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Abstract

An estuary is a semi-enclosed body of water, in which fresh water, from rivers and
salt water, originating from the ocean, meet. In an estuarine tidal network this
occurs in multiple branches. Understanding (the processes influencing) salt intru-
sion in tidal networks is of major importance, due to its effects on ecosystems and
because of the problems salt intrusion can cause for the availability of fresh water
and agriculture. There are various studies that use numerical simulation models
to reproduce realistic salinity profiles, however in order to gain more fundamental
knowledge more simple, semi-analytical models are needed.

In this study an idealised, tidally averaged model (originally formulated for a sin-
gle channel configuration) is generalized to an estuarine network. This model
describes export of salt by river flow and import of salt by density-driven flow and
horizontal diffusion. Besides the distribution of salt and salt transport between the
channels, the model also calculates the distribution of river water over the different
channels. The model is used to investigate the effect of different factors, such as
tidal velocity, river flow and channel geometry on salt intrusion. The model is
applied to a prototype estuarine network consisting of the South Channel, South
Passage and North Passage of the Yangtze Estuary.

It is concluded that, for the present-day situation, dry season and spring tide, salt
intrusion is larger in the South Passage than in the North Passage. The most im-
portant reason for this is that the South Passage is funnel-shaped and the North
Passage is straight. Due to the funnel-shape, river flow is weaker near the ocean
as the river transport is distributed over a larger area there. The larger salt in-
trusion in the South Passage results in a salt transport from the South Passage
to the North Passage. Furthermore, it is found that there is slightly more river
transport through the South Passage than through the North Passage (except for
high river discharge during neap tide). These findings generally agree with field
data and results from numerical studies. A noticeable difference is that the model
underestimates salt intrusion and stratification.

It was found that the river transport in all channels decreases, when river discharge
decreases. This leads to a larger salt intrusion in the South Passage and North
Passage, as less salt is transported away by river flow. Likewise, salt transport from
the South Passage to the North Passage increases for decreasing river discharge.
This is explained by the increase in salt intrusion in the South Passage.



Furthermore, salt intrusion generally increases when tidal currents increase, due
to an increase in horizontal diffusion. An exception to this relation is the situation
with high river discharge. For this situation, in the North Passage, more salt in-
trusion is found for neap tide than for spring tide, due to a stronger density-driven
flow during neap tide. Net salt transport from the South Passage to the North
Passage practically disappears during neap tide. This is explained by the weaker
salt intrusion in the South Passage during neap tide.

Finally the effect of the Deepwater Navigation Channel (DNC) on salt dynamics
has been investigated. Only geometric changes due to the DNC are taken into
account and low river discharge during spring tide is considered. Before the DNC,
the North Passage had a funnel-shape and was 1 m shallower than it is today. A
smaller river transport through the North Passage was found for the present-day
situation than before the DNC. The reason is that there is less space for river
water in the North Passage nowadays. Moreover, the straightening of the North
Passage also caused a decrease in salt intrusion. This decrease in salt intrusion is
larger for the North passage than for the South Passage. In the North Passage,
this decrease in salt intrusion is explained by an increase in river flow, as the river
transport has to flow through a smaller surface area near the ocean. In the South
Passage an increase in river transport lead to the decrease in salt intrusion. The
decrease in salt intrusion, due to the DNC, results in a decrease in salt transport
from the South Passage to the North Passage.
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Chapter 1

Introduction

1.1 Overall context

This study examines the problem of salt intrusion in an estuarine tidal network.
First, it will be explained what an estuarine network is and why this problem is
important. To begin with, estuaries are systems near the coast were fresh water
(originating from for example a river) and salt water imported from the sea meet
(see Chen [2018]). A sketch of an estuary is given in in Figure 1.1a. There are mul-
tiple definitions of an estuary. A definition that is often used is that of Cameron
and Pritchard [1963]. They define an estuary as ”a semi-enclosed body of wa-
ter which has a free connection with the open sea and within which sea water is
measurably diluted with fresh water derived from land drainage”. This definition
holds for temperate estuaries, where freshwater input is provided by rivers (see
Geyer [2010] and Chen [2018] for more information). The most important source
of mixing is generated by tidal currents moving over the rough bottom (see e.g.
Geyer [2010]). Estuaries can be well mixed, partially mixed or strongly stratified,
depending on the strength of the river discharge (see Valle-Levinson [2010] for
more details). Examples of estuaries are the Thames estuary, the Chesapeake Bay
and the Columbia river estuary in the United States (see Figure 1.1b).

Figure 1.2 schematically shows the physics behind the subtidal (that is tidally-
averaged) flow in a single channel estuary. At the landward boundary of the
estuary, the river provides a fresh water flow into the estuary. Due to the low
density of this water, it tends to stay close to the surface. The tidally averaged
surface height is larger near the river and smaller near the sea and because the
system tries to flatten this gradient, there will be a fresh water flow seaward (left
dark blue arrow in the figure). On the sea side pressure increases faster from the
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[a]

[b]

Figure 1.1: Sketch of an estuary ([a]) and the Columbia river estuary in the
United States ([b]). The map of the Columbia river estuary originate from
Bourrichon (https://commons.wikimedia.org/wiki/File:Columbia_estuary_
map-fr.svg).

surface to the bottom than on the river side.1 This results in an baroclinic pressure
gradient that is zero at the surface and increases towards the bottom. Due to this
pressure gradient seawater is forced into the estuary and there is a landward flow
of relatively salt water near the bottom of the estuary (right dark blue arrow in the
figure). The river flow and the density driven flow (the flow driven by horizontal
density gradient, also called the exchange flow) together form the gravitational
circulation (see Valle-Levinson [2011]). For more information on the gravitational
circulation, see Geyer and MacCready [2014] and Geyer [2010].

In an estuarine network the river water flows trough different branches that make
up the total estuarine system (see Alebregtse and de Swart [2016]). Examples of
such estuarine networks are the Amazon estuary (Brasil), the Pearl river

1This can be understood by considering hydrostatic balance (∂p
∂z = −ρg, see Cushman-Roisin

and Beckers [2011]) and taking into account that the density of water is larger near the sea.

6

https://commons.wikimedia. org/wiki/File:Columbia_estuary_map-fr.svg
https://commons.wikimedia. org/wiki/File:Columbia_estuary_map-fr.svg


estuary (China), the Berau estuary (Indonesia), the Rhine and Meuse estuary (the
Netherlands) and the Yangtze estuary (China). The last two estuarine networks
are shown in Figure 1.3.

Figure 1.2: Schematic figure illustrating the gravitational circulation. Near the land-
ward boundary of the estuary there is freshwater, with a lower density, that is provided
by the river. Near the seaward boundary there is saltier water, with a higher density,
provided by the sea. The slope in the sea surface results in a barotropic pressure gradient
that drives a seaward fresh water flow (left dark blue arrow). Near the bottom there is
a landward flow of saltier water (right dark blue arrow), driven by a baroclinic pressure
gradient. Turbulence (caused by the tides, bent dark blue arrows) provides mixing of
saltier water and fresher water. Black bent lines indicate lines of equal density. The
river flow and the density driven flow together form the gravitational circulation (see
Valle-Levinson [2011]).

In estuaries and estuarine networks, salt penetrates from the ocean into the estu-
ary. This process is called salt intrusion and is often measured using a intrusion
length. Mostly, the intrusion length is defined as the distance between the coast
and the most landward location of a surface of a certain constant salinity (e.g. the
river salinity, see Savenije [1993], or a number such as 1 psu). This is illustrated
in Figure 1.4.

Figure 1.5 contains processes that provide a net horizontal transport of salt. First,
river flow exports salt out of the estuary, as this flow is in landward direction at
any depth (see Geyer and MacCready [2014]). Secondly, density driven flow gen-
erates import of salt into the estuary (see Geyer [2010] and MacCready [2004]).
Density driven flow vanishes when averaged over depth. However, this flow is
landward near the bottom and where more salt is present than close to the surface
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[a] [b]

Figure 1.3: Two examples of an estuarine network, viz. the Rhine Meuse
estuary ([a]) and the Yangtze estuary ([b]). The figures originate from
Dörrbecker (https://commons.wikimedia.org/wiki/File:Map_of_the_
annual_average_discharge_of_Rhine_and_Maas_2000-2011_(EN).png,
[a]) and NASA (https://commons.wikimedia.org/wiki/File:Shanghai_
Landsat-7_2005-08-15.jpg, [b], the figure is slightly adapted).

Figure 1.4: Figure illustrating the definition of the intrusion length.

(see Geyer [2010]). Another term providing import of salt is horizontal diffusion.
Horizontal diffusion increases linearly with horizontal salinity gradient (see Mac-
Cready [2004] and Guha and Lawrence [2013]). The last term providing import of
salt is tidal pumping, which can be explained as follow: during flood salt water
from the ocean is transported into the estuary. There, due to e.g. turbulence, it
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mixes with fresher water which is present near the head of the estuary. During ebb
part of the mixed water leaves the estuary, so water leaving the estuary during ebb
has a lower salinity than water entering the estuary during flood. For this reason
tidal pumping causes import of salt into the estuary2 (see Dyer [1997] and Uncles
et al. [1985] for more information).

Figure 1.5: Figure illustrating the different processes that provide net horizontal salt
transport. Horizontal diffusion, tidal pumping and the density-driven flow are import
terms (green arrows), they increase salt intrusion. Advection of salt by river flow is an
export term (red arrow).

It is good to realise that, different important topics in the problem of salt intrusion
influence each other. This is illustrated in Figure 1.6. The important topics are
turbulence, salinity and subtidal current. The gravitational circulation describes
the physics behind the subtidal current. It consists of a density driven flow and
a river flow (see Valle-Levinson [2011]). The eddy viscosity gives the strength
of internal friction and thereby determines the strength of turbulence3. Diffusion
coefficients give the strength of turbulent mixing of salinity4. Both the eddy vis-
cosity and the diffusion coefficients decrease for increasing stratification (see Dyer
[1997]). All the important topics influence each other. Firstly, subtidal current
influences turbulence via the eddy viscosity. On its turn turbulence weakens strat-
ification and therefore weakens the gravitational circulation (see Monismith et al.
[1996]). Secondly, advection of salt by the subtidal current influences salinity, but,
as salinity gradients are responsible for density driven flow (see Geyer [2010] and

2It is reasonable to assume that approximately the same volume of water is transported during
ebb as during flood.

3See e.g. http://www.mit.edu/course/1/1.061/www/dream/SEVEN/SEVENTHEORY.PDF.
4See e.g. https://www.merriam-webster.com/dictionary/diffusion%20coefficient.
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Figure 1.6: Figure showing important topics in the problem of salt intrusion and how
these topics influence each other. The important topics are turbulence, salinity and
subtidal current. The gravitational circulation describes the physics behind the subtidal
current. The eddy viscosity gives the strength of internal friction and thereby determines
the strength of turbulence. Diffusion coefficients give the strength of turbulent mixing
of salinity. The gravitational circulation consists of a density driven flow and a river
flow. All the important topics influence each other. Firstly, subtidal current influences
turbulence via the eddy viscosity and on its turn turbulence weakens the density driven
flow. Secondly, advection of salt by the subtidal current influences salinty, but, salinity
gradients are responsible for density driven flow as well (see Geyer [2010] for more infor-
mation). Lastly, turbulence influences salinity by mixing, but salinity affects turbulence
via the diffusion coefficient.

Monismith et al. [1996]), salinity also influences subtidal current. Lastly, turbu-
lence influences salinity by mixing, but salinity affects the turbulence as well via
the diffusion coefficient (see Dyer [1997]).

1.2 Relevance

Understanding salt intrusion is of great importance, due to its influence on ecosys-
tems (see Sun et al. [2009]). The possibly damaging effects of salt intrusion on
ecosystems is illustrated in Figure 1.7. This figure shows a ’ghost forest’. At this
place there used to be a living forest, but now only dead trees and a lot of salt is
left (see Webster [2007] for more information).

10



Salt intrusion can also cause problems for the availability of fresh water (Zhang
et al. [2011]) needed as for example drinking water or for agriculture. For instance
the Yangtze Estuary contains a reservoir that provides more than 70% of the fresh-
water of Shanghai (with 13 million inhabitants, see Zhu et al. [2018]).

Sea level rise and human made engineering projects influence salt intrusion (see
for instance Zhu et al. [2018]). An example of such an engineering project is
the Deep Waterway Project (DWP) in the Yangtze estuary. In this project one
of the channels was deepened and straightened (before the project, the channel
had a funnel-shape, with a greater width near the sea and a smaller width at
the landward end of the channel). These geometrical changes, together with the
construction of training walls, are convered by the Deepwater Navigation Channel
(DNC, is part of the DWP). Also, other engineering structures were build, such as
jetties and groins (see Jiang et al. [2012] for detailed information). Furthermore,
intrusion lengths are influenced by natural variability. Examples are variability in
river discharge (due to seasonal variations or events) or variability in intensity of
mixing5 (caused by the spring-neap or the tides themselves). Due to arguments
mentioned above, it is very useful to understand the effect of different factors on
the salt distribution in estuaries better.

Figure 1.7: Picture of a ghost forest in Terrebonne Parish (Louisiana, USA). Figure
from Webster [2007].

5See e.g. Zhu et al. [2018] for research on the effect of river discharge and the spring-neap
cycle on salt intrusion.
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1.3 Approaches

In order to increase understanding of salt intrusion, different methods are used.
One method is making and analyzing measurements. Measurements of salinity
in estuaries are found in e.g. Savenije [2012]. Another option is to use models.
One class of model that are regularly used are simulation models. An example of
results for salinity distribution from such a model is shown in Figure 1.8a, which
contains results from the study by Zhu et al. [2018] about the Yangtze estuary.
The results in this figure are rather detailed and these kind of models are very
suitable for making realistic simulations of the salinity distribution. However, for
the goal of studying the underlying physical processes, these models might not be
the best choice as they are slow, expansive and difficult to interpret physically.
Also, there are still challenges to be solved concerning these models. For instance,
Kärnä et al. [2015] showed for a certain model (SELFE) that it can reproduce the
timing of events of salt intrusion correctly, however in the model salinity fields are
smoothed as a result of numerical mixing. This results in an underestimation of
gravitational circulation of salinity.

For improving simulation models it is useful to obtain more understanding of the
underlying processes that result in salt intrusion. For this, idealised models are
useful tools. The results of these models are less detailed, but the advantage of
these models is that they provide insight into the physics. Furthermore, they
are fast, so it costs less money and time to do a run. Some of these models
are semi-empirical. An example of such a model is described in Savenije [1986].
However, this model is averaged over cross-section and tides, is based a lot on
parametrisations (developed using measurements) and no gravitational circulation
is described in the model. For this reason this model might not be the best
candidate for gaining insight into the physics of an estuary. Other idealised models
are semi-analytical, for example the model by MacCready [2004]. Results from this
model, for the Salinity in the Northern San Francisco Bay, are shown in Figure 1.8b.
The results of this model are less detailed than the results by Zhu et al. [2018] (see
Figure 1.8). The model by MacCready [2004] is two-dimensional, width-averaged
and tidally averaged (it does not include explicit tides), but does include an explicit
description of the gravitational circulation and is more suitable for gaining physical
insight than the models mentioned earlier in this section. Another semi-analytical
model is the model by McCarthy [1993]. This model was made for well-mixed
estuaries, is also two-dimensional, but does include an explicit description of tides.
The model by Wei et al. [2017] also contains explicit tides and is made for well-
mixed estuaries, but this model is three-dimensional. Semi-analytical, idealised
models have been successfully applied to single channels (see MacCready [2004]),
but the application to estuarine network is not (often) done yet.
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[a] [b]

[c]

Figure 1.8: Salinity distribution in the surface layer ([a]) found in the study by Zhu
et al. [2018] (adapted from Figure 10 in this study), who used a complex simulation
model. From Zhu et al. [2018], the salinity distribution for the bottom layer
([b]) is shown as well (also adapted from Figure 10 in this study). These figures
are compared with results found by MacCready [2004], who used an idealised
model. The dashed lines in indicates the salinity distribution (and the solid line a
streamfunction).

1.4 Research questions and methodology

The goal of this project is to understand more about the effect of different factors
(such as channel geometry, tidal current, river discharge and man made engineer-
ing projects) on salt distribution and salt intrusion. In order to reach this goal
an idealised model is made and used for experiments. As idealised models are (al-
most) only applied to single channel estuaries, in this project an idealised model
will be generalized for a network configuration. In the first place it will be ex-
amined how this model performs in case of the network configuration similar to
the Yangtze Estuary. Therefore, the first question of this project is How does the
idealised model perform in case of an estuarine network that consists of multiple
channels? The second question that will be addressed is How do results depend on
key parameters in such a system (such as river discharge, tidal forcing, geometrical
characteristics of the network)?
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The model that is chosen to use for this project is the model by MacCready [2004].
As this model is relatively quick to run, contains a large part of the physics (in
estuaries) that is described in this section and the model is convenient for physical
interpretation. By choosing this model, it is chosen to only consider the two-
dimensional case, to consider the width- and tidally-averaged case, not to take tidal
pumping into account and to use simple parametrisations for modeling turbulence.
This model is suitable for partially mixed and well mixed estuaries. First (in
Chapter 2) the model(equations) will be described together with some important
characteristics of the Yangtze estuary. Thereafter (in Chapter 3), the results of the
reference case will be discussed. For the reference case, low river discharge during
spring tide is considered for the present-day situations. Thereafter, the sensitivity
of the results to tides, river discharge and human interventions is studied. The
results are discussed in Chapter 4. After the results, the discussion will follow
(in Chapter 5). In this chapter, the choice for a particular formulation for the
eddy viscosity and the vertical diffusion coefficient will be discussed. Finally, the
conclusions of the project are given (in Chapter 6).
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Chapter 2

Method

2.1 Model equations

In this MSc thesis, an idealized, semi-analytical model is used to study an estuarine
tidal network, that bears similarities to the Yangtze Estuary. Figure 2.1a shows
a map of the Yangtze Estuary. The model made during this study consists of
three channels; the South Channel, the South Passage and the North Passage.
The seaward and the landward boundaries of this system are indicated with blue
striped lines on the map in Figure 2.1a. The branching point that is considered
in the model is indicated with a blue arrow. The map reveals that the South
Passage is funnel-shaped (it has a smaller width near the branching point and a
larger width near the ocean), while the North Passage and the South Channel are
almost straight. Note that on this map the training walls along the North Passage
are visible that are part of the Deepwater Navigation Channel (see Alebregtse and
de Swart [2016]). A sketch of the network configuration in the model is shown
in Figure 2.1b. The branching point is chosen at x =0 and the seaward and
landward boundaries are indicated by x = Lsea,2 or Lsea,3 and Lriver, respectively
(all x-coordinates are written in green in the figure). The positive direction of x
is chosen seaward and the vertical coordinate, z, such that z = −H at the bottom
and z = η at the surface (η is the tidally averaged sea surface height and the
positive direction of z is upward). It is chosen to define z = 0 at the sea surface
on the seaward boundary.1

1It is assumed that η at the seaward boundary is the same for the South Passage and the
North Passage (the two smaller channels in the model).
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Figure 2.1: Map of the Yangtze Estuary ([a]). The model in this studies consists
of three channels the South Channel, South Passage and North Passage. The blue
striped lines indicate the approximate chosen location of the landward and seaward
end of the network in the model. The blue arrow indicates the branching point
that is considered in this studies. A sketch of the network system in the model is
given in panel b. For every black dot, a x-coordinate is defined (written in green).
Map adapted from Alebregtse and de Swart [2016].
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The model made during this study is comparable to the model given by MacCready
[2004], only now it is generalised to a network. The full derivation of the model
for a single channel (including the assumptions made and the boundary conditions
that are used) is given in the Appendix, Section 7.1.1-7.1.7. Here, only a short
explanation on some physical aspects of the model and the final equations are
given. The basic equations2 that are used read

0 = −g ∂η
∂x
− βg

∫ η

z

∂s

∂x
dz′ +

∂

∂z
(KM

∂u

∂z
), (2.1a)

∂

∂x

[
Bus−BKHS

∂s

∂x

]
+

∂

∂z

[
Bws−BKS

∂s

∂z

]
= 0, (2.1b)

∂Bu

∂x
+
∂Bw

∂z
= 0. (2.1c)

These equations are width-averaged (see Section 7.1.1) and tidally-averaged and
each of these equations holds for every channel separately. In other words, a cer-
tain variable, for instance u is actually ui with i =1,2,3 the channel number (the
indices are omitted in order to increase readability). In these equations B is the
width of the channel, u the subtidal (tidally-averaged) velocity in the x-direction,
w the subtidal vertical velocity, g the gravitational acceleration, β is the coefficient
of saline contraction3 (see Cushman-Roisin and Beckers [2011]) and s the subtidal
salinity. Furthermore, KM is the vertical eddy viscosity (a measure of vertical
internal friction) and KHS and KS are the horizontal and vertical diffusion coeffi-
cients (that are measures of horizontal and vertical turbulent mixing of salinity).
Equation 2.1a is the momentum balance in the x-direction and the first term on its
right-hand side is the barotropic pressure gradient, the second term the baroclinic
pressure gradient and the last two terms are the horizontal and vertical internal
friction terms. Equation 2.1b is the salt balance equation, which contains terms
representing horizontal and vertical advection of salt (term containing us and ws
respectively) and horizontal and vertical turbulent mixing of salt (terms containing
KHS and KS). Equation 2.1c is the continuity equation. The parametrisations of
the eddy viscosities and diffusion coefficients are provided later in this chapter.

Now, the conditions at the boundary between river and estuary and the conditions
at the branching point are given in Figure 2.2. The salt transport into a particular

2See Section 7.1.1 for the derivation of these equations from basic equations given by textbooks
such as Cushman-Roisin and Beckers [2011] and Gill [1982].

3The coefficient of saline contraction is a constant that gives the dependence of density on
salinity.
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Figure 2.2: Schematic figure illustrating the most important boundary conditions in
the model.

channel (originating from another channel or the river) is given by T . At the
boundary between estuary and river it is imposed that there is no salt transport
(see Hansen and Rattray [1965] for conditions at the landward boundary, as the
river contains only fresh water TSC = 0, that is there is no net salt transport into
the South Channel (SC) at this boundary, left green rectangle in Figure 2.2). It
will be shown that T (in this case TSC) is constant. Therefore, at the branching
point TSC = 0 as well and there is no net salt transport between on one side the
South Passage (SP) and the North Passage (NP) and on the other side the South
Channel (right green rectangle in Figure 2.2). However TNP (the net salt transport
into the North Passage) and TSP (the net salt transport into the South Passage)
do not have to be zero necessarily and it follows that (lower red rectangle)

TNP + TSP = TSC = 0. (2.2)

When TSP > 0, there is net salt transport from the North Passage to the South
Passage (TNP < 0 in that case). If TNP > 0, there is net salt transport from the
South Passage to the North Passage (then TSP < 0, see also bottom red rectan-
gle). It is imposed that, volume transport equals the river discharge (QSC) at the
boundary between river and South Channel (see Hansen and Rattray [1965] and
this condition is given in the left green rectangle in the figure). It will also be
derived that, in the whole South Channel (SC) and therefore also at the branch-
ing point, the volume transport should also equal QSC (see right green rectangle).
Consequently, we can say that QSC is the river transport through the South Chan-
nel. As there is no source of sink of (river) water at the branching point it follows
that (see upper red rectangle with QNP the river transport through the North
Passage and QSP the river transport through the South Passage)
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QSP +QNP = QSC . (2.3)

Furthermore, its is assumed that η =0 at the seaward boundary for both the South
Passage and the North Passage4. Finally, it is assumed that at the branching point
the subtidal salinity (s) and the subtidal sea surface height (η) are continuous. At
the boundaries between the estuary and the ocean, another boundary condition
is subscribed, namely that the salinity at the bottom of the estuary equals the
salinity of the ocean. The corresponding equation (see MacCready [2004]) is

at x = Lsea, z = −H: s = socn. (2.4)

In the model the salinity and the horizontal flow velocity are written as the sum
of a depth-averaged part (s and u) and a depth-dependent part (s′ and u′), that is

s = s+ s′, (2.5) u = u+ u′. (2.6)

An equation for the depth averaged velocity (u) is found by using the boundary
condition that, at the boundary between the system and the river, the velocity
integrated over the cross-section should equal the river discharge. Mathematically
this means that B

∫ η
−H udz = Q, where Q is the river discharge. It can be shown,

from integration of the continuity equation (Equation (2.1c)) and using the bound-
ary conditions that this holds for every x (see Section 7.1.2 in the appendix for
details). The boundary conditions are

u,w = 0 at z = −H, (2.7)

w = u
∂η

∂x
at z = η. (2.8)

These condition mean no flow at the bottom and no flow normal through the free
surface (see e.g. Gill [1982] and Cushman-Roisin and Beckers [2011]). It is found
that

B

∫ η

−H
udz = Q ∀x. (2.9)

4Note that z =0 is defined at the sea surface on the seaward boundary. From this definition
and assuming that η at the seaward boundary is the same for the South Passage and the North
Passage, it follows that η =0 at the seaward boundary for both the South Passage and the North
Passage.
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This equation shows that for all x, the volume transport equals the river discharge.
From this equation the following expression for u is found:

u =
1

H

∫ η

−H
udz =

Q

BH
. (2.10)

Similarly, an equation for the depth-averaged salinity (s) follows by integration over
depth of the salt balance and applying the boundary conditions. The boundary
conditions are (together with Equation (2.7) and (2.8))

KHS
∂s

∂x

∂H

∂x
+KS

∂s

∂z
= 0 at z = −H, (2.11)

−KHS
∂s

∂x

∂η

∂x
+KS

∂s

∂z
= 0 at z = η. (2.12)

The conditions physically mean no salt diffusion normal to the bottom and no salt
diffusion normal to the surface (see e.g. Gill [1982]). The resulting equation is
the salt transport equation (see Section 7.1.2-7.1.7 for details on the derivation),
namely

B

∫ η

−H
(us+ u′s′ −KHS

∂s

∂x
)dz = T ∀x. (2.13)

This equation shows that the depth integrated salt transport is constant.

Now, in order to be able to find a solution for s from Equation (2.13), first solutions
for s′ and u′ should be found. The Equation for u′ is found by taking the derivative
to z of the momentum equation, this gives

∂3u′

∂z3
= − βg

KM

∂s

∂x
. (2.14)

Here, it is assumed that ∂s′

∂x
<< ∂s

∂x
and that KM is independent of z (see Mac-

Cready [2004] and the Appendix 7.1.2=7.1.7 for details). This equation shows
that the depth-independent part of the horizontal velocity depends on horizon-
tal (depth-averaged) salinity gradients. A solution for u′ is found by integrating
Equation (2.14) multiple times and applying Equation (2.7), (2.10) and using

∂u′

∂z
= 0 at z = 0. (2.15)

This equation stems from a free-slip condition at the surface (see Cushman-Roisin
and Beckers [2011] and Section Section 7.1.2-7.1.7 for details). The solution for
u′ reads
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u′ = uEF1 + uF2. (2.16)

Here, uE gives the strength of the density-driven flow (also called exchange flow,
see also MacCready [2004]). So the depth-dependent part of the flow velocity is
dependent on both the river flow and the density-driven flow. The functions F1

and F2 are polynomials of z. The density-driven flow, uE is given by

uE =
gβH3

48KM

∂s

∂x
. (2.17)

The functions F1 and F2 are given by

F1 = 1− 9ζ2 − 8ζ3, (2.18) F2 =
1

2
− 3

2
ζ2. (2.19)

In these Equations ζ is defined as

ζ ≡ z

H
. (2.20)

An equation for s′ is found by evaluation of the order of magnitude of the differ-
ent in Equation (2.1b), (2.1c) and (2.13), combining these equations and, again,
evaluating the order of magnitude of the different terms in the resulting equation
(see the Appendix, Section 7.1.2-7.1.7, for details). The resulting equation is

KS
∂2s′

∂z2
= u′

∂s

∂x
. (2.21)

Basically, this equation says that there is balance between the stimulation of strat-
ification by vertical velocity shear and the weakening of stratification by vertical
turbulent mixing of salt (see MacCready [2004] for more information). In order to
solve this equation for s′, Equation (2.16) is substituted in Equation (2.21) and
the resulting equation is integrated multiple times with respect to z and boundary
conditions are applied (see the Appendix, Section 7.1.2-7.1.7, for details, there are
some subtleties in this derivation). The solution for s′ is

s′ =
H2

KS

∂s

∂x
(uEF3 + uF4). (2.22)

This equation shows that the depth-dependent part of salinity also depends on
both density-driven and river flow. In this equation, the functions F3 and F4 are
polynomials of z and are given by
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F3 = − 1

12
+

1

2
ζ2 − 3

4
ζ4 − 2

5
ζ5, (2.23) F4 = − 7

120
+

1

4
ζ2 − 1

8
ζ4. (2.24)

Plots of F1 and F2 against ζ are shown in Figure 2.3a. Similar plots are made for
F3 and F4 (Figure 2.3b). Physically, F1 (F2) is a function describing the part of
u′ that originates from the density-driven (river) flow and F3 (F4) describes the
part of s′ that originates from the density-driven (river) flow (see Figure 1.2). In
Figure 2.3a the plot of F1 clearly shows the structure of the density-driven flow,
with seaward (positive) velocities near the surface and landward (negative) veloci-
ties near the bottom. The contribution of the density-driven flow at the bottom is
zero, as a no slip boundary condition is assumed (and the contribution of the river
flow is zero there is well). The contribution of the river flow to u′ (indicated by F2)
is always seaward. This contribution is strongest near the surface and gets weaker
for greater depths. This observation can be explained by the fact that a river
contains fresh water and because of the low density of this water, the river water
tends to stay close to the surface. Although part of the river water is brought to
greater depths by turbulent mixing. In Figure 2.3b the plots of F3 and F4 show
both density-driven flow and river flow tend to cause an increase in salinity near
the bottom and a decrease in salinity near the surface (with respect to the depth-
averaged salinity). In other words they both are associated with stratification.

[a] [b]

Figure 2.3: Plots of F1 and F2 ([a]) and F3 and F4 ([b]) against ζ = z
H

. The
Function F1 (F2) describes the part of u′ that originates from the density-driven
(river) flow and F3 (F4) describes the part of s′ that originates from the density-
driven (river) flow.

Now that solutions for u′ and s′ are available, these can be substituted in Equa-
tion (2.13). As η << H (see Section 7.1.2 and 7.1.3), the integral in this equation
is evaluated from z = −H to z =0. In this way, an Equation describing s is found.
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The result is

− (LE3
∂Σ

∂x
)3 − (LE2

∂Σ

∂x
)2 − (LE1 + LD)

∂Σ

∂x
+ Σ =

T

Qsocn
. (2.25)

Here, Σ is a scaled version of the salinity, given by

Σ =
s

socn
. (2.26)

In this salt transport equation, T is the (constant) net salt transport into5 a
particular channel and socn the salinity of the adjacent ocean. The expressions for
the length scales L in Equation 7.62 are

LE3 =
[
C3
H8β2s2

ocng
2

KSK2
Mu

] 1
3 , (2.27a)

LE2 =
[
C2
H5βsocng

KSKM

] 1
2 , (2.27b)

LE1 = C1
H2u

KS

, (2.27c)

LD =
KHS

u
. (2.27d)

Here, C3 = 0.030
482

, C2 = 0.045
48

and C1 = 0.019 are constants. In equation (2.25)the
terms containing LE3, LE2 and LE1 represent salt transport due to the density-
driven flow (which contains both river flow and density driven flow). The term
containing LD represents salt transport due to horizontal diffusion and the term
containing Σ originates from salt transport due to river flow (see MacCready [2004].
As discussed in Chapter 1 (Figure 1.5), salt transport due to horizontal diffusion
and density-driven flow are import terms and salt transport due to river flow is an
export term.

2.2 Channel characteristics

Similar to what was done in many previous studies (such as Savenije [1986] and
Zhang et al. [2011]), channel width (B) is parametrised by an exponential function,
and is given by

5That it is salt transport into a particular channel can be understood by only keeping in mind
the last two terms in Equation (2.25) and ignoring all the other terms for a moment. It is then
observed that Σ increases (decreases), when T is positive (negative).
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B(x) = B0 exp (
1

λs
(x− x0)). (2.28)

In these equations, λs is a constant convergence length scale and x0 is a refer-
ence x-coordinate. The depth, H is described by a fifth order polynomial for
the South Channel and the South Passage and a constant for the North Passage
(there depth is almost constant). This parametrisation is made based on estimated
depths from Navionics (https://webapp.navionics.com/?lang=en#boating@7&
key=_tz_EowycV). It is chosen to use the maximum depth on the map for a cer-
tain value of x. The parametrisation for depth (in the South Channel and South
Passage) is given by

H(x) = p0 + p1x+ p2x
2 + p3x

3 + p4x
4 + p5x

5. (2.29)

The different p’s are constants. The values of the different parameters are given
in Table 2.3 (Section 2.6).

[a] [b]

Figure 2.4: The width ([a]) and depth ([b]) against x as described in the model for
the three different channels. The maximum depth on the map for a certain value of
x is used. The parameter values for width are from Alebregtse and de Swart [2016]
and the depth is estimated using the map from Navionics (https://webapp.
navionics.com/?lang=en#boating@7&key=_tz_EowycV). The parametrisation
for depth (in the South Channel and South Passage).

Figure 2.4 contains plots of the parametrisations for the width and for the depth in
the three different channels. From Figure 2.4a it is visible that the South Channel
and the North Passage have a rather straight shape and the South Passage is
funnel-shaped. On average, the South Passage has a larger width than the other
two channels. From Figure 2.4b it follows that the North Passage is (generally)
deeper than the South Passage and the South Channel has the largest depth (on
average).

24

https://webapp.navionics.com/?lang=en#boating@7&key=_tz_EowycV
https://webapp.navionics.com/?lang=en#boating@7&key=_tz_EowycV
https://webapp.navionics.com/?lang=en##boating@7&key=_tz_EowycV
https://webapp.navionics.com/?lang=en##boating@7&key=_tz_EowycV


2.3 Parametrization of the eddy viscosity and

diffusion coefficients

In this project the vertical eddy viscosity (KM) and the vertical diffusion coefficient
(KS) are parameterised by the formulation by Munk and Anderson [1948], while
the formulation by MacCready [2007] is used for the horizontal diffusion coefficient
KHS. The expressions read (see Dyer [1997] and Guha and Lawrence [2013])

KM = CvUTH(1 + 10RiL)−
1
2 , (2.30a)

KS = CvUTH(1 + 3.33RiL)−
3
2 . (2.30b)

KHS = 0.0525UTB, (2.30c)

Here, Cv is a constant, UT is the tidal velocity amplitude and RiL is the Richardson
number, defined by RiL ≡ gH(ρbottom−ρtop)

ρ0U2
T

(see MacCready [2007]). The Richardson

number is small when there is a lot of mixing and little stratification and it is large
when there is a lot of stratification. Note that the factor 0.0525 in KHS is different
from Guha and Lawrence [2013], why this factor chosen is explained in Chapter 5.
The equation of state used in this model is

ρ = ρ0(1 + βs) (2.31)

Here, ρ is the reference density (see e.g. MacCready [2004]). Using this equation
RiL can be rewritten as (see Geyer [2010])

RiL =
gHβ∆s

U2
T

(2.32)

Here, ∆s = sbottom − stop.

Equation (2.30a) and (2.30b) show that KM and KS are dependent on UT , H
and ∆s. Physically this means that internal friction and turbulent mixing of salt
increase when tidal velocity increases and decrease for larger stratification. These
relations can be expected as in literature it is described that there is competition
between stratification and tides, with stratification limiting and tides enhancing
mixing (see Geyer and MacCready [2014]). Also, KHS depends on tidal velocity,
as horizontal turbulent mixing of salt is caused by the tides (see MacCready [2007]).

Note that KS and KM depend on salinity itself via RiL (RiL depends on ∆s and
∆s follows from Σ). It shows that turbulence and salinity are connected, as was
illustrated in Figure 1.6.
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In addition to RiL, another measure is defined to quantify stratification. This
measure is the stratification parameter (χ) given by

χ =
∆s

sbottom
. (2.33)

The definition of χ is similar to the one by Guha and Lawrence [2013], only the one
defined here varies with x. While RiL is a measure of how ∆s changes with respect
to a scale which is fixed for a specific channel, χ is a measure of how ∆s changes
with respect to the maximum salinity (which is equal to sbottom). As the maximum
salinity varies with x as well, χ gives a relative measure for stratification.

2.4 Solution method

For the network configuration, a complication is that the river transports, QSP and
QNP , and the salt transport into a specific channel, TSP and TNP , are unknown
beforehand. How to deal with this complication is described in Section 2.5, here it
is assumed that QSP , QNP , TSP and TNP are known already (i.e. they are already
determined using the method of Section 2.5).

In this thesis a similar method of solving Equation (2.25) is used as proposed in
MacCready [2004]. The starting point for calculating Σ in the South Passage and
the North Passage is the boundary condition Equation (2.4). This equation can be
written as Σ

∣∣
x=Lsea

+ s′

socn

∣∣
x=0,ζ=−1

=1 and, by using Equation 2.22, this is rewritten
as

[ gβsocnH5

720KMKS

(
∂Σ

∂x
)2 +

H2

15KS

u
∂Σ

∂x
+ Σ− 1

]∣∣
x=Lsea

= 0. (2.34)

In this equation, Σ is eliminated using Equation (2.25) (see MacCready [2004])
resulting in

[
L3
E3(

∂Σ

∂x
)3 + (L2

E2 +
gβsocnH

5

720KMKS

)(
∂Σ

∂x
)2 + (LE1 + LD +

H2

15KS

u)
∂Σ

∂x

+
T

QRsocn
− 1
]∣∣
x=Lsea

= 0.

(2.35)

From this equation ∂Σ
∂x

∣∣
x=Lsea

is determined. The result is substituted into Equa-

tion 2.25 and the resulting equation is used to find Σ
∣∣
x=Lsea

. Now the following
scheme is used to calculate Σ at the next point in the x-direction:
Thereafter, Σ

∣∣
x−δx is substituted into Equation (2.25) and from the result ∂Σ

∂x

∣∣
x−δx

is calculated. After this, Equation (2.36) is used to calculate Σ at the next point
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and in this way Σ is calculated at every point in the South Passage and the
North passage. At the branching point, Σ should be continuous, i.e. ΣSP

∣∣
x=0

=

ΣNP

∣∣
x=0

= ΣSC

∣∣
x=0

. This condition gives Σ
∣∣
x=0

for the South Channel and, using

Equation (2.25), ∂Σ
∂x

∣∣
x=0

is determined. Then, using Equation (2.36) and (2.25), Σ

and ∂Σ
∂x

at all other points in the South Channel are determined just as was done
for the other two channels.

Σ
∣∣
x−δx = Σ

∣∣
x
− δx∂Σ

∂x

∣∣
x
. (2.36)

Figure 2.5: Diagram illustrating the different iteration steps in the model.

In Section 2.3 it was shown that KS and also KM depend on salinity via RiL and
∆s (note that ∆s is calculated using Σ). For this reason, KS and KM have to be
determined iteratively. Figure 2.5 illustrates how this is done in the model. The
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starting value for ∆s is ∆s = 0 (for all x). From this value RiL is calculated, using
RiL, KS and KM can be calculated and thereafter also LE3, LE2 and LE1 (which
depend on KS and/or KM) are calculated. As ∆s is a function of x, all these
variables are dependent on x. The next step is to calculate Σ (which is a scaled
depth-averaged salinity) using these variables (as described earlier in this section).
Next, the old ∆s is stored as ∆s0 and a new ∆s is calculated using Σ. Again,
from the found ∆s, RiL, KS, KM , LE3, LE2 and LE1 are determined. Thereafter

∆scrit =
√

1
L

∫ xend

xbegin
(∆s−∆s0)2dx is determined (by numerical integration). If

∆s2
crit > 0.1 psu2, Σ will be calculated with the new values of KS, KM , LE3, LE2

and LE1, otherwise, the model will stop and the last calculated values for Σ are
accepted.

2.5 Finding river water transports

and salt transports

A priori it is unknown how the river transport through the South Channel will be
divided between the South Passage and the North Passage and this distribution is
determined in the model. Also, it is not known of which direction and magnitude
the salt transport between the South and the North Passage is (and in the first
place if this transport exists at all). In other words, QSP and TSP should be
determined in the model. Thereafter, QNP and TNP follow from QSP and TSP .
There are two conditions that determine QSP and TSP , namely both Σ and η
should be equal for the South Passage and the North Passage at the branching
point (or in other words Σ and η should be continuous). Mathematically, these
conditions are

ΣSP

∣∣
x=0

= ΣNP

∣∣
x=0

, (2.37) ηSP
∣∣
x=0

= ηNP
∣∣
x=0

. (2.38)

Using the following expression (which is derived in Appendix Section 7.1.8), η at
the branching point is determined6:

η
∣∣
x=0

= η
∣∣
x=Lsea

+

∫ x=Lsea

x=0

3KMQR

gBH3
dx+

∫ x=Lsea

x=0

3βsocnH

8

∂Σ

∂x
dx. (2.39)

The integration is done numerically. In order to determine QSP an TSP , in the
model, Σ at all locations in the South Passage and the North Passage is calculated

6Note that η
∣∣
x=Lsea

=0 in this model.
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(following the method illustrated in Figure 2.5) for different values of QSP and TSP .
From Σ, also η at the branching point can be determined using Equation (2.39).
Then, using these values for Σ and η, the following criteria are calculated for every
possible combination of the different values of QSP and TSP :

crit1 =

∣∣ΣSP,bif − ΣNP,bif

∣∣
(0.01/socn)

, (2.40a)

crit2 =

∣∣ηSP,bif − ηNP,bif ∣∣√
η2
SP,bif + η2

NP,bif

. (2.40b)

Here, ΣSP,bif = Σ
∣∣
x=0

and ηSP,bif = ηSP
∣∣
x=0

(in m) and analogous for the North
Passage. From the two criteria a combined criterion is calculated, which is given
by

critcomb =
√
crit21 + crit22. (2.41)

In order to find QSP and TSP , this criterion is calculated for different values of
QSP and TSP . The values for QSP and TSP that minimize the value for critcomb
are selected and used in the model. In this process of finding QSP and TSP , first a
large range in QSP and TSP are tried, with large steps between different values for
QSP and TSP . The values for QSP and TSP corresponding to the smallest value
for critcomb are selected. Thereafter, this process is continued a few times with
each time a smaller range of values for QSP and TSP (around the selected values
for QSP and TSP ) and a smaller step size. When the step size of QSP and TSP is
sufficiently small, 1 m3/s and 1 psu m3/s respectively, the selected values of QSP

and TSP are chosen as the final result for these parameters. From these values,
QNP and TNP are determined using Equation (2.3) and 2.2.

The river water transport through the South Passage and the North Passage is
quantified here using the net water division ration (nWDR). This quantity is the
ratio of the river transport through one channel (the South Passage or the North
Passage) divided by the total river transport through both channels. Mathemati-
cally, the definition (which is similar to the one in Alebregtse and de Swart [2016])
is

nWDR =
QSP,NP

QSP +QNP

× 100%. (2.42)

Here, QSP,NP is either QSP or QNP .
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In order to analyse the nWDR, an approximate expression for the ratio QSP

QNP
is

derived in the Appendix (Section 7.1.9). For deriving an exact expression for QSP

QNP

it was necessary to make the approximations that depth and the vertical eddy
viscosity (KM) are constant over a channel (this is achieved by assuming that
RiL =0). The found expression for the ratio of QSP over QNP is

QSP

QNP

=

[
3β
8

(HSPdsx,SP −HNPdsx,NP ) +
3KM,NPQSCLs,NP

gB0,NPH
3
NP

ENP

]
[

3β
8

(HNPdsx,NP −HSPdsx,SP ) +
3KM,SPQSCLs,SP

gB0,SPH
3
SP

ESP

] . (2.43)

Here, dsx = s

∣∣∣∣
x=Lsea

− s
∣∣∣∣
x=0

and E = 1− exp

[
x0
λs

]
.

2.6 Design of experiments

The research questions that are asked in this study are How does the idealised
model perform in case of an estuarine network that consists of multiple channels?
and How do results depend on key parameters in such a system (such as river
discharge, tidal forcing, geometrical characteristics of the network)? In order to
answer the first questions a reference case is studied. In this reference case, the
present situation (after realisation of the Deepwater Navigation Channel, DNC)
with spring tide and low river discharge is studied. The different parameter values
in the model for this reference case are given in Table 2.2 and Table 2.3 (parameter
values describing geometrical properties of the network) at the end of this section.

Thereafter, to answer the second research question, experiments are done where
parameters are changed with respect to this reference experiment. An overview of
the experiments and which parameters are changed is given in Table 2.1. First,
the sensitivity to tides and river discharge is investigated. In order to do that
results for all possible combinations between spring tide/neap tide and high/low
river discharge (in the present situation) are studied and compared. Secondly, the
effect of the Deepwater Navigation Channel (DNC) is investigated. For the situ-
ation before the DNC, the North Passage is given made shallower and is given a
funnel-shape (in contrast to the present situation were the North Passage is deeper
and has a straight shape). In order to isolate the effect of the funnel-shape another
experiment is done where the North Passage has the present (larger) depth, but
the funnel-shape (as before the DNC).
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Experiment nr Description
Physical changes

w.r.t. reference case
Changed parameters
w.r.t. reference case

1a
Spring tide

high river discharge
Larger

river discharge (i)
QSC =6440 m3/s

1b
Neap tide

low river discharge
Smaller

tidal currents (ii)

UT,SC =0.80 m/s,
UT,SP =1.05 m/s,
UT,NP =0.88 m/s

1c
Neap tide,

high river discharge

Larger
river discharge (A),

smaller
tidal current (B)

UT,SC =0.80 m/s,
UT,SP =1.05 m/s,
UT,NP =0.88 m/s,
QSC =6440 m3/s

2a
Situation

before DNC

North Passage
shallower and

funnel-shaped (C)

B0,NP =8.5 km,
λs,NP =60.0 km,
HNP =12.1 m

2b
Situation

before DNC
present depth

North Passage
funnel-shaped (C)

B0,NP =8.5 km,
λs,NP =60.0 km

Table 2.1: Overview experiments with reference case: spring tide, dry season in
present situation. References of parameter values: (A) Zhu et al. [2018] (river
discharge) and Alebregtse and de Swart [2016] (net water division ratio South
Channel), (B) estimated from results amplitide tidal current by Jinyang Wang,
(C) Alebregtse and de Swart [2016].

It should be noted that KM and KS (both for RiL = 0) and KHS are known when
geometry of the network and tidal current are imposed in the model; they are
independent of results for salinity and currents. However, when RiL is determined
iteratively, KS and KM are model output. Then, they depend on the salinity dis-
tribution.

The first output of the model are Q and T for South Passage and the North Pas-
sage. As explained in Section 2.5, these are determined by minimising the criterion
critcomb. Secondly, Σ is given as model output (Σ is a non-dimensional version of
depth-averaged salinity, s). Also, the depth-averaged and depth-dependent part of
the current distribution (u and u′ respectively) are output of the model. Further-
more, the depth-dependent part of salinity is calculated by the model. Salinity
and current distribution are the main variables calculated in the model. From the
salinity distribution, the Richardson number (RiL) and the stratification parame-
ter (χ) are calculated. Thereafter, RiL is used to calculate KS and KM .
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It is stressed that salinity and RiL depend on each other. For instance, the starting
value for RiL is RiL =0 (for all x). This value is used as input to calculate the
salinity field. If, after that calculation, the iteration is ended (because the criterion
to stop the iterations is satisfied), the calculated salinity distribution is accepted.
From that salinity distribution RiL can be calculated. However, this distribution
of RiL is not equal to zero for all x. This illustrates that the RiL distribution
used to calculate the final salinity distribution is different from RiL distribution
calculated from this final salinity distribution. The RiL calculated from the final
salinity distribution is considered the final result for RiL.

Variable Meaning Value Units

g
Gravitational

acceleration (I)
9.8 m s−2

ρ0
Reference
density (I)

1000.0 kg m−3

β
coefficient of

saline contraction (II)
7.7 ×10−4 psu −1

socn,SC
Ocean salinity

South Channel (III)
26.22 psu

socn,SP
Ocean salinity

South Passage (III)
26.0 psu

socn,NP
Ocean salinity

North Passage (III)
28.0 psu

dx
Stepsize
x-direction

10.0 m

dζ
Stepsize
ζ = z

H

0.01 -

Cv

Parameter
eddy viscosity,

diffusion coefficient (IV)
0.001 -

UT,SC
Tidal current

South Channel (V)
1.15 m/s

UT,SP
Tidal current

South Passage (V)
1.7 m/s

UT,NP
Tidal current

North Passage (V)
1.4 m/s

QSC

River discharge
entering

South Channel (VI)
3714 m3/s
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η
∣∣
x=Lsea,SP

Surface height
at coast

South Passage
0 m

η
∣∣
x=Lsea,NP

Surface height
at coast

North Passage
0 m

Table 2.2: Parameters values. References for values: (I) Chen [2018], (II) Mac-
Cready [2004], (III) Zhu et al. [2018], (IV) changed from value by Huijts et al. [2009]
(see Chapter 5 for details), (V) estimated from result of amplitude semi-diurnal
tidal current by Jinyang Wang, (VI) based on Zhu et al. [2018] (river discharge)
and Alebregtse and de Swart [2016] (net water division ratio South Channel).

Variable Meaning Value Units

LSC
Length

South Channel (i)
23.0 km

LSP
Length

South Passage (i)
54.0 km

LNP
Length

North Passage (i)
61.0 km

B0,SC

Width,
branching point

South Channel (i)
6.2 km

B0,SP

Width,
coast

South Passage (i)
30.0 km

B0,NP

Width,
coast

North Passage (i)
3.5 km

x0,SC
Reference x

South Channel (i)
0.0 km

x0,SP
Reference x

South Passage (i)
55.0 km

x0,NP
Reference x

North Passage (i)
61.0 km

λs,SC

Convergence
length

South Channel (i)
-368.0 km
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λs,SP

Convergence
length

South Passage (i)
21.0 km

λs,NP

Convergence
length

North Passage (i)
470.0 km

p0,SC

Parameter
depth

South Channel (ii)

1.460
×101 m

p1,SC

Parameter
depth

South Channel (ii)

6.198
×10−4 -

p2,SC

Parameter
depth

South Channel (ii)

4.493
×10−8 m−1

p3,SC

Parameter
depth

South Channel (ii)

-9.668
×10−13 m−2

p4,SC

Parameter
depth

South Channel (ii)

-3.946
×10−18 m−3

p5,SC

Parameter
depth

South Channel (ii)

2.267
×10−21 m−4

p0,SP

Parameter
depth

South Channel (ii)

1.350
×101 m

p1,SP

Parameter
depth

South Channel (ii)

-5.832
×10−4 -

p2,SP

Parameter
depth

South Channel (ii)

5.962
×10−8 m−1

p3,SP

Parameter
depth

South Channel (ii)

-3.643
×10−12 m−2

p4,SP

Parameter
depth

South Channel (ii)

8.958
×10−17 m−3
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p5,SP

Parameter
depth

South Channel (ii)

-7.199
×10−22 m−4

HNP
Depth

North Channel (ii)
13.1 m

Table 2.3: Values of geometrical parameters. References of parameter values:
(i) Alebregtse and de Swart [2016] and (ii) determined from Navionics (https:
//webapp.navionics.com/?lang=en#boating@7&key=_tz_EowycV).
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Chapter 3

Results 1: reference case, spring
tide and low river discharge

First, a reference case will be discussed. For this reference case a low river discharge
(QSC =3714 m3s−1) is chosen and the tidal currents are given the values for spring
tide (see Table 2.2 for the specific numbers). The reference case considers the
present day situation.

3.1 River water and salt transports

An example of a flow diagram for this reference case is given in Figure 3.1. The
contours give, for every value of river transport (QSP ) and salt transport (TSP )
in the South Passage the value the combined criterion critcomb =

√
crit21 + crit22

(a measure of the difference in salinity and surface height between the South Pas-
sage and the North Passage) at the branching point. According to the boundary
conditions this difference should disappear (and critcomb should approach zero, see
Section 2.5). The right values for QSP and TSP are found by finding the minimum
value for critcomb (marked with the white dot in the figure). The final result of this
process is QSP =2152 m3s−1 and TSP =-165 psu m3s−1 (indicating salt transport
from the South Passage into the North Passage). The physical meaning of this
result is sketched in Figure 3.2.

The percentages give the net water division ratio (nWDR, defined by Equa-
tion (2.42)) in the South Passage and the North Passage. The 165 psu m3 s−1

salt transport from the South Passage into the North Passage is also indicated.
The salt transport from the South Passage into the North Passage is in agree-
ment with the study by Zhu et al. [2018]. It appears from the figure that there
is more river transport through the South Passage than through the North Passage.
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Figure 3.1: Example of a flow diagram for the reference case (spring tide, low river
discharge and present-day situation). The contours indicate the value for the combined
criterion (critcomb =

√
crit21 + crit22) for each value for the river transport (QSP ) and

salt transport (TSP ) in the South Passage. According to boundary conditions, this
combined criterion should be minimal. The white dot indicates the minimum for the
combined criterion (critcomb =

√
crit21 + crit22). The values for QSP and TSP at the dot

are selected.

Equation (2.43) can be used to investigate why there is more river transport
through the South Passage than through the North Passage. This equation gives
an approximation for QSP

QNP
, assuming that depth and eddy viscosity (KM) are

constant. From filling out the parameter values in Table 2.2 and 2.3 into Equa-
tion (2.43) and assuming that RiL =0 and ∆s = socn a nWDR of 57% for the
South Passage is found. For the reference case Equation (2.43) seems to give a
reasonable approximation for QSP

QNP
.

Now, it is interesting to know which factors lead to an increase QSP

QNP
and therefore

explain the higher nWDR in the South Passage (than in the North Passage). From
calculations with Equation (2.43), using the parameter values in Table 2.2 and 2.3,
it appears that the funnel-shape (i.e. the small convergence length scale for the
width of the channel) of the South Passage and the larger tidal current (and
consequently larger KM) and smaller depth in the South Passage (than in the
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Figure 3.2: Sketch giving the salt transport from the South Passage into the North
Passage (in purple) and the net water division ratio (nWDR) in both channels (in red
and green). These results are for the reference case (spring tide, low river discharge and
present-day situation).

North Passage) all decrease the ratio QSP

QNP
.1 Therefore, these characteristics of

the channels do not explain the larger nWDR in the South Passage (which means
that QSP

QNP
>1). Nevertheless, these relations are physically understandable as the

stronger tidal current in the South Passage provides more friction (and this possi-
bly makes river flow more difficult) and due to the shallower South Passage there
is less space for river transport. Furthermore, a larger λs makes the South Passage
narrower near the branching point; therefore, there is little space there for river
flow to enter the channel.

However, what does explain (according to the calculations with Equation (2.43))
that QSP

QNP
>1 is mainly that B0,SP > B0,NP . Physically B0,SP > B0,NP means that

the width (near sea) is larger for the South Passage than for the North Passage.
The increase in QSP

QNP
for B0,SP > B0,NP is physically plausible as a greater width

of the South passage (near sea) provides more space for river transport. The
other explanation for QSP

QNP
>1 is that ∆sNP > ∆sSP . However this effect seems

to be barely visible. Physically, the increase in QSP

QNP
for ∆sNP > ∆sSP might be

1The first two things can be reasoned from Equation (2.43) itself (without needing a lot of
numbers). From trial calculations with Equation (2.43) it appears that both the numerator and
the denominator are negative, so if the numerator (denominator) gets more (less) negative QSP

QNP

will increase. A larger UT and λs for the South Passage cause a less negative numerator and a
more negative denominator; leading to a decrease in QSP

QNP
.
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explained by the relation that a larger horizontal salinity gradient in the North
Passage increases the diffusion of salt into this channel and this potentially provides
more resistance for river flow to enter the North Passage.

3.2 Depth-averaged salinity

Figure 3.3: Depth averaged salinity (s) against x in the three channels. Again, the
reference case is considered (spring tide, low river discharge and present-day situation).
The arrows and numbers indicate the distance between the branching point and the
s =5 psu-line (in green for the South Passage and in blue for the North Passage).

Next, Figure 3.3 shows the depth averaged salinity (s) for the three channels. In the
figure, the distance between the branching point (at x =0) and the s = 5 psu-line
is indicated with arrows and numbers (in green for the South Passage and in blue
for the North Passage). When this distance is shorter, there is more salt intrusion.
The figure suggests that there is more salt intrusion in the South Passage than in
the North Passage. This is also found in literature (see e.g. Zhu et al. [2018]).
A more extensive comparison of the results with literature is given in Chapter 5.
Why the salt intrusion in the South Passage is larger than in the North Passage is
discussed later (in Section 4.2.2). The larger salt intrusion in the South Passage
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might also explain why a salt transport was found from the South Passage to
the North Passage (see Figure 3.2); there is simply more salt available (near the
branching point) in the South Passage than in the North Passage to transport to
the other channel.2 The figure also shows that there is almost no salt in the South
Channel.

3.3 River and density-driven flow

Figure 3.4: Depth averaged velocity (u, solid line) and strength of the density-driven
flow (uE , dotted line) against x in the three channels. Again, the reference case is
considered (spring tide, low river discharge and present-day situation).

Also, the depth-averaged velocity (u) is calculated by the model. As explained
before, the depth-averaged velocity equals the river flow. Figure 3.4 shows this
velocity, together with the strength of the density-driven flow (uE) in the three

2It seems contradictory that very little salt reaches the branching point, but that there is still
a transport of salt from the South Passage to the North Passage. However, this salt transport
only causes a very small change in the salinity. This is understood by considering the last two
terms in Equation (2.25) in Section 2.1. As Q is in the order of a few thousand m3/s and socn
is 26 or 28 psu, a very big value for TSP is needed in order to see a noticeable difference in Σ.
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different channels. The figure shows that the river flow decreases in seaward direc-
tion particularly for the South Passage, but also for the North Passage. As u = Q

BH

(Equation (2.10)) and river transport (Q) is constant in a channel, changes in u are
described by geometry. Figure 2.4 shows that the width (B) of the South Passage
strongly increases seaward and that the depth (H) is approximately the same at
the branching point as near the ocean. For this reason, the decrease in river flow in
the South Passage is caused by the funnel-shape of this channel. Because the river
transport in the South Passage is distributed over a larger area when it moves to-
wards the ocean, the river flow weakens in seaward direction. In the North Passage
the depth is constant (in the model) and the width weakly increases in seaward
direction and this explains the slight decrease in river flow towards the ocean. The
river flow in the South Channel is stronger seawards and weaker near the landward
boundary. The width of the South Channel decreases seaward and together with
the net seawards decrease in depth, this explains the seawards increase in river flow.

The density-driven flow appears to be clearly the strongest in the North Passage.
Equation (2.17) shows that the strength of the density-driven flow is proportional
to H3 and ∂s

∂x
. The stronger density-driven flow is probably explained by the strong

horizontal gradient in depth-averaged salinity ( ∂s
∂x

) near the ocean, apparent from
Figure 3.3 and the large depth of the North Passage (relative to the South Passage).

For the South Channel and the South Passage, the figure suggests that the river
flow is (generally) much stronger than the density driven-flow. The density-driven
flow in the South Channel is (almost) absent, because of the little salt that is
present in the South Channel (consequently ∂s

∂x
is very small). The density-driven

flow in the South Passage is strongest just seaward of branching point, possibly
due to a combination of the large depth near the branching point and the strong
∂s
∂x

a bit seaward of the branching point.

3.4 Distribution of currents

Now it is interesting to see how the river flow and the density-driven flow combine
into the current distribution. The current distribution for the different channels
is given in Figure 3.5. For the North Passage, there is seaward flow near the sur-
face and landward flow near the bottom. This structure is characteristic for the
density-driven flow (see Figure 1.2). The density-driven flow in this channel is
strongest near the coast, which is in agreement with Figure 3.4.

For the South Passage and the South Channel all the velocities are seawards. This
means that, for these channels, mainly river flow is visible and the density-driven
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flow is weak. This was also concluded from Figure 3.4. Furthermore, Figure
3.5 shows that velocities are stronger near the surface. This was also concluded
from Figure 2.3a and is according to expectations as fresh water from river flow is
buoyant and tends to stay close to the surface.

Figure 3.5: Plots of the subtidal current for the reference case (spring tide, low river
discharge and present-day situation) for the three different channels.

3.5 Salinity distribution

First, the salinity distributions for the three different channels are plotted and
given in Figure 3.6. The 5 psu and 15 psu lines are shown in white. From the
figures, it is immediately clear that there is much more salt intrusion in the South
Passage than in the North Passage. This is in agreement with Figure 3.3. A pos-
sible explanation for this observation is that the river flow in the South Passage
decreases in seaward direction (due to the funnel-shape of the South Passage and
consequently the decreasing cross-section in seaward direction), as suggested by
Figure 3.4. Due to the decreasing river flow, salt experiences a weaker push out
of the estuary near the ocean. This hypothesis is further tested in Section 4.2.
Also, the South Passage has a larger tidal current than the North Passage (see
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Section 2.2). As a result, horizontal diffusion increases (note that KHS is linear in
UT ), resulting in more salt intrusion. The other side is that, a higher tidal current
increases mixing and the density-driven flow is weakened in the South Passage.
This causes a lower salt intrusion, but apparently the other two effects (funnel-
shaped South Passage and stronger horizontal diffusion) are stronger and the salt
intrusion is higher in the South Passage.

Figure 3.6: Plots of the salinity distribution in the present situation with spring tide
and low river discharge for the three different channels. The 5 psu line and the 15 psu
line are given in white. Note that the colorbars are the same for the South Passage and
the North Passage, but is different for the South Channel (in fact there is almost no salt
intrusion in the South Channel).

It is noted that the plot for the South Channel has different contour levels than the
figures for the South Passage and the North Passage, because there is very little
salt intrusion in the South Channel. Furthermore, it is observed that in all the
channels, the lines of equal salinity are rather vertical. This indicates that there
is little stratification and a lot of mixing. Because there is little stratification, the
density-driven flow will be weak (see Chapter 1) and it is expected that the most
important mechanism for salt intrusion is horizontal diffusion.
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3.6 Stratification

Figure 3.7: The Richardson number (RiL) for the three different channels. The Richard-
son number is large when there is a lot of stratification and it is small when there is a
lot of mixing. Again the reference case is considered (spring tide, low river discharge
and present-day situation).

In order to study the stratification further, the Richardson number and stratifi-
cation parameter are useful. Figure 3.7 gives the Richardson number (RiL) for
the three different channels. The Richardson number is defined by Equation 2.32
(Section 2.3) and the Richardson number increases when stratification is stronger.
From the figure it can be concluded that the North Passage has the most stratifica-
tion (according to the Richardson number). The highest Richardson number in this
channel is found near the ocean. In Monismith et al. [1996] it is explained that the
gravitational circulation increases stratification and Geyer and MacCready [2014]
expect that river flow also has an increasing effect on stratification. In Figure 3.4
it is visible that, in the North Passage, there is a strong density-driven flow (and a
fairly strong river flow) close to the ocean. This strong density-driven flow possibly
explains the high Richardson number in the North Passage, especially because the
shape of the graphs of RiL (Figure 3.7) and uE (Figure 3.4) are rather similar.
The river flow near the branching point in the South Passage is large, but the
Richardson number is still relatively small there. The maximal Richardson num-
ber in the South Passage is just seaward of the branching point and approximately
coincides with the maximal density-driven flow in the South passage. This sug-
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gests that the connection between density-driven flow and the Richardson number
is stronger than the connection between river flow and the Richardson number.
The Richardson number in the South Channel is very small as there is very little
salt there.

Figure 3.8: The stratification parameter (χ) against x for the three different channels
in the reference case (spring tide, low river discharge and present-day situation). The
stratification parameter increases when stratification is stronger.

Figure 3.7 shows the stratification parameter (χ) for the three different channels.
The definition of the stratification parameter is given in Equation (2.33) (Sec-
tion 2.3) and the stratification parameter is larger when stratification is stronger.
It is explained in Section 2.3 that RiL gives an absolute scale (which is fixed for
a specific channel) for the change in ∆s . In contrast, χ gives the relative change
of ∆s with respect to the salinity at the bottom of the channel (which also varies
with x).

Figure 3.7 shows maximal stratification parameter near the branching point in the
South Passage. This maximum was not visible in RiL as salinities are very small
near the branching point and ∆s is scaled by an absolute value there. In χ, the
small ∆s near the branching point is scaled by a small sbottom and therefore it is
possible that χ is large for small salinities. The figure shows that the stratification
parameter decreases seaward for the South Passage. This is possibly explained
by the decrease in river flow towards the sea (see Figure 3.4). It seems that
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river flow has a stronger relation with the stratification parameter than with the
Richardson number. The stratification parameter decreases landwards for the
North Passage. Again, this might be explained by the landwards decrease in
strength of the exchange flow. The graph of the stratification parameter for the
South Channel has a similar shape as the graph for the river flow (see Figure 3.4),
suggesting a connection between the two.

3.7 Eddy viscosity and diffusion coefficients

Figure 3.9: The vertical eddy viscosity (KM , measure of internal friction) against x for
the three different channels in the reference case (spring tide, low river discharge and
present-day situation).

The last variables that are calculated by the model are the vertical eddy viscosity
(KM , a measure of internal friction), and the vertical an horizontal diffusion coef-
ficients (KS and KHS respectively, they give a measure of vertical and horizontal
turbulent mixing of salt). Figure 3.9 shows the vertical eddy viscosity, Figure 3.10
the vertical diffusion coefficient and 3.11 the horizontal diffusion coefficient (that
are used in the model calculations) against x.

Figure 3.9 and Figure 3.10 show that KM and KS are exactly the same. It was
explained in Section 2.4 that RiL is determined iteratively and that the first model
calculations are done with RiL =0. For the reference case it appears that the cri-
terion to stop these iterations (∆s2

crit >0.1 in Figure 2.5) is already met after these
calculations with RiL =0. In other words, the model calculations are carried out
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using RiL =0. When RiL =0 is substituted into the definitions of KM and KS

(Equation 2.30a and 2.30b respectively), it appears that KM and KS are exactly
the same. It is noted that Figure 3.7 shows non-zero values for RiL as these values
for RiL are calculated using the results for salinity distribution (they are calculated
after the salinity distribution was found, these values of RiL are not the values
that are used in the calculation of the salinity itself).

Figure 3.10: The vertical diffusion coefficient (KS , measure of vertical turbulent mixing
of salt) against x for the three different channels in the reference case (spring tide, low
river discharge and present-day situation).

As KM and KS are calculated with RiL =0, the only variable in their equations
(Equation (2.30a) and (2.30b)) that is not constant (in a channel) is depth. As
KM and KS are linear in H, their graphs have the same shape as the graph of
H (see Figure 2.4). Because, according to Equation (2.30c), KHS is linear in B
(and the other variables are constant in a channel), the graph KHS of KHS has
the same shape as the graph of channel width (see Figure 2.4).
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Figure 3.11: The horizontal diffusion coefficient (KHS , measure of horizontal turbulent
mixing of salt) against x for the three different channels in the reference case (spring
tide, low river discharge and present-day situation).
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Chapter 4

Results 2: sensitivity analysis

4.1 Sensitivity to tides and river discharge

As discussed in Chapter 1, tidal current and river discharge are expected to have
an important influence on salt intrusion. In order to study this effect, different con-
ditions are tried, namely all combinations between neap/spring tide and low/high
river discharge (QSC =3714 m3/s and QSC =6440 m3/s respectively). The exact
values that are used for the tidal current (UT ) for spring and neap tide are given
in Table 2.1. All experiments in this section consider the present-day situation.

4.1.1 River water and salt transport

To begin with, the river water and salt transport in the South Passage and North
Passage are found. The results are given in Figure 4.1 (for river transport) and
Figure 4.2 (for salt transport). The white percentages in Figure 4.1 indicate the
nWDR (percentage of total river water transport that is transported through a
certain channel) for a certain channel. The nWDR is defined by Equation (2.42)
(see Section 2.5). For interpretation of Figure 4.1, again the approximate expres-
sion for QSP

QNP
(that was introduced in Section 2.5) is used. To obtain this expression

it is assumed that depth and KM (vertical eddy viscosity, measure of internal fric-
tion) are constant. The last thing can be achieved by making the approximation
that RiL =0.

First the river water transport through the South Passage is calculated using
Equation (2.43) (using parameter values form Table 2.1, 2.2 and 2.3 and assuming
RiL =0). Using this equation, the values for the nWDR are estimated. The found
values for the nWDR are 57% (spring tide, low river discharge), 63% (neap tide,
low river discharge) 53% (spring tide, high river discharge) and 57% (neap tide,
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high river discharge). Generally, these numbers are reasonable approximations to
the values found in Figure 4.1. However, the nWDR value for neap tide and high
river discharge found from Equation (2.43) is a lot higher than the value given
in Figure 4.1. However, the case neap tide and high river discharge is the only
situation for which a Richardson number (RiL) larger than zero is used for the
calculations in the model (this is only the case for the North Passage). For all
the other situations, the iterations to calculate RiL are already ended after the
first calculation (which uses RiL =0), as the criterion to stop the iterations is
met (see Figure 2.5 and Section 2.4 for more details). When the calculation with
Equation (2.43) is done again for the situation neap tide and high river discharge,
but this time using RiL = 0.2 for the North Passage1, it is found that 46 % of the
river flow is transported through the South Passage (which is more similar to the
value in Figure 4.1), so it seems that stratification is important for determining
the distribution of the river flow between the two channels in case of neap tide and
high river discharge.

Figure 4.1: Bar plot showing the distribution of the river water transport through
the South Passage and the North Passage under varying conditions. The values for
the nWDR (percentage of the total river water transport that is transported through a
certain channel) are given in white.

1In the model calculations a RiL between 0 and approximately 2.8 (but for most x, RiL = 0
or very small) is used for the North Passage for this situation.
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The first pattern that is visible in Figure 4.1 is that the nWDR for the North Pas-
sage increases when river discharge increases. This observation will be explained
in Section 4.1.6, when discussing stratification. Considering the case with low river
discharge, it appears that the nWDR for the North Passage is larger for spring
tide than for neap tide. In contrast, for high river discharge, the nWDR for the
North Passage is larger for neap tide than for spring tide.

Figure 4.2: Plot of salt transport into the North Passage over time for high and low
river discharge (QSC). It appears that for all situations there is salt transport from the
South Passage into the North Passage. Dashed lines suggest a possible trend.

Figure 4.2 shows the salt transport into the North Passage (TNP ) against time
for high river discharge (QSC) and low river discharge. The dashed lines show
a possible trend in the salt transport into the North Passage. It appears that,
if there is salt transport between the two channels, it is always from the South
Passage to the North Passage (as TNP >0). During spring tide this salt transport
is maximal and during neap tide it almost vanishes. Furthermore, there is more
salt transport when river discharge is low than when it is high.

4.1.2 Salt intrusion

In order to study the effect of tides and river discharge on salt intrusion, the dis-
tance (L5) between the branching point and the s =5 psu-line is plotted against
time in Figure 4.3. Figure 4.3a shows this time series for the South Passage and
Figure 4.3b for the North Passage and the time series are shown for high and
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low river discharge. The smaller L5, the more salt intrusion there is. Both Fig-
ure 4.3a and 4.3b suggest that salt intrusion decreases (L5 increases) when river
discharge is higher. For this higher river discharge, there is more river water trans-
port through the both channels (see Figure 4.1) and more salt is exported from
the estuary by this river water.

[a]

[b]

Figure 4.3: Figure showing the distance (L5) between the branching point and the
s = 5 psu-line against time for the South Passage ([a]) and the North Passage
([b]). When L5 is smaller, there is more salt intrusion. The dashed lines give a
possible time trend for L5.

Furthermore, in the South Passage in case of both high and low river discharge
and in the North Passage in case of low river discharge, there is more salt intrusion
for spring tide than for neap tide. However, in the North Passage in case of a high
river discharge, there is less salt intrusion during spring tide than during neap
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tide. During spring tide, tidal currents are larger than during neap tide. This has
two consequences. First, horizontal diffusion increases (KS is proportional to UT ,
see Equation (2.30b)) and consequently there is more import of salt. Secondly,
a larger tidal current results in more mixing (KS and KM increase for a larger
tidal current, see Equation (2.30b) and Equation (2.30a)). Due to the increased
mixing, the density-driven flow will weaken and this results in less salt import (see
Section 1.1). The figure suggests that in the North Passage, in case of high river
discharge, the effect of the weaker density-driven flow dominates the increased
horizontal diffusion and there is less salt intrusion during spring tide. In the other
cases, the increased horizontal diffusion dominates and there is more salt intrusion
during spring tide. Another option is that the results deviate for the North Pas-
sage in case of neap tide and high river discharge, due to model technical reasons.
This possibility will be discussed in Chapter 5 Discussion.

It is found that salinity in the South Channel is very low in all cases and for
that reason it is chosen to only discuss the South Passage and the North Passage.
The profiles of depth-averaged salinity (not shown) show that for all situations,
except the North Passage in case of neap tide and high river discharge, the depth-
averaged salinity decreases more rapidly landwards for neap tide (compared to
spring tide) and high river discharge (compared to low river discharge). This also
indicates more salt intrusion for spring tide and a low river discharge in those
situations. The profile of depth-averaged salinity for the North Passage in case
of wet season and neap tide indicates that the salinity is relatively high near the
mouth of the estuary and relatively low in more landwards in the channel (when
compared to the situation with the same river discharge but stronger tidal current
or the same tide but lower river discharge). This suggests that the effect of the
stronger density-driven flow is more strongly present near the mouth of the estuary.

Finally, it is noted that, when salt intrusion in the South Passage is stronger,
the salt transport from the South Passage to the North Passage is larger (see
Figure 4.2). When there is more salt intrusion in the South Passage there is
also more salt to transport to the North Passage and this possibly explains the
increased salt transport to the North Passage.

4.1.3 River and density-driven flow

Now, it is interesting to study the effect of tide and river discharge on river flow
and density driven flow. To do this, Figure 4.4 shows the river flow (solid lines) and
density driven flow (dashed lines) in the South Passage ([a]) and the North Passage
([b]). Figure 4.4a shows that, in the South Passage, river flow is a lot stronger
than density-driven flow. This river flow is stronger for high river discharge than
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Figure 4.4: River flow (u, solid lines) and density-driven flow (uE, dashed lines)
against x in the South Passage ([a]) and the North Passage ([b]).
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for low river discharge, as more river water is available when the river discharge
is larger. In fact, from comparing Figure 4.4a with Figure 4.1, it appears that a
stronger river transport (Q) results in a stronger river flow (u). This is expected
as river flow only depends on river transport and geometry of the channel and
the geometry of the channels is the same for all situations. The strength of the
exchange flow in the South Passage is comparable for all situations, only locally
small variations are visible.

It is suggested by Figure 4.4b that near the mouth of the North Passage, the
density-driven flow is a lot stronger than the river flow and landwards the river
flow is a lot stronger than the density-driven flow. Again stronger river trans-
port (see Figure 4.1) results in stronger river flow as it should. In the figure, the
exchange flow is stronger for higher river discharge and for neap tide (than for
spring tide). These results can be expected as river flow is suggested to stimu-
late stratification (see Geyer and MacCready [2014]) and the density-driven flow
is stronger for stronger stratification. Also, there is less mixing and consequently
more stratification for neap tide than for spring tide and this also results in a
stronger density-driven flow.

It was hypothesised that the higher depth-averaged salinities near the mouth of
the North Passage in case of neap tide and high river discharge (when compared
to the case with the same river discharge but stronger tidal current or the same
tide but lower river discharge) results from a more dominant density-driven flow
there. From Figure 4.4b it seems that, indeed, the density-driven flow near the
mouth of the North Passage is (generally) more dominant for neap tide and high
river discharge than for the other situations.

4.1.4 Distribution of currents

Figure 4.5 and 4.6 show the differences (δu) in subtidal current between a certain
situation and the reference case (the situation spring tide and low river discharge)
for the South Passage and the North Passage respectively. Blue indicates an in-
crease and red a decrease in tidal current with respect to the reference case. In
the South Passage, an increase in river flow with respect to the reference case is
visible for all situations. This can be recognised by in increase in current (positive
δu) over a large range of depths (this increase is not attributed to density-driven
flow as this flow shows a clear structure with seawards flow near the surface and
landward flow near the bottom). The increase in river flow was also found in Fig-
ure 4.4. Similar to Figure 4.4, the largest increase in river flow is found for the
case spring tide and high river discharge, than neap tide and high river discharge
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and lastly neap tide and low river discharge. For the situations during neap tide,
also an (slight) increase in density-driven flow is visible (recognised from negative
values for δu near the bottom), which can be explained by the increased stratifi-
cation due to decreased tidal mixing.

Figure 4.5: Subtidal current difference (δu) between a certain situation and the ref-
erence case (spring tide and low river discharge) for the South Passage. The different
situations that are shown are all possible combinations between spring/neap tide and
high/low river discharge (QSC). Blue indicates an increase and red a decrease in tidal
current with respect to the reference case. There is no figure for spring tide and low
river discharge as this is the reference case.

For the North Passage, all the different situations show a stronger density-driven
flow near the head of the estuary with respect to the reference case. This increase
in density-driven flow is recognised by the cell-like structures with positive values
for δu near the surface and the negative values near the bottom. Also, there is a
slight decrease in river flow for the situation neap tide (δu shows a lot of negative
values over a large range of depths) and low river discharge and a slight increase
in river flow for the other situations (positive values for δu over a large range of
depths). These observations were also mentioned when discussing Figure 4.4.
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Figure 4.6: Subtidal current difference (δu) between a certain situation and the ref-
erence case (spring tide and low river discharge) for the North Passage. The different
situations that are shown are all possible combinations between spring/neap tide and
high/low river discharge (QSC). Blue indicates an increase and red a decrease in tidal
current with respect to the reference case. There is no figure for spring tide and low
river discharge as this is the reference case.

4.1.5 Salinity distribution

Figure 4.7 and 4.8 show salinity under different conditions in the South Passage
and North Passage respectively. The salinity distributions for the South Passage
show that the lines of equal salinity are vertical for all cases, indicating that there
is a lot of mixing and density-driven flow is weak. This was also concluded from
Figure 4.4a. Furthermore, the figure shows that salt intrudes further into the es-
tuary for spring tide (than for neap tide) and low river discharge (than for high
river discharge). This was also concluded from Figure 4.3.

57



Figure 4.7: Plots of the salinity distribution in the South Passage in case of all possible
combinations between spring tide/neap tide and low/high river discharge (QSC). The 5
psu line and the 15 psu line are marked in white.

For the North Passage, the lines of equal salinity are still rather vertical (indicating
a lot of mixing), except from the situation neap tide and high river discharge. For
this situation, stratification is visible, with higher salinities near the bottom and
lower salinities near the surface. From Figure 4.4b it appeared that this is the
situation with (generally) the strongest density-driven flow. For all situations
except neap tide and high river discharge, the figure shows that salt intrudes
further into the channel for spring tide (than for neap tide) and for a low river
discharge (than for a high river discharge). There is more salt intrusion for the
situation neap tide and high river discharge, than for spring tide and high river
discharge. These observations are similar to those from Figure 4.3.
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Figure 4.8: Plots of the salinity distribution in the North Passage in case of all possible
combinations between spring tide/neap tide and high/low river discharge (QSC). The 5
psu-line and the 15 psu-line are marked in white.

4.1.6 Stratification

Furthermore, it is interesting to see what effect the different conditions have on
stratification. In order to study this effect the Richardson number (RiL) is given
in Figure 4.9 and the stratification parameter (χ) is plotted in Figure 4.10. The
figures show these measures for different situations in the South Passage ([a]) and
for the North Passage ([b]). A larger stratification results in higher values for RiL
and χ. The difference between these measures is that RiL is a measure for the
absolute salinity difference between bottom and surface and χ is a measure for
the salinity difference between bottom and surface relative to the salinity at the
bottom (which is the maximal salinity).

Both measures show that there is more stratification for neap tide than for spring
tide. This is expected as during neap tide, the tidal current is smaller and therefore
there is less mixing and more stratification. Also, the figures show that there is
more stratification for a high river discharge, than for a low river discharge. This
is also expected, as in literature it is suggested that more river flow leads to more
stratification (see e.g. Geyer and MacCready [2014]).
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Figure 4.9: Plots of the Richardson number (RiL) for the South Passage ([a]) and
the North Passage ([b]) in case of different situations. More stratification results
in a larger value for RiL.

For the South Passage the peak in the Richardson number shifts towards the
branching point, when there is either a transition from neap tide to spring tide
or a transition from wet season to dry season. This shift of the peak in strat-
ification towards the branching point seems to coincide with an increase in salt
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intrusion. When there is little salt intrusion, there is simply not enough salt near
the branching point to develop a clear stratification.

[a]

[b]

Figure 4.10: Plots of the stratification parameter (χ) for the South Passage ([a])
and the North Passage ([b]) in case of different situations. Stronger stratification
results in a larger value for χ.

Furthermore, from Figure 4.1 it was observed that a larger river discharge leads
to a higher nWDR for the North Passage. From Figure 4.9 it is concluded that a
larger river discharge leads to a stronger stratification in both channels, but that
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this increase in stratification is larger in the North Passage. This possibly explains
the higher nWDR for the North Passage, as a stronger stratification results in less
friction (see e.g. Chant and Wilson [1997]). Due to the decrease in friction, it
will be easier for river water to flow through the North Passage. It is noted that,
Figure 4.10 does show a large increase in stratification in the South Passage for
larger river discharge. However, the location where this stratification is large has
a very low salinity.

4.1.7 Eddy viscosity and diffusion coefficients

Figure 4.11 shows the eddy viscosity (KM , a measure of internal friction) and dif-
fusion coefficient (KS, a measure of turbulent mixing of salt) in the South Passage
([a]) and the North Passage ([b]). For all situations except for the case neap tide
and high river discharge in the North Passage, only one line is given for both KM

and KS. The reason is that the situation neap tide and high river discharge is the
only situation where iterations have taken place to calculate RiL (as was explained
earlier). From Equation (2.30a) and (2.30b) (the equations for KM and KS) it ap-
pears that KM and KS are the same when RiL =0. Another thing that appears
from those equations is that KM and KS are independent of river discharge when
RiL =0. Consequently, only for neap tide in the North Passage, separate lines are
drawn for high and low river discharge.

Figure 4.11 shows that in both channels KM and KS are larger during spring tide
than during neap tide. This is expected as, according to Equation (2.30a) and
(2.30b), KM and KS are linear in UT (when RiL =0). It is noted that the same
relation is found for KHS (the horizontal diffusion coefficient, not shown). For
spring tide KHS is maximal approximately 2553 m2s−1 in the South Passage and
in the North Passage 257 m2s−1, while for neap tide this is 1577 m2s−1 and 162
m2s−1 respectively. The equation for KHS (Equation (2.30c)) is linear in UT and
independent of RiL. The increase in KM , KS and KHS for larger tidal current is
physically logical as the tides provide mixing. In the North Passage during neap
tide, KM and KS are larger for a low river discharge. This is also expected, be-
cause a low river discharge is expected to reduce stratification and, for this reason,
there is more mixing.
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Figure 4.11: Plots of the eddy viscosity (KM , a measure of internal friction) and
diffusion coefficient (KS, a measure of turbulent mixing of salt) for the South
Passage ([a]) and the North Passage ([b]). Except for the situation neap tide and
high river discharge in the North Passage, KM and KS are the same. In the South
Passage, KM (and KS) is the same for low and high river discharge and is only
different for a different tidal current. In the North Passage, KM (and KS) is the
same for both cases (low and high river discharge) during spring tide, but different
for the two cases (low and high river discharge) during neap tide.
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4.2 The effect of the Deepwater Navigation

Channel

As mentioned in Section 1.2, the Deepwater Navigation Channel (DNC, which is
part of the Deep Waterway Project) possibly influences salt intrusion. Therefore,
the reference case (which is the present-day situation) is compared with the situa-
tion before the DNC. This is done for spring tide and low river discharge. In order
to model the situation before the DNC, the North Passage is made 1 m shallower
(12.1 m instead of 13.1 m) than the present-day case and the width of the North
Passage before the DNC and the present-day width are shown in Figure 4.12. Be-
fore the DNC, the North Passage had a funnel-shape, just like the South Passage
has. During the realisation of the DNC, the North Passage was narrowed and now
the channel has a straight shape. In order to separate the effect of the deepening
and the narrowing, three situations are compared: the situation before the DNC;
the situation before the DNC, but with the present-day depth and the present-day
situation. There are only differences in parameter values for the North Passage,
the parameter values for the South Channel and South Passage are the same for
all three situations.

Figure 4.12: Plot showing the width before the existence of the DNC and the present
width.

4.2.1 River water and salt transports

Figure 4.13 show the results for river transport in the South Passage and the North
Passage and salt transport from the South Passage into the North Passage respec-
tively. The situations that are considered are: the situation before the DNC; the
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situation before the DNC, but with the present-day depth (HNP =13.1 m) of the
North Passage (so here only the funnel-shape is different from the present situa-
tion) and the present-day situation. In Figure 4.13, the percentages indicate the
nWDR for a specific channel. The nWDR gives the percentage of the total river
transport that is transported through a specific channel and is defined by Equa-
tion (2.42).

Figure 4.13: River transports through the South Passage and the North Passage for
the situation before the DNC; the situation before the DNC, but with the present-day
depth of the North Passage (HNP =13.1 m) and the present-day situation. Percentages
indicate the nWDR for a specific channel. The nWDR gives the percentage of the
total river transport that is transported through a specific channel and is defined by
Equation (2.42).

Again, Equation (7.71) gives reasonable approximations for the nWDR in the
South Passage and North Passage under the different conditions. The found
nWDR values for the South Passage are before DNC: 50%, before DNC,HNP =13.1
m: 49% and present day (reference case): 57%. However, this time the physical
interpretation is more clear from the experiments themselves. Considering the
situation before the DNC, Figure 4.13 suggests a slight increase in river transport
through the North Passage after this channel was deepened (to HNP =13.1 m).
Due to the increased depth of the North Passage there is more space for river
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water to flow through this channel and this possibly explains the increase in river
transport here. However, this increase is small and most of the change in river
transport between the pre-DNC and the present-day situation is explained by the
narrowing of the North Passage. The Figure suggests that this narrowing decreases
the river water transport through the North Passage. Probably, the reason for this
change is that there is simply less space for river water in the North Passage after
it became narrower.

Figure 4.14: Salt transport (TNP ) from the South Passage into the North Passage

against the ratio
Bsea,NP

Bbranch,NP
, where Bsea,NP is the width of the North Passage at sea

and Bbranch,NP is the width of the North Passage near the branching point. A larger
Bsea,NP

Bbranch,NP
, means that the North Passage is more funnel-shaped and less straight. The

points show the results that are found for TNP and the dashed lines suggest possible
trends in these results. Separate lines are given for the two considered depths of the
North Passage; HNP =12.1 m and HNP =13.1 m. The points correspond to the different
situations and these different situations (before DNC; before DNC, HNP =13.1 m and
present-day) are indicated.

In Figure 4.14 the salt transport from the South Passage into the North Passage
(TNP ) is plotted against

Bsea,NP

Bbranch,NP
, where Bsea,NP is the width of the North Passage

at sea and Bbranch,NP is the width of the North Passage at the branching point.

When the ratio
Bsea,NP

Bbranch,NP
increases, this means that the North Passage is less

straight and more funnel-shaped. The points show the results that are found for
TNP and the lines suggest possible trends in these results. Lines are plotted for
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different depths of the North Passage; one line for HNP =12.1 m and one for
HNP =13.1 m. The situation before the DNC; before the DNC, but with the
present-day depth (13.1 m) of the North Passage and the present day situation all
correspond to a point and these situations are indicated in the figure. In all cases
there is salt transport from the South Passage into the North Passage (as TNP >0
for all situations). From Figure 4.14, it appears that the salt transport from the
South Passage, into the North Passage is smaller when the North Passage is deeper.
Also, it seems that the salt transport increases when

Bsea,NP

Bbranch,NP
increases. So when

the North Passage is funnel-shaped instead of straight, there is more salt transport
from the South Passage into the North Passage. As the North Passage was (more)
funnel-shaped before the DNC was realised, there used to be more salt transport
from the South Passage into the North Passage at that time. Possible explanations
for these observations are given when discussing salt intrusion (Section 4.2.2).

4.2.2 Salt intrusion

Figure 4.15 shows the distance between the branching point and the s =5 psu-
line (L5) against

Bsea,NP

Bbranch,NP
for the South Passage ([a]) and in the North Passage

([b]). A larger
Bsea,NP

Bbranch,NP
, means that the North Passage is more funnel-shaped and

less straight. A smaller value for L5 means more salt intrusion. The points indi-
cate results that are found for L5 and the dashed lines indicate possible trends in
those results. The points correspond to the different situations and these different
situations (before DNC; before DNC, HSP =13.1 m and present-day) are indicated.

The figure indicates that salt intrusion, in both the South Passage and the North
Passage, was larger (L5 was smaller) before the realisation of the DNC than it is
nowadays. According to the figure, salt intrusion seems to increase for increasing
Bsea,NP

Bbranch,NP
. Physically, this means that there is an increase in salt intrusion in both

channels when the North Passage is more funnel-shaped. As the North Passage is
straighter (less funnel-shaped) in the present day situation, than before the DNC,
there is less salt intrusion in the present-day situation. Why there is more salt
intrusion when the North passage is funnel-shaped is explained as follows: when
the North Passage is funnel-shaped, the width of this channel is larger near the
ocean, then when it is straight. Due to this larger width, the river transport is
distributed over a larger area and consequently the river flow is weaker. Because
of this weaker river flow, there will be less export of salt out of the North Passage
and salt intrusion will increase. The larger salt intrusion in the South Passage,
when the North Passage has a funnel-shape, is explained by the decrease in river
transport through the South Passage (in Figure 4.13 the river transport through
the South Passage is smaller for the situation before the DNC, where the North
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Passage has a funnel-shape, than for the present-day situation). Due to the smaller
river transport (and consequently weaker river flow), less salt is transported out of
the South Passage and salt intrusion is increased there. In Section 4.2.3 it will be
shown that the river flow is indeed larger for the situation before the DNC (where
the North Passage has a funnel-shape) than for the present-day situation (where
the North Passage is straight).

Using the observations described above, it can also be explained why there is more
salt intrusion in the South Passage than in the North Passage (the larger salt
intrusion in the South Passage was mentioned in Section 3.2). For the present-
day situation, the South Passage has a funnel-shape and the North Passage is
straight. Due to the funnel-shape of the South Passage, river flow will be weaker
there (than when the South Passage would be straight), as the river transport is
distributed over a larger area near the sea. Due to the weaker river flow, there
is more salt intrusion. Salt intrusion in the North Passage might also be larger
because of the funnel-shape of the South Passage (due to the resulting increase in
river transport through the North Passage). However, based on the observations
above, the funnel-shape of the South Passage is expected to increase the salt in-
trusion in the South Passage itself much more than it increases salt intrusion in
the North Passage. According to Figure 4.15, for the situation before the DNC,
there also was more salt intrusion in the South Passage than in the North Pas-
sage. This can be explained in the same way as was done above for the present-day
situation. Before the existence of the DNC, the North Passage was (more) funnel-
shaped than nowadays, but still the South Passage was more funnel-shaped (had
a smaller convergence length scale) than the North Passage (see Table 2.1 and 2.3).
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Figure 4.15: Distance (L5) between the branching point and the s =5 psu-line

against against
Bsea,NP

Bbranch,NP
for the South Passage ([a]) and in the North Passage

([b]). Here, Bsea,NP is the width of the North at sea and Bbranch,NP is the width

of the North Passage at the branching point. A larger
Bsea,NP

Bbranch,NP
, means that the

North Passage is more funnel-shaped and less straight. When L5 is smaller, there
is more salt intrusion. The points indicate results that are found for L5 and the
dashed lines indicate possible trends in those results. The points correspond to
the different situations and these different situations (before DNC; before DNC,
HSP =13.1 m and present-day) are indicated. Separate lines are given for the two
considered depths of the North Passage; HNP =12.1 m and HNP =13.1 m.

Figure 4.15 also suggests that there is slightly more salt intrusion in both channels
when the North Passage is deeper. For the North Passage, this is probably ex-
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plained by an increase density-driven flow, which is stronger when the channel is
deeper (see also Equation (2.17)). As the density-driven flow causes a net import
of salt, a stronger density-driven flow results in more salt intrusion. For the South
Passage the increase in salt intrusion (when the North Passage is deeper) is possi-
bly explained by the smaller salt transport from the South Passage to the North
Passage (see Figure 4.14). The deeper North Passage (in the present-day situa-
tion) would increase the salt intrusion in the present-day situation with respect to
the situation before the DNC. However, this increase in salt intrusion due to the
deeper North Passage nowadays is very small, a lot smaller than the decrease in
salt intrusion due to the straightening of the North Passage.

Furthermore, the increase in salt intrusion for increasing
Bsea,NP

Bbranch,NP
(suggested by

Figure 4.15) also explains the increasing salt transport from the South Passage

to the North Passage for increasing
Bsea,NP

Bbranch,NP
(this was found in Figure 4.14). As

there is more salt intrusion in the South Passage when
Bsea,NP

Bbranch,NP
is larger (i.e.

when the North Passage is more funnel-shaped), there is more salt available in
the South Passage to be transported to the North Passage. Similarly, the increase
in salt intrusion in the South Passage for larger depth of the North Passage (ob-
served in Figure 4.14) possibly explains the increase salt transport from the North
Passage into the South Passage (see Figure 4.14).

Finally, Figure 4.16 shows the depth averaged salinity (s) profiles for the South
Passage ([a]) and the North Passage ([b]) for the different situations (before the
DNC; before the DNC, butHNP =13.1 m and present-day). For the South Passage,
there is almost no change in depth averaged salinity when the North Passage is
made 1 m deeper so that HNP =13.1 m (i.e. the black and the green line are almost
the same). There is a slightly less salinity in the South Passage for the present-day
situation, than for the other two situations. So this figure also suggests that the
straightening of the North Passage caused a very slight decrease in salt intrusion
in the South Passage. When the situation before the DNC is considered, for the
North Passage there is a very small increase in salinity when the depth of the North
Passage is increased to 13.1 m (i.e. when going from the black line to the green
line). However, the figure shows that the depth-averaged salinity is a lot lower for
the present-day situation than for the situation before the DNC, indicating that
the straightening of the North Passage lowered the depth averaged salinity in this
channel considerably.
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Figure 4.16: Profiles of depth-averaged salinity (s) for the South Passage ([a]) and
the North Passage ([b]) for the situations: before DNC; before DNC, but with
HSP =13.1m and present-day situation.

4.2.3 River and density-driven flow

Figure 4.17 shows river flow (u, solid lines) and density-driven flow (uE, dashed
lines) in the South Passage ([a]) and the North Passage ([b]) for the different
situations considered in this section. Figure 4.17a shows that the realisation of
(elements of) the DNC has no effect on density-driven flow in the South Passage.

71



[a]

[b]

Figure 4.17: River flow (u, solid lines) and density-driven flow (uE, dashed lines)
against x for the South Passage ([a]) and the North Passage ([b]). The following
situations are considered: before the DNC; before the DNC, but with HSP =13.1m
and the present-day situation.
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Also, there is almost no change in river flow in the South Passage when, from the
situation before the DNC, the depth of the North Passage is increased to 13.1 m
(the black and the green line are almost the same). Furthermore, the figure shows
that there is an increase in river flow in the South Passage when going from the
situation before the DNC to the present-day situation. As the increase in depth
of the North Passage has (almost) no effect on the river flow in the South Pas-
sage, this increase is (almost) completely caused by the straightening of the North
Channel. The increase in river flow for the present-day situation (compared to the
pre-DNC situation) is explained by the larger river transport through the South
Passage for the present-day situation (see Figure 4.13).

For the North Passage, there is a little decrease in river flow and a little increase in
density driven flow when (starting from the situation before the DNC) the depth
of the North Passage is increased to 13.1 m. The decrease in river flow is caused
by the larger depth of the channel (remember that u = Q

BH
, see Equation (2.10)).

Due to this larger depth, the river transport is distributed over a larger area and
therefore the river flow weakens. The river flow nowadays is (in most of the North
Passage) larger than during the situation before the DNC. As the increased depth
of the North Passage has little effect on river flow, this increase is caused by
the straightening of the North Passage. Consequently, the river transport is dis-
tributed over a smaller area (than before the DNC) and this results in a stronger
river flow. Due to this stronger river flow, there is more export of salt and con-
sequently there is less salt intrusion nowadays than before the DNC (as described
in Section 4.2.2). The decrease in river flow for the present-day situation (com-
pared to the situation before the DNC) in a small part of the North Passage is
caused by the decrease in river transport in the North Passage (Q, see Figure 4.13).

Near the mouth of the North Passage, the density-driven flow largely increased
after the DNC intervention. The figure indicates that the increase in depth of the
North Passage only causes a small increase in density-driven flow. Therefore, this
increase in density driven flow is largely caused by the narrowing of the North
Passage. It is visible from Figure 4.16 that horizontal gradients in depth-averaged
salinity in the North Passage increase due to the narrowing of the channel. These
larger horizontal gradients in depth-averaged salinity possibly explain the increase
in density-driven flow (see Equation (2.17)). In part of the North Passage, there
is a decrease in density-driven flow (for the present-day situation compared to the
other situations), which is caused by the decrease in salt intrusion (see Figure 4.15)
and the resulting smaller horizontal gradients in salinity.
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4.2.4 Distribution of currents

Next, it is investigated what the effect of the DNC is on the distribution of cur-
rents. To do that, Figure 4.18 shows the subtidal current difference (δu) between a
certain situation and the reference case (present-day situation) for the South Pas-
sage. The situations that are considered are: the situation before the DNC and
the situation before the DNC, but with the depth of the North Passage increased
to HNP =13.1 m. Figure 4.19 is a similar figure for the North Passage. Figure 4.18
shows that, in the South Passage, river flow was weaker in the situation before the
DNC, than in the present-day situation. This was also indicated by Figure 4.17.
In other words, due to the DNC, river flow became stronger in the South Passage.
It is observed than δu is slightly more negative for the situation before the DNC,
but with HNP =13.1 m than for the situation before the DNC. For this reason
it is concluded that the increase in depth of the North Passage weakens the river
flow in the South Passage. And the stronger river flow in the present-day situation
appears to be caused by the straightening of the North Passage. These changes
are also visible in Figure 4.17.

Figure 4.18: Subtidal current difference (δu) between a certain situation and the
reference case (present-day situation) for the South Passage. The different situations
that are shown are the situation before the DNC and the situation before the DNC,
but with the depth of the North Passage increased to HNP =13.1 m. Blue indicates an
increase and red a decrease in tidal current with respect to the reference case.

For the North Passage, it seems that the density-driven flow was weaker in the
situation before the DNC than the present-day situation. This can be recognised
in the figure by the two cells with an increase in velocity near the bottom and a
decrease in velocity near the top (the density driven flow consists of a seaward,
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positive current near the surface and a landward, negative current near the bot-
tom). Also, the figure indicates that river flow is weaker in most of the North
Passage and stronger near the branching point for the situation before the DNC
(compared to the present-day situation). These things were also observed from
Figure 4.17. When, from the situation before the DNC, the depth of the North
Passage is increased to its present-day value (HNP =13.1 m), this seems to have
very little effect on the current distribution in the North Passage. The river flow is
slightly weaker when the depth of the North Passage is increased, just as observed
in Figure 4.17.

Figure 4.19: Subtidal current difference (δu) between a certain situation and the
reference case (present-day situation) for the North Passage. The different situations
that are shown are the situation before the DNC and the situation before the DNC,
but with the depth of the North Passage increased to HNP =13.1 m. Blue indicates an
increase and red a decrease in tidal current with respect to the reference case.

4.2.5 Salinity distribution

Now, it is studied what the effect of the DNC is on salinity distribution. In order
to do that, Figure 4.20 shows the salinity distribution in the South Passage for
the situation before the DNC; the situation before the DNC, but with present-day
depth of the North Passage and the present-day situation. Figure 4.20 is a similar
figure, but for the North Passage. For both the South Passage and the North Pas-
sage, in all cases, the lines of equal salinity are rather vertical, indicating that there
is a lot of mixing and the density-driven flow is weak. Therefore, in all situations
horizontal diffusion seems to be the dominant mechanism for salt intrusion. In the
South Passage, (elements of) the DNC seem to have little effect on the salinity
distribution. When looking very carefully to the figure, it is observed that there
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was slightly more salt intrusion before the DNC, than the salt intrusion present-
day. This was also concluded from Figure 4.15. The effect of the deepening of the
North Passage (to HNP =13.1 m) on the salinity distribution in the South Passage
is not visible.

In the North Passage, it is clear from Figure 4.21 that there was more salt intrusion
before the DNC than nowadays. Also, salt intrusion increases slightly when for
the situation before the DNC the depth of the North Passage is increased to its
present-day value (HNP =13.1 m). These results were also found from Figure 4.15.

Figure 4.20: Salinity distribution in the South Passage for different situations (be-
fore DNC ([a]), before DNC, but with present-day depth ([b]) of the North Passage
(HNP =13.1 m) and the present-day situation ([c]). The s =5 psu-line and the s =15
psu-line are indicated in white.
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Figure 4.21: Salinity distribution in the North Passage for different situations (be-
fore DNC ([a]), before DNC, but with present-day depth ([b]) of the North Passage
(HNP =13.1 m) and the present-day situation ([c]). The s =5 psu-line and the s =15 psu-
line are indicated in white.

4.2.6 Stratification

In order to study the effect of the DNC on stratification, Figure 4.22 shows the
Richardson number (RiL) against x in the South Passage ([a]) and the North Pas-
sage ([b]) for the three different situations in this sections. Figure 4.23 is a similar
figure for the stratification parameter (χ).
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Figure 4.22: The Richardson number (RiL) for the South Passage ([a]) and the
North Passage ([b]) for the situation before the DNC; the situation before the
DNC, but with the depth of the North Passage increased to its present-day value
(HNP =13.1 m) and the present situation. A larger value for the Richardson
number means more stratification.
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Figure 4.23: The stratification parameter (χ) for the South Passage ([a]) and the
North Passage ([b]) for the situation before the DNC; the situation before the
DNC, but with the depth of the North Passage increased to its present-day value
(HNP =13.1 m) and the present situation. A larger value for the stratification
parameter means more stratification.
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For the South Passage, RiL is (almost) the same for the three situations. The only
very small difference is that the curve describing RiL for the present-day situation
is shifted a bit more to the right compared to the other situations. This is possi-
bly explained by a slightly smaller salt intrusion for the present-day situation (see
Figure 4.15). For the North Passage, RiL for the situation before the DNC, but
with the present-day depth is almost the same as RiL for the situation before the
DNC, so the deepening of the North Passage during the realisation of the DNC
has almost no effect on the stratification described by RiL. However, RiL near
the ocean is a lot larger for the present-day situation than for the situation be-
fore the DNC. This is possibly explained by the larger density-driven flow (for the
present-day situation compared to the situation before the DNC) there (according
to Monismith et al. [1996], the gravitational circulation increases stratification).
A bit further landwards RiL is smaller for the present-day situation the for the
situation before the DNC. This is possibly, described by a smaller density-driven
flow (for the present-day situation compared to the situation before the DNC)
there (see Figure 4.17).

Figure 4.23 shows that, for the South Passage in the situation before the DNC,
there is almost no change in χ when the depth of the North Passage is increased
(to HNP =13.1 m). However, χ is slightly higher for the present-day situation
than for the situation before the DNC. This small increase in stratification, is
likely explained by the increase in river flow due to realisation of the DNC (see
Figure 4.17). In the North Passage, when starting with the situation before the
DNC, there is only a slight local increase in χ when the depth of the North Passage
is increased (to HNP =13.1 m). In contrast, for the present-day situation in the
North Passage, χ is a lot larger and has a very different distribution than in the
situation before the DNC. This major change is probably explained by the much
larger density-driven flow (near the ocean) and the larger river flow for the present-
day situation in the North Passage (see Figure 4.17). Also, the density-driven flow
and the river flow have a rather different distribution for the present-day situation
than for the situation before the DNC.

4.2.7 Eddy viscosity and diffusion coefficients

For all situations (before DNC; before DNC, HNP =13.1 m and present-day) in
this section no iterations take place to determine the Richardson number (RiL)
used to do the model calculations. In all cases the iteration to determine RiL is
ended after the first calculation and RiL =0 is used for the calculations in the
model. For the South Passage, the values for the tidal current and geometry of
the channel are kept the same as for the reference case. Consequently, according
to Equation (2.30a), (2.30b) and (2.30c), the vertical eddy viscosity (KM , measure
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of internal friction), the vertical diffusion coefficient (KS, gives the strength of ver-
tical turbulent mixing of salt) and the horizontal diffusion coefficient (KHS, gives
the strength of horizontal diffusion of salt) for the South Passage are exactly the
same as for the reference case. The distributions and values of these parameters,
for the reference case, are given in Figure 3.9, 3.10 and 3.11.

As the depth of the North Passage is constant (independent of x) and RiL =0 in
the calculations, KM and KS are the same and also constant according to Equa-
tion (2.30a) and (2.30b). When the depth of the North Passage is HNP=12.1 m
(this is the case for the situation before the DNC), KM = KS =0.0169 m2s−1.
When HNP=13.1 m (this is the case for the present-day situation),
KM = KS =0.0183 m2s−1. So there is more turbulent mixing in the present-day
situation than in the situation before the DNC.

Figure 4.24: The horizontal diffusion coefficient (KHS , a measure of horizontal diffusion
of salt) for the North Passage. Separate lines for the two different depths (before the
DNC: HNP = 12.1 m and present-day situation: HNP = 13.1 m) of the North Passage
considered in this section are shown.

Figure 4.24 shows the horizontal diffusion coefficient (KHS) for the North Passage.
Separate lines for the two different depths (before the DNC: HNP = 12.1 m and
present-day situation: HNP = 13.1 m) of the North Passage considered in this
section are shown. As KHS is linear in channel width B (when RiL =0, see
Equation (2.30c)) and the North Passage was funnel-shaped before the existence
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of the DNC, KHS is generally larger for the situation before the DNC than for the
present-day situation. Also, KHS increases seawards for the situation before the
DNC. Physically, this means that, before the DNC, there was more diffusion of
salt near the ocean than near the branching point.
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Chapter 5

Discussion

5.1 Choice eddy viscosity and diffusion coeffi-

cients

During this study other formulations for the vertical eddy viscosity (KM) and
vertical diffusion coefficient (KS) have been tested, viz. those given in MacCready
[2007]:

KM = A0CDUTH, (5.1a)

KS = A1CDUTH(A3 +
1− A3

1 + A2RiL
), (5.1b)

In these equations A0, A1, A2, A3 and CD are constants. As before, H is the depth,
B the width and UT the tidal current. These variables have the same values as for
the reference case (the values that are given in Table 2.2 and 2.3). Two different
values have been tried for A0, namely A0 =0.065 and A0 =0.0325 (based on the
study by MacCready [2007]). The values for the other constants are A1 =0.022,
A2 =3.33, A3 =0.3 and CD =2.6×10−3 (these values are from MacCready [2007]).

In contrast to the formulations of Munk and Anderson [1948] (that are chosen for
this study), in the formulations of MacCready [2007] only KS depends on strat-
ification. Figure 5.1 shows KM (dashed lines) and KS (solid lines) for RiL =0,
i.e. when there is no stratification. When RiL =0, KM and KS have different
values, while for the formulation by Munk and Anderson [1948] KM and KS are
the same in that case. Also values for KM and KS are substantially lower for the
formulations of MacCready [2007] (Figure 5.1) than for the formulation by Munk
and Anderson [1948] (see Figure 3.9 and 3.10).
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Figure 5.1: Plots of the vertical eddy viscosity (KM , a measure of internal friction)
and the vertical diffusion coefficient (KS , a measure of vertical turbulent mixing of salt)
versus distance x for the formulations of MacCready [2007] and RiL =0. Dashed lines
show KM and solid lines show KS .

In Section 3.1, Figure 3.1 gives the flow diagram for the reference case (spring
tide and dry season) when using the Munk and Anderson formulation. This flow
diagram reveals a clear minimum value for the combined criterion, for a certain
value of QSP and TSP . Examples of flow diagrams when using the formulation by
MacCready [2007] (also for spring tide, dry season and present-day situation) are
shown in Figure 5.2. The two panels are each for a different value of A0. The
white dot shows the minimum value for the criterion critcomb =

√
Crit21 + Crit22

(that should be minimized in order to obey the conditions at the branching point)
and the corresponding values for QSP and TSP are selected. A clear, consistent
minimum (that is approached when resolution for QSP and TSP is increased) is
not found in the flow diagrams and therefore values found for QSP and TSP are
unreliable (they strongly depend on the resolution of QSP and TSP ). Moreover,
when nevertheless, still values for QSP and TSP are selected, very high values
for the river transport through the South Passage are found for A0 =0.065. For
A0 =0.0325, very low values for the river transport through the South Passage
are found. The total river discharge is 3714 m3/s here and the flow diagrams
suggest that either, almost all river water flows through the South Passage (when
A0 =0.065, Figure 5.2a) or almost all river water flows through the North Passage
(when A0 =0.0325, Figure 5.2b). Physically this is not a realistic situation.
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Figure 5.2: Flow diagrams when the formulations of MacCready [2007] are used for
Ks and KM . The river transport through the South Passage is called QSP and TSP
gives the salt transport from the North Passage into the South Passage (a negative
value means transport from the South Passage into the North Passage). Two
different values for A0 are considered, viz. A0 =0.065 ([a]) and A0 =0.0325 ([b]).
Both flow diagrams are for the reference case (spring tide, dry season, present-day
situation) and the river discharge is QSC =3714 m3 s−1 for these conditions. The
white dot shows the minimum value for the criterion critcomb =

√
Crit21 + Crit22.

These minima are unreliable as they strongly depend on the resolution of QSP and
TSP .

One possible explanation for the absence of consisitent minima (that are ap-
proached when resolution is made better) for critcomb in Figure 5.2 is that the
iterations for determining RiL (see Section 2.4 and Figure 2.5) are not working
properly. In order to check whether this was the case, the runs were conducted
for both the formulations of Munk and Anderson [1948] and MacCready [2007],
but this time with fixed RiL =0. Exactly the same problem showed up for these
runs, indicating that there is another reason for these problems. Other possible
explanations remain that have not been analysed yet. For instance, it is possible
that KM and KS should be the same when RiL =0, as is the case for the formu-
lations of Munk and Anderson [1948]. A way to test this is by starting from the
formulations of Munk and Anderson [1948] and then systematically lowering KS

with respect to KM .
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5.2 Comparison with literature

5.2.1 River and salt transport

As was shown in Section 4.1.1, the nWDR for the South Passage is 53% (spring
tide) or 47% (neap tide) when river discharge is high and 58% (spring tide) or 66%
(neap tide) when river discharge is low. These numbers are different from those
found by Alebregtse and de Swart [2016], as they have found that, for both the
dry season and wet season, approximately 50% of the river transport through the
South Channel is transported to the South Passage and 50% to the North Passage.
However the study by Alebregtse and de Swart [2016] is in several respects differ-
ent from this study. For example, Alebregtse and de Swart [2016] do not consider
salinity, but they do consider tides and non-linear effects.

For all cases studied in this thesis, a salt transport from the South Passage into
the North Passage is found. This transport (almost) vanishes for neap tide. This
is in agreement with the results by Zhu et al. [2018], as they have found overflow
of water from the South Passage to the North Passage during spring tide and
that this vanishes during neap tide. The salt transport from the South Passage to
the North Passage originates from advection of salt by the overflow between these
channels.

5.2.2 Salinity distribution and stratification

Figure 5.3 shows a salinity distribution at flood slack in the Yangtze Estuary found
by Zhu et al. [2018]. In the latter study, a complex numerical model was used for
the entire Yangtze Estuary. Model results turned out to agree fairly well with
observations. The left panels are for spring tide and all the right panels are for
neap tide. Panels a and b (the top panels) are for the surface layer and panels c
and d (the bottom panels) are for the bottom layer. The river discharge in Zhu
et al. [2018] (8000 m3 s−1) is that entering the whole estuary, whereas the river
discharge in this study is the river water transport entering the South Channel, so
these river discharges can not be compared directly. According to Alebregtse and
de Swart [2016], the river transport through the South Channel is approximately
50% of the total river discharge for the dry season. Consequently, the river trans-
port through the South Channel for Figure 5.3 is estimated to be 4000 m3 s−1 and
this is slightly higher, but comparable to the river discharges of 3714 m3 s−1 used
in this thesis for low river discharge. Therefore results for low river discharge in
this study are compared to the results in Figure 5.3.

86



Figure 5.3: Salinity distributions at flood slack in the Yangtze Estuary found by Zhu
et al. [2018] (Figure 10 in their paper). The left panels are for spring tide, the right
panels for neap tide, panel a and b are for the surface layer and c and d are for the
bottom layer. The river discharge for these results is 8000 m3 s−1 at the upstream
boundary. The river water transport in the South Channel is estimated to be 50% of
that value, based on results of Alebregtse and de Swart [2016].

First, in this study, more salt intrusion was found for the South Passage than for
the North Passage. This is also visible in Figure 5.3. Secondly, in the results in
this thesis, the s =5 psu-line never reaches the branching point. However, from
Figure 5.3, it is observed that the 5 psu-line lies in the South Channel (or close
to the branching point in the surface layer during neap tide). This indicates that
salt intrusion is underestimated by the model in this study.

Also, little stratification was observed in the results of this thesis. In contrast, in
Figure 5.3 stratification is visible, especially for neap tide (the salinity distribution
in the surface layer is different from the one in the bottom layer). Additionally,
in this study, for the present-day situation, the highest Richardson number that is
found for the South Passage is 0.003 (for neap tide and high river discharge) and
that in the North Passage is just below 3 (for neap tide and high river discharge,
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see Figure 4.9). For instance, Chen [2018] found a bulk Richardson number of 0.3
for spring tide and 2.0 for neap tide. From these comparisons, it seems that strat-
ification is underestimated by the model of this study. However, both the results
of this study and the Richardson numbers from Chen [2018] show that Richardson
numbers are higher for neap tide than for spring tide, so the model seems to show
that relation correctly.

From the experiments for this thesis, more salt intrusion is found when river dis-
charge is lower. Also, it is found that salt intrusion generally increases when tidal
current increases, except for the situation with high river discharge (in the North
Passage). For this situation, in the North Passage, more salt intrusion is found
for neap tide than for spring tide. Likewise, Zhu et al. [2018] have found that salt
intrusion is stronger when there is a lower river discharge. They also have found
increasing salt intrusion for increasing tidal currents, but for all river discharges.

5.2.3 Sensitivity of the results to DNC

In this study it is found that geometrical changes that were made during the re-
alisation of the DNC lead to less salt intrusion. Also an increase in river flow is
found in the South Passage and (most of) the North Passage. These changes are
mainly the result of the straightening of the North Passage and there is little effect
of the deepening of the North Passage. However, it is found by Zhu [2006] that the
salinity in the South Passage increased due to the Deep Waterway Project (DWP)
and the salinity in the North Passage decreased near the ocean and increased near
the branching point. Furthermore, they have found a decrease in river flow in the
South Passage and an increase in river flow in the North Passage due to the DWP.

A possible explanation for these differences is that in this project the depth of
the North Passage is 1 m larger after the DNC, than before the DNC while Zhu
[2006] used a larger increase in depth (2-3 m). As it is found in this study that the
increase in depth has lead to more river water transport through the North Passage
and more salt intrusion in the North Passage and the South Passage, it is plausible
that the difference in depth increase explains (at least part of) the different results.
Another possible explanation is that in this study only the geometrical changes
due to the DNC are considered and tidal currents are kept the same. However
tidal characteristics after the DNC are also different from those before the DNC.
Also, some engineering structures are part of the Deep Waterway Project, such as
groins and jetties and these might also influence for example local mixing. Lastly,
it is possible that due to the underestimated stratification in the model of this
thesis, the role of density-driven flow is underestimated. If this is the case then
the effect of the deepening of the North Passage might be larger than suggested
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by the results in this thesis (due to the depth dependence of the density-driven
flow) and consequently, the increase in salt intrusion due to this deepening of the
North Passage might be underestimated as well.

5.3 Increasing salt intrusion and stratification

As mentioned in Section 5.2.2, it seems that salinity and stratification are under-
estimated in the model. In order to get more insight into what can cause these
underestimations, some results of additional exploratory experiments are discussed
in this section.

The starting point of these experiments is the reference case (spring tide, low river
discharge, present-day situation) as described in Section 2.6, but the following pa-
rameters are different: socn =28 psu for all channels (from Zhu et al. [2018]), Cv is
2 times larger (0.002 instead of 0.001, Cv is a factor in the equations for KM and
KS, see Equation 2.30a and 2.30b and the next paragraph, value Cv from Huijts
et al. [2009]) and the factor in Equation (2.30c) (the equation for KHS) is 1.5 times
smaller (0.035 in stead of 0.0525, from Guha and Lawrence [2013]) than for the
reference case. Then, five changes are considered to see if this yields results that
are closer to those of Zhu et al. [2018].

First, it is possible that the vertical eddy viscosity (KM , measure of internal fric-
tion) and diffusion coefficient (KS, strength of turbulent mixing of salinity) are
overestimated. This would result in an overestimation of mixing and an underesti-
mation of stratification. For the reference case experiment values for KM and KS

lie between 0.01 and 0.025 m2s−1 (see Figure 3.9 and 3.10). Whilst in MacCready
[2004], values KM and KS between 0.0004 and 0.01 m2s−1 are used. Therefore, a
different value of Cv has been considered.

Secondly, it is possible that the Richardson number (RiL) should have a larger
influence on KM and KS or formulated differently, that the factors in front of RiL
in the equations for KM and KS (Equation 2.30a and 2.30b) should be larger.
Therefore, these factors were multiplied with a factor of 5.

A third possibility is that KHS (measure of horizontal diffusion if salt) is underes-
timated. This would mean that salt import into the estuary by horizontal diffusion
is underestimated and this would lead to an underestimation of salt intrusion. For
the reference case experiment, KHS has values between 190 and 2560 m2s−1 for the
South Passage and KHS slightly varies around 240 and 390 m2s−1 for the South
Passage and South Channel respectively (see Figure 3.11). For this reason, the
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third possible solution is to multiply the constant in KHS with 1.5, such that KHS

increases.

A forth point of improvement in the model is that tidal straining is not taken
into account. Tidal straining originates from the faster movement of water near
the surface than near the bottom, due to vertical shearing of the tidal current.
During ebb, this results in an increasing stratification, as fresh water near the
surface flows over saltier water near the bottom (due to its higher current). This
results in stronger stratification. During flood the faster movement near the sur-
face will decrease stratification (even if mixing is absent) and this even leads to
disappearance of the stratification generated during ebb. In this way, there is a
periodic variation in stratification (see Dyer [1997] and Simpson et al. [1990] for
more information). The net flow due to tidal straining is often hard to distinguish
from density-driven flow as the parts of the flows due to tidal straining and hori-
zontal density gradients reinforce each other and Burchard and Hetland [2010] has
found that approximately two-thirds of the estuarine circulation originates from
tidal straining and one-third from horizontal density-gradients. A way to take
into account tidal straining is to increase the strength of the density-driven flow.
Therefore, uE is multiplied with a factor 1.5 to see if this makes a difference.

Lastly, considering the left panels of Figure 5.3, there is no clear single, suitable
value for socn (the salinity of the adjacent ocean). Considering the choice of the
boundaries of the estuary in the model (see Figure 2.1) and comparing these with
Figure 5.3, it seems that the salinity at the seaward boundaries for the South Pas-
sage is different from the one for the North Passage. Therefore implications of the
choices socn,SP = 26 psu, socn,NP = 28 psu were considered.

In order to see how the different possible solutions influence salt intrusion, Fig-
ure 5.4 shows the distance (L5) between the branching point and the s =5 psu-line
in the South Passage ([a]) and the North Passage ([b]) for the reference case (Nor-
mal) and the five options that were considered. When there is more salt intrusion,
L5 is smaller. The red dashed line indicates the value for L5 for the reference
case. A little increase in salt intrusion is visible when Cv is reduced (here by a
factor of 2), but for that possible solution, there is less salt intrusion in the South
Passage. From both figures it is clear that only larger values of KHS lead to more
salt intrusion in both channels. Hence, it the underestimation of salt intrusion in
the model is possibly caused by an underestimation of KHS (horizontal diffusion).
As tidal pumping is not taken into account in the model, this might also lead to
an underestimation of salt import into the estuary. Possibly, increasing horizontal
diffusion can compensate for (a part of) this underestimation.
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Figure 5.4: Distance (L5) between the branching point and the s =5 psu-line in the
South Passage ([a]) and the North Passage ([b]) for the reference case described
in the text (Normal) and the five options that were considered (see text for expla-
nation). A smaller value for L5 means more salt intrusion. The red dashed line
indicates L5 for the normal (starting point) situation.
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The effect of the different possible solutions on stratification is studied using Fig-
ure 5.5, showing the stratification parameter (χ) against x in the South Passage
([a]) and the North Passage ([b]) for the reference case and the five options that
were considered. From the figure it appears that stratification is increase most in
both channels by making Cv smaller (this decreases KM and KS) and it is possible
that an overestimation of KM and KS (partly) explains the underestimation of
stratification.

[a] [b]

Figure 5.5: Stratification parameter (χ) in the South Passage ([a]) and the North
Passage ([b]) for the reference case described in the text (Normal) and the five
options that were considered (see text for explanation). Equation (2.33) gives the
definition of χ and a larger value for χ means more stratification.

5.4 Other points of improvement

There are more possibilities to improve the model. For example, different param-
eters in the model might be determined with higher precision. For example, for
this study, channel depths have been estimated from a map. However, it might
increase accuracy if measurements of channel depth are available. Another point
of consideration is that it is assumed in the model that the sea surface height
at the seawards boundary of the estuary is the same for the South Passage and
the North Passage. However, it is likely that there is a difference between those
sea surface heights. Furthermore, in the model, tidal currents are constant for a
certain channel, but it might be interesting to see what changes when the tidal
currents are dependent on x.

Finally, the tidal current and the net salt transport that they provide (through tidal
pumping, see Section 1.1) are not explicitly accounted for in the model. Models
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that explicitly take these processes into account are for instance McCarthy [1993]
and Wei et al. [2017], but these models are only suitable for well mixed estuaries
(see Section 1.3). A major opportunity for improvement is to combine the model
in this study with such models in order to explicitly account for tidal currents and
the corresponding salt transport.
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Chapter 6

Conclusions

In this thesis, salt dynamics in estuarine networks have been studied. This was
done by generalising an idealised subtidal model (formulated for a single channel
estuary) to a network configuration. This model was applied to a prototype net-
work configuration, viz. the South Channel, the South Passage and the North
Passage of the Yangtze Estuary.

Regarding the first research question (How does the idealised model perform in
case of an estuarine network that consists of multiple channels? ) it is concluded
that the model generally shows behaviour that is observed in the Yangtze Estuary.
In particular, it shows that there is more salt intrusion in the South Passage than
in the North Passage. The reason is that the South Passage is funnel-shaped and
the North Passage is straight. Due to the funnel-shape, river flow is weaker as the
river transport is distributed over a larger area near the ocean. This results in
less export of salt. Also, a net salt transport from the South Passage to the North
Passage is found (in case of spring tide). Furthermore, it is found that there is
slightly more river transport through the South Passage than through the North
Passage (except for high river discharge during neap tide). However, concerning
the application of the model to the Yangtze Estuary, there are also still challenges
to be met, as salt intrusion and vertical stratification are underestimated by the
model.

Concerning the second research question (How do results depend on key parameters
in such a system, such as river discharge, tidal forcing, geometrical characteristics
of the network? ) it was found that the river transport in all channels increases,
when river discharge increases. This increase is larger for the North Passage than
for the South Passage, due to a larger increase in stratification and consequently, a
larger decrease in friction in the North Passage. Moreover, salt intrusion increases,
in the South Passage and North Passage, when river discharge decreases. The rea-
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son is, that less salt is transported away by river flow. For neap tide the increase
is the largest in the South Passage and for spring tide it is the largest in the North
Passage. Moreover, salt transport from the South Passage to the North Passage
increases for decreasing river flow, because of the increase in salt intrusion in the
South Passage. Furthermore, stratification increases for increasing river discharge.

Considering the case with low river discharge, the net water division ration (nWDR,
river transport through a channel as percentage of the total river transport) for
the North Passage is larger for spring tide than for neap tide. In contrast, for high
river discharge, the nWDR for the North Passage is larger for neap tide than for
spring tide. Furthermore, salt intrusion generally increases when tidal currents
increase, due to an increase in horizontal diffusion. An exception to this relation
is the situation with high river discharge (i.e. a river discharge of 6440 m3 s−1

entering the South Channel). For this situation, in the North Passage, more salt
intrusion is found for neap tide than for spring tide, due to a stronger density-
driven flow during neap tide. Net salt transport from the South Passage to the
North Passage practically disappears during neap tide. This is explained by the
weaker salt intrusion in the South Passage during neap tide. Moreover, stratifica-
tion is stronger for neap tide than for spring tide, due to less mixing during neap
tide. Results are generally in agreement with those of Zhu et al. [2018], which
where obtained using a complex numerical model. An exception is that the latter
study increasing salt intrusion for increasing tidal current was found for all river
discharges.

Finally the effect of the Deepwater Navigation Channel (DNC) on salt dynamics
has been investigated. Only geometric changes due to the DNC are taken into
account and low river discharge during spring tide is considered. Before the DNC,
the North Passage had a funnel-shape and was 1 m shallower than it is today.
During the realisation of the DNC the North Passage was made straighter and
deeper. A smaller nWDR for the North Passage was found for the present-day
situation than before the DNC. The reason is that there is less space for river water
in the North Passage nowadays. Moreover, the straightening of the North Passage
also caused a decrease in salt intrusion.This decrease in salt intrusion is larger for
the North passage than for the South Passage. In the North Passage, this decrease
in salt intrusion is explained by an increase in river flow, as the river transport
has to flow through a smaller surface area near the ocean. In the South Passage
an increase in river transport lead to the decrease in salt intrusion. The decrease
in salt intrusion in the South Passage, due to the DNC, results in a decrease in
salt transport from the South Passage to the North Passage. Finally, stratification
in the North Passage has largely increased near the ocean due to the DNC. This
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is explained by a stronger density-driven flow. More landwards the stratification
in the North Passage decreased, due to a decrease in density-driven flow. For the
South Passage there is little change in stratification, due to the DNC.
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Chapter 7

Appendix

7.1 Derivation of model for a single channel con-

figuration

7.1.1 Width averaging of starting equations

In these and the following sections a single channel is considered. In this section
the basic equations will be averaged over width. In the next sections, from these
width-averaged equations, the model that is used in this project is derived for a
single channel. In Section 2.1 the model is generalised to a network model. A
sketch of the situation in case of a single channel can be found in Figure 7.1. The
bottom of the channel is located at z = −H and the surface at z = η.

The starting equations are a set of equations including, the momentum balance
in the x-direction1, the salinity balance, mass balance, hydrostatic balance2 and
the equation of state. These basic Equations and their derivations can be found
in multiple textbooks, for example Gill [1982] or Cushman-Roisin and Beckers
[2011] and the equation of state can be found in for instance MacCready [2004].
For the x-momentum, mass and salt balance, the Boussinesq approximation (see
for example Cushman-Roisin and Beckers [2011]) is applied. In this project these

1This equation will be written in conservative form (using the mass balance equation).
2This approximation can be used, because vertical length scales are a lot smaller than length

scales in the x-direction, see for example Cushman-Roisin and Beckers [2011].
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Figure 7.1: Sketch of the single channel.

equations are tidally-averaged. This set of equations is given by

∂u3

∂t
+
∂u3u3

∂x
+
∂u3v3

∂y
+
∂u3w3

∂z
− fv3 = − 1

ρ0

∂p3

∂x
+

∂

∂x
(KHM3

∂u3

∂x
)

+
∂

∂y
(KHM3

∂u3

∂y
) +

∂

∂z
(KM3

∂u3

∂z
),

(7.1a)

∂s3

∂t
+

∂

∂x
(u3s3 −KHS3

∂s3

∂x
) +

∂

∂y
(v3s3 −KHS3

∂s3

∂y
)

+
∂

∂z
(w3s3 −KS3

∂s3

∂z
) = 0,

(7.1b)

∂u3

∂x
+
∂v3

∂y
+
∂w3

∂z
= 0, (7.1c)

∂p3

∂z
= −ρ3g, (7.1d)

ρ3 = ρ0(1 + βs3). (7.1e)
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In these equations u3, v3 and w3 are the x-, y- and z-components of the 3-
dimensional flow velocity, f is the Coriolis parameter, p3 is the pressure, ρ0 the
reference density, KHM3 and KM3 the horizontal and vertical eddy viscosity’s, ρ3

the density, s3 the salinity, KHS3 and KS3 the horizontal and vertical diffusion
coefficients and β a constant describing the dependence of density on salinity. The
subscript 3 indicates that the variable corresponds to the 3-dimensional formu-
lation (in contrast to the width averaged formulation). Now, the equations are
integrated over width, yielding

∫ B/2

−B/2

∂u3

∂t
dy +

∫ B/2
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(7.2a)

∫ B/2
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∂s3

∂t
dy +

∫ B/2

−B/2

∂

∂x
(u3s3 −KHS3

∂s3

∂x
)dy

+
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∫ B/2
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∂v3

∂y
dy +

∫ B/2

−B/2
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dy = 0, (7.2c)

∫ B/2

−B/2

∂p3

∂z
dy = −

∫ B/2

−B/2
ρ3gdy, (7.2d)

∫ B/2

−B/2
ρ3dy = ρ0

∫ B/2

−B/2
(1 + βs3)dy. (7.2e)

It is assumed that the wals are vertical and that B = B(x). The Leibniz integral

rule (see Weisstein), can be written as
∫ h(x)

g(x)
∂
∂x
f(x, t)dt = ∂

∂x

[ ∫ h(x)

g(x)
f(x, y)dy

]
−

f(x, h(x))dh(x)
dx

+ f(x, g(x))dg(x)
dx

. Now, this rule is applied to the set of equations

and it is assumed that ∂p3
∂y

= 0 3 and consequently p3 = p is independent of y4.

3Winant [2007] showed that this assumption can be made as long B
H << 1. In the case of this

study the maximum value for B
H ≈ 0.55, but this only holds for a very small part of the estuary.

Most of the time it is a lot smaller, less than 0.3.
4In this work, the disappearance of the subscript 3 indicates that the variable is width aver-

aged.
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The result is
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B
∂p

∂z
= −

∫ B/2

−B/2
ρ3gdy, (7.3d)

∫ B/2

−B/2
ρ3dy = ρ0

∫ B/2

−B/2
(1 + βs3)dy. (7.3e)
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Now, the following boundary conditions are used:

0 = v3

∣∣
y=±B/2 ∓

1

2
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∂x
u3

∣∣
y=±B/2, (7.4a)
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Physically, the first boundary condition means that the velocity normal to the side
walls is zero (this boundary condition can be found in for instance Gill [1982]). The
second boundary condition is the assumption that the friction component tangent
to the wall is zero (free-slip). The third boundary condition states that the normal
component of the salt flux is zero at the walls (see Gill [1982]). Applying these
boundary conditions in Equation 7.3a-7.3e, yields
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B
∂p
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∫ B/2

−B/2
ρ3gdy, (7.5d)
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ρ3dy = ρ0
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−B/2
(1 + βs3)dy. (7.5e)

Now, the following expansions are introduced: s3 = s+ ŝ, ρ3 = ρ+ ρ̂, η3 = η + η̂,
H3 = H+Ĥ, u3 = u+ û, v3 = v+ v̂ and w3 = w+ ŵ. Where s, ρ, η, H, u, v and w
are width averaged quantities and ŝ, ρ̂, η̂, Ĥ, û, v̂ and ŵ the deviations from those
width averaged quantities (the variables with the hat are zero when averaged over
width). The approximation is made that the integrals over width of derivatives
to x of the variables with a hat are zero as well (as B = B(x) this is already
true for derivatives to z and t of quantities with a hat). It can be concluded from
Winant [2007] that variations of u with y are small in this derivation, because H is
assumed to be (almost) independent of y.5 Similarly, because H varies very little
with y and there is no salt flux normal to the side walls of the channel (or other
mechanism that can be responsible for the variation of s with y), it is assumed
that ŝ is very small as well. For these reasons it is assumed that ∂û

∂x
and ∂ŝ

∂x
are

very small and their with average is equal to zero. Substitution of the expansions
in the system of three equations results in:
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∂Bu
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∂p

∂z
= −ρg, (7.6d)

5From Winant [2007] it can be concluded that u varies with y via H, as H is assumed to be
(almost) independent of y, it can be assumed that û is small.

102



ρ = ρ0(1 + βs). (7.6e)

These equations can be simplified by assuming that KHM3, KM3, KHS3, KS3, f
are independent of y. Winant [2007] showed that the effect of rotation on the flow
in the x-direction is limited6 and for this reason fv is neglected. Furthermore, the
following parametrisations are used:

−
∫ B/2

−B/2
ûûdy = BKHMR

∂u

∂x
, (7.7a)

−
∫ B/2
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, (7.7b)
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, (7.7c)

∫ B/2

−B/2
ŵŝdy = −KSR

∂s

∂z
. (7.7d)

Here KHMR, KMR are also eddy viscosity’s and KHSR and KSR are also diffusion
coefficients. The introduction of these parametrisations is actually analogous to
what is done for Reynolds stresses, see for example Cushman-Roisin and Beckers
[2011]. Effective eddy viscosity’s and effective diffusion coefficients are defined as
follows: KHM = KHMR + KHM3, KM = KMR + KM3, KHS = KHSR + KHS3

and KS = KSR + KS3. Their specific parametrizations are given in Section 2.3.
Applying these simplifications to Equation 7.6a - 7.6e gives the following set of
width averaged basic equations:
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∂s

∂x
) +

∂

∂z
(Bws−BKS

∂s

∂z
) = 0, (7.8b)

6Winant [2007] considered a long and narrow geometry, with the width smaller than the
external Rossby radius of deformation. Using realistic values for the situation of this study, the

external Rossby radius is estimated to be R =
√
gH
f ≈ 105 m (see Cushman-Roisin and Beckers

[2011] for more information). A maximum value for B in this study is B ≈ 3 × 104 m < R, so
the effect of rotation on u can be assumed to be limited.
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∂Bu

∂x
+
∂Bw

∂z
= 0, (7.8c)

∂p

∂z
= −ρg, (7.8d)

ρ = ρ0(1 + βs). (7.8e)

7.1.2 Basic set of equations

Now, the model for a single channel configuration7 will be derived with Equation
(7.8b)-(7.8e) as starting points. Note that s, u, w and p are all subtidal and all
variables are width-averaged. Later, the formulation will be adapted to model a
network of channels. In order to close the system, boundary conditions are needed.
These are given by

at z = −H: KHS
∂s

∂x

∂H

∂x
+KS

∂s

∂z
= 0, u = 0, w = 0, (7.9a)

at z = η: −KHS
∂s

∂x

∂η

∂x
+KS

∂s
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= 0, KM

∂u

∂z
−KHM

∂u

∂x

∂η

∂x
= 0,

w = u
∂η

∂x
, p = patm, (7.9b)

at x = Lsea, z = −H: s = socn, (7.9c)

at x = Lriver: B

∫ η

−H
(us−KHS

∂s

∂x
)dz = 0, B

∫ η

−H
udz = Q, (7.9d)

at x = Lsea, Lriver: u = lim
KHM→0

u. (7.9e)

Here, η is the sea surface elevation, patm is the sea level pressure, socn is the
salinity of the adjacent ocean, which will be determined from observations, Lsea
is the x coordinate where the estuary meets the ocean (see Figure 7.1), Lriver
is the x coordinate where the estuary meets the river (see Figure 7.1), H is the
channel depth and Q is river discharge. Physically the boundary conditions at
the bottom mean (in order they appear) no salt diffusion normal to the bottom
(see Gill [1982]), no flow at the bottom (combination of no slip condition and no
flow normal trough the bottom, these can be found in Gill [1982] and Cushman-
Roisin and Beckers [2011]). At the surface the physical meaning of the boundary

7The single channel model in this thesis is comparable to the model of MacCready [2004]
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conditions is no salt diffusion normal to the surface (Gill [1982]), the stress along
the surface is zero (free-slip) (Cushman-Roisin and Beckers [2011]), no flow normal
to the free surface (Cushman-Roisin and Beckers [2011]) and the pressure at the
surface equals the pressure of the atmosphere (see Cushman-Roisin and Beckers
[2011]). It is imposed that the salinity at the bottom and at the boundary between
ocean and estuary must equal the salinity of the ocean (see Equation (7.9c), this
was also done in MacCready [2004]). At x = Lriver (the head of the estuary), there
is no salt transport and the total transport of the estuary equals the river discharge
(see Hansen and Rattray [1965]). The last boundary condition makes sure that
there are no diffusive boundary layers. It can be derived from continuity (Equation
(7.8c)) that the second part of Equation (7.9d) holds for every x. Integration over
depth of the continuity equation and applying Leibniz integral rule (see Section
7.1.1 for this rule) gives

∂

∂x

[
B

∫ η

−H
udz
]
− ∂η

∂x
Bu
∣∣
z=η
− ∂H

∂x
Bu
∣∣
z=−H +Bw

∣∣z=η
z=−H = 0. (7.10)

Thereafter, boundary conditions Equation (7.9a) and (7.9b) are applied and the
result is

∂

∂x

[
B

∫ η

−H
udz
]

=
∂η

∂x
Bu
∣∣
z=η
− ∂η

∂x
Bu
∣∣
z=η

= 0. (7.11)

This equation shows that
∫ η
−H Budz is independent of x. Combining this conclu-

sion with Equation (7.9d) yields

B

∫ η

−H
udz = Q ∀x (7.12)

Similarly, from the salt balance (Equation (7.8b)), it can be derived that the depth
integrated salt transport is constant. First, the salt balance is integrated over depth
and Leibniz integral rule (see Section 7.1.1 for the Leibniz rule) is applied:

∂

∂x

[
B

∫ η

−H
(us−KHS

∂s

∂x
)dz
]
−B

[
us−KHS

∂s

∂x

]∣∣
z=η

∂η

∂x

−B
[
us−KHS

∂s

∂x

]∣∣
z=−H

∂H

∂x
+B

[
ws−KS

∂s

∂z

]∣∣z=η
z=−H = 0.

(7.13)

Multiple applications of boundary conditions Equation (7.9a) and (7.9b) results in

∂

∂x

[
B

∫ η

−H
(us−KHS

∂s

∂x
)dz
]

= 0. (7.14)
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Integration of this equation with respect to x yields

B

∫ η

−H
(us−KHS

∂s

∂x
)dz = T. (7.15)

Here, T is a constant. Physically this equation means that the horizontal salt trans-
port is equal to a constant. In a single channel model, this constant will equal
zero, as there is no horizontal salt transport at the boundary between the river
and the estuary (this is also expressed in boundary condition Equation (7.9d)).
However, for a network T might not equal zero for the seaward branches after
branching point of the estuary channels. For, this reason it is chosen to maintain
T into Equation (7.15).

Now, the set of five equations is simplified further and reduced to a set of three
equations. To do this, Equation (7.8d) and Equation (7.8e) are combined to:
∂p
∂z

= −ρ0(1+βs)g. Integration of this equation over depth, application of Equation
(7.9b), and taking the derivative to x, gives

∂p

∂x
≈ ρ0g

∂η

∂x
+ ρ0βg

∫ η

z

∂s

∂x
dz′. (7.16)

This equation, together with Equation (7.8e), is substituted into Equation (7.8a).
The resulting system of equations is

∂Buu

∂x
+
∂Buw

∂z
= −Bg∂η

∂x
−Bβg

∫ η

z

∂s

∂x
dz′ +

∂

∂x
(BKHM

∂u

∂x
)

+
∂

∂z
(BKM

∂u

∂z
),

(7.17a)

∂

∂x

[
Bus−BKHS

∂s

∂x

]
+

∂

∂z

[
Bws−BKs

∂s

∂z

]
= 0, (7.17b)

∂Bu

∂x
+
∂Bw

∂z
= 0. (7.17c)

7.1.3 Scaling

In order to estimate the relative magnitudes of the different terms in Equation
(7.17a) - (7.17c), the following dimensionless variables (indicated with ˜) are in-
troduced: u = Uũ, w = Ww̃, z = H0z̃, x = Lx̃, p = P p̃, s = socns̃, η = Nη̃,
B = B0B̃, H = H0H̃, KHM = [KHM ] ˜KHM , KM = KK̃M , KHS = [KHS] ˜KHS
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and KS = KK̃S. Substitution of these expressions into Equation (7.17a) - (7.17c),
yields the following dimensionless equations:

U2

L
∂B̃ũũ

∂x̃
+
UW

H0

∂B̃ũw̃

∂z̃
= −gN

L
B̃
∂η̃

∂x̃
− βsocngH0

L
B̃

∫ N
H0

η̃

z̃

∂s̃

∂x̃
dz̃

+
[KHM ]U

L2

∂

∂x̃
(B̃ ˜KHM

∂ũ

∂x̃
) +

KU

H2
0

∂

∂z̃
(B̃K̃M

∂ũ

∂z̃
),

(7.18a)

∂

∂x̃

[Usocn
L

B̃ũs̃− [KHS]socn
L2

B̃ ˜KHS
∂s̃

∂x̃

]
+
∂

∂z̃

[Wsocn
H0

B̃w̃s̃− Ksocn
H2

0

B̃K̃S
∂s̃

∂z̃

]
= 0,

(7.18b)

U

L
∂B̃ũ

∂x̃
+
W

H0

∂B̃w̃

∂z̃
= 0. (7.18c)

Also, the boundary conditions (Equation (7.9a)-(7.9e)) are made dimensionless,
using the same dimensionless variables as before. The result is

at z̃ = −H̃:
[KHS]H0

L2
˜KHS

∂s̃

∂x̃

∂H̃

∂x̃
+
K

H0

K̃S
∂s̃

∂z̃
= 0, ũ = 0, (7.19a)

at z̃ =
N

H0

η̃: − [KHS]N

L2
˜KHS

∂s̃

∂x̃

∂η̃

∂x̃
+
K

H0

K̃S
∂s̃

∂z̃
= 0,

KU

H
K̃M

∂ũ

∂z̃
− [KHM ]UN

L2
˜KHM

∂ũ

∂x̃

∂η̃

∂x̃
= 0,

Ww̃ =
UN

L
ũ
∂η̃

∂x̃
, (7.19b)

at x̃ =
Lsea
L

, z̃ = −H̃: s̃ = 1, (7.19c)

at x̃ =
Lriver
L

:

∫ N
H0

η̃

−H̃
(Uũs̃− [KHS]

L
˜KHS

∂s̃

∂x̃
)dz̃ = 0, (7.19d)

at x̃ =
Lsea
L

,
Lriver
L

: ũ = lim
˜KHM→0

ũ. (7.19e)

Now, several assumptions are made about the scales of W , N , L and U . Firstly,
a scale for W is easily found by assuming that the two terms in Equation (7.18c)
are of equal order of magnitude. Secondly, it is taken into consideration that the
slope in surface elevation is regulated by the average outflow (see Geyer [2010]).
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The assumption is made that, in this outflow, the river flow is smaller or equal
to the flow that is driven by density gradients. Consequently, the surface slope is
mainly determined by the density gradients (see Geyer [2010]). From balancing
the term with the surface slope with the the density gradient (the two pressure
gradient terms) in the momentum balance (Equation (7.18a)) and assuming that
N << H0, a scale for N is found. Thirdly, in literature (see MacCready [2004]),
it is suggested that the pressure gradient term and the vertical friction contribute
most to the horizontal momentum balance. Mathematically, this means that the
second term on the right hand side has the same order of magnitude as the last
term on the right hand side of Equation (7.18a)8. As a consequence, a scale for L
can be found. Likewise, it is known from literature that the advection terms are
much smaller than the pressure gradient term, therefore the first term on the left
hand side in Equation (7.18a) is a lot smaller than the first term on the right hand
side. These assumptions lead to the estimates

W =
UH0

L
, (7.20a)

N = βsocnH0, (7.20b)

L =
βsocngH

3
0

KU
, (7.20c)

U2 << gN. (7.20d)

Using Equations (7.20d) and (7.20b), it is found that U2

gH0
<< βsocn (note that

βsocn << 19). Because of this inequality, the order of magnitude of U is estimated
to be

U = βsocn
√
gH0. (7.21)

Next, Equations (7.18a)-(7.18c) are rewritten, using the scales from Equation
(7.20a)-(7.20c) and (7.21). Also, Equation (7.18a) is divided by KU

H2
0

, Equation

(7.18b) by Ksocn
H2

0
and Equation (7.18c) by U

L . As a result, the following scaled

8Note that the first and the second term on the right hand side of Equation (7.18a) have the
same order of magnitude.

9Filling out realistic values β = 7.7 × 10−4 psu−1 and socn = 35 psu, gives ε = βsocn ≈
2.7× 10−2 << 1.
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equations are found:

ε
∂B̃ũũ

∂x̃
+ ε

∂B̃ũw̃

∂z̃
= −B̃ ∂η̃

∂x̃
− B̃

∫ εη̃

z̃

∂s̃

∂x
dz̃

+εH
∂

∂x̃
(B̃ ˜KHM

∂ũ

∂x̃
) +

∂

∂z̃
(B̃K̃M

∂ũ

∂z̃
),

(7.22a)

∂

∂x̃

[
εB̃ũs̃− εHSB̃ ˜KHS

∂s̃

∂x̃

]
+

∂

∂z̃

[
εB̃w̃s̃− B̃K̃s

∂s̃

∂z̃

]
= 0, (7.22b)

∂B̃ũ

∂x̃
+
∂B̃w̃

∂z̃
= 0. (7.22c)

The corresponding scaled boundary conditions are

at z̃ = −H̃: εHS ˜KHS
∂s̃

∂x̃

∂H̃

∂x̃
+ K̃S

∂s̃

∂z̃
= 0, ũ = 0,

w̃ = 0, (7.23a)

at z̃ = εη̃: − εεHS ˜KHS
∂s̃

∂x̃

∂η̃

∂x̃
+ K̃S

∂s̃

∂z̃
= 0,

K̃M
∂ũ

∂z̃
− εεH ˜KHM

∂ũ

∂x̃

∂η̃

∂x̃
= 0,

w̃ = εũ
∂η̃

∂x̃
, (7.23b)

at x̃ =
Lsea
L

, z̃ = −H̃: s̃ = 1, (7.23c)

at x̃ =
Lriver
L

:

∫ εη̃

−H̃
(εũs̃− εHS ˜KHS

∂s̃

∂x̃
)dz̃ = 0, (7.23d)

at x̃ =
Lsea
L

,
Lriver
L

: ũ = lim
˜KHM→0

ũ. (7.23e)

The scaled depth integrated mass balance and salt balance (scaled versions of
Equation (7.12) and (7.15)) read

B̃

∫ εη̃

−H̃
ũdz̃ = εQ ∀x̃, (7.24)

B̃

∫ εη̃

−H̃
(εũs̃− εHS ˜KHS

∂s̃

∂x̃
)dz̃ = Tn. (7.25)
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Equation (7.22a)-(7.22c), (7.24), (7.25) and (7.23a)-(7.23e) contain the following
dimensionless variables:

ε = βsocn , (7.26a)

εH =
[KHM ]H2

0

KL2
, (7.26b)

εQ =
Q

B0H0U
, (7.26c)

εHS =
[KHS]H2

0

KL2
, (7.26d)

Tn =
TH0

B0KsocnL
. (7.26e)

Clearly, by filling out numbers, ε is a small parameter, ε << 1. Likewise, and by as-
suming that [KHM ] ≈ [KHS], it follows that εH = O(ε).10 The order of magnitude
of εHS and εQ can vary within a certain range, this range will be estimated later
using physical reasoning. For now, it is only is estimated from Equation (7.25)
that εHS should be O(ε) or smaller. If εHS = O(1), then, according to Equation
(7.25), the horizontal diffusion is dominant in the depth averaged salt balance.11

The horizontal diffusion provides import of salt from to ocean to the estuary and
the estuary will become fully salty, which is not an interesting situation for this
thesis.12 The order of magnitude of Tn is unknown yet. The dimensional version
of this constant will be calculated in the model.

7.1.4 Leading-order and next-to-leading order equations

Subsequently, the following expansions are introduced:

s̃ = s̃0 + εs̃1 + ε2s̃2 +O(ε3), (7.27a)

ũ = ũ0 + εũ1 + ε2ũ2 +O(ε3), (7.27b)

w̃ = w̃0 + εw̃1 + ε2w̃2 +O(ε3), (7.27c)

η̃ = η̃0 + εη̃1 + ε2η̃2 +O(ε3). (7.27d)

10An example of an estimation is that εH ≈ 10−3.
11Note that εQ ≤ O(1) (at least for cases in this study). This can be concluded from filling

out typical numbers in Equation (7.26c).
12Alternatively, for ˜KHS independent of z and one channel (then Tn = 0), the x-derivative of

the largest component of the depth averaged salinity is zero in this situation (as the horizontal
diffusion term is the only dominant term in Equation (7.25) in that case). As there is a high
salinity at the estuary mouth, where the estuary meets the sea, the whole estuary will get very
salty in that situation.
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After substitution of these expansions into Equations (7.22a)-(7.22c) an O(1) set
of dimensionless equations is found:

0 = −∂η0

∂x
+
∂s0

∂x
z +

∂

∂z
(KM

∂u0

∂z
), (7.28a)

∂

∂z
(Ks

∂s0

∂z
) = 0, (7.28b)

∂Bu0

∂x
+
∂Bw0

∂z
= 0. (7.28c)

Note that the variables are dimensionless and the ˜sign is omitted in the equations,
this will also be done in the subsequent equations (unless stated else, the following
equations are dimensionless).
The O(1) boundary conditions are

at z = −H: KS
∂s0

∂z
= 0, u0 = 0, w0 = 0, (7.29a)

at z = 0: KS
∂s0

∂z
= 0,

∂u0

∂z
= 0, w0 = 0, (7.29b)

at x =
Lsea
L

, z = −H: s0 = 1, (7.29c)

at x =
Lsea
L

and at x =
Lriver
L

: u0 = lim
KHM→0

u0. (7.29d)

The O(1) depth averaged mass balance (O(1) version of Equation (7.24)) is

B

∫ 0

−H
u0dz = δn,0εQ ∀x, (7.30)

In this equation the order of magnitude of εQ is not known yet, but it is assumed
that εQ = O(εn). For this reason, δn,0 is introduced into the equation, δn,0 = 1 if
n = 0 and δn,0 = 0 else. There is no O(1) depth averaged salt balance equation.
Note that, to arrive at Equation (7.28a), a consequence of Equation (7.28b) is used.
From combining Equation (7.28b) with Equation (7.29a), it can be concluded that

s0 = s0(x) is independent of depth13 and consequently
∫ 0

z
s0dz

′ = −s0z. This last
result is used for deriving Equation (7.28a).

13This does not necessarily mean that s0 equals the depth-averaged salinity. In fact it will be
found later that s1 also contains a part of the depth-averaged salinity.
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Similarly, by substitution of the expansions into Equations (7.22a)-(7.22c), anO(ε)
set equations of equations is found:

∂Bu0u0

∂x
+
∂Bu0w0

∂z
= −B∂η1

∂x
−B

∫ 0

z

∂s1

∂x
dz′ −Bs0η0

+
εH
ε

∂

∂x
(BKHM

∂u0

∂x
) +

∂

∂z
(BKM

∂u1

∂z
),

(7.31a)

∂

∂x

[
Bu0s0 −

εHS
ε
BKHS

∂s0

∂x

]
+

∂

∂z

[
Bw0s0 −BKs

∂s1

∂z

]
= 0, (7.31b)

∂Bu1

∂x
+
∂Bw1

∂z
= 0. (7.31c)

The corresponding boundary conditions are

at z = −H:
εHS
ε
KHS

∂s0

∂x

∂H

∂x
+Ks

∂s1

∂z
= 0, u0 = 0,

w0 = 0, (7.32a)

at z = 0: KS
∂s1

∂z
= 0,

∂u1

∂z
= 0,

w1 = ε
∂η0

∂x
, (7.32b)

at x =
Lsea
L

, z = −H: s1 = 0, (7.32c)

at x =
Lriver
L

:

∫ 0

−H
(u0s0 −

εHS
ε
KHS

∂s0

∂x
)dz = 0, (7.32d)

at x =
Lsea
L

and
Lriver
L

: u1 = lim
KHM→0

u1. (7.32e)

The O(ε) depth integrated mass balance and salt transport equation (O(ε) version
of Equation (7.24) and (7.25)) are

B

∫ 0

−H
u1dz +Bu0

∣∣
z=0

η0 = δn,1
εQ
ε

∀x, (7.33)

s0δn,0εQ −
εHS
ε
BHKHS

∂s0

∂x
= Tn. (7.34)
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Here, δn,1 = 1 if n = 1 (εQ = O(ε)) and else, δn,0 = 0. Note that Equation (7.30)
(and a Taylor expansion) is used for deriving Equation (7.33). Equation (7.30)
(the O(1) integrated mass balance) and s0 = s0(x) are used for deriving Equation
(7.34). It is possible that some terms containing εQ or εHS in the previous O(ε)
equations disappear. The reason is that the exact order of magnitudes of εQ and
εHS are unknown yet. Consequently, when the order of magnitudes of εQ and εHS
are known, the terms containing εQ and εHS, might appear to be smaller than the
other terms in the equation they are in.

7.1.5 Order of magnitude of εQ and εHS

Now, to estimate the order of magnitudes of εQ and εHS, the depth integrated
continuity equation (Equation (7.24)) and the salt transport equation (Equation
(7.25)) are expanded. All terms that are O(ε) or larger for the continuity equation
and O(ε2) or larger for the salt transport equation are maintained. This gives

B

∫ 0

−H
u0dz + ε

∫ 0

−H
u1dz + εBu0

∣∣
z=0

η0 = εQ ∀x, (7.35)

B

∫ 0

−H
(εu0s0 + ε2u1s0 + ε2u0s1 − εHSKHS

∂s0

∂x
− εHSεKHS

∂s1

∂x
)dz

+ε2Bs0u0

∣∣
z=0

η0 − εHSεBKHS
∂s0

∂x
η0 = Tn.

(7.36)

Note that for deriving this equation, a Taylor expansion is made of the integral in
Equation (7.25) and it is used that s0 = s0(x). Equation (7.36) can be simplified
further by substitution of Equation (7.35), this gives

εεQs0 + ε2B

∫ 0

−H
u0s1dz − εHSKHSH

∂s0

∂x
− εHSεKHS

∫ 0

−H

∂s1

∂x
dz

−εHSεBKHS
∂s0

∂x
η0 = Tn.

(7.37)

Again, terms containing εQ and εHS might disappear later.

Physically the first term in the salt transport equation (Equation (7.37)) is salt
transport due to river discharge. So, the transport due to river discharge is O(εεQ).
The second term in Equation (7.37) represents the exchange flow, this term is al-
ways O(ε2). The third, the fourth and the fifth terms in Equation (7.37) are due
to diffusion of salt. The fourth and the fifth term (which are of order O(εHSε)) are
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smaller than the third term (which is of orderO(ε)) and are neglected. The result is

εεQs0 + ε2B

∫ 0

−H
u0s1dz − εHSKHSH

∂s0

∂x
= Tn. (7.38)

Now, depending on the order of magnitudes of εQ and εHS there are several possible
balances. This is illustrated in Figure 7.2. In this figure it is shown (in white)
which process(es) dominate (river flow, horizontal diffusion and/or exchange flow).
River flow results in export of salt from the estuary and both horizontal diffusion
and exchange flow lead to import of salt into the estuary. Consequently, if river
flow is dominant, most of the salt will be exported away and the resulting estuary
will consist of fresh water. This range of εQ and εHS where this is the case is
colored red in the figure. If horizontal diffusion and/or exchange flow dominate(s),
no term can balance the import of salt and the estuary will get fully salty (green
area in the figure). If river flow and one or two of the other processes dominate,
there can be balance between import and export of salt (blue area in the figure).
For this study only the last case is of interest and only the ranges for εQ and
εHS that are colored blue are considered. So if only terms of O(ε2) or bigger are
considered, the combinations that are considered are εQ = O(1) while εHS = O(ε)
and εQ = O(ε) with εHS = O(ε2).

7.1.6 Solving the equations

Next, an equation for s1 can be found by substitution of the O(ε) salt transport
equation (Equation (7.34)) and the O(1) mass balance (Equation (7.28c)) in the
O(ε) salt balance (Equation (7.31b)), leading to

B(u0 − δn,0
εQ
BH

)
∂s0

∂x
+ (

Tn
ε
− s0δn,0εQ)

∂

∂x

[ 1

H

]
− ∂

∂z

[
BKs

∂s1

∂z

]
= 0. (7.39)

From results of the network model Tn always appears to be very small, so Tn is esti-
mated to be of O(ε2). Furthermore, ∂

∂x

[
1
H

]
= − 1

H2
∂H
∂x

= −DH, with DH = 1
H
∂H2

∂x
.

The dimensionless parameter DH is found to be small (about 0.025 maximum) and
therefore it is estimated to be O(ε). Neglecting all the terms of O(ε) or smaller,
Equation (7.39) can be further simplified to

Ks
∂2s1

∂z2
= (u0 − δn,0

εQ
BH

)
∂s0

∂x
. (7.40)

Note that B = B(x) is independent of z. Later, this equation can be used to
find an expression for s1 in terms of ∂s0

∂x
. But first, an Equation for u0 is derived,
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Figure 7.2: Diagram illustrating the physical meaning of different order of magnitudes
of εQ and εHS . The dominant processes (river flow, horizontal diffusion and/or exchange
flow) are given in white. For the ranges of εQ and and εHS that are colored red in the
figure, there will be a fresh water estuary, similarly a green color indicates a fully salty
estuary and blue indicates that there is a balance between import of salt and export of
salt. Only the situations corresponding with the blue area’s are considered in this study.

using the O(1) momentum balance (Equation (7.28a)) as starting point. Taking
the z-derivative of Equation (7.28a), gives:

∂3u0

∂z3
= − 1

KM

∂s0

∂x
. (7.41)

Thereafter an equation for u0 is found by integrating Equation (7.41) several times
over z, applying the boundary conditions Equation (7.29a) and (7.29b) and using
Equation (7.30) (the O(1) depth integrated mass balance), the result is:

u0 = uEf1 + δn,0uQf2. (7.42)

With,

uE =
H3

48KM

∂s0

∂x
, (7.43a)

uQ =
εQ
BH

, (7.43b)
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f1 = 1− 9ζ2 − 8ζ3, (7.43c)

f2 =
3

2
− 3

2
ζ2. (7.43d)

Physically, uE gives the strength of the exchange flow (see MacCready [2004]) and
uQ is the velocity due to river flow. In these Equations ζ is given by

ζ ≡ z

H
. (7.44)

In order to find an expression for s1, Equation (7.42) is substituted into Equation
(7.40) and the resulting equation is integrated multiple times with respect to z.
Equation (7.32b) and (7.32c) are used as boundary conditions. The result is:

s1 =
H2

KS

∂s0

∂x
(uEf3 + δn,0uQf4). (7.45)

Here,

f3 = − 3

20
+

1

2
ζ2 − 3

4
ζ4 − 2

5
ζ5, (7.46a)

f4 = −1

8
+

1

4
ζ2 − 1

8
ζ4. (7.46b)

Until now, solutions for s1 and u0 are obtained, but a solution for s0 is needed as
well. This can be found using the salt transport equation (Equation (7.38)). This
equation can be simplified further, now that it is assumed that KHS = KHS(x),
leading to

εεQs0 + ε2B

∫ 0

−H
u0s1dz − εHSBHKHS

∂s0

∂x
= Tn. (7.47)

It depends on the order of magnitude of εQ and εHS which terms remain in the
equation. In the case that εQ = O(1) and εHS = O(ε), only the first and the third
terms (and Tn) in the equation are relevant. If εQ = O(ε) and εHS = O(ε2), all the
terms remain in the equation. It is chosen to keep all terms. There is a chance that
you leave a relatively small term into the equation, but at least all dominant terms
are taken into account then. For the same reason it is decided to take δn,0 = 1 in
Equation (7.30), (7.40), (7.42) and (7.45), resulting in the following equations for
u0 and s1:
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u0 = uEf1 + uQf2, (7.48)

s1 =
H2

KS

∂s0

∂x
(uEf3 + uQf4). (7.49)

In order to be able to solve Equation (7.47), the integral term should be evaluated.
This is done by substitution of Equation (7.48) and (7.49) in this term and then
calculating the integral. The contribution of the depth averaged part14 of s1,
s1 = 1

H

∫ 0

−H s1dz = H2

KS

∂s0
∂x

(− 1
15
uE − 1

15
uQ), gives the following contribution to that

integral: ε2B
∫ 0

−H u0s1dz = ε2s1δn,0εQ. This term is of O(ε) compared to the first
term in Equation (7.47) (the term due to river discharge) and is neglected for that
reason. Evaluation of the resulting integral gives:

∫ 0

−H
u0(s1 − s1)dz =

∫ 0

−H

H2

KS

∂s0

∂x
(uEf1 + uQf2)(uEf3 + uQf4)dz

=
H2

KS

∂s0

∂x

[
u2
E

∫ 0

−H
f1f3dz + uEuQ

∫ 0

−H
(f1f4 + f2f3)dz + u2

Q

∫ 0

−H
f2f4

]
dz

≈ H3

KS

∂s0

∂x

[
− 0.030u2

E − 0.045uEuQ − 0.019u2
Q

]
= −0.030

482

H9

KSK2
M

(
∂s0

∂x
)3 − 0.045

48

H6uQ
KSKM

(
∂s0

∂x
)2 − 0.019

H3u2
Q

KS

∂s0

∂x
.

(7.50)

The definition of uE is used in the last step. Substitution of this result in Equation
(7.47) yields

εεQs0 −
0.030

482
ε2

BH9

KSK2
M

(
∂s0

∂x
)3 − 0.045

48
ε2
BH6uQ
KSKM

(
∂s0

∂x
)2

−0.019ε2
BH3u2

Q

KS

∂s0

∂x
− εHSBHKHS

∂s0

∂x
= Tn.

(7.51)

This equation can be solved for s0.

7.1.7 Dimensional equations

For convenience, scales are placed back into the model equations. From now on,
variables with ˜are dimensionless and the variables without ˜are dimensional. The

14Here the integral is evaluated at z = 0 in stead of z = η. The reason is that, as before, (using
a Taylor expansion) it can be shown that the extra contribution due to evaluation at z = η is
O(ε) relative to the rest of the integral.
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dimensional s0, s1 and u0 are defined in a slightly different way, than the dimen-
sionless equivalents, namely

u = u0, (7.52)

s = s0 + s1. (7.53)

Using these definitions and the relation s = socns̃0 + εsocns̃1 (and, of course, the
scales that where defined in Section 7.1.3), Equation (7.48), (7.49) and (7.51) are
made dimensional. The result is

u0 = uEf1 + uQf2, (7.54)

s1 =
H2

KS

∂s0

∂x
(uEf3 + uQf4), (7.55)

γ3(
∂s0

∂x
)3 + γ2(

∂s0

∂x
)2 + (γ1 + γdif )

∂s0

∂x
− s0 = −T

Q
. (7.56)

The dimensional expressions for uE and uQ are uE = βgH3

48KM

∂s0
∂x

and uQ = Q
BH

.

The expressions for the polynomials are f1 = 1 − 9ζ2 − 8ζ3, f2 = 3
2
− 3

2
ζ2, f3 =

− 3
20

+ 1
2
ζ2− 3

4
ζ4− 2

5
ζ5 and f4 = −1

8
+ 1

4
ζ2− 1

8
ζ4, with ζ ≡ z

H
. The expressions for

the γ’s in Equation (7.56) (these are constant in z, but functions of x) read

γ3 = C3
H8β2g2

KSK2
MuQ

, (7.57a)

γ2 = C2
H5βg

KSKM

, (7.57b)

γ1 = C1
H2uQ
KS

, (7.57c)

γdif =
KHS

uQ
. (7.57d)

The constants are C3 = 0.030
482

, C2 = 0.045
48

and C1 = 0.019.

These equations can be rewritten equations similar to what was found by Mac-
Cready [2004], except for an extra term containing T . This term is absent in the
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model of MacCready [2004], because this model is for a single channel configura-
tion and then T = 0 psu. In this derivation it is kept in mind that the model
will be extended to a network and for the distributaries (smaller channels after a
branching point in the main channel, see Lambert and Group [2007]) T 6= 0 psu.
To do this, the following definitions are introduced:

s = s+ s′, (7.58)

u = uQ + u′. (7.59)

In these definitions, s and uQ are averages over depth. Using Equation (7.52)
and (7.53), it can be concluded that u′ = u0 − uQ and s′ = s1 − s1 (note that

s0 is independent of z). In this equation s1 = H2

KS

∂s0
∂x

(− 1
15
uE − 1

15
uQ) (see Section

7.1.6 for the calculation of the dimensionless equivalent). Furthermore, it is used
that s̃ = s̃0 + εs̃1 ≈ s̃0, where, again, the bar denotes averaging over depth. The
dimensional version of this equation is s ≈ s0. Using these definitions and results,
Equation (7.42)-(7.56) can be rewritten to a similar form as the model by Mac-
Cready [2004] and the result is

u′ = uEF1 + uQF2, (7.60)

s′ =
H2

KS

∂s0

∂x
(uEF3 + uQF4), (7.61)

LE3(
∂Σ

∂x
)3 + LE2(

∂Σ

∂x
)2 + (LE1 + LD)

∂Σ

∂x
− Σ = − T

Qsocn
. (7.62)

Here, s = s+ s′, with s s averaged over depth, u = uQ +u′ and uE and uQ defined
as before. The functions F1-F4 are given by F1 = 1 − 9ζ2 − 8ζ3, F2 = 1

2
− 3

2
ζ2,

F3 = − 1
12

+ 1
2
ζ2 − 3

4
ζ4 − 2

5
ζ5 and F4 = − 7

12
+ 1

4
ζ2 − 1

8
ζ4. In Equation 7.62, the

different length scales and Σ are given by

Σ =
s

socn
, (7.63a)

LE3 = C3
H8β2s2

ocng
2

KSK2
MuQ

, (7.63b)

LE2 = C2
H5βsocng

KSKM

, (7.63c)
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LE1 = C1
H2uQ
KS

, (7.63d)

LD =
KHS

uQ
. (7.63e)

7.1.8 Calculating the sea surface height at the branching
point

As indicated in Section 2.5, in order to determine Q2 (and thereby Q3), an ex-
pression for the sea surface height at the branching point is needed. The starting
point for deriving this expression is the dimensional version of Equation (7.28a)
(the O(1) momentum balance in the x-direction). This dimensional equation is

0 = −g ∂η
∂x

+ βg
∂s

∂x
z +KM

∂2u

∂z2
. (7.64)

Here, it is used that KM is independent of z, u ≈ u0 and that s ≈ s0 (with s0

dimensional). This equation can be rewritten to obtain an expression for u. This
expression is integrated several times and the dimensional version of Equation
(7.30) (B

∫ 0

−H udz = Q) and the dimensional versions of the boundary conditions

Equation (7.29a) and (7.29b) (at z = −H: u = 0 and at z = 0: ∂u
∂z

= 0 respectively)
are applied. The result is

∂η

∂x
= −3KMQ

gBH3
− 3βH

8

∂s

∂x
. (7.65)

This equation can be integrated from x = 0 to x = Lsea and in this way, η at the
branching point can be determined. The expression for η

∣∣
x=0

is

η
∣∣
x=0

= η
∣∣
x=Lsea

+

∫ x=Lsea

x=0

3KMQ

gBH3
dx+

∫ x=Lsea

x=0

3βH

8

∂s

∂x
dx. (7.66)

7.1.9 Expressions for QSP and QNP in case of constant
depth

In order to estimate the relative change between QSP and QNP , it is useful to ob-
tain an approximate expression for their ratio. In order to obtain this expression,
first approximate expressions should be obtained for QSP and QNP themselves.

As explained in Section 2.5, there are two conditions that determine QSP (and
TSP ). These conditions are that at the branching point ηSP = ηNP and sSP = sNP ,
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or in other words η and s should be continuous at the branching point. When QSP

is determined, QNP is easily determined by using QSC = QSP + QNP , with QSC

imposed in the model. From test experiments it is expected that QSP is mainly
determined by the condition ηSP = ηNP . For that reason an exact expression that
gives the approximate value of QSP will be derived from this condition in this
section.

In the previous section an expression was found for η at the branching point,
namely Equation (7.66). In order to be able to calculate the integrals in this equa-
tion, the assumptions are made that (only for finding this approximate expression
for QSP , not in the rest of the model) H is constant and KM is constant (this can
be for example be achieved by assuming that RiL =0). After making these approx-
imations, substituting Equation (2.29) (the exponential parametrisation for B) for
B and calculation if the integrals in Equation (7.66), the following expression is
found for η:

η
∣∣
x=0

= η
∣∣
x=Lsea

− 3KMQLs
gB0H3

(exp
[
− (Lsea − x0)

Ls

]
− exp

[x0

Ls

]
))

+
3βH

8
(s
∣∣
x=Lsea

− s
∣∣
x=0

).

(7.67)

A few more approximations are made. One is that η
∣∣
x=Lsea

= 0, as in the model z =
0 is chosen to be at sea surface height at the boundary between estuary and coast
and it is assumed that this sea surface height at the coast is constant and equal for
the North Passage and the South Passage. Another is that exp

[
− (Lsea−x0)

Ls

]
=1.

The reason is that Lsea is (almost) equal to x0 for all channels. Additionally, for
convenience, it is defined that dsx = s

∣∣
x=Lsea

− s
∣∣
x=0

and E = 1 − exp
[
x0
Ls

]
. The

result is

η
∣∣
x=0

=
3KMQLs
gB0H3

E +
3βH

8
dsx. (7.68)

Now, from the condition that, at x = 0, ηSP = ηNP , an expression for QSP can be
derived. In this derivation it is used that QSC = QSP +QNP . The result is

QSP =

[
3β
8

(HSPdsx,SP −HNPdsx,NP ) +
3KM,NPQSCLs,NP

gB0,NPH
3
NP

ENP
][3KM,SPQSCLs,SP

gB0,SPH
3
SP

ESP +
3KM,NPQSCLs,NP

gB0,NPH
3
NP

ENP
] . (7.69)

In a similar way it can be derived that
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QNP =

[
3β
8

(HNPdsx,NP −HSPdsx,SP ) +
3KM,SPQSCLs,SP

gB0,SPH
3
SP

ESP
][3KM,SPQSCLs,SP

gB0,SPH
3
SP

ESP +
3KM,NPQSCLs,NP

gB0,NPH
3
NP

ENP
] . (7.70)

From these two equations, an approximation for QSP

QNP
can be obtained. The result

is

QSP

QNP

=

[
3β
8

(HSPdsx,SP −HNPdsx,NP ) +
3KM,NPQSCLs,NP

gB0,NPH
3
NP

ENP
][

3β
8

(HNPdsx,NP −HSPdsx,SP ) +
3KM,SPQSCLs,SP

gB0,SPH
3
SP

ESP
] . (7.71)
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