli et al., 2007). Figure 16 depicts an abstract GP algo-

rithm.  

 

 
Figure 16: Abstract GP Algorithm (Poli et al., 2007) 

AI Planning 

Hierarchical Task Networks (HTN) is a form of AI planning that is used in AutoML 

(Hutter et al., 2019). The goal of HTN is to create a sequence of actions to perform a 

task (Nau et al., 2003). HTN connects sub-tasks to create task networks. There are three 

types of tasks: goal tasks, compound tasks, and primitive tasks. Goal tasks are proper-

ties that are to be made true. In the case of AutoML, this is creating a pipeline. Primitive 

tasks are the most granular tasks. These tasks can be completed directly by executing 

an action. In AutoML, this is selecting an algorithm or tuning a hyperparameter. Tasks 

that cannot be either a goal task or a primitive task are compound tasks. In AutoML 

this is optimising an algorithm and its parameters. The planning of the network of tasks 

is done by expanding tasks and iteratively resolving conflicts between the compound- 

and primitive tasks until a plan with primitive tasks is established to accomplish the 

common goal. 

The architecture of AutoML systems 

An AutoML system consists of a toolbox and a controller. The controller consists of 

an optimiser and an evaluator. The evaluator measures the performance of the models 

that are created by the optimiser and gives feedback to the optimiser based on their 
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performance. AutoML systems differ in what items are in their toolbox to construct the 

pipeline. AutoML methods use supervised and reinforcement learning methods to ena-

ble the evaluator to provide feedback to the optimiser. Figure 17 depicts a visual repre-

sentation of an AutoML architecture. 

The toolbox defines the scope of an AutoML. The toolbox contains a set of pre-

processing methods and algorithms. Most systems use Scikit-learn (Pedregosa et al., 

2011) as their toolbox. However, AutoML systems are not limited to use a single library 

in their toolbox. They can use multiple libraries at the same time. An AutoML system 

is not able to function without a toolbox.  

The optimiser searches the toolbox containing the pre-processing methods, algo-

rithms, and their corresponding hyperparameter values. The optimiser tries to find the 

optimal configuration as fast as possible and uses feedback from the evaluator to select 

new configurations.  

 
Figure 17: AutoML Architecture (Quanming et al., 2018) 

Comparing AutoML systems 

Since the inception of AutoML, there have been competitions to determine what the 

best method is. The learning task in these challenges was supervised classification 

(Hutter et al., 2019). These challenges have attracted many competitors who hand in 

tweaked versions of the AutoML methods that we will discuss in the next section. At 

the time of writing, the most recent winner is PoSH-AutoSklearn (Feurer, 

Eggensperger, Falkner, Lindauer, & Hutter, 2018), an extension of Auto-Sklearn 

(Feurer et al., 2015). In the AutoML challenge, a method gets a computational budget 

on a single machine with a set amount of CPU power. All methods get unseen datasets 

in different rounds of varying difficulty (Hutter et al., 2019).  

To benchmark their AutoML method each author chooses one or more datasets from 

OpenML (Vanschoren, Rijn, Bischl, & Torgo, 2014) or UCI (Bay, Kibler, Pazzani, & 

Smyth, 2000). At this moment there is not a single benchmark dataset set or collection 

of datasets to compare AutoML methods on (Olson, La Cava, Orzechowski, 
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Urbanowicz, & Moore, 2017), nor is there a standard on the budget that needs to be set 

to do a benchmark test. However, Gijsbers et al. (2019) recently released an open-

source benchmark framework for AutoML systems. They found that there is no signif-

icant difference in one-hour and four-hour budgets, but they do not propose a standard 

budget for AutoML benchmarks. Their work is used in Chapter 5. 

4.3 An overview of existing AutoML methods 

This section provides an overview of existing AutoML methods. For each method, 

we will describe the origin, its contribution to the existing knowledge base, the search 

strategy and used libraries. We only discuss distinctive methods that contribute to the 

body of knowledge of the AutoML community. Excluded methods are adaptions to 

existing systems without scientific additions like the Mondrian forest optimiser by Kim, 

Jeong, & Choi (2016), as it is a tweaked version of Auto-Sklearn. We excluded the 

Automated Statistician (Steinruecken, Smith, Janz, & Lloyd, 2018) as it is a large re-

search project without any concrete implementation. Commercial applications like 

Google Cloud AutoML (Google, 2019) and Prophet (Taylor & Letham, 2018) are left 

out of scope because costs and privacy issues are barriers to adoption of analytics in 

healthcare (Dedding, 2018; Neff, 2013). In the following paragraphs, we discuss dif-

ferent AutoML methods. 

Auto-WEKA 

Auto-WEKA (Thornton et al., 2013) was the first available AutoML method 

(Quanming et al., 2018). It is built based on the Java-based WEKA library (Reutemann 

et al., 2009) and has two versions: 1.0 (Thornton et al., 2013) and 2.0 (Kotthoff, 

Thornton, Hoos, Hutter, & Leyton-Brown, 2017). The first version searches the search 

space by a tree-based BO method: SMAC (Bergstra et al., 2011; Thornton et al., 2013). 

Auto-WEKA consists of a learning algorithm and does not have any pre-processing 

features. It is only able to perform classification tasks (Thornton et al., 2013).  

The second version of Auto-WEKA (Kotthoff et al., 2017) has made four significant 

improvements over the first version: First, it added regression tasks to the search space. 

Second, it can optimise all performance metrics supported by WEKA. Third, parallel 

runs on the same machine can be executed to improve performance. Finally, the new 

version provides complete integration with WEKA. Users need to provide a dataset and 

set a time budget constraint (Kotthoff et al., 2017).  

Hyperopt-Sklearn 

Hyperopt-Sklearn (Komer, Bergstra, & Eliasmith, 2014) was developed as a reaction 

to Auto-WEKA with the purpose to provide AutoML to the users of Python and the 

scikit-learn library (Hutter et al., 2019; Komer et al., 2014). Python is used instead of 

Java because Python applications are scalable (Komer et al., 2014). Hyperopt-Sklearn 

provides both pre-processing of data and classification. Hyperopt-Sklearn has fixed 

pipelines; they can contain one pre-processor and one classifier (Komer et al., 2014). 

This search space is searched using Hyperopt, which makes use of either random search 
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or Tree Parzen Estimators (TPE) with BO (Bergstra, Yamins, & Cox, 2013). To im-

prove efficiency in search, Hyperopt-Sklearn makes a distinction between conditional 

and non-conditional hyperparameters. Conditional parameters always need to be as-

signed, and non-conditional parameters depend on the chosen algorithm in the pipeline 

(Komer et al., 2014).  

Auto-Sklearn 

Auto-Sklearn (Feurer et al., 2015) is a Python-based AutoML built on the scikit-

learn library. It extends the approach of Auto-WEKA to improve both efficiency and 

robustness of the AutoML process. Auto-Sklearn uses meta-learning on statistical prop-

erties of the dataset at hand as a means to warm-start the BO process. The search space 

is searched using SMAC (Feurer et al., 2015; Hutter et al., 2019). The first improvement 

of Auto-Sklearn over the previous methods is in improving efficiency by implementing 

a warm start module. The second improvement of Auto-Sklearn is on robustness, in-

stead of discarding all the classification algorithms except for the best one, Auto-

Sklearn saves the models that perform almost as good as the best method and ensembles 

these methods to improve performance (Feurer et al., 2015). Auto-Sklearn creates pipe-

lines that consist of a data- and a feature pre-processor with a classifier of fixed length. 

The best pipelines are ensembled to improve predictions. Figure 18 depicts the archi-

tecture of Auto-Sklearn (Feurer et al., 2015). 

 

 
Figure 18: Auto-Sklearn model (Feurer et al., 2015) 

Auto-Net 

Auto-Net (Mendoza, Klein, Feurer, Springenberg, & Hutter, 2016) is the first Au-

toML method that configures a Neural Network (NN). Auto-Net has two versions: 1.0 

(Mendoza et al., 2016) and 2.0 (Hutter et al., 2019, Chapter 7). Both Auto-WEKA and 

Auto-Sklearn inspired its architecture. To optimise the NN, SMAC is used (Mendoza 

et al., 2016). Auto-Net 1.0 integrated with Auto-Sklearn to make use of its architecture. 

Furthermore, it has added more classification algorithms and regression algorithms to 

the toolbox. Auto-Net makes use of feed-forward NN and is built on the Python library 

Lasagne (Mendoza et al., 2016). The depth of the NN is constrained to six layers to 

reduce the search space. Stochastic Gradient Descent is used to configure the internal 

weights of the nodes in the NN (Bottou, 2010). Gradual decay (Goodfellow, Bengio, & 

Courville, 2016) is applied to prevent local optimum bias (Mendoza et al., 2016).  

Auto-Net 2.0 differs in three aspects from its predecessor. First, it uses PyTorch in-

stead of Lasagne as a library because the support for Lasagne ended. PyTorch is se-

lected as an alternative because it is one of the most popular ML libraries in Python. 

Second, Auto-Net 2.0 has expanded the search space compared to the first version by 
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offering four network types: Multi-Layer Perceptrons, Residual NN, Shaped Multi-

Layered Perceptrons and Shaped Residual Networks. Finally, it uses BO in combina-

tion with HyperBand (Li, Jamieson, DeSalvo, Rostamizadeh, & Talwalkar, 2018) in-

stead of SMAC to improve the efficiency of finding well-performing NNs (Hutter et 

al., 2019). Auto-Net 2.0 does not use an ensemble for post-processing (Hutter et al., 

2019). 

TPOT 

TPOT (Olson & Moore, 2016) is a Tree-based Pipeline Optimisation Tool which is 

a wrapper around the Python package scikit-learn. The incentive to develop TPOT was 

a reaction to the fixed-length pipeline methods discussed above. TPOT constructs pipe-

lines of arbitrary length which can use multiple modified copies of a dataset as an input 

and consists of feature pre-processing- and selection methods and supervised learning 

classification methods (Olson & Moore, 2016). An example of such a pipeline is in 

Figure 19.  

 

 
Figure 19: TPOT example pipeline (Olson & Moore, 2016) 

TPOT uses GP to construct pipelines; the building blocks of a pipeline are consid-

ered to be GP primitives to build a tree. These trees are an arbitrary representation of 

the ML pipeline, consisting of multiple datasets, pre-processors, and classification op-

erators. Each node uses the output of its preceding node as input. TPOT divides a da-

taset into a training and a validation set. It gives each record an additional variable to 

mark this division. It adds variables for the true class and the pipeline’s last guess of 

the value of the particular record because the set is not explicitly split (Olson & Moore, 

2016).  

To optimise and generate the pipelines, TPOT uses the Python package DEAP. The 

algorithm in the package generates 100 candidate pipelines and selects the top 20 pipe-

lines that have the best balance in prediction accuracy and complexity. These top 20 

pipelines are copied five times to function as input for the next generation. In the next 
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generation, 5% of the new population crosses over with another copy doing a one-point 

crossover. The remaining 90% mutates at one point by having to lose a node, randomly 

insert a new node or mutate a node with each of the operations having a probability of 

1/3rd to happen. A set amount of generations is generated and evaluated by TPOT before 

a pipeline is selected (Olson & Moore, 2016).  

Layered TPOT 

Layered TPOT (Gijsbers, Vanschoren, & Olson, 2017) is the successor of TPOT 

with a focus on improving the efficiency of the pipeline generation. It improves effi-

ciency by implementing the idea of an Age Layered Population Structure (Hornby, 

2006) in addition to the original TPOT algorithm. The individuals in the population are 

divided into ordered layers and trained and tested on different subsets of data. The first 

layer contains the smallest subset and all subsets increase in size at every layer. The 

individuals are trained and tested on different subsets of data. Thus, the algorithm can-

not compare them. The next layer consists of the best pipelines from all subsets. The 

evaluation time of layered TPOT is dependent on the sample size. The dependence is 

built in to prevent a single pipeline from halting the algorithm, and to improve the al-

gorithm performance. Evaluations are automatically stopped and marked as a failure if 

an evaluation exceeds the time limit. The stop is only executed to evaluate the best 

pipelines on the full set, as shown in Figure 20. The algorithm can discard pipelines 

that work well on the entire set, but not on subsets. This is considered to be a drawback 

of this method. (Gijsbers et al., 2017).  

 

 
Figure 20: Layered TPOT (Gijsbers et al., 2017) 
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FLASH 

Fast LineAr SearH (FLASH) (Zhang, Bahadori, Su, & Sun, 2016) proposes a two-

layer Bayesian Network approach to improve search efficiency. FLASH is capable of 

predictive and descriptive modelling and makes use of the scikit-learn library (Zhang 

et al., 2016). 

FLASH poses three main improvements over existing methods: First, the proposal 

of a two-layer hybrid model consisting of a parametric approach and a non-parametric 

approach. The first phase of the search is based on expected improvement in combina-

tion with BO to find the best k pipeline paths. The search then prunes the paths before 

it fine-tunes the paths. To fine-tune the paths, FLASH uses either SMAC or TPE. Sec-

ond, the hyperparameter tuning algorithm is initialised using the optimal design strat-

egy to improve the efficiency of FLASH overusing random search. Finally FLASH 

introduces a caching mechanism that can save time in the tuning process by reducing 

the number of redundant operations that are performed when calculating the optimal 

configuration of a method (Zhang et al., 2016).  

RECIPE 

REsilient ClassifIcation Pipeline Evolution (RECIPE) (Sá de et al., 2017) is an evo-

lutionary method based on GP that makes use of grammar to improve its efficiency 

compared to other GP methods. RECIPE uses grammar to prevent the creation of inva-

lid pipelines and focusses on classification tasks (Sá de et al., 2017).  

RECIPE has three additions to previously used evolutionary methods. First, it uses 

grammar to describe the characteristics of an ML pipeline to avoid assembling and val-

idating invalid pipelines. RECIPE uses the Scikit-Learn library to create pipelines. 

Within its grammar, it specifies the possible forms that a pipeline can have. It defines 

that a pipeline needs a dataset, classification algorithm, and evaluation as mandatory 

parts. Also, pre- and post-processing operators are possible components of a pipeline. 

Furthermore, the grammar in RECIPE is flexible. It can be extended beyond classifica-

tion pipelines (Sá de et al., 2017). Second, it works with a larger search space than 

TPOT and Auto-Sklearn. Third, the global guided search based on the grammar makes 

it possible to evaluate the whole pipeline instead of parts of it like Auto-Sklearn does 

(Sá de et al., 2017).  

AutoPrognosis 

AutoPrognosis (Alaa & van der Schaar, 2018) is an AutoML method developed for 

clinicians. It follows a principled Bayesian approach in all components. AutoPrognosis 

uses Bayesian model averaging for pipeline construction. Meta-learning is used to find 

similar groups of patients. Both clinical and statistical features of datasets are used for 

Warm-starting. Figure 21 shows the architecture of AutoPrognosis(Alaa & van der 

Schaar, 2018).  

AutoPrognosis uses Scikit-learn and is capable of missing data imputation, feature 

pre-processing, prediction, and calibration. For prediction, it can operate in three dif-

ferent modes: classification, temporal, and survival mode. Classification is used to pre-

dict binary clinical outcomes. The temporal mode is used to handle time-series data by 
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using classification methods on a sliding window. Survival mode predicts the time to a 

clinical event in addition to survival models to predict a patient’s clinical journey (Alaa 

& van der Schaar, 2018). As explanation is critical to clinical decision making based 

on computational input (Cabitza et al., 2017), the authors added a rule-based approxi-

mation to explain de decisions of AutoPrognosis to clinicians (Alaa & van der Schaar, 

2018). 

To enable BO based on Gaussian Processes, Alaa and van der Schaar (2018) gener-

alised the CASH problem to the pipeline selection and configuration problem. By sub-

dividing the search space into several sub-spaces with a maximum number of dimen-

sions, the problem is generalised. With the reduced search space complexity, it is pos-

sible to use Gaussian Processes for optimisation as these are only feasible to use when 

having ten dimensions or less (Z. Wang, Zoghi, Hutter, Matheson, & De Feitas, 2013). 

Alaa and van der Schaar chose to use Gaussian Processes because they considered them 

the best performing BO method (Alaa & van der Schaar, 2018).  

 

 
Figure 21: AutoPrognosis architecture (Alaa & van der Schaar, 2018) 

Autostacker 

Autostacker (Chen, Wu, Mo, Chattopadhyay, & Lipson, 2018) is an AutoML 

method that focusses on providing a set of potential useful pipelines for users without 

any pre-processing steps based on the scikit-learn and the XGBoost library. Pipelines 

are built using a stacking mechanism based on an EA algorithm and should generalise 

well to new data (Chen et al., 2018).  

Autostacker has three properties that make it able to generalise well to new data. 

First, it uses cascading to handle small and sparse datasets. To prevent bias, it uses the 

original dataset to prevent bias from earlier operations on the data. Second, Autostacker 

uses combinations of different ML components to create flexible pipelines. Finally, 

EAs are used to search in the vast space of possibilities. Both stacking and cascading 

have not been used before in the discipline of AutoML (Chen et al., 2018). 

Autostacker delivers a set of ten possible pipelines to the user to allow for flexibility 

and choice for the user. The argument for delivering multiple pipelines is that two pipe-

lines can have different performances on an unseen dataset (Chen et al., 2018). Another 

advantage of Autostacker is that the system is scalable over multiple instances, as the 

worker nodes only have to share the validation results of different pipelines. 

 



44 

ML-Plan 

ML-Plan (Mohr et al., 2018) uses a hybrid approach to construct pipelines. It com-

bines the ideas and concepts from two different approaches: the idea of evaluating can-

didates at runtime (Thornton et al., 2013) and the idea of using hierarchical task net-

works (Nau et al., 2003) for pipeline planning (Mohr et al., 2018). 

 ML-Plan contributes to the existing knowledge base by proposing a two-phase 

search with HTN and a dedicated system to prevent overfitting. Mohr et al. (2018) claim 

to have invented the first AutoML technique that prevents overfitting. ML-Plan divides 

modelling into two phases, which should be considered as regions of the search space 

to prevent overfitting. The first phase collects a set of candidate pipelines based on the 

entire search space. The second phase takes these candidates and selects which ones 

minimise the generalisation error. Phase two operates on small subsets and discards 

high-variance models that work well on the complete validation set. 

ML-plan creates new pipelines which consist of a pre-processor and a classifier. To 

evaluate all combination of classifiers and pre-processors the alterations to complete 

the pipeline are executed at random. (Mohr et al., 2018).  

ML-plan chooses parameter values from a set of pre-defined possible values. Alt-

hough this is a limitation of the technique, it is often sufficient for a good result. If the 

pre-defined range of the hyperparameter is not too far from the optimum, the algorithm 

performs well. ML-plan can run on both the WEKA and the scikit-learn libraries.  

AlphaD3M 

AlphaD3M (Drori et al., 2018) approaches the construction of a pipeline as a single-

player game by having the player either insert, delete, or replace a part of the pipeline 

in each turn. AlphaD3M is based on AlphaZero (Silver et al., 2017), which is a gener-

alisation of AlphaGo (Silver et al., 2017). AlphaGo is the AI program which famously 

defeated the world champion in the game Go. With this method, they create a pipeline 

which is explainable by including the ‘thinking’ behind the actions that lead to the con-

struction of the pipeline. It leverages deep reinforcement learning to build the pipeline 

in this single-player game paradigm (Drori et al., 2018).  

By learning these patterns in the game paradigm using self-play, the network learns 

to recognise patterns in the search space just like a human would. The learning method 

is built on a neural network following a Monte-Carlo tree search (Silver et al., 2017) 

based on PyTorch. By using this technique, AlphaD3M speeded up search compared to 

other methods ranging from a factor 3 to a factor 32 (Drori et al., 2018).  

PoSH Auto-Sklearn 

Portfolio Successive Halving (PoSH) Auto-Sklearn (Feurer et al., 2018) is the win-

ner of the 2018 ChaCha AutoML challenge (ChaLearn, 2019). It is an extension of 

Auto-Sklearn method described above and builds on the scikit-learn library. 

Successive halving was introduced in the search process to improve the efficiency 

of the method. Successive halving starts with a sample of the dataset and a small budget 

and continues with pipelines that perform well in this first round. It doubles the amount 

of data and computational budget in each round while halving the number of candidate 
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pipelines. In addition to this, they build a portfolio based on OpenML datasets 

(Vanschoren et al., 2014), which contained meta-information to warm-start the search 

process. Finally, the ensemble technique of Auto-Sklearn was altered to exclude poor 

performing models. In PoSH Auto-Sklearn a model is not added to the ensemble if it 

performs over 3% worse than the best model. Figure 22 displays the architecture of 

PoSH Auto-Sklearn. 

 

 
Figure 22: PoSH Auto-Sklearn architecture (Feurer et al., 2018) 

ATM 

Auto-Tuned Models (Swearingen et al., 2017) are developed to support a multi-user 

machine learning platform in a cloud or cluster. The aim is to provide standardised 

abstractions in a library to become as influential for the AutoML community with a 

library as scikit-learn is to the machine learning community (Swearingen et al., 2017). 

ATM contributes to the AutoML community by four additions. First, by implement-

ing the first distributed AutoML system. The distributed system can handle multiple 

different AutoML requests at once from different users. Second, it has a database with 

previous requests to warm-start the search. Third, ATM has a new way to organise the 

search space by defining the search space into conditional parameter trees to speed up 

the search. Figure 23 shows how conditional parameter trees express the search space 

in a conditional tree with its hyperparameters below it as branches or leaves. The figure 

depicts the pruning of the search space of a support vector machine. Finally, ATM uses 

abstractions to enable the integration of different AutoML methods in the library 

(Swearingen et al., 2017). 

 

 
Figure 23: Conditional Parameter Tree (Swearingen et al., 2017) 

ATM aims at three categories of users: Data Scientists, who can upload a dataset, 

select methods, and hyperparameter range to search over. AutoML experts, who can 

contribute to the library by expanding the presented framework. ML enthusiasts, who 
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can contribute to the toolbox by adding new methods or implementations of the frame-

work (Swearingen et al., 2017).  

Auto-Keras 

Auto-Keras (Jin et al., 2018) aims to provide an efficient way of finding NN archi-

tectures based on scikit-learn. The NNs are created using network morphism based on 

BO (Jin et al., 2018). Auto-Keras contributes to the AutoML literature in three ways. 

First, Auto-Keras presents a BO guided network morphism search for neural architec-

tures, which is more efficient than previous methods for neural architecture search in 

AutoML. Second, the authors propose a NN kernel for BO: a tree-structured acquisition 

function optimiser with graph-level morphism. This kernel is used to enable BO to 

function outside of a Euclidian search space in which BO typically operates. By doing 

so, it becomes possible to search in a multi-dimensional space with BO. Third, Jin et 

al. (2018) provide an algorithm for optimising the acquisition function in this newly 

structured search space.  

4.4 AutoML synthesis 

In this section, we summarise and categorise the AutoML methods from the previous 

section. We only consider the newest versions of the methods. First, we compare the 

two AutoML methods developed for the healthcare domain. Second, we discuss meth-

ods with a fixed pipeline length. Third, we discuss the AutoML methods that build 

neural nets. Fourth, we discuss evolutionary methods. Fifth, we discuss distributed 

methods. Finally, we provide a detailed overview of the AutoML methods discussed in 

this chapter.  

Healthcare 

FLASH (Zhang et al., 2016) and AutoPrognosis (Alaa & van der Schaar, 2018) have 

both been developed for healthcare or with funds for healthcare, but with different in-

centives. FLASH was developed to improve the efficiency of creating and evaluating 

pipelines. AutoPrognosis is developed with the practitioner in mind. FLASH is a black-

box tool, as most AutoML tools are. In contrast, AutoPrognosis is the only AutoML 

method that contains an explainer to justify its recommendations to a clinician. 

We cannot compare the performances of both methods, as there has been no test 

featuring both. FLASH tested its performance on a medical dataset with the binary 

classification task of predicting drug non-responders. In this case, it outperformed other 

methods based on TPE and SMAC using error rate as the performance metric (Zhang 

et al., 2016). AutoPrognosis outperformed Auto-WEKA, Auto-Sklearn, and TPOT on 

multiple datasets in its own comparison (Alaa & van der Schaar, 2018).  

Fixed pipelines 

Auto-WEKA, Hyperopt-Sklearn, Auto-Sklearn, PoSH Auto-Sklearn, and ML-Plan 

are all methods that have a fixed pipeline length. PoSH Auto-Sklearn outperforms all 
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other methods as it is the winner of the latest AutoML competition (Hutter et al., 2019, 

Chapter 10).  

Auto-WEKA, Hyperopt-Sklearn, and Auto-Sklearn were the first three methods that 

were developed to tackle the CASH problem. What is interesting to see is that Auto-

Sklearn has served as a basis for multiple other AutoML systems as depicted in Figure 

24, whereas the other two methods have not. We assume that this is due to the warm-

start procedure in Auto-Sklearn.  

Neural Networks 

The first version of AutoNet was the first to automate the configuration of a NN. It 

laid the groundwork for its successor and the inception of AlphaD3M and Auto-Keras. 

Besides laying the groundwork for these applications, it incentivised the inception of a 

lot of commercial applications. Most commercial applications that automatically tune 

NN are inspired on the first version of Auto-Net (Hutter et al., 2019). This is because 

Auto-Net was the first AutoML program to beat human experts in configuring a pipe-

line (Hutter et al., 2019; Mendoza et al., 2016). 

AlphaD3M is the only AutoML method that makes use of reinforcement learning 

and is much faster than any other method in the field. In one case, it was 32 times faster 

than TPOT. However, AlphaD3M does not outperform other AutoML methods. In 

comparison with three other methods, its average rank is third, based on mean scores. 

As AlphaD3M ranks first on some datasets, it is still competitive (Drori et al., 2018). It 

is interesting to see if reinforcement learning gets widely adopted as a search strategy. 

Evolutionary methods 

Evolutionary methods can create pipelines of flexible length. These are TPOT, 

LTPOT, RECIPE, and Autostacker. They can do so due to their search strategy. The 

downside of evolutionary algorithms is that they can produce invalid pipelines and get 

stuck at local optima. RECIPE and LTPOT have independently overcome these down-

sides. It would be interesting to see when a hybrid version of these two strategies 

emerges. 

Distributed methods 

Two AutoML methods can process data in a distributed matter: Autostacker and 

ATM. It is remarkable, that there are only two systems that can run in a distributed 

manner when taking the computing cost of creating a pipeline in mind. Autostacker can 

use parallel processing as it proposes the best pipelines to its user. Hence it needs the 

performance scores of the pipelines. ATM is the only method which can run in parallel 

on different machines and is set up to be distributed and scalable. The development of 

ATM and integration with the methods described above is one of the most attractive 

developments in AutoML. An incentive to spur this development could be having a 

separate performance challenge for distributed AutoML methods. 
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Overview of methods.  

Figure 24 demonstrates the relations between AutoML methods discussed in this 

chapter. It makes a distinction between methods that build NNs and methods that use 

traditional classifiers or regressors in their pipeline. Arrows between methods point out 

a relationship between methods. The colours of the methods indicate the search strategy 

that is applied in a method to create a pipeline. A tabular overview of the discussed 

AutoML methods is in Table 4, including, the prediction tasks, a link to the code re-

pository and information about the pipeline creation. 

 

 

 
Figure 24: Overview of AutoML methods 

  



Table 4: Overview of existing AutoML methods4 

Tool Library/ 

package 

Optimization Pre-

proces-

sor 

Post-

proces-

sor 

Extra  

Feature(s) 

Analysis capabilities Code link 

Auto-Weka 

2.0 

WEKA Tree-based hierarchical BO Yes No 
 

Binary classification 

Multi-label classification 

Regression 

https://github.com/au-

toml/autoweka  

Auto-

Sklearn 

scikit-learn Tree-based BO Yes Yes Meta-learner Binary classification 

Multi-label classification 

Regression 

https://github.com/au-

toml/auto-sklearn 

Hyperopt-

Sklearn 

scikit-learn Tree-based BO Yes No 
 

Binary classification 

Multi-label classification 

https://github.com/hyper-

opt/hyperopt-sklearn 

TPOT scikit-learn 

DEAP 

Tree-based GP Yes No 
 

Binary classification 

Multi-label classification 

Regression 

https://github.com/Epista-

sisLab/tpot 

Layered 

TPOT 

scikit-learn Tree-based GP Yes No 
 

Binary classification 

Multi-label classification 

Regression 

https://github.com/PG-

TUe/tpot/tree/layered 

Auto-Net 

1.0 

Lasagne Feed-forward NN on Stochastic 

Gradient Descent 

Yes No 
 

Binary classification 

Multi-label classification 

Regression 

No implementation found 

Auto-Net 

2.0 

PyTorch BO and Hyperband (BOHB) Yes No 
 

Binary classification 

Multi-label classification 

Regression 

No implementation found 

FLASH scikit-learn BO with expected improvement Yes No Pipeline 

caching 

Binary classification https://github.com/yuyuz/F

LASH 

                                                           
4 Table continues on next page 

https://github.com/automl/autoweka
https://github.com/automl/autoweka
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Tool Library/ 

package 

Optimization Pre-

proces-

sor 

Post-

proces-

sor 

Extra  

Feature(s) 

Analysis capabilities Code link 

RECIPE scikit-learn Grammar-based GP Yes No 
 

Binary classification https://github.com/Reci-

peML/Recipe 

AutoProg-

nosis 

scikit-learn BO and GP Yes Yes Meta-learner, 

Explainer 

Binary classification 

Survival analysis 

Temporal analysis 

https://github.com/ahmed-

malaa/AutoPrognosis5 

ML-Plan WEKA 

scikit-learn 

HTN and EA Yes No 
 

Binary classification 

Multi-label classification 

https://github.com/fmohr/M

L-Plan 

Auto-

stacker 

scikit-learn 

XGBoost 

Hierarchical stacking and EA No No 
 

Binary classification 

Multi-label classification 

No implementation found 

Alpha3DM PyTorch NN and Monte Carlo Tree Search Yes Yes 
 

Binary classification 

Multi-label classification 

Regression 

No implementation found 

PoSH 

AUTO-

sklearn 

scikit-learn BO with successive halving Yes Yes Meta-learner Binary classification 

Multi-label classification 

Regression 

No implementation found 

Auto-Keras scikit-learn BO guided network morphism Yes No 
 

Binary classification 

Multi-label classification 

https://autokeras.com/ 

ATM scikit-learn Conditional Parameter Tree Yes No Meta-learner Binary classification 

Multi-label classification 

https://github.com/HDI-

Project/ATM 

  

                                                           
5 At the time of writing no files were found in the folder, the author promised to upload his files in this folder soon. 



5 Benchmark test 

In this chapter, we describe the benchmark test for the different AutoML methods. We 

benchmark the performance of AutoML methods on medical datasets. First, we de-

scribe the datasets for benchmarking. Second, we discuss the set-up of the benchmark 

test. Finally, we discuss the results of the benchmark test. 

5.1 Datasets 

For the benchmark test, we use four datasets from the OpenML-CC18 library (Rijn 

van, 2019). OpenML-CC18 is the successor of the OpenML100 library, which was de-

signed for delivering datasets that are suitable for benchmarking (Bischl et al., 2017). 

It has strict criteria for in- and exclusion of datasets to improve the reproducibility of 

benchmark tests (see Appendix 11.2). Furthermore, the OpenML100 library provides 

APIs for easy access to the datasets and is designed to improve the reproducibility of 

benchmark tests (Bischl et al., 2017). From the collection of OpenML-CC18 datasets, 

we have selected all medical datasets suited for binary classification problems; breast 

cancer, diabetes, Indian liver patients and sick. Non-numerical values in the datasets 

have been label encoded to prepare the sets for the benchmark test.  

Breast cancer 

The breast cancer dataset (Mangasariona & Wolberg, 1990) is from the University 

of Wisconsin Hospitals, created by Dr William Wolberg. The set represents the digital-

isation of a fine needle aspirate of a breast mass to predict a prognosis (malignant or 

benign). The features describe the characteristics of the present cell nuclei in the image. 

The set consists of nine predictive features: 1) Clump thickness; 2) Cell size Uni-

formity; 3) Cell shape uniformity; 4) Marginal adhesion; 5) Single epi cell size; 6) Bare 

nuclei; 7) Bland chromatin; 8) Normal nucleoli, and 9) Mitoses. The dataset contains 

699 data points and has no missing values. Appendix 11.3 contains an overview of the 

distribution of the variables. The class variable consists of 458 benign and 241 malig-

nant cases.  

Diabetes 

The diabetes dataset (Dua & Graff, 2019) is from the National Institute of Diabetes 

and Digestive and Kidney Diseases. All subjects in the dataset are females of at least 

21 years old of Pima Indian Heritage living near Phoenix, Arizona, USA. The goal of 

the dataset is to predict if a patient shows signs of diabetes according to the standards 

of the World Health Organisation. The features in this set describe characteristics of 

the women in the dataset. The dataset consists of eight features: 1) Number of times 

pregnant; 2) Plasma glucose concentration; 3) Diastolic blood pressure; 4) Triceps skin-

fold; 5) 2-hour serum insulin; 6) Body mass index; 7) Diabetes pedigree function, and 

8) Age. The dataset contains 768 data points and has no missing values. Appendix 11.3 
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contains an overview of the distribution of the variables. The class variable contains 

500 values for tested_negative and 268 values for tested_positive. 

Indian liver patients 

The Indian Liver Patient dataset (Dua & Graff, 2019) is from Venkata Ramana, 

Babu, & Venkateswarlu (2011). The dataset consists of data of both liver and non-liver 

patients from the northeast of Andhra Pradesh, India. The goal is to predict if a patient 

is a liver patient or not. The dataset contains ten features: 1) Age; 2) Gender; 3) Total 

bilirubin; 4) Direct bilirubin; 5) Alkphos alkaline phosphatase; 6) Sgpt Alanine Ami-

notransferase; 7) Sgpt Aspartate Aminotransferase; 8) Total proteins; 9) Albumin; and 

10) A/G ratio albumin and globulin Ratio. The dataset consists of 583 instances and has 

no missing values. Appendix 11.3 contains an overview of the distribution of the vari-

ables. The class variable is distributed with 416 liver patients and 167 non-liver pa-

tients.  

Sick 

The sick dataset (Quinlan, 1986) is from the Garavan Institute and Ross Quinlan 

from the New South Wales Institute from Sydney, Australia. The goal is to predict if a 

patient has Thyroid disease. The dataset contains twenty-nine features: 1) Age; 2) Sex; 

3) On thyroxine; 4) Query on thyroxine; 5) On antithyroid medication; 6) Sick; 7) Preg-

nant; 8) Thyroid surgery; 9) l131 treatment; 10) Query hypothyroid; 11) Query hypo-

thyroid; 12) Lithium; 13) Goitre; 14) Tumor; 15) Hypopipuitary; 16) Psych; 17) TSH 

measured; 18) TSH Real 0%; 19) T3 measured; 20) T3 real 0%; 21) TT4 measured; 22) 

TT4 Real 0%; 23) T4U Measured; 24) T4U real 0%; 25) FTI measured; 26) FTI real 

0%; 27) TBG measured; 28) TBG real; and 29) Referral source. The dataset contains 

3772 instances and has 6064 missing values. Appendix 11.3 contains an overview of 

the distribution of the variables. The class variable contains 3541 negative and 231 sick 

cases.  

5.2 Set-up 

As described in the methods section, we use an open-source AutoML benchmark 

suite for the benchmark test (Gijsbers et al., 2019). With different datasets, we compare 

four AutoML methods. The benchmark suite is created to compare AutoML methods 

on various datasets. As the suite is open-source, authors can add their frameworks. Us-

ers of the benchmark set can use their dataset to run the benchmark tests. The methods 

that are available within the benchmark at the time of writing are TPOT, Auto-Weka, 

Auto-Sklearn, H2O, Hyperopt-Sklearn, and Oboe. As a baseline, four methods have 

been included in the open-source framework: a constant predictor, a decision tree, a 

random forest, and a tuned random forest.  

We ran two tests, the first test included all methods and had a budget of one hour. 

We used a budget of one hour as longer runs ‘bring only slight score improvements’ 

(Gijsbers et al., 2019). To verify this statement, we ran the second test with a four-hour 

budget for one method based on BO, one method based on EA and the worst performer 
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in the one-hour test. In accordance with Gijsbers et al., we use AUROC as a perfor-

mance metric. 

 

One-hour budget 

In our set-up, we exclude H2O and Oboe from the benchmark test. We exclude H2O 

because there is no paper published about it. Oboe is excluded as it is still in the early 

stages of development (Gijsbers et al., 2019). We include the TPOT, Auto-WEKA, 

Auto-Sklearn and Hyperopt-Sklearn and compare their performance to a constant pre-

dictor and a decision tree as a baseline. If a method did not show a result in time, we 

have considered this as a missing value. 

Four-hour budget 

For the four-hour test, we included Auto-Sklearn, TPOT and Hyperopt-Sklearn. 

Auto-Sklearn and TPOT are included to find out what the result is of a three-hour 

budget increase for a BO and an EA method. We included Hyperopt-Sklearn to check 

if the time budget limited the method in the first benchmark test. If a method did not 

show a result in time, we have considered this as a missing value. 

5.3 Results 

In this section, we first discuss the results of the one-hour benchmark test. After that, 

we discuss the results of the four-hour benchmark test and compare the performance of 

the individual methods with different time budgets. 

One-hour budget 

We ran one benchmark using a time budget of one hour with a total of 160 hours of 

computational budget time. Figure 25 contains the visualisation of results; the x-axis 

contains the different datasets, the y-axis shows the AUROC. A coloured dot marks the 

score for an AutoML method on each of the ten folds. The minimum, maximum and 

median score of each AutoML method are available in Table 12.  

A Kruskal-Wallis H test indicated that there was a statistically significant difference 

in the distribution for the Breast (H =11.36, p <.001), Diabetes (H =18.64, p <.001), 

Liver (H =17.93, p <.001) and Sick dataset (H =27.87, p <.001) between the AutoML 

methods, see Table 5 for statistics.  

What is interesting to see in Figure 25 is that on the liver dataset the decision tree 

and Hyperopt-Sklearn do not always outperform the constant predictor. On the diabetes 

dataset, Hyperopt-Sklearn lags behind the three other methods, but performs better than 

the constant predictor and has a similar performance to the decision tree. On the breast 

dataset, all AutoML methods have the maximum score in at least one fold. All methods 

perform well on the breast set, given their median scores and distribution. The perfor-

mance of the decision tree indicates that it is not a hard prediction problem. For the 

results on the sick dataset, we see that TPOT and Auto-Sklearn outperform the other 
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two methods in both consistency and score of their predictions despite the fact that the 

set has missing values. Hyperopt-Sklearn is again not better than the decision tree. 

 
Figure 25: One-hour benchmark test results 

 Overall, TPOT registered the highest median score after running for one-hour on all 

sets but the Breast dataset, in which Auto-Sklearn registered the best performance. A 

Mann-Whitney U test indicated that Auto-Sklearn significantly outperforms the deci-

sion tree (U =2.0, p <.001) and Hyperopt-Sklearn (U =17.5, p <.01) on the Breast set. 

TPOT significantly outperforms the decision tree on the datasets Diabetes (U =0.0, p 

<.001), Liver (U =8.0, p <.001) and Sick (U =0.0, p <.001). Furthermore, TPOT out-

performs Hyperopt-Sklearn significantly on the datasets Diabetes (U = 2.0, p <.001), 

Liver (U =7.0, p <.001) and Sick (U =0.0, p <.001). Finally, Auto-WEKA is signifi-

cantly outperformed on the Sick dataset by TPOT (U =0.0, p <.001). This is probably 

because Auto-WEKA does not impute data for missing values. Auto-Sklearn and TPOT 

impute values for missing data and both have a more condensed distribution in their 

results. The statistics for the Mann-Whitney U test are available in  

Table 6. The table shows the p-values and U statistics for each method compared to the 

best performing method on each dataset. TPOT and Auto-Sklearn do not significantly 

differ in performance for any of the datasets. 
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Table 5: Statistics for Kruskal Wallis test 

 Breast Diabetes Liver Sick 

H-statistic 11.36 18.64 17.93 27.87 

p-value .995** .324** .455** .386** 
** p < 0.001     

 

Table 6: P-values and U statistic for Mann-Whitney U test compared to the best performer 

 Breast Diabetes Liver Sick 

 p U p U p U p U 

Decision Tree .164** 2.0 .908**  0.0 .895** 8.0 .913** 0.0 

TPOT .236 40.0       

Auto-WEKA .395 46.0 .455 48.0 .263 40.0 .913** 0.0 

Auto-Sklearn   .425 47.0 .213 39.0 .5 49.5 

Hyperopt-Sklearn .8* 17.5 .164** 2.0 .657**  7.0 .913**  0.0 
* p < 0.01     ** p < 0.001 

Four-hour budget 

We ran the second benchmark using a time budget of four hours with a total of 480 

hours of computational budget time. The four-hour budget results in Figure 26 show a 

similar pattern to Figure 25. A Kruskal-Wallis test indicated that there was a statisti-

cally significant difference in the distribution for the Breast (H =13.10, p <.001), Dia-

betes (H =31.10, p <.001), Liver (H =31.51, p <.001) and Sick dataset (H =28.93, p 

<.001) between the AutoML methods, see Table 7 for statistics.  

A Mann-Whitney U test indicates that the best performer again only significantly 

outperforms Hyperopt-Sklearn on the datasets Breast, (U =1.0, p <.01), Diabetes (U 

=2.0, p <.001), Liver (U =5.0, p <.001) and Sick (U = 0.0, p <.001). The performances 

of TPOT and Auto-Sklearn do not significantly differ from each other on the datasets. 

The statistics for the Mann-Whitney U test are available in Table 8. Although the dif-

ference in performance is not significant, TPOT again registered the highest score me-

dian on three of the four datasets. Auto-Sklearn only records a better median score on 

the breast dataset. In the next sections, we compare the performance of each method on 

the one-hour and the four-hour runs. The results of the four-hour runs are available in 

Table 13.  

 
Table 7: Statistics for Kruskal Wallis test 

 Breast Diabetes Liver Sick 

H-statistic 13.10 31.10 31.51 28.93 

p-value .442** .809** .665** .232** 

** p < 0.001     
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Figure 26: Four-hour benchmark test results 

 
Table 8: P-values and U-statistic for Mann Whitney U test compared to the best performer 

 Breast Diabetes Liver Sick 

 p U p U p U p U 

TPOT .485 49.0       

Auto-

Sklearn 

   0.485 49.0 .285 42.0 .455 48.0 

Hyperopt-

Sklearn 

.123*

* 

1.0 .164** 2.0 .384** 5.0 .913** 0.0 

** p < 0.001        

Auto-Sklearn 

When we compare the performance of Auto-Sklearn on the four datasets for the dif-

ferent time budgets using a Mann-Whitney U test, we can see that the results are from 

the same distribution. Figure 27 illustrates the difference in performance between the 

one-hour and the four-hour budget runs. For two datasets, the recorded median score 

decreases with a four-hour budget. The score decrease might be the result of overfitting. 

On the other two datasets, the recorded median scores improve for the four-hour budget. 

However, these differences are not significant for all datasets, both sets of scores are 

from the same distributions: Breast (U =39.5 , p >=.05), Diabetes (U =49.0 , p >=.05), 

Liver (U =41.5 , p >=.05), Sick (U =44.0 , p >=.05). The median scores are available 

in Table 9 along with the statistics of the Mann-Whitney U test. 
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Figure 27: One-hour vs four-hour performance comparison for Auto-Sklearn 

Table 9: Auto-Sklearn results comparison 

Dataset 1-hour     

median 

4-hour     

median 

p-value U- 

statistic 

Breast 0.995 0.988 .224 39.5 

Diabetes 0.830 0.82 .485 49.0 

Liver 0.728 0.754 .273 41.5 

Sick 0.995 0.996 .339 44.0 

TPOT 

When we compare the performance of TPOT on the four datasets for the different 

time budgets, we can see from Figure 28 that there is no difference in performance 

between the 1-hour and the 4-hour budget runs. The median scores improve for all sets 

but the breast dataset, but all scores are from the same distribution. However, these 

differences are not significant for all datasets, both sets of scores are from the same 

distributions: Breast (U =34.0, p >=.05), Diabetes (U =50.0 , p >=.05), Liver (U =46.0 

, p >=.05), Sick (U =49.0 , p >=.05). 

 The median scores are available in Table 10 along with the statistics of the Mann-

Whitney U test. 
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Figure 28: One-hour vs four-hour performance comparison for TPOT 

 
Table 10: TPOT results comparison 

Dataset 1-hour     

median 

4-hour     

median 

p-value U- 

statistic 

Breast 0.986 0.979 .120 34.0 

Diabetes 0.819 0.832 .485 50.0 

Liver 0.754 0.783 .396 46.0 

Sick 0.996 0.997 .485 49.0 

Hyperopt-Sklearn 

When we compare the performance of Hyperopt-Sklearn on the four datasets for the 

different time budgets, we can see from Figure 29 that there is no significant difference 

in performance between the one-hour and the four-hour budget runs. The median scores 

decrease for all sets but the liver dataset, but not significantly. The median scores are 

available in Table 11 along with the statistics of the Mann-Whitney U test. Hyperopt-

Sklearn has a maximum of 1000 evaluations as a default parameter. We did not alter 

this, as recommended by Balaji and Allen (2018), to improve the fairness of evaluation 

and reproducibility for the benchmark test. This parameter caused an early stop for all 

datasets but the sick dataset. However, the early stop does not seem to have influenced 

the results. The differences for the runs are not significant for all datasets, both sets of 

scores are from the same distributions: Breast (U =48.5 , p >=.05), Diabetes (U =39.0 , 

p >=.05), Liver (U =40.0, p >=.05), Sick (U =38.0 , p >=.05). if we look at the scores 

for the sick dataset. 
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Figure 29: One-hour vs four-hour performance comparison Hyperopt-Sklearn  

Table 11: Hyperopt-Sklearn results comparison 

Dataset 1-hour     

median 

4-hour     

median 

p-value U- 

statistic 

Breast 0.973 0.968 .470 48.5 

Diabetes 0.724 0.699 .213 39.0 

Liver 0.574 0.583 .236 40.0 

Sick 0.920 0.913 .192 38.0 

5.4 Conclusion 

From the conducted benchmark tests, we can conclude that no method consistently 

outperforms all others. However, we see that TPOT records the highest median scores 

on three of the four tasks in this test for both time budgets. However, this performance 

is not significantly better than the performance of Auto-Sklearn and Auto-WEKA. 

Auto-Sklearn gets similar results to TPOT given the one-hour and four-hour tests, 

Auto-WEKA gets similar results but is only outperformed on the Sick dataset. Finally, 

Hyperopt-Sklearn performs the worst on all tasks and even predicts scores that are 

worse than the constant predictor.  

 Furthermore, we can confirm the findings of Gijsbers et al. (2019) that the increase 

of time budget from one to four hours does not result in a significant score improvement 

using a Mann-Whitney U test, all results come from the same distributions.  

Based on the results of the one- and four-hour benchmark tests, we conclude that no 

method consistently outperforms the all methods. 



 
Table 12: One-hour benchmark test results 

Framework 

Dataset 

TPOT Auto-WEKA Auto-Sklearn Hyperopt-Sklearn 

 Min  Med Max Min  Med Max Min  Med Max Min  Med Max 

Breast 0.967 0.986 1.0 0.983 0.993 1.0 0.974 0.995 1.0 0.947 0.973 1.0 

Diabetes 0.761 0.819 0.911 0.766 0.808 0.917 0.731 0.830 0.923 0.600 0.725 0.800 

Sick 0.994 0.996 0.999 0.882 0.947 0.993 0.992 0.995 0.999 0.853 0.920 0.970 

Liver 0.558 0.754 0.878 0.618 0.739 0.833 0.623 0.728 0.806 0.436 0.574 0.699 

 

 
Table 13: Four-hour benchmark test results 

Framework 

Dataset 

TPOT Auto-Sklearn Hyperopt-Sklearn 

 Min  Med Max Min  Med Max Min  Med Max 

Breast 0.957 0.979 0.995 0.982 0.988 1.0 0.915 0.968 0.989 

Diabetes 0.758 0.832 0.907 0.754 0.82 0.873 0.303 0.699 0.785 

Sick 0.994 0.997 0.999 0.981 0.996 0.999 0.729 0.913 0.970 

Liver 0.609 0.783 0.861 0.637 0.754 0.824 0.518 0.583 0.674 



6 Requirements for AutoML methods 

This chapter describes the requirements for AutoML methods as we develop applica-

tions to enable researcher-physicians to start with self-service data science. First, we 

describe and categorise the requirements for AutoML methods. Second, we analyse if 

AutoML methods support the requirements. Finally, we conclude which AutoML 

method would be the best to implement into the artefact based on the requirements. 

6.1 User-stories 

We present the requirements in this paragraph in the form of user-stories. For user-

stories, we use the template of Cohen (2004): “As a 〈type of user〉, I want 〈goal>, 
[so that 〈some reason〉].”. An example of such a user-story could be: As a re-

searcher-physician, I want a graphical user interface, so that I do not have to learn a 

programming language to make use of AutoML. User-stories are useful to describe the 

functional requirements of users. Furthermore, it is an excellent way to summarise the 

needs of a user in a comprehensive and atomic way (Cohen, 2004).  

 

Besides the requirements elicitation from our interviews, we have analysed five inter-

views from previous research on the application of self-service data science with ML 

in healthcare (Vries de, 2018). From both sets of interviews, we have elicited require-

ments and put them into user-stories, sorted on their frequencies in Table 14. Tran-

scripts of our interviews are available in Appendix 11.5. 

 
Table 14: User-stories 

No. User-story Fre-

quency 

1 As a researcher-physician, I want to know how a prediction mech-

anism works, so that I can trust it more easily. 

5 

2 As a researcher-physician, I want to be able to perform ML without 

having to code, so that I do not have to spend time learning how to 

program. 

5 

3 As a researcher-physician, I want to use logistic regression, so that 

I can follow the medical guidelines for research. 

4 

4 As a researcher-physician, I want to see which variables are in-

cluded and excluded in the model, so that I can assess variable im-

portance. 

4 

5 As a researcher-physician, I want to see the difference between 

models with different variables included so that I can assess varia-

ble importance. 

4 

6 As a researcher-physician, I want to transfer my model into a cal-

culation tool, so that it can be used in clinical practice. 

4 
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7 As a researcher-physician, I want to have results within a day, so 

that I do not have to wait. 

4 

8 As a researcher-physician, I want to know the statistical power of 

a created model, so that I know if I can use it. 

4 

9 As a researcher-physician, I want that the AutoML method ex-

plains its decisions, so that I can check its reasoning. 

3 

10 As a researcher-physician, I want to have a graphical user inter-

face, so that the chance of making errors is less than while coding. 

2 

11 As a researcher-physician, I want to see the importance of each 

variable. So that I can check the reasoning of the computer. 

2 

12 As a researcher-physician, I want to use code, so that I can trace 

back the decisions that I have made 

2 

13 As a researcher-physician, I want to know what happens with miss-

ing data, so that I can evaluate the model correctly. 

2 

14 As a researcher-physician, I want to get suggestions for variables 

to include by the computer, so that I can improve my models. 

2 

15 As a researcher-physician, I want to see the amount of variance 

that is explained by my model, so that I can assess the model qual-

ity.  

2 

16 As a researcher-physician, I want to see multiple alternatives for a 

model, so that I am more in control of the machine. 

1 

17 As a researcher-physician, I want to see an overview of the data, 

so that I know what I am using for my analysis. 

1 

18 As a researcher-physician, I want to be able to micro-target so that 

I can get better results for my patients. 

1 

19 As a researcher-physician, I want to be able to transfer files directly 

to a machine learning tool, so that I have a fast process. 

1 

20 As a researcher-physician, I want to be able to include a patient in 

the decision, so that I can explain a decision as part of shared de-

cision making. 

1 

21 As a researcher-physician, I want to see frequencies and graphs so 

that I can get into the data real fast. 

1 

User-stories categorised 

We grouped the user-stories from Table 14 into four categories: 1) User interaction; 

2) Model construction; 3) Model explanation, and 4) Model usage. We only include 

user stories that are requested by two or more interviewees. Hence, we excluded user-

story sixteen to twenty-one. We categorise and discuss all other user-stories from Table 

14 below. 

User interaction 

User-stories ten and twelve consider user interaction with an AutoML method. User-

story ten shows that some users prefer a Graphical User Interface (GUI) over coding. 

*quotes removed for confidentiality* 



63 

Model construction 

User-stories two, three, seven, thirteen and fourteen are about model construction. 

User story two is about not having to code to construct an ML model. *quotes removed 

for confidentiality* 

Regarding user-story three, four interviewees mention that they only want to use 

AutoML to create logistic regression models, as that is the standard in medical practice. 

*quotes removed for confidentiality* 

User-story seven is about the time of the model construction; most interviewees 

think that one day is a reasonable time for model construction. *quotes removed for 

confidentiality* 

User-story thirteen is about how the model construction handles missing data when 

building the model. *quotes removed for confidentiality* 

User-story fourteen is about the AutoML method suggesting which variables to in-

clude or exclude while creating the model, even if the variables are not present in the 

uploaded dataset. *quotes removed for confidentiality* 

 

Model explanation 

User-stories one, four, five, eleven, twelve and fifteen, are all about model explana-

tion. User story one is about knowing how a prediction mechanism works. The AutoML 

method should explain the selected model. *quotes removed for confidentiality* 

Preferably the AutoML method should use logistic regression for model construc-

tion, as mentioned in the paragraph above.  

User-story four, nine and eleven are about the importance of variables that are in-

cluded in the model, as variable importance is crucial for the interviewees. The im-

portance of variables explains why they have been in- or excluded in a model: “You are 

not allowed to use all data that you have available as predictors in such a model” 

*quotes removed for confidentiality* 

User-story five is about seeing the difference in the performance of two models 

where some variables are in- or excluded. *quotes removed for confidentiality* 

 

User-story twelve and fifteen are about knowing the statistical power and explained 

variance of the constructed model; this is used by the interviewees to explain how use-

ful their models are. *quotes removed for confidentiality* 

Model usage 

User story six is about using the model in practice. All practitioners have discussed 

the necessity of getting to use their models in practice: *quotes removed for confiden-

tiality* 

6.2 User-story analysis 

In this section, we analyse the user-stories from the previous section. For each of the 

categories from the previous section, we compare the functional requirements of the 

user stories to the capabilities of the AutoML methods. 
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User interaction 

In the category user interaction, two user-stories are in conflict. User-story ten con-

flicts with user story twelve. Some researcher-physicians prefer to use code to do their 

analysis, so they have more control over what is happening. In contrast, other re-

searcher-physicians prefer to have a GUI, as coding errors cost a lot of time to solve. 

Model construction 

The five user-stories for model construction are two, three, seven, thirteen and four-

teen. User-story two, automatic model construction, is covered by the concept of Au-

toML. User-story three is about only creating logistic regression models. Auto-WEKA 

and TPOT are the only methods that support logistic regression. User-story seven is 

about delivering results within a day. The time constraint is possible for all methods.  

User-story thirteen is about the processing of missing data. Auto-Sklearn and TPOT 

impute missing data with the median. Auto-WEKA and Hyperopt-Sklearn do not pro-

vide any documentation on their strategy for handling missing data. The Hyperopt-

Sklearn documentation does state that it does not do any pre-processing by default. 

AutoML is unable to suggest variables as requested in user story fourteen. Table 15 is 

a matrix containing the AutoML methods, user stories and their matches. 

 
Table 15: AutoML methods and model construction user-stories 

User-story Auto-

Sklearn 

Auto-

WEKA 

TPOT Hyperopt-

Sklearn 

Automatic model configu-

ration (2) 

X X X X 

Only logistic regression (3)  X X  

Results within a day (7) X X X X 

Explain missing data  

handling (13) 

X  X  

Suggest variables (14)     

Total matches 3 3 4 2 

Model explanation 

None of the AutoML methods can support any user-stories about model explanation. 

The AutoML methods do not explain the selected prediction mechanisms, nor do they 

explain the variables that are in- or excluded in a model or their importance. The meth-

ods also do not explain statistical power and explained variance. However, requirement 

one and five are possible to integrate into an artefact. An empty matrix demonstrates 

the mismatch between the capabilities of the AutoML methods and the requirements 

from user-stories regarding model explanation. Table 16 demonstrates the empty matrix 

with user-stories and AutoML methods. 
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Table 16: AutoML methods and model explanation user-stories 

User-story/method Auto-

Sklearn 

Auto-

WEKA 

TPOT Hyperopt-

Sklearn 

Prediction mechanism expla-

nation (1) 

    

Variable importance (4, 11)     

Model comparison (5)     

Statistical power (8)     

Explain decisions made (9)     

Explained variance (15)     

Total matches 0 0 0 0 

Model usage 

User-story six is about using the created model in practice. All four methods support 

exporting the model so that it can be applied to unseen data or to predict a single case.  

6.3 Conclusion 

After comparing the four AutoML methods to the user stories, we can conclude that 

TPOT is the best AutoML method for this set of requirements. TPOT satisfies five of 

the fifteen assessed requirements compared to four out of fifteen by Auto-WEKA and 

Auto-Sklearn. What is interesting to note is the inability of all AutoML methods to 

explain the created models. The need for explainability is evident: Model explanation 

is the biggest category in the user-story categorisation and described in the literature as 

an important factor (Vollmer et al., 2018). Besides that, explaining model decisions is 

obligatory in Europe since the introduction of the General Data Protection Regulation 

Law (Janssen, 2019, pp. 40–42). Table 17 contains an overview of the number of re-

quirements satisfied by the AutoML methods in each category. We have not included 

the user-interaction category as it contains conflicting user-stories and does not apply 

to AutoML methods, only to the artefacts. 

 
Table 17: AutoML method scores on user-story categories 

Category/method Auto-Sklearn Auto-WEKA TPOT Hyperopt-Sklearn 

User interaction n/a n/a n/a n/a 

Model construction 3 3 4 2 

Model explanation 0 0 0 0 

Model usage 1 1 1 1 

Total matches 4 4 5 3 
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7 Results 

This chapter describes the created artefacts and the results of the artefact evaluation. 

First, we describe the designed artefacts. Second, we describe the evaluation strategy. 

Third, we describe the results of the artefact evaluation. 

7.1 Artefact design 

The designed artefacts are created to automate a part of the data preparation phase 

and to automate the complete modelling phase of CRISP-DM. The data preparation 

activities involve the possibility to in- or exclude variables, data imputation for missing 

values and the recoding of categorical variables to numerical variables, as TPOT cannot 

handle non-numerical input data. Due to the conflict in user-interaction, we will design 

two artefacts with the same functionality but a different interface.  

Both artefacts are designed based on the requirements from the previous chapter. 

The artefacts can be used to create logistic regression models within the timespan of a 

day and users who do not know how to code should be able to use the artefacts. The 

artefacts contain a description of missing data handling, as well as the possibility to 

compare the different models. The two artefacts are a web-application and a notebook. 

Table 18 contains an overview of the user-stories that are in- and excluded from the 

artefacts. We have decided not to include user-story six, as the focus of the artefacts is 

on the data preparation phase and modelling phase of CRISP-DM, not on the deploy-

ment phase. All excluded user-stories were impossible to integrate into the artefacts. 

Artefact A: Flask web-application 

Based on user-story ten, we have developed a web application in Python based on 

the Flask Framework. This web application allows users to upload a dataset, create 

subsets of these datasets and create a pipeline using AutoML. Within the application, a 

user can access overviews of the uploaded datasets, created subsets and models. The 

Flasky application by Grinberg (2014) is the basis for the architecture of the applica-

tion. Heroku6 is used to deploy the application. To construct the AutoML methods, we 

used a Redis7 background server to enable the user to use the application during model 

construction. The code of the application is available on git, a link to the git and screen-

shots of the artefact are available in Appendix 6: Artefacts for researcher-physicians. 

Artefact B: Jupiter notebook 

For the researcher-physicians who indicate that they prefer to use code over a GUI 

(user-story twelve), we have prepared a Jupiter Notebook.8 A notebook is a document 

that contains both computer code and rich-text items. We provide a notebook, display-

ing and explaining every line of code. Access to the code gives the users control over 

                                                           
6 https://www.heroku.com 
7 https://redis.io/ 
8 https://jupyter-notebook.readthedocs.io/en/stable/ 
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their knowledge discovery process. They can edit every part of the code to find out how 

it influences the eventual outcome. A link to the git and screenshots of the artefact are 

available in Appendix 6: Artefacts for researcher-physicians. 

 
Table 18: User-stories per artefact 

 Artefact A Artefact B 

AutoML method TPOT TPOT 

User interaction GUI (10)  Code-based interface (12) 

Model creation 1, 2, 3, 7 1, 2, 3, 7 

Model explanation 5, 13 5, 13 

Model usage n/a n/a 

Excluded  4, 6, 8, 9, 11, 14 & 15  4, 6, 8, 9, 11, 14 & 15  

7.2 Artefact evaluation strategy 

All interviewees will evaluate both artefacts. The artefacts will be evaluated using 

the risk and efficacy strategy from the framework for evaluation in design science 

(Venable et al., 2016). In line with the framework, we have created a set of refined 

hypotheses based on the user-story categories. The category model usage was excluded 

for evaluation, as it is not part of the scope of this research. The interviewees have to 

upload a dataset, create two or more subsets and compare the results as part of the 

evaluation. We randomized the order of the first demonstrated artefact to avoid learning 

bias.  

User interaction 

To test user interaction, we have created four refined hypotheses to test which arte-

fact is preferred over the other for user interaction. Two hypotheses are about the ease 

of use of uploading a dataset and creating a subset. The other two hypotheses are about 

the explanation of the steps within the artefact and how easy these are to find. The 

hypotheses are: 

1. Artefact A is preferred over Artefact B to upload a dataset.  

2. Artefact A is preferred over Artefact B to create a subset. 

3. Artefact B is preferred over Artefact A to find the way in the different steps. 

4. Artefact B is preferred over Artefact A for the explanations of the workflow. 

Model construction 

We have created two hypotheses on model construction. The hypotheses are: 

1. Artefact B is preferred over Artefact A for progress reporting on model con-

struction. 

2. Artefact B is preferred over Artefact A for model construction. 
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Model explanation 

Because no user-stories matched a model explanation requirement, the first two hy-

potheses are about the model comparison. The latter hypotheses are about the desired 

explainability mentioned in the user-stories. 

1. Artefact A is preferred over Artefact B for comparing results of model crea-

tion. 

2. Artefact A is preferred over Artefact B for the explanation of missing data 

handling.  

3. Artefact B is preferred over Artefact A for reading the produced model. 

4. Users consider accuracy to be a good measure of model performance. 

5. Users want to know the statistical power of the created model. 

6. Users want to know the importance of each variable in the created model. 

 

To test these hypotheses, the users first evaluate each artefact individually. For each 

statement, based on a user story, they can answer on a three-point scale: positive, neu-

tral or negative. Each question provides the space to comment on a decision. Besides 

these hypotheses, the interviewees get the liberty to comment on parts that they would 

like to improve or remove for each of the artefacts. After that, they are asked to choose 

between the two artefacts for each hypothesis. The evaluation protocol is included in 

Appendix 7: Artefact evaluation protocol. 

7.3 Artefact evaluation 

This section describes the results of the artefact evaluation. First, we evaluate the 

hypotheses that are stated above for the three categories. Second, we discuss improve-

ments for the artefacts.  

Refined hypotheses testing 

To evaluate the artefacts, we have tested our refined hypotheses with the interview-

ees. The interviewees had completed the same process on both artefacts to test the re-

fined hypotheses. After evaluating the artefacts individually, the interviewees were 

asked to choose one artefact over the other for the different topics. The results of the 

artefact preference evaluation are available in Table 19; the individual assessments of 

the artefacts are available in Appendix 8: Artefact evaluations.  

 

For the user interaction category, we can confirm three of the four hypotheses. Most 

users liked to upload a dataset with Artefact A and found the workflow and workflow 

explanation of artefact B to be preferable. We have to reject hypothesis two of the user-

interaction. Users preferred Artefact B over Artefact A to create a subset with their data. 

Using code gives the users a feeling of insight and control over the process. *quotes 

removed for confidentiality*. The preference for Artefact B is minimal if we look to the 

individual artefact evaluation. Both A and B have four likes; the only difference is a 

dislike compared to an indifferent. Interesting to note is the difference in the individual 

evaluations and the overall performance. The workflow in Artefact A is preferred over 
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the workflow in Artefact B if we consider the individual evaluations. However, the 

interviewees indicate a preference for artefact B when comparing the two artefacts.  

Being in control is a central theme in the model construction category. *quotes re-

moved for confidentiality*. We can see from Table 19 that only one interviewee pre-

ferred Artefact A over artefact B for progress reporting. All other interviewees prefer 

Artefact B over artefact A for both progress reporting and model construction, as we 

hypothesised. The individual evaluations of the artefacts confirm these findings. Arte-

fact B had the most occurring value of ‘I like it’ for both aspects. Artefact A had the 

most occurring values of ‘I do not like it’ and ‘I am indifferent’ for progress reporting 

and model construction. 

The model explanation part is all about understanding what has happened. Most re-

searcher-physicians want to know why the computer created a model. For this category, 

we can only confirm the hypothesis about comparing results. Comparing results is per-

ceived as more pleasant for Artefact A. *quotes removed for confidentiality. 

However, the individual evaluation of the artefact demonstrates that the researcher-

physicians do not like the output of both artefacts because the AutoML methods do not 

offer explanations for the created models. The word cloud in Figure 30 illustrates the 

need for an explanation of the variables. The word cloud contains all answers to the 

why questions on the individual evaluations of the interviewees. The words variable, 

model, happening, explanation, control and understand all stand out. Most interviewees 

do not consider the output of TPOT as a model: *quotes removed for confidentiality*.. 

 
Table 19: Artefact evaluation preferences 

 S1 S2 S3 S4 S5 

User interaction  
Upload dataset A A A A B 

Create a subset B A B A B 

Workflow B A B B B 

Workflow explanation B B B A B 

Model construction  
Progress reporting B B B A B 

Model construction B B B B B 

Model explanation  
Compare results B A A A A 

Explanation missing data B B B A B 

Readability B A A A B 

Accuracy is a good measure No No Yes Yes Yes 

Statistical power Yes Yes Yes Yes Yes 

Variable importance Yes Yes Yes Yes Yes 
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Figure 30: Word cloud of all comments on artefact evaluation questions 

Artefact improvement 

Part of design science is artefact improvement. Hence, we have asked the interview-

ees what they wanted to improve about the artefacts. Because the artefacts only differed 

in presentation form, we first discuss what can be improved for both artefacts and dis-

cuss improvements four for each of the two artefacts separately. Finally, we discuss the 

reaction to the suggestion of using AutoML in its current form for the interviewee’s 

research. 

The thing that was touched upon by all interviewees is the model output that TPOT 

gives. The output is not human-readable, and it is impossible to infer the contribution 

of each variable to the outcome. *quotes removed for confidentiality* 

Variable importance and the statistical metrics of the created model are essential to 

researcher-physicians, as answered by all five interviewees and visible in the word 

cloud. Besides the variable importance, the interviewees want to have a more specific 

option to control the time used for model construction and the score measure that is 

used to evaluate the models. *quotes removed for confidentiality*. Both options were 

not present in Artefact A and not explained in Artefact B, but give the researcher-phy-

sicians a feeling of control over the process of model development.  

Artefact A: Flask web-application 

For artefact A, the interviewees mentioned four improvements: feedback on process 

steps, traceability of process steps, improvement of model comparison, and navigation.  

The first improvement is feedback on the results of the process within the web-appli-

cation. The interviewees would like to see a message after they uploaded a dataset or 

created a subset. The second improvement is the traceability of the previous steps of 

the interviewee. A suggestion was the use of breadcrumbs to give the interviewees a 

view of what they have done in previous steps and where they are in the process of 

model creation. The third improvement was on the model overview, as mentioned 

above, the model used did not say anything to the interviewees, whereas the variables 

in the subset do. Hence, the interviewees suggested swapping these for each other. The 

fourth improvement is navigation. It was not self-explanatory for all interviewees; some 
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interviewees suggested guidance through the whole process instead of coming back to 

the homepage after each step. Other interviewees suggested more links to the same 

actions or using numbers on the buttons in the steps of the process. 

Artefact B: Jupyter notebook 

For Artefact B, the interviewees mentioned four improvements: when to edit code, 

code explanation, reset the notebook to default and an explanation on how to run code 

blocks. The first improvement is being more explicit in where they have to edit code 

and where not. Suggestions are the collapse of code blocks, in which they do not have 

to edit something and highlights within the code about what parts to edit. The second 

improvement is a more thorough explanation of the visible code, both in-line and 

around the code. The explanation is requested so that the researcher-physicians under-

stand what is happening; this helps them to feel in control. The third improvement was 

to have a function to roll back the notebook to its original state for when they broke 

something. The fourth improvement is a better explanation of how to run the code 

blocks and their output. For most interviewees, it was unclear how to run the code 

blocks and when the code blocks were done processing the contained code. 

Artefact usage 

After the artefact evaluation, we asked the interviewees if they would use AutoML 

in their research. Two of the interviewees mentioned that they would find it useful for 

data exploration and performance comparison of their models. Another interviewee 

mentioned that it believed in the power of (Auto)ML, but for adoption, the methods 

need to improve on explainability and transparency. The last two interviewees only 

would use AutoML in their research if the variable importance is part of the output of 

the AutoML method. 

7.4  Conclusion 

Based on the requirements from the previous chapter, we have created two similar 

artefacts with a different interface. We compared and evaluated these artefacts to find 

the best way to present AutoML to researcher-physicians in their knowledge discovery 

process. What we found is that a hybrid version of the two artefacts is preferred to 

interact with AutoML by the interviewees. Furthermore, AutoML needs to explain var-

iable importance to make it usable in their research practice.  

In the user interaction category, we found that for model interaction uploading a 

dataset is preferred with Artefact A. For subset selection, the workflow and its expla-

nation are preferred to do in Artefact B. The preference for Artefact B is also present 

for model creation and progress reporting on model construction. Both artefacts scored 

low on the model explanation part. Artefact A was preferred over Artefact B as it pro-

vided a better overview. However, explaining variable importance is considered a must-

have for the adoption of AutoML by researcher-physicians. 
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8 Conclusion 

This research started with the question: ‘How can we support healthcare professionals 

in their knowledge discovery process by applying AutoML?’. To answer this question, 

we first answered five sub-questions. In the first section of this chapter, we discuss the 

main findings for all sub-questions individually. The second section will address the 

main research question. 

8.1 Sub-questions 

The first sub-question is ‘What is the knowledge discovery process for healthcare 

professionals in their research?’. In Chapter 3, we found that there is a need for the 

design of applications that enable domain experts to execute self-service data science 

as part of ADS. In healthcare, there is enormous potential for the usage of analytics. 

However, there is a lack of skilled people and no standard methodology. We selected 

CRISP-DM as the knowledge discovery process for this research, as it is widely 

adopted, adaptable to specific situations, and many methods derived from it.  

 

The second sub-question is ‘What are the capabilities of AutoML?’. In Chapter 4, we 

described that AutoML is capable of selecting and configuring ML algorithms and their 

corresponding hyperparameters to optimise performance for a given dataset. Some Au-

toML methods combine ML algorithms with pre-processor steps to automatically cre-

ate an ML pipeline that for optimal performance. Furthermore, we provided a synthesis 

in which we categorized the discussed AutoML methods.  

 

The third sub-question is ‘Which AutoML method performs best on a benchmark test 

given medical datasets?’. To answer this question, we ran a benchmark test with four 

AutoML methods. From the benchmark test, we conclude that no method consistently 

significantly outperforms all other methods. However, we see that TPOT and Auto-

Sklearn outperform Auto-WEKA on the sick dataset with a one-hour budget. However, 

Hyperopt-Sklearn is outperformed on both the one-hour and four-hour time budget for 

all datasets. When we extend the time limit from one hour to four hours, we do not see 

a significant improvement in model performance for any of the AutoML methods.  

 

The fourth sub-question is “What are the requirements of healthcare professionals to 

start using AutoML in their daily practice?”. The most requirements of the healthcare 

professionals on AutoML were in the category model explanation. The interviewees 

stated that they wanted to know how model construction works and which choices are 

made by the AutoML method in the process of model construction. Furthermore, they 

want to know the importance of different variables in the created models. However, no 

assessed AutoML method could satisfy a single explainability requirement. TPOT sat-

isfied most requirements in the other categories; user interaction, model construction 

and model usage. Hence, TPOT was selected as AutoML to integrate into the artefacts. 
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The fifth sub-question was ‘How does the selected AutoML method suit healthcare pro-

fessionals in their knowledge discovery process?’. To answer this question, we created 

two artefacts: a notebook and a web-application. We found that the notebook was pre-

ferred over the web-application to create a model with AutoML. The preference was 

due to the visibility of the code. The visibility provided a feeling of insight and control 

over what was happening. All interviewees were disappointed with the explanation of 

the created models.  

We concluded that a hybrid version of the two artefacts would suit researcher-phy-

sicians best. A notebook part provides insight into the code and gives the interviewees 

a feeling of being in control whereas the web-application is preferred over the notebook 

regarding the uploading the dataset and the comparison of created models. The inter-

viewees stated that if they would use AutoML in their research that it would be useful 

for data exploration. They would not use it to create models for their research. 

8.2 Main research question 

The main research question of this research was ‘How can we support healthcare 

professionals in their knowledge discovery process by applying AutoML?’. We found 

that AutoML is currently only suitable for the data understanding phase of the CRISP-

DM method in this first study on possibilities for AutoML adoption in healthcare. Alt-

hough AutoML is capable of modelling and data pre-processing, it misses an explana-

tion for the decisions made in the modelling process. Part of medical knowledge dis-

covery is finding the cause of a medical event. Because modelling decisions are not 

shared, and variable importance is absent in the result, AutoML does not support the 

discovery of new knowledge. However, the researcher-physicians point out that they 

see the added value of automatically finding out the best possible scores for their da-

tasets. Furthermore, they mention that AutoML can help them in getting an understand-

ing of their data in the data understanding phase of their knowledge discovery process. 
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9 Discussion 

This chapter discusses the conducted research. First, we discuss the lessons learned. 

Second, we discuss possibilities for future research. Finally, we discuss the validity of 

this research.  

9.1 Lessons learned 

In this section, we discuss two lessons learned during this research. First, we discuss 

the suitability of AutoML for healthcare practitioners. Second, we discuss the bias in 

medical (analytics) publications.  

Suitability of AutoML methods for researcher-physicians 

After the elicitation of requirements, we found that researcher-physicians prefer to 

create logistic regression models in their research. There are multiple reasons why we 

find that AutoML in the way we assessed it, is not the best way to create models for 

researcher-physicians. First, AutoML originates from the CASH problem. If the algo-

rithm type is pre-selected, AutoML can only contribute to HPO. As logistic regression 

only has two hyperparameters (Thornton et al., 2013), we question the need for using 

AutoML to tune these hyperparameters.  

Second, even if we drop the constraint of logistic regression for model construction, 

previous research found that other ML models do not significantly outperform logistic 

regression models in medical studies (Christodoulou et al., 2019). Even when we drop 

the logistic regression model constraint, we still doubt the usability of AutoML due to 

the results of Christodoulou et al. and the inability of AutoML to explain the created 

models, although other researchers do not find the same results on general datasets 

(Gareth et al., 2013; Kotsiantis, 2007).  

Third, there is no explanation of variable importance by the tested AutoML method. 

As model explainability and variable importance are essential requirements for re-

searcher-physicians, this makes AutoML unsuitable in its current form. If the given 

explanations are satisfactory, AutoML might be useful in research. More on variable 

importance is available in the future work section below (9.2). If AutoPrognosis can 

deliver on its promises it can be a promising technology considering the user stories on 

model explanation.  

Fourth, there is no structure in the pipelines created by TPOT; this can lead to very 

complicated pipelines in with three or four logistic regression models, all using each 

other’s results as input. These constructions are hard to understand for domain experts. 

If we would use grammar to represent the pipeline like in RECIPE (Sá de et al., 2017) 

the grammar can help to create more understandable pipelines for researcher-physi-

cians. Another option could be using fixed-pipeline methods based on BO. Finally, we 

have learned that there is a gap in the knowledge level of ML between literature and 

practice for researcher-physicians. The literature on AutoML states that AutoML aims 

to aid non-expert users of ML techniques (Thornton et al., 2013). However, we find 

that most non-expert users in the medical domain have no knowledge or education in 
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programming. Hence, the current offering of AutoML techniques are still too technical 

for non-expert users in healthcare. 

Bias in medical analytics publications 

Most publications about healthcare analytics that we have come across during this 

research, have all published a positive result. Vollmer et al. (2018) noticed the same: 

there is a need to publish every positive result, but there are no real tests for the value 

of ML solutions in healthcare. If we add the findings of Christodoulou et al. (2019) to 

the fact that ML models do not perform significantly better than traditional methods in 

medical research we find a discrepancy between what is published and what is improv-

ing healthcare. Hence, we think that it would be helpful for the development of accurate 

methods for analytics in healthcare to publish results that do not provide a direct benefit. 

In this way, funding for research can be either used for improving methods that do not 

yet work in healthcare or in researching different methods for solving the same prob-

lem. When negative results are not published, we fear a waste of research funding by 

researchers continually reinventing the wheel and thus stalling research and innovation. 

9.2  Future work 

To build on this research, we discuss six options to extend this research. First, we 

discuss the validation of ML studies in healthcare. Second, we discuss AutoML model 

uncertainty. Third, we discuss new AutoML use-cases for healthcare. Fourth, we dis-

cuss improvements for the benchmark test and framework. Fifth, we discuss the inter-

pretability of AutoML methods. Finally, we discuss the improvement of the artefacts. 

Validation of ML studies in healthcare 

Currently, there are no evaluation protocols in the medical domain to assess the 

added value of the application of ML. Christodoulou et al. (2019) found that this led to 

several studies where ML was preferred over logistic regression in algorithm perfor-

mance, although there was no significant improvement. Vollmer et al. (2018) address 

the need for evaluation protocols of ML in healthcare. Such a framework should help 

to increase the confidence in digital healthcare solution and incorporate all stakehold-

ers. One possible solution for this is the digital health scorecard, as it considers four 

different perspectives on ML in healthcare: technical, clinical, usability and costs 

(Mathews et al., 2019). 

AutoML model uncertainty 

One of the benefits that are proposed by AutoML is the reproducibility of created 

ML pipelines (Hutter et al., 2019; Kotthoff et al., 2017; Thornton et al., 2013). How-

ever, these authors state that the outcome of the creation of an ML pipeline with an 

AutoML method is dependent on the time budget allocated to the AutoML method. 

Besides that, EA based AutoML methods start with a random population. Thus, it is 

harder to reproduce the result of a single run without explicitly setting the seed. 
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Dusenberry et al. (2019) investigated model uncertainty in a medical context. They 

have found that as much as changing the seed can influence the prediction outcome for 

an individual patient. Hence, we argue that there should be more research on the stabil-

ity of AutoML pipelines in the medical domain.  

AutoML use-cases 

 In our overview in Chapter 4, we demonstrated that AutoML is applicable for tuning 

neural networks and creating classification and regression models. In healthcare, the 

fields with the most significant potential for the application of ML are image recogni-

tion and natural language processing (Vollmer et al., 2018). Because researcher-physi-

cians accept black boxes in image recognition and natural language processing more 

than in traditional research, these ML tasks might be better suited to enable domain 

experts to work with AutoML in healthcare. Hence, we argue that the scope of AutoML 

use-cases could be widened to NLP and image recognition tasks if we want to accelerate 

the adoption of analytics in healthcare. 

Benchmark test 

To improve the benchmark test, as described in Chapter 5, we suggest three addi-

tions. The first is the inclusion of more AutoML models. AutoPrognosis (Alaa & van 

der Schaar, 2018), ML-Plan (Mohr et al., 2018) and Auto-Keras (Jin et al., 2018) are 

examples of different types of methods to include. The introduction of these methods 

would provide insights into the performance of a method designed for clinical practice, 

a method based on hierarchical task networks and a method for creating neural net-

works. The second addition would be the inclusion of new types of tasks to the bench-

mark test. In medical practice, there are more types of tasks than classification and 

regression. For example, survival analysis and multi-classification tasks are important 

prediction tasks in medical practice. Finally, the addition of more medical datasets that 

fit the requirements of Bischl et al. (2017) for benchmarking would be of value. The 

addition of more datasets would allow for a more reliable comparison of the available 

AutoML methods in the medical domain.  

AutoML interpretability 

As pointed out in Chapter 6 and 7, the explainability of ML models is crucial to 

adoption for researcher-physicians (Sung et al., 2003). Molnar (2019) argues that ML 

interpretability is crucial to the adoption of black-box algorithms in every sector. In 

healthcare, this barrier to adoption is even higher, as being able to explain decisions is 

part of the medical culture and vital to patient-doctor interaction. Hence, AutoML meth-

ods must become more interpretable for non-expert users. The interpretability tech-

nique should be model agnostic. In that way, the technique is suitable for all pipelines 

created by the AutoML methods (Ribeiro, Singh, & Guestrin, 2016). To improve the 

interpretability of AutoML models we propose three areas for further research on the 

interpretability of AutoML: Surrogate models, Local Interpretable Model-agnostic Ex-

planations (LIME) (Molnar, 2019) and Shapley values (Shapley, 1953). However, oth-

ers argue that we should improve the trust in artificial intelligence in healthcare rather 
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than improving the interpretability. If the trust is high enough, the researcher-physicians 

will start using the black boxes (Bartoletti, 2019). Most researcher-physicians also do 

not precisely know how a car works. However, they still use cars in their daily lives. 

Surrogate models 

A surrogate model is a white-box model created parallel to a black-box solution. A 

surrogate model can be used to give the user of the black-box model a sense of under-

standing of what is happening inside by looking at the white-box model. There is no 

certainty that a surrogate model depicts the internal process of a black-box model, nor 

a clear-cut line to state when a surrogate model explains a black-box model well enough 

(Molnar, 2019). An example of a surrogate model is the usage of a logistic regression 

model to explain the inner workings of a neural network. Logistic regression models 

have explainable variable importance and can hence be used to mimic the neural net-

work. 

LIME 

LIME models use artificial variations of data and inputs these into the created black-

box function to create local surrogates of the black-box model. The local surrogates 

result in human-friendly explanations. A disadvantage of LIME is its locality; it can 

give conflicting explanations to explain the same model. This instability is considered 

to be a problem in the implementation of LIME in practice. “Local surrogate models, 

with LIME as a concrete implementation, are very promising. But the method is still in 

the development phase and many problems need to be solved before it can be safely 

applied.” (Alvarez-Melis & Jaakkola, 2018). 

Shapley values 

Shapley values (Shapley, 1953) are part of game theory. Each feature is called a 

player and the predicted value is called the pay-out. The goal of the Shapley values is 

to determine what the contribution for each player is. Contributions could be a combi-

nation of players (features) “The Shapley value might be the only method to deliver a 

full explanation. In situations where the law requires explainability (…) the Shapley 

value might be the only legally compliant method because it is based on solid theory 

and distributes the effects fairly” (Molnar, 2019). A disadvantage of Shapley values is 

that Shapley values return a simple value per feature, but no prediction model like 

LIME does. The absence of models means that Shapley values cannot be used to make 

statements about changes in prediction for changes in the input, such as: “If my BMI 

were 5 points lower, I would have been considered for surgery.”. 

Artefact improvement 

As we found in Chapter 7, the interviewees of this study prefer to interact with a 

‘hybrid’ artefact. They want to have an artefact that has both GUI components and 

notebook components. Hence, we propose the development of an artefact that has a 

GUI for uploading a dataset and comparing model results. We propose more research 

on the interface for the creation of a subset. The interviewees had a slight preference 
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for the notebook, but this was only by a narrow margin. To get a better overview of 

user-preferences, a larger sample needs to be involved.  

The combined artefact should also make room for more ways of assessing model 

performance and time budget. Building a choice for evaluation metrics other than ac-

curacy and a field in which the interviewees can set the time budget. Besides the addi-

tion of choices, an extension of the workflow could be added — especially which parts 

of the code are mandatory to edit, and which are optional.  

9.3 Validity  

In this section, we address the “subjective” nature of the data collection and analysis 

of this research (Kaplan & Maxwell, 2005). To assess the validity of this study, we look 

at three of the five aspects of validity for qualitative research, as proposed by Burke 

Johnson (1997). We do not discuss theoretical validity as the goal of design science 

research is on artefact creation instead of theory creation. We do not aim to explain a 

phenomenon. We also do not discuss Internal validity, as we do not aim to answer a 

question about a causal phenomenon. The main research question of this research is a 

‘how’-question.  

Descriptive validity 

Descriptive validity is on the factual accuracy of the account of events as reported 

by the researcher (Burke Johnson, 1997). As a single researcher has conducted this 

research, hence there is a bias in data collection. A researcher is subjective by nature, 

and so are his data collection and analysis (Kaplan & Maxwell, 2005). Besides that, the 

relationship between the researcher and participants significantly influences what the 

participants reveal to the researcher (Kiegelmann, 2002, pp. 11–30). To mitigate this 

validity threat, we used a framework to set up the semi-structured interviews and the 

framework for evaluation of design science to set up the artefact evaluation. We rec-

orded all interactions with the participants, and we took part in sessions to obtain peer-

feedback on our research to increase the descriptive validity.  

Interpretive validity 

 Interpretive validity is about accurately portraying the meaning that was attached by 

the participants to the objects that were studied (Burke Johnson, 1997). To mitigate this 

threat, we have sent the elicited user-stories to the participants to obtain feedback on 

our findings (Kaplan & Maxwell, 2005). Furthermore, we used data-triangulation by 

tapping into other sources to confirm our findings. To make sure we portrayed the 

meaning of the participants well, we used low inference descriptors by quoting partic-

ipants in this research (Burke Johnson, 1997). 
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External validity 

External validity is crucial if we want to generalise our findings to a larger part of 

the population (Burke Johnson, 1997). Although generalizability is not the primary pur-

pose of this research, we will touch upon the subject. As this research conducts a case-

study, the best way to generalise its findings is to find the similarity in subjects, objects 

and issues (Polit & Beck, 2010). As the sample size and characteristics are not valid for 

generalizability, the best method to generalise our findings is to identify similarity in 

other situations.  

Characteristics that make the sample inapplicable for generalisation to medical pro-

fessionals are the limited set of medical domains in which the participants operate and 

the fact that all participants decided to participate voluntarily. Hence, insights derived 

from this study are hard to generalise but could be a stepping stone for future research.   
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11 Appendices  

11.1 Appendix 1: Search queries  

During the literature review, we have used the search terms listed below as a basis to 

find the papers that are found using snowballing.  

- “Big data” 

- “Data Science” 

- Statistics 

- “Machine Learning” 

- “Automated machine learning” or AutoML 

- Analytics 

- All above in conjunction with either: 

o Applied 

o Self-service 

o Healthcare  

o “Patient-centric” or “personalised healthcare” 

o Physician-researcher 

o Researcher-physician 

- “Automated statistician” 

- “Automated algorithm selection and configuration”  

 

Example of literature used as a starting point:  

- Hutter, F., Kotthoff, L., & Vanschoren, J. (2019). Automated Machine 

Learning-Methods, Systems, Challenges. Automated Machine Learning. 

- Quanming, Y., Mengshuo, W., Hugo, J. E., Isabelle, G., Yi-Qi, H., Yu-Feng, 

L., ... & Yang, Y. (2018). Taking human out of learning applications: A sur-

vey on automated machine learning. arXiv preprint arXiv:1810.13306. 

- Thornton, C., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2013, August). 

Auto-WEKA: Combined selection and hyperparameter optimization of clas-

sification algorithms. In Proceedings of the 19th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining (pp. 847-855). 

ACM. 

  



92 

11.2 Appendix 2: Requirements for OpenML100 datasets 

The OpenML website states the following requirements to a dataset to become a veri-

fied OpenML100 dataset (Bischl et al., 2017): 
- The number of observations is between 500 and 100000 to focus on medium-

sized datasets, that are not too small and not too big, 

- The number of features does not exceed 5000 features to keep the runtime of 

algorithms low 

- The target attribute has at least two classes 

- Have classes with less than 20 observations 

- The ratio of the minority class and the majority class is above 0.05, to 

eliminate highly imbalanced datasets, which require special treatment for 

both algorithms and evaluation measures. 

 

The authors of OpenML excluded datasets which: 

- Are artificially generated (not to confuse with simulated) 

- Cannot be randomised via 10-fold cross-validation due to grouped samples 

or because they are time series or data streams 

- Are a subset of a larger dataset 

- Have no source or reference available 

- Can be perfectly classified by a single attribute or a decision stump 

- Allow a decision tree to achieve 100% accuracy on a 10-fold cross-validation 

task 

- Have more than 5000 features after one-hot-encoding categorical features 

- Are created by binarisation of regression tasks or multiclass classification 

tasks, or are sparse data (e.g., text mining data sets) 
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11.3 Appendix 3: Benchmark dataset descriptions 

Breast cancer 
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Diabetes 
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Indian Liver Patients 
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Sick 

 
(continues on next page) 
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(continues on next page) 



98 

 

  



99 

11.4 Appendix 4: Interview protocol 

Introduction 

- Thank the subject for participating 

- Introduce myself and the research 

 

Before we start, I am asking for your permission to record this interview and later tran-

scribing it. All information will be anonymised and only be used for scientific research. 

It will not be shared outside of the university.  

 

 **Start recording** 

Collect information on participant and their research 

Name: 

Function: 

Experience: 

Research topic 

Collect information about the knowledge discovery process 

1) Do you use a standard methodology for your knowledge discovery process? 

2) How do you process data, if you do so, in your research? 

3) Do you have support in data processing in your research? 

4) Have you had an education in data processing? 

5) What tools do you use for data processing? 

6) What kind of challenges have you encounter while using data? 

Collect information about Machine learning 

7) What do you know about Machine Learning? 

8) Is machine learning used in practice? 

9) What do you know about the pitfalls in Machine Learning? 

10) What do you know about the application of Machine Learning in healthcare? 

1. What do you think is important in applying machine learning in healthcare? 

11) What kinds of statistical analysis/machine learning do you apply in your research? 

(if applicable)  

12) How do you apply these techniques? 

1. Which tools do you use? 

2. What is your opinion on the tools used? 

i) What do you like? 

ii) What do you dislike about these languages? 

Collect information on requirements on AutoML and automatic model delivery 

- Delivery time 

- Interpretability 
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- Alternatives  

 

 

**Stop recording** 

 

- Reassure confidentiality 

- Close interview, thank interviewee 

11.5 Appendix 5: Interview transcripts 

All interviews have been transcribed in Dutch, as they were held in Dutch. The inter-

viewer is denoted by the letter I, the interviewee by the letter S.  

 

**The text of the interviews is removed for confidentiality** 
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11.6 Appendix 6: Artefacts for researcher-physicians 

The source code for the web as well as the notebook is available at this URL: 

https://github.com/richooms/healthcare_automl. Screenshots of the artefacts are avail-

able below. 

 

Artefact A: Flask web-application 

 
Figure 31: Screenshot 1 of artefact A 

 
Figure 32: Screenshot 2 of artefact A 

 

 

 

 

 

 

  

https://github.com/richooms/healthcare_automl
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Artefact B: Jupyter notebook 

 
Figure 33: Screenshot 1 of artefact B 
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Figure 34: Screenshot 2 of artefact B 
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11.7  Appendix 7: Artefact evaluation protocol  

Introduction 

- Thank the interviewee for participating 

- Introduce the second experiment of the research 

 

Before we start, I am asking for your permission to record the session in which we 

evaluate the artefacts and later transcribing it. All information will be anonymised and 

only be used for scientific research. It will not be shared outside of the university.  

Introduce dataset 

Explain the diabetes dataset. Pima Indians, consisting of women of 21 years and older 

1) Number of times pregnant; 2) Plasma glucose concentration; 3) Diastolic blood pres-

sure; 4) Triceps skinfold; 5) 2-hour serum insulin; 6) Body mass index; 7) Diabetes 

pedigree function, and 8) Age. 

Introduce the purpose of the experiment. 

Provide and introduce the first artefact. 

Interact and evaluate the first artefact according to the artefact evaluation scheme 

Evaluate results (model explanation part of the evaluation) 

 

Provide/introduce the second artefact. 

Interact and evaluate the second artefact according to the artefact evaluation scheme 

Evaluate results (model explanation part of the evaluation) 

Comparative experiment 

Let the interviewee answer the questions of preference for two artefacts on the different 

aspects. 

Conclusion 

Thank the interviewee for participating. Ensure confidentiality  

Artefact evaluation scheme  

Interact with the artefact and start model creation (takes 15 minutes) 

- During model creation, evaluate sections of user interaction and model con-

struction 

- After model creation, evaluate the model explanation 

 

Individual evaluation artefact 

User interaction 

Upload a dataset I did not like it I am indifferent I like it 

Why?  



105 

Create a subset I did not like it I am indifferent I like it 

Why?  

Workflow I did not like it I am indifferent I like it 

Why?  

Workflow expla-

nation 

I did not like it I am indifferent I like it 

Why?  

 

Model construction 

Progress report-

ing on model con-

struction 

I did not like it I am indifferent I like it 

Why?  

Model construc-

tion 

I did not like it I am indifferent I like it 

Why?  

 

Model explanation 

Comparing re-

sults 

I did not like it I am indifferent I like it 

Why?  

Explanation of 

missing data han-

dling 

I did not like it I am indifferent I like it 

Why?  

Readability of 

created model 

I did not like it I am indifferent I like it 

Why?  

 

What would you add to the artefact if possible? 

 

What would you remove from the artefact if possible? 

 

 

Comparative evaluation artefact A & B 

User interaction  

Upload a dataset Artefact A Artefact B 

Why?  

Create a subset Artefact A Artefact B 

Why?  

Workflow Artefact A Artefact B 

Why?  

Workflow ex-

planation 

Artefact A Artefact B 

Why?  
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Model construction  

Progress report-

ing on model con-

struction 

Artefact A Artefact B 

Why?  

Model construc-

tion 

Artefact A Artefact B 

Why?  

 

Model explanation  

Comparing re-

sults 

Artefact A Artefact B 

Why?  

Explanation of 

missing data han-

dling 

Artefact A Artefact B 

Why?  

Readability of 

created model 

Artefact A Artefact B 

Why?  

Accuracy is a 

good measure of 

model perfor-

mance 

I disagree I agree 

I want to know 

statistical power 

I disagree I agree 

I want to know 

variable im-

portance 

I disagree I agree 

 

Discuss use-cases in which researcher-physicians think AutoML could contribute to 

their research.  

 

Would you use AutoML in your research? 

 

If they do not want to use it, what would be needed to have them start using it? 
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11.8 Appendix 8: Artefact evaluations 

Interviewee 1 

Individual evaluation artefact A (web app) 

User interaction 

Upload a dataset   I like it 

Why? It is easy for new users 

Create a subset   I like it 

Why? It is easy with clicking 

Workflow  I am indifferent  

Why? It all feels black box 

Workflow expla-

nation 

I did not like it   

Why? There is no explanation in the app 

 

Model construction 

Progress report-

ing on model con-

struction 

I did not like it   

Why? The computer does not show how accuracy is determined 

Model construc-

tion 

 I am indifferent  

Why? I do not understand how it is constructed 

 

Model explanation 

Comparing re-

sults 

 I am indifferent  

Why?  

Explanation of 

missing data han-

dling 

 I am indifferent  

Why? I don’t understand how missings were handled 

Readability of 

created model 

I did not like it   

Why? The model used formula is difficult to understand 

 

What would you add to the artefact if possible? 

- Being able to select other measurements for model performance 

- Calculation of: 

o AUC 

o Calibration 

o Sensitivity 

o Specificity 

o The net benefit of decision curve analysis 
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What would you remove from the artefact if possible? 

- The usage of accuracy 

 

Individual evaluation artefact B (notebook) 

User interaction 

Upload a dataset   I like it 

Why? It is relatively easy 

Create a subset   I like it 

Why? It is easy 

Workflow  I am indifferent  

Why? Steps were easy 

Workflow expla-

nation 

 I am indifferent  

Why? The code gives more information 

 

Model construction 

Progress report-

ing on model con-

struction 

 I am indifferent  

Why?  

Model construc-

tion 

  I like it 

Why? It is easy to create more models 

 

Model explanation 

Comparing re-

sults 

I did not like it   

Why?  

Explanation of 

missing data han-

dling 

I did not like it   

Why? No explanation 

Readability of 

created model 

I did not like it   

Why? Difficult to understand for me, I want to know the coeffi-

cients of the variables 

 

What would you add to the artefact if possible? 

- Being able to select other measurements for model performance 

- Calculation of: 

o AUC 

o Calibration 

o Sensitivity 

o Specificity 

o The net benefit of decision curve analysis 
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What would you remove from the artefact if possible? 

 

Comparative evaluation artefact A & B 

User interaction  

Upload a dataset Artefact A  

Why? It is easier to select 

Create a subset  Artefact B 

Why? I like to see the variables in the code sheet 

Workflow  Artefact B 

Why? Steps are easier to follow 

Workflow ex-

planation 

 Artefact B 

Why? Steps are easier to follow 

 

Model construction  

Progress report-

ing on model con-

struction 

 Artefact B 

Why? It gives you more information 

Model construc-

tion 

 Artefact B 

Why? It feels like more info is given 

 

Model explanation  

Comparing re-

sults 

 Artefact B 

Why? I have to make a choice, but I’m indifferent 

Explanation of 

missing data han-

dling 

 Artefact B 

Why? I am indifferent. I miss insight into missing data in both mod-

els 

Readability of 

created model 

 Artefact B 

Why? You can see more specifics of the created model 

Accuracy is a 

good measure of 

model perfor-

mance 

I disagree  

I want to know 

statistical power 

 I agree 

I want to know 

variable im-

portance 

 I agree 
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Discuss use-cases in which researcher-physicians think AutoML could contribute to 

their research.  

 

Would you use AutoML in your research?  

Yes, if it would provide more statistics for prediction models. 

If they do not want to use it, what would be needed to have them start using it? 

 

I would like a good tutorial on what machine learning or automated machine learning 

really does. 

 

Remark: People should be wary about what they do with machine learning models in 

medical practice. Soon there, you will need a certificate to prove the robustness of your 

model (CE certificate). 

Interviewee 2 

Interact with the artefact and start model creation (takes 15 minutes) 

- During model creation, evaluate sections of user interaction and model con-

struction 

- After model creation, evaluate the model explanation 

 

Individual evaluation artefact A (web-application) 

User interaction 

Upload a dataset   I like it 

Why? The process is good and intuitive 

Create a subset   I like it 

Why? It is intuitive to me 

Workflow   I like it 

Why? It is clean  

Workflow expla-

nation 

  I like it 

Why? There is not too much information. 

 

Model construction 

Progress reporting 

on model construc-

tion 

I did not like it   

Why? I want to see a timer or progress bar. I have to know if I can 

get a cup of coffee 

Model construc-

tion 

 I am indifferent  

Why? The usability is high, but my stomach gives me an uncom-

fortable (unheimlich) feeling. 

 

Model explanation 

Comparing results I did not like it   
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Why? It does not show an answer to my question. I do not consider 

this a model.  

Explanation of 

missing data han-

dling 

I did not like it   

Why? With the model overview, it is a bit late; I’d rather have it 

during the model creation phase. 

Readability of cre-

ated model 

I did not like it   

Why? I cannot read or interpret this. 

 

What would you add to the artefact if possible? 

- More flexibility in uploading of the format of a dataset (also accept; as a sep-

arator for CSV files.) 

- Feedback if an operation (uploading or subset creation) is successful.  

- Numbers at the buttons in the top bar 

- Links in the steps 

- A bigger field for the variable selection 

- The assumption that your just created model is your default 

- Being led through the process instead of returning to the home page each time 

- Showing subset variables in the results overview and see what has happened 

to their importance. 

 

What would you remove from the artefact if possible? 

- Model used text, because it does not tell me anything 

 

Individual evaluation artefact B (notebook) 

User interaction 

Upload a dataset   I like it 

Why? It was doable for me 

Create a subset  I am indifferent  

Why? It was okay, but not intuitive 

Workflow  I am indifferent  

Why? The idea appeals to me, but it has to be clearer when I 

have to do something, or not 

Workflow expla-

nation 

 I am indifferent  

Why? The text can be clearer in what every step does 

 

Model construction 

Progress reporting 

on model construc-

tion 

  I like it 

Why? I liked the percentage and progress bar 
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Model construc-

tion 

  I like it 

Why? Although it is a black box, it is user-friendly and gives me a 

sense of control 

 

Model explanation 

Comparing results I did not like it   

Why? It is hard to find out what the role of a variable is. 

Explanation of 

missing data han-

dling 

I did not like it   

Why? This is redundant, no missing data is accepted during the 

recoding process 

Readability of cre-

ated model 

I did not like it   

Why? It does not answer my question. 

 

What would you add to the artefact if possible? 

- Make the text more foolproof, tell me where I can edit something and where 

not 

- Use a green bar upon completion 

- Let me input my own time constraint options 

- I want more information and choice on the type of output, as well as the 

choices that are made on the in or exclusion of variables 

- Fold the code blocks that you don’t have to edit 

- Use more colours and highlights in the text and code that I can or have to edit. 

 

What would you remove from the artefact if possible? 

 

Comparative evaluation artefact A & B 

User interaction  

Upload a dataset Artefact A  

Why? It is less typing and hassle for me 

Create a subset Artefact A  

Why? Less typing, no issues with comma’s etc 

Workflow Artefact A  

Why? Usability is better 

Workflow expla-

nation 

 Artefact B 

Why? It gives me a better understanding of what is happening 

 

Model construction  

Progress report-

ing on model con-

struction 

 Artefact B 
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Why? The progress bar is a unique selling point 

Model construc-

tion 

 Artefact B 

Why? I feel more engaged in the process of model construction 

 

Model explanation  

Comparing re-

sults 

Artefact A  

Why? There is a better overview of what happened 

Explanation of 

missing data han-

dling 

 Artefact B 

Why? The place in the process is better 

Readability of 

created model 

Artefact A  

Why? Just the layout. I still consider the model unreadable 

Accuracy is a 

good measure of 

model performance 

I disagree, I want to know 

more statistical properties, 

sensitivity, AUROC, speci-

ficity and more 

 

I want to know 

statistical power 

 I agree I want to know 

margins and confidence in-

tervals in a results page 

I want to know 

variable importance 

 I agree, to make this usa-

ble I need to know which 

variable has influence 

 

Discuss use-cases in which researcher-physicians think AutoML could contribute to 

their research.  

 

Would you use AutoML in your research? No, not at this point in time. I cannot see 

what the relative importance of a variable is. In my opinion, that is the key to adoption. 

Give a user more insight into the process of variable selection. I do believe in the power 

of machine learning. 

 

If they do not want to use it, what would be needed to have them start using it? 

 

Remark: 

It is very nice how you mimicked the difference in the two artefacts between R and 

SPSS in your artefacts 

Interviewee 3 

Evaluation artefact A 

User interaction 

Upload a dataset  I am indifferent  
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Why? It worked as I expected 

Create a subset I did not like it   

Why? There was no clear overview. I want to see what happens 

and to see my variables 

Workflow I did not like it   

Why? To me, there is no difference in creating a model or a subset. 

So this seemed to be a redundant and unnatural step for me 

Workflow expla-

nation 

 I am indifferent  

Why? It was not intuitive, but I also do not dislike it.  

 

Model construction 

Progress reporting on 

model construction 

I did not like it   

Why? I want to see the progress and see what is happening ‘under 

the hood.’ 

Model construction I did not like it   

Why? I missed an overview and control of what was happening 

 

Model explanation 

Comparing results I did not like it   

Why? In my opinion, there is no result, as there is no model. At 

least not what I consider a model. I cannot see which varia-

ble had which influence.  

Explanation of 

missing data handling 

I did not like it   

Why? It is the wrong way of going about data imputation. I should 

be able to choose what happens with rows containing miss-

ing values. 

Readability of cre-

ated model 

I did not like it   

Why? Again, this is not a model, in my opinion. Nor was it reada-

ble 

 

What would you add to the artefact if possible? 

- I would like to have a more transparent process. I want to see the steps in one 

big overview. 

 

What would you remove from the artefact if possible? 

- The distinction between the subset and a model that is one thing, in my opinion.  

 

Evaluation artefact B 

User interaction 

Upload a dataset  I am indifferent   

Why? There is a learning curve to it, but it works fine. 

Create a subset   I like it 
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Why? I enjoy the typing, feels like I am in control.  

Workflow  I am indifferent  

Why? I do not understand all the code. But being able to see the 

code makes it feel like I’m more in control  

Workflow expla-

nation 

I did not like it   

Why? I need more explanation to understand everything that is 

happening in the code 

 

Model construction 

Progress reporting 

on model construc-

tion 

  I like it 

Why? I like the progress bar 

Model construc-

tion 

  I like it 

Why? I feel in control, and I have an overview of what has hap-

pened in the first step 

 

Model explanation 

Comparing results I did not like it   

Why? These are not results to me 

Explanation of 

missing data han-

dling 

I did not like it   

Why? I think you should get a choice for handling missing data. 

Median imputation is not the way to do it. 

Readability of cre-

ated model 

I did not like it   

Why? It is not a model, and I do not see variable importance 

 

What would you add to the artefact if possible? 

- More explanation of the code 

- A better, result. In other words a model instead of some text that does not tell 

me anything 

 

What would you remove from the artefact if possible? 

- The text in the blocks could be replaced by help boxes that pop up to explain to 

you what is happening instead of the text 

 

 

Comparative evaluation artefact A & B 

User interaction  

Upload a dataset Artefact A  

Why? It is like it works in all other places as well 
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Create a subset  Artefact B 

Why? I have more control over what is happening and which vari-

ables are kept in a subset 

Workflow  Artefact B 

Why? Everything that happens is visible and listed in one screen 

Workflow expla-

nation 

 Artefact B 

Why? It explains it better in my opinion 

 

Model construction  

Progress report-

ing on model con-

struction 

 Artefact B 

Why? Because of the progress bar and the fact that it is one doc-

ument, hence I can see what is happening and how far I am 

in the process 

Model construc-

tion 

 Artefact B 

Why? I have a better overview, and I feel more in control 

 

Model explanation  

Comparing re-

sults 

Artefact A  

Why? The columns make it more comprehensible 

Explanation of 

missing data han-

dling 

 Artefact B 

Why? I missed in in artefact A 

Readability of 

created model 

Artefact A  

Why? The tabular overview gives me a better overview 

Accuracy is a 

good measure of 

model performance 

 I agree if there is an actual 

model being created.  

I want to know 

statistical power 

 I agree, as I want to know 

more: AUROC, R2, preci-

sion, sensitivity, recall etc. 

I want to know 

variable importance 

 I agree that is what a 

model is all about in my 

opinion 

 

Discuss use-cases in which researcher-physicians think AutoML could contribute to 

their research.  

 

Would you use AutoML in your research? 



117 

NO, it would not be useful at all. It does not provide me with any insights. I need a 

model as an outcome which shows variable importance and a rationale in why variables 

are selected or dropped from a model.  

 

If they do not want to use it, what would be needed to have them start using it? 

Explainability of the inner workings of the AutoML method and its created pipeline 

Interviewee 4 

Interact with the artefact and start model creation (takes 15 minutes) 

- During model creation, evaluate sections of user interaction and model con-

struction 

- After model creation, evaluate the model explanation 

 

Individual evaluation artefact A (web app) 

User interaction 

Upload a dataset   I like it 

Why? It is very easy 

Create a subset   I like it 

Why? It is very easy 

Workflow   I like it 

Why? It goes very smooth 

Workflow expla-

nation 

  I like it 

Why? Everything works as it should be. “speaks for itself.” 

 

Model construction 

Progress reporting 

on model construc-

tion 

 I am indifferent  

Why? Some countdown or progress bar would be nice; I want to 

know if I can get coffee 

Model construc-

tion 

  I like it 

Why? It works well, depending on the outcome 

 

Model explanation 

Comparing results I did not like it   

Why? I do not see what all variables do and/or contribute to the 

solution 

Explanation of 

missing data han-

dling 

 I am indifferent  

Why? It does not grab attention; I was looking for it due to the 

evaluation of the other artefact 
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Readability of cre-

ated model 

I did not like it   

Why? I don’t understand what it does and says. I’d rather have var-

iables and their importance. This gives me an insight into 

their score 

What would you add to the artefact if possible? 

- I want to see what has happened. I want to see more traceability and want to 

find out what I have done before. Traceback my own steps 

- I want to see the variable importance as part of the result 

- I want to see why variables are important, building on the case above. 

- I want to see the covariance between the variables. 

 

What would you remove from the artefact if possible? 

 

Individual evaluation artefact B (notebook) 

User interaction 

Upload a dataset   I like it 

Why? I see what I do, and I like that 

Create a subset   I like it 

Why? I see what I do; I like that 

Workflow I did not like it   

Why? It is unclear if there is a result after running a code block 

Workflow expla-

nation 

 I am indifferent  

Why? It should be more clear if I have to do something or not; I 

do not understand what is happening and what choices I 

have intuitively 

 

Model construction 

Progress reporting 

on model construc-

tion 

 I am indifferent  

Why? I want to see the remaining time. Can I get coffee or not? 

Model construc-

tion 

  I like it 

Why? It gives me the feeling of being in control. I can seem to 

understand what is happening. 

 

Model explanation 

Comparing results I did not like it   

Why? I miss parts, such as a confidence interval. That is the stuff 

I want to know 

Explanation of 

missing data han-

dling 

I did not like it   

Why? I want to have more explanation per line of code 
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Readability of cre-

ated model 

I did not like it   

Why? I am only interested in the variables. The other stuff is un-

necessary in my opinion 

 

What would you add to the artefact if possible? 

- A completed message after code blocks have ran 

- A guide on what happens if I break something or remove something that I 

should not remove 

- The confidence interval for all variables 

- More comments in the code instead of the text around it 

- Highlights on the pieces that I am allowed to change as a user. 

 

What would you remove from the artefact if possible? 

- The created ‘model.’  

 

Comparative evaluation artefact A & B 

User interaction  

Upload a dataset Artefact A  

Why? It is super intuitive; it is click, click done! 

Create a subset Artefact A  

Why? It is super intuitive. It is click, click done! 

Workflow  Artefact B 

Why? I feel more in control; I can see better what is happening 

behind the scenes. 

Workflow expla-

nation 

Artefact A  

Why? There is less text, and the workflow is more clear.  

 

Model construction  

Progress report-

ing on model con-

struction 

Artefact A  

Why? The message is clearer than the progress bar 

Model construc-

tion 

 Artefact B 

Why? I can see better what is happening 

 

Model explanation  

Comparing re-

sults 

Artefact A  

Why? The overview is more clear 

Explanation of 

missing data han-

dling 

Artefact A  
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Why? But here I’m biased because I paid attention to it after first 

evaluating artefact B and your question about it. 

Readability of 

created model 

Artefact A  

Why? It is more readable, but still not enough for me to use it. 

Accuracy is a 

good measure of 

model performance 

 I agree it helps me to find 

out what to remove or retain 

in a model 

I want to know 

statistical power 

 I agree I want to know at 

least the power and the con-

fidence interval of models 

I want to know 

variable importance 

 I agree this is what I care 

about most.  

 

Discuss use-cases in which researcher-physicians think AutoML could contribute to 

their research.  

 

Would you use AutoML in your research? 

No, I cannot use this to build a model and compare the variable power of different 

variables in the different models that I create. It is hard to compare, and there is no why 

explanation.  

 

If they do not want to use it, what would be needed to have them start using it? 

 

Overall evaluation: 

 

My perfect artefact would be a combination of both artefacts that I have just seen. 

For the basic stuff, I don’t want to use code and clicking is just perfect. For the harder 

part, in which we create models, I prefer to see what is happening. Hence I’d like a 

hybrid version of these two approaches. 

Interviewee 5 

 

Individual evaluation artefact A (web-application) 

User interaction 

Upload a dataset   I like it 

Why? I want to know which format it has to be. You should add that 

the format needs to be in .csv 

Create a subset   I like it 

Why? You could do something on the layout and on the explanation 

of what a target variable is etc 

Workflow   I like it 

Why? I liked it, but sometimes it was a lot of switching between 

screens.  
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Workflow explana-

tion 

I did not like it   

Why? A lot of information was missing in my opinion 

 

Model construction 

Progress reporting 

on model construc-

tion 

 I am indifferent  

Why? I would like to see a progress bar or a start time, so I know 

when my 15 minutes are over 

Model construction   I like it 

Why? For exploration purposes, it seems useful 

 

Model explanation 

Comparing results   I like it 

Why? I miss the contribution of each variable to the model 

Explanation of 

missing data han-

dling 

I did not like it   

Why? The letter size is too small. Furthermore, I want an extra ex-

planation on what the consequences are for missing data han-

dling 

Readability of cre-

ated model 

I did not like it   

Why? The letter size is too small, and I do not know what everything 

means. 

   

   

   

 

What would you add to the artefact if possible? 

- Larger letters to improve readability 

- More explanations on where the buttons are, it is not very self-guiding 

- Change target for class variable 

- More explanations 

- An explanation of what I can and cannot do when the artefact is working on 

something.  

- An explanation on the model construction (evolutionary algorithms) at the re-

sults page 

 

What would you remove from the artefact if possible? 

- The restriction on logistic regression 

 

 

Individual evaluation artefact B 
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User interaction 

Upload a dataset  I am indifferent  

Why? I miss some explanation 

Create a subset   I like it 

Why? It is clear. I like the example 

Workflow  I am indifferent  

Why? Different letter sizes between code and text would help me 

a lot.  

Workflow expla-

nation 

 I am indifferent  

Why? Maybe you could be clearer on when I have to edit code and 

when not.  

Another option could be to collapse the code blocks that I 

don’t have to edit. Showing the code does not have value to 

me. 

 

Model construction 

Progress reporting 

on model construc-

tion 

  I like it 

Why? I liked the progress bar 

Model construc-

tion 

  I like it 

Why? It is more clear what is happening ‘under the hood.’ 

 

Model explanation 

Comparing results   I like it 

Why? It is a bit hard to read, but it’s clear 

Explanation of 

missing data han-

dling 

  I like it 

Why? I came across it very consciously 

Readability of cre-

ated model 

I did not like 

it 

  

Why? It's just hard to read 

 

What would you add to the artefact if possible? 

- A clearer explanation of how to run the artefacts 

- Which code block I have to do something and which I did not 

- Be more clear what the demonstrated output is 

- Larger letter size 

 

What would you remove from the artefact if possible? 

 

 

Comparative evaluation artefact A & B 
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User interaction  

Upload a dataset  Artefact B 

Why? It gets me to think more about my data 

Create a subset  Artefact B 

Why? It provides me with more insights into what I am doing 

Workflow  Artefact B 

Why? This is more step-by-step 

Workflow expla-

nation 

 Artefact B 

Why? The code makes the explanations more clear to me 

 

Model construction  

Progress report-

ing on model con-

struction 

 Artefact B 

Why? The progress bar helps me a lot to see that something is actu-

ally happening 

Model construc-

tion 

 Artefact B 

Why? The visibility of the process is more clear 

 

Model explanation  

Comparing re-

sults 

Artefact A  

Why? The difference in model performance is easier to see at 

once 

Explanation of 

missing data han-

dling 

 Artefact B 

Why? Better integrated into the process 

Readability of 

created model 

 Artefact B 

Why? The layout is more clear 

Accuracy is a good 

measure of model 

performance 

 I agree for explorative 

purposes. For other pur-

poses, I’d like to know other 

statistics. 

I want to know sta-

tistical power 

 I agree, to go beyond ex-

ploration with AutoML. 

Confidence intervals or ef-

fect sizes would be very nice 

to have 

I want to know vari-

able importance 

 I agree, what would be per-

fect if I could get a matrix 

with variable combinations 
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that bring the best perfor-

mance. 

 

Discuss use-cases in which researcher-physicians think AutoML could contribute to 

their research.  

- At this moment in time, with this stage of development. It would be only useful 

for explorative research and guidance in which model to pick. It could help 

broaden my vision from only logistic regression models to the usage of other 

models 

 

Would you use AutoML in your research? 

- Yes, for explorative research. To use it in publications, it needs to be more ma-

ture in what the end-user wants to see. Variables, statistical properties of the 

created model 

Overview of artefact evaluations 

These tables summarize the evaluations of the artefacts. First, we present numerical 

evaluations, later we demonstrate the textual evaluations of the artefacts. The values 

are: 

1 = I dislike it 

2 = I am indifferent 

3 = I like it 

Artefact A S1 S2 S3 S4 S5 Average 

User interaction       

Upload dataset 3 3 2 3 3 2,8 

Create subset 3 3 1 3 3 2,6 

Workflow 2 3 1 3 3 2,4 

Workflow explanation 1 3 2 3 1 2 

Model construction       

Progress 1 1 1 2 2 1,4 

Model construction 2 2 1 3 3 2,2 

Model explanation       

Compare results 2 1 1 1 3 1,6 

Explanation missing data 2 1 1 2 1 1,4 

Readability 1 1 1 1 1 1 

 

Artefact B S1 S2 S3 S4 S5 Average 

User interaction       

Upload dataset 3 3 2 3 2 2,6 

Create subset 3 2 3 3 3 2,8 
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Workflow 2 2 2 1 2 1,8 

Workflow explanation 2 2 1 2 2 1,8 

Model construction       

Progress 2 3 3 2 3 2,6 

Model construction 3 3 3 3 3 3 

Model explanation       

Compare results 1 1 1 1 3 1,4 

Explanation missing data 1 1 1 1 3 1,4 

Readability 1 1 1 1 1 1 

 

Artefact A S1 S2 S3 S4 S5 Majority 

User interaction       

Upload dataset Like Like 

Indif-

ferent Like Like Like 

Create subset Like Like Dislike Like Like Like 

Workflow 

Indif-

ferent Like Dislike Like Like Like 

Workflow  

explanation Dislike Like 

Indif-

ferent Like Dislike Dislike 

Model construction       

Progress Dislike Dislike Dislike 

Indif-

ferent 

Indif-

ferent Dislike 

Model construction 

Indif-

ferent 

Indif-

ferent Dislike Like Like 

Indif-

ferent 

Model explanation       

Compare results 

Indif-

ferent Dislike Dislike Dislike Like Dislike 

Explanation miss-

ing data 

Indif-

ferent Dislike Dislike 

Indif-

ferent Dislike Dislike 

Readability Dislike Dislike Dislike Dislike Dislike Dislike 

 

Artefact B S1 S2 S3 S4 S5 Majority 

User interaction       

Upload dataset Like Like 

Indiffer-

ent Like 

Indiffer-

ent Like 

Create a subset Like 

Indiffer-

ent Like Like Like Like 

Workflow 

Indiffer-

ent 

Indiffer-

ent 

Indiffer-

ent Dislike 

Indiffer-

ent 

Indiffer-

ent 
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Workflow explana-

tion 

Indiffer-

ent 

Indiffer-

ent Dislike 

Indiffer-

ent 

Indiffer-

ent 

Indiffer-

ent 

Model construction       

Progress 

Indiffer-

ent Like Like 

Indiffer-

ent Like Like 

Model construction Like Like Like Like Like Like 

Model explanation       

Compare results Dislike Dislike Dislike Dislike Like Dislike 

Explanation missing 

data Dislike Dislike Dislike Dislike Like Dislike 

Readability Dislike Dislike Dislike Dislike Dislike Dislike 
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11.9 Appendix 9: Publication and blog for ICT& Health 

This appendix features a two-page publication in Dutch in the magazine ICT&Health 

as well as a blog that was published on their website. 

Publication 

[chapeau] 

Artsen willen inzicht in black box 

[kop] 

Onvoldoende transparantie struikelblok voor Automated Machine Learning 

 

[intro] 

In de gezondheidszorg is nog veel terrein te winnen op het gebied van gebruik en 

slim verwerken van data. Automated Machine Learning (AutoML) zou hieraan kunnen 

bijdragen door artsen en andere zorgprofessionals in staat te stellen met hun eigen data 

aan de slag te gaan. Technieken die waarde uit data halen, zijn via AutoML toegankelijk 

te maken voor een groter publiek. Deze self-service data-science kan datagedreven ont-

dekkingen en ontwikkelingen in de medische wereld versnellen. Een veelbelovende 

ontwikkeling, maar om het vertrouwen van artsen voor deze technologie te winnen, 

blijkt meer transparantie van de onderliggende algoritmiek nodig. 

 

[platte tekst] 

AutoML is te vergelijken met een zelfrijdende auto. Om gebruik te kunnen maken 

van Machine Learning heb je een opleiding plus kennis en kunde van de techniek nodig. 

Certificaten van cursussen over Machine Learning zijn te vergelijken met een rijbewijs 

voor een normale auto. Je hebt een rijbewijs nodig om zelfstandig in een auto te mogen 

stappen, als bewijs van jouw kennis, kunde en ervaring over het besturen van een auto.  

Bij het instappen van een zelfrijdende auto hoeft dit niet, net als dat je geen rijbewijs 

nodig hebt om AutoML te gebruiken. Wanneer je in een zelfrijdende auto stapt, geef je 

deze jouw bestemming op en eventueel het type route, dat je wilt rijden: een route met 

mooie uitzichten of de snelste. Met AutoML verloopt dit bijna hetzelfde. Het enige dat 

je extra moet leveren, is de kaart (dataset). Verder geef je aan van welke variabele je de 

waardes wilt voorspellen (adres) en op welke manier de voorspelling geoptimaliseerd 

moet worden (type route).  

 

[tk] 

Zelfrijdende functies 

Door de zelfrijdende functies is AutoML heel interessant voor de zorg. Op basis van 

de gegeven dataset, het doel en type route kiest de AutoML-methode zelf welk van de 

beschikbare algoritmes het beste resultaat oplevert voor jouw dataset en jouw doel. 

Daarnaast wordt het gekozen algoritme ook gefinetuned voor de optimale performance, 

en dat alles zonder menselijke tussenkomst.  

Vanuit technisch oogpunt lijkt AutoML een perfecte basis om self-service data-sci-

ence mee op te zetten. Zonder tussenkomst van een expert kan een arts zelf aan de slag 

met zijn eigen data om nieuwe inzichten te verkrijgen.  
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Deze belofte enthousiasmeerde een aantal arts(-onderzoekers) om mee te doen aan 

het afstudeeronderzoek ‘AutoML  voor self-service data-science in de gezondheids-

zorg’, dat in de periode maart-september 2019 is uitgevoerd in drie topklinische zie-

kenhuizen met vijf arts-onderzoekers. 

 

[tk] 

Alleen regressiemethoden 

Uit interviews met de deelnemende artsen kwamen de eisen naar voren, die zij stel-

len aan AutoML. Zo zijn ze voor onderzoek en nieuwe ontdekkingen niet geïnteres-

seerd in het gebruik van meerdere types algoritmen. In medisch onderzoek wordt vrij-

wel alleen gebruik gemaakt van regressiemethoden. AutoML heeft echter meer in zijn 

mars dan alleen regressie. De eerste stap is de keuze voor het type algoritme: regressie 

of een ander soort algoritme.  

Als reden voor het gebruik van uitsluitend regressie noemden de deelnemende artsen 

dat ze willen kunnen uitleggen waarom bepaalde keuzes gemaakt worden. Waarom 

welke variabelen de meeste invloed hebben op een voorspelling, is voor hen interes-

santer dan het verbeteren van een score voor medisch onderzoek. De variabelen en hun 

gewicht kunnen gebruikt worden in het zorgproces.  

Naast de uitleg van het resultaat vroegen de artsen ook naar het proces van het sa-

menstellen van het model. Ze willen graag weten waarom een methode juist voor dit 

algoritme en deze variabelen had gekozen.  

De deelnemende artsen stelden dat een black box-methode zonder uitleg niet ge-

bruikt gaat worden. Ze willen precies weten hoe de vork in de steel zit. De boodschap 

voor de onderzoeker was dan ook:  faciliteer het gebruik van regressies en andere trans-

parante algoritmen voor onderzoek om transparantie in zowel het proces als de uitkomst 

van het onderzoek te ondersteunen. 

 

[tk] 

Transparantie ontbreekt 

Omdat AutoML-methoden alleen te gebruiken zijn tijdens het programmeren in Py-

thon, moest hier nog een ‘laagje’ overheen ontwikkeld worden, zodat de artsen niet 

hoeven te programmeren. Tijdens het creëren van dit laagje bleek dat het belangrijkste 

onderdeel, de transparantie, niet geleverd werd door de AutoML-methoden.  

Waar je bij een zelfrijdende auto instapt en het landschap langs je ziet gaan, was dat 

hier niet het geval. Je voert een kaart, adres en type route in en na een tijdje rekenen 

zonder updates krijg je het resultaat. Je kunt niet meekijken tijdens het proces en krijgt 

alleen de score en een technische beschrijving van het model als uitkomst. Over de 

gebruikte variabelen kom je niets te weten.  

 

Na deze ‘zelfrijdende auto’ getest te hebben met de artsen werd bevestigd dat de 

techniek, in haar huidige staat, niet de sleutel is tot self-service data-science voor artsen. 

Zij geven aan inzicht in en controle over het process te willen hebben. 

 

[tk] 

Ervaringen delen 
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Tijdens dit onderzoek naar AutoML voor de zorg is de sleutel voor self-service data-

science voor artsen nog niet gevonden. Ondanks deze uitkomst is het van belang de 

opgedane ervaring te delen. Over AutoML of Machine Learning in de gezondheidszorg 

zijn tot nu toe nagenoeg alleen positieve ervaringen gepubliceerd. Volgens de weten-

schappelijke literatuur en nieuwsartikelen leveren ze alleen maar succes en vooruitgang 

op.  

Er moet echter ook aandacht zijn voor technieken en oplossingen, die nog niet vol-

wassen genoeg zijn om te gebruiken in de praktijk. Zo kan worden voorkomen dat het 

wiel opnieuw wordt uitgevonden en een volgende student, promovendus of start-up 

AutoML in haar huidige staat gaat testen of inzetten bij andere ziekenhuizen. Hun tijd, 

geld en energie kan beter gebruikt worden om deze technologie te verbeteren, zodat 

artsen via AutoML op afzienbare termijn wel in staat worden gesteld om gemakkelijk 

met hun vragen over eigen data aan de slag te gaan. Het oprichten van een platform 

voor self-service data-science zou aan deze ontwikkeling kunnen bijdragen. 

 

[tk] 

Vooroordelen wegnemen 

Juist in de zorg is transparantie over processen erg belangrijk. Overal in de samen-

leving worden zorgen geuit over vooroordelen in algoritmen. Voor toekomstige onder-

zoekers en entrepreneurs ligt de uitdaging in het creëren van transparantie van het pro-

ces en het opbouwen van vertrouwen in de black box oplossingen. Artsen rijden immers 

ook in auto’s, zonder dat ze exact weten wat deze doen. De uitdaging is om hen achter 

het stuur te krijgen van de black box methoden om op basis van positieve ervaringen 

vertrouwen te creëren.  

 

===tekst kader/CV=== 

Richard Ooms is master student Business Informatics aan de Universiteit Utrecht, 

met een Applied Data Science profiel. Door de ziekte van zijn vader is hij gemotiveerd 

om de gezondheidszorg te verbeteren vanuit zijn eigen vakgebied. Zijn masterscriptie, 

onder supervisie van Dr. Marco Spruit, is het resultaat van een scriptiestage bij het 

Analytics & Cognitive team van Deloitte.  

===einde tekst kader/CV=== 

 

===tekst kader/CV=== 

Dr. Fenna Heyning is directeur van STZ, de vereniging van samenwerkende topkli-

nische opleidingsziekenhuizen en redactieraadlid van ICT&health. Opgeleid als inter-

nist-hematoloog heeft de rol van cultuur en gedrag bij implementatie van innovatie in 

de zorg haar grote interesse. 

===einde tekst kader/CV=== 
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Blog voor ICT & Health - https://www.icthealth.nl/blog/ 

 

Medisch-specialisten op de werkvloer over machine learning: “een black 

box methode zonder uitleg gaat niet gebruikt worden, wij willen weten hoe 

de vork in de steel zit” 

Vraagt u zich ook wel eens af wanneer Artificieel Intelligence (AI) en black-box 

algoritmen hun intrede gaan maken in uw spreekkamer? Wat zou u doen als een algo-

ritme u een behandeling of advies voor een patiënt aanraadt wat tegen uw gevoel in 

gaat? Wellicht nog interessanter, wat zou u ervan vinden om zelf met verschillende 

black-box algoritmen op uw eigen data aan de slag te gaan met een zelf rijdende auto 

voor machine learning? 

De belofte van een zelfrijdende auto voor machine learning enthousiasmeerde een 

aantal artsen en arts-onderzoekers om mee te doen aan mijn scriptieonderzoek voor 

mijn masters in business informatics. Als eerste stap ben ik artsen gaan bevragen over 

hun wensen op de werkvloer voor dit soort technieken. Na een paar interviews werd 

me een aantal dingen duidelijk over hun eisen. Ten eerste zijn de artsen voor onderzoek 

en nieuwe ontdekkingen niet geïnteresseerd in het gebruik van meerdere type algorit-

mes, in medisch onderzoek wordt vrijwel alleen gebruik gemaakt van transparante re-

gressie methoden. Een black box methode zonder uitleg gaat niet gebruikt worden, want 

artsen en onderzoekers willen weten hoe de vork in de steel zit.  

Toch denk ik dat andere methoden dan regressie ook grote meerwaarde kunnen heb-

ben voor het onderzoek van artsen. In gesprekken hierover met Fenna Heyning kwam 

naar voren dat artsen veel minder bekend zijn met andere methodes dan regressie. Van 

oudsher is men klassieke statistische methodes geleerd, maar inmiddels is er veel meer 

mogelijk. Door het gebruik van andere algoritmen dan regressie is het mogelijk om tot 

nieuwe inzichten en betere voorspellingen te komen met dezelfde data. Het per definitie 

afwijzen van alles wat geen regressie is, kost meer dan het oplevert. Andere algoritmen 

kunnen nieuwe invalshoeken en betere resultaten opleveren: het in gebruik nemen van 

een nieuw medicijn kan minder complicaties en meer succesvolle trajecten met patiën-

ten opleveren. Echter moet iemand ze wel ooit in gebruik durven te nemen. Een ander 

voordeel van het gebruik van nieuwe algoritmen is dat trials ook sneller en flexibeler 

van opzet worden, met resultaten die meer directe relevantie hebben voor de patiënt en 

diens behandelaar.  

Ondanks dat de stap onwennig zou kunnen zijn pleiten wij ervoor om adoptie van 

nieuwe algoritmen in onderzoek in de zorg te stimuleren. Zolang dit zorgvuldig ge-

beurt, kan dit veel nieuwe en relevante inzichten opleveren voor patiënt en behan-

delaar. Belangrijk hierbij is het delen als een methode of techniek niet werkt, alleen 

op die manier kunnen we van elkaars fouten leren en stappen vooruit zetten. 
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Part of an article in ‘Het Financiele dagblad’ 

 

Richard Ooms, student business informatics in Utrecht, zocht medewerking van art-

sen voor een project met 'automated machine learning'. Dat is een speciale vorm van 

kunstmatige intelligentie. De computer kiest dan zelf welke statistische methode het 

beste werkt bij bepaalde data. Artsen uit drie verschillende ziekenhuizen, aangesloten 

bij de koepel voor 'topklinische' ziekenhuizen STZ, deden mee. Ooms vroeg de artsen 

hoe AI hun werk zou kunnen verbeteren. Hun antwoord: als we zelf kunnen uitleggen 

waarom de computer een conclusie trekt. 'Ze wilden controle houden', was zijn con-

clusie. 'Voor een black box hadden ze geen belangstelling.' Bovendien waren ze al-

leen nieuwsgierig naar één statistische methode. Er was geen behoefte aan AI die zelf 

een methode kiest. 'Een enorme beperking', zegt de jonge onderzoeker. 'Hiermee kon 

de techniek niet optimaal worden benut.' Hij ging aan de slag met een data van diabe-

tici. In Nederland kon hij ze niet krijgen. Zo kwam hij onder meer uit bij de Pima, een 

indianenstam uit de Amerikaanse staat Arizona. Deze mensen stapten ooit over van 

een traditioneel dieet naar voedsel uit de Amerikaanse supermarkt, en kregen sinds-

dien schrikbarend vaak suikerziekte. Hun data is vrij beschikbaar. De artsen vroegen 

een exacte voorspelling voor het krijgen van diabetes bij allerlei factoren, zoals bloed-

druk, dikte van de huid, glucose niveau, bmi of zwangerschap. Zo ver bleek de tech-

niek nog niet te zijn. Maar het onderzoek leidde tot een conclusie die minstens zo be-

langrijk is, zegt Ooms: 'We weten nu dat artsen zich pas vertrouwd voelen met kunst-

matige intelligentie, als ze volledige controle hebben. De psychologie is even belang-

rijk als de techniek.'  
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11.10 Appendix 10: Draft of Scientific paper 

The next pages contain a draft of a scientific paper. We aim to submit this paper for the 

SIGKDD 2020 conference on the call for applied data science papers. 
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ABSTRACT 

Introduction: The healthcare industry has been lagging 

in the adoption of analytics. One of the reasons for lagging 

is the shortage of data scientists in the healthcare sector. Ad-

vancements in Machine Learning (ML) and research on its 

accessibility for non-experts sparked the research field of 

Automated Machine Learning (AutoML). Because AutoML 

is designed to make ML accessible to non-expert users, this 

research aims to find out how researcher-physicians can be 

supported in their knowledge discovery process by applying 

AutoML as part of the research field of Applied Data Sci-

ence (ADS). This is the first study, to the best of our 

knowledge, to test AutoML methods with domain experts in 

the healthcare domain. 

 

Method: The method used in this research is design sci-

ence. First, we selected TPOT as AutoML method based on 

the results of a benchmark test and requirements from re-

searcher-physicians. We integrated TPOT into two arte-

facts, a web-application and a notebook. We have evaluated 

the artefacts with the framework for evaluation in design 

science to find out which method suits researcher-physi-

cians best.                                                                                                                                                                               

 

Results: The benchmark test found that there was no Au-

toML method that consistently outperformed all other meth-

ods one-hour and four-hour budgets. However, TPOT and 

Auto-Sklearn performed best on both tests. As TPOT was 

the method that satisfied most requirements, we integrated 

TPOT into two artefacts. Both artefacts had a similar work-

flow, but different user interfaces because of a conflict in 

requirements. Artefact A, a web-application, was perceived 

better for uploading a dataset and comparing results. Arte-

fact B, a Jupiter notebook, was perceived better regarding 

the workflow and being in control of model construction. 

Thus, a hybrid artefact would be best for researcher-physi-

cians. However, both artefacts missed model explainability 

and an explanation of variable importance for the created 

model. Hence, the researcher-physicians indicated that they 

would only use AutoML for the explorative phase of their 

knowledge discovery process. 

 

Discussion: The results suggest that AutoML methods need work 

on explaining the created models and their route to model creation. 

Another issue is the stability of the (Auto)ML models; the models 

created by an evolutionary algorithm based AutoML methods are 

hard to reproduce due to their random inception. As much as 

changing the seed can change the outcome for a single patient 

KEYWORDS 

Automated Machine Learning, Applied Data Science, 

Healthcare Analytics, Benchmark test, Researcher-physi-

cians  

1 Introduction 

In the Netherlands, 10% of the GDP is spent on 

healthcare (OECD, 2019). With an ageing population, this 

spending is expected to double in 2040 [1]. With the grow-

ing burden of healthcare costs on society, it is vital to im-

prove efficiency and reduce the costs of healthcare. Im-

provements can be in the supply chain of hospitals [2], de-

velopment of personalised care plans to improve quality and 

experience of patients [3] and improve operational effi-

ciency [2]. This research aims to catalyse the adoption of 

analytics in healthcare by finding out how we can support 

the knowledge discovery process of domain experts with 

AutoML in the field of Applied Data Science (ADS) as de-

fined by Spruit and Jagesar [4, p. 1]: “The knowledge dis-

covery process in which analytical applications are de-

signed and evaluated to improve the daily practices of do-

main experts.” 

 

Although there is enormous potential in analytics, the 

healthcare sector has been slow in adopting it in their daily 

practice compared to other industries [5]. Because of the late 

adoption of analytics, the healthcare industry is lagging 

compared to other industries considering analytics. When 

asked, a medical researcher stated the following about the 

state of analytics in healthcare: “I seriously believe that we 

are in the middle ages. I look at my iPhone and think about 

everything that’s possible and yet here in the hospital, you 

still get a piece of paper with your appointment.”[6, p. 20]. 

It becomes evident that there is a lot of progress to be made 

in the application of analytics in healthcare [3], [7]. Further-

more, there is a shortage of data scientists in healthcare [8]–

[11]. This ever-growing shortage of data scientists hinders 

the adoption and development of analytics in the healthcare 

sector [12]. To improve the adoption of healthcare analytics, 

one of the focus areas in healthcare research should be mak-

ing analytics accessible to domain experts [3]. Automation 

of the knowledge discovery process can increase the adop-

tion of analytics by enabling domain experts to contribute to 
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the knowledge discovery in the field using state-of the art 

techniques. Enabling domain experts to perform analytics is 

referred to as ADS [4]. 

 

The Machine Learning (ML) community has also noticed 

the need to enable access for non-expert users to ML tech-

niques. The need to enable non-experts to use machine 

learning is one of the drivers that gave birth to the fast-paced 

research area of AutoML [13], [14]. The AutoML commu-

nity aims to automate all steps in the process of creating a 

machine learning pipeline. However, to the best of our 

knowledge, no AutoML applications were tested in real-

world situations with non-expert users in the healthcare do-

main. Hence our research question is: How can we support 

the knowledge discovery process of domain experts in 

healthcare using AutoML? CRISP-DM [15] is considered to 

be the knowledge discovery process, when referred to in this 

paper. 

 

This research aims to explore and overcome the bounda-

ries to AutoML adoption in healthcare with a method-ag-

nostic approach as it is the first study, to the best of our 

knowledge, to assess adoption of AutoML methods by do-

main experts in the healthcare domain. In the remainder of 

this paper we first discuss   

2 Overview of AutoML methods 

In this section, we summarise and categorise the AutoML 

methods that we found during a literature review. To do so 

we first define Machine Learning (ML): “A computer pro-

gram is said to learn from experience E with respect to some 

class of tasks T and performance measure P, if its perfor-

mance at tasks in T, as measured by P, improves with expe-

rience E.” [16, p. 2]  and AutoML: “AutoML attempts to 

construct machine learning programs (specified by E, T and 

P), without human assistance and within limited computa-

tional budgets”[17]. Most papers about AutoML describe 

the construction of a ML pipeline. This pipeline is an anal-

ogy for the process through which the data progresses dur-

ing data analysis. A pipeline consists of data collection, data 

pre-procession, and analytical processing. 

 

In our literature review we only consider the newest ver-

sions of the methods and only include non-commercial Au-

toML methods. First, we compare two AutoML methods 

that are developed for the healthcare domain. Second, we 

discuss methods with a fixed pipeline length. Third, we dis-

cuss the AutoML methods that build neural nets. Fourth, we 

discuss evolutionary methods. Fifth, we discuss distributed 

methods. Finally, we provide a detailed overview of the Au-

toML methods discussed in this section.  

2.1 Healthcare 

FLASH [18] and AutoPrognosis [19] have both been de-

veloped for healthcare or with funds for healthcare, but with 

different incentives. FLASH was developed to improve the 

efficiency of creating and evaluating pipelines. AutoProg-

nosis is developed with the practitioner in mind. FLASH is 

a black-box tool, as most AutoML tools are. In contrast, Au-

toPrognosis is the only AutoML method that contains an ex-

plainer to justify its recommendations to a clinician. 

We cannot compare the performances of both methods, 

as there is no benchmark test available featuring both meth-

ods at the time of writing. FLASH tested its performance on 

a medical dataset with the binary classification task of pre-

dicting drug non-responders. In this case, it outperformed 

other methods based on TPE and SMAC using error rate as 

the performance metric [18]. AutoPrognosis outperformed 

Auto-WEKA, Auto-Sklearn, and TPOT on multiple datasets 

in its own comparison with other methods [19].  

2.2 Fixed pipelines 

Auto-WEKA [20], Hyperopt-Sklearn [21], Auto-Sklearn 

[22], PoSH Auto-Sklearn [23], and ML-Plan [24] are all 

methods that have a fixed pipeline length. PoSH Auto-

Sklearn outperforms all other methods as it is the winner of 

the latest AutoML competition at the time of writing [14, 

Ch. 10]. Auto-WEKA, Hyperopt-Sklearn, and Auto-Sklearn 

were the first three methods that were developed to tackle 

the CASH problem. What is interesting to see is that Auto-

Sklearn has served as a basis for multiple other AutoML 

systems, whereas the other two methods have not. We as-

sume that this is due to the warm-start procedure that is built 

into Auto-Sklearn.  
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2.3 Neural Networks 

The first version of AutoNet [25] was the first to auto-

mate the configuration of a Neural Network. It laid the 

groundwork for its successor and the inception of Al-

phaD3M [26] and Auto-Keras [27]. Besides laying the 

groundwork for these applications, it incentivised the incep-

tion of a lot of commercial applications. Most commercial 

applications that automatically tune Neural Networks are in-

spired by the first version of Auto-Net [14]. This is because 

Auto-Net was the first AutoML program to beat human ex-

perts in configuring a pipeline [14], [25]. 

AlphaD3M is the only AutoML method that makes use 

of reinforcement learning and is much faster than any other 

method in the field. In one case, it was 32 times faster than 

TPOT. However, AlphaD3M does not outperform other Au-

toML methods. In comparison with three other methods, its 

average rank is third, based on mean scores. As AlphaD3M 

ranks first on some datasets, it is still competitive [26]. It is 

interesting to see if reinforcement learning gets widely 

adopted as a search strategy for pipeline configuration. 

2.4 Evolutionary methods 

Evolutionary methods can create pipelines of flexible 

length. These are TPOT [28], LTPOT [29], RECIPE [30], 

and Autostacker [31]. They can do so due to their search 

strategy. The downside of evolutionary algorithms is that 

they can produce invalid pipelines and get stuck at local op-

tima. RECIPE and LTPOT have independently overcome 

these downsides. RECIPE uses grammar to overcome this 

whereas LTPOT uses a maximum evaluation time for a 

pipeline. 

2.5 Distributed methods 

Two AutoML methods can process data in a distributed 

matter: Autostacker [31] and ATM [32]. It is remarkable, 

that there are only two systems that can run in a distributed 

manner, when taking the computing cost of creating a pipe-

line in mind. Autostacker can use parallel processing as it 

proposes the best pipelines to its user. Hence it needs the 

performance scores of the pipelines. ATM is the only 

method which can run in parallel on different machines and 

is set up to be distributed and scalable. The development of 

ATM and integration with the methods described above is 

one of the most attractive developments in AutoML. An in-

centive to spur this development could be having a separate 

performance challenge for distributed AutoML methods. 

2.6 Overview of methods 

Figure 1 demonstrates the relations between AutoML 

methods discussed in this section. It makes a distinction be-

tween methods that build NNs and methods that use tradi-

tional classifiers or regressors in their pipeline. Arrows be-

tween methods point out an source relationship between 

methods. The colors of the methods indicate the search strat-

egy that is applied in a method to create a pipeline. A tabular 

overview of the discussed AutoML methods is in Table 4, 

including, the prediction tasks, a link to the code repository 

and information about the pipeline creation. 

 

 

Figure 35: Overview of AutoML methods 

3 Method 

We used the Design Science research framework [33] to 

answer the research question. To do so, we first performed 

a benchmark test using the framework of Gijsbers et al. 

(2019) on all available medical datasets from the 

OpenML100 [35] to find out if one AutoML method per-

formed best on medical tasks. We ran medical binary-clas-

sification tasks on four datasets: breast cancer [36], diabetes 

[37], Indian Liver Patient [37] and sick dataset [38]. All se-

lected AutoML methods received a time budget of one hour 

in a 10-fold cross-validation set-up to create the best pipe-

line on the given datasets. The time limit is set on one hour, 
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as longer runs do not significantly provide better results 

[34]. To baseline the performance of the AutoML methods 

in the benchmark test, we added a decision tree and a con-

stant predictor. Following Gijsbers et al. [34], we used Area 

Under the Receiver Operator Curve (AUROC) for scoring. 

All tests have been run on Amazon Web Services using 

m5.2xlarge machine9, to get constant circumstances and 

enough computing power for the AutoML methods.  

 

To understand the needs of domain experts we elicited 

requirements using semi-structured interviews. We selected 

semi-structured interviews as the best method for require-

ments elicitation for three reasons. 1) Semi-structured inter-

views are considered to be the most effective way for re-

quirements elicitation [39]; 2) It is an accepted method for 

conducting qualitative research in healthcare [40]; 3) Semi-

structured interviews have the benefits of eliciting people’s 

own views and uncovering issues or concerns that have not 

been considered beforehand by the researcher [41]. For our 

interviews, we constructed an interview protocol following 

the guidelines for interview research [42]. The sample con-

sisted of five domain experts who were active in the scien-

tific department of a regional hospital in the Netherlands. 

The interviewees have decided to participate voluntarily and 

hold different roles and medical expertise within non-aca-

demic hospitals in the Netherlands. The interviewees are ac-

tive in the research fields of cancer, orthopedy, and cardiol-

ogy and participate in medical research, either full-time or 

part-time. The sample consists of three women and two 

men. We evaluated the capabilities of the AutoML methods 

to the requirements of the domain experts. 

 

Based on the requirements we created two artefacts and 

evaluated these with the interviewees. The first artefact had 

a graphical user-interface (GUI), the second artefact had a 

code-based interface. We used artificial summative evalua-

tion as part of the framework for evaluating design science 

research [43]. We evaluated the artefacts on the user-story 

categories from the previous research question. To be able 

to evaluate the artefact properties, we used refined hypoth-

eses [44]. Half of the subject received the GUI artefact first 

and half of the subject received the code-based artefact first 

                                                           
9 32 GB memory, 8 vCPUs (Intel Xeon Platinum 8000 series Sky-

lake-SP processor with a sustained all core Turbo CPU clock 

to prevent learning bias. The sample consisted of five re-

searcher-physicians based in three different hospitals in the 

Netherlands. All interviewees had different specialities. 

3.1 Validity  

In this section, we address the “subjective” nature of the 

data collection and analysis of this research [45]. To assess 

the validity of this study, we look at three of the five aspects 

of validity for qualitative research, as proposed by Burke 

Johnson [46]. We do not discuss theoretical validity as the 

goal of design science research is on artefact creation in-

stead of theory creation. We do not aim to explain a phe-

nomenon. We also do not discuss Internal validity, as we do 

not aim to answer a question about a causal phenomenon. 

The main research question of this research is a ‘how’-ques-

tion.  

Descriptive validity 

Descriptive validity is on the factual accuracy of the ac-

count of events as reported by the researcher [46]. As a sin-

gle researcher has conducted this research, hence there is a 

bias in data collection. A researcher is subjective by nature, 

and so are his data collection and analysis [45]. Besides that, 

the relationship between the researcher and participants sig-

nificantly influences what the participants reveal to the re-

searcher [47, pp. 11–30]. To mitigate this validity threat, we 

used a framework to set up the semi-structured interviews 

and the framework for evaluation of design science to set up 

the artefact evaluation. We recorded all interactions with the 

participants, and we took part in sessions to obtain peer-

feedback on our research to increase the descriptive validity.  

Interpretive validity 

Interpretive validity is about accurately portraying the meaning 

that was attached by the participants to the objects that were stud-

ied [46]. To mitigate this threat, we have sent the elicited user-sto-

ries to the participants to obtain feedback on our findings [45]. Fur-

thermore, we used data-triangulation by tapping into other sources 

to confirm our findings. To make sure we portrayed the meaning 

of the participants well, we used low inference descriptors by quot-

ing participants in this research [46]. 

External validity 

speed of up to 3.1 GHz). OS used is Amazon Linux. 

https://aws.amazon.com/ec2/instance-types/m5/ 
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External validity is crucial if we want to generalise our 

findings to a larger part of the population [46]. Although 

generalizability is not the primary purpose of this research, 

we will touch upon the subject. As this research conducts a 

case-study, the best way to generalise its findings is to find 

the similarity in subjects, objects and issues [48]. As the 

sample size and characteristics are not valid for generaliza-

bility, the best method to generalise our findings is to iden-

tify similarity in other situations.  

Characteristics that make the sample inapplicable for 

generalisation to medical professionals are the limited set of 

medical domains in which the participants operate and the 

fact that all participants decided to participate voluntarily. 

Hence, insights derived from this study are hard to general-

ise but could be a stepping stone for future research. 

4 Benchmark test 

The benchmark test was ran using a time budget of one 

hour with a total of 160 hours of computational time. Figure 

25 contains the visualisation of results; the datasets are on 

the x-axis, the y-axis shows the AUROC score. A coloured 

dot marks the score for an AutoML method on each of the 

ten folds. A Kruskal-Wallis test indicated that there was a 

statistically significant difference in the distribution for the 

Breast (H =13.10, p <.001), Diabetes (H =31.10, p <.001), 

Liver (H =31.51, p <.001) and Sick dataset (H =28.93, p 

<.001) between the AutoML methods, see Table 5 for sta-

tistics.  

What is interesting to see in Figure 25 is that on the liver 

dataset, the decision tree and Hyperopt-Sklearn do not al-

ways outperform the constant predictor. On the diabetes da-

taset, Hyperopt-Sklearn lags behind the three other methods, 

but performs better than the constant predictor and has a 

similar performance to the decision tree. On the breast da-

taset, all AutoML methods have the maximum score in at 

least one fold. All methods perform well on the breast set, 

given their median scores and distribution. The performance 

of the decision tree indicates that it is not a hard prediction 

problem. For the results on the sick dataset, we see that 

TPOT and Auto-Sklearn outperform the other two methods 

in both consistency and score of their predictions despite the 

fact that the set has missing values. Hyperopt-Sklearn is 

again not better than the decision tree. 

 

 

Figure 36: One-hour benchmark test results 

Overall, TPOT registered the highest median score after 

running for one-hour on all sets but the Breast dataset, in 

which Auto-Sklearn registered the best performance. A 

Mann-Whitney U test indicated that Auto-Sklearn signifi-

cantly outperforms the decision tree (U =2.0, p <.001) and 

Hyperopt-Sklearn (U =17.5, p <.01) on the Breast set. TPOT 

significantly outperforms the decision tree on the datasets 

Diabetes (U =0.0, p <.001), Liver (U =8.0, p <.001) and Sick 

(U =0.0, p <.001). Furthermore, TPOT outperforms Hyper-

opt-Sklearn significantly on the datasets Diabetes (U = 2.0, 

p <.001), Liver (U =7.0, p <.001) and Sick (U =0.0, p 

<.001). Finally, Auto-WEKA is significantly outperformed 

on the Sick dataset by TPOT (U =0.0, p <.001). This is prob-

ably due to the fact that Auto-WEKA does not impute data 

for missing values. Auto-Sklearn and TPOT do impute val-

ues for missing data and have significantly better results. 

The statistics for the Mann-Whitney U test are available in 

Table 21. The table shows the p-values and U statistics for 

each method compared to the best performing method on 

each dataset. TPOT and Auto-Sklearn do not significantly 

differ in performance for any of the datasets. 
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Table 20: Statistics for Kruskal Wallis test 

 Breast Diabe-

tes 

Liver Sick 

H-sta-

tistic 

11.36 18.64 17.93 27.87 

P-

valu

e 

0.995** 0.324** 0.455** 0.386** 

** p < 0.001    

Table 21: P-values and U statistic for Mann Whitney U test 

compared to best performer 

 Breast Diabe-

tes 

Liver Sick 

 p U p U p U p U 

De-

ci-

sion 

Tree 

0.16

4** 

2.

0 

0.90

8**  

0.

0 

0.89

5** 

8.

0 

0.91

3** 

0.

0 

TPO

T 

0.23

6 

40

.0 

      

Aut

o-

WE

KA 

0.39

5 

46

.0 

0.45

5 

48

.0 

0.26

3 

40

.0 

0.91

3** 

0.

0 

Aut

o-

Skle

arn 

  0.42

5 

47

.0 

0.21

3 

39

.0 

0.5 49

.5 

Hy-

per-

opt-

Skle

arn 

0.8* 17

.5 

0.16

4** 

2.

0 

0.65

7**  

7.

0 

0.91

3**  

0.

0 

* p < 0.01     ** p < 0.001 

 

From the benchmark test we can conclude that no method 

consistently outperforms all others. However, we see that 

TPOT records the highest median scores on three of the four 

tasks in this test but this performance is not significantly bet-

ter than the performance of other methods. Auto-Sklearn 

and Auto-WEKA get similar results to TPOT, only Auto-

WEKA is outperformed on the Sick dataset. 

5 AutoML requirements evaluation 

We elicited twenty-one requirements of domain-experts 

in the form of user-stories. These user-stories are catego-

rized in four categories: User interaction, model construc-

tion, model usage and model explanation. We only consider 

the AutoML methods that participated in the benchmark test 

for comparison with user-stories. Furthermore, we only in-

clude user-stories that were mentioned by at least two par-

ticipants, leaving us with fifteen user-stories. For user-sto-

ries, we use the template of Cohen (2004): “As a 〈type of 

user〉, I want 〈goal>, [so that 〈some reason〉].”. Ex-

amples of the user-stories are: ‘As a researcher-physician, I 

want to know how a prediction mechanism works, so that I 

can trust it more easily.’ and ‘As a researcher-physician, I 

want to transfer my model into a calculation tool, so that it 

can be used in clinical practice.’. 

 

There are two user-stories in the user interaction category 

with the AutoML artefact. These are in conflict, three out of 

five domain-experts prefer to use code to do their analysis, 

so they have more control over what is happening. In con-

trast, two out of five domain-experts prefer to have a GUI, 

as small coding errors cost a lot of time to solve. “*quotes 

removed for confidentiality. 

 

For model construction there are five user-stories. Auto-

matic model configuration as well as the possibility to set a 

time budget is covered by the concept of AutoML. The re-

striction of only using logistic regression can only be satis-

fied by TPOT and Auto-WEKA. Auto-Sklearn and TPOT 

are the methods that satisfy the requirement of an explana-

tion on handling missing data. There is only one user-story 

about using the created model in practice. Using the created 

model on unseen data is supported by all assessed AutoML 

methods. 

*quotes removed for confidentiality* 

 

Almost half of the user stories are about model explana-

tion, the domain-experts are interested in what variables are 

important, what the statistical power of a model is and what 

decisions are made during model creation. Model explana-

tion was not only the category with the most user-stories, 

but also  However, none of the assessed AutoML methods 

could satisfy any of these requirements. It is possible to in-

tegrate comparison of created models and an explanation of 



Self-service Data Science in Healthcare  

 

 

regression in the artefacts. *quotes removed for confidenti-

ality* 

 

All practitioners have discussed the necessity of getting 

to use their models in practice: *quotes removed for confi-

dentiality* 

 

 

After comparing the four AutoML methods to the user 

stories, we can conclude that TPOT is the best AutoML 

method for this set of requirements. TPOT satisfies five of 

the fifteen assessed requirements compared to four out of 

fifteen by Auto-WEKA and Auto-Sklearn. What is interest-

ing to note is the inability of all AutoML methods to explain 

the created models. The need for explainability is evident: 

Model explanation is the biggest category in the user-story 

categorisation. Besides that, explaining model decisions is 

obligatory in Europe since the introduction of the General 

Data Protection Regulation Law [50, pp. 40–42]. Table 17 

contains an overview of the AutoML methods in each cate-

gory. We have not included the user-interaction category  

into the table as it contains conflicting user-stories and does 

not apply to AutoML methods, only to the artefacts. As 

TPOT performs better than Auto-Sklearn on the require-

ments we integrated TPOT in the artefacts.  

 

 

Table 22: AutoML method scores on user-story categories 

Cate-

gory/method 

Auto 

Sklearn 

Auto-

WEKA 

TPOT Hyper-

opt-

Sklearn 

User interac-

tion 

n/a n/a n/a n/a 

Model con-

struction 

3 3 4 2 

Model expla-

nation 

0 0 0 0 

Model usage 1 1 1 1 

Total 

matches 

4 4 5 3 

 

6 Artefact evaluation 

Based on the user-stories we created two artefacts to au-

tomate a part of the data preparation phase and the complete 

modelling phase of CRISP-DM [15]. The data preparation 

activities involve the possibility to in- or exclude variables, 

data imputation for missing values and the recoding of cat-

egorical variables to numerical variables, as TPOT cannot 

handle non-numerical data as input. Due to the conflict in 

user-interaction requirements, we designed two artefacts 

with the same functionalities, but a different user-interface. 

The artefacts can be used to create logistic regression mod-

els and users who do not know how to code should be able 

to use the artefacts. The artefacts contain a description of 

missing data handling, as well as the possibility to compare 

the different models. The two artefacts are a Flask web-ap-

plication (GUI artefact) to satisfy the graphical user inter-

face preference and a Jupyter notebook (code artefact) to 

satisfy the coding preference. 

 

Using the risk and efficacy strategy from the framework 

for evaluation in design science [43]. We created a set of 

refined hypotheses based on the user-story categories to 

evaluate the artefacts with the domain-experts. For the user-

interaction we tested on four elements: Uploading a dataset, 

creating a subset, the workflow of the application and the 

workflow explanation. Only for uploading a dataset the GUI 

artefact was preferred. For all other actions the code artefact 

was preferred, as the interviewees felt more in control of the 

process. The same was the case for model construction and 

the progress reporting on model construction as parts of the 

model construction category. The model explanation cate-

gory consisted of comparing of different results, explanation 

of missing data handling and readability. In this category ar-

tefact A was preferred over artefact B for all interactions ex-

cept for explanation of missing data handling. An overview 

of the preferences and categories is available in Table 23. 

 

 

 

 

 

 

 

 



 R. Ooms et al. 

 

 

 

Table 23: Artefact preferences 

Category Preference Score 

User interaction   
Upload dataset GUI 4/5 

Create a subset Code 3/5 

Workflow Code 4/5 

Workflow explanation Code 4/5 

Model construction   
Progress reporting Code 4/5 

Model construction Code 5/5 

Model explanation   
Compare results GUI 4/5 

Explanation missing data Code 4/5 

Readability GUI 4/5 

 

What we found is that a hybrid version of the two arte-

facts is preferred to interact with AutoML by the interview-

ees. To keep control over the process of creating a model 

they prefer coding: *quotes removed for confidentiality* 

For the relatively simple tasks such as uploading a set or 

comparing results, they prefer a graphical user interface: 

*quotes removed for confidentiality* 

Whereas for model construction the code-based interface 

is preferred: “Furthermore, the models produced by TPOT 

need to explain variable importance to make it usable in re-

search practice as it is considered a must-have for the adop-

tion of AutoML by domain-experts. Most interviewees do 

not consider the output of TPOT as a model: *quotes re-

moved for confidentiality* 

 

 

After the artefact evaluation, we asked the interviewees 

if they would use AutoML in their research. Two of the in-

terviewees mentioned that they would find it useful for data 

exploration and performance comparison of their models. 

Another interviewee mentioned that it believed in the power 

of (Auto)ML, but for adoption, the methods need to improve 

on explainability and transparency. The last two interview-

ees only would use AutoML in their research if the variable 

importance is part of the output of the AutoML method. 

7 Conclusion 

The main research question of this study was ‘How can 

we support healthcare professionals in their knowledge dis-

covery process by applying AutoML?’. We found that Au-

toML is currently only suitable for the data understanding 

phase of the CRISP-DM method in this first study on possi-

bilities for AutoML adoption in healthcare.   

TPOT performed best on the benchmark test along with 

Auto-Sklearn, but satisfied more requirements than Auto-

Sklearn regarding usability. Considering the interaction of 

the users with the presented artefacts, a web-application and 

a notebook, we see that the domain experts prefer a hybrid 

artefact to interact with the TPOT in this case. 

 

Although the assessed AutoML methods are capable of 

modelling and data pre-processing, they miss an explanation 

for the decisions made in the modelling process. Part of 

medical knowledge discovery is finding the cause of a med-

ical event. Because modelling decisions are not shared and 

variable importance is absent in the result, AutoML does not 

support the discovery of new knowledge. However, the do-

main-experts point out that they see the added value of au-

tomatically finding out possible scores for their datasets. 

Furthermore, they mention that AutoML can help them in 

getting an understanding of their data in the data understand-

ing phase of their knowledge discovery process. 

8 Discussion 

In this section we discuss the lessons learned during this 

research. First we discuss the suitability of AutoML meth-

ods for researcher-physicians, second we discuss biases in 

medical analytics publications towards positive outcomes. 

8.1 Suitability of AutoML methods for researcher-

physicians 

After the elicitation of requirements, we found that researcher-

physicians prefer to create logistic regression models in their re-

search. There are multiple reasons why we find that AutoML in the 

way we assessed it, is not the best way to create models for re-

searcher-physicians. First, AutoML originates from the CASH 

problem. If the algorithm type is pre-selected, AutoML can only 
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contribute to HPO. As logistic regression only has two hyperpa-

rameters [13], we question the need for using AutoML to tune 

these hyperparameters.  

Second, even if we drop the constraint of logistic regression for 

model construction, previous research found that other ML models 

do not significantly outperform logistic regression models in med-

ical studies [51]. Even when we drop the logistic regression model 

constraint, we still doubt the usability of AutoML due to the results 

of Christodoulou et al. and the inability of AutoML to explain the 

created models, although other researchers do not find the same 

results on general datasets [52], [53].  

Third, there is no explanation of variable importance by the 

tested AutoML method. As model explainability and variable im-

portance are essential requirements for researcher-physicians, this 

makes AutoML unsuitable in its current form. If the given expla-

nations are satisfactory, AutoML might be useful in research. More 

on variable importance is available in the future work section be-

low (9.2). If AutoPrognosis can deliver on its promises it can be a 

promising technology considering the user stories on model expla-

nation.  

Fourth, there is no structure in the pipelines created by TPOT; 

this can lead to very complicated pipelines in with three or four 

logistic regression models, all using each other’s results as input. 

These constructions are hard to understand for domain experts. If 

we would use grammar to represent the pipeline like in RECIPE 

[30] the grammar can help to create more understandable pipelines 

for researcher-physicians. Another option could be using fixed-

pipeline methods based on BO. Finally, we have learned that there 

is a gap in the knowledge level of ML between literature and prac-

tice for researcher-physicians. The literature on AutoML states that 

AutoML aims to aid non-expert users of ML techniques [13]. How-

ever, we find that most non-expert users in the medical domain 

have no knowledge or education in programming. Hence, the cur-

rent offering of AutoML techniques are still too technical for non-

expert users in healthcare. 

Bias in medical analytics publications 

Most publications about healthcare analytics that we have come 

across during this research, have all published a positive result. 

Vollmer et al. [54] noticed the same: there is a need to publish 

every positive result, but there are no real tests for the value of ML 

solutions in healthcare. If we add the findings of Christodoulou et 

al. [51] to the fact that ML models do not perform significantly 

better than traditional methods in medical research we find a dis-

crepancy between what is published and what is improving 

healthcare. Hence, we think that it would be helpful for the devel-

opment of accurate methods for analytics in healthcare to publish 

results that do not provide a direct benefit. In this way, funding for 

research can be either used for improving methods that do not yet 

work in healthcare or in researching different methods for solving 

the same problem. When negative results are not published, we 

fear a waste of research funding by researchers continually rein-

venting the wheel and thus stalling research and innovation in 

healthcare. 

9 Future research 

In this section we discuss three possibilities for future re-

search, first we discuss model uncertainty of AutoML cre-

ated models. Second, we discuss possible new use-cases for 

AutoML methods. Finally, we discuss interpretability as a 

direction for future research. 

9.1 AutoML model uncertainty 

One of the benefits that are proposed by AutoML is the 

reproducibility of created ML pipelines [13], [14], [20]. 

However, these authors state that the outcome of the crea-

tion of an ML pipeline with an AutoML method is depend-

ent on the time budget allocated to the AutoML method. Be-

sides that, EA based AutoML methods start with a random 

population. Thus, it is harder to reproduce the result of a sin-

gle run without explicitly setting the seed. Dusenberry et al. 

(2019) investigated model uncertainty in a medical context. 

They have found that as much as changing the seed can in-

fluence the prediction outcome for an individual patient. 

Hence, we argue that there should be more research on the 

stability of AutoML pipelines in the medical domain.  

9.2 AutoML use-cases 

In our synthesis in section Error! Reference source not 

found., we demonstrated that AutoML is applicable for tun-

ing neural networks and creating classification and regres-

sion models. In healthcare, the fields with the most signifi-

cant potential for the application of ML are image recogni-

tion and natural language processing [54]. Because re-

searcher-physicians accept black boxes in image recogni-

tion and natural language processing more than in tradi-

tional research, these ML tasks might be better suited to en-

able domain experts to work with AutoML in healthcare. 

Hence, we argue that the scope of AutoML use-cases could 

be widened to NLP and image recognition tasks if we want 

to accelerate the adoption of analytics in healthcare. 
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9.3 AutoML interpretability 

As pointed out in section 6, the explainability of ML 

models is crucial to adoption for domain-experts in 

healthcare [56]. Molnar (2019) argues that ML interpreta-

bility is crucial to the adoption of black-box algorithms in 

every sector. In healthcare, this barrier to adoption is even 

higher, as being able to explain decisions is part of the med-

ical culture and vital to patient-doctor interaction. Hence, 

AutoML methods must become more interpretable for non-

expert users. The interpretability technique should be model 

agnostic. In that way, the technique is suitable for all pipe-

lines created by the AutoML methods [58]. To improve the 

interpretability of AutoML models we propose three areas 

for further research on the interpretability of AutoML: Sur-

rogate models, Local Interpretable Model-agnostic Expla-

nations (LIME) [57] and Shapley values [59]. However, 

others argue that we should improve the trust in artificial 

intelligence in healthcare rather than improving the inter-

pretability. If the trust is high enough, the researcher-physi-

cians will start using the black boxes [60]. Most researcher-

physicians also do not precisely know how a car works. 

However, they still use cars in their daily lives.  

 

At the time of writing, AutoPrognosis [19] was not yet readily 

available. If AutoPrognosis can deliver on its promises it can be a 

promising technology considering the user stories on model expla-

nation. Although it does not provide specific values for variables, 

it does pay attention to the explanation part of a decision of the 

AutoML method. 

 

We assume that the addition of interpretability will ignite 

the adoption rate of AutoML methods in healthcare and 

other sectors to enable self-service data-science. 
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