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Abstract
We introduce a new method to create a facial an-
imation controller. We find a high-level control-
space bottom-up from data using the generative
part of a Wasserstein Generative Adversarial Net-
work (WGAN). By training a WGAN on face
tracking data from the IEMOCAP corpus, we show
that a WGAN is able to learn the behavior of the
human face. By training the WGAN on different
emotions, we show that the WGAN is successful at
learning human face movement matching the emo-
tions that it was trained on. We also analyse the be-
havior of the latent space. We found that the gen-
erator provides control over certain aspects of the
face and sometimes even relates to emotions. By
implementing sliders for the latent space variables
we were able to create a facial animation controller
using the generative part of the WGAN.
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1 Introduction
Computer animation is a popular subject and widely applied in both
film and games, but also in more piratical applications such as vir-
tual assistants. The animations of humans is a common practices
when it comes to computer animation. The difficult part about an-
imating a human is that we as humans are naturally very good at
identifying natural behavior. The animation of the faces of humans
is especially difficult as humans transfer emotional information with
their expressions. To create a good facial expression, the animator
has to be really careful to set the expression with the desired emotion
and not create an expression that is unnatural.

There are different methods when it comes to animating a hu-
man face. Some methods require the animator to set all the vertices
of a 3D-face individually. Methods such as this one are referred
to as low-level controllers. These low-level controllers allow for a
very high precision when it comes to setting an expressions. The
downside of low-level controllers is that they are very time consum-
ing and require an expert hand to make the expression look natural.
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There are also methods that supply the animator with tools that are
able to control certain aspects of the face such as the mouth and
eyebrows or sometimes even emotions. These methods are often re-
ferred to as high-level controllers. These high-level controllers can
be created in two different ways: top-down and bottom-up. When
we talk about top-down approaches, we talk about controllers that
linked a certain variable to certain aspects of the face. For exam-
ple, we can have a variable that is linked to the height of the eye-
brows. By changing the variable, we effectively raise and lower the
vertices that belong to the eyebrow. These top-down approaches
can for example use control spaces based on emotional models [2,
32] or appraisal theory [1]. The bottom-up based controllers are
created by analyzing the data and creating control variables based
on this analysis. To find this high level control space we can use
dimensionality reduction techniques such as IsoMap [3] and Local
Linear Embedding [4]. In 2010 Stoiber used Principal Component
Analysis (PCA) to derive features based on real-life data [31] to cre-
ate such a bottom-up facial animation controller. Controllers such
as this one will also give the animator control over certain aspects of
the human face. The advantage of the bottom-up approach is that the
limitations of the human face are learned from the data. This means
that the expressions created by a bottom-up approach will overall
look more natural compared to expression created by a top-down
approach.

Since 2010 the field of machine learning has developed new
methods that can possibly improve the system that Stoiber cre-
ated. For this research we will use Generative Adversarial Networks
(GANs) to create a facial animation controller bottom-up from real-
life data. GANs have already proven their capability to learn human
body behavior [27], human speech [28] and human face shapes [34].
Compared to other research around GANs this is, to the best of our
knowledge, the first time someone tries to implement a GAN as a
facial animation controller. Since GANs are commonly used for the
analyses and generation of image data, we will have to make some
changes to be able to make the GAN learn from face tracking data
and generate facial expressions.

The objective of this research is to find out if GANs can be used
as a facial animation controller. To make for a good facial animation
controller, we test different hyperparameter settings for the GAN.
The goal of this is to find an intuitive mapping between the input of
the generator and the generated expressions.

2 Related Work
In this section we first give a theoretical background on learning-
based models for human movement analysis [31]. Next, we explain
the idea of GANs and discuss their applications in the field of an-
imation. Finally, we explain the idea of WGAN and how it is an
improvement on the regular GAN.
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To be able to create a facial animation controller bottom-up from
data, we need a system that is able to learn a reduced parame-
ter space. Previous research has already shown that we can use
learning-based model to learn from human movement. In Bettinger
et al. they used a method called state-space trajectories to generate
expressive facial animations [8]. They create the state-space using
PCA and learn different trajectories through this space to generate
facial animations. They were able to generate small segments of fa-
cial animations, the results however showed unnatural movement.
Later studies showed that realistic human motion acts as a nonlin-
ear system [9]. More recent research used deep learning to analyse
human movement [10]. Deep learning is a branch of the machine
learning family where a system tries to learn data representations
using neural networks (NNs) [11]. There are many types of neural
networks and each has their own specialty. One of the most simple
variants is called the feedforward neural network or artificial neural
network. With these networks the data moves only in one direc-
tion: from the input, through the layers towards the output (last)
layer. These layers consists out of neurons. A neuron uses a set of
inputs, a set of weights and an activation function to output a sin-
gle value. A feedforward neural network can have any number of
layers between the input and output layer. These layers in-between
the input and output layers are often referred to as hidden layers.
Another type of feedforward neural network is called a multilayer
perceptron (MLP). A MLP consists out of at least three layers: in-
put, hidden and output. The network is fully connected, meaning
that each neuron of a layer is connected to each neuron of the next
layer. MLPs are often used for tasks such as speech recognition [12,
13]. It can also be used on tasks such as point cloud analysis [14,
15], which is very similar to the analysis of 3D points in space. An-
other commonly used type of NN is called convolutional neural net-
work (CNN). CNNs are often used for computer vision tasks such as
image recognition [16, 17], and face detection [18]. Another com-
monly used type of NN is called recurrent neural networks (RNNs).
These networks are mostly used to analyse sequential data which
makes them very suitable for tasks such as human action recogni-
tion [19, 20, 21], auto-complete keyframe animations [29] and pre-
dict 3D human motion [30].

Generative adversarial networks More recently, a new method
for training NNs was developed called generative adversarial net-
works (GANs) [22]. NNs are typically hard to train because they
need a lot of training data. With GANs there are two NNs that com-
pete with each other in a minimax game. One of the NNs is gener-
ating fake training data (generator) and the other is trying to guess
if the data it gets presented is real or fake (discriminator). Because
of this architecture we need less training data because we are essen-
tially generating half the training data. Another benefit of this sys-
tem is that the competitive nature of this implementation encourages
the system to learn better. Equation 1 shows this described minimax
game between the generator (G) and discriminator (D).

min
G

max
D

L(D,G) =Ex∼pr(x)[logD(x)]+

Ez∼pz(z)[log(1−D(G(z)))] (1)

When we look at the definition of the minimax game in equation
1, we see that the discriminator (D) is trying to maximize the equa-
tion, while the generator (G) is trying to minimize it. For D to be
successful, it needs to be able to tell real from fake images. In the
equation this means it should output a one for real samples (D(x))
and a zero for the fake samples (D(G(x))). This would result in a
total loss of zero, the perfect score for the discriminator. On the other
hand we have the generator that is trying to generate samples that the
discriminator thinks are real. In the equation this means we get the
log of a small value, which will result in a larger negative value. This

will effectively minimize the equation. The generator produces dif-
ferent samples based on latent space variables (z). These variables
are typically sampled from a Gaussian or uniform distribution.

The big advantage of this architecture is that it is not required
to have labeled data. Due to the recent success of GANs on im-
age generation [23, 24, 25, 26], the number of applications of GANs
is rapidly increasing. GANs have also reached the field of com-
puter animation as it has already shown its capabilities to learn
human behavior based on motion capture data [27]. They trained
the GAN on motion capture data of humans acting out different
tasks. This way the generative part of the GAN generates se-
quences motion capture data of a human doing a certain task. They
showed that GANs are able to generate more human-like motion
than regular neural networks. Other research showed that we can
train GANs to generate realistic speech driven facial animation [28,
46]. By training the GAN on both speech and video data, the GAN
is able to generate a video of someone talking. It even showed that
we can generate high quality 3D human head meshes with differ-
ent identities and expressions [34]. They trained the two different
GANs. One was trained on a collection of 3D human head meshes.
This GAN learned the identity data of the human heads, training it
to generate head meshes with different identities. The other part of
the GAN was trained to learn different expressions. They did this by
training the GAN on expression data. They acquired this expression
data by subtracting the neutral pose from the expression, leaving
the deformation vectors belonging to the expression. After the two
GANs were trained, they combined them to be able to generate head
meshes with different identities and different expressions.

Unfortunately GANs are not perfect and training them can be a
very difficult task. One of the difficulties of training a classic GAN
[22], is to find a good balance between the generator and discrimi-
nator. When, for example, the discriminator is too smart, it is able
to tell which samples are real or fake with minimal error. This will
cause the loss function to drop to zero. This means we have no gradi-
ent to update the weights of the networks (vanishing gradient). This
is just one of the problems you can encounter when training a GAN.
Since the inventions of GANs, there have been many variations to
solve this training difficulty.

Wasserstein generative adversarial network One of these vari-
ants uses the Wasserstein distance to improve the classic GAN. The
Wasserstein distance is used to measure the distance between two
probability distributions. For the Wasserstein generative adversarial
network (WGAN) [40], they used this metric to redefine equation 1.
In the case of WGAN, the Wasserstein distance would be the dis-
tance between the real data distribution and the generated data dis-
tribution. Since the original formulation of the Wasserstein distance
is highly intractable, the authors of WGAN transformed the formula
based on the Kantorovich-Rubinstein duality. The final formula is
shown in equation 2.

max
w∈W

Ex∼Pr [fw(x)]− Ez∼p(z)[fw(gθ(z))] (2)

We see that the critic (fw) is trying to maximize the Wasserstein
estimate between the real data (x ∼ Pr) and the generated fake
data (gθ(z)). We also see that the critic network is constrained by
clamping its weights (w) to a limited range (W ). This is due to
the Kantorovich-Rubinstein duality transformation of the original
Wasserstein distance formula. This transformation makes it that the
equation needs to be Lipschitz continuous. The authors of WGAN
enforced this constraint by clamping the weights of the critic to a
small range. The generator network is not constrained and produces
random samples based on latent space variables sampled randomly
from a distribution (z ∼ p(z)). Just as with the regular GAN these
variables are typically sampled from a Gaussian or uniform distri-
bution. The objective of the generator is to produce more realistic



samples and so minimizing the Wasserstein estimate.
The big difference between the WGAN and the normal GAN is

that the discriminator is not trying to differentiate between real and
fake samples anymore. Instead it is approximating a function that is
maximizing the output scalar for real data and minimizing for fake
data. The difference between these scores is then the estimation of
the Wasserstein distance between the real and fake distributions. Be-
cause of this change, the authors of WGAN also changed the name
of the discriminator to critic, as this better reflects its new role. The
great thing about the new objective of the critic is that it can not sat-
urate, but converges to a linear function. While with regular GANs
the gradient vanished as the discriminator was trained to much. In
fact, it is better to train the critic till optimality so it is able to give a
more reliable gradient of the Wasserstein distance. To make sure this
happens, the critic is trained multiple times per generator iteration.
Being able to fully train the critic also makes it is impossible to en-
counter mode collapse [40], which is a big plus considering the train-
ing stability. Besides the improved training stability, the Wasserstein
distance also provides a meaningful loss metric. As the Wasserstein
distance decreases, the generated data and real data are more similar.
This means that the loss and the quality of the generated samples
are related, which makes it easier to evaluate. Another important
thing to note is that we can compare the performance of WGANs
by looking at the Wasserstein estimate during training. When we do
this comparison it is important that the critic networks are the same.
This is necessary as the critic produces a constant scaling factor of
the Wasserstein estimate that is determined by the networks architec-
ture. When we evaluate the performance of different WGANs based
on the Wasserstein estimate, it is essential that the critic networks
are identical.

3 Methodology
In this section we will discuss how we will use GANs as a facial
animation controller. First we will discuss the data and how we pre-
processed it. Secondly we will explain how we implemented the
GAN so we can use it as a facial animation controller. Finally we
will discuss how we apply the generated expressions to a 3D mesh.
The overview of this pipeline is shown in Figure 1.

3.1 Data Preprocessing
For this research we will be using the IEMOCAP corpus [39]. This
database consists out of video, audio and motion capture data of both
the head and hands of the actor. For this research we will only be
using the motion capture data of the face, which is tracked using 55
markers which are mostly placed according the MPEG-4 standard
[38]. In total there are 10 actors performing scripted and improvised
scenes. For this research we will be using the data of a single actor:
male from session 1. We chose this actor because he showed the
most extreme facial expression. This might help the system to find
the limits of the human face better than we its trained on very subtle
expressions.

First of all, we preprocessed the data using the preprocessor cre-
ated by Oosterom et al. [33]. In the database there are frames where
some of the markers are missing. When a marker is missing, the co-
ordinates of these markers are annotated with not a number (NaN).
Since the GAN will not know how to handle non-numeric values,
linear interpolation is applied to fix these frames and fill in the miss-
ing markers. This is done by taking the previously and next known
frames (frames without missing markers) and apply linear interpo-
lation between the known markers. Another problem is that some-
times the markers are falsely tracked. This happens when the sys-
tem thinks a marker is in a certain position while it is not. These
falsely tracked markers can be found by looking at the motion of the

Emotion Frames
Anger 35159

Excitement 44733
Fear 963

Frustration 51062
Happiness 14624

Neutral 25761
Sadness 58474
Surprise 625

Table 1: Number of frames per emotion after preprocessing

markers between frames. Since the time of a single frame is rela-
tively short, it is not possible that a marker jumps a large distance.
By looking at the movement between frames we can identify these
falsely tracked markers and handle them in the same way as the NaN
values.

Since we want to create a system that learns natural face move-
ment of a human face, we want to preprocess the data to make the
system focus on this. In Cheng et al. [34] they created a system that
is able to generate highly detailed head meshes with different iden-
tities and expressions. To do this, they trained two different GANs:
one for identity and one for expressions. To make the GAN focus on
the expressions rather than the identity, they subtracted the neutral
pose from data. This way you delete the identity information and are
left with the deformations of the face and thus the expression data.
We applied the same method with the IEMOCAP data. We manu-
ally selected a neutral expression per recording. This is necessary
as the markers are reapplied or adjusted between the recordings. To
find the best neutral expression, we re-targeted the motion-capture
data to a 3D head model (FaceWare Victor). This retargeting system
uses a neutral pose and applies the deformations of the tracking data
to the model. When the correct neutral expression is applied, the
resulting animation should be similar to the video recording of the
actor. To see if this was correct, we visually evaluated the results
by putting the animation and the original video side by side [35].
After we found the neutral expressions that had the best visual re-
sult, we subtracted the selected neutral expression from each of the
recordings.

After subtracting the identity from the data, we cluster the data
based on the labeled emotion. This is done so we are able to create a
well balanced training set with an equal number of framer per emo-
tion. We only used the labeled data and left out surprise and fear
as these contained too few samples compared to the other emotions.
This left us with the following emotions: frustration, anger, sadness,
excitement, happy and neutral. The number of frames per emotion
is shown in Table 1.

The GANs are trained using different selections of emotions. The
data is normalized after the data selection by subtracting the mean
and divide by the standard deviation of the data selection. This is
done to help the GAN train faster. Finally the frames are stored as a
1D vector of size 165 (55 3D coordinates) where the coordinates are
stored in a ’xyzxyz’ order.

3.2 GAN Implementation
First we will discuss which deep learning framework we used to
create the GAN. Secondly we will discuss the GAN architecture we
used.

Deep Learning Framework
There are many different choices when it comes to picking a deep
learning framework. Since this research focuses on analyzing how



Figure 1: System Pipeline

well GANs perform as an animation controller, we will need to com-
pare different approaches. For this research we chose Keras [37]
with a TensorFlow [36] back-end. Keras has a lot of build-in func-
tionality that makes it easier and faster for the user to build a deep
learning network. This allows the user to try different architectures
without the need of excessive coding. Another reason we chose
Keras is that it is able to use different back-ends. To implement
the trained GAN in MotionBuilder, we need to be able to import
the trained GAN in the integrated scripting environment. This envi-
ronment runs on python version 2.7, which is not compatible with
TensorFlow. By switching the back-end of Keras to CNTK, which
is compatible with python 2.7, we are able to import Keras into the
integrated scripting environment of MotionBuilder. With Keras im-
ported, it is possible to load and use a trained GAN and use this as
an interactive facial animation controller.

GAN Architecture
For this research we started of with a regular GAN as proposed by
Goodfellow et al. [22]. Since we wanted to test different architec-
tures and data selections, we needed to re-balance the GAN for each
change we made by changing the hyper-parameters. Because the
training was highly unstable and finding the right hyper-parameters
very time consuming, we decided to go with an improved GAN ar-
chitecture, namely WGAN [40].

We implemented our WGAN using the recommended hyper-
parameters as mentioned in the paper. In the original WGAN paper
they tested their method on RGB images of size 64x64. In total they
had a total of 12.288 values to evaluate per sample. For this they
used a multilayer perceptron (MLP) with four hidden layers with
512 units at each layer. Since our network only needs to evaluate
165 values per sample (55 3D-coordinates), we also used a MLP but
with a simpler architecture. For both the generator and the critic we
used a MLP with a single hidden layer with 64 units at each layer.
The output layers need to be of size one for the critic and size 165
for the generator. The input and hidden layers are using leaky ReLU
activation and the output layers are using linear activation. The la-
tent space dimensionality of the generator has to be compact as we
propose to use these parameters as controllers for the facial anima-
tion controller. For example, a latent space of 100 will require the
animator to set a 100 values to acquire a certain facial expression. In
Stoiber [31] they found that, when using PCA, the error of their sys-
tem decreased when they increased the number of dimensions they
used to represent their data. They noticed that the error decreased
significantly when increasing the number of dimensions from one
to six, but would stabilize for dimensions above that. We therefore
initially set the latent space dimensionality to six. Since we want to
be able to use the generator in the form of a facial animation con-
troller, this is also a good number of control parameters to control
the face with. During training we sample the latent space vector z as
noise from a Gaussian distribution centered around zero and a stan-
dard deviation of one. The architecture for this WGAN is shown in
Figure 2. As explained in Section 2, the critic is trying to maximize
the difference between the fake and real samples. For this particu-
lar implementation it is trying to output high values for real images
and low values for fake images. These objectives of the critic are
shown in Figure 2 by the blue and red lines. The difference between

Figure 2: WGAN Architecture

these values is known as the Wasserstein estimate. The generator
on the other hand is trying to make the critic output high values for
generated images, this is shown in Figure 2 as the green line.

When we look back at Figure 1, the control space is equal to the
latent space variables of the WGAN generator. By providing the
generator with different latent space variables we can create differ-
ent expressions. The generator will output an expression in the form
of deformations to a neutral pose. These deformations are also still
normalized as we normalized our data before training the WGAN.
To regain a complete expression, we first undo the normalization by
adding the mean deformation and multiplying by the standard devi-
ation. Now we have the expression as a set of deformation vectors
per 3D point. To get to the final expression we only have to add a
neutral expression to the deformation data. This can be any of the
neutral expressions as described in Section 3.1. This will get us our
final generated expression in the form of 55 3D-points.

3.3 Animating the 3D Mesh
In order to evaluate the results of this research we visualize the data
using a 3D head model. To do this, we use the Autodesk Motion-
Builder Actor Face feature. This feature plots an expression on a 3D
head mesh based on a set of 3D markers. For this, you provide Mo-
tionBuilder with a 3D head model with predefined blendshapes and
the tracked markers in a neutral pose. Based on the movement of the
tracked markers, MotionBuilder will retarget the points to the model
and setting it to the corresponding pose. It is not possible to use all
of the 55 3D-points to drive the Actor Face feature in MotionBuilder.
Instead we assigned a subset of 3D-points to the head model. This
assignment was done by visually evaluation the resulting animation
with the ground truth data. We put the resulting animation side by
side with the video recording of the actor to see how the well the
retargeting was performing [35]. The final configuration of the 3D-
points is shown in Figure 3. The numbers inside the blue circles
indicate how many markers were used to drive that part of the face.
The arrows point to the names of the assigned 3D-points. The names
of the points were given by the creators of the IEMOCAP corpus.

The generative part of the trained GAN will output deformations
of the 55 3D-points that represent the generated expression. After
undoing the normalization and adding a neutral pose, we get the final
generated expression. It is important that this neutral pose that we
add to the deformations is the same one as is used in MotionBuilder
for the neutral pose of the head mesh. This ensures that the generated



Figure 3: Configuration of IEMOCAP markers on the Motion-
Builder Actor Face.

deformation data is retargeted to the model correctly.

4 Evaluation
In this section will we evaluate different aspects of the WGAN. We
will start off by doing experiments to improve the WGAN. We do
this by changing the hyperparameters to see if this has a positive ef-
fect on the results. In the second section we objectively evaluate the
WGAN by comparing the resulting expressions to the ground truth
data. Finally we will evaluate the results subjectively by visualizing
the results using a 3D head model and see if the found control-space
has any intuitive meaning.

4.1 Experimental Evaluation
As a first step we train the WGAN on the neutral annotated ex-
pressions only. The neutral annotated expressions contains 25761
frames and is split into a training and test set using a 80-20% split.
In Figure 4 we can see the Wasserstein estimate during training. The
blue line represents the Wasserstein estimate between the training
data and generated samples. The orange line represents the Wasser-
stein estimate between the test data and the generated samples. The
Wasserstein estimate stars off high, meaning that there is a large
Wasserstein distance between the generated data and the real data.
Over time the loss converges towards zero, meaning the Wasser-
stein distance between the two distribution decreases. The decrease
in distance between the two distributions means that the generated
samples are getting better as they closer represent the real data. We
trained the WGAN using an AMD Ryzen 1600 Six-Core Processor
clocked at 3.20 GHz. The training time of this WGAN is about 11
minutes using this processor when we train it for 50.000 generator
iterations.

To further improve and evaluate the results of the WGAN we ex-
periment with different latent space sized and critic iterations. The
following sections will describe the results of these experiments.

Overfitting
When we want to evaluate the results based on the Wasserstein dis-
tance it is important that the WGAN does not overfit. When the
WGAN overfits, the correlation between the sample quality and the
Wasserstein estimate is no longer there [41]. To see if the networks
is overfitting, we plot the Wasserstein estimate on the training and
test set. When these two estimates diverge from each other, it means
the network is overfitting. When we look at Figure 4, we see that
the Wasserstein estimate for the training and test data are converg-
ing together and that it shows no signs of overfitting. To illustrate
what overfitting would look like we trained the same WGAN using
only ten neutral expressions. This way we deliberately overfit the
WGAN. The resulting Wasserstein losses are shown in Figure 5. We

Figure 4: Wasserstein estimate during training of the base network
on neutral expressions with the recommended hyperparameters.

Figure 5: Wasserstein estimate during training. The WGAN is
trained using only 10 neutral expressions to show the resulting graph
when the WGAN is overfitting. This is shown as the Wasserstein
estimate for the training and test data are no longer converging to-
gether.

can clearly see that the train and test loss are no longer converging
together and thus the network is overfitting and not learning any-
thing meaningful. To make sure none of the changes we make cause
the WGAN to overfit, we always look at the Wasserstein estimate
for both the training and test data.

Number of Critic Iterations per Generator Iteration
When we look back at the Wasserstein estimate during training of
the original system in Figure 4, we see that the distance is not sta-
bly converging towards zero. Especially when you look at the bump
around 11000 iterations. The most logical explanation for this is
that the critic is not trained enough, resulting in a bad estimation
of the Wasserstein distance. Because of bad estimate the generator
is receiving wrong feedback from the critic. When this happens,
it will not be able to adjust its weights correctly. This will cause
the generator to generate worse samples, explaining the increase in
Wasserstein distance. As explained in Section 2, it does not matter
how much we train the critic, just that we train it enough to make for
a good estimate. When we train the critic more, the Wasserstein esti-
mate would be more precise and the feedback towards the generator
more reliable. To test this we trained the same network with an in-



creased number of critic iterations per generator iteration. We tested
this for 10, 20 and 50 critic iterations. The results of the experiments
with different critic iterations per generator iteration is shown in Fig-
ure 6. We observed a big difference between 10 (Figure 6a) and 20
(Figure 6b) as the bump almost completely disappeared. When we
train the critic 50 times per generator iteration (Figure 6c) we also
see a slight improvement compared to the 20 critic iterations. We
can conclude that the loss converges towards zero in a more stable
way as we increase the number of critic iterations per generator iter-
ation. We trained the WGAN using an AMD Ryzen 1600 Six-Core
Processor clocked at 3.20 GHz. We trained all WGANs for 50.000
iterations. When we train the critic for 10 critic iterations per gen-
erator iteration it takes about 25 minutes. When we increase this to
20 critic iterations the training time increases to about 50 minutes.
This increases to about two hours for 50 critic iterations. Since 20
iterations of the critic are enough to provide a reliable Wasserstein
estimate, we decided to use this instead of 50 to restrain the training
time of the WGAN.

Latent Space Dimensions
We initially set the Latent space dimensions to six as this was found
to be the best number of dimensions when using PCA by Stoiber.
To see if six dimensions are indeed the right choice, we trained the
WGAN using different latent space dimensions. Since it might be
possible the ideal latent space dimensionality is dependent on the
training data, we analysed the influence of different latent space di-
mensionalities per emotion as well as combinations of emotions and
all emotions combined. When trained on more than one emotion,
we make sure there is an equal amount of training data for the se-
lected emotions. To see the effect of the different latent space di-
mensions we can compare the Wasserstein estimates of the differ-
ently trained networks. We can do this because we are not changing
the architecture of the critic, only the generator. The generator archi-
tecture changes as we change its input dimensionality (latent space
dimensionality). This allows us to directly compare the quality of
the generated expressions based on the Wasserstein estimate. When
we think about the expected behavior of the latent space dimension-
ality on the Wasserstein estimate, we expect to see that an increase
in dimensionality will result in a decrease in error. This is due to
the network receiving more input and being able to generate more
exact expression and therefor better matching the ground truth data
distribution. This effect will weaken as we further increase the num-
ber of dimensions. Since our aim is to create a facial controller, we
want to minimize the number of control variables while being able
to generate a wide variety of expressions. To find this ideal point, we
calculate the 98th percentile error over the final 100 Wasserstein es-
timates of the training process. We use the 98th percentile instead of
the mean, just as they did in Stoiber, to reduce the effect of the gen-
erator noise on the results. The resulting graphs of this experiment
are shown in Figure 7. When we look at the graphs we can see that
the error for low dimensionalities is higher. As we increase the latent
space dimensionality the error decreases. We also see that the error
stabilizes for all trained emotions. The dimensionality at which this
stabilization occurs is not the same for all emotions. When we want
a WGAN that is able to generate realistic results, we need to pick a
latent space dimension large enough so the error has stabilized. We
will further evaluate the effect of the latent space dimensionality on
the resulting expressions in Section 4.3.

4.2 Objective Evaluation
To see how well this WGAN performs on the data, we start by
trained the WGAN with data from a single emotion. We do this for
all of the emotions we selected during preprocessing: neutral, happy,
excitement, frustration, anger and sadness. To see how well the gen-
erated expressions represent the actual data, we generate 1000 ran-

dom expressions by sampling the latent space from a Gaussian dis-
tribution. We then find its nearest neighbor in all data we used from
the IEMOCAP database (without the data used for training). We do
this by calculating the average Euclidean distance per point between
the generated expressions and the expressions in the database. The
one with the lowest average Euclidean distance would then be the
nearest neighbor. If this neighbor belongs to the same labeled emo-
tion, this means the generator successfully generated an expression
that matches with the training data. The results are shown in Fig-
ure 8. The emotion below a set of bars indicates the emotion on
which the WGAN was trained. The bars represent the percentage of
predicted emotional labels. We can see that the WGAN generates
samples with the same data as its trained on in most cases. When
we look at anger we see that it also scores high for frustration. This
can be explained as frustration and anger are neighboring emotion
and might show overlap when looking at the expressions [32]. The
same goes for excitement and happiness. When we look at the re-
sults of the neutral expression we see that it contains a wider variety
of expressions than the other emotions. The cause of this most likely
lies within the training data. To see if this is the case we visualized
the neutral annotated data as a video [43]. The video shows the seg-
ments of data that were labeled as neutral. In this video you can see
that the actor for example smiles while talking. This will allow the
WGAN to learn what a smile is and thus be able to generate smiles.
When we calculate the Euclidean distance from this generated smil-
ing expression to the test data, it is likely that there is a closer related
smile within the excitement or happy dataset. This explains why the
WGAN trained on neutral data also scores high for some other emo-
tions. Since the neutral data is a combination of (subtle) emotions,
we will not evaluate on this for the subjective evaluation. Instead we
will test on a combinations of the other emotions.

When we look at the last set of bars we see the results for training
the WGAN on all of the six selected emotions (including neutral).
For this test we selected an equal number of frames from each of
the emotions. We did this to ensure that the WGAN learns equally
from all emotions. The emotion with the least frames is happy with
a total of 14624 frames. Because of this we selected 14624 frames
per emotion. Because the data is sequential and recorded as a scene,
it could be that for emotions get more expressive as the scene pro-
gresses. To avoid discarding valuable data, we pick the frames ran-
domly. After we picked 14624 random frames for each emotion, we
split them in training and test data using a 80-20% split. We did
this split before we combine the emotions to ensure the training data
also contains the same number of frames for all emotions. When
we look at the results in Figure 8, we see that the WGAN generates
expressions belonging to all emotions. This is to be expected as it
was trained on this data. We also see that not all emotions are gen-
erated equally. When we look more closely, we see that the WGAN
trained on all emotions generates the following emotions from most
to least (neutral excluded): sadness, excitement, frustration, anger
and happiness. When we look at the highest scores of the WGANs
trained on individual emotions, we see that sadness scores the high-
est. Meaning the sad emotion has the highest density of sad expres-
sions in its dataset. When we look at the other emotions, we see
that the density per emotion is ordered from high to low (neutral ex-
cluded): sadness, excitement, frustration, anger and happiness. This
is the exact same order as the percentages generated expressions for
all emotions. When we randomly select data from the individual
emotions for the WGAN trained on all emotions, we only select a
percentage of the targeted emotion. This means that when we sam-
ple from sadness we will get a lot of sad expressions compared to
when we sample from happiness. This explains the differences we
see in the percentages of generated emotions for the WGAN trained
on all expressions.



(a) 10 Critic iterations (b) 20 Critic iterations (c) 50 Critic iterations

Figure 6: Wasserstein estimate with different number of critic iterations per generator iteration. All networks are trained on neutral annotated
data only which is split into a training and test set suing a 80-20% split. This figure shows that as we increase the number of critic iterations the
training becomes smoother. This can be seen in the graphs as the bump around 11000 iterations starts disappearing the more critic iterations
are used.

4.3 Subjective evaluation
Besides objective evaluation, we can also evaluate the result sub-
jectively by visualizing the generated expression. We evaluate each
of the previously trained models to see if the learned relation be-
tween the latent space variables and the resulting expressions has
some intuitive explanation. To visualize the generated expression,
we retarget them to 3D head mesh (Victor from FaceWare Tech)
using Autodesk MotionBuilder as described in Section 3.3. To see
how the different latent space variables influence the generates ex-
pressions, we altered a single latent space variable at a time while
the others remained at the mean value (zero). Since we trained the
system based on a Gaussian distribution with a standard deviation of
one, we decided to use a range of [-3, 3] to as input for the genera-
tor. We used this range as this would cover 99.7% off the Gaussian
distribution and therefor all sampled inputs during training. The fol-
lowing sections will describe our finding.

Anger
In Appendix A we see the results of the WGAN trained on angry
annotated data. When we look at the overall expressions we see
that there are mostly negative expressions such as frowns. This con-
firms the results we saw during the objective evaluation as the anger
dataset had low scores for both happy and excitement. When we
look at the control of each of the individual latent space variables
we see that each of the variables controls certain aspects of the face.
When we look at the first variable in particular we see that this vari-
able mainly controls the movement of the eyebrows. The second
feature moves the corners of the mouth up (column -3) and down
(column 3). The third feature opens and closes the face in general by
moving both the mouth and eyebrows. The fourth feature moves the
jaw, making the model open and close its mouth. The fifth feature
seems to be controlling the lips without moving the jaw. This allows
the model to show its teeth. Feature six seems to be controlling both
the jaw and the lips allowing the model to make more complicated
movements with the mouth such as a yawn. When looking at the
results we can see that the WGAN correctly learned what angry ex-
pressions look like and how different parts of the face move to create
these expressions.

Excitement
In Appendix B we see the results of the WGAN trained on excited
annotated data. Again we see that the overall expression matches the
training data as we see mostly positive expressions. When we look
at the individual control of the latent space variables, we again see
that they are controlling different aspects of the face. The difference

is that now they are focused on setting the face in different positive
expressions. The first feature mostly controls the shape of the mouth.
The second feature controls the height of the eyebrows. The third
feature opens up the face. The fourth feature controls the corners
of the mouth as well as the jaw and lips, effectively making a very
excited expression. The fifth feature has some subtle control over
the shape of the mouth. The last feature controls the jaw and lips
which is most likely learned as the actor is talking throughout the
recordings.

Frustration
In Appendix C we see the resulting expressions when controlling
the individual latent space variables for a WGAN trained on frus-
trated data. In this case we see mostly negative expressions. It is
interesting that, compared to the angry trained WGAN, we also see
some sad looking faces such as the one feature six value -3 displays.
This matches with what we saw in during the objective evaluation
as frustration also scored high for sad expressions. When we look at
the individual features we see that the first feature controls the jaw.
The second feature controls the corners of the mouth as well as the
eyebrows. When the jaw opens the eyebrows raise and vice versa.
The third feature also controls the jaw and eyebrows. Interestingly
is that when we compare this to feature two it raises the eyebrows as
it closes the mouth. Feature four lowers the bottom half of the lips
and jaw, resulting in an expression that looks like a sigh. Feature
five controls the shape of the mouth as well as the eyelids. Feature
six controls the mouth and the jaw as if the model is talking.

Happiness
Appendix D shows the results for the WGAN training on happy data.
As expected the overall expressions look positive. The first feature
shows control over the eyebrows. The second feature shows control
over the lips, yaw and eyebrows as if the person is laughing loudly.
The third feature shows control over the jaw and lips gradually going
from an intense smile to a subtle mouth opening. The fourth feature
controls the lips from a subtle smile to an expression looking like
disgust. Feature five shows control over the mouth and eyebrows.
The mouth movement makes the smile move from the left side of
the face to the right and the eyebrows move up as we increase the
value of the feature. Feature six shows control over the jaw and lips.
The expression moves from a neutral to an mouth opening without
showing much teeth as if the person were talking.

Sadness
Appendix E shows the results for the WGAN trained on sad data.
Again we see that the generated expressions mostly represent the



(a) Trained on neutral data (b) Trained on angry data (c) Trained on excited data

(d) Trained on frustrated data (e) Trained on happy data (f) Trained on sad data

(g) Trained on angry and frustrated data (h) Trained on happy and excited data (i) Trained on happy and angry data

(j) Trained on all emotions

Figure 7: 98th Percentile Wasserstein estimate for different latent space dimensionalities with WGANs trained on different emotions. The
networks that are trained on more than one emotion use an equal number of training and validation data for the selected emotions. All
networks were trained using 20 critic iterations per generator iteration and for a total of 50.000 generator iterations. The graphs show that
the increasing the latent space dimensionality benefits the WGANs as the Wasserstein estimates decreases. It also shows that the Wasserstein
estimate stabilized when the latent space dimensionality is large enough.



Figure 8: Trained WGANs on data sets containing different emo-
tions. The emotion on which the WGAN was trained is displayed
below a set of bars. We show the percentages of the found labels of
the nearest neighbor of 1000 randomly generated expressions. The
percentage of found emotional labels are shown in the figure as the
colored bars. The WGANs were all trained using a latent space di-
mensionality of six, 20 critic iterations per generator iteration and
trained for a total of 50.000 generator iterations.

expressions in the training data. In this case we see many expres-
sions where the corners of the mouth are tucked down, indicating
a sad expression. When we look at the control the individual fea-
tures have, we see that they are again controlling different aspects
of the face. The first feature controls the opening and closing of the
face. The second feature controls the subtle opening of the mouth.
The third feature controls the shape of the lips from negative (sad) to
neutral. The fourth feature controls the eyebrows. The fifth feature
controls the shape of the lips from neutral to slightly positive. The
sixth feature opens and closes the face, but more subtle than feature
one.

Anger and happiness
Since we saw that training on individual emotions creates a control-
space that maps features to control different aspects of the face, it
would be interesting to see how it behaves when we train it on mul-
tiple emotions. As a first test we trained the WGAN on two contra-
dicting emotions: anger and happiness. We chose these contradict-
ing emotions as these are easy to visually differentiate. The results
of this experiment are shown in Appendix F. We can see a mix of
positive (smiling) and negative (frowning) expressions. This is to be
expected as we trained on both these expressions. When we look
at the influence of the individual features, we see that feature one
controls the smiling intensity using the lips and jaw. Feature two
controls the eyebrows moving them from a frowning pose to a neu-
tral pose. Feature three opens the lips and jaw. Feature 4 moves the
eyebrows and corners of the mouth. Feature 5 controls the shape
of the mouth and the eyelids. The sixth feature shows subtle control
over the eyebrows makes the expression move from slightly angry to
slightly happy. Just as with the singular emotion, we again see that
the WGAN is showing control over different aspects of the face.
The positive thing is that we can see an equal number of positive
and negative expressions.

To see if the WGAN is able to learn that there is a difference
between happy and angry, we trained the WGAN with a latent space
dimension of two. Ideally the latent space variables would match a
single emotion each. For example feature one would be controlling
a happiness while feature two would be controlling the anger. We
show the results of this experiment in Appendix G. When we look at
the individual features, we see that feature one moves the eyebrows

while feature two mainly moves the mouth. It is clear that the latent
space variables on their own do not represent different emotions.

When we look back at Figure 7i, we see that the error of the
angry and happy data starts stabilizing for dimensionalities greater
than four. This means that we at least need four dimensions to be
able to closely represent the real data distribution. To see how the
WGAN would use these four latent space variables, we did another
experiment with a latent space dimensionality of four. The results
of this experiment can be seen in Appendix H. We can now see
both happy, angry and mixed expressions. The first feature controls
the eyebrows, going from an angry expression towards and neutral
expression with the eyebrows raised. The second feature has the
most influence on the lips and jaw. This results in an expression that
moves from a neutral expression with the mouth fully closed to an
expression where the mouth has an oval shape. The third feature
also shows most control over the lips and jaw, going from a round
shaped mouth toward a closed jaw smile with the teeth still visible.
The fourth feature also controls the lips and the jaw, but more sub-
tle. It goes from a neutral position with the jaw completely shut to
an expression with the lips and jaw slightly open, creating a smile.
Considering this WGAN is trained on happy and angry data while
the actor was talking, the results represent the original data quite
well. We see full control over the eyebrows. We also see different
ways to control the mouth as if its talking and creating different syl-
lables. We can combine the control of the individual feature to create
combination of the expressions we see in Appendix H. The result-
ing facial animation controller based on this trained WGAN can be
seen in this video [44]. As can be seen in video, we can successfully
create combination of expression with this controller. However, we
have to be careful not to use the maximum range of the variables too
much as the network is not trained well for these edge cases. As a
result we see some less natural expressions when we put multiple
variables to their minimum and maximum values.

All emotions
Finally, for our facial animation controller we want to be able to cre-
ate all sorts of emotions using a single system with a limited number
of variables. We saw that when we picked the latent space dimen-
sionality at which the error started stabilizing, we got the best re-
sults for the emotions happy and angry combined. When we look
back at Figure 7j, we see that this happens at a dimensionality of
five when trained on all emotions: neutral, anger, excitement, frus-
tration, happiness and sadness. The results are shown in Appendix
I. We can see that features one and four control different variants of
a smile. Features two and three control different negative expres-
sions. Feature five controls the corners of the mouth, which looks
like sadness. The results seem to indicate that the WGAN is able
to learn the different expressions and map them to different latent
space variables. It is however hard to distinguish between happiness
and excitement as well as anger, frustration and sadness. In order to
evaluate the result better, we train the WGAN on better distinguish-
able emotions. For this we use the six basic emotions by Ekman
[42]: anger, happiness, surprise, disgust, sadness and fear. Since
our dataset does not contain samples from disgust, we decided to
train the network on the remaining five emotions. Our selection of
data only contains 625 frames for fear and 963 frames for surprise,
hence we discarded them from training before. Since we want the
WGAN to learn equally from all emotions we also need to select
625 frames from all emotions and do. In total this means we will
have 3125 frames of which 2500 (80%) will be used for training and
625 (20%) will be used for testing for overfitting. The Wasserstein
estimate of both training and test data converged together, meaning
there is no sign of overfitting. To see what latent space dimension-
ality would be best for this particular data selection, we repeated the
latent space analysis as was done in Section 4.2. The resulting graph



of this latent space analysis is shown in Figure 9. As can be seen
in the figure, the Wasserstein estimate stabilizes for dimensionalities
greater than four. We therefor select the dimensionality of four to be
the best match for this WGAN trained on this data selection. The
results are shown in Appendix J. When we look at the first feature
we see that the expressions moves from a neutral to an expression
that looks like sadness. The second feature moves from an expres-
sion that looks like fear or disgust and moves toward happiness. The
third feature moves from anger towards a neutral or surprised ex-
pressions. The fourth feature moves from a closed expressions (eyes
and mouth completely closed with eyebrows down) to an open ex-
pression (mouth and eyes open as well as eyebrows raised). We
again see that it is hard to identify an emotion based on a single
frame. What we can see is that the WGAN is able the generate a
wide variety of expressions using only the individual variables. We
can also use all of the features to mix the expressions. We can for
example use feature one with value minus three (top-left image of
Appendix J), which closes the jaw, combined with feature two to
create new expressions. When we look at the second feature we see
that for positive values it generates a smile with the jaw open. When
we combine this with feature one at value minus three we will get an
expression where the jaw is closed, but the lips smile and show the
teeth. This is confirmed when we visualize this result in Figure 10.
When we are combining emotions, we have to account for the way
the WGAN is trained. During training the noise is samples from
a Gaussian distribution which has a high density around the mean.
The cases at the sides of this distribution are sampled significantly
less. For example, the values within range [2, 3] are only sampled in
2.1% of the cases. The odds of the latent space being sampled with
all variables within the range [2,3] is even lower. Since these latent
space configurations are rarely sampled, the generator has received
very little feedback for these cases. As a result of this, the resulting
expressions for these cases will look less natural. An example of
such an expression is shown in Figure 11. We also implemented this
trained WGAN as an facial animation controller. To demonstrate the
resulting controller we created a video showing its capabilities [45].
The video shows the effects of the single variables, careful com-
binations of the variables and finally extreme combination of the
variables resulting in less natural expressions. Overall the controller
shows good natural expressions belonging to different emotions.

5 Conclusion
The results of the experimental evaluation show that a WGAN is
able to learn from facial expressions in the form of 3D points. By
comparing the Wasserstein estimate for different latent space dimen-
sionalities, we find that the accuracy of the generated expressions de-
creases as we increase the dimensionality. This analysis also shows
that this reduction in error does not last forever and stabilizes. De-
pending on what data the WGAN is trained on, we need different
latent space dimensionalities before the error starts to stabilize.

The objective evaluation shows that a WGAN trained on a spe-
cific emotion is able to generate expressions which, in most cases,
belong to that same emotion. This experiment also shows that the
sequences annotated with a certain emotion does not only contain
expressions belonging to that emotion. This was confirmed by the
visually analyzing the neutral data. It also shows that a WGAN
trained on all emotions is able to generate all emotions on which
it was trained.

The subjective evaluation shows that the expressions the WGAN
generates also visually match the data it was trained on. The
WGANs trained on positive emotions are also mostly generating
positive looking expressions and the same goes for negative emo-
tions. We also found that the latent space variables of a WGAN
trained on a single emotion controls different regions of the face.

Figure 9: 98th Percentile Wasserstein estimate for different latent
space dimensionalities with WGANs trained on five out of the six
basic emotions. The networks is trained using 500 samples for each
emotion and tested using 125 samples per emotion against overfit-
ting. The WGANs were trained using 20 critic iterations per gen-
erator iteration and for a total of 50.000 generator iterations. The
graphs show that the increasing latent space dimensionality benefits
the WGANs as the Wasserstein estimates decreases. It also shows
the decrease in Wasserstein estimate stabilizes for dimensionalities
greater than four.

Figure 10: WGAN trained on basic emotions with a latent space
dimensionality of 4. The image displays the result of mixing the
latent space variables to generate new expression. In this case the
latent space input is equal to [-3, 2, 0, 0]. Generating a open mouth
smile with the jaw shut.



Figure 11: WGAN trained on basic emotions with a latent space di-
mensionality of 4. The image displays the result of setting the latent
space variables to their extreme values. In this case the latent space
input is equal to [3, 3, 3, 3]. Generating an less natural expression.

When we train a WGAN on multiple emotions we see that the latent
space variables do not match to specific emotions. Even when we
set the latent space dimensionality is set to the same dimension as
there are emotions, there is no clear correlation. Another finding we
did is that when we pick a latent space dimensionality for which the
error just stabilized, we got the most meaningful mapping. In these
cases we got control over different aspects of the face belonging to
certain emotional features.

Overall the evaluation shows that the latent space variables pro-
vide control over certain regions of the face and sometimes even
over emotions. This indicates that it would be possible for a GAN to
learn a meaningful mapping that can be used as a facial animation
controller. The problem with this implementation of WGAN is that
its learning in an unsupervised manner. Because its unsupervised,
the WGAN is learning a mapping between the latent space and the
expressions which is randomly assigned by the network itself. When
we were to implement a conditional GAN which uses labeled emo-
tional data (supervised learning), we might be able to assign control
over a certain emotion to a certain latent space variable. When such
a new system were to be created, we would recommend to use a
database that is labeled using the six basic emotions [42]. This will
help with the subjective evaluation as these emotions are fundamen-
tally different and are easier to distinguish. For example, we saw
that emotions such as excitement and happiness as well as anger and
frustration are difficult to visually distinguish. Another great prop-
erty of the basic emotions is that they are shaped by evolution and
are therefore similar for all humans [42].

During the evaluation we saw that the expressions labeled with
a certain emotion do not always match the underlying data. This is
due to the data being labeled as a sequence and not as frames. An-
other great way to improve this GAN is to train it on sequences of
face movement with different emotions. This way the GAN learns
how a face moves through time with a certain emotion. This can be
done with either tracking data such as we used here or with more de-
tailed face data as provided by the 4DFAB database [47]. This could
then be combined with a GAN that learns lip and mouth movement
based on speech (audio) [28, 46]. This would allow a system to gen-

erate a speaking face with a certain emotion based on speech and an
emotional state. Such a system could be very useful in the game and
film industry as well as many other applications.
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Appendices
A Results of WGAN trained on angry data

Results of the WGAN training on angry annotated data (35159 frames with a 80-20% train-test split) with 20 critic iterations per generator
iteration and a latent space dimensionality of six. The rows in this image represent the influence of each individual latent space variable. The
latent space variables that are not changed are at their mean value zero. For example, the top left image will have a latent space input of [-3,
0, 0, 0, 0, 0] and bottom right [0, 0, 0, 0, 0, 3].



B Results of WGAN trained on excited data

Results of the WGAN training on excited annotated data (44733 frames with a 80-20% train-test split) with 20 critic iterations per generator
iteration and a latent space dimensionality of six. The rows in this image represent the influence of each individual latent space variable. The
latent space variables that are not changed are at their mean value zero. For example, the top left image will have a latent space input of [-3,
0, 0, 0, 0, 0] and bottom right [0, 0, 0, 0, 0, 3].



C Results of WGAN trained on frustration data

Results of the WGAN training on frustrated annotated data (51062 frames with a 80-20% train-test split) with 20 critic iterations per
generator iteration and a latent space dimensionality of six. The rows in this image represent the influence of each individual latent space
variable. The latent space variables that are not changed are at their mean value zero. For example, the top left image will have a latent space
input of [-3, 0, 0, 0, 0, 0] and bottom right [0, 0, 0, 0, 0, 3].



D Results of WGAN trained on happy data

Results of the WGAN training on happy annotated data (14624 frames with a 80-20% train-test split) with 20 critic iterations per generator
iteration and a latent space dimensionality of six. The rows in this image represent the influence of each individual latent space variable. The
latent space variables that are not changed are at their mean value zero. For example, the top left image will have a latent space input of [-3,
0, 0, 0, 0, 0] and bottom right [0, 0, 0, 0, 0, 3].



E Results of WGAN trained on sad data

Results of the WGAN training on sad annotated data (58474 frames with a 80-20% train-test split) with 20 critic iterations per generator
iteration and a latent space dimensionality of six. The rows in this image represent the influence of each individual latent space variable. The
latent space variables that are not changed are at their mean value zero. For example, the top left image will have a latent space input of [-3,
0, 0, 0, 0, 0] and bottom right [0, 0, 0, 0, 0, 3].



F Results of WGAN trained on angry and happy data

Results of the WGAN training on happy and angry data with the same number of frames per emotion (14624 per emotion both split and
combined using a 80-20% train-test split). The WGAN was trained using 20 critic iterations per generator iteration and a latent space
dimensionality of six. The rows in this image represent the influence of each individual latent space variable. The latent space variables that
are not changed are at their mean value zero. For example, the top left image will have a latent space input of [-3, 0, 0, 0, 0, 0] and bottom
right [0, 0, 0, 0, 0, 3].



G Results of WGAN trained on angry and happy data with a latent space dimensionality of two

Results of the WGAN training on happy and angry data with the same number of frames per emotion (14624 per emotion both split and
combined using a 80-20% train-test split). The WGAN was trained using 20 critic iterations per generator iteration and a latent space
dimensionality of two. The rows in this image represent the influence of each individual latent space variables. The latent space variables
that are not changed are at their mean value zero. For example, the top left image will have a latent space input of [-3, 0] and bottom right [0,
3]. By setting the latent space to two we have the same number of latent space dimensions as there are emotions in the training data. This
experiment was conducted to see how the control of the latent space variable would change. In the ideal case the latent space variables would
match to an emotion, but this was not observed.



H Results of WGAN trained on angry and happy data with a latent space dimensionality of four

Results of the WGAN training on happy and angry data with the same number of frames per emotion (14624 per emotion both split and
combined using a 80-20% train-test split). The WGAN was trained using 20 critic iterations per generator iteration and a latent space
dimensionality of four. The rows in this image represent the influence of each individual latent space variables. The latent space variables
that are not changed are at their mean value zero. For example, the top left image will have a latent space input of [-3, 0, 0, 0] and bottom
right [0, 0, 0, 3]. During the experimental evaluation we tested multiple latent space dimensionalities. It was found that when the WGAN was
trained on happy and angry data, the error of the generated expressions would stabilize for latent space dimensionalities greater than four. To
see how to the latent space variables would behave, we subjectively evaluated the results. We observed that this latent space dimensionality
offered the best control over the expressions.



I Results of WGAN trained on all emotions

Results of the WGAN training on all emotions with the same number of frames per emotion (14624 per emotion all split and combined using
a 80-20% train-test split). The WGAN was trained using 20 critic iterations per generator iteration and a latent space dimensionality of five.
We chose this latent space dimensionality as this was found to be the minimum to stabilize the error of the generated expressions. The rows
in this image represent the influence of each individual latent space variables. The latent space variables that are not changed are at their
mean value zero. For example, the top left image will have a latent space input of [-3, 0, 0, 0, 0] and bottom right [0, 0, 0, 0, 3].



J Results of WGAN trained on basic emotions

Results of the WGAN training on five basic emotions with the same number of frames per emotion (625 per emotion all split and combined
using a 80-20% train-test split). The WGAN was trained using 20 critic iterations per generator iteration and a latent space dimensionality of
four. The rows in this image represent the influence of each individual latent space variables. The latent space variables that are not changed
are at their mean value zero. For example, the top left image will have a latent space input of [-3, 0, 0, 0] and bottom right [0, 0, 0, 3].
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