
Artificial Intelligence
Graduate School of Natural Sciences

Intelligent Systems

A stability-based approach to inquiry dialogues
in agent argumentation

L.W. Leijten

First examiner

Prof. Dr. F.J. Bex
Department of Information and Computing Sciences

Utrecht University

Second examiner

Dr. G.A.W. Vreeswijk
Department of Information and Computing Sciences

Utrecht University

August 30, 2019



Abstract

In inquiry dialogues, two or more agents work together to prove or disprove a
proposition. The de facto standard for this type of dialogues are exhaustive
systems, in which agents make every move that could impact the outcome of
the dialogue before terminating the dialogue. This behaviour results in positive
properties such as soundness and completeness, but as a downside generates
long dialogues including redundant moves. New research proposes a stability-
based querying system, in which agents stop making queries when it is certain
that the outcome of the process will not change anymore. In this thesis, this
querying system is extended into a set of three, first of their kind, stability-
based inquiry dialogue systems with increasing levels of expressiveness. First it
is explored how performance of inquiry systems can be defined and compared.
Next, the performance of these stability-based systems is compared to each other
and to exhaustive systems. Experiments are performed on multiple rule sets in
which the agents try to minimize either the dialogue length or the amount of
observations shared. Training and test sets for these experiments are initiated
using three different instantiation functions to model different cases that could
occur in real life situations. It is shown that stability-based systems in general
outperform the exhaustive systems and that, depending on the performance
measure and instantiation function used, the additional expressiveness results
in increased performance as well. The downside of the additional expressiveness
is an increase in complexity, resulting in the more expressive systems not being
able to perform well on large problems.



Contents

1 Introduction 4
1.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature 8
2.1 AI for policing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Dialogue systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Systems for inquiry . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1.1 Black and Hunter . . . . . . . . . . . . . . . . . 10
2.2.1.2 Kumeling . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1.3 Yan et al. . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1.4 Parsons et al. . . . . . . . . . . . . . . . . . . . . 21
2.2.1.5 Testerink, Odekerken and Bex . . . . . . . . . . 24
2.2.1.6 Fan and Toni . . . . . . . . . . . . . . . . . . . . 27
2.2.1.7 Summarizing . . . . . . . . . . . . . . . . . . . . 31

2.2.2 Systems for information-seeking . . . . . . . . . . . . . . . 34
2.2.2.1 Parsons et al. . . . . . . . . . . . . . . . . . . . . 34
2.2.2.2 Fan and Toni . . . . . . . . . . . . . . . . . . . . 35

2.3 Other strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.1 Opponent models . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.3 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Performance measures 39

4 Dialogue system 43
4.1 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Dialogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.7 Extensions of the base system . . . . . . . . . . . . . . . . . . . . 49

1



4.7.1 Future setups and stability . . . . . . . . . . . . . . . . . 49
4.7.2 Approximating stability . . . . . . . . . . . . . . . . . . . 53
4.7.3 Querying for defeasible literals . . . . . . . . . . . . . . . 54
4.7.4 Asking explanations for labelled literals . . . . . . . . . . 59
4.7.5 Calculating utility in argumentation MDP’s . . . . . . . . 65

5 Experiments 67
5.1 Utility functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.1 Instantiating . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Test classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Standard tree . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.2 Multi-rule tree . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.3 Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.4 Complex scenarios . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.1 Dialogue length . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.1.1 Random instantiation . . . . . . . . . . . . . . . 72
5.4.1.2 Unique argument instantiation . . . . . . . . . . 74
5.4.1.3 Conflicting argument instantiation . . . . . . . . 75

5.4.2 Observables shared . . . . . . . . . . . . . . . . . . . . . . 76
5.4.2.1 Random instantiation . . . . . . . . . . . . . . . 76
5.4.2.2 Unique argument instantiation . . . . . . . . . . 79
5.4.2.3 Conflicting argument instantiation . . . . . . . . 80

5.5 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5.1 Experiment setup and choices . . . . . . . . . . . . . . . . 81
5.5.2 Effects on performance . . . . . . . . . . . . . . . . . . . . 81
5.5.3 Instantiation functions . . . . . . . . . . . . . . . . . . . . 86
5.5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Discussion 88
6.1 Feasibility in real life situations . . . . . . . . . . . . . . . . . . . 88
6.2 Possible solutions for the found limitations . . . . . . . . . . . . . 88
6.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Conclusion 91
7.1 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Appendices 99

A Complex Argumentation Setups 99
A.1 Complex Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.2 Fraud Intake Scenario . . . . . . . . . . . . . . . . . . . . . . . . 100

2



B Dialogue Length 101
B.1 Random Instantiation . . . . . . . . . . . . . . . . . . . . . . . . 101

B.1.1 Standard Trees . . . . . . . . . . . . . . . . . . . . . . . . 101
B.1.2 Multi-Rule Trees . . . . . . . . . . . . . . . . . . . . . . . 102
B.1.3 Ambiguous Setups . . . . . . . . . . . . . . . . . . . . . . 103
B.1.4 Complex Setups . . . . . . . . . . . . . . . . . . . . . . . 104

B.2 Unique Argument Instantiation . . . . . . . . . . . . . . . . . . . 105
B.2.1 Standard Trees . . . . . . . . . . . . . . . . . . . . . . . . 105
B.2.2 Multi-Rule Trees . . . . . . . . . . . . . . . . . . . . . . . 106

B.3 Conflicting Argument Instantiation . . . . . . . . . . . . . . . . . 107
B.3.1 Ambiguous Setups . . . . . . . . . . . . . . . . . . . . . . 107
B.3.2 Complex Setups . . . . . . . . . . . . . . . . . . . . . . . 108

C Shared Observables 110
C.1 Random Instantiation . . . . . . . . . . . . . . . . . . . . . . . . 110

C.1.1 Standard Trees . . . . . . . . . . . . . . . . . . . . . . . . 110
C.1.2 Multi-Rule Trees . . . . . . . . . . . . . . . . . . . . . . . 111
C.1.3 Ambiguous Setups . . . . . . . . . . . . . . . . . . . . . . 112
C.1.4 Complex Setups . . . . . . . . . . . . . . . . . . . . . . . 113

C.2 Unique Argument Instantiation . . . . . . . . . . . . . . . . . . . 114
C.2.1 Standard Trees . . . . . . . . . . . . . . . . . . . . . . . . 114
C.2.2 Multi-Rule Trees . . . . . . . . . . . . . . . . . . . . . . . 115

C.3 Conflicting Argument Instantiation . . . . . . . . . . . . . . . . . 116
C.3.1 Ambiguous Setups . . . . . . . . . . . . . . . . . . . . . . 116
C.3.2 Complex Setups . . . . . . . . . . . . . . . . . . . . . . . 117

3



Chapter 1

Introduction

This thesis aims to make a contribution to the field of agent argumentation
dialogues. In argumentation dialogues, as explained by Amgoud et al. [2], two
or more agents argue with each other and try to reach their own goals, or
cooperate towards a shared goal. What is important in these dialogues are the
underlying arguments. The arguments brought forth by the agents can be used
in real life situations such as supporting medical or juridical decisions. It is thus
important to make the arguments of the agents transparent so that the system
can explain itself and be checked by human experts as well.

Argumentation dialogues follow a protocol, which determines what moves
can be made and when they can be made. The literature generally considers
six different types of dialogue: persuasion, inquiry, negotiation, information-
seeking, deliberation and eristic dialogues. These types were defined for the first
time by Walton and Krabbe [24]. The three types that will be most relevant to
this thesis are those of persuasion dialogues, inquiry dialogues and information-
seeking dialogues.

This research will be performed in support of a collaboration done between
the University Utrecht and the Dutch national police. The goal of this col-
laboration is to have software agents handle online fraud reports through an
online chat interface with complainants, increasing the amount and quality of
complaints that are handled. As stated by Schraagen et al. [20], online fraud
is a high volume crime with a relatively simple legal foundation. This makes it
the ideal type of crime to develop such systems for.

A lot of the research done so far on the topic of argumentation dialogues
is on the field of persuasion dialogues, where each agent tries to convince the
other agents of their own beliefs. Examples of research done on strategies, which
dictate what actions agents should perform, for these persuasion dialogues are:
Hadjinikolis et al. [12], Hadoux et al. [13], Rienstra et al. [19], Alahmari et
al. [1] and Black et al. [4]. For the national police however, inquiry dialogues are
more interesting since it resembles their use case more closely, as argued for by
Kumeling [14] and Testerink, Odekerken and Bex [23]. In an inquiry dialogue
two or more agents work together to find grounds for a shared opinion on a

4



certain piece of information, called the dialogue topic. In the case of the police
project this is to find a legal base for fraud having taken place. Related to this
are two variants of the inquiry dialogue, namely: argument inquiry dialogues
and warrant inquiry dialogues, which are defined by Black and Hunter [5]. The
goal of argument inquiry is to find out if an argument for a given proposition
exists. The goal of warrant inquiry is to find an acceptable argument for a given
proposition. An acceptable argument is an argument that can still hold when
taking into account possible counter-arguments.

In an argumentation dialogue, the participating agents follow a strategy.
Outcome and performance of the dialogue is dependent on the strategies used.
There exist, for example, exhaustive strategies that play every argument that
can be made, leading to favourable properties that will be explained later on
in this thesis. It is important to define strategies that allow agents to debate
effectively, but that also do not ask too many questions in real life situations.
If the system asks too many redundant questions the end user conversing with
it might lose focus and interest. The argumentation, however, also has to be
precise and thorough because often it is used in domains that are critical in
regards to safety. Depending on the domain the focus could lie more on one
of the aspects than on the other, but in general it is important to come up
with methods that respect both aspects of this dilemma. Kumeling [14], for
example, tries to decrease the amount of moves made by exhaustive strategies
whilst trying to still adhere the properties of soundness and completeness. These
considerations can be quantified using performance measures. These measures
can then be used to determine how well a system performs in the dialogues
it generates. Examples of such performance measures are: average dialogue
length, computational complexity of dialogues, explainability of the generated
dialogues and the soundness and completeness of the dialogue system. In this
context, explainability means the capacity of the system to explain the choices
that it made and the outcomes it generated.

An interesting idea used throughout agent argumentation research, mostly
on persuasion dialogues, is that of opponent models. The dialogue agent cre-
ates an internal model of the opponent he is debating and uses this model to
determine what moves would be the most effective. This model can consist of
different beliefs about the opponent such as rules about how facts known by
the opponent relate to facts that he then might know as well. Research on this
topic has been done by Rienstra et al. [19] and Hadjinikolis et al. [12] amongst
others. A different approach, as researched by Hadoux et al. [13] is to have the
opponent behave stochastically and then model them using Markov Decision
Processes.

Recently, research on the topic of inquiry dialogues has been done by Tes-
terink, Odekerken and Bex [23]. They propose a querying system for inquiry in
which an agent uses the concept of stable states, states after which the outcome
of the process cannot change, to minimize the amount of queries the agent has
to perform before reaching their verdict. Their system is not yet a fully fledged
dialogue system, but it has the potential to lead to shorter and more explainable
dialogues for the end user if it were to be extended to one. When converting this

5



system into a dialogue game, it must be determined what kind of knowledge and
actions the participating agents should have at their disposal. This is defined in
so called opponent and speaker models. The speaker in this scenario is the agent
asking the questions and the opponent is the agent answering these questions.
An example of a simple speaker and opponent model would be that the speaker
could only perform simple queries and the opponent can only reply with yes or
no. More elaborate models could have the opponent have internal knowledge of
rules and arguments and be able to additionally reply with arguments to queries
performed by the speaker.

Inquiry dialogues seem like the most fitting dialogue type to model police
intake conversations as. Current research done on inquiry dialogues is not as
elaborate as that done on other types of dialogues. Chapter 2 will give more
insight into what research has been done on different aspects of agent argu-
mentation and primarily on inquiry dialogues. With this background, lacking
elements of the current standard can be identified and solutions and new ad-
ditions can be proposed. Section 1.1 shows what research questions will be
answered in this thesis.

1.1 Research questions

• Main research question: How does the performance of inquiry dialogue
systems change when using different opponent and speaker models?

Sub questions:

– What are the best performance measures for inquiry type dialogues
and more specifically dialogues that model a police intake conversa-
tion?

– How does the set of available locutions for both agents affect the
performance of inquiry dialogues?

– How does the rule set used in inquiry dialogues affect the performance
of inquiry dialogues?

– How do stability-based inquiry systems perform compared to exhaus-
tive systems?

1.2 Method

In this thesis we will implement a dialogue game based on the paper by Tes-
terink, Odekerken and Bex [23] that will help with answering the above research
questions. Their definitions will lay the foundations for a dialogue system, which
will form the foundation of our research and on which further improvements can
be researched and implemented. This dialogue system will have to be formalised
so that it can later on be turned into an implementation. When the dialogue
system is in place, multiple extensions upon it will be formalised and imple-
mented. This implementation will be programmed using Python. Using the

6



found performance measures we are then able to compare the performance of
the different extensions of the system when using different rule sets.

For these experiments, the strategy will be a stable factor. The agent will
always make use of a stability based-strategy, which stops when a stable state
has been reached. Depending on the models of both the speaker and the oppo-
nent, the exact implementation of the strategy might differ. The core, however,
always remains the same. Using the above defined research questions, multiple
versions of the system will have to be implemented and compared. First the
most suitable measures of performance will have to be found. This will be done
by consulting existing literature on the topic of inquiry dialogues. Next, different
variations of opponent and speaker models will have to be defined, implemented
and then tested in dialogue simulations. These opponent and speaker models
encapsulate what knowledge the agents have at their disposal and the locutions
they are allowed to use. In the base system the inquiring agent can only query
non-defeasible literals and the replying agent can then only confirm or deny
that query. An extension of this system would allow the inquiring agent to
also query defeasible literals and the responding agent to reply to such queries.
A final extension would allow the inquiring agent to ask for arguments that
support earlier given responses of the responding agent. If needed, an accept
locution could be implemented as well, which allows the inquiring agent to ac-
cept the different responses being given by the responding agent. This was not
deemed necessary within the scope of this thesis. Another change that could
be implemented and experimented with is the knowledge bases of both agents.
In our system the inquiring agent will have knowledge of all the rules and the
responding agent will have knowledge of all observable literals as well as the set
of rules, similar to how the knowledge would be divided in a real fraud intake
conversation. In possible extensions, which lie outside the scope of this thesis,
both agents should be able to have a mix of rules and literals in their knowledge
base.

The remainder of this thesis is structured as follows: chapter 2 will give an
overview of literature on the topic of agent argumentation dialogues. In chap-
ter 3 we will look at what kind of performance measures are used throughout
literature and which ones are relevant for our research. In chapter 4 we will for-
mally define the dialogue system and its extensions that are used to answer our
research questions. Chapter 5 will describe the experiments that are performed
to answer our research questions. Chapter 6 will discuss the findings that we
have done in this thesis. Chapter 7 will conclude this thesis.

7



Chapter 2

Literature

To get an idea of what the current standings of agent argumentation are, a lit-
erature study is performed. First we will take a short look at the AI for policing
project of the Utrecht University, which this thesis will support. Next we will
look at dialogue systems and primarily dialogue systems for inquiry dialogues
and information-seeking dialogues. These types of dialogues are interesting be-
cause they are the most fitting to model police intake conversations with. We
will look at what these systems are and how they compare to each other. By
doing this we can identify where further research could be applied in the field of
inquiry dialogues. Finally we will look at other approaches of research that have
elements that might be useful for inquiry and information seeking dialogues, for
example, strategies used in persuasion type dialogues.

2.1 AI for policing

AI for policing is a collaboration between the Dutch national police and re-
searchers of Utrecht University. This collaboration has resulted in research
being performed on agent argumentation systems that could aid the police in
their daily work. This thesis will also be done in support of this project.

Bex et al. [3] describe a system being developed by Utrecht University in
combination with the national police. The system uses argumentation to build
cases for online fraud complaints. This system is also elaborated on by Schraa-
gen et al. [20]. The system uses techniques from natural language processing,
is able to produce arguments and can efficiently gain new knowledge by exe-
cuting dialogues with complainants. Testerink and Bex [21] describe a formal
framework that can be used for communication protocols in open multi-agent
systems. Key here is that the protocol should work in peer-to-peer situations.
Peer-to-peer protocols are important for real life applications. In these appli-
cations the dialogues are parallel, do not have complete information and are
peer-to-peer. In such situations, it is undesirable to have agents representing
the same organization contradicting each other. Such protocols are especially

8



useful for the argumentation project done by the police and Utrecht University.
This protocol makes use of templates. Templates are structures that determine
when agents can send and receive locutions and how these locutions update the
dialogue graph. An example of a template is how you can use a why question
as a response to a claim made by the other agent. Templates are the main
building blocks of this protocol. Agents can only send messages if there is a
template that allows the sending of that message. Moves that the agents can
make in this system are claim, why and support. Testerink and Bex [22] also
give a framework for programming argumentation dialogues. Main contribu-
tions of this paper include the ability to develop protocols, the agent modules
that interpret the protocol, an example multi-agent system and a visualization
of the view of an agent on the dialogue, which can be inspected on the internet.

2.2 Dialogue systems

Dialogue systems are systems that define how agents should perform coherent
dialogues. In a dialogue two or more agents argue over a topic. These dialogues
can be of different types such as inquiry and persuasion. Dialogue systems are
used in support of medical decision making, juridical decision making, customer
support and more. These systems are becoming more advanced over time, with
more complex agents taking part in them. This thesis will propose a dialogue
system that performs inquiry dialogues. To get an idea of what the current state
of dialogue systems for inquiry is, a comparison is performed. This comparison
will be made on common elements of dialogue systems as defined throughout
literature. Common elements of dialogue systems are defined by McBurney and
Parsons [15] and Prakken [17]. The following list of common elements is based
on their definitions:

• Logic: a logic that describes a topic language. This topic language is used
by the agents to reason and argue about the dialogue topic.

• Topic: an element of the topic language. The topic is the piece of infor-
mation around which a dialogue revolves.

• Argumentation system: describes what arguments look like and how they
relate to one another.

• Knowledge bases: describes what types of knowledge the agents have at
their disposal and how it is divided between the agents.

• Locutions: a communication language containing allowed locutions al-
lowed and rules how they can interact with each other.

• Moves: definitions for moves that the players can make using locutions.

• Commitments: rules on when agents make commitments and alter their
commitment stores and how to deal with conflicting commitments.

9



• Dialogues: definitions for what a dialogue looks like and when a dialogue
is valid.

• Players: the amount of players supported in the dialogue and the roles
they can take.

• Protocol: determines what moves the agents are allowed to make during
the dialogue. The protocol can also determine when the dialogue is over
and whose turn it is at what point in the dialogue.

• Strategy: dictates, given the legal moves returned by the protocol, what
the exact move is that the agent should make.

2.2.1 Systems for inquiry

A modest amount of research has been done on the topic of inquiry dialogues.
In inquiry dialogues agents cooperate to prove a statement. We will give an
overview and descriptions of six different approaches of inquiry dialogue systems.
These approaches have a lot of common elements, but also differ enough from
each other to be interesting for a comparison. By comparing these approaches
we can identify the current state of research and elements that are currently
missing or underrepresented.

2.2.1.1 Black and Hunter

Black and Hunter [5] give a framework for so called warrant inquiry and argu-
ment inquiry dialogues, both of which are sub-types of inquiry dialogues. The
goal of argument inquiry is to find out if an argument for a given proposition
exists. The goal of warrant inquiry is to find an acceptable argument for a given
proposition. This means that the argument should still hold when considering
possible counter-arguments. The system contains protocols for both warrant
inquiry and argument inquiry, which tell what the legal moves are during the
dialogues. Additionally, they propose an exhaustive strategy to solve these di-
alogues, which is both sound and complete. This means that all the utterances
made in the dialogue follow from the agents’ knowledge bases, and everything
that can follow from the agents’ knowledge bases is uttered in the dialogue. An
exhaustive strategy according to Black and Hunter is a strategy that makes all
moves that might have an impact on the outcome of the dialogue. Exhaustive
strategies such as the one described by Black and Hunter can be seen as the
current de facto standard used in inquiry dialogues.

Black and Hunter use an argumentation system, which is based on DeLP [11].
They make use of a combination of defeasible rules and defeasible facts. The
rules and facts being defeasible means that they have preference levels and can
be attacked by other rules and arguments. The topic of an argument inquiry
dialogue is a defeasible rule with as its consequent the literal that the inquiry
tries to find an argument for. The topic of a warrant inquiry dialogue is a
defeasible fact for which the agents try to find an acceptable argument. The

10



system itself does not assume a specific split of the rules and facts between the
agents. The agents’ belief bases can possibly be inconsistent, but this poses no
problem because of preference levels. Arguments are tuples of the form 〈Φ, φ〉
where Φ is the support of the argument and φ is the conclusion of the argument.

Example 2.2.1 An example of an argument in this system is as follows: A =
({(a, 1), (b, 1), (a ∧ b ⇒ c, 1) }, c), where 1 is the value of the preference of
each premise.

Arguments can attack each other on their subarguments when their conclusions
contradict each other. The winner of such a conflict is decided by the preference
levels of the arguments. When the preference level of the attacking argument
is more preferable than that of the attacked argument, the attacking argument
is known as a proper defeater for the attacked argument. When the preference
levels are equal, both arguments are blocking defeaters for each other.

Example 2.2.2 Consider the following two arguments: a1 = 〈{(a, 1)}, a〉 and
a2 = 〈{(¬a, 1)},¬a〉. Argument a1 and a2 attack each other and argument a1
is a blocking defeater for argument a2, and argument a2 is a blocking defeater
for argument a1.

Example 2.2.3 Consider the following two arguments: a1 = 〈{(a, 2)}, a〉 and
a2 = 〈{(¬a, 1)},¬a〉. Argument a1 and a2 attack each other and argument a2
is a proper defeater for argument a1.

The status of an arguments indicates the current standing of the argument in
the argumentation system in relation to other arguments. This status is based
on attacks and defeat and can be used to determine the outcome of a dialogue.
Generally the status of an argument can be one of the following three: winning,
losing or undecided but variations of these are used throughout literature. As
the status of arguments, Black and Hunter use defeated and undefeated. They
use this status to determine the outcome of warrant inquiry dialogues. This will
be elaborated on in detail later on in this thesis.

The agents share a so called query store for each argument inquiry dialogue.
This query store contains the set of literals that could help the agents construct
an argument supporting the topic of this argument inquiry dialogue. At the
start of an argument inquiry dialogue, this query store will be initiated with as
its contents the premises and the consequent of the topic.

Example 2.2.4 Consider an argument inquiry being opened for the topic a ∧
b→ c. This would result in a query store being created for this dialogue, which
would look as follows: QS = {a, b, c}

Each agent also has a personal commitment store for each top-level dialogue.
This commitment store tracks the assertions made by its owner. When agents
infer arguments they can not only use their own beliefs, but also the content
of the other agents’ commitment stores. These commitment stores can thus be
seen as public knowledge.

11



Agents in Black and Hunter’s system can make open moves, close moves
and assert moves. The open move comes in two forms: an agent can open a
new warrant inquiry dialogue or a new argument inquiry dialogue. These new
dialogues will be nested as sub dialogues in the dialogue in which the move
has been made. A close move indicates that the speaking agent wants to close
the current dialogue. Assert moves allow the agent to assert new arguments
and propositions. These asserted arguments and propositions will be added to
the commitment store of the agent making the move. The format of a move
is {agent, act, content} where agent is the identifier of the agent making the
move, act is the type of move being made and content contains the details of
the move.

Example 2.2.5 Consider an assert move being made by agent A that asserts b
based on the premise a. This move would look as follows: 〈A, assert, 〈{(a, 1), (a→
b, 1)}, b〉〉.

Example 2.2.6 Consider an open move being made by agent A for a warrant
inquiry dialogue with as topic the defeasible fact b. This move would look as
follows: 〈A, open, dialogue(wi, b)〉.

Black and Hunter give protocols for both argument inquiry and warrant
inquiry. The protocols assume two agents taking part in the dialogue, who can
make one move each turn and the turns are alternating. The generated dialogue
is a sequence of moves with a certain topic. The two protocols are defined below:

• Argument inquiry (AI) protocol:

1. Close moves for the current dialogue are always added to the set of
legal moves.

2. Assert moves for information from the agent’s knowledge base that
have not yet been asserted and have its claim in the query store are
added to the set of legal moves.

3. Open moves for new argument inquiry dialogues with a topic that
has not been opened before and with a member of the query store as
its consequent are added to the set of legal moves.

• Warrant inquiry (WI) protocol:

1. Close moves for the current dialogue are always added to the set of
legal moves.

2. Assert moves that assert an argument which has not yet been as-
serted, and either are the first assert for the dialogue topic or change
the dialectical tree, are added to the set of legal moves.

3. Open moves for embedded argument inquiry dialogues with a defeasi-
ble rule as the topic which has not been opened before and for which
one of the following is true are added to the set of legal moves:

12



(a) No argument for that topic has been asserted yet and the conse-
quent of the defeasible rule is the topic of the dialogue.

(b) It is possible to defeasibly derive the negation of the consequent
from the union of both agents their commitment stores.

Dialogues using these protocols are terminated when both agents make a close
move in succession of each other.

The outcome of an argument inquiry dialogue is a set containing all argu-
ments that can be constructed from the union of the commitment stores and
whose claims are in the query store.

Example 2.2.7 The outcome of an argument inquiry dialogue with topic b→ c
could be as follows: {〈{(a, 1), (a→ b, 1), (b→ c, 1)}, c〉, 〈{(b, 1), (b→ c, 1)}, c〉}.

The outcome of a warrant inquiry dialogue is based on the dialectical tree
created for the topic argument. Recall that the status of an argument in this
system can be either defeated or undefeated. A dialectical tree is a tree consist-
ing of argumentation lines, sequences of arguments such that each argument in
the sequence is a proper defeater or a blocking defeater of its predecessor. All
leaves of the tree have the status undefeated and other nodes have the status
undefeated if all of their children are marked defeated and the status defeated
if one of their children is undefeated. The tree is constructed from the union
of both agents their commitment stores. The outcome is decided by the status
of the root of this dialectical tree. If the status of the root of the generated
dialectical tree is undefeated, then the outcome is the argument in the root.
If the status of the root of the generated dialectical tree is defeated, then the
outcome is null.

Example 2.2.8 The outcome of a succesfull warrant inquiry dialogue with topic
b could be as follows:〈{(a, 1), (a→ b, 1)}, b〉

The strategy used by the agents is an exhaustive strategy. Exhaustiveness
implies that both agents use all their knowledge they have at their disposal to
make moves before they reach a conclusion. This means that the strategy plays
all legal moves given by the protocol, plus some additional restrictions. It first
defines a subset of the legal assert moves and legal open moves given by the
protocol. Agents are not allowed to make up arguments or deceive the other
agent. The agents also are not allowed to open an argument inquiry with a
topic of which they do not have a belief in their knowledge base. Given these
restrictions on legal moves, the exhaustive strategy is as follows:

1. If the subset of legal assert moves is not empty, a move from that set will
be played.

2. If the subset of legal assert moves is empty but the subset of legal open
moves is not empty, an open move will be played.

3. If both the subset of legal assert moves and the subset of legal open moves
are empty a close move will be played.

13



This strategy is both sound and complete. Soundness and completeness for
argument and warrant inquiry dialogues are defined as follows:

• An argument inquiry dialogue is sound if and only if ”when the outcome
of the dialogue includes an argument, then that same argument can be
constructed from the union of the two participating agents’ beliefs” (Black
& Hunter, 2009, p. 198).

• An argument inquiry dialogue is complete if and only if ”if the dialogue
terminates at t and it is possible to construct an argument for a literal
in the query store from the union of the two participating agents’ beliefs,
then that argument will be in the outcome of the dialogue at t” (Black &
Hunter, 2009, p. 199).

• A warrant inquiry dialogue is sound if and only if, if the outcome of the
dialogue is an argument and that argument is the root of a dialectical tree
T, which is constructed from the unified belief bases of the participating
agents then the status of the root of that tree is undefeated.

• A warrant inquiry dialogue is complete if and only if, if the root argument
of the dialogue is at the root of a dialectical tree T, which is constructed
from the unified belief bases of the participating agents, then the status
of the root node of that tree is undefeated.

An example of a dialogue generated by this system is shown further on in table
2.1.

2.2.1.2 Kumeling

Kumeling [14] proposes improvements to the earlier described exhaustive strat-
egy of Black and Hunter [5]. The original exhaustive strategy contains redun-
dant information and duplicity of arguments and this research tries to find
solutions to prevent that from happening.

The research uses the same structured argumentation framework as Black
and Hunter [5]. Kumeling, for some of their experiments however, does assume
a split of knowledge where one agent has all the rules, and the other agent only
has facts. This split is inspired by police intake conversations. Kumeling uses
the same set of locutions and moves as Black and Hunter [5], but uses a slightly
different notation for moves. The format Kumeling uses is {x, θ, p(c)} where
x is the identifier of the agent making the move, θ is the type of the current
dialogue and p(c) is a locution.

Example 2.2.9 Consider an assert move being made by agent A, in an argu-
ment inquiry dialogue that asserts b based on the premise a. This move would
look as follows: 〈A, ai, assert(〈{(a, 1), (a⇒ b, 1)}, b〉)〉.

Example 2.2.10 Consider an open move being made by agent A for a warrant
inquiry dialogue with as topic the defeasible fact b. This move would look as
follows: 〈A,wi, open(wi, b)〉.

14



t CSA mt CSB QSt
1 〈A, open, dialogue(wi, b)〉
2 〈B, close, dialogue(wi, b)〉
3 (a, 4) (a→ b,

4)
〈A, assert, 〈{(a, 4), (a→ b, 4)}, b〉〉

4 〈B, assert, 〈{(d, 3), (d→ ¬a, 3)},¬a〉〉 (d, 3) (d→¬
a, 3)

5 (c, 3) (c→ ¬
b, 3)

〈A, assert, 〈{(c, 3), (c→ ¬b, 3)},¬b〉〉

6 〈B, assert, 〈{(¬d, 1)},¬d〉〉 (¬ d, 1)

7 〈A, open, dialogue(ai, a→ b)〉 QS7 = {a,b}
8 〈B, close, dialogue(ai, a→ b)〉
9 〈A, close, dialogue(ai, a→ b)〉

10 〈B, open, dialogue(ai, d→ ¬a)〉 QS10 = {d, ¬ a}
11 〈A, close, dialogue(ai, d→ ¬a)〉
12 〈B, close, dialogue(ai, d→ ¬a)〉

13 〈A, open, dialogue(ai, c→ ¬b)〉 QS13 = {c, ¬ b}
14 〈B, close, dialogue(ai, c→ ¬b)〉
15 〈A, close, dialogue(ai, c→ ¬b)〉

16 〈B, open, dialogue(ai, e→ ¬d)〉 QS16 = {e, ¬ d}
17 (e, 2) 〈A, assert, 〈{(e, 2)}, e〉〉
18 〈B, assert, 〈{(e, 2), (e→ ¬d, 2)},¬d〉〉 (e, 2) (e→ ¬

d, 2)
19 〈A, close, dialogue(ai, e→ ¬d)〉
20 〈B, close, dialogue(ai, e→ ¬d)〉

21 〈A, close, dialogue(wi, b)〉
22 〈B, assert, 〈{(¬e, 1)},¬e〉〉 (¬ e, 1)
23 〈A, close, dialogue(wi, b)〉
24 〈B, close, dialogue(wi, b)〉

Table 2.1: A warrant inquiry dialogue with dialogue topic b. Embedded argu-
ment inquiry dialogues are opened at lines 7, 10, 13 and 16. The commitment
stores increase gradually over time, they start out being empty and the addi-
tions can be read in the CS coloms. Whenever an argument inquiry dialogue
is opened, an associated query store is initiated, which can be seen in the QS
colom.

15



Kumeling uses the same protocols as Black and Hunter [5], but proposes two
improvements on their exhaustive strategy: the limited exhaustive strategy and
the smart original strategy. The limited exhaustive strategy has two variations,
the limited commitment strategy and the limited dialogue strategy. The changes
are implemented by creating different picking functions for assert moves:

• The limited commitment strategy picks the first legal assert move with a
conclusion for which no argument is constructable from the union of the
commitment stores.

• The limited dialogue strategy picks the first assert move that has a con-
clusion for which no argument was asserted earlier in the dialogue.

• The smart original strategy, puts extra constraints on assert moves: if the
argument made would change the dialectical tree, then they also have to
change the status of the root argument in order to be legal.

The possible improvements are measured by the size of the resulting dialogues,
size of the dialectical tree and whether or not they still adhere the properties of
soundness and completeness. The smart strategy still is sound and complete.
The limited strategies do not have both properties. In the case of argument
inquiry the limited strategies are sound, but they are not complete. In warrant
inquiry it is the other way around: the strategies are not sound, but they are
complete. During experimentation some of the strategies resulted in reduced
dialogue sizes. There however was no strategy between the three that reduced
the size of dialogues, reduced the size of the dialectical trees and still had the
properties of soundness and completeness. They concluded that it is difficult to
increase the performance of inquiry dialogues, without giving the agent access
to more information to base a strategy on.

A dialogue would look the same as the one earlier shown for Black and
Hunter [5] in table 2.1, except for minor differences in the notation of moves.

2.2.1.3 Yan et al.

Yan et al. [25] propose a different improvement on the framework of Black and
Hunter [5]. Yan et al. take inspiration from Black and Hunter but want to im-
prove upon it since Black and Hunter’s approach has stayed away from practical
applications. Yan et al. claim that the extension given by their paper results in
more simplified implementations with clearer and faster inquiry dialogues.

Yan et al. use their own argumentation system that is based on possibilistic
logic rather than defeasible logic like the systems of Black and Hunter [5] and
Kumeling [14]. The agents make use of possibilistic beliefs, which can either be
state beliefs or domain beliefs. Possibilistic beliefs are tuples of the form (φ, b)
where φ is a rule and p is a lower bound of the belief of that rule φ. Rules are
of the form of α1 ∧ ...∧αn → β, where α1 through αn are called the premises of
the rule and β the conclusion. The premises and the conclusion are all literals.
If the rule has zero premises, it is called a fact and is denoted by → β. If φ is a

16



fact the belief is a state belief, otherwise it is a domain belief. Arguments are
tuples of the form 〈Φ, (l, p)〉 where Φ is a set of beliefs and (l, p) is a possibilistic
literal, which is known as the claim of the argument.

Example 2.2.11 An example of an argument in this system is as follows: A
= 〈((→ a, 1), (→ c, 1), (a ∧ c → f, p2)), (f, p2)〉. p2 is a possibilistic value that
stands for probable.

Arguments can conflict on their conclusion and their premises. The knowledge
could be split in any way between the two agents, but in their example imple-
mentation they choose to have one agent only know about facts and the other
agent know about both facts and rules.

In addition to the query store and commitment stores used by Black and
Hunter [5], Yan et al. introduce two additional data structures which are needed
for their approach. They also introduce a small difference in the way the com-
mitment store gets updated. Yan et al. update the agents’s commitment stores
when assert wi moves are being made and when ai dialogues close. The possible
beliefs queue is a queue used in warrant inquiry dialogues that stores an agent’s
related beliefs of the current dialogue topic. The related beliefs are state beliefs
and domain beliefs from the agent’s knowledge base that have the current dia-
logue topic, or the negation of this topic, as its conclusion. The beliefs added
for a topic x thus are those believes that have a conclusion x or ¬x. Each agent
has their own possible beliefs queue. These beliefs are used when the agents
have to make a move.

Example 2.2.12 Consider a warrant inquiry dialogue being opened for the lit-
eral f. The possible beliefs queue of an agent P could then look as follows:
PBQP (f) = {(a ∧ b ∧ c→ f, p1), (d→ ¬f, p1)}

The result store is a set of tuples that stores the intermediate results of warrant
inquiry dialogues. The purpose of the result store is to prevent having to do
repetitive and duplicate work during dialogues.

Example 2.2.13 A result store storing the results of two warrant inquiry dia-
logues could look as follows: {〈a, 〈T, 1〉〉, 〈b, 〈U, null〉〉}. The first element stores
the result of a warrant inquiry dialogue with topic a and as a result the value
true with a probabilistic value of 1. The second element is the result of a warrant
inquiry dialogue with topic b that is not resolved yet.

Yan et al. use the same set of locutions and moves as Black and Hunter [5],
but use a slightly different notation for moves. The format Yan et al. use
{agent, move type, dialogue type, topic} where agent is the identifier of the
agent making the move, move type is the type of move being made, dialogue
type is the type of the current dialogue and topic is the content of the move.

Example 2.2.14 Consider an assert move being made by agent A, in an ar-
gument inquiry dialogue that asserts b based on the result of an earlier com-
pleted warrant inquiry dialogue with topic b. This move would look as follows:
〈A, assert, ai, (T → b, 1)〉.

17



The tuple (T → b, 1) is the outcome of an earlier warrant inquiry dialogue
with topic b, stored in the result store, where T stands for true and 1 is the
possibilistic value of belief.

Example 2.2.15 Consider an open move being made by agent A for a warrant
inquiry dialogue with as topic the literal b. This move would look as follows:
〈A, open,wi, b〉

Yan et al. propose improvements upon the protocols defined by Black and
Hunter [5], which results in similar but more optimized protocols. Their proto-
cols, here referred to as adjusted protocols, are defined as follows:

• Adjusted argument inquiry (AI) protocol:

1. If the query store is empty, make a close move for the current dia-
logue.

2. Else if one of the topic’s premises is not yet in the query store, make
an open warrant inquiry dialogue move with that premise as the
topic.

3. Else if the premise for the argument of the topic is in the result store,
an assert move is made for that premise.

4. Else if the premise for the argument of the topic is not in the result
store, an assert move will be made for the negation of that premise.
This also results in two following close moves since the agents can
not prove the current premise, and thus also the current argument.

• Adjusted warrant inquiry (WI) protocol:

1. If the possible beliefs queue is empty, make a close move for the
current dialogue.

2. Else if the first element of the possible beliefs queue is a state belief,
make an assert move for this belief.

3. Else if the first element of the possible beliefs queue is a domain
belief, make an open argument inquiry dialogue move for that belief.

Note that the original protocols of Black and Hunter [5] generate and return
a set of legal moves. The adjusted protocols stop whenever they find their
first legal move, resulting in always returning only one move. The original
and adjusted protocols also differ in they way they handle sub-dialogues. The
original protocols allow for warrant inquiry dialogues to have multiple embedded
argument inquiry dialogues. The adjusted protocols also allow these kinds of
sub-dialogues, but additionally they allow argument inquiry dialogues to have
embedded warrant inquiry dialogues.

The adjusted dialogues terminate at the same moment when the original
dialogues terminate: when both agents make a close move in succession. The
outcome of an adjusted argument inquiry dialogue is a belief created from the
consequent of the rule that is the topic and a belief value if all the premises of
the topic are true. If not all the premises are true, the outcome is null.

18



Example 2.2.16 The outcome of an adjusted argument inquiry dialogue with
topic x → a could be as follows: (a, p2), where p2 is a possibilistic value that
stands for probable.

The outcome of an adjusted warrant inquiry dialogue can be calculated using
two different algorithms. Both these algorithms split the made commitments
into two sets, one being in support of the topic and one being against the topic.
The first algorithm then calculates the greatest lower bound of belief for each
of the sets. The set with the highest value wins and decides the outcome. If
the values are the same, the set with the highest amount of elements with that
value wins. If these are equal again, all elements with that value are removed
from the sets and the algorithm restarts. The second algorithm they propose
only compares the elements from both sets with the highest value once and does
not loop. If the set in support of the topic wins, the outcome will be a tuple of
T and the value of the lower bound of belief. If the set against the topic wins
the outcome will be a tuple of F and the value of the lower bound of belief. In
the case of a draw the outcome is a tuple of U and null.

Example 2.2.17 The outcome of an adjusted warrant inquiry dialogue with
topic b could be as follows:〈T, 1〉.

Yan et al. their improvements are primarily made on the protocols. Since
the adjusted protocols only result in at most one legal move, the strategy used
in the system is simple: pick the one legal move given by the protocol. The
protocol only gets overruled when in an argument inquiry dialogue one of the
premises of the topic is the topic of an unclosed warrant inquiry dialogue. In that
case both agents will make a close move and the query store of that dialogue
will be reset to the empty set. This is called the fast end strategy and has
the purpose of preventing endless loops from happening in the dialogues. The
changes made in the protocol result in more clearly structured and more efficient
dialogues according to the authors. They claim that, because their system
allows the reasoning to be performed in well-defined steps and because their
system solves problems one-by-one, their system avoids unnecessary complexity
and uncertainty, which gives a more clear and efficient system. They, however,
do not give any formal proofs or an empirical comparison to other systems to
support these claims.

Yan et al. implemented the system in a web application used for diagnosing
dementia. Domain experts model the knowledge of the subject and insert it
in the domain repository, which is used by the domain agent, who resembles a
domain expert, to reason. Other knowledge known by regular professionals can
be inserted as well, but this knowledge is stored in the actor repository. The
domain knowledge is stored as state beliefs and their possibilistic values are
determined using scales that are linked to the symptoms. This repository and
a database with knowledge about a specific patient is used by the professional
agent, who resembles a novice physician, to reason. The two agents will perform
an inquiry dialogue together and based on their beliefs a conclusion is deducted.
An example of a warrant inquiry dialogue using this system from their paper is
shown below in table 2.2.

19



t mt PBQPA PBQDA QS
1 PA, open, wi, f PBQ(f)={(Φ2, p2)}
2 DA, open, ai, (Φ1, p1) PBQ(f)={(Φ1, p1), (Φ3, p1)} QSΦ1={a,b,c}
3 PA, open, wi, a PBQ(a)={(a, 1)} PBQ(f)={(Φ3, p1)} QSΦ1={b,c}
4 DA, close, wi, a PBQ(a)={}
5 PA, assert, wi, (T → a, 1) PBQ(a)={}
6 DA, close, wi, a
7 PA, close, wi, a

8 DA, open, wi, b PBQ(b)={} QSΦ1={c}
9 PA, close, wi, b PBQ(b)={}
10 DA, close, wi, b QSΦ1={}
11 PA, close, ai, (Φ1, p1)
12 DA, close, ai (Φ1, p1)

13 PA, open, ai, (Φ2, p2) PBQ(f)={} QSΦ2={a,c}
14 DA, assert, ai, (T → a, 1) QSΦ2={c}
15 PA, open, wi, c PBQ(c)={} QSΦ2={}
16 DA, assert, wi, (T → c, 1) PBQ(c)={(c,1)}
17 PA, close, wi, c PBQ(c)={}
18 DA, close, wi, c
19 PA, close, ai, (Φ2, p2)
20 DA, close, ai, (Φ2, p2)
21 PA, close, wi, f
22 DA, open, ai (Φ3, p1) PBQ(f)={} QSΦ3={d}
23 PA, open, wi, d PBQ(d)={(d,1)} QSΦ3={}
24 DA, close, wi, d PBQ(d)={}
25 PA, assert, wi, (T → d, 1) PBQ(d)={}
26 DA, close, wi, d
27 PA, close, wi, d
28 DA, close, ai, (Φ3, p1)
29 PA, close, ai, (Φ3, p1)
30 DA, close, wi, f
31 PA, close, wi, f

Table 2.2: A warrant inquiry dialogue with dialogue topic f taken from Yan et
al. . Embedded argument inquiry dialogues are opened at lines 2, 13 and 22.
Further embedded warrant inquiry dialogues are opnened at lines 3, 8, 15 and
23. Whenever an argument inquiry dialogue is opened, an associated query store
is initiated, which can be seen in the QS colom. QS and PBQ coloms only show
the new or updated information. For brevity sake, Φ1 = (a ∧ b ∧ c → f),Φ2 =
(a ∧ c → f) and Φ3 = (d → ¬f). Commitment store and result store are not
shown in this example. Commitment stores get updated by assert wi moves
and when ai dialogues terminate. Result store is updated when wi dialogues are
terminated.

20



2.2.1.4 Parsons et al.

Parsons et al. [16] describe a system for information-seeking, inquiry and per-
suasion dialogues. They try to give detailed characteristics of outcomes of argu-
mentation dialogues. The agents can have different attitudes regarding assertion
and acceptation. These attitudes determine how strict the agent is when as-
serting and accepting propositions. In their research one combination of these
attitudes is tested, namely thoughtful and skeptical. Agents that are thoughtful
and skeptical may assert propositions for which they can construct an accept-
able argument and accept propositions if there is an acceptable argument for
that proposition. These agents are not able to mislead each other, but there is
a possibility that they end up concluding something together of which they are
both sure that it should not hold.

Example 2.2.18 Consider a dialogue between agents A and B. Let agent A
have a knowledge base {¬c, a, a→ b} and agent B have a knowledge base {¬c→
¬b} where ¬c and ¬c → ¬b have a higher preference than all other formulas.
If agent A asserts b, agent B will have to accept that assertion even though
according to preferences the only acceptable outcome is ¬b.

This example shows that the system does not adhere the properties of soundness
and completeness, which can be seen as positive for some domains. In other
domains such as mechanism design however you do want the outcome to be
consistent and predetermined. They finally show that by changing the tactics
used by agents you can ensure whether soundness and completeness are present
or not. This allows for choosing the right type of dialogue for the context you
are using it in. Further on in this section, when looking at the protocol used,
we will elaborate on how you can exactly change the protocols to allow for
soundness and completeness to be present or not.

Parsons et al. use a system that is inspired by Dung [6], but with an added
preference ordering for facts. They split the beliefs, which are propositions,
amongst the two agents. Each agent has a public commitment store CS tracking
their made commitments and a private knowledge base Σ. Arguments are tuples,
the first element being a set of formulae from which the conclusion can be
inferred and the second element being the concluding proposition.

Example 2.2.19 An example of an argument using the above mentioned sys-
tem is as follows: ({a, a→ b, b→ c}, c).

Arguments can be attacked on their support by conflicting facts. Conflicts are
resolved using a preference ordering.

The move set used by Parsons et al. is the largest out of the considered
approaches and consists of four moves: assert, accept, challenge and question.
Assert allows the agent to assert a propositional formula or a set of formulas
that form the support of an argument. Accept is the counterpart of assert
and allows an agent to accept a propositional formula or a set of propositional
formulas brought forward by another agent. Challenge allows an agent to force
the other participant to give his explicit argument supporting the challenged

21



propositional formula. Question is used to query the other participant about a
propositional formula. Moves are of the form of movetype(p) or movetype(S)
depending on whether the subject of the move is a propositional formula or a
set of propositional formulas that form the support of an argument. The agents’
commitment stores get updated when making assert moves or accept moves.

Example 2.2.20 Consider an assert move being made that gives the support
for the argument ({a, a→ b, b→ c}, c), that would look as follows: assert({a, a→
b, b→ c}).

Example 2.2.21 Consider a question move being made that asks the other
agents opinion on proposition p. This move would look as follows: question(p).

Example 2.2.22 Consider an accept move being made after the other agent has
asserted the formula {a→ b}. This move would look as follows: accept(a→ b).

Example 2.2.23 Consider a challenge move being made after the other agent
has asserted the formula {a→ b}. This move would look as follows: challenge(a→
b).

Parsons et al. give three protocols, for information-seeking, inquiry and per-
suasion. Since we are looking at inquiry approaches, only their inquiry protocol
is defined below:

• Inquiry protocol:

1. For the inquiry dialogue it is predetermined what proposition p is
going to be the topic of the dialogue. The dialogue starts out with
an agent A making an argument for p with antecedent q.

2. Agent B then either accepts or challenges this assertion based on his
attitude.

3. If B challenges, A will reply with an assert for the support of an
argument for the last challenged proposition.

4. B then goes back to step 2 and goes over all the propositions asserted
by A and either accepts or challenges them.

5. B then asserts q, an argument for q or is undecided and makes an
assert(U) move.

6. If the unified commitment sets of A and B now include an acceptable
argument for p, both agents accept p and the dialogue ends.

7. If not the dialogue goes to step 5 but agent A will have to assert an
argument t for r and they try to accept it again.

The purpose of this inquiry protocol is for two agents to answer a question
together of which the question is not known to either at the start. The inquiry
dialogues of Parsons et al. terminate when the unified commitment sets of the
agents include an acceptable argument for the topic or when they can not reach

22



that conclusion and as a result of that one agent has to make an assert(U) move.
The outcome depends on what commitments have been made by the agents
when the dialogue finishes. If both agents have the topic in their commitment
store, the outcome is the topic. If it is not possible for the agents to agree upon
the topic, the dialogue will end with one agent making an U move and with an
empty result.

Earlier, in example 2.2.18, we showed that agents using this protocol can end
up concluding something of which they are both sure that it should not hold.
This property holds for all their protocols, namely: information-seeking, inquiry
and persuasion. They claim that it can be seen as beneficial to have the outcome
of the dialogue not depend on only the agents’ knowledge, but also on the order
in which the agents make their moves. This non-predeterminism, as a result
of the system lacking the properties of soundness and completeness, allows for
rhetorical ability and smart tactics to be built in to the agents. They also argue
a different view, which says that outcomes should be predetermined just like
economic mechanisms where the order of actions performed does not influence
the outcome of, for example, an auction. The key to making the protocols
deterministic lies within the acceptable joint knowledge outcomes, the set of
acceptable propositions that can be proven by creating arguments using the
union of both the agents’ knowledge bases. To be deterministic, the protocol
has to ensure all propositions needed to establish these outcomes is asserted.
The simplest, but also most computationally intensive, method to achieve this
is simply asserting all the propositions in both the agents’ knowledge bases. A
more efficient alternative is to assert those propositions that have a bearing on
the acceptability of the dialogue topic. This, however, is difficult to determine
since the connections between arguments attacking the topic, and attacking
these arguments, is revealed only over time during the dialogue. The only viable
solution they finally give is modifying the protocol in three ways. Firstly, any
response to a challenge must assert the support of all arguments in support of
the challenged proposition. Secondly, at every step in the proof, every possible
implication that might be the next step of the proof has to be asserted. Finally,
agents should not be restricted to have turns anymore.

Parsons et al. do not define strategies for their system, the agents simply
have to follow protocol similarly to the approach of Yan et al. [25]. Parsons
et al. do not focus on optimizing their dialogues in the amount of moves and
the computational complexity. The main purpose of their research is to give
a characterisation of the outcome of their dialogue system. They then showed
that you can change whether or not the system has the properties of soundness
and completeness by changing the protocol used by the agents.

An example of an inquiry dialogue with topic p in this system is given below:

23



t mt ΣP ΣC CS(C) CS(P)
0 q → p, r → p r
1 P: assert(r → p) r → p
2 G: accept(r → p) r → p
3 G: assert(r) r → p, r

Table 2.3: An inquiry dialogue with topic p. Content of the knowledge bases
is given at t = 0 and the columns of the commitment stores have entries when
they get updated. The outcome of this dialogue is p since there is an acceptable
argument for both agents in the union of their commitment stores.

2.2.1.5 Testerink, Odekerken and Bex

Testerink, Odekerken and Bex [23] propose a method for agent inquiry policies.
The aim for this method is for it to be more efficient than exhaustive strategies in
inquiry dialogues. The paper proposes an approximation algorithm for stability
using labelling. A state is stable when new knowledge will not change the
outcome of the argumentation anymore. This stability is used to determine
optimal policies, which are used for strategies. The optimal policy is the policy
that achieves a stable state with the least amount of actions taken. Their
proposed system is not yet a dialogue system, but it is a querying system for an
agent.

Testerink, Odekerken and Bex define and use a structured argumentation
framework similar to ASPIC+ [18] combined with Dung’s grounded semantics
for abstract argumentation [6]. The argumentation setup consists of a topic
language L, knowledge base K, defeasible rules R, queryable literals Q and a
topic τ ∈ L.

Example 2.2.24 An argumentation setup for a simple fraud scenario would
look as follows:

• L = {f,¬f, cp,¬cp, c, p,¬p, s,¬s, w,¬w}

• R = {p⇒ c, s⇒ c, (¬cp, c)⇒ f, w ⇒ cp, w ⇒ ¬f}

• Q = {p, s, w, cp}

• K = {p,¬cp, w}

• τ = f

Testerink, Odekerken and Bex assume a hard split of the knowledge between
the participants. One agent has access to all the defeasible rules. The other
participant has knowledge of how to answer to queries asked by the agent. This
results in observations, which are non-defeasible, being added to the knowledge
base of the agent after performing queries. These observations, being non-
defeasible, cannot be attacked or challenged by other knowledge. The defeasible
rules and observations can be used for further inferencing. The agent answering
the questions could have a knowledge base containing facts, or it could come

24



to these facts by using rules but this depends on how one would implement the
system.

Arguments in this system are defined recursively. The base case of an argu-
ment has the form of ∅ => c where c is the conclusion derived from an empty
set of premises. More complex arguments rely on other arguments and are of
the form of A1....Am ⇒ c where A1 through Am is a set of arguments known
as the premises and c is is the conclusion of the argument. Base arguments
can be inferred from an argumentation setup when the conclusion c exists in
the knowledge base K of the agent. A complex argument can be inferred from
an argumentation setup when A1 through Am can be inferred from that setup
and there is a rule c1...cm ⇒ c in the set of rules R, such that c1...cm are the
conclusions of A1 through Am. Additionally, c is not allowed to occur in any of
the arguments A1 through Am.

Example 2.2.25 An example of an argument in this system is as follows: A2 :
A1 => c, where A1 : ∅ => p.

Arguments can attack each other on their premises and conclusions, as long as
the premise or conclusion is not an observation. Arguments can attack other
arguments on their sub-arguments as well. An argument defends another argu-
ment when it attacks all its attackers. Arguments cannot be cyclic.

Example 2.2.26 Consider the following three arguments, a subset of the ar-
guments that can be inferred from the argumentation setup given in example
2.2.24:
A1:∅ => ∼cp
A2:∅ => w
A3:A2 => cp
Argument A1 attacks argument A3, since the conclusion of A1 negates the con-
clusion of A3 and the conclusion of A3 is not an observation. The conclusion
of A3 also negates the conclusion of A1, but A3 does not attack A1, since the
conclusion of A1 is an observation from the agent’s knowledge base K.

In the system of Testerink, Odekerken and Bex, the agent has a simple move
set consisting of only one possible move, the querying of observable literals. This
move is of the form of ”x?” where x is the proposition being queried.

Example 2.2.27 Consider an agent querying for the queryable literal s. This
move would look as follows: s?.

This move has a similar purpose as the question move used in Parsons et al. [16].
The agent uses the concept of stability to determine what queries it should

perform. An argumentation setup is stable when, given the available queries,
no new arguments can be added that would change the acceptability of the
dialogue topic. Stability of an argumentation setup is determined using the
grounded extension of its inferred arguments. The grounded extension is the
smallest set of arguments such that there are no conflicts within the set and so
that it contains all acceptable arguments.

25



Example 2.2.28 Consider the argumentation setup described in example 2.2.24.
The inferred arguments from this setup are as follows:
A1:∅ => p A5:∅ => w
A2:∅ => ∼cp A6:A5 => cp
A3:A1 => c A7:A5 => ∼f
A4:A2A3 => f
Argument A2 attacks argument A6 and arguments A4 and A7 attack each other.
The grounded extension of this setup consists of the following arguments: A1,
A2, A3 and A5.

Stability of an argumentation setup is based on all its future setups. The future
setups of an argumentation setup are all the setups where the still remaining
queryable literals are added to the agent’s knowledge base, as either positive
or negative. An argumentation setup is stable when all of its future setups,
including the setup itself, follow one and the same of the following cases:

• Unsatisfiable: the case unsatisfiable holds when there is no argument for
the topic τ in the set of inferred arguments of the setup.

• Defended: the case defended holds when there is an argument for the topic
τ in the grounded extension.

• Out: the case out holds when there is an argument for the topic τ in the
set of inferred arguments of the setup, but all arguments for τ are attacked
by an argument in the grounded extension.

• Blocked: the case blocked holds when there is an argument for the topic
τ in the set of inferred arguments of that setup but not in the grounded
extension of that setup and at least one argument for τ is not attacked by
an argument from the grounded extension.

Example 2.2.29 Consider the argumentation setup defined in example 2.2.24
and the arguments, attack relations and grounded extension from example 2.2.28.
This argumentation setup and all its future setups are of the case blocked, since
there exist arguments for the topic f and its negation that are both outside of
the grounded extension. The only queryable that is left is s, but s and ¬s cannot
influence the situation. This argumentation setup thus is a stable setup.

Stability can be calculated using a brute-force method. This method con-
siders all possible future setups where all queries have been executed, calculates
their grounded extensions and determines if their case is different from the cur-
rent setup. If it is the same for all setups, the setup is stable. When a stable
state is reached, the outcome regarding the acceptability of the topic is deter-
mined based on what case applies. This outcome is thus based on whether or
not an argument for the topic exists in the grounded extension. If there ex-
ists one, the outcome is that the topic is defended and thus acceptable. The
other three cases, unsatisfiable, out and blocked, all result in a topic that is not
acceptable.

26



The protocol that the querying agent has to follow in the approach of Tes-
terink, Odekerken and Bex is straightforward. The agent has one move that
he is allowed to make, the querying of observations. The agent then gets a
response from the other agent. The responding agent either confirms the ques-
tioned literal by replying x, or denies the questioned literal by replying ¬x. This
commitment is added to the knowledge base of the querying agent. The aim of
this inquiry protocol is for the inquiring agent to form an opinion on the topic
of the dialogue. The agent stops querying when either a stable state has been
reached or when the set of queryable literals has been exhausted.

Testerink, Odekerken and Bex do not provide explicit strategies for their
system. They do give an optimal query policy, which can be used to determine
a strategy for inquiry dialogues. They provide multiple optimizations in their
system that could lead to faster and more optimized dialogues. The notion
of stability allows agents to stop asking questions when it is certain that the
acceptability of the topic will not change anymore. Because the agent can stop
querying sooner, this will result in shorter dialogues. Since calculating stability
is quite costly computationally, they also provide an approximation for stability
that is sound and results in a lower complexity algorithm. Assuming that the
agent being questioned can vary in responses to the given queries they also
define a Markov decision process that allows an agent, given these probabilities
of responses, to strategize towards a stable state as fast as possible using an
optimal querying policy. The MDP is defined as follows: the actions are the
available queries, the states are tuples of argumentation setup and a set of
queries, the transition function is the probability of getting a useful answer
to a query and the reward function is a negative value for each action. The
solution for the problem is thus maximizing the reward on this decision process
by minimizing the amount of queries done before reaching stability.

Since Testerink, Odekerken and Bex do not describe a dialogue system, an
example of a dialogue can not be given. An execution of the system would look
like a series of queries being performed in the form of x? and the other agent
replying with either x or ¬ x until the execution ends.

2.2.1.6 Fan and Toni

Fan and Toni [10] propose a single dialogue model that is capable of generating
multiple types of dialogues. The model they propose in their research is, for now,
limited to generating inquiry and information-seeking dialogues. Their approach
can model multiple dialogue types in a single dialogue model by using game
theoretical notations instead of defining separate protocols for each dialogue
type.

The approach of Fan and Toni is based on assumption-based argumenta-
tion, or ABA for short. ABA is an argumentation framework defined by Dung
et al. [7]. Fan and Toni adapt an existing dialogue model for assumption-based
argumentation, which is defined by themselves as well in Fan and Toni [8,9], in
order to obtain the general model. ABA serves as the underlying argumentation
formalism of their model. The model itself is neutral with respect to the cur-

27



rent dialogue type and changes behaviour based on its initialization. Dialogues
are modelled as games, in which utterances correspond to actions. The differ-
ent dialogue types are realized by instantiating different utility profiles for the
agents, resulting in them performing different actions and strategies. Of impor-
tance are the legal-move functions that determine what moves are legal and the
strategy-move functions that determine what moves the agents should make.
Legal-move functions enforce that there are no repeated utterances towards the
same target in a dialogue. Fan and Toni face a challenge that is twofold, firstly
they must map dialogue notions to game-theorectic notions in a generic way, so
that dialogue models are mapped to game models. Secondly, they must define
different utility profiles that are able to model agents’ behaviour in the different
types of dialogues.

Agents in this system have internal private beliefs and they share information
with each other through a shared language. This language is that of ABA,
and is used to exchange rules, assumptions and contraries using an underlying
logical language L. Assumptions are literals and contraries are negations of
such literals. Rules are of the form β0 ← β1, ...., βm. In a rule β0 is known as
the head of the rule and β1, ..., βm is known as the, possibly empty, body of the
rule. The head and body of the rule are all elements of L and the body of the
rule cannot contain duplicates.

Example 2.2.30 An example of a rule in this system is as follows:
boy innocent← boy not proven guilty.

Agents are equipped with an ABA framework that represents their knowledge
and are often denoted by this framework.

Example 2.2.31 An agent α in this system can be denoted as its ABA frame-
work as follows: α = 〈L,R1,A1, C1〉, where L is the underlying logical language,
R1 are the rules known to the agent, A1 are the assumptions known to the agent
and C1 are the contraries known to the agent.

The joint framework of two agents, representing their shared knowledge, is de-
noted as the union of the agents’ individual ABA frameworks. Both the individ-
ual frameworks and the joint framework are flat, meaning that the frameworks
have no assumptions in the heads of rules and that all assumptions have con-
traries.

Example 2.2.32 The joint framework FJ of two agents is denoted as follows:
FJ = 〈L,R1 ∪ R2,A1 ∪ A2, CJ〉, where CJ(α) = C1(α) ∪ C2(α), for all α in
A1 ∪ A2.

Utterances in this system are defined as tuples 〈ai, aj , T, C, ID〉 where ai is the
speaker agent, aj is the target agent, T is the target utterance of the move, C is
the content of the move and ID is the identifier of the move. The content C of a
move can be one of the following: a claim, a rule, an assumption or a contrary.

Example 2.2.33 An example of a move in this system that utters a rule is as
follows: 〈α, β, 1, rl(boy innocent← boy not proven guilty), 2〉. In this move, rl

28



indicates that a rule is being uttered and the specific rule is notated within the
following parentheses. The head and body of the rule are both elements of L.

Dialogues are defined according to the earlier defined dialogue system of Fan and
Toni [8, 9]. Dialogues are a sequence of utterances that target earlier made ut-
terances, starting with a claim utterance. A strategy-move function determines
what moves the agents should make. A strategy-move function is a mapping
from the legal moves of the current dialogue, generated by some legal-move
function, to the set of utterances. The system described in Fan and Toni [10]
does not assume a concrete legal-move function, but rather considers the set
of all legal-move functions. They give three different strategy-move functions,
which are used to define the possible behaviours of the agents.

• The thorough strategy-move function constructs dialogues that contain
all information that is relevant to the topic from both agents. Agents
following this strategy utter all their rules, assumptions and contraries.
These dialogues have the desirable property that admissible arguments
obtained in the dialogue are also admissible in the joint ABA framework
of the two agents.

• The non-attack thorough strategy-move forces the agents using it to utter
all rules and assumptions, but not contraries that are related to some
utterance in the dialogue.

• Agents using the pass strategy-move function will only make the initial
claim move of the dialogue, setting the dialogue topic. Besides this the
agent does not utter any rule, assumption or contrary in the dialogue.

Next, they define a mapping from dialogue notions to game theory notions, in
order to study the behaviour of the agents in a game based framework. The types
for agents α and β, indicating what behaviour they should follow, are defined as
θα and θβ respectively. The action space of an agent, the actions that the agents
can make in a game, is its possible utterances. The dialogue strategy of an agent,
the strategy followed by the agent in this game, is the set of utterances made
by that agent in a dialogue. Because this set of utterances is determined by the
strategy-move function that the agent uses, we can equate a dialogue strategy
with the strategy-move function used by the agent in this dialogue. The game-
theoretic outcome of the dialogue is equal to the ABA framework drawn from
the dialogue, since this framework represents all information disclosed by the
agents. These notions are all generic and do not depend on the dialogue type.

Fan and Toni define two types of inquiry dialogues, which they call I-Type
I dialogues and I-Type II dialogues. The goal of I-Type I dialogues is to test
the admissibility of the topic in FJ . This is comparable to warrant inquiry
dialogues as defined by Black and Hunter [5]. The goal of I-Type II dialogues is
to test whether an argument for the topic exists in FJ . This is comparable to
argument inquiry dialogues as defined by Black and Hunter. Arguments in ABA
are deductions of claims using rules. An argument for the claim β is a finite
trees where the root is labelled with the claim of the argument β. The leaves

29



of this tree are labelled with either assumptions from the premises of the rule
or τ representing an empty body. Non leaves are marked β′ with, as children,
the premises of a rule with as its conclusion β′. An argument A1 attacks an
argument A2, when the claim of A1 is a contrary of one of the assumptions in
A2.

The utility functions of agents in I-Type I dialogues punishes the agents for
not having disclosed rules, assumptions and contraries that would be related
to the dialogue outcome and for every element of the outcome that was not
given by the agent. Rules, assumptions and contraries used to build a dispute
for an argument are related to the claim of the argument. This utility function
accurately reflects the agents’ need to find out the acceptability of the topic
with respect to their joint knowledge. The authors give a theorem indicating
that the thorough strategy-move function is the dominant strategy for agents
using this utility function. The common good of two agents in a dialogue is
defined as the outcome of a social choice function. This social choice function
has as its outcome an ABA framework 〈L,Ri1,Ai1, Ci1〉 containing the rules and
assumptions from FJ related to the topic and the contraries of all assumptions
in the social choice outcome. The common good thus is that any information
related to the claim of the dialogue topic in the agents’ individual knowledge
bases must be disclosed. Dialogues constructed using the thorough strategy-
move function meet this common good. An example of an I-Type I dialogue is
given in table 2.4.

〈α, β, 0, claim(boy innocent), 1〉
〈β, α, 1, rl(boy innocent← boy not proven guilty), 2〉
〈α, β, 2, asm(boy not proven guilty), 3〉
〈β, α, 3, ctr(boy not proven guilty, guilty), 4〉
〈α, β, 4, rl(guilty ←W1), 5〉
〈β, α, 5, asm(W1), 6〉
〈α, β, 6, ctr(W1, not W1), 7〉
〈α, β, 7, rl(not W1← contradicted), 8〉
〈α, β, 8, rl(contradicted←), 9〉
〈β, α, 4, rl(guilty ←W2), 10〉
〈α, β, 10, asm(W2), 11〉
〈β, α, 11, ctr(W2, not W2), 12〉
〈α, β, 12, rl(not W2←W2 has poor eyesight), 13〉
〈β, α, 13, rl(W2 has poor eyesight←), 14〉

Table 2.4: An I-Type inquiry dialogue. The game-theoretic outcome is the same
as the joint framework FJ of the two agents.

Behaviour for I-Type II dialogues is created by altering the utility functions.
Agents in this type of dialogue are only concerned with finding all arguments for
the topic, so it is not in their interest to utter contraries creating arguments that
could attack the topic. The utility function punishes the agents for not having
disclosed rules and assumptions that are rule-related to the topic and for each

30



element of the outcome that was not given by the agent. Rules and assumptions
used to construct an argument are rule-related to the claim of the argument.
The authors give a theorem indicating that the non-attack thorough strategy-
move function is the dominant strategy for this utility function. The outcome of
the social choice function is an ABA framework 〈L,Ri1,Ai1, Ci1〉 that contains
all rules and arguments from the joint outcome FJ that are rule-related to the
topic, but contains no contraries. The common good thus is finding all rules and
assumptions that form arguments for the dialogue topic. Dialogues generated
using the non-attack thorough strategy-move function meet this common good
for both agents.

2.2.1.7 Summarizing

We have looked at six different systems for inquiry dialogues. These systems all
have their own characteristics, strengths and weaknesses.

System Knowledge bases Locutions
Black and Hunter 2009 Defeasible rules and

defeasible facts
Open, close, assert

Kumeling 2018 Defeasible rules and
defeasible facts

Open, close, assert

Yan et al. 2018 Possibilistic beliefs Open, close, assert
Testerink, Odekerken and Bex 2019 Defeasible rules and

observations
Querying literals

Parsons et al. 2003 Propositions Assert, Accept, Chal-
lenge, Question

Fan and Toni 2015 Rules, assumptions
and contraries

Claim, rule, assump-
tion, contrary

Table 2.5: Comparing knowledge bases and locutions

Table 2.5 gives an overview of the types of knowledge and available locutions
in each of the approaches. Black and Hunter [5] and Kumeling [14] are based on
the same system. They are both based on defeasible logic and agents can make
open, close and assert moves. Yan et al. [25] use a similar system, but instead of
defeasible logic they make use of possibilistic logic. The available moves are the
same. Testerink, Odekerken and Bex [23] make use of defeasible logic. A differ-
ence with Black and Hunter [5] is that Testerink, Odekerken and Bex [23] make
use of observations, instead of the defeasible facts Black and Hunter use [5].
The agent of Testerink, Odekerken and Bex [23] has the simplest moveset out
of the considered approaches. The agent can only query for observations. The
approach of Parsons et al. [16] makes use of propositional formulas. Their ap-
proach has the largest moveset out of the approaches, together with the system
of Fan and Toni [10]. Agents can assert, accept, challenge and question propo-
sitional formulas. Agents in the system of Fan and Toni [10] have knowledge of
rules, assumptions and contraries. In their moves they can utter a claim for an

31



assumption from their knowledge, utter a rule, utter an assumption or utter a
contrary to some assumption.

System Protocol
Black and Hunter 2009 AI protocol and WI protocol
Kumeling 2018 AI protocol and WI protocol
Yan et al. 2018 Adjusted AI protocol and adjusted WI protocol
Testerink, Odekerken and Bex 2019 Can only query observations. Stops at stable state
Parsons et al. 2003 Varies between dialogue types
Fan and Toni 2015 Moves have to come from some legal-move function

Table 2.6: Comparing protocols

Table 2.6 gives an overview of the different protocols used in each of the
approaches. Black and Hunter [5] defined protocols for argument inquiry di-
alogues and warrant inquiry dialogues. These exact protocols were also used
by Kumeling [14]. Yan et al. [25] have proposed improvements for these two
protocols. Their improvements return only one legal move, in stead of the set of
legal moves that the protocols of Black and Hunter [5] return. They also allow
a deeper nesting of sub-dialogues. In the protocols of Yan et al. [25], warrant
inquiry dialogues can have nested argument inquiry dialogues and argument
inquiry dialogues are allowed to have nested warrant inquiry dialogues. In the
protocols of Black and Hunter [5], only warrant inquiry dialogues are allowed to
have nested argument inquiry dialogues. The simplest protocol is the one used
by Testerink, Odekerken and Bex [23]. This protocol allows the agent to make
one move, questioning literals, to which he then either gets a positive or a nega-
tive response. Parsons et al. [16] give multiple protocols, of which one for inquiry
dialogues. This protocol is rather simple and does not allow sub-dialogues. Fan
and Toni [10] have agents that have to follow legal-move functions. These are
functions that enforce that there are no repeated utterances towards the same
target in a dialogue. In their paper they do not assume a specific legal-move
function, but instead consider the set of all legal-move functions.

System Strategy
Black and Hunter 2009 Exhaustive strategy.
Kumeling 2018 Limited exhaustive strategy and smart original strategy
Yan et al. 2018 Pick the one legal move + Fast end strategy
Testerink, Odekerken and Bex 2019 Use the optimal policy as basis for strategies
Parsons et al. 2003 -
Fan and Toni 2015 Strategy-move functions

Table 2.7: Comparing strategies

Table 2.7 gives an overview of the different strategies used in each of the
approaches. The strategy used by Black and Hunter [5] is exhaustive and thus
asks each question that could have an impact on the dialogue. This can result in

32



many redundant moves being made, but it also results in favourable properties
such as soundness and completeness of the strategy. Kumeling [14] tries to
improve the exhaustive strategy so that less moves will be made whilst still
adhering the properties of soundness and completeness. This is realized by
creating more strict picking functions for assert moves in the strategy. Yan et al.
[25] do not use any variation of the exhaustive strategies. Instead their proposed
strategy is rather simple and comes down to picking the only legal move that is
returned by their adjusted protocols. They do not give any statements or proofs
that indicate their approach is still sound and complete. Testerink, Odekerken
and Bex [23] do not provide an explicit strategy to use in their system. Instead
they provide a policy that can be used to base a strategy on. The strategy
used by Parsons et al. [16] is the same as the one used by Yan et al. [25],
the strategy strictly follows the protocol and makes the one move it is told to
make. Fan and Toni [10] their agents decide what move to make based on their
strategy-move functions. In their inquiry dialogues, the agents make use of two
different strategy-move functions. In I-Type I dialogues the agents will utter all
information that is relevant to the topic. In I-Type II dialogues the agents will
utter all rules and assumptions relevant to the topic, but no contraries. These
strategy-move functions maximize the utility gained according to the related
utility functions of these types of dialogues.

System Optimizations
Black and Hunter 2009 None
Kumeling 2018 Limited strategy and Smart strategy
Yan et al. 2018 Protocol only returns 1 legal move
Testerink, Odekerken and Bex 2019 Concept of stability and approximation of stability
Parsons et al. 2003. None
Fan and Toni 2015 None

Table 2.8: Comparing optimizations

Table 2.8 gives an overview of the different optimizations in each of the
approaches. Since Black and Hunter [5] use a relatively inefficient exhaustive
strategy, we will use their approach as a base case against which we can compare
the optimizations used by other approaches. The optimizations of Kumeling [14]
are realised in the used strategies of the system. In the end none of the proposed
strategies was able to both keep the properties of soundness and completeness
and decrease the size of either the dialogue and the generated dialectical tree.
Yan et al. [25] have optimized their approach on the protocol side. Their pro-
tocol only returns one legal move. This results in a more efficient system than
that of Black and Hunter [5]. They also claim that their dialogues have a clearer
structure because of the additional nesting they allow for sub-dialogues. Tes-
terink, Odekerken and Bex [23] have proposed multiple optimizations for inquiry
dialogues. Firstly, the notion of stability allows an agent to stop querying when
the outcome is already certain. Secondly, because stability can be costly to
compute, they also give an approximation algorithm to calculate stability. This

33



approximation algorithm is sound, but not complete. This means that it can
mislabel some stable states as not yet stable.

All the approaches have their own measures and priorities of performance.
Black and Hunter [5] stress that their approach is for a safety critical domain and
that it is important to them that the approach gives guarantees for soundness
and completeness. Kumeling [14] also values these properties, but in additions
tries to increase the performance in dialogue length and size of dialectical trees
as well. Yan et al. [25] also want more efficient dialogues than that of Black
and Hunter [5]. They want their approach to be feasible in real life instead of
just as a piece of research. Additionally they want their dialogues to be more
clear and structured than those of Black and Hunter [5]. Testerink, Odekerken
and Bex [23] their main focus lies on dialogue length, computational complex-
ity of dialogues and explainability of dialogues. Parsons et al. [16] measure
whether or not their protocols are deterministic or not. They argue that for
certain applications soundness and completeness are a benefit whilst for other
applications it is not wanted. Fan and Toni [10] show a interesting approach in
which they model multiple types of dialogues into one model using game-theory.
They establish a generic correspondence between dialectical concepts and game
notions. Altering the utility profiles used by the agents is enough to model the
behaviour of a different type of dialogue.

2.2.2 Systems for information-seeking

A dialogue type that is similar to inquiry is that of information-seeking. Not a
lot of research has been done yet on this topic. In information-seeking dialogues
one agents seeks to answer some question made by the other agent. Information-
seeking dialogues could be used to model an intake scenario by a police officer,
just like inquiry dialogues can. This makes these system interesting for us to
discuss and reflect on in this literature review.

2.2.2.1 Parsons et al.

Besides their inquiry protocol, Parsons et al. [16] also define a protocol for
information-seeking dialogues. This protocol is made for the same system that
is used by Parsons et al. [16] for their inquiry dialogues. The difference solely
being the used protocol:

• Information-seeking:

1. The information-seeking protocol starts with an agent A making a
question move towards an agent B.

2. B will then reply positively, negatively or indecisively with an assert
move.

3. If B replies either positively or negatively then agent A will either
accept or challenge that assertion based on his attitudes. If A accepts
then the dialogue is over.

34



4. If A challenges then B will have to reply with assertions that make
up the support of their earlier asserted argument.

5. The dialogue then returns to step 3 where A will have to choose to
either accept or challenge the made assertions.

This protocol terminates when agent B makes an U move because there is a lack
of knowledge, when an agent repeats a locution or when agent B has accepted
either p or ¬p. The outcome of the dialogue then depends on the opinions of
both agents of topic p. When both agents have p in their set of acceptable
knowledge outcomes the outcome of the dialogue is p. When both agents have
¬p in their set of acceptable knowledge outcomes the outcome of the dialogue is
¬p. An acceptable knowledge outcome is a proposition x, which is the conclusion
of an argument that resides in the union of the agent’s knowledge base and the
other agent’s commitment set.

2.2.2.2 Fan and Toni

Besides the two types of inquiry dialogues Fan and Toni [10] show in section
2.2.1.6, they also show how agents in their system can perform information-
seeking dialogues. Information-seeking dialogues are performed by two agents,
the questioner agent and the answerer agent. In these dialogues, the questioner
agents utters a claim which he desires to be confirmed. This is the only con-
tribution in the dialogue given by the questioner. The answerer responds by
uttering all information information in his knowledge base that is in support of
the topic.

The utility functions that allow the agents to perform a dialogue like the one
described above, are as follows: the questioner agent gets utility for uttering
the initial claim, and nothing else. The answerer agents is punished for not
uttering rules and assumptions that are related to the topic or to other rules
in the outcome of the dialogue. The answerer agent also is punished for all
the elements of the outcome that did not come from his knowledge. These
utilities result in the pass strategy-move function being the dominant strategy
for the questioner and the non-attack thorough strategy-move function being
the dominant strategy for the answerer, as given by the authors in a theorem.
The outcome of the social choice function, denoting the common good of the
two agents, is an ABA framework 〈L,Ri1,Ai1, Ci1〉 containing all rules from the
answerer that are rule-related to the topic, all assumptions from the answerer
that are rule-related to the topic and no contraries. This outcome means that the
common good for both agents is that the answerer agent gives all his information
in support of the claim, but nothing else. The agents meet the common good
when they follow the strategy-move functions that are also their individual
dominant strategies. An example of an information-seeking dialogue in this
system is shown in table 2.9.

35



〈α, β, 0, claim(w1 not believable), 1〉
〈β, α, 1, rl(w1 not belieable← w1 contradicted by w2), 2〉
〈β, α, 2, rl(w1 contradicted by w2←), 3〉

Table 2.9: An information-seeking dialogue where α is the questioner and β is
the answerer.

2.3 Other strategies

Besides gathering inspiration from just information-seeking dialogues and in-
quiry dialogues, we can also look at systems that perform other types of dia-
logues. The most research has been done on the topic of persuasion dialogues.
Interesting findings in this field could be used in inquiry and information-seeking
dialogue systems as well.

2.3.1 Opponent models

A method used to increase performance in particularly persuasion dialogues is
that of opponent models. An agent will create a model of the opponent he is
facing. This model can consist of different types of information such as assumed
beliefs and assumed rules that the opponent has. Using this model the agent
can determine what moves would be effective against this specific opponent.

Hadjinikolis et al. [12] give a general methodology for updating and augment-
ing opponent models in argumentation games. They do this by modelling the
likelihood of beliefs and arguments that the agent knows the opponent knows
and what the opponent then probably knows. The models are maintained and
updated through dialogues. Because their method is computationally intensive,
they make use of sampling.

Hadoux et al. [13] try to find the optimal policy of an agent when playing
against a stochastic opponent. Their model is state based, uses Dung’s grounded
semantics [6] and forces agents to always make a move if they have a legal move
available. They apply optimizations to make computation more feasible. These
optimizations remove irrelevant arguments, infer attacks made from arguments,
prune certain moves with respect to the initial state of the problem and prune
arguments that are dominated. Depending on the size of the problem however,
the computations could still be costly even after the optimizations.

Another approach to opponent modelling is that by Rienstra et al. [19]. They
implemented three different opponent models, increasingly complex, and tested
them. The first model is a simple and certain model of the opponent. The second
model is a set of opponent models each with a probability of being true. The final
model is the same as the previous, but adds in so called virtual arguments to the
model. These virtual arguments are arguments that you believe the opponent
has, but you do not know the exact form of said argument. They show that
as they increased the complexity of the opponent model the performance of the
argumentation would increase as well.

36



2.3.2 Q-Learning

Alahmari et al. [1] try to make agents more adaptable to new situations in
persuasion dialogues, whereas a lot of work on this topic so far has been on
negotiation dialogues. The framework used for this research is the abstract ar-
gumentation framework of Dung with the grounded extension [6]. They teach
the agent how to effectively play the game using Q-learning with as reward func-
tion the number of acceptable arguments in the grounded extension. The agent
receives its reward only at the end of the learning session. The results in general
were encouraging but the way they represented states had some weaknesses in
it.

2.3.3 Planning

Black et al. [4] translate the persuasion dialogue problem to a planning prob-
lem. Doing this they can use regular solvers for planning problems to solve
persuasion dialogues. The proponent of the persuasion dialogue has a uncertain
opponent model. The goal is to find strategies that are successful independent
of the fact if the opponent model is correct or not. The possible dialogues of all
the possible opponent models are tracked. The success rate for a plan is deter-
mined by calculating the results of the plan against all possible dialogues of all
possible opponent models. Summing the results of each possible model results
in the probability of success for that plan. The probabilities of guaranteed suc-
cess against the different opponent models are adjusted after every action the
opponent makes. The result is that this approach gives a certain probability
of the guaranteed chance of success. Their approach usually was faster than
the comparison, especially on more complicated problems. A limitation of this
research is probably the scalability and that it only considers simple strategies,
but this did not greatly effect the results.

2.4 Summary

In this chapter we have looked at literature that could support this thesis. First
we looked at different research papers of the AI for policing project. These
are done by Utrecht University in collaboration with the Dutch national police.
This thesis will also be in support of this project. Next we looked at different
inquiry dialogue systems. By looking at these systems we could identify the
current standings of research and determine where new possibilities for research
were present. A promising new approach is that of Testerink, Odekerken and
Bex [23]. They proposed a querying system that minimizes the amount of moves
needed before terminating by using the concept of stability. The downside of
their approach however is that it is not yet a dialogue system, so it would have to
be converted and implemented into one. We shortly looked at dialogue systems
of other types than inquiry. Doing so we could identify strategies and techniques
that might be of interest for inquiry dialogues as well.

37



There clearly are multiple measures of performance for these kind of systems.
The systems need to have certain guarantees for the outcome of the dialogues
it generates, such as soundness and completeness. But on the other hand,
dialogues also need to be limited in the amount of moves made. If the amount
of moves needed for a conclusion is too big, participants might lose interest.
Related to that, it also is important that the dialogue system contains some
form of explainability. If the system is going to be used in real life, the system
should be able to explain how it came to it’s conclusion and why it made the
moves that it has made. It would be useful to quantify a performance measure
that takes into account these aspects.

Currently, none of the implemented inquiry dialogue systems excel at both
guaranteeing results and having as short as possible dialogues. There are sys-
tems like that of Black and Hunter [5] that are sound and complete. This gives
good guarantees for the quality of the outcome of the dialogues their system
generates. Their approach however makes too many redundant moves and is
not very feasible in real life situations. It is clear that their is a need for a
system that can keep the length of the dialogue minimal. Approaches such as
Kumeling [14] and Yan et al. [25] try to make the approach of Black and Hunter
more viable for real life situations by reducing the dialogue length and trying to
provide more clear dialogues. Some improvements are made, but there is still
room for improvement. Techniques from other dialogue types such as opponent
models and machine learning could be implemented to improve the inquiry ap-
proaches, but there still is enough research to be done on the topic of inquiry
dialogues itself. Testerink, Odekerken and Bex have proposed interesting and
promising optimizations for inquiry processes using the concept of stable states.
Their system has the potential to lead to shorter and more explainable inquiry
dialogues. Their system however is not yet a true dialogue system, but a query-
ing system. It would be interesting to see their system worked out into a full
dialogue system. This way, we can introduce stability-based inquiry systems
as a new class of inquiry systems in agent argumentation. We can realize this
translation using the knowledge and ideas that we have acquired from other
research done on inquiry dialogues. Translating their system into a dialogue
system allows for us to perform experimentation. In the current system the
agent is limited in the actions he can make and the queries he can perform.
The agent can only query for observables and not for arguments. The relatively
small scale of the protocol, speaker model and opponent model allow for differ-
ent extensions and adjustments to be defined. This can be used for experiments
that test the impact of different set ups regarding knowledge distribution, rule
sets and available locutions. The opponent model and speaker model describe
what knowledge both agents have at their disposal and what types of locutions
they can make.

38



Chapter 3

Performance measures

To be able to measure the difference in performance between different versions of
our dialogue system, we first have to define the relevant performance measures
that we will use to do so. We will go over the performance measures found
throughout the related literature and decide which ones are most fitting and
relevant for our inquiry system.

It is important that the amount of questions needed in order to form a verdict
is minimal. If the person submitting a complaint to the system has to answer too
many questions, they might lose interest and concentration. This would most
likely not be beneficial for the amount and quality of complaints handed to the
system, defeating the purpose of the system. This metric is one of the easiest on
which the different setups can be compared. This metric can compare systems
through the use of simulations of dialogues. By simulating these dialogues an
average dialogue length can be calculated and compared. Since more complex
argumentation setups will almost always have a longer average dialogue length,
we will have to introduce a normalisation factor that takes this into account
when comparing the performance of different argumentation setups. As an
indication of the complexity of an argumentation setup, we take the amount of
queryable literals it contains. We then divide the raw average dialogue length
by this factor to obtain the normalised average dialogue length.

Example 3.0.1 Consider two systems S1 and S2. S1 performs strictly better
in dialogue length than S2 when the normalised average amount of moves made
in dialogues of S1 is smaller than the normalised average amount of moves made
in dialogues of S2.

Definition 3.0.1 (Normalised Average Dialogue Length). The normalised av-
erage dialogue length of a system is the average dialogue length, divided by the
amount of queryables of the related argumentation setup. Formally: dnorm =
d

|Q|
, where d is the average dialogue length.

Example 3.0.2 Consider a system with an average dialogue length of six moves.

39



The argumentation setup that is being tested has four queryable literals. The

normalised average dialogue length then is calculated by dnorm =
6

4
= 1.5.

Computational complexity of the dialogues is an important factor to con-
sider, but lies outside the scope of this thesis. Same as with the dialogue length,
if the computational complexity of performing dialogues is too high, the end
user will experience this as a negative as they will have too wait long times
to get an asnwer from the system. It is thus preferable for the computational
complexity of dialogues themselves and the learning of any possible policies to
be minimal, but we will not further consider this metric for our research.

Expressiveness of a dialogue system is an important measure of performance.
The measure of expressiveness of a dialogue system indicates how many different
actions and locutions the agents using it have at their disposal. In contrast to
dialogue length and computational complexity, expressiveness is less intuitive to
define. It is preferable for the agents to express their arguments and reasoning in
a multitude of ways. One way to measure the expressiveness is to simply count
the number of available locutions for the agents to utter. Another way is to
categorize systems together based on the types of locutions they have and give
an arbitrary number to these categories. This way you can decide to not count
two similar locutions as two additions to the amount of expressiveness, contrary
to the model that simply counts all available locutions and would allow both
locutions to influence the number. For our choice we will use the categorical
way of measuring the expressiveness of a system. We will group systems into
three distinct categories: low expressiveness, regular expressiveness and high
expressiveness. Logically, systems that fall in a higher category of expressiveness
are preferred over systems that fall in a lower category of expressiveness.

Definition 3.0.2 (System Expressiveness). The expressiveness of a system is
measured by fitting in one of the following categories:

1. Low expressiveness: systems in this category are able to generate dialogues
in which one agent can pose questions for non-defeasible literals and the
other agent can reply accordingly.

2. Regular expressiveness: systems in this category are able to generate dia-
logues in which one agent can pose questions for both defeasible and non-
defeasible literals and the other agent can reply accordingly to the type of
question posed.

3. High expressiveness: systems in this category are able to generate dia-
logues in which one agent can pose questions for both defeasible and non-
defeasible literals and the other agent can reply accordingly to the type of
question posed. Additionally, the questioning agent can ask for explana-
tions and arguments for the uttered replies to questions regarding defeasible
literals. These should be answered accordingly by the replying agent.

It is preferable for the strategy that the agent uses to be sound and com-
plete, since dialogue systems are often used as support for decision making in

40



a variety of domains, such as the legal and medicals domains. Soundness and
completeness, for the system we will propose in this thesis, depend on whether
or not the system finds an argument for the topic literal in the grounded ex-
tension of its argumentation setup. Since positive outcomes should get checked
by human expert afterwards as well, it is less important for the system to be
sound than complete. It is desirable though, however, to minimize the amount
of false positives that are given by the system. Soundness and completeness for
the proposed dialogue system are defined as follows:

Definition 3.0.3 (Soundness and Completeness).

• Soundness: A system S is sound iff when, given an argumentation setup
AS, if the dialogue concludes with an argument in the grounded extension
for the topic τ , then an argument for the topic τ would also be in the
grounded extension of the union of the two agents’ knowledge bases.

• Completeness: A system S is complete iff when, given an argumentation
setup AS containing the union of the two agents’ knowledge bases, if an
argument for the topic is in its grounded extension, the system will always
conclude with an argument for the topic τ being in the grounded extension.

Since dialogue systems are often used as support for real-life decision making,
it is preferable for the system to be able to explain the decisions it has made
transparently. This idea is explored, for example, by Testerink, Odekerken and
Bex [23]. They stress that their approach should be able to explain the decisions
it makes during its inquiries. Having a system be able to explain itself, likely
gives it more support to be used in real-life scenarios. It also gives insight in
decisions that are being made that seem counter-intuitive, but would make sense
from the point of view of the agent. We thus deem systems that are able to
explain the decisions that they make and the outcome that they have generate
preferable over systems that do not provide any source of explainability.

In domains where agents of different organizations have to work together and
exchange information, there might be a sense of privacy that makes agents not
want to give up any more sensitive information than is needed for a conclusion
to be reached. Maximizing this sense of privacy can have real-life impact in
multiple ways. Firstly, it could be that the information that has to be shared
must first be retrieved or calculated by the other party. When minimizing the
amount of information shared, the agents thus also minimize the amount of time-
costing actions that they must perform parallel to the dialogue. Secondly, the
organizations of the agents that are conversing with each other have a guarantee
of maximal possible privacy, in the sense that no more of their information will
be shared than is necessary for the agents to reach a verdict. It is thus preferable
if there are measures built into the dialogue system, that allow the agents to
minimize the amount of sensitive information that is being shared.

In this chapter we have looked at different measures of performance that
could be used to formalize the performance of an inquiry dialogue system in
order to answer our first research question: ”What are the best performance

41



measures for inquiry type dialogues that model a police intake conversation?”.
We first discussed the average dialogue length as a performance measure and
showed how it could be normalised in order to compare systems that perform
dialogues using different sizes of argumentation setups. Dialogue length is an
important factor for intake conversations, since complainants might not use the
system at all if the dialogue length is too large. We briefly discussed the compu-
tational complexity of systems and how it can be used to measure performance,
but we deemed it unnecessary, within the scope of this thesis, to consider it
whilst discussing the performance of our own system. Next we looked at the
expressiveness of a dialogue system. Expressiveness indicates in how many ways
the agents can express their arguments and ideas. When considering the mea-
sure of expressiveness isolated, it always is better to have a higher rate of expres-
siveness in a system. We defined three categories of expressiveness of systems,
based on the dialogue system we will define later in this thesis, that can be used
to compare different systems based on expressiveness. Expressiveness can be
favourable in intake situating, allowing the complainant to respond in more di-
verse ways to the agent and the agent being able to ask more types of questions.
We then looked at the favourable properties of soundness and completeness,
of which it is preferable that a dialogue system should both have. We defined
how soundness and completeness can be determined for our proposed dialogue
system, which will be given later in this thesis. Since police intake conversations
are in the legal domain, it is highly preferable for the system to be both sound
and complete. A characteristic that is nice to have, but not a necessity, is that
of explainability. It is preferable for a system that is to be deployed in real-life
to be able to explain the decisions it has made during a dialogue. Finally, we
looked at the amount of information shared as a performance measure. Depend-
ing on the domain, it is preferable for the amount of information shared in a
dialogue before reaching a conclusion to be minimal. A complainant in a police
intake conversation might not want to give away anymore private information
than necessary, making this performance measure important for this domain.

42



Chapter 4

Dialogue system

For our experiments a dialogue system has to be defined. This dialogue system
is based on the inquiry system proposed by Testerink, Odekerken and Bex [23]
and uses concepts and definitions from their paper.

4.1 Logic

The underlying logic used in the system is similar to that used in ASPIC+
[18] and uses a combination of propositional literals and defeasible rules. The
foundation of the system is known as an argumentation setup, which determines
what the agents can reason about and what literals can be queried.

Definition 4.1.1 (Argumentation Setup, AS). An argumentation setup AS is
a tuple AS = (L,R,Q,KI ,KR, τ) where:

• L is a logical language consisting of propositional or ground predicate-logic
literals.

• R is a set of defeasible rules p1...pm ⇒ q s.t. p1...pm, q ∈ L. p1...pm are
called the antecedents of a rule and q the consequent. The antecedents of
a rule are unordered.

• Q ⊆ {l ∈ L|l 6= ¬p} is a set of queryable literals.

• KI ⊆ {l ∈ L|l ∈ Q∨¬l ∈ Q} is a knowledge base of observations belonging
to the inquirer agent. This knowledge base is a consistent set of query
results.

• KR ⊆ L is a knowledge base of observations belonging to the respondent
agent.

• τ ∈ L is a topic.

43



An argumentation setup AS is shared between the participating agents, and
defines the possible dialogues that can be performed by the agents. Note that
the agents cannot access each others knowledge bases and thus cannot use this
information to infer arguments or reason with in any other way. In the future
of this chapter when we refer to an argumentation setup as a tuple ASa =
(L,R,Q,K, τ), it is assumed that this is the argumentation setup as known by
one of the two agents a, with the knowledge base K being equal to Ka from
the full argumentation setup. The knowledge base K then thus corresponds to
either KI or KR, depending on which agent is reasoning.

Arguments are of the form of inference trees. Observations from an agents
knowledge base K are the starting point of arguments and they get expanded
through the application of rules from R. Arguments cannot be cyclic, this is
enforced by forbidding the conclusion of an argument to appear in any of its
sub arguments.

Definition 4.1.2 (Argument, Inference, I). An argument is an inference A1....Am
⇒ c such that A1....Am is a, possibly empty, unordered set of arguments called
its premises and c ∈ L is its conclusion. Valid inferences are generated by the
inference function I. The inference function I(ASa) infers all arguments of an
argumentation setup ASa. There are two valid cases of inferred arguments:

• ∅ ⇒ c ∈ I(ASa) iff c ∈ K.

• A1...Am ⇒ c ∈ I(ASa) iff A1....Am are in I(ASa) and their conclusions
are c1...cm, and there is a rule c1...cm ⇒ c ∈ R, and c does not occur in
any of the arguments A1...Am.

Arguments in the system can attack and defend each other. ArgumentA attacks
argument B if the conclusion of A negates a conclusion of one of B’s subargu-
ments or B’s own conclusion. A set of arguments X can defend an argument A
when elements from that set attack each attacker of A. Note that the system
only supports rebutting attacks and does not support undercutting attacks. Ar-
guments, additionally, cannot be attacked on premises and conclusions that are
observations.

Definition 4.1.3 (Attack, Defense). Let ASa = (L,R,Q,K, τ) be an argumen-
tation setup. For two arguments A,B ∈ I(ASa) we say that A attacks B iff A’s
conclusion is c and ¬c occurs in B and ¬c 6∈ K. A set of arguments X ⊆ I(ASa)
defends an argument A ∈ I(ASa) iff for each B ∈ I(ASa) that attacks A there
is a C ∈ X that attacks B.

Acceptability of arguments is determined by Dung’s grounded semantics [6].
The grounded extension is a conflict-free and complete set of arguments.

Definition 4.1.4 (Grounded Extension, G). Let ASa = (L,R,Q,K, τ) be an
argumentation setup. The grounded extension G ⊆ I(ASa) of ASa is the small-
est set of arguments (w.r.t. set inclusion) such that:

• There is no pair A,B ∈ G such that A attacks B

• G = {A ∈ I(ASa)|G defends A}

44



4.2 Participants

Dialogues are performed by agents. There are two participating agents in dia-
logues generated by our system with the following roles: inquirer ⊆ I , respon-
dent ⊆ I where I is the set of participants.

Definition 4.2.1 (Participants, I). The set of participants I of a dialogue. A
participant can have one of the following two roles: inquirer ⊆ I , respondent
⊆ I.

The inquirer tries to form an opinion on the topic by combining their knowledge
on the topic and the results of questions they ask the respondent. The knowl-
edge base KI of the inquirer consists of observations that form a consistent set
of question results. The inquirer expands this knowledge base by asking the
respondent questions. These resulting observations are non-defeasible and thus,
as a result, cannot be challenged by other knowledge. The inquirer and the re-
spondent both have full knowledge of the set of defeasible rules R and of the set
of queryable literals Q. The respondent starts with knowledge regarding each of
the queryable literals. This way, the respondent is able to answer each question
asked by the inquirer by looking in its knowledge base KR and extracting the
corresponding answer to the question. Note that for the inquirer it does not
matter how the respondent generates the answers to the questions its poses, as
long as it will give an answer.

4.3 Moves

To determine what moves agents can make during the dialogue, we first have to
define a communication language.

Definition 4.3.1 (Communication Language, Lc). The communication lan-
guage Lc for dialogues is a set of locutions. This set consists of the locutions
{claim, question}, with as their contents a literal ϕ, where:

• claim ϕ is the assertion that ϕ ∈ L is true, made by the speaker.

• question ϕ is the act in which the speakers asks the other participant’s
opinion on if ϕ ∈ Q is the case or not.

Now we can define a move in this dialogue system to be as follows:

Definition 4.3.2 (Move). A move is a tuple m = 〈x, l, c〉 where:

• x ∈ {inquirer, respondent} is the agent making the move.

• l ∈ Lc is the type of locution being made.

• c is the content of the locution of the move.

45



When a locution s is made in move m with as its content ϕ, the argumenta-
tion setup is updated. A claim move, which can only be made by the respondent
agent, adds the claimed observation to the knowledge base KI of the inquirer.
Formally: if s(m) = claim(ϕ) then KI ∪{ϕ}. Note that the inquirer thus always
accept claims made by the respondent. This corresponds to the credulous accep-
tance attitude as defined by Parsons et al. [16], which says that an agent accepts
any proposition as long as it is backed by an argument. Since an observation
by itself is a valid inferred argument in our system, the claim of an observation
will always be accepted by the inquirer agent.

4.4 Dialogue

Having defined the argumentation setup, participating agents and moves, we
can now define exactly what a dialogue is.

Definition 4.4.1 (Dialogue, D). A dialogue is a sequence of moves[m1...mn]
involving two participants in I = {inquirer, respondent} where n ∈ N and 1 ≤ n,
such that:

• the first move of the dialogue, m1, is a move of the form of 〈inquirer, l, c〉

• the sender of move mi is not the same as the sender of move mi+1

• the nth move of the dialogue is denoted as d[n]

• if d is assumed to be n moves long, then d = dn

Dialogues in this system are unique reply, unique move and have alternating
turns. Turn taking is decided by the turn taking rule T.

Definition 4.4.2 (Turn Taking Rule, T). The turn taking rule, T : D → I,
determines whose turn at a certain point in the dialogue dn with length n it is.
Let l ∈ Lc be the locution of the last made move and c be its content:

T (dn) =


inquirer if n = 0

inquirer if dn[n] = 〈respondent, l, c〉
respondent if dn[n] = 〈inquirer, l, c〉

The outcome of a dialogue in this system is determined by an argument for the
topic τ being present in the grounded extension G of the inquirers argumenta-
tion setup ASI . If one or more such arguments exist, the outcome is a tuple
containing the topic τ and a set containing all such arguments.

Definition 4.4.3 (Outcome, O). The outcome O of an inquiry dialogue dn with
the inquirers argumentation setup ASI is defined as follows, where At ⊆ I(ASI)
is the set of all arguments with as its conclusion the dialogue topic τ and where
G is the grounded extension of ASI :

O(dn) =

{
(null, ∅) if At = ∅
(τ,G ∩At) otherwise

46



4.5 Protocol

Dialogues have to be formed according to a dialogue protocol. The protocol Π is
a function that, given the current dialogue and the agent whose turn it is, returns
a set of legal moves for that agent to make. The dialogue topic τ is decided before
the dialogue starts. The inquirer can always make a question move containing
a literal from the set of queryables Q, which has not been questioned before in
the current dialogue. The respondent has to answer question moves made in the
previous turn by looking up the answer to that question in his knowledge base
KR and making a claim move containing that answer, being either positive or
negative. If the respondent has no information about the questioned literal, the
answer given will give a negative reply for the questioned literal.

Definition 4.5.1 (Protocol, Π). The inquiry protocol is a function Π : D ×
I → P(M). Let dn be a dialogue of n moves in which d[n] was a move
made by the other participating agent x̂, with the current argumentation setup
(L,R,Q,KI ,KR, τ), then Π(dn, x) is:

Πquestion(dn, x) ∪Πclaim(dn, x)

where

Πquestion(dn, x) = {〈x, question, c〉|
c ∈ Q \ {k|k = p ∧ (p ∈ KI ∨ ¬p ∈ KI)},

x = inquirer}

and

Πclaim(dn, x) = {〈x, claim, c〉|
dn[n] = 〈x̂, question, q〉,

(c = q ∧ c ∈ KR) ∨ c = ¬q,
x = respondent}

The purpose of dialogues generated using this protocol is for the inquirer to form
an opinion on the dialogue topic, using information from their own knowledge
base KI and that of the respondent KR. A dialogue terminates when the inquirer
is at turn, but there are no legal question moves left for him to perform.

Definition 4.5.2 (Termination). A dialogue is terminated when the following
statement holds: T(dn) = inquirer ∧Π(dn, inquirer) = ∅.

An example of a well-formed inquiry dialogue, a dialogue of which all moves are
legal according to its dialogue system, is shown in the table below.

47



t d[t] Q′ KI KR
0 {p, cp, w } {} {p, ¬cp, w}
1 〈inquirer, question, p〉 {cp, w}
2 〈respondent, claim, p〉 {p}
3 〈inquirer, question, cp〉 {w}
4 〈respondent, claim, ¬cp〉 {p, ¬cp}
5 〈inquirer, question, w〉 {}
6 〈respondent, claim, w〉 {p, ¬cp, w}

Table 4.1: An example inquiry dialogue generated by the proposed system.
Updates of the available set of queryables Q′ ⊆ Q and the knowledge bases KI
and KR of the argumentation setup AS are shown in their respective columns.

4.6 Strategy

For the inquirer to be able to perform dialogues, a strategy must be defined
that picks what move the agent should make.

Definition 4.6.1 (Strategy). A strategy is a function D →M that, given a list
of legal moves in a dialogue, selects one of those moves to make.

The most basic strategy for the proposed system would be an exhaustive
strategy. The inquirer will perform the first question move from the set of
legal moves given by the protocol, until the protocol returns an empty list of
legal moves. Having fully exhausted the set of queryables, it can now easily be
inferred if the knowledge base KI in combination with the defeasible rules R
are either in support of the dialogue topic or not. First we need to define a
function that picks the first question move from the set of legal moves given by
the protocol. The following picking function, and all future picking functions,
are inspired by the type of picking functions defined by Black and Hunter [5]
for their inquiry system. The defined strategies also draw inspiration from the
definitions of Black and Hunter.

Definition 4.6.2 (pickq,exh).
Let Q = {〈inquirer, question, c1〉, ..., 〈inquirer, question, cj〉} be the set of le-
gal question moves that the agent could make according to the protocol. The
function pickq,exh returns the selected question move to make. pickq,exh(Q) =
〈inquirer, question, c1〉.

Given the current dialogue and the function pickq,exh that picks a legal question
move from the set of all legal question moves given by the protocol, we can now
define the exhaustive strategy as follows:

Definition 4.6.3 (Exhaustive Strategy, SE). The exhaustive strategy for an
inquirer agent x in a dialogue dn, with the current set of legal question moves
Q, is a function SE : D →M . Let T(dn) = x, then:
SE(dn, x) = pickq,exh(Q)

48



The strategy that the respondent follows is trivial. Since the protocol only
returns one possible move for the respondent in his turn, the respondent simply
plays the single claim move that answers the question asked in the previous turn.
The protocol only returns one legal claim move after each question because of
constraints that prevents the knowledge base KR from having contradicting
literals.

Definition 4.6.4 (Respondent Strategy, Sr). The respondent strategy for a re-
spondent agent is a function Sr : D →M . Let T (dn) = x and let 〈x, claim, c〉 be
the single legal move returned by the protocol Π, then: Sr(dn, x) = 〈x, claim, c〉.

We now have defined everything we need for the exhaustiv version of our base
system. This exhaustive base system can be used to perform initial experiments
and to define and implement further extensions on.

4.7 Extensions of the base system

4.7.1 Future setups and stability

A more intelligent inquirer than the one described in the base system could make
use of future argumentation setups in order to reason ahead. Future setups are
argumentation setups where the knowledge base of the inquirer is extended with
question results from the still available set of queryables. Testerink, Odekerken
and Bex [23] explore the idea of future setups and the related notion of stability
in order to be more efficient in inquiry. A state is stable when all of its future
setups have the same status of the dialogue topic as the current state. We
will use their ideas of a stability based inquiry system and further expand them
with additional locutions and resulting strategies, aiming to reach a full-fledgded
stability-based dialogue system. First, we must look at the definitions used by
Testerink, Odekerken and Bex that describe the notions of future setups and
stability.

Definition 4.7.1 (Future Setups, F). Let ASa = (L,R,Q,K, τ) be an argu-
mentation setup. The set of all future setups F(ASa) consists of all setups
(L,R,Q,K′, τ) such that K ⊆ K′.

An example of how to calculate the future setups of an argumentation setup is
shown below.

Example 4.7.1 Consider an argumentation setup ASa, where K = {p, cp} and
where Q = {p, cp, w, s}. The future setups F(ASa) then consist of the following
argumentation setups with a knowledge base K′, such that K ⊆ K′:

1. {p, cp}

2. {p, cp, w}

3. {p, cp,¬w}

4. {p, cp, s}

5. {p, cp,¬s}

6. {p, cp, w, s}

49



7. {p, cp, w,¬s}

8. {p, cp,¬w, s}

9. {p, cp,¬w,¬s}

Having the set of all future setups, we now want the agent to be able to
reason about the status of the topic in these future setups and if it could still
change. One concept useful to the agent would be that of stability. When a
state is stable, it means that the status of the topic is the same in all of its
future setups. For the status we consider four different cases. Firstly, the case
where there exists no argument for the topic. Secondly, the case where there
exists an argument for the topic in the grounded extension. Finally, the cases
where there exists an argument for the topic, but this argument is attacked from
either within or from outside of the grounded extension.

Definition 4.7.2 (Stability). An argumentation setup ASa is stable iff for each
setup AS’ in F(ASa) one of the following cases holds:

• Unsatisfiable: there is no argument for τ in I(AS’), or

• In: there is an argument for τ in the grounded extension of AS’, or

• Out: there is an argument for τ in I(AS’), but but all arguments for τ
are attacked by an argument in the grounded extension of AS’, or

• Blocked: there is an argument for τ in I(AS’) but not in the grounded
extension of AS’ and at least one argument for τ is not attacked by an
argument from the grounded extension of AS’.

A simple strategy that uses the concept of future setups would be a strategy
that only picks moves that change the status of the topic in the resulting ar-
gumentation setup. An approach that follows this line of thinking, but uses
a different notion of stability than the one described by Testerink, Odekerken
and Bex labelling and described in this thesis, is that of Kumeling [14]. Kumel-
ing explores improvements upon the exhaustive strategy defined by Black and
Hunter [5]. One of the proposed strategies only makes a new move, if that move
would change the status of the node of the dialectical tree, or if it would not
affect the tree at all. This can thus be seen as a one-step look-ahead stability
based strategy. A more elaborate strategy would consider all future setups, and
would only pick a question move if the current argumentation setup is not sta-
ble. In such a stability based strategy, the agent would select that query from
the set of queryables Q that has the highest probability of leading to a stable
state and would stop performing the dialogue when it has reached a stable state.
This is the approach used by Testerink, Odekerken and Bex [23]. They model
the argumentation setup and the inquiry process using a MDP, for which they
can learn a policy that minimizes the amount of moves made before reaching
a stable state. We will use and slightly adjust their definitions to model a first
version of a stability based system and policy ourselves, after which we will also
explore different extensions of this first system. All stability based strategies

50



should in principle lead to shorter dialogues than exhaustive strategies, since
exhaustive strategies play all the legal moves returned by the protocol. First we
need to define what an MDP based on an argumentation should look like.

Definition 4.7.3 (Argumentation MDP, MDP). An argumentation MDP for
an argumentation setup ASa is a tuple (Q,S,δ,r), where:

• Q is a set of questions

• S = F(ASa) × 2Q is the state space

• δ : S × Q × S → [0, 1] is the transition function which returns the prob-
ability of the next state being s2 = (AS2, Q2) ∈ S given some state
s1 = (AS1, Q1) ∈ S and question q ∈ Q. Furthermore, δ(s1, q, s2) = 0
if the knowledge base of AS1 is not a subset of that of AS2, or if q is not
available (q 6∈ Q1), or if Q2 6= Q1\{q}

• r : S×S → I is the reward function transitioning from s1 = (AS1, Q1) ∈ S
to s2 = (AS2, Q2) ∈ S and is given by: r(s1, s2) = |Q1| if AS2 is a stable
setup, but AS1 is not, r(s1, s2) = 0 if AS1 already was a stable state, else
r(s1, s2) = −1.

Example 4.7.2 Consider the following simple argumentation setup with two
queryable literals a and b and three rules a⇒ f , b⇒ f and ¬b⇒ ¬f where f is
the topic.

f ¬f

a¬a b ¬ b

An argumentation MDP based on this argumentation setup, where states are
represented by rectangles and actions represented by circles, would then look as
follows:

51



K = {}
Q = {a, b}

?a

?b

K = {a}
Q = {b}

K = {¬a}
Q = {b}

?b

?b

K = {a, b}
Q = {}

K = {a,¬b}
Q = {}

K = {¬a, b}
Q = {}

K = {¬a,¬b}
Q = {}

K = {b}
Q = {a}

K = {¬b}
Q = {a}

?a

?a

δ = 0.5, r = −1

δ = 0.5, r = −1

δ = 0.5, r = 1

δ = 0.5, r = 1

δ = 0.5, r = 1

δ = 0.5, r = 1

δ = 0.5, r = 2

δ = 0.5, r = −1

δ = 0.5, r = 0

δ = 0.5, r = 0

δ = 0.5, r = 1

δ = 0.5, r = 1

Having this MDP, we can now define a policy π that chooses that action,
which has the highest probability of leading to a stable state as fast as possible
by maximizing the expected utility over the MDP.

Definition 4.7.4 (Stability Policy, π). The policy π : S → Q for a MDP is
given by ∀s1 = (AS1, Q1) ∈ S : π(s1) = argmaxq∈Q1

Σs2∈Sδ(s1, q, s2)(r(s1, s2) +
V (s2)) where V (s2) = Σs3∈Sδ(s2, π(s2), s3)(r(s2, s3) + V (s3))

Example 4.7.3 Consider the following policy, as an example of a policy calcu-
lated for the MDP of the previous example. The start state is indicated with a
green colour and the final stable states are indicated with a yellow colour.

52



K = {}
Q = {a, b}

K = {b}
Q = {a}

K = {¬b}
Q = {a}

K = {b, a}
Q = {}

K = {b,¬a}
Q = {}

b?

a?

Since it is costly to calculate such a policy, especially when the argumentation
setup is large in size, we use a learning method that approximates this function.
This policy will be learned by the agent by using the Q-learning algorithm. The
stability-based strategy then uses the learned policy π to pick the question q that
has the highest probability of leading to a stable state, unless the argumentation
setup is already stable or the set of queryables is depleted. The inquirer ends
the dialogue when he has to perform a move in a stable setup.

Definition 4.7.5 (Stability Based Strategy, Sstable). The stability based strat-
egy for a dialogue, with argumentation setup ASa and available queries Q is
defined as follows:
Sstable(dn, x) = 〈inquirer, question, π(ASa, Q)〉 whilst ASa is not stable and Q
is not empty.

4.7.2 Approximating stability

Calculating the stability of an argumentation setup is very costly computation-
ally. Testerink, Odekerken and Bex [23] show that calculating stability by cal-
culating grounded extensions for all future setups has a complexity of O(2|L|!).
It is thus preferable to have a more efficient way of calculating stability than
brute-forcing it. In the same paper, Testerink, Odekerken and Bex propose
an approximation algorithm for stability that is sound, but not complete. This
means that the setups that are marked as stable by the algorithm indeed are sta-
ble, but some states that are still marked as not stable might actually be stable
already. Stability is calculated by labelling the rules and literals of an argumen-
tation setup. When the dialogue topic has received a label, the argumentation
setup is stable. Testerink, Odekerken and Bex prove in their paper that the la-
belling of an argumentation setup can be constructed in O((|L|+ |R|)2), which

53



is considerably more efficient than the brute-force method. The following defini-
tion is a slight adaptation of their definition. Instead of the label D, we decided
to use the label I, which stands for In.

Definition 4.7.6 (Labelling, L). Let ASa = (L,R,Q,K, τ) be an argumen-
tation setup. A labelling L is a partial function that decorates literals and
rules with a label from {U, I,O,B}. Literals l that are in Q but not observed
(l,¬l, 6∈ K) are not labelled. For the other literals and the rules the labelling of
ASa is declaritively defined as follows:

• Case U literal: A literal l ∈ L is labelled U iff either: A) No rule exists
for l and if (¬)l ∈ Q then ¬l ∈ K. B) There are rules for l and they are
all labelled U.

• Case U rule: A rule r ∈ R is labelled U iff any of its antecedents is
labelled U.

• Case I literal: A literal l ∈ L is labelled I iff either: A) l ∈ K. B) There
is a rule for l labelled I and ¬l is not in L. C) There is a rule for l labelled
I and there are rules for ¬l but they are all labelled U or O.

• Case I rule: A rule r ∈ R is labelled I iff all its antecedents are labelled
I.

• Case O literal: A literal l ∈ L is labelled O iff either: A) There are rules
for l and they are all labelled I, O or B and ¬l is labelled I. B) There are
rules for l of which at least one is labelled O and the rest is either labelled
O or U.

• Case O rule: A rule r ∈ R is labelled O iff at least one antecedent is
labelled O and the rest is labelled I, B or O.

• Case B literal: A literal l ∈ L is labelled B iff l,¬l 6∈ Q and either: A)
A rule for l and a rule for ¬l is labelled I or B. B) There are rules for l
of which one is labelled B and the rest is either labelled U, O or B.

• Case B rule: A rule r ∈ R is labelled B iff at least one antecedent is
labelled B and the rest is labeled B or I.

Example 4.7.4 Consider the argumentation system from example 4.7.2. In the
case where K = {¬a, b} the argumentation setup would be labelled as follows:
U = {¬b,¬f, a, (a => f), (¬b => ¬f)}, I = {¬a, b, (b => f), f}, O = {},
B = {}.

4.7.3 Querying for defeasible literals

In the proposed base system, the inquirer agent is only allowed to make ques-
tion moves regarding observations, which are non-defeasible. It would be an
interesting addition to the system to allow the inquirer to also question the re-
spondent’s opinion on defeasible literals, in the form of their labels according to

54



the respondent. This way, the inquirer can ask the respondent for information
regarding the dialogue topic without asking the respondent to share explicit ob-
servations. The system will have to be adjusted in multiple ways to support this
new type of questioning. Firstly, the respondent agent will need to calculate a
labelling for its personal argumentation setup so that they can use the labels
from this labelling in their responses. Secondly, the communication language
and protocol will have to be adjusted with new moves that question and claim
the labels of defeasible literals. Finally, a data structure must be defined that
allows the inquirer to store and retrieve the uttered literal-label combinations
of the respondent.

In order for the respondent agent to be able to answer questions regarding
defeasible literals with labels, the respondent has to calculate a labelling for its
personal argumentation setup ASR. The argumentation setup of the respondent
contains knowledge about each of the queryable literals in its knowledge base
KR, contrary to the knowledge base of the inquirer that starts empty. The
respondent’s argumentation setup thus starts with full knowledge of all observ-
ables and as a result of this is static and does not change during the dialogue.
Since this argumentation setup is static, we only have to calculate a labelling
once. This labelling, L(ASR), is calculated using the function defined in defi-
nition 4.7.6 and used by the respondent to reply to questions about defeasible
literals. The literal-label combinations claimed by the respondent have to be
stored in the knowledge of the inquirer. This is why we extend the knowledge of
the inquirer with a so-called label store, which is stored in memory separately
from the argumentation setup and keeps track of literals and their corresponding
labels as uttered by the respondent. The label store of the inquirer starts out
empty, and is extended when the respondent makes claim moves for defeasible
literals by adding the uttered literal and its label to the label store. Since the
respondent can only claim labels of which it knows that they are true, and thus
exist in the calculated labelling L(ASR), the label store will always be a subset
of this calculated labelling.

Definition 4.7.7 (label store, LS). A label store, denoted as LS, is a data struc-
ture storing tuples (ϕ, l) of literals ϕ from the logical language L and their cor-
responding label l such that LS ⊆ L(ASR).

Example 4.7.5 An example of a label store containing two items is as follows:
{(a, U), (b, I)}.

In the systems that we propose in this thesis, the inquirer is the only agent that
will have a label store. We thus do not have to indicate with a subscript to what
agent the label store belongs. If the system were to be extended with a label
store for both the agents, one could represent the two different label stores as
LSI and LSR for the inquirer and the respondent respectively.

The communication language will have to be extended with locutions that
allow for the questioning and claiming of labels of defeasible literals. Firstly,
we had to decide whether we wanted to adjust the question locution to support
defeasible questions as well, or if we implemented a new locution strictly for

55



questioning defeasible literals. For clarity’s sake, we chose to implement a new
separate locution for the questioning of defeasible literals called questionLabel.

Definition 4.7.8 (questionLabel). The locution questionLabel ϕ is the act in
which the speaker asks the other participant’s opinion on the label of ϕ ∈ L.

Next, we will have to define a locution that allows the respondent to reply to
such a questionLabel locution. This claimLabel locution is defined below.

Definition 4.7.9 (claimLabel). The locution claimLabel (ϕ, l) is the act in
which the speaker informs the other participant that in his argumentation setup
the literal ϕ is labelled as l.

When a claimLabel locution is uttered by the respondent, the knowledge of the
inquirer is updated as follows: if s(m) = claimLabel(ϕ, l) then LS∪{(ϕ, l)}. Note
that the inquirer will accept any such utterance made by the respondent. There
thus are no requirements to the content of the utterance made that make the
inquirer accept or reject it, contrary to the three acceptance attitudes defined
by Parsons et al. [16].

Having defined the two locutions needed to implement the questioning and
claiming of defeasible literals, we can now define when the agents are allowed to
make moves using these locutions. For this we will give a definition of the new
sub-protocols, which are to be added to the original protocol of definition 4.5.1.

Definition 4.7.10 (Protocol, Π). The inquiry protocol is a function Π : D ×
I → P(M). Let dn be a dialogue of n moves in which d[n] was a move
made by the other participating agent x̂, with the current argumentation setup
(L,R,Q,KI ,KR, τ) and label store LS, then Π(dn, x) is:

Πquestion(dn, x) ∪Πclaim(dn, x) ∪ΠquestionLabel(dn, x) ∪ΠclaimLabel(dn, x)

where

ΠquestionLabel(dn, x) = {〈x, questionLabel, c〉|
c ∈ L ∧ c 6∈ Q ∧ ¬c 6∈ Q ∧ (c, l) 6∈ LS,

x = inquirer}

and

ΠclaimLabel(dn, x) = {〈x, claimLabel, (c, l)|
dn[n] = 〈x̂, questionLabel, q〉,

c = q ∧ ((c, l) ∈ L(ASR) ∨ l = Blank),

x = respondent}

Example 4.7.6 Consider the following simple argumentation setup with four
queryable literals a, b, c and d and six rules a⇒ x, b⇒ x, c⇒ y, d⇒ y, x⇒ t
and y ⇒ t where t is the dialogue topic.

56



t

x y

a b c d

¬a ¬b ¬ c ¬ d

A dialogue that follows the newly defined protocol and uses a strategy that stops
when a stable state has been reached would then look as follows:

t d[t] Q′ KI KR LS
0 {a,b,c,d} {} {a,b,¬c,d} {}
1 〈inquirer, questionLabel, y〉
2 〈respondent, claimLabel, (y, I)〉 {(y,I)}
3 〈inquirer, question, c〉 {a, b, d}
4 〈respondent, claim, ¬c〉 {¬c}
5 〈inquirer, question, d〉 {a, b}
6 〈respondent, claim, d〉 {¬c, d}

Table 4.2: An example inquiry dialogue generated by the proposed system.
Updates of the available set of queryables Q′ ⊆ Q, the knowledge bases KI and
KR of the argumentation setup AS and the label store LS of the inquirer are
shown in their respective columns.

In order for the inquirer agent to perform dialogues efficiently, we must up-
date the earlier defined MDP of definition 4.7.3 to support the new questioning
and claiming of labels, as well as observations. This way the inquirer agent can
learn a policy to optimize dialogues using these new moves as well. Two changes
will have to be made to the original MDP. Firstly, a state must now consist of
an argumentation setup, a label store LS and the set of available actions in
that state. Secondly, actions are no longer just questions regarding observables,
but also questions regarding the labels of defeasible literals. These changes are
formalised in the following new definition of an argumentation MDP.

Definition 4.7.11 (Argumentation MDP, MDP). An argumentation MDP where
the knowledge of the agent is represented by an argumentation setup ASa and a
label store LS, is a tuple (A,S,δ,r), where:

• A is a set of actions containing question moves (Q) and questionLabel
moves (QL).

• S = F(ASa) × 2Q ×4QL is the state space

• δ : S×A×S → [0, 1] is the transition function which returns the probability
of the next state being s2 = (AS2, LS2, A2) ∈ S given some state s1 =
(AS1, LS1, A1) ∈ S and action a ∈ A. Furthermore, δ(s1, a, s2) = 0 if the

57



knowledge base of AS1 is not a subset of that of AS2 and LS1 is not a
subset of LS2, or if a is not available (a 6∈ A1), or if A2 6= A1\{a}

• r : S×S → I is the reward function transitioning from s1 = (AS1, LS1, A1) ∈
S to s2 = (AS2, LS2, A2) ∈ S and is given by: r(s1, s2) = |Q1| if AS2 is
a stable setup, but AS1 is not, r(s1, s2) = 0 if AS1 already was a stable
state, else r(s1, s2) = −1.

Example 4.7.7 Consider again the argumentation setup from 4.7.6. A portion
of the resulting MDP for this argumentation setup is shown below. Note that
for clarity sake the MDP is simplified by only showing two possible actions,
namely ?a and ?x that represent the question a move and the questionLabel x
move. The resulting states of these actions are shown, but further future states
are omitted. We also assume that the respondent has knowledge on all the
observables, resulting in the only possible labels in this specific argumentation
setup being I and U.

K = {}
LS = {}

Q = {a, b, c, d}
QL = {x, y}

?a

?x

K = {a}
LS = {}

Q = {b, c, d}
QL = {x, y}

K = {¬a}
LS = {}

Q = {b, c, d}
QL = {x, y}

K = {}
LS = {(x,I)}
Q = {a, b, c, d}
QL = {y}

K = {}
LS = {(x,U)}
Q = {a, b, c, d}
QL = {y}

......

......

......

......

δ = 0.25, r = 4

δ = 0.75, r = −1

δ = 0.5, r = −1

δ = 0.5, r = −1

Having defined this MDP, the inquirer can now learn a policy that chooses that
action,which has the highest probability of leading to a stable state with as little
made moves as possible by maximizing the expected utility over the MDP.

Example 4.7.8 An example of a policy calculated for the system including
questions for defeasible literals. The start state is indicated with a green colour

58



and the final stable states are indicated with a yellow colour. Question moves
for a and b on the bottom branch of the policy are omitted for brevity’s sake, but
follow the same logic as the other similar question moves for observables.

K = {}
LS = {}

Q = {a, b, c, d}
QL = {t, x, y}

K = {}
LS = {(x, I)}
Q = {a, b, c, d}
QL = {t, y}

K = {a}
LS = {(x, I)}
Q = {b, c, d}
QL = {t, y}

K = {¬a}
LS = {(x, I)}
Q = {b, c, d}
QL = {t, y}

K = {¬a, b}
LS = {(x, I)}
Q = {c, d}
QL = {t, y}

K = {}
LS = {(x, U)}
Q = {a, b, c, d}
QL = {t, y} K = {¬c}

LS = {(x, U)}
Q = {a, b, d}
QL = {t, y}

K = {c}
LS = {(x, U)}
Q = {a, b, d}
QL = {t, y} K = {¬c, d}

LS = {(x, U)}
Q = {a, b}
QL = {t, y}

K = {¬c,¬d}
LS = {(x, U)}
Q = {a, b}
QL = {t, y}

...

x?

c?

d?

a?

b?

a? ...

The inquirer agent in this system uses an adaption of the earlier defined stability
based strategy, in which the policy returns the type of the action, question or
questionLabel, and the literal that is the subject of the question.

Definition 4.7.12 (Stability Based Strategy, Sstable). The stability based strat-
egy for a dialogue, with argumentation setup ASa and available actions A is
defined as follows:

Sstable(dn, x) =


〈inquirer, question, π(ASa, A)〉 if π(ASa, A) ∈ Q
〈inquirer, questionLabel, π(ASa, A)〉 if π(ASa, A) ∈ QL
end dialogue otherwise

4.7.4 Asking explanations for labelled literals

Labels uttered by the respondent give insight in the knowledge and the point
of view of the respondent and can be used to determine what questions would
be more fruitful than others. It would be interesting to, additionally, give the
inquirer agent means to ask the respondent to give an explanation, in the form

59



of an argument, for a literal-label combination that has been uttered during the
dialogue and thus exists in the label store LS. The labels that are of interest
are those that are supported by arguments. We will thus give the inquirer the
means to ask for explanations of literals that are labelled as either I, O or B
and we will not consider literals that are labelled as U. To allow the agents
to express this kind of dynamic, new locutions need to be introduced and the
dialogue protocol has to be extended.

Firstly, we must define a locution that allows the inquirer agent to question
why a certain literal is labelled as I, O or B in the knowledge base of the respon-
dent. For this purpose, we define a so-called why locution, which is inspired by
the challenge locution as defined by Parsons et al. [16]. A minor difference is,
however, that our why locution also allows the agent to ask arguments for why
a literal could be labelled as O or B, whereas the challenge locution only asks
the other agent to give an argument that is in support of a given proposition.

Definition 4.7.13 (why). The locution why(ϕ, l) is the act in which the speaker
asks the other participant’s opinion on why the label of ϕ ∈ LS is l ∈ {I,O,B}.

Example 4.7.9 Consider a situation where the inquirer has the tuple (y, I) in
their label store LS as a result of an earlier questionLabel move. This allows the
inquirer to make a why(y, I) move, resulting in the respondent having to give
an explanation for why y is considered to be labelled I.

We now must define a locution that allows the respondent to reply to such
why moves. For this purpose we will now define a since locution, which allows
the respondent to respond to why moves with an explanation in the form of
an argument. This since locution is inspired by other since locutions found
throughout literature such as Prakken [17] that allow agents to utter arguments
in support of a proposition. Explanations consist of rules and their labelled
premises that make a literal have the claimed label. For each of the three possible
labels that can be explained using such a move, I, O and B, a different method
is used to define a valid explanation. We will now define valid explanations for
each of these three labels. These definitions of explanations are based on the
definitions of the labels as given in definition 4.7.6.

Definition 4.7.14 (explanation). An explanation is a tuple containing a set
of rules R and a set of antecedents A that together adhere one of the following
cases, dependent on the label being explained:

• I explanation: a valid explanation for a literal x being labelled I is a rule
with as consequent x, which is labelled I, and its labelled antecedents that
make it be labelled I.

• B explanation: a valid explanation for a literal x being labelled B is
either A) a rule for x and a rule for ¬x that are both either labelled I or
B and their labelled antecedents that make them labelled I or B . B) one
or more rules for x that are labelled B and their labelled antecedents that
make them be labelled B.

60



• O explanation: a valid explanation for a literal x being labelled O is
either A) a rule for the negation of x that is labelled I and its antecedents
that make it labelled I B) the literal ¬x being labelled I and the antecedents
that make it labelled I. C) one or more rules for x that are labelled O and
the antecedents that make them labelled O.

Having defined what a valid explanation is, we can now define the since locution,
which allows the respondent to utter such an explanation.

Definition 4.7.15 (since). The locution since(R,A) is the act in which the
speaker gives a reasoning for why the literal ϕ is labelled l ∈ {I,O,B}, based on
a set of related rules R and a set of labelled antecedents of these rules A.

Example 4.7.10 Consider the earlier example where the inquirer makes a why(y,
I) move. A possible response to this question would then be a since({c ⇒ y},
{(c, I)}) move.

When a why move is uttered, the knowledge base of the inquirer has to be
updated accordingly. For each of the uttered antecedents in the explanation,
it must be determined whether this literal is defeasible or non-defeasible. The
agent can determine this by looking at the queryables and the rules of the
argumentation setup AS. Each non-defeasible antecedent will be added to the
knowledge base KI of the inquirer, positively if the label is I and negatively
if the label is O. Each defeasible antecedent will be added to the label store
LS with its related label. Formally: for each φ ∈ A, if φ is non-defeasible and
labelled I : KI ∪ φ, if φ is non-defeasible and labelled O : KI ∪ ¬φ and else: LS
∪(φ, l). Note that, as with the claimLabel locution, the inquirer will accept any
such utterance containing an argument made by the respondent. There thus
are no further requirements to the argument in the utterance made that make
the inquirer accept or reject it. This behaviour corresponds to the credulous
acceptance attitude defined by Parsons et al. [16], as did the acceptance of claim
moves by the inquirer defined earlier in this thesis.

Next we must update our protocol with conditions that allow the uttering
of why and since moves. Why moves can be made for each literal in the label
store LS that is labelled I, O or B and since moves can be made when the
previous move of the dialogue is a why move. We now give additional protocol
rules, which are to be added to the protocol defined earlier in definition 4.7.10.

Definition 4.7.16 (Protocol, Π). The inquiry protocol is a function Π : D ×
I → P(M). Let dn be a dialogue of n moves in which d[n] was a move
made by the other participating agent x̂, with the current argumentation setup
(L,R,Q,KI ,KR, τ) and label store LS, then Π(dn, x) is:

Πquestion(dn, x) ∪Πclaim(dn, x) ∪ΠquestionLabel(dn, x) ∪ΠclaimLabel(dn, x) ∪Πwhy(dn, x) ∪Πsince(dn, x)

where

61



Πwhy(dn, x) = {〈x,why, (c, l)〉
(c, l) ∈ LS,

x = inquirer}

and

Πsince(dn, x) = {〈x, since, (R,A)|
dn[n] = 〈x̂, why, (c, l)〉,

(R,A) is a valid explanation for c being labelled l,

(φ, l) ∈ L(ASR) for each (φ, l) ∈ A
x = respondent}

An example of a dialogue formed according to this protocol, including a why
and a since move, is shown below.

Example 4.7.11 Consider the following simple argumentation setup with four
queryable literals a, b, c and d and six rules a⇒ x, b⇒ x, c⇒ y, d⇒ y, x⇒ t
and y ⇒ t where t is the dialogue topic.

t

x y

a b c d

¬a ¬b ¬ c ¬ d

A dialogue that follows the newly defined protocol and uses a strategy that stops
when a stable state has been reached would then look as follows:

t d[t] Q′ KI KR LS
0 {a,b,c,d} {} {a,b,¬c,d} {}
1 〈inquirer, questionLabel, y〉
2 〈respondent, claimLabel, (y, I)〉 {(y,I)}
3 〈inquirer, why, (y,I)〉
4 〈respondent, since, ({d⇒ y}, {(d, I)})〉 {a, b, c} {d}

Table 4.3: An example inquiry dialogue generated by the proposed system.
Updates of the available set of queryables Q′ ⊆ Q, the knowledge bases KI and
KR of the argumentation setup AS and the label store LS are shown in their
respective columns.

Having updated the dialogue protocol, we must now also update the MDP that
the agent uses to calculate a policy. This MDP differs from the MDP defined

62



in definition 4.7.11 in the amount of actions that the agent has at its disposal.
Besides the question moves and the questionLabel moves, the agent is now also
allowed to make why moves. The amount of states stay the same, but the
transitions towards these states increase due to the added actions. It now also
is possible for an action to add multiple pieces of information to either the
knowledge base KI of the inquirer agent or the label store LS, so the transition
function has to be loosened up slightly. This, for example, happens when the
agent makes a why move for a literal and gets a response based on a rule with
two antecedents, which are both to be added to the agents knowledge.

Definition 4.7.17 (Argumentation MDP, MDP). An argumentation MDP where
the knowledge of the agent is represented by an argumentation setup ASa and a
label store LS, is a tuple (A,S,δ,r), where:

• A is a set of actions containing question moves (Q),questionLabel moves
(QL) and why moves (W).

• S = F(ASa) × 2Q ×4QL is the state space

• δ : S×A×S → [0, 1] is the transition function which returns the probability
of the next state being s2 = (AS2, LS2, A2) ∈ S given some state s1 =
(AS1, LS1, A1) ∈ S and action a ∈ A. Furthermore, δ(s1, a, s2) = 0 if the
knowledge base of AS1 is not a subset of that of AS2 and LS1 is not a
subset of LS2, or if a is not available (a 6∈ A1), or if A2 6⊆ A1\{a}

• r : S×S → I is the reward function transitioning from s1 = (AS1, LS1, A1) ∈
S to s2 = (AS2, LS2, A2) ∈ S and is given by: r(s1, s2) = |Q1| if AS2 is
a stable setup, but AS1 is not, r(s1, s2) = 0 if AS1 already was a stable
state, else r(s1, s2) = −1.

Example 4.7.12 Consider again the argumentation setup from 4.7.11. A por-
tion of the resulting MDP for this argumentation setup is shown below. Note
that for clarity sake the MDP is simplified by only showing three possible ac-
tions, namely ?a, ?x and why (x, I) that represent the question a move, the
questionLabel x move and the why x move. The resulting states of these ac-
tions are shown, but further future states are omitted. We also assume that the
respondent has knowledge on all the observables, resulting in the only possible
labels in this specific argumentation setup being I and U.

63



K = {}
LS = {}

Q = {a, b, c, d}
QL = {x, y}

?a

?x

K = {a}
LS = {}

Q = {b, c, d}
QL = {x, y}

K = {¬a}
LS = {}

Q = {b, c, d}
QL = {x, y}

K = {}
LS = {(x,I)}
Q = {a, b, c, d}
QL = {y}

K = {}
LS = {(x,U)}
Q = {a, b, c, d}
QL = {y}

......

......

why (x, I)

......

K = {a}
LS = {(x,I)}
Q = {b, c, d}
QL = {y}

K = {b}
LS = {(x,I)}
Q = {a, c, d}
QL = {y}

......

......

δ = 0.25, r = 4

δ = 0.75, r = −1

δ = 0.5, r = −1

δ = 0.5, r = −1

δ = 0.5, r = 4

δ = 0.5, r = 4

Having defined this MDP, we can now learn a policy that chooses that ac-
tion,which has the highest probability of leading to a stable state with as little
made moves as possible by maximizing the expected utility over the MDP.

Example 4.7.13 An example of a policy calculated for the system including
questions for defeasible literals and the inclusion of why and since moves. The
start state is indicated with a green colour and the final stable states are indicated
with a yellow colour. Question moves for a and b are omitted for brevity’s sake,
but follow the same logic as the nodes for questions of c and d.

64



K = {}
LS = {}

Q = {a, b, c, d}
QL = {t, x, y}

K = {}
LS = {(x, I)}
Q = {a, b, c, d}
QL = {t, y}

K = {a}
LS = {(x, I)}
Q = {b, c, d}
QL = {t, y}

K = {b}
LS = {(x, I)}
Q = {a, c, d}
QL = {t, y}

K = {}
LS = {(x, U)}
Q = {a, b, c, d}
QL = {t, y} K = {¬c}

LS = {(x, U)}
Q = {a, b, d}
QL = {t, y}

K = {c}
LS = {(x, U)}
Q = {a, b, d}
QL = {t, y} K = {¬c, d}

LS = {(x, U)}
Q = {a, b}
QL = {t, y}

K = {¬c,¬d}
LS = {(x, U)}
Q = {a, b}
QL = {t, y}

...

x?

c?

d?

why (x, I)

a? ...

The inquirer agent uses an adaption of the earlier defined stability based strat-
egy, in which the policy returns the type of the action, question, questionLabel
or why and the literal that is the subject of the question.

Definition 4.7.18 (Stability Based Strategy, Sstable). The stability based strat-
egy for a dialogue, with argumentation setup ASa and available actions A is
defined as follows:

Sstable(dn, x) =


〈inquirer, question, π(ASa, A)〉 if π(ASa, A) ∈ Q
〈inquirer, questionLabel, π(ASa, A)〉 if π(ASa, A) ∈ QL
〈inquirer, why, π(ASa, A)〉 if π(ASa, A) ∈W
end dialogue otherwise

4.7.5 Calculating utility in argumentation MDP’s

In the current versions of the three earlier defined MDP’s, negative utility is
added for each move made and positive utility is rewarded for each observable
that did not have to be questioned before reaching a stable state. This can be
seen as a hybrid utility function that aims to optimize a combination of dialogue
length and minimal amount of observables shared. One could choose to only
use one of these two factors in their utility function, thus minimizing either the
dialogue length or the amount of observables shared.

65



Variations in calculating utility for each action and for the final state can
also be thought of. Currently each action always costs exactly one utility unit,
variations could be implemented where the three different kind of actions, ques-
tion, questionLabel and why, would all have different costs, allowing for different
dynamics to come forth. The utility of an action could also be made equal to
the amount of observables that it shares. Another way in which we can vary the
calculations of utility is by adjusting the positive utility rewarded when reach-
ing a stable state. Different functions could be considered that include the size
of the label store LS as well as the amount of shared observables or the final
reward could be omitted entirely.

The most fitting utility function to use in a system depends on the domain
in which it is deployed and the goal that it is trying to achieve. In a situation
where the system is used only between agents and the dialogues regard sensitive
information of different departments and organizations, it might be best to
ignore the dialogue length in the utility function and only punish the agents for
each observation that they share. In an environment where the agent has to
deal with a human counterpart, the dialogue length becomes more important
and intuitive to include in the utility function. In this situation one could
choose for an utility function that always uses the dialogue length in the utility
function and also gives negative utility for each observable shared, in order to
not have the persons give more information than is absolutely necessary. If the
information that has to be shared is not personal or private at all, it can be
chosen to ignore the amount of observables shared in the utility function. The
exact utility functions that we chose to use in our experiments will be defined
in the next chapter.

66



Chapter 5

Experiments

In this chapter, multiple experiments will be performed in which we compare the
performance of different versions of our stability-based inquiry dialogue system
with each other and with an exhaustive strategy.

5.1 Utility functions

In our experiments we will use two different utility functions for the defined
MDP’s. The agents will then learn a policy that optimizes this specific type of
utility, and use that policy to perform dialogues as effective as possible. The
first utility function is straightforward: dialogue length. In this utility function,
agents have to pay utility for each move they make, before reaching a stable
state. When a stable state is reached, the agent gains a positive utility that is
proportional to the size of the argumentation setup used, more specifically: the
amount of queryable literals in Q. This way, the agent will learn to minimize
the dialogue length. This utility function is defined below, in the same form as
the utility functions of the earlier defined MDP’s, with states being represented
by a tuple of an argumentation setup AS, a label store LS and a set of available
actions A. This way, the utility function can easily be plugged into the MDP.
All following utility functions are defined with this in mind.

Definition 5.1.1 (Dialogue length utility function). r : S×S → I is the reward
function transitioning from s1 = (AS1, LS1, A1) ∈ S to s2 = (AS2, LS2, A2) ∈
S and is given by: r(s1, s2) = |Q| if AS2 is a stable setup, but AS1 is not,
r(s1, s2) = 0 if AS1 already was a stable state, else r(s1, s2) = −1.

The second utility function is aimed at privacy. When two agents of different
organizations communicate with each other, they might have to share sensitive
data which they would rather prevent from being shared if possible. Another
scenario is that of a police intake conversation where a complainant might not
want to give away more personal information than needed. In the case of the
system proposed in this thesis, that would mean sharing more observables than

67



is absolutely needed to form a verdict. When this utility function is used, the
agent gains positive utility for all observables that the respondent did not have
to share when reaching a stable state and gains direct negative utility for each
observable that is being shared as a result of an action. This utility function is
defined below in the same manner as earlier utility functions.

Definition 5.1.2 (Observables shared utility function). r : S×S → I is the re-
ward function transitioning from s1 = (AS1, LS1, A1) ∈ S to s2 = (AS2, LS2, A2) ∈
S and is given by: r(s1, s2) = |Q1| if AS2 is a stable setup, but AS1 is not, where
Q1 ⊆ A1 is the set of question moves in A1, r(s1, s2) = 0 if AS1 already was a
stable state, else r(s1, s2) = |AS1(KI)| − |AS2(KI)|.

5.1.1 Instantiating

Different rules of instantiating can be considered for the test cases during the
learning of the policy and the knowledge base of the respondent KR. In all
cases we assume that the inquirer starts with no knowledge about any of the
observables, and the respondent starts with knowledge about all the observ-
ables. We can then define how we want to instantiate the knowledge base of the
respondent, according to one of the following two functions:

• Random: each observable is randomly instantiated as true or false.

• Unique argument: the observables are instantiated in such a way that
always one and only one rule for the topic is labelled I.

• Conflicting argument: the observables are instantiated in such a way
that there always exists an argument for the topic and there may be an
argument attacking this argument, resulting in the topic always being
either I,B or O.

We will use the random instantiation function for all of the the cases we will
define later on. Additionally, for the test cases in which there exist no attacks
on possible arguments in support of the topic, we will use the unique argument
instantiation function. Finally, we will use the conflicting argument instantia-
tion function for the setups in which attacks on arguments in support of the
topic can occur.

5.2 Test classes

In this section we will define the test cases on which we will run our experiments
and explain why they have been chosen.

5.2.1 Standard tree

The standard tree is the most straightforward tree we can use to test the agent
and policy on. The standard tree consists of observations and rules with 1

68



antecedent. The standard tree contains no conflicting rules and possible argu-
ments. This tree can be generated with different widths and depths, where the
width indicates the amount of subtrees under the root of the tree and the depth
indicates the amount of layers of children the root node of the tree has. We will
do experiments on two types of standard trees: one deep tree that primarily
has long arguments and one wide tree that has short arguments, but more ar-
guments in number. Both setups are shown below, first the deep tree and then
the wide tree. The deep tree has 8 observable literals and 14 rules. The wide
tree has 10 observable literals and 14 rules.

t

x y

a b c d

e f g h i j k l

¬e ¬f ¬g ¬h ¬i ¬j ¬k ¬l

t

x y z v w

a b c d

¬a ¬b ¬c ¬d
e f g h

¬e ¬f ¬g ¬h
i j

¬i ¬j

5.2.2 Multi-rule tree

The multi-rule tree adds a layer of complexity to the standard trees. In multi-
rule trees, each layer beyond the first layer of children of the root consists of
rules with multiple antecedents. The amount of antecedents can be customized.
For our experiments we will use two setups: one setup in wich all rules have two
antecedents and one setup in which all rules have three antecedents. The two
argumentation setups are shown below. The setup with two antecedents has 8
observables and 6 rules. The setup with three antecedents has 12 observables
and 6 rules.

69



t

x y

a b c d

¬a ¬b ¬ c ¬ d

e f g h

¬e ¬f ¬ g ¬ h

& & & &

t

x y

a b c d

¬a ¬b¬ c ¬ d

e f g h

¬e ¬f ¬ g¬ h

& & & &

i j k l

¬i ¬j¬ k¬ l

5.2.3 Ambiguity

These setups are meant to determine the ability of the systems to deal with
setups containing sources of ambiguity. The inspiration of these setups come
from the experiments of Kumeling [14], who also tested strategies on a set of
setups that were meant to monitor behaviour in ambigiuous situations. Firstly,
the negation tree setup consists of two trees. One tree that is in favour of the
dialogue topic and one tree that is attacking the dialogue topic. Both threes
can be considered as any of the earlier determined tree types, and the amount
of observables is thus given by the sum of the two individual trees. The specific
negation tree setup chosen for the experiments has 8 observables and 12 rules.

t

x y

a b c d

¬a ¬b ¬ c ¬ d

¬ t

u v

e f g h

¬e ¬f ¬ g ¬ h

Secondly, we defined an ambiguous setup where the tree in support of the topic is
attacked by multiple arguments on different levels within the tree. The thought
behind this setup is that we can determine the ability of the system to deal
with multiple possible attacks on multiple levels at the same time. This setup
contains 10 observables and 16 rules.

70



t

x y

a b c d

e f g h i j k l

¬e ¬f ¬g ¬h ¬i ¬j ¬k ¬l
m n

¬m ¬n

¬c ¬x

5.2.4 Complex scenarios

As the final test, we have two complex scenarios that combine all the earlier
defined features. These scenarios are large in size and contain rules with multiple
antecedents and multiple possibilities for conflicts happening. The first complex
scenario is a handpicked argumentation setup that aims to combine all these
features. This setup contains 16 observables and 12 rules. The fraud intake
scenario is an argumentation setup based on a rule set used in a real life scenario.
This scenario is vast in size and should be a good benchmark for how the systems
would perform in real life. This setup contains 23 different queryables, contains
51 rules and has one topic. Because of the sheer size of these setups and the
difficulty of compactly depicting them in a graph, we do not show their layouts
here. Instead, both of the rule sets are shown in appendix A. In these tables,
the queryable literals are underlined and the topic literal is in bold font. Both
setups contain rules containing multiple antecedents, have attacks between rules
on different levels of the setup and are thus an ideal combination of all factors
that the system should be able to deal with. The challenge in the fraud intake
scenario will most likely be in the learning of the policy. The adapted MDP’s
have a larger complexity than the base MDP defined by Testerink, Odekerken
and Bex [23], with large setups this may become a problem, even when using
approximation techniques such as q-learning.

5.3 Systems

In our experiments we will compare the performances of four different systems.
Currently, exhaustive options such as Black and Hunter [5], are the de facto
standard. These systems, however, also can serve as a worst case scenario
comparison, since each move will have to be made before closing the dialogue.
For this reason, we have included an exhaustive option in our experiments that
simply makes a question move for each of the observable literals. This system is
denoted as EXH in the results. The second system we include in our experiments
is a stability-based system. We had the choice of including a one-step stability
based system such as that of Kumeling [14], to include a full stability-based
system such as that of Testerink, Odekerken and Bex [23] or both. We made

71



the decision to only include the base system of Testerink, Odekerken and Bex
in the comparison. This system is denoted as TB in the results. The reason
for this is twofold: firstly, research has already been done by Kumeling on
the performance of the system. This research has shown that their strategies
either did not have an impact on the dialogue length, or lost the properties of
soundness and completeness. The second reason is the results that they found,
in our comparison we want to compare systems that all are sound and complete.
The final two systems we include in our experiments are extensions of the base
Testerink, Odekerken and Bex based system. Firstly, the system that extends
the base system of Testerink, Odekerken and Bex with a questionLabel locution
and secondly, the system that extends this last system with an additional why
locution. These systems are denoted as TB+?L and TB+?L+WHY in the
results respectively. Having these four systems in place, we can determine the
effectiveness of the stability-based strategy in general and the effects of the
extensions on this stability-based system.

5.4 Results

In this section we will discuss the results of the experiments by looking at the
impact of the additions to the base system on the dialogue length and the
amount of observables shared. We will also look at how the different setups
used impacted performance and how the different instantiation functions used
impacted performance. Firstly, we will look at how the additions to the system
have impacted the dialogue length in the different argumentation setups, when
dialogue length is used as the performance metric whilst learning the policy.
Secondly, we will look at how the additions to the system have impacted the
amount of observables shared in the different argumentation setups, when that
number is used as the performance metric whilst learning the policy. We will
look at the findings for each of the different classes of argumentation setups,
and where relevant we will look at the different types of instantiation functions
used. The found results are presented in the form of box-plots, in which the
line in the box indicates the median value of a series and the square indicates
the average value of a series.

5.4.1 Dialogue length

5.4.1.1 Random instantiation

The first results we will look at are of the experiments done to minimize the
dialogue length, using the random instantiation function as the generator for
our test cases. This means the agent learns a policy based on cases that are
fully randomly generated, and the test cases on which we measure the results
are randomly generated in the same way. These results can be seen in appendix
B.1.

In the two standard tree cases, as shown in appendix B.1.1, the results for
all three non-exhaustive systems are comparable. For the most part, all three

72



systems learned similar policies and the questionLabel and why moves were not
used much. The slight usage of those moves does bring forth small differences.
It can be seen that the system with added questionLabel moves and the system
with both added questionLabel and why moves have worse worst-case scenarios
than the base Testerink, Odekerken and Bex system and even the exhaustive
strategy. The median of the new systems, however, is lower in the deep tree
example and the same in the wide tree scenario. The averages of the three
systems are comparable on both setups.

In the Multi-Rule cases, as shown in appendix B.1.2, it can be seen that
the system with added questionLabel moves performs about the same as the
base system of Testerink, Odekerken and Bex, except for having some more
outliers. The averages and the medians are similar enough to not warrant an
improvement. The system with added why locution has comparable averages as
the other two systems, but the medians are lower in both the 2 antecedent rule
set and the 3 antecedent rule set. Something to note is that the worst case of
the two new proposed system is worse than the exhaustive strategy.

In the ambiguous setups, as shown in appendix B.1.3, similar results to the
earlier setups can be seen. The medians of the three systems are the same in
both the setups. The averages, however, are higher for both the extensions of
the base system in both of the setups. Outliers again are worse than the results
given by an exhaustive strategy, as could be seen in the other classes of setups
as well.

Finally, we will look at the two complex scenarios, of which the results can be
seen in appendix B.1.4. The first setup, labelled as the complex scenario, shows
similar results to what we have been seeing so far: the medians of the three
systems are the same and the averages are comparable, where the system with
only the questionLabel locution added has a slightly worse average. It can again
be seen that the two extended systems have worse outlier cases than systems
performing exhaustive strategies. The fraud intake scenario, shows significantly
different results for the first time during the experiments. The base system of
Testerink, Odekerken and Bex has the best performance with a low median and
a low average. The two extended systems, however, perform very poorly in
comparison and have extreme outlier worst-case scenarios. They perform only
slightly better than the exhaustive option on average and the median is slightly
better in both cases. The best case scenarios of the two extended systems also
are worse than that of the base system. These poor results can be explained by
the significantly larger size of this argumentation setup compared to previous
experiments. The MDP and its related Q-values that are stored during the
learning of the policy grow so large during the learning phase, that it would
not fit into memory anymore. The systems are thus trained on the maximal
amount of rounds that would still allow the MDP to fit into memory, which as
can be deducted from the outcome of the experiment, is not enough to result in
an efficient policy.

73



5.4.1.2 Unique argument instantiation

Secondly, experiments were performed using the unique argument instantiation
function. These experiments are performed for the argumentation setups that
do not contain any possible conflicting arguments and can thus always be in-
stantiated with one single argument that makes the topic In. The agents learn
a policy based on randomly generated cases in which always one and only one
argument for the topic can be found. They are then tested on a set of such cases
afterwards. The results of these experiments can be seen in appendix B.2.

Firstly, we will look at the two standard tree cases again, instantiated using
the unique argument function. The results of these experiments can be seen
in appendix B.2.1. The results from these experiments clearly differ from the
results we have seen earlier for the fully random generated cases. The base
system of Testerink, Odekerken and Bex has more trouble with this type of
instantiation than the random instantation. The two extended systems however,
especially the most complex system with why moves, adapt themselves better.
In the deep tree setup, the system with added questionLabel move performs
slightly better than the base system, in both average and median. In the wide
tree setup the system with added questionLabel move performs exactly the same
as the base system. This is a result of the learned policy not containing any
questionLabel moves in general. The system with added why locution, however,
clearly outperforms both of the other two systems in both the two tree scenarios.
The average and median are the same value and there are very few outliers,
if any. In the generated dialogues, it can be seen that the combination of
questionLabel and why moves result in a policy that is similar to backward
chaining algorithms. The agent starts by questioning the labels of literals that
are the antecedent of a rule with as its consequent the topic, or in case of the
wide tree the agent starts questioning the label of the topic itself, and when it
finds an I label it works its way down the tree using why moves. If the label
of one such antecedents is U, the agent knows that it will have to go down
other branches of the tree. This results in a really consistent strategy that
outperforms the strategies of the other two stability-based systems. An example
of a commonly found dialogue for the deep tree that uses such a backward
chaining like approach, is shown below in table 5.1.

t d[t]
1 〈inquirer, questionLabel, y〉
2 〈respondent, claimLabel, (y, U)〉
3 〈inquirer, questionLabel, b〉
4 〈respondent, claimLabel, (b, I)〉
5 〈inquirer, why, (b, I)〉
6 〈respondent, since, ({(h⇒ b)}, {(h, I)})〉

Table 5.1: An example inquiry dialogue on the deep tree setup, generated by
the system with questionLabel and why moves.

74



The dialogue in table 5.1 shows that the agent starts out by asking the label
of y, which is the antecedent of one of two rules that have as its consequent
the dialogue topic t. By the response of the respondent, the label of y being U,
the agent can deduct that it has to go down the tree of the other rule with its
antecedent x. The agent then takes a guess at which of the two premises of rules
for x would be I, similarly to what it did for the rules of t. The agent asks for
the label of b and gets a result saying that the label of b is I. This label allows
the agent to make a why(b, I ) move, resulting in h being added to KI and a
stable state being reached.

Now we will look at the two Multi-Rule scenarios again, but this time with
the unique argument instantiation. The results of these experiments can be seen
in appendix B.2.2. The results from these two setups are similar to the results
shown earlier for the standard trees instantiated using the unique argument
instantiation function. Again the base system and the system with added ques-
tionlabel locution show quite similar results. The system with the added why
locution again outperforms both systems. The average is lower than the other
two systems and the median is the same as that of the questionLabel system in
the 2 antecedent setup, but lower in any other case. This again is a result of
the backward chaining like behaviour, which could also be seen in the standard
tree setups. An example of a commonly found dialogue for the Multi-Rule tree
with three premises that uses such a backward chaining like approach, is shown
below in table 5.2.

t d[t]
1 〈inquirer, questionLabel, x〉
2 〈respondent, claimLabel, (x, U)〉
3 〈inquirer, questionLabel, y〉
4 〈respondent, claimLabel, (y, I)〉
5 〈inquirer, why, (y, I)〉
6 〈respondent, since, ({(g, h, i⇒ b)}, {(g, I), (h, I), (i, I)})〉

Table 5.2: An example inquiry dialogue on the Multi-Rule with 3 antecedent
setup, generated by the system with questionLabel and why moves.

The dialogue in table 5.2 shows that the agent starts out questioning the
labels of literals that are the antecedent of a rule with as the consequent the
topic t. When the agent sees the response that x is U, it knows that it must
then ask the label of y, which it could already deduce as being I in a unique
argument case. Having the respondent claim the label of y as I then allows the
agent to make a why(y,I) move, resulting in the three literals g,h and i being
uttered and a stable state being reached.

5.4.1.3 Conflicting argument instantiation

Finally, we performed experiments using the conflicting argument instantiation
function. These experiments were performed on the argumentation setups that

75



contain possibly conflicting arguments. The cases generated using this function
always have a status for the topic that is either In, Out or Blocked. The agents
learn a policy based on these generated cases and then are tested on a set of
similarly generated test cases. The results of these experiments can be seen in
appendix B.3.

Firstly, we will look at the results of the two setups in the ambiguous class.
The results of these experiments can be seen in appendix B.3.1. The exper-
iments show similar results to that of the experiments using the random in-
stantiation function. All three stability-based systems show comparable results,
with a marginal preference for the base system. The two extended systems only
minimally made use of their newly added locutions and thus all three stability-
based systems had similar policies, resulting in comparable performance. The
stability-based systems all heavily outperformed the exhaustive option in both
two setups.

Secondly, we will look at the results of the two complex setups. These results
can be seen in appendix B.3.2. These results show the same effect as the ex-
periments done using the random instantiation function, but more extreme. In
both the two setups, and especially the fraud intake scenario, the extended sys-
tems are outperformed by the base system. The extended systems even perform
significantly worse than the exhaustive option in the fraud intake scenario. The
effect of the large state space space hindering the learning of an optimal policy
seems to be amplified by using the conflicting argument instantiation function.
The base system, however, clearly outperforms both the two extended systems
and the exhaustive option.

5.4.2 Observables shared

5.4.2.1 Random instantiation

We will now look at results from the experiments on minimizing the amount of
shared observables during a dialogue, using the random instantiation function
as the generator for our test cases. This means the agent learns a policy based
on cases that are fully randomly generated, and the test cases on which we
measure the results are randomly generated in the same way. These results can
be seen in appendix C.1.

The results of the standard tree setups, which can be found in appendex
C.1.1, already show that the added locutions are able to effectively minimize
the amount of observables shared during a dialogue. The system with only
the added questionLabel locution already shows a small decrease in the average
amount of observables shared and the system with the why locution added as
well seems to be very consistent in sharing the minimum amount of observables
needed for the setup to become stable. Since the sole performance metric in
these experiments was the amount of observables being shared, it could be
seen that the extended system first tried to gather as much information on the
defeasible literals as needed using questionLabel and why moves, before asking
the other agent for observables. An example of a commonly found dialogue for

76



the deep tree that uses such an approach, is shown below in table 5.3.

t d[t]
1 〈inquirer, questionLabel, t〉
2 〈respondent, claimLabel, (t, I)〉
3 〈inquirer, why, (t, I)〉
4 〈respondent, since, ({(x⇒ t)}, {(x, I)})〉
5 〈inquirer, why, (x, I)〉
6 〈respondent, since, ({(b⇒ x)}, {(b, I)})〉
7 〈inquirer, why, (b, I)〉
8 〈respondent, since, ({(g ⇒ b)}, {(g, I)})〉

Table 5.3: An example inquiry dialogue on the deep tree setup, generated by
the system with questionLabel and why moves.

As shown above in table 5.3, the agent is able to limit the amount of shared
observables to only 1 if there exists an argument for the topic t, using why and
questionLabel moves. This is a great improvement over the base system, which
is fully dependant on guessing what observables are labelled I based on past
information and cannot gather any more information before questioning those
observables. The system with only the added questionLabel locution can already
outperform the base system by first gathering information using questionLabel
moves, but in the final moves must still make a guess for what rules make a
literal labelled I since it cannot make why moves.

The experiments done on the Multi-Rule setups, which can be found in ap-
pendix C.1.2, show similar results as that of the standard tree experiments. The
added questionLabel locution alone already gives a small performance increase
and this effect is further increased when the why locution is added as well. Gen-
erally the agent would use questionLabel moves to figure out what rule for the
topic is labelled I, if any, and would then either question for the antecedents or
perform a why move for the consequent of that rule. This behaviour results in
lower averages and lower medians when measuring performance in the amount
of observables shared. The strategy that the agent uses is similar to that shown
earlier for the standard tree cases, but the results are slightly less positive for
the extended systems. This is because of the random instantiation function that
was used in these experiments. The chance for the topic being In is a lot higher
in the case of standard trees than in Multi-Rule trees, since all the antecedents
of the rule have to be generated positively by the instantiation function. This
results in more cases being Unsatisfiable in the experiments done on the Multi-
Rule trees and thus more observables having to be shared before concluding the
dialogues and finding out that there might not be an argument.

The experiments done on the two setups of the ambigiuous group, which can
be found in appendix C.1.3, again show similar results to previous experiments.
It can be noted, however, that for the negation tree setup, just the added ques-
tionLabel locution does not provide a large performance increase and in the case
of the multi-level attacks setup it even performs slightly worse than the base

77



system of Testerink, Odekerken and Bex. The questionLabel locution is able to
find out in what parts of the setups ambiguity lies, but in itself it is not able to
solve it more efficiently than the base system. The system with the additionally
added why locution, clearly outperforms the other two systems. In case of the
negation tree setup, this system is able to very consistently perform dialogues
with just 2 observables shared. In case of the multi-level attack setup, all three
systems have the same median but the average of the system with why locution
is lower than the other two systems. An example of a dialogue on the negation
tree setup, in which the system with questionLabel and why locution performs
a backward chaining like behaviour for the positive tree and the negative tree
is shown below in table 5.4.

t d[t]
1 〈inquirer, questionLabel, t〉
2 〈respondent, claimLabel, (t, B)〉
3 〈inquirer, why, (t, B)〉
4 〈respondent, since, ({(x⇒ t), (u⇒ ¬t)}, {(x, I), (u, I)})〉
5 〈inquirer, why, (x, I)〉
6 〈respondent, since, ({(b⇒ x)}, {(b, I)})〉
7 〈inquirer, why, (u, I)〉
8 〈respondent, since, ({(f ⇒ u)}, {(f, I)})〉

Table 5.4: An example inquiry dialogue on the negation tree setup, generated
by the system with questionLabel and why moves.

The dialogue shown in table 5.4 shows that the agent starts out by asking
the label of the topic t. When the agent gets a response that the topic is labelled
B, he can perform a why move to retrieve a rule for the topic and a rule against
the topic that caused this label. From there on, the agent uses why moves to
retrieve the observations that lie on the start of the two opposing arguments.

Finally we will look at the two complex scenarios, of which the results can be
found in appendix C.1.4. These two argumentation setups are larger than those
of the other experiments. This can be seen in the results of the experiments,
similar to what we have seen in the experiments on dialogue length. In the
first complex scenario, the medians of all the three systems are the same. The
averages differ slightly, but no significant differences can be seen between the
three stability-based systems. The fraud intake scenario, contrary to as in the
experiments on dialogue length, was decently learnable for the agents using
the two extended systems. The agents again had to prematurely stop learning
their policies, since the MDP and its related Q-values did not fit into memory
anymore, but this time the performance of the agents actually already was
slightly better than the agent using the base system. It can be seen that the
system with only the questionLabel locution added performs the best, having the
lowest median and average values. The system with the added why locution has
a worse median than the two other systems, but its average is lower than that
of the base system. Another interesting observation that can be seen is that the

78



two extended systems are able to close dialogues with an amount of observables
shared that is lower than the lowest value achieved by the base system.

5.4.2.2 Unique argument instantiation

Next, experiments were performed using the unique argument instantiation
function. These experiments were performed the same as the experiments on
dialogue length using the unique argument instantiation function, only with a
different measure of performance. The results of these experiments can be seen
in appendix C.2.

The standard tree setups, of which the results can be seen in appendix C.2.1,
show similar results as to the same experiment done using random instantia-
tion, except that the system with added why locution consistently is able to
conduct dialogues sharing only 1 observable. It can be seen that with increased
complexity of the system, the median and average become lower. The agents
are able to create a very efficient policy, knowing that there always is a valid
argument to be found for the topic. This way, the agent can probe the tree
using questionLabel moves and then ask for the relevant observables using why
moves. An example of a commonly found dialogue for the deep tree that uses
such an approach, is shown below in table 5.5.

t d[t]
1 〈inquirer, questionLabel, y〉
2 〈respondent, claimLabel, (y, U)〉
3 〈inquirer, questionLabel, b〉
4 〈respondent, claimLabel, (b, U)〉
5 〈inquirer, questionLabel, a〉
6 〈respondent, claimLabel, (a, I)〉
7 〈inquirer, why, (a, I)〉
8 〈respondent, since, ({(f ⇒ a)}, {(f, I)})〉

Table 5.5: An example inquiry dialogue on the deep tree setup, generated by
the system with questionLabel and why moves.

The dialogue in table 5.5 shows the agent probing the respondent for the
labels of different literals, until it finds a literal that is labelled I and a direct
consequent of a rule with an observation as its antecedent, in this case the literal
a. The agent then performs a why(a,I ) move that results in f being added to
the knowledge base KI and a stable state being reached.

The Multi-Rule setups, of which the results can be seen in appendix C.2.2,
again show similar results as what we have seen before. With increased com-
plexity of the system and the locutions available to the agents, the agent will
perform better in dialogues aimed at minimizing the amount of observables
shared. For both the 2 antecedent and 3 antecedent setups similar results can
be seen. The added questionLabel locution already allows the agent to perform
better than the base system and the added why locution allows the agent to

79



always achieve the minimum amount of observables shared needed for a stable
setup. An example of a commonly found dialogue for the Multi-Rule tree with
3 antecedent that uses such an approach, is shown below in table 5.6.

t d[t]
1 〈inquirer, questionLabel, x〉
2 〈respondent, claimLabel, (x, U)〉
3 〈inquirer, questionLabel, y〉
4 〈respondent, claimLabel, (y, I)〉
5 〈inquirer, why, (y, I)〉
6 〈respondent, since, ({(g, h, i⇒ b)}, {(g, I), (h, I), (i, I)})〉

Table 5.6: An example inquiry dialogue on the Multi-Rule with three antecedent
setup, generated by the system with questionLabel and why moves.

The dialogue in table 5.6 shows that the agent starts out questioning the
labels of literals that are the premise of a rule with as the consequent the topic
t. When the agent sees the response x is U, it knows that it must then ask the
label of y, which it could already deduce as being I in a unique argument case.
Having the respondent claim the label of y as I then allows the agent to make
a why(y,I ) move, resulting in the three literals g,h and i being uttered and a
stable state being reached.

5.4.2.3 Conflicting argument instantiation

Finally, experiments were performed using the conflicting argument instantia-
tion function. The results of these experiments can be seen in appendix C.3.

The ambiguous setups, of which the results can be seen in appendix C.3.1,
show similar results as the experiments done on these setups using the random
instantiation function. All the stability-based systems clearly outperform the
exhaustive option. Additionally, it can be seen that by increasing the complexity
of the system, the performance increases as well. The conflicting argument
instantiation function thus did not have a different impact on performance than
the random instantiation function.

The complex setups, of which the results can be seen in appendix C.3.2,
again show similar results as the same experiments done using the random
instantiation function. All three systems perform comparable, with a slight
edge for the base system. All the stability-based systems clearly outperform
the exhaustive option. One thing that can be noted is that the performance
of the stability-based systems is worse in comparison to the experiments done
with the random instantiation function, whereas the exhaustive option logically
performs exactly the same.

80



5.5 Discussion of results

In this section we will discuss the previously shown results of the experiments.
First we will discuss the general choices made for the experiments and how they
could have effected the given results. Secondly, we will look at what the given
results mean for our research questions. Thirdly, we will look at the differences
in performance between the different instantiation functions and look at how
the different systems dealt with this additional information. Finally, we will
discuss limitations that were found during and after the experiments.

5.5.1 Experiment setup and choices

In this section we will discuss the general setup of the experiments and the
choices that were made. The argumentation setups for the experiments were
chosen in such a way, that the experiments started with the most simple ar-
gumentation setups and gradually the complexity would increase. The thought
behind this was that it would be possible to pinpoint at what point of argumen-
tation setup complexity each of the different systems would excel at. For this
purpose, we first tested simple setups using rules with only one antecedent and
no conflicting arguments. We then experimented with rules that have multiple
antecedents, setups that have conflicting arguments and finally setups that have
all these characteristics and are larger in size. In real life situations, these final
large and complex setups would be most representable and thus the results seen
for these setups should be most representable for the real life performance of
the systems as well. The full set of setups is chosen in such a way that the
most common situations should be covered in them, but the set is in no way
exhaustive. It can thus be argued that more experiments with different setups
would still be desirable, but not needed. The random instantiation function
might not be the most representable function to initiate the knowledge base of
the respondent with and to learn a policy with. In real life scenarios, it is highly
unlikely that the prior probability of all observables is exactly a 50% chance.
Because of this, additional experiments were performed using the unique argu-
ment and the conflicting argument instantiation functions. These functions are
based on the idea that a dialogue will most likely be started when there is at
least an idea for an argument for the topic existing.

5.5.2 Effects on performance

In this section we will look at what the effect on performance is of the added
complexity to the base system of Testerink, Odekerken and Bex and how the
stability-based systems perform compared to the exhaustive system. First we
will look at the results based on the performance metric being dialogue length
and secondly we will look at the results based on the performance metric being
the amount of observables that are shared during the dialogue. After discussing
these found results, we will be able to answer our research questions on the
performance of the inquiry systems.

81



When looking at the results based on the dialogue length, it can be seen that
in the simpler setups there is not a large difference in performance to be found
between the stability-based systems. The averages and medians stay similar,
even though the more complex systems do have outlier cases where they perform
worse than exhaustive options. The first setup of the complex scenarios set
shows similar results, the fraud intake scenario, however, performs significantly
worse in both of the two extension systems. There could be two possible causes
for this drop in performance. Firstly, the agents using the two extended sets
of locutions have a significantly larger state space and set of actions at their
disposal for each state. The downside of this fact is double. The increased
state space has as a result that the agent has to spend significantly more time
learning a policy, since there is a larger state space to explore and learn. The
other downside of this is that the MDP and its related Q-values, that are used
for Q-learning, can grow so large that it will not fit into memory anymore. As a
result of this, the agent has to stop learning sooner than is desirable, to prevent
the system running out of memory. This results in sub-optimal policies and
worse performance than the simpler base system of Testerink, Odekerken and
Bex, that does not have this problem of a too large state space. This also means
that it is yet unsure, whether or not the two extended systems are capable of
generating more efficient policies than the base system when measuring dialogue
length. One can make a prediction that they can, based on the results of the
smaller scenarios, but it is in no way confirmed by our experiments so far. The
setups in which the most expressive system did excel at, were that of the Multi-
Rule trees. The stability-based systems were consistently able to outperform
their exhaustive alternative. Table 5.7 gives a brief summary of the findings
of the experiments on dialogue length using random instantiation and indicates
what system would be most suitable to use in what test cases.

Test Class Most Suitable System
Standard Trees Indifferent between stability-based systems
Multi-Rule Trees TB+?L+WHY
Ambiguous Setups Indifferent between stability-based systems
Complex Setups TB

Table 5.7: An overview of what system has shown to be most suitable for what
setup classes, taking into account randomly generated cases based on minimizing
dialogue length.

Generally, the results based on the unique argument instantiation test cases
show more promise than the results of the randomly generated cases. In these
cases it can clearly be seen that the extended systems benefit from their added
locutions and are able to perform more efficiently compared to the base system.
Table 5.8 gives a brief summary of the findings of the experiments on dialogue
length using unique argument instantiation and indicates what system would
be most suitable to use in what test cases.

82



Test Class Most Suitable System
Standard Trees TB+?L+WHY
Multi-Rule Trees TB+?L+WHY

Table 5.8: An overview of what system has shown to be most suitable for what
setup classes, taking into account cases generated using the unique argument
instantiation function and based on minimizing dialogue length.

The results of the experiments done using the conflicting argument instan-
tiation function were similar to that of the experiments done using the random
instantiation function. In the setups of the ambiguous class, the performance of
the three stability-based systems was comparable. In the case of the complex
classes though, an amplification of the effect that was shown for the randomly
instantiated experiments was seen. The performance of the two extended sys-
tems was lower than that of the base system. In the case of the fraud intake
scenario, the two extended systems performed even worse than the exhaustive
option. Table 5.9 gives a brief summary of the findings of the experiments
on dialogue length using conflicting argument instantiation and indicates what
system would be most suitable to use in what test cases.

Test Class Most Suitable System
Ambiguous Setups Indifferent between stability-based systems
Complex Setups TB

Table 5.9: An overview of what system has shown to be most suitable for what
setup classes, taking into account cases generated using the conflicting argument
instantiation function and based on minimizing dialogue length.

The results based on the amount of observables shared are more promising
than the results based on the dialogue length. It can be seen that the system
with the added questionLabel move performs equally or better than the base
system and the system with added why locution steadily outperforms both the
other two systems. The agent can effectively minimize the amount of observables
shared by first probing for the labels of different defeasible literals. Based on
the information it gathers by uttering those moves, it can then work its way
down towards an argument using either question or why moves. This results
in longer dialogues, but since in these experiments the dialogue length was not
a performance metric, this does not affect the performance of the agents. The
same problem as in the agents that learned a policy based on dialogue length
can be seen again here in the two complex setups. The state space of the
MDP grows so large, that whilst learning the agent will run out of memory
long before reaching an optimal policy. However, contrary to what we have seen
in the experiments on dialogue length, the two extended systems were already
able to calculate a policy that performs better than the base system in the most
complicated setup. It is possible that if the agents were able to learn for more
rounds than that they did in the experiments that this performance increase

83



would grow even larger. Table 5.10 gives a brief summary of the findings of the
experiments on shared observables using random instantiation and indicates
what system would be most suitable to use in what test cases.

Test Class Most Suitable System
Standard Trees TB+?L+WHY
Multi-Rule Trees TB+?L+WHY
Ambiguous Setups TB+?L+WHY
Complex Setups Indifferent between stability-based systems

Table 5.10: An overview of what system has shown to be most suitable for what
setup classes, taking into account randomly generated cases based on minimizing
the amount of observables shared.

We can again see that when using the unique argument instantiation func-
tion, that the added complexity of the agents does benefit the performance. The
system with only the added questionLabel locution already steadily outperforms
the base system and this result is further shown by the system with the added
why locution. The system including the why locution is enable to consistently
minimize the amount of observables shared in a dialogue, without having any
outlier cases. This is a result of the backward chaining like behaviour that the
agent again learned themself. Table 5.11 gives a brief summary of the findings
of the experiments on shared observables using unique argument instantiation
and indicates what system would be most suitable to use in what test cases.

Test Class Most Suitable System
Standard Trees TB+?L+WHY
Multi-Rule Trees TB+?L+WHY

Table 5.11: An overview of what system has shown to be most suitable for
what setup classes, taking into account cases generated using the unique argu-
ment instantiation function and based on minimizing the amount of observables
shared.

The results of the experiments done using the conflicting argument instan-
tiation function were similar to the results of the experiments done using the
random instantiation function. In the case of the ambiguous setups, it could be
seen that the larger the set of locutions that the agent has at its disposal, the
better the performance was. In the complex setups the three stability-based sys-
tems performed similar to each other and clearly outperformed the exhaustive
option. Table 5.12 gives a brief summary of the findings of the experiments on
shared observables using conflicting argument instantiation and indicates what
system would be most suitable to use in what test cases.

84



Test Class Most Suitable System
Ambiguous Setups TB+?L+WHY
Complex Setups Indifferent between stability-based systems

Table 5.12: An overview of what system has shown to be most suitable for what
setup classes, taking into account cases generated using the conflicting argu-
ment instantiation function and based on minimizing the amount of observables
shared.

Having found these results, we are now able to answer our research ques-
tions. Firstly, how does the set of available locutions for both agents affect the
performance of inquiry dialogues? From our experiments we can conclude that
having a wider range of locutions available to the agents in their dialogues, can
lead to better performance regarding dialogue length and the amount of observ-
ables shared. This result did not show for all the cases that we have looked
at in our experiments, but this does not have to do with the addition of the
locutions themselves. This was more than likely caused by the large action-state
space of the MDP used to learn a policy for the larger rule sets. Theoretically
speaking, the system with the most locutions would always perform the best
or equal to the best system, when given enough time and resources to learn a
policy. This holds for the simple reason that the most expressive system, could
always learn a policy using only moves from the less expressive systems, if they
perform better. This behaviour could be seen, for example, in the standard tree
experiments on dialogue length, in which the more expressive systems created
policies similar to that of the base system. Besides the two metrics of dialogue
length and amount of observables shared, the added expressiveness as a result
of the new locutions can be considered as a performance gain of its own as well.

Next, we will look at how the rule set used in inquiry dialogues affect the per-
formance of inquiry dialogues. In our experiments it showed that performance
varied greatly between the different rule sets used, especially when considering
the extended two systems. There are two factors of importance here: firstly, the
size of the rule set greatly affected the performance of the two extended systems,
since the state space of the MDP’s grew so large that the agents couldn’t learn
an optimal policy. Secondly, the structure of the rule set impacted performance
of the different systems used. It can be seen that some of the rule sets allowed
the extended systems to learn and use the structure of the rule set in their
advantage, where in the simplest setups this did not give a large advantage.

Finally, we will look at how the stability-based systems performed compared
to the exhaustive system. As expected, the stability-based systems systemati-
cally outperformed the exhaustive system. This can be seen in all experiments
done on both dialogue length and observations shared. In some experiments,
the extended systems performed worse than the exhaustive system, but then the
base system would still perform best out of all systems. It can thus be argued
that at least one stability-based option is always preferred over the exhaustive
option and thus stability-based systems as a class are preferred over exhaustive
systems.

85



5.5.3 Instantiation functions

In this section we will discuss the influence of the instantiation functions used
on the results of the experiments. For our experiments we used three different
instantiation functions to learn policies and to instantiate the knowledge base of
the respondent with for each dialogue. Firstly, we used the random instantiation
function. This function randomly gives a truth value of true or false to each
observable literal. Using this instantiation function, the system is able to learn
each possible case of instantiation for the observables and thus the agent should
be able to learn a general policy that would hold itself up in real life. The
downside of this instantiation function is that in real life, there almost never
is such a random distribution of true and false for each possible observable.
In real life the truth values of certain literals increase or decrease the chances
of other literals being true or false as well. It would most likely affect the
performance of the agent positively if we were able to feed it cases that happened
in real life situations, instead of randomly generating cases. Another downside
of the randomly generated cases is that a lot of cases will be generated that
end up in unsatisfiable outcomes. It is very unlikely that a dialogue between
agents will be started without one of the agents having some suspicion of an
argument for the topic existing. In an effort to test the hypothesis that the
agents would perform better when there is a lead for an argument of the topic
existing, we also introduced the unique argument instantiation function and
the conflicting argument instantiation function. The idea behind the unique
argument instantiation function is that it creates cases in which there always
is exactly one argument for the topic. The agents were able to learn this fact
and create policies that use this knowledge to their advantage. It could be seen
that as a result of these added constraints to training and testing cases, the
extended systems were more effective at creating policies than the base system.
The results of the conflicting argument instantiation function differed less from
the results of the random instantiation function. In general, the performance
of all stability-based systems was comparable to the performance in the case
of randomly generated dialogues. The most notable difference was that the
two extended systems performed significantly worse in the fraud intake scenario
with conflicting argument instantiation than in the experiments with the random
instantiation function. All in all, a small case can be made that when the agent
can make certain assumptions about the knowledge base of the respondent, they
can abuse this knowledge in order to perform more effectively.

5.5.4 Limitations

In this section we will discuss the limitations of the experiments performed
and the limitations of the proposed systems that are brought to light by the
experiments.

Firstly, we will look at the limitations of the experiments we have performed.
In the selection of setups, we tried to select them in such a way that the different
characteristics found in argumentation setups could be tested isolated and com-

86



bined. It was tested how the width and depth of standard tree like setups affects
the performance, how rules with multiple antecedents affect performance, how
setups that contain conflicting arguments affect performance and finally how
complex systems that combine all these characteristics and systems that could
be used in real life perform as well. A downside of this approach was that pri-
marily relatively small and focused setups were experimented with. In real life,
it is more likely that these setups are larger and contain many exception cases
and attacking arguments. We tried to experiment with setups that were used in
real life, but they were too complex for the two extended systems to effectively
learn optimal policies for. A missing element from the set of test cases, and thus
a limitation of the experiments, are smaller setups that are based on real life
situations. Using such setups we would have been able to measure the real life
performance for smaller situations, in which the agents would be able to reach
an optimal policy before running out of memory.

In our experiments we tested with two different utility functions, using which
the agents learn their policies and conduct their dialogues. Realistically speak-
ing, however, in real life there usually is not a clear preference for only dialogue
length or only the amount of observables shared. It is very likely that a com-
bination of the two utilities actually is preferred when such a system is used in
real life.

Finally, we will look at the limitations of the proposed systems themselves
that the experiments brought forth. By giving the agents access to more actions
and more information, the state space of the MDP grew exponentially large.
Whilst in theory this could be a good thing, more efficient strategies could be
found in this enlarged state space, in our experiments it showed that it grew
so large that it prevented the agents from learning the optimal policies and
thus strategies on the larger argumentation setups. The agents were not able to
perform the necessary amount of rounds needed for the policies to stabilize and
thus were left with sub-optimal policies that sometimes performed even worse
than, or similar to, exhaustive options. A large limitation of the systems in their
current form thus is the inability to efficiently deal with larger argumentation
setups. Another downside of this increased state space and the increased amount
of actions is that it takes significantly longer time-wise to learn an efficient
policy. However, since a policy only has to be learned once, this only is a slight
inconvenience compared to the limitation of the MDP growing too large to fit
into memory.

87



Chapter 6

Discussion

In this chapter, we will discuss the findings that we have made in this thesis.
We will first discuss the feasibility of the stability-based inquiry systems in real
life situations. Secondly, we will discuss and propose solutions to some of the
limitations that were found in the experiments and in the systems themselves.

6.1 Feasibility in real life situations

How feasible would the current implementations of the proposed systems be in
real life situations? As explained earlier in the limitations section, that partly
depends on the size of the argumentation setup it would have to use for its
dialogues. When the argumentation setup is too large, the two extended systems
are not able to learn the optimal policy and it would be preferable to use the
base system of Testerink, Odekerken and Bex, which is able to handle such larger
setups efficiently. This is especially true if the only measure of performance is
the average dialogue length. Another factor in whether or not the systems are
feasible are the assumptions the agents can make for the responses. We saw
earlier that when the agent can assume that there always one and only one
valid argument for the topic to be found, the more complex systems perform
significantly better.

6.2 Possible solutions for the found limitations

In this section we will again look at the limitations we have found and briefly
discuss possible solutions for them.

Firstly, we will look at the largest limitation of the two extended systems
that showed during experiments. The size of the MDP and its related Q-values
grows so large during the learning phase, that the objects do not fit into mem-
ory anymore before reaching a stable policy. Multiple possible solutions for this
problem do exist. One solution is to reduce the state space on which the agents

88



are acting. This can be achieved by, instead of having a state be all the knowl-
edge the agent has at its disposal, having states be defined by features over the
knowledge base of the agent. Another option is to simply prune certain parts
of the MDP, which show such unpromising results that it can be assumed that
an optimal policy would never have to use these state-action pairs. Another so-
lution would be to learn the optimal policy in a different way than Q-learning.
There are many algorithms that allow agents to learn policies of an MDP. The
agents could for example learn the policies using dynamic programming.

Secondly, we will discuss the limitation of the selection of argumentation
setups used in the experiments. The setups were chosen to represent possible
features that could be found in more complex setups, but then tested separately.
We also tested complex setups in which all the tested features were present com-
bined. It is difficult to justify the set of setups chosen to be truly representable
for setups that would be used in real life. We used one scenario, the fraud intake
setup, that is representable for a setup that is used in real life decision making.
This, however, is only one example of such a setup and a rather large one. It can
be argued that more experiments, using argumentation setups based on small
and large scenarios used in real life decision making, would be desirable.

Thirdly, we will address the limited choice of instantiation functions used
in the experiments. Our experiments mostly used a random instantiation of
knowledge to learn cases and conduct dialogues. For the simple setups without
conflicting arguments we also used an instantiation function that instantiates
knowledge bases in which always one and only one in argument for the topic
could be found. For the setups in which conflicting argument could exist, we
additionally used the conflicting argument instantiation function that generates
cases that are either In, Out or Blocked. Theoretically speaking, the random
instantiation function can return any possible case of knowledge and should thus
give a decent representation of cases that can be found in real life. Realistically
though, a lot of bogus instantiations are created by this function as well. This
gives the agent a lot of bogus cases during the learning phase, costing precious
resources that could be used for representable cases, and also creates a lot of
unrepresentable cases in the experiments. It is hard to imagine, for example,
that a dialogue would be started in which the respondent knows that none of
the arguments could ever be in and all the observables have a value of false. We
tried to experiment with the idea that the respondent would always start an
argument with at least one argument for the topic being In, which is represented
by the unique argument instantiation function and the conflicting argument
instantiation function. Results showed that the different instantiation function
could boost the performance of both two extension systems, but in the case
of the most complex setup it actually hindered the performance of the agent.
Ideally, we would have trained and tested the agents using cases that come from
real life data in which there exist conditional probabilities between the different
queryable literals. This way it can become more clear how well the different
systems would perform in real life scenarios.

Finally, we will discuss the limitations of the amount of utility functions used
to learn and measure the performance of dialogues with. In our experiments

89



we trained our agents to either minimize the dialogue length or minimize the
amount of observables shared. These are two good metrics, but they were tested
isolated from each other. One can imagine that in real life, a trade off exists
between the two metrics. This could be tested and trained using a hybrid
utility function, in which a weighted sum of observables shared and dialogue
length would be used as the measure of performance.

6.3 Contribution

This section gives an overview of contributions that this thesis has given. Firstly,
in this thesis we have given an overview of research done on inquiry dialogues.
We examined and compared the different methods with each other and used
this information as a basis and inspiration for our own research. Secondly, we
extended a stability-based querying system into a stability-based inquiry dia-
logue system, creating the first of its kind and a viable competitor for exhaustive
dialogue systems. Multiple versions of this stability-based dialogue system were
defined and implemented, each with a different level of expressiveness. Finally,
we performed experiments to measure the performance of the different systems
in different situations and the impact on performance of the two extensions.

90



Chapter 7

Conclusion

This chapter will summarize the findings of this thesis.
This thesis aimed to make a contribution on the field of agent argumentation

and more specifically inquiry dialogues. In inquiry dialogues, two or more agents
try to prove a proposition together [24]. Such dialogues follow a protocol that
dictates what moves can be made and when they can be made. The goal of this
thesis was to come up with new ideas that increase the performance of agents in
inquiry dialogues. To achieve this goal, we first had to do a literature research
of current works done on inquiry dialogues and how they each measure their
performance.

In our literature research, we have looked at different works done on the
topic of inquiry dialogues. The first work we have looked at is that of Black and
Hunter [5], which can be considered the de facto standard in inquiry dialogue
systems. Black and Hunter defined an inquiry dialogue system that can perform
two sub-types of inquiry dialogues. The strategy the agents use in their system
is exhaustive, which means that the agents make all moves at their disposal that
could have a possible impact on the outcome. Due to this exhaustiveness, their
approach has the benefits of being both sound and complete. The downside of
this approach is that dialogues are long and include a lot of redundant moves.
Kumeling [14] proposed multiple improvements upon the exhaustive strategy
defined by Black and Hunter. Two of the proposed strategies generated smaller
dialectical trees than the exhaustive strategy, but they were not sound and com-
plete anymore and the size of the actual dialogues was generally not smaller.
The other strategies were sound and complete but only showed a marginal in-
crease in dialectical tree size or dialogue length. Yan et al. [25] also proposed a
system that is based on the work of Black and Hunter. Their aim is to improve
feasibility of using the system of Black and Hunter in real life situations. In their
system, Yan et al. use a different type of logic than Black and Hunter. The
system of Black and Hunter uses defeasible logic, where Yan et al. chose to use
possibilistic logic. Yan et al. give the agents slightly different data structures
to store their knowledge in and the protocol returns one legal move at a time,
in contrast to an entire list of all moves. Yan et al. claim that their system

91



provides simpler implementations that generate clearer and faster dialogues.
Parsons et al. [16] give protocols for inquiry, information-seeking and persua-
sion dialogues. The goal of their research was to give detailed characteristics
of outcomes of their generated dialogues. Their agents use so called attitudes,
which determine when agents are allowed to assert arguments and accept the
assertions of another agent. They show that by adjusting the protocols used in
the dialogues, the generated dialogues either have the properties of soundness
and completeness or they do not have them. The preference for having these
properties differs between the domains in which the system is used and Parsons
et al. show that these characteristics can be adjusted. Testerink, Odekerken and
Bex [23] propose a querying system for inquiry that aims to be more efficient
than exhaustive approaches. Their method uses the concept of stable states,
states after which the status of the topic cannot change anymore, in order to
calculate a policy that can be used for strategies. They define an approximation
algorithm that is a sound approximation of stability. The policy learned by the
agents allows them to reach a stable state with as little queries made as possible.
Their method shows promise, but is not a fully defined dialogue system yet. Fan
and Toni [10] propose a single dialogue model that is able to perform multiple
types of dialogues. The model they propose is based on game-theory and does
not use separate protocols for each dialogue type, as a traditional system would.
They show that their system is able to perform information-seeking and inquiry
dialogues using the same single dialogue model.

After the literature research, we looked into the different measures of per-
formances that were found in literature in order to answer our first research
question: ”What are the best performance measures for inquiry type dialogues
that model a police intake conversation?”. The first measure that was discussed
was the dialogue length, which is almost an universal measure of performance
in literature. It is desirable that the system generates as short as possible dia-
logues whilst conveying the same message. A system that has shorter dialogues
on average is preferable to a system that has longer dialogues. Another mea-
sure of performance that was discussed, but not deemed relevant for this thesis
on police intake conversations, is the computational complexity of the dialogue
system. Systems that have a high complexity will take a long time in practice
to calculate dialogues, which of course is not desirable. The expressiveness of
a system indicates in how many ways agents can share and create arguments.
This can be classified by the amount of different locutions that the agents are
able to utter during a dialogue. It is preferable for agents to converse in as many
diverse ways as possible and this could be seen as beneficial for police intake
conversations. It also was found to be important to minimize the amount of
information that needs to be shared before terminating a dialogue. This perfor-
mance measure of privacy could be important for police intake conversations.
Another measure that could be important is that of explainability. It is prefer-
able for a system to explain the decisions that it has made and how it came to
its verdict. Finally, it is desirable for systems to be both sound and complete.
This gives certainties on the outcomes that the system generates.

After discussing the performance measures of inquiry dialogue systems, we

92



started defining our own stability-based dialogue system based on the works
of Testerink, Odekerken and Bex [23]. By doing so, we have defined and im-
plemented the first known stability-based inquiry dialogue system. The first
thing we did was define a base system, not yet taking into account stability,
based on their works. This system consists of two agents of which one is able
to question for observable literals and the other agent is able to either deny or
confirm them. Definitions were created for the participants, their moves and
the dialogue itself. This was all formalised along with a protocol and strategies
that the agents could use. When the base system was in place, we defined how
the agents could reason using the concept of stability and use this concept in
order to learn an optimal policy. Because of the complexity of calculating the
stability of a state, we adopted the approximation algorithm for stability as
given by Testerink, Odekerken and Bex in their paper. Having defined the base
version of a stability based dialogue system, we started exploring extensions of
this system. The first extension that we made was giving the inquiring agent
the possibility to question the labels of defeasible literals as well, in stead of
only being able to question non-defeasible literals. The set of locutions, the
protocol, the knowledge bases and the MDP all had to be adjusted in order
to support this newly added locution. The final extension made to the system
were a why and a since locution. These locutions are inspired by why and since
locutions from traditional dialogue systems such as that of Parsons et al. [16],
but adjusted in order for it to work for labelled literals instead of for arguments.
The why locution allows the inquiring agent to ask for an explanation of why a
label is considered to be the label it is as uttered by the respondent in the form
of an argument. As a response to such a why move, the respondent is able to
utter an explanation in a since move. In this explanation the respondent gives
a set of rules and labelled literals that explain why the given label was assigned
to the literal.

Having defined the base system and the extensions of the base system, we
then defined our experiments. The goal of these experiments was to measure and
compare the performance of the base stability-based system and its extensions
along with an exhaustive option. We first defined the two utility functions that
we would use to measure the performance of the different systems. As a result,
two sets of experiments were performed. One measuring the performance in the
form of dialogue length and another experiment measuring the performance in
the form of the amount of observables shared during the dialogue. After defining
the utility functions we defined what classes of argumentation setups we were
going to experiment with and how we would instantiate the knowledge base of
the respondent during training and testing.

Results of the experiments performed using the random instantiation func-
tion showed that for dialogue length there was not a significant improvement
in performance for the smaller sized argumentation setups. In the larger argu-
mentation setups it became evident that the more complex systems had trouble
reaching an optimal policy. This is a result of the larger size of the state-action
space and due to the fact that the agents were not able to calculate an optimal
policy before the MDP and its Q-values not fitting into memory anymore. The

93



experiments that measure the amount of observables shared gave better results
and showed that the extended systems were able to outperform the base sys-
tem, especially the system with why locution. This system was the single best
performer in all classes except the complex setups, where it performed similar
to the other two stability-based systems.

The experiments performed using the unique argument instantiation func-
tion showed that the extended systems profited more of this instantiation func-
tion than the base system. Results of the experiments done on the amount of
observables shared were the most promising. The first extension, only having
the additional questionLabel locution, performed equal to or better than the
base system in almost all argumentation setups. The system with the added
why locution was almost consistently the best performer in these experiments.
This system also was the best performer in the experiments done on minimizing
the dialogue length.

The experiments performed using the conflicting argument instantiation
function showed similar results to the experiments done using the random in-
stantiation function. The extended systems were not able to significantly in-
crease their performance compared to the base system using the additional
information that this instantiation function gives. The result that stood out the
most, was that the extended systems performed significantly worse on the fraud
intake scenario setup when measuring the dialogue length.

In general, the system with the added why locution performed the best, es-
pecially in the cases where the unique argument instantiation function was used.
It was also shown that the stability-based systems as a group were consistently
able to outperform the exhaustive system in both utility functions. The exper-
iments did show, however, that as the argumentation setups grow in size, the
extended systems have trouble learning their optimal policies. This is because
of the fact that the MDP and its Q-values grows so large during the learning
phase, that this phase has to be ended prematurely. It can thus be concluded
that the extension systems, just as the base system, show promising results, but
for larger setups alternatives would have to be found for the current Q-learning
method of learning policies.

7.1 Future research

This thesis brings forth multiple ideas and possibilities for future research. The
experiments currently done all used a certain division of knowledge, where the
respondent has knowledge of all the observables and the agents have a shared
rule set. It would be interesting to see what would have to be changed to the
systems in order to effectively support the observables being distributed amongst
the agents and the agents having separate, possibly overlapping, rule sets. Along
the lines of this research, it would possibly be needed for the initiative during
the dialogue to be swapped around during the dialogue. The current dialogues
all start with the initiative for the inquirer and it does not ever shift towards
the respondent. Having a mixed initiative could possibly bring forth interesting

94



new dynamics and findings. Finally, the ideas brought forth in the section
on possible solutions for the found limitations could be researched in order to
determine their effectiveness at solving those limitations.

95



Bibliography

[1] Alahmari, S., Yuan, T., & Kudenko, D. (2017). Reinforcement learning for
abstract argumentation: Q-learning approach. In Adaptive and Learning
Agents workshop (at AAMAS 2017).

[2] Amgoud, L., Maudet, N., Parsons, S. (2000). Modelling dialogues using
argumentation. In Proceedings Fourth International Conference on MultiA-
gent Systems (pp. 31-38). IEEE.

[3] Bex, F., Peters, J., & Testerink, B. (2016, August). AI for online criminal
complaints: From natural dialogues to structured scenarios. In Artificial
Intelligence for Justice Workshop (ECAI 2016) (p. 22).

[4] Black, E., Coles, A. J., & Hampson, C. (2017, May). Planning for persuasion.
In Proceedings of the 16th Conference on Autonomous Agents and Mul-
tiAgent Systems (pp. 933-942). International Foundation for Autonomous
Agents and Multiagent Systems.

[5] Black, E., & Hunter, A. (2009). An inquiry dialogue system. Autonomous
Agents and Multi-Agent Systems, 19(2), 173-209.

[6] Dung, P. M. (1995). On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.
Artificial intelligence, 77(2), 321-357.

[7] Dung, P. M., Kowalski, R. A., Toni, F. (2009). Assumption-based argumen-
tation. In Argumentation in artificial intelligence (pp. 199-218). Springer,
Boston, MA.

[8] Fan, X., Toni, F. (2011, June). Assumption-based argumentation dialogues.
In Twenty-Second International Joint Conference on Artificial Intelligence.

[9] Fan, X., Toni, F. (2014). A general framework for sound assumption-based
argumentation dialogues. Artificial Intelligence, 216, 20-54.

[10] Fan, X., & Toni, F. (2015, October). Mechanism design for argumentation-
based information-seeking and inquiry. In International Conference on Prin-
ciples and Practice of Multi-Agent Systems (pp. 519-527). Springer, Cham.

96



[11] Garćıa, A. J., & Simari, G. R. (2004). Defeasible logic programming an ar-
gumentative approach. Theory and Practice of Logic Programming, 4(1–2),
95–138.

[12] Hadjinikolis, C., Siantos, Y., Modgil, S., Black, E., & McBurney, P. (2013,
August). Opponent Modelling in Persuasion Dialogues. In IJCAI (pp. 164-
170).

[13] Hadoux, E., Beynier, A., Maudet, N., Weng, P., & Hunter, A. (2015, July).
Optimization of Probabilistic Argumentation with Markov Decision Models.
In IJCAI (pp. 2004-2010).

[14] Kumeling, W.D. (2018, November) Asking useful questions in information
gathering dialogues.

[15] McBurney, P., Parsons, S. (2009). Dialogue games for agent argumen-
tation. In Argumentation in artificial intelligence (pp. 261-280). Springer,
Boston, MA.

[16] Parsons, S., Wooldridge, M., & Amgoud, L. (2003, July). On the outcomes
of formal inter-agent dialogues. In Proceedings of the second international
joint conference on Autonomous agents and multiagent systems (pp. 616-
623). ACM.

[17] Prakken, H. (2005). Coherence and flexibility in dialogue games for argu-
mentation. Journal of logic and computation, 15(6), 1009-1040.

[18] Prakken, H. (2010). An abstract framework for argumentation with struc-
tured arguments. Argument and Computation 1, 2 (2010), 93–124.

[19] Rienstra, T., Thimm, M., & Oren, N. (2013, August). Opponent Models
with Uncertainty for Strategic Argumentation. In IJCAI (pp. 332-338).

[20] Schraagen, M., Testerink, B., Odekerken, D., & Bex, F. (2018).
Argumentation-driven information extraction for online crime reports. In-
ternational Workshop on Legal Data Analysis and Mining (LeDAM 2018).

[21] Testerink, B. & Bex, F. (2017, October). Specifications for peer-to-peer ar-
gumentation dialogues. In International Conference on Principles and Prac-
tice of Multi-Agent Systems (pp. 227-244). Springer, Cham.

[22] Testerink, B., Bex F. (2017). Developing Argumentation Dialogues for
Open Multi-Agent Systems. Demo at the 20th International Conference on
Principles and Practice of Multi-Agent Systems (PRIMA 2017).

[23] B. Testerink, D. Odekerken F. Bex (2019) A Method for Efficient
Argument-based Inquiry 13th International Conference on Flexible Query
Answering Systems (FQAS 2019). Lecture Notes in Artificial Intelligence,
Springer, to appear.

97



[24] Walton, D., Krabbe, E. C. (1995). Commitment in dialogue: Basic con-
cepts of interpersonal reasoning. SUNY press.

[25] Yan, C., Lindgren, H., & Nieves, J. C. (2018). A dialogue-based approach
for dealing with uncertain and conflicting information in medical diagnosis.
Autonomous Agents and Multi-Agent Systems, 32(6), 861-885.

98



Appendix A

Complex Argumentation
Setups

A.1 Complex Scenario

v,w,a⇒t
v,w,d⇒t
v,r⇒t
s,i⇒∼t
a,b,c⇒p
e,f⇒q
g,h⇒r
j,k,l⇒s
m,n,o⇒u
p⇒v
q⇒v
u⇒∼p

99



A.2 Fraud Intake Scenario

∼bf,mh,ob⇒f Avl,Okl⇒vh
bgh,Owt⇒∼bf Oaov,Avft⇒vh
Onp⇒∼bf Ant,Ots⇒gt
wp⇒bf Atv,Otc⇒gv
∼tp,Ogotp,ob⇒bgh Ovo,Avv⇒vv
ag,iwvb⇒ob Oao,Ava⇒vv
Ovm⇒wp Ows⇒ Avn
Odp⇒wp ∼Oahgo⇒∼Avn
Ows⇒iwvb ∼Opb⇒∼Avv
Ohw⇒iwvb Opb⇒∼Ava
Oapddda⇒ag Ows⇒∼Aidfv
Oahgo⇒ag ∼Opb⇒ Atv
Obo⇒tp Ohw⇒∼Avl
Odp⇒tp Ows⇒∼Ant
Ovm⇒tp Ows⇒∼Ava
Opb,Onp⇒∼tp OAm⇒Avv
∼Og,Opb⇒∼tp OAm⇒Aidfv
Obdwa,∼Obo⇒∼tp OAm⇒Avn
gv⇒mh OAm⇒Ava
gt⇒mh OAm⇒Aga
vh⇒mh OAm⇒Avl
vv⇒mh OAm⇒Ant
Anlb,Obg⇒vh OAm⇒Avft
Owpla,Aga⇒vh OAm⇒Atv
Ora,Avn⇒vh OAm⇒Anlb
Aidfv,Oidf⇒vh

100



Appendix B

Dialogue Length

B.1 Random Instantiation

B.1.1 Standard Trees

101



B.1.2 Multi-Rule Trees

102



B.1.3 Ambiguous Setups

103



B.1.4 Complex Setups

104



B.2 Unique Argument Instantiation

B.2.1 Standard Trees

105



B.2.2 Multi-Rule Trees

106



B.3 Conflicting Argument Instantiation

B.3.1 Ambiguous Setups

107



B.3.2 Complex Setups

108



109



Appendix C

Shared Observables

C.1 Random Instantiation

C.1.1 Standard Trees

110



C.1.2 Multi-Rule Trees

111



C.1.3 Ambiguous Setups

112



C.1.4 Complex Setups

113



C.2 Unique Argument Instantiation

C.2.1 Standard Trees

114



C.2.2 Multi-Rule Trees

115



C.3 Conflicting Argument Instantiation

C.3.1 Ambiguous Setups

116



C.3.2 Complex Setups

117



118


