
Parallel Algorithms on Tree Decompositions

Glenn Stewart

Supervisors: prof. dr. H.L. Bodlaender, T.C. van der Zanden MSc

February 20, 2019

Abstract

Several problems including finding the maximum independent set
and the minimum size dominating set of a graph are NP-hard prob-
lems that can be solved in linear time on graphs given with a tree
decomposition whose width is bounded by a constant. So far, about
all work on implementation of these algorithms was restricted to se-
quential algorithms, running on a CPU. A recent study showed that a
GPU implementation of algorithms running on a path decomposition
of a graph showed a significant speedup when compared to the CPU
implementation.

Both the GPU implementation for maximum independent set and
minimum dominating set show a significant increase in speed on a
subset of all tested tree decompositions, but do have an equal or a
decreased performance on other trees. The tree decomposition the
algorithm is ran on has a large influence on the performance of the
algorithms.

1

Contents
List of Figures 3

List of Tables 3

1 Introduction 4
1.1 Architectural GPU differences 5
1.2 Tree Decompositions . 7
1.3 Nice Tree decompositions . 8
1.4 Algorithms . 10

1.4.1 Maximum independent set 10
1.4.2 Minimum dominating set 12

2 Methods 14
2.1 Data . 14
2.2 Tree decomposition construction 14
2.3 Running the algorithm . 15

2.3.1 CPU Implementation 16
2.3.2 GPU Implementation 17

2.4 Output . 18

3 Profiling 19

4 Improvements 23
4.1 joinBagKernelDS . 24
4.2 Thread tasks . 25

5 Results 25
5.1 Maximum independent set . 27

5.1.1 CPU vs GPU . 27
5.1.2 Tread tasks . 27

5.2 Minimum dominating set . 29
5.2.1 CPU vs GPU . 29
5.2.2 Thread tasks . 30
5.2.3 Join bag . 31

6 Conclusion 32

7 Further research 32

References 35

2

List of Figures
1 CPU vs GPU architecture[12] 6
3 The different bag types . 9
4 Post-order: A, C, E, D, B, H, I, G, F. 10

List of Tables
1 Averaged data for maximum independent set on the GPU and

CPU compared . 27
2 Speedup of the maximum independent set GPU implementa-

tions with varying tasks per thread 28
3 Averaged data for minimum dominating set on the GPU and

CPU compared . 29
4 Speedup of the minimum dominating set GPU implementa-

tions with varying tasks per thread 30
5 Averaged data for minimum dominating set on the GPU and

GPU with precomputation for join bag compared 31

3

1 Introduction
Although Graphical Processing Units (GPUs) was originally meant for ren-
dering computer graphics for video games, people found that they could be
used for other tasks as well. Doing so is called General Purpose Computing
on Graphical Processing Units (GPGPU). GPGPU has been used for many
tasks, some of which include: Bioinformatics[18, 10], Fuzzy logic[1] and k-
nearest neighbor algorithms[6].

The main feature that differentiates the GPU from the CPU (central
processing unit) is the amount of tasks that can be computed in parallel.
Solving a problem in parallel, when applied to the right problem, often results
in a speedup of the original algorithm as you can solve parts of the problem
simultaneously instead of sequentially. On a CPU this can be done to a
certain extent with most CPUs having 4 cores, which can work on one thread
per core (or two if the CPU has hyper-threading). In comparison a current
generation high end consumer GPU has 57344 threads (based on the NVIDIA
1080TI). This means that if a portion of an algorithm can be ran in parallel
in can be done effectively on the GPU. For both maximum independent set
and dominating set the calculations are only dependent on previous values,
not on values that are being calculated in the current step. This means all
the calculations in a single step can be executed in parallel as they do not
have to wait for other values to be calculated.

Tree decompositions have been used for a long time to solve certain NP-
hard graph problems in polynomial time. The problems that we are solving
on tree decompositions are problems that can have practical applications.
Maximum independent set is a problem that has many real world applica-
tions. Examples of applications are code theory [4], bioinformatics [14], map
labeling [19], computer vision [5], routing in road networks [8] and many
others. Dominating set is also problem that needs to be solved in multiple
applications. Scheduling [17], facility location problem [11] and routing [20]
to name a few. When applied in practical environments having faster and
more efficient algorithms are of course welcomed.

There are several other problems that can also be solved faster on a tree
decomposition, if a treewidth of the tree is given, than on the graph. For the
following problems treewidth is replaced by tw. A few of these problems are:

• Steiner Tree in O(twO(tw)), as described in chapter 7.3.3. in of Param-
eterised algorithms[2]

• k-Coloring can be solved in O(ktwtw2|V ertexofGraph|)[13]

• Hamiltonian Cycle in O((2twtwtw/2)2tw3|V ertexofGraph|)[13]

4

The objective of this thesis is to create a CPU and GPU implementation
for both solving maximum independent set and minimum dominating set
with a dynamic programming algorithm on tree decomposition. The CPU
and GPU implementation will be compared to see if there is a significant
difference in the computation time. The algorithms for solving maximum
independent set and minimum dominating set both use a technique called
dynamic programming. With this algorithm you solve subproblems which
eventually lead to you solving the complete problem. Nobody has ever solved
these problems with dynamic programming algorithms on tree decomposi-
tions implemented on the GPU. Plagmeijer[15] solved these problems on the
GPU [15] using a path decompositions instead of tree decompositions. Plag-
meijers implementation was a starting point for this project1. Path decompo-
sitions are a special case of tree decompositions; to lift algorithms that work
on path decompositions to the tree decomposition case, additional work has
to be done, in particular, code that handles join nodes has to be provided.

The biggest changes compared to the path decomposition implementation
in both the CPU and GPU implementation are the addition of the code
for the join bag and the changes made to the code where the bag specific
function calls are made. In the case of path decomposition only two arrays
are needed, one to keep the new values in and one for old values. With a
tree decomposition you need at least two arrays, but join bags make it so
you need to keep an additional array in memory. The code to delete old
arrays, add new arrays, and make the next bag look at the correct array as
its children is different than the path decomposition implementation.

1.1 Architectural GPU differences
The GPU code that has been written for this thesis uses C++ and the CUDA
toolkit. The CUDA toolkit is developed by NVIDIA to let programmers use
GPU accelerated computing. To be able to execute our code you need a
CUDA-capable GPU. GPU’s that are capable of executing CUDA code are
GPU’s made by NVIDIA, GPU’s made by AMD will not be able to run the
code.

Unfortunately, to compute the result of a problem on the GPU you can-
not simple have CPU code and add: "Compute on GPU in parallel". The
difference in thread count is due to the design philosophy of the GPU, which
is different than that of the CPU. The CPU is optimized for low-latency while
the GPU is optimized for throughput. Figure 1 shows this difference. The
CPU has one large control unit (the component that directs the operation

1The author would like to thank R. Plagmeijer for sharing his implementation.

5

Figure 1: CPU vs GPU architecture[12]

of the processor), a large cache (component that stores data so that future
requests for that data can be served faster) and a small amount of complex
ALUs (arithmetic logic units, the component used to perform arithmetic and
logic operations). The GPU does not have a large cache and control com-
ponent. Instead, 32 ALUs together share a single control unit, and 4 times
32 ALU’s are bundles into a Streaming Multiprocessors which has a single
cache. Although these ALUs are simple, by applying a parallel programming
model and having many them they are able to generate a significant amount
of power.

The programming model used by modern day GPU’s is known as SIMT
(Single Instruction, Multiple Threads). Each thread that is started must exe-
cute the same set of instructions but can be given different memory addresses
to run these instructions on.

The phenomenon that occurs when two thread take different paths within
a kernel is called branch divergence. This can happen at an if-condition when
one thread fulfills the condition and another one does not. Branch divergence
negatively affects the performance of the program. Because the threads in
the GPU execute the same instructions at the same time, threads need to
wait for code that is not part of their path to be computed.

Luckily not all threads have to execute the same code in NVIDIA GPU’s.
All threads are divided into blocks which are further divided into warps.
Each block has shared memory between the threads and can contain a total
of 1024 threads. Each warp will contain a subset of 32 threads of the total
amount of threads in a block. The warps in each of the block exhibit SIMT
execution. So instead of all threads having to execute the same instruction,
only 32 threads have to. This lowers the chance of branch divergence as there
are less threads that can diverge.

CUDA introduced two concepts to the SIMTmodel to support conditional
execution and branching. The first concept is predicated execution. It means

6

A

B

C D

E F G

(a) Input graph

A, B

B, C, D, F

C, E, F D, F, G

(b) Tree Decomposition

A, B B, C, D

C, D, F

C, E, F D, F, G

(c) Tree Decomposition

that the result of a conditional instruction can be used to mask threads from
execution subsequent instruction without branching. The other concept is
Instruction replay/serialization. The idea behind this technique is the same,
it is only executed differently. All threads execute all the branches of the
conditionally executed code by replaying instructions, for instance replaying
the if statement (true and then false). If a thread should execute the path for
FALSE but is currently executing the path for TRUE, the thread is masked
and will not write results, evaluate memory addresses and read operands.

1.2 Tree Decompositions
The algorithms that are implemented are not implemented directly onto the
given graph G = (V, E), but on a graphs given with a tree decomposition
(TD). A tree decomposition of graph G = (V, E) consists of a tree T and a
subset Bt ⊆ V associated with each node t ∈ T . Each of these subsets Bt

bags of the tree decomposition. There are only a few conditions that need
to hold for it to be a correct tree decomposition of a given graph [16]. The
tree decomposition must satisfy the following properties:

1. ⋃
i∈T D Bi = V . Each vertex from the original graph is contained in at

least one bag

2. ∀(u, v) ∈ E,∃i ∈ TD : u, v ∈ Bi. If vertices are adjacent in the graph,
then they have a bag in common

3. if v ∈ Bi and v ∈ Bj, then v ∈ Bk for all k on the path from i to j in
TD. The bags that contain v form a connected subset of TD

There can be several different tree decompositions which represent the
same graph; for example a tree decomposition that consists of one single bag
containing all vertices is a valid tree decomposition.

7

Although a graph can have many different correct tree decompositions,
there is a way to restrict the complete set of tree decompositions to a subset
of this set. This can be done by specifying a maximum treewidth. The
treewidth of a tree decomposition is the size of the biggest bag Bi − 1.

1.3 Nice Tree decompositions
In a nice tree decomposition, instead of instantly adding/removing multiple
nodes to/from a bag, we limit the amount transitions between bags. A nice
tree decomposition is still a valid tree decomposition. The definition of nice
tree decomposition that is used in in this paper was introduced by Cygan et
al. [3]. The concept of a nice tree decompositions was introduced by Kloks
[9]. A tree decomposition is nice if each of the bags is one of the following
forms, as described in [2]:

• Leaf bag: An empty bag Bl = ∅ a leaf of the tree

• Root bag: An empty bag Br = ∅ at the root of the tree

• Introduce bag: a bag with one child Bj such that Bi = Bj ∪ v for a
vertex v 6∈ Xj. We say that v is introduced in Bj

• IntroduceEdge bag: a bag Bi with one child Bj such that Bi = Bj and
labeled with an edge uv ∈ E(G) such that u, v =∈ Bi. The edge uv is
introduced in Bi

• Forget bag: a bag Bi with one child Bj such that Bi = Bj \ {v} for a
vertex v ∈ Bj. v is forgotten in Bi

• Join bag: a bag Bi with two children Bi1 and Bi2 such that Bi = Bi1 =
Bi2

For a tree decomposition to be nice it is not necessary to use the introduce
edge bag, but using it has its benefits. When you do not use the introduce
edge bag, every time a new vertex is introduced to the tree decomposition
you have to simultaneously introduce all the other edges that connected
it to vertices in Bi. By adding the edges one by one the description of
the algorithm is often simplified. An additional requirement when using an
introduce edge bag, is that every edge of E(G) can be introduced exactly
one.

8

ABC

AB

 introduce bag

AB

ABC

 forget bag

ABC

ABC ABC

 join bag

ABC
(A-C)

ABC

 edge bag

A

∅
}

leaf bag

∅

∅

}
Root bag

Figure 3: The different bag types

9

F

B

A D

C E

G

I

H

Figure 4: Post-order: A, C, E, D, B, H, I, G, F.

1.4 Algorithms
When solving problems using a (nice) tree decomposition, a dynamic pro-
gramming algorithm is often the technique that is used. The dynamic pro-
gramming algorithm will start at the leaves of the nice TD and traverse the
tree until it reaches the root. The traversal of the tree decomposition will be
done in a post-order traversal. This way the values of the subsets in both
child bags of a join bag are known went we want to join them. An example
of a post-order tree traversal can be seen in Figure 4. The arrows on the
dotted line can be followed to see the path the post-order traversal takes.

Each bag in the tree decomposition contains a table of partial solutions.
This table contains all the different subsets (partial solutions) and the value
for each of these subset. To calculate the values for the table of the parent
node the table of the child node is used (or two children if it is a join bag).
At a leaf bag, the table is empty. Whilst traversing the tree to the root
new vertices will introduced, resulting in a larger table than the child table,
forgotten, resulting in a decrease in table size, and combined in the join bag
where the table stays the same size. In the root node of the tree the table will
contain one value as the optimal result, if it exists. In our implementation
the bags only contain the value of the solutions, not the optimal solution
itself. So in the root of the tree we have one value for the optimal solution
instead of the optimal solution.

1.4.1 Maximum independent set

The first problem that will be solved is the maximum independent set. An
independent set is a set of vertices in a graph in which no two vertices from
the set are adjacent. A maximum independent set in a graph G is an inde-
pendent set of the largest possible size in G. The maximum independent set

10

problem asks for a given graph G, to determine what is the size of a maximum
independent set. This problem is NP-hard [7]. The algorithm used to solve
the maximum independent set in this paper has a complexity of O(2kkO(1)n,
where k is the treewidth + 1 and n the number of nodes. The difference
between this algorithm and finding the solution via brute force is that the
exponential is different. The exponential when using brute force is n, which
grows when the graph the tree decomposition is based on grows, whereas k
does not grow when the graph gets bigger. This means that when you have a
graph with bounded treewidth, this algorithm is a good alternative to brute
force.

In the dynamic programming algorithm for maximum independent set,
for each subset in the child bag of an introduce bag the newly added vertex
of the introduce bag is either added to the subset or discarded. Both of these
actions are possible which results in the doubling of the partial solutions in
the child bag. Simply put, the table in each bag is size 2|Bi|. The calculations
the algorithm performs for each subset in a bag is given below. A subset of
bag Bi (a child bag) is indicated by Si. Bi+1 refers to the value of the bag
in question, v and w indicates the vertex or edge that is used by the bag.
The values calculated for bags when solving maximum independent set are
defined as follows:

• Leaf bag: Bi+1(S) = 0

• Introduce bag (v): Bi+1(S) =
{

Bi(S) if w 6∈ S
Bi(S − {v}) + 1 otherwise

• Introduce edge bag (v, w): Bi+1(S) =
{
−∞ if v, w ∈ S
Bi(S) otherwise

• Forget bag (v): Bi+1(S) = max{Bi(S), Bi(S ∪ {v})}

• Join bag: Bi+1(S) = Bj1(S) + Bj2(S)− |S|

We have made a slight change to this standard way of finding the maxi-
mum independent set. These are the following changes:

• Introduce bag (v): Bi+1(S) =
{

Bi(S) if w 6∈ S
BI(S − {v}) otherwise

• Forget bag (v): Bi+1(S) = max{Bi(S), (Bi(S ∪ {v}) + 1)}

• Join bag: Bi+1(S) = Bj1(S) + Bj2(S)

11

We now add one to the independent set at the forget bag instead of the
introduce bag. By doing so we do not have to compute the size of the current
independent set in the join bag. With the way we represent an independent
set in a bag it would require quite a bit of computation to get the size of the
independent set.

While weighted independent set is not the same as maximum independent
set, only a few small changes have to be made to change it into maximum
independent set. More information about the weighted independent set al-
gorithm can be found in chapter 7.3.1 of Parameterized Algorithms[2].

1.4.2 Minimum dominating set

A minimum dominating set for a graph G = (V, E) is a subset S of V such
that every vertex that is not in S is the neighbour of at least one vertex that
is in S and is the smallest size dominating set for the graph. This problem,
just like the maximum independent set, is NP-hard.

For minimum dominating set the situation is more complicated than for
maximum independent set. We have to choose between a vertex being in the
dominating set, not in the dominating set and already dominated, and not
in the dominating set and not yet dominated. To give this distinction we
will give each bag Bi a coloring. A coloring is a mapping f : Bi → {0, 0̂, 1}
which assigns one of these three colours to the vertices in the bag.

• White (0): if a vertex is coloured white it means that the vertex is
not contained in the partial solution (dominating set), and must be
dominated by a vertex of the final minimum dominating set

• Grey (0̂): if a vertex is coloured grey it means that the vertex is not
contained in the partial solution (dominating set), but it does not have
to be dominated by a vertex in the current dominating set

• Black (1): if a vertex is coloured black it means that it is contained in
the partial solution (dominating set)

This algorithm would not work if we just used white and black. We need
the possibility to colour a vertex grey. The reason is that a vertex could be
dominated by another vertex or edge that has not been introduced at that
point in the tree decomposition. Therefore, solutions in which some vertices
of the bag are not required to be dominated have to be considered, since these
subproblems could be essential for constructing the best solution. Because
there are three colours the amount of subsets of Bi is equal to 3|Bi|. The
calculations the algorithm performs for each subset in a bag is given below.

12

f |S is a coloring f of Bi but restricted to the nodes in subset S. fv→a is a
colouring f where its color for vertex v is changed to colour a. Minimum
dominating set:

• Leaf bag: Bi+1(f) = 0

• Introduce bag (v): Bi+1(f) =

+∞ when f(v) = 0
Bi(f |Si

) when f(v) = 0̂
Bi(f |Si

) + 1 f(v) = 1

• IntroduceEdge bag (v, w): Bi+1(f) =

Bi(fw→0̂) if(f(v), f(w)) = (1, 0)
Bi(fv→0̂) if(f(v), f(w)) = (0, 1)
Bi(f) otherwise

• Forget bag (v): Bi+1(f) = min{Bi(fv→1), Bi(fv→0)}

• Join bag: Bi+1(f) = min
f1,f2
{Bj1(f1) + Bj2(f2)− |f−1(1)|}

In the join bag we take the colouring with the minimum value of both the
left and right child. These values have to be consistent with the coloring f in
the join node as described in chapter 7.3.2 of Parameterized Algorithms[2].
The two child colourings are consistent with the coloring f if the following
conditions hold:

• f(v) = 1 if and only if f1(v) = f2(v) = 1

• f(v) = 0 if and only if (f1(v), f2(v)) ∈ {(0̂, 0), (0, 0̂)}

• f(v) = 0̂ if and only if f1(v) = f2(v) = 0̂

The fact that it has to stay consistent makes the join bag for the domi-
nating set algorithm costly to compute if the colouring in question contains
a lot of zeroes. Each zero in the current colouring doubles the set of possible
colourings that could have been used to compute the current colouring. So
if the colouring contains ten zeroes, the amount of colourings to check are
210 = 1024 different colourings from the two bags before the join bag to know
the value of one colouring in the join bag.

The same change to the maximum independent set has been made to
minimum dominating set, changing the descriptions of the following bags:

• Introduce bag (v): Bi+1(f) =

+∞ when f(v) = 0
Bi(f |Si

) when f(v) = 0̂
Bi(f |Si

) f(v) = 1

13

• Forget bag (v): Bi+1(f) = min{(Bi(fv→1) + 1), Bi(fv→0)}

• Join bag: Bi+1(f) = min
f1,f2
{Bj1(f1) + Bj2(f2)}

2 Methods
In this thesis two different dynamic programming algorithms will be imple-
mented, two on the CPU and two on the GPU, with variations for the GPU
implementations. They will solve the maximum independent set and mini-
mum dominating set problems on tree decompositions. The goal of the re-
search is to get data on the duration these GPU implemented algorithms need
for solving certain problems and compare these with the same algorithms im-
plemented on the CPU solving the same problems. The implementation that
is used to conduct these experiments is written in C++, and CUDA 9.1 was
used for the code that was executed on the GPU.

2.1 Data
To make other researchers able of comparing their results against the results
that were obtained with this implementation a data set is needed that is avail-
able for general use. This way implementations can be compared against one
another on the same graph/tree decomposition. This is why the algorithms
will be tested on data from the 2018 PACE challenge (The Parameterized
Algorithms and Computational Experiments Challenge). The data can be
found using the following link. The data for the challenge consists of a graph
section, a terminals section and a tree decomposition section. For our appli-
cation we will only use the graph and tree decomposition section of the data.
A small grid was also constructed as an extra check whether the values in
each type of bag is calculated correctly.

2.2 Tree decomposition construction
To be able to run the algorithm, a tree decomposition has to be constructed.
First we construct the graph from the PACE data. Once this graph is created
we have the node and edge information that is needed to construct the bags
in the tree decomposition. If the tree decomposition was constructed without
making the original graph, there would be no information about which nodes
had edges in between them which is needed when running the algorithms.

Next up the information from the tree decomposition section of the PACE
data is parsed. In the tree decomposition section of the data there is enough
information to be able to fill each bag in the tree decomposition with the

14

https://pacechallenge.wordpress.com/pace-2018/

correct Node objects and connect the bags that are connected to each other.
After this parsing we have a correct tree decomposition but not a nice tree
decomposition.

A C# implementation for the construction of a nice tree decomposition
was given to was obtained from Tom van der Zanden2. The code performs
a preprocessing step on the tree decomposition data, which changes the tree
decomposition into a nice tree decomposition. There is one method in the
given code that is used to increase performance of algorithms on the tree
decomposition, and that is not necessary for the construction of a correct
nice tree decomposition. "ForgetBeforeIntroduce" adds a forget bag before
any introduce. If a parent bag and child bag contain different nodes, you first
want to forget each node in the child bag not in the parent bag before adding
the nodes which were not in the child bag. If several introduce bags are put
in the tree before the forget bags, the amount of computation that would
have to be done would increase significantly as the size of the bags would
become much larger than needed. The tree decomposition is then traversed
in post-order. For each bag there are four options:

1. The current bag has no children: a leaf bag is added to the traversal

2. The current bag has one child:

• If the child has a node in the bag that is not in the current bag,
add a forget bag to the traversal
• If the child does not contain a node that is in the current bag, add

a introduce bag to the traversal

3. The current bag has two children: check if the left or right child needs
nodes to be introduced to contain the same nodes as the join bag. If
this is correct, a join bag will be added to the traversal

4. The current bag has more than two children: Throw an error, because
"DeconstructJoins" was not done successfully

Once this traversal has been computed recursively the algorithms can be
run on it.

2.3 Running the algorithm
Both the implementation for the GPU and CPU algorithm have a section
that is executed on the CPU. While the computation for a single bag is done

2The author would like to thank Tom van der Zanden for publishing is implementation
online. The code can be found here

15

https://github.com/TomvdZanden/GPGPU-Treewidth

on either the CPU or GPU, everything else in the algorithm is done on the
CPU.

2.3.1 CPU Implementation

A for loop is used to execute every bag in the traversal. Each bag is repre-
sented as an array. The values in the array are the values for the subsets, the
indices of the array are used to represent the different subsets. Say an array
has length four, it means that there are two nodes in the bag, with indices:
0, 1, 2 and 3. The bit representation of these indices are used to represent
each subset as follows:

• 00 (00000000) = no nodes in the subset

• 01 (00000001) = the first node of the bag is in the subset

• 10 (00000010) = the second node of the bag is in the subset

• 11 (00000011) = both nodes are in the subset

For each bag we compute the amount of subsets in a bag based on the
amount of nodes in the bag. Next the computations are called by looking
at the type of bag (Leaf, Introduce, IntroduceEdge, Forget or Join). A loop
is needed to look at all the different possible subsets in the bag. This is
done by using a for loop and using the bits in the iterator of the loop as the
representation of the subset. For instance, if the value of the iterator is 7
and the bag has 5 nodes in it, in binary this would be "00111". It means that
the first 3 nodes are in the set (either the independent set or dominating set)
and the other 2 nodes are not.

The actual calculations for Leaf, Introduce, Introduce Edge and forget
bag of the MIS and DS implementation are self-explanatory based on the
description given in the introduction. The join bag of MS is simply adding
two values, but the Join bag of DS is a lot more complicated. In the join
bag for the minimum dominating set calculation we have can have multiple
colourings from the children being consistent with the one colouring in the
join bag. If the colouring for a bag is 0000 there are 16 different combinations
of colourings in the child bags that are consistent with the colouring in the
join bag.

One way of implementing the join bag is to create two lists of colourings
in which the consistent combinations are saved. When all the combinations
are created, the lists are used to check the index combination in the children
of the join bag to find the best value. The problem with this approach is the
size of the two lists, which are 2zeroes. Because each thread only has a small

16

amount of memory, creating to big arrays will be too large to put in thread
local memory. The second approach is a binary counter, which is used in
our approach. In this version of the join bag only a small array of size at
most treewidth is needed, which can be done on the GPU. We create two
bitmasks, bitmask A, B and C. Bitmask A masks the positions that contain
a 0̂ or 1, bitmask B is a mask for the positions that contains a 0 and bitmask
C is empty. A loop is ran from 0 till (2K) − 1, if ith bit of the iterator is 1,
then the ith 0 will go to the right child.

The left child is the original value bitmasked with (A + B) and the right
child is the original value bitmasked with (A + C). If a bit in the iterator
changes from a 0 to a 1, the 1 on the ith position in bitmask B is changed to
a 0 and the ith position in bitmask C is changed to a 1. With this loop we
iterate over all different possibilities. After the actual bag calculations the
values of the previous bag(s) deleted if they are not needed in the future. If
this is not the case, they will remain stored.

2.3.2 GPU Implementation

The structure of the code that calls the methods that do the calculations
on the bags is the same as the CPU implementation, but extra steps must
be taken for a successful execution. In the CPU implementation we could
create new vectors and throw them away without explicitly allocating and
deallocating them. With the GPU you have to allocate the space a bag will
use on the GPU and deallocate the space, so it can be used again, when you
are done with the bag.

A function that computes information on the GPU is called a kernel.
Calling a kernel is also different than calling the bag computation function
on the CPU. On the CPU you could call the function and it would return
the new values in the bag. When a kernel is called a few parameters have to
be known. The number of blocks and number of threads must be calculated
before the kernel is called. The block size that is used in this research is 1024,
so a single block contains 1024 threads. The amount of threads are decided
by using the amount of tasks that need to be calculated and the amount of
tasks one thread must calculate. For example, if there are 1024 items in the
bag and each thread completes four tasks, we need 256 threads.

Because memory in the GPU cannot be used without allocating it first
you cannot use growing vectors inside a kernel. The size of the vector must
be given at the launch of the kernel so that the needed amount of memory
for the vector can be allocated.

While the actual implementation of each kernel is different from the CPU,
because they must be executed differently, the way the algorithm is struc-

17

tured stays mostly the same. Parameters and other processes are simply
added or changed to make it possible to run the algorithm on the GPU.

2.4 Output
The most important data in the output is the time data. In order to accu-
rately time the application we use the system clock which can be called in
C++. The timer starts when the algorithm is called and stops when the re-
sult has been calculated. It means that for the GPU something like memory
allocation also included in the total execution time. This was done because
I believe that the setup time one implementation needs should added to the
total execution time. If you would compare two algorithms one where the
computation took 1 second and one where the actual computation took 0.001
second but to achieve this acceleration it had to do an extra 20 seconds op
precomputation compared to the first algorithm, it should be mentioned or
added to the total computation time. The other data generated by the algo-
rithm is the final result for either the size of the maximum independent set
or minimum domination set.

Besides the data generated by running the algorithm, data from the tree
decomposition and graph that is used by the algorithm is saved with the
output. This contains the following data:

• The ID of the PACE graph used

• Whether the data was generated by using the GPU or the CPU

• Whether the data was generated for the MIS or DS problem

• The width of the tree decomposition

• The number of runs executed

• The number of nodes in the graph

• The number of edges in the graph

• The number of bags in the tree decomposition

Each test will be ran 5 times. These 5 runs will then be averaged and
used as the final time.

18

3 Profiling
When installing the CUDA toolkit, one can also install the NVIDIA Vi-
sual Profiler. The application can be used to profile CUDA code, and give
warnings when the GPU is not used to its full capability. After profiling
the written code, multiple warnings were given. These consist of two main
warning types:

• Overall GPU usage warning: warnings related to the use of the GPU,
for instance the use of memory and concurrency in the GPU

• Warnings of performance of kernels: warnings related to the way kernels
are executed and their efficiency

The following warnings were given by the Visual Profiler. The descrip-
tions of the warnings are copied from the Visual Profiler and written in
cursive.

Overall GPU usage warning:

1. Low Compute / Memcpy Efficiency: "The amount of time performing
compute is low relative to the amount of time required for Memcpy."
Memcpy is called at two locations in the code. Once when the code
is finishes to copy the results back from the GPU memory, and once
for each bag to put the ID/IDs and index/indices of the node/node(s)
introduced or forgot by the current bag. This warning will not be
resolved in this paper. One possible solution would be to count the
number of bags in the tree decomposition, multiply this number by
four and Memcpy the information for all nodes in one go. This way
Memcpy is only called twice when solving a problem.

2. Low Memcpy/Compute Overlap: "The percentage of time when Mem-
cpy is being performed in parallel with compute is low."
This is a warning that cannot be resolved for the application. The
only times Memcpy is called is when the application has solved the
problem and to copy the bag instructions to the GPU which is the ID
of node 1 and 2, and the index of node 1 and 2 (node 2 is only used
when introducing an edge). These operations cannot be performed in
parallel.

3. Low Kernel Concurrency: "The percentage of time when two kernels
are being executed in parallel is low."

19

This warning is caused by the fact that we traverse the tree decompo-
sition in post-order. By traversing the tree in this manner, we compute
a single bag at a time which only needs one type of kernel. If values
of bags were computed in an order in which bags that are not depen-
dend on each other are solved at the same time it would be possible to
execute different kernels at the same time.

4. Inefficient Memcpy Size: "Small memory copies do not enable the GPU
to fully use the host to device bandwidth."
Memcpy is only used to copy the node details, which is four ints, and
one int, the solution to the problem, so this warning is not unexpected.
A possible solution might be the one given at the "Low Compute /
Memcpy Efficiency" warning.

5. Low Memcpy Throughput: "The memory copies are not fully using the
available host to device bandwidth."
Memcpy is only used to copy the node details, which is four ints, and
one int, the solution to the problem, so this warning is not unexpected.
A possible solution might be the one given at the "Low Compute /
Memcpy Efficiency" warning.

6. Low Compute Utilization: "The multiprocessors of one or more GPU’s
are most idle."
The importance of this warning differs per tree decomposition, and is
not something that can be easily solved. In this paper a post-order
traversal of the tree decomposition is used. This means the current
bag has to be solved to compute the values for the next bag. If the bag
is small, a large part of the GPU will stay idle as other bags are not
computed when using a post order traversal. If the tree decomposition
has a small width, every bag will be small compared to the capability
of the GPU, in which case most of the GPU will be idle while solving
the problem. A possible solution for this could be to change the order
in which the tree is traversed. If the tree decomposition has a tree
structure multiple bags that are not dependent on the values of the
other bags can be solved at the same time. If for instance, a tree
has a single join bag, the left and right branch of the join bag can be
solved completely separately. The only prerequisite to solving the join
bag is that the values of both children are known. This way the idle
multiprocessors could be computing other bags at the same time.

Warnings of performance of kernels

20

1. Low Global Memory Load Efficiency: "Global Load efficiency indicates
how well the application’s global loads are using device memory band-
width. The efficiency is the number of bytes requested divided by the
number of bytes that were transferred from the device memory to sat-
isfy those requests. Because device memory transfers bytes in blocks,
the alignment and access pattern of a given store determines how many
blocks must be transferred and thus determines the efficiency of that
load. Low efficiency indicated that one or more global memory loads
have a poor access pattern or alignment."
Grouping threads into warps is not only useful for the speed of the com-
putation but also for the global memory accesses. The GPU combines
global memory loads by threads from a warp into as few calls as possible
to minimize DRAM bandwidth as possible. When the memory accesses
are next to one another, the hardware might be able to combine them
into one call to memory. On the other hand, if multiple threads need
to access global memory, but the memory locations are far apart in the
physical memory, the GPU will not be able to combine the accesses.
Unfortunately in the kernels for independent set and dominating set,
the calls to load data from memory can be far apart. The lookups to
the values in the previous bags can have a space between them, causing
the effective bandwidth of the global memory to be poor.

2. Low Global Memory Store Efficiency: "Global store efficiency indicates
how well the application’s global stores are using device memory band-
width. The efficiency is the number of bytes stored divided by the num-
ber of bytes that were transferred to device memory to perform those
stores. Because device memory transfers bytes in blocks, the alignment
and access pattern of a given store determines how many blocks must
be transferred and thus determines the efficiency of that store. Low
efficiency indicated that one or more global memory stores have a poor
access pattern or alignment."
Storing the values in the global memory has the same problems as
loading the values from memory.

3. Low Warp Execution Efficiency: "Warp execution efficiency is the aver-
age percentage of active threads in each executed warp. Increased warp
execution efficiency will increase utilization of the GPU’s compute re-
sources. These kernel’s warp execution efficiency is less than 100% due
to divergent branches and predicated instructions."
Branch divergence can have a big impact on the performance of kernels.
For introduceEdgeBag and introduceBag of both maximum indepen-

21

dent set and minimum dominating set, there are IF-statements that
can be looked at removing or can be called in a different manner so
that each thread has the same value at a IF-statement. If threads take
the same route through a kernel, there will be no branch divergence no
matter the amount of IF’s. The join bag of dominating set takes a lot
of time to compute, by the fact that it has multiple for loops and if
statements, making changes in the join bag could result in big changes
to Warp execution efficiency as each thread would have less different
loop iterations.

The NVIDIA Visual Profiler also gives priorities for the kernel optimiza-
tion. These priorities are based on execution time and achieved occupancy.
The optimization of higher ranked kernels are more likely to improve the
performance compared to lower ranked kernels. Of course this is different for
each problem, so multiple graphs from PACE data are used that are different
from one another to give a good indication of the priorities. For maximum
independent set the following graphs are used:

• Graph 79 = width: 10, #nodes: 36415, #edges: 145635, #bags: 25210

• Graph 191 = width = 25, #nodes: 5096, #edges: 8105, #bags: 711

• Graph 193 = width: 26, #nodes: 1848, #edges: 3286, #bags: 1528

These graphs were chosen for different reasons:

• Graph 79 = large amount of edges and bags with a small width

• Graph 191 = graph with the largest amount of edges with large treewidth

• Graph 193 = graph with the largest treewidth of which the maximum
independent set can be found by the implementation.

In the results of the Kernel Optimization Priorities kernels are split into
multiple instances, there is no overview of each individual kernel, rather
a large list of kernel instances for each kernel. For instance: "Rank 100,
54 instances, IntroduceEdgeBagKernelMIS". While the list contains more
instances of IntroduceEdgeBagKernelMIS, these 54 are given the highest
priority. Because using the data with instances gives a very large list, the
ranks of the instances are combined to give an overall priority ranking.

For graph 79 the following priorities are given:

1. introduceEdgeBagKernelMIS

2. introducebagKernelMIS

22

3. forgetBagKernelMIS

4. joinBagKernelMIS

5. leafBagKernelMIS

For graph 191 the following priorities are given:

1. introduceEdgeBagKernelMIS

2. introducebagKernelMIS

3. forgetBagKernelMIS

4. joinBagKernelMIS

5. leafBagKernelMIS

For graph 193 the following priorities are given:

1. introducebagKernelMIS

2. introduceEdgeBagKernelMIS

3. joinBagKernelMIS

4. forgetBagKernelMIS

5. leafBagKernelMIS

4 Improvements
As is shown in Profiling, multiple warnings are given by the profiler. Al-
though some of these warnings are inherent to the way this problem is solved,
meaning the warnings cannot be resolved, others can be looked at for a pos-
sible increase in performance. Of the aforementioned warnings, the warning
about "Low Warp Execution Efficiency" is looked at in detail to see if it can
be improved.

Two changes will be looked at. One change to make the join bag of the
dominating set more efficient and the second to the execution of multiple
tasks per thread.

It might seem odd that the introduceBagKernel and the introduceEdge-
BagKernel are not changed to increase performance. Both kernels are given
high priority by the profiler. The reason that these kernels are not changed
is the fact that there are no changes that can be made to the code to increase

23

the efficiency of the code in the kernel, for instance decreasing the chance of
branch divergence.

The introduceBagKernel contains two IF-statements that each contain
an IF-statement. Although this might sound like a source of unnecessary
branch divergence, this is not actually the case. The first IF is for whether
the new node is added as the last element to the bag or not. This value
stays the same for the whole bag, so no change for branch divergence. The
reason this distinction is made because the computation for adding an as the
last element to the bag costs a few less computation steps. Whether or not
the element is added in last, does not change the fact that we have to check
whether or not the current index has the element in the independent set or
dominating set. This has to be checked using an IF statement, so there are
no unnecessary IF statements in IntroduceBagKernel.

To improve the performance of the introduceEdgeBagKernel the way the
kernel is called would have to be changed. The kernel has to have two IF-
statements to check whether none, one, or both nodes are in the independent
set or in the dominating set. This means that there are no IF-statements
that can be removed to decrease the chance of divergence. If the kernel was
only called when both nodes were in the set for the given index, there would
be no divergence. Currently the kernel is always called on all subsets in the
bag, but this would have to change to only the subsets in which the nodes
to be connected are both in the set.

4.1 joinBagKernelDS
In the current implementation of the join bag kernel for the dominating set,
the kernel firstly contains one for loop to find the location of all the zeroes for
the given index. Once the zero locations are found the values for the different
consistent combinations are all checked. To check all possible combinations,
a nested for loop is used. The first loop loops over the zero positions in the
index while the nested loop loops over the bag size. Using this technique all
different consistent combinations are checked for the best value.

The downside of this technique is that we have for-loops in which diver-
gence can occur. The first loop, that is used to find the positions of the zeroes
in the index, is be traversed in a different way for different indices. The for
loop itself costs a lot of time to traverse for a kernel, and the fact that branch
divergence can occur in the loop makes it even more costly. The outer part
of the second loop, the nested loop, loops over the different combinations of
zeroes in the index. The inner loop then loops over the each value of the
index to make the left and right consistent index combination. The same
downside applies to this for loop, but because this is a nested loop it takes

24

an significant amount of time to compute, while also having the possibility
for divergence.

By precomputing the zero positions for each index and having the differ-
ent combinations saved in memory, the first for loop can be removed as well
as the inner loop of the second for loop. The removal of these for loops does
cause the kernel to have more Memory loads, so the results will show if the
decrease in computation time outweighs the increase in memory loads.

4.2 Thread tasks
The last change that will be made to the execution of the kernels is the use
of multiple tasks per thread. A task in this case is the amount of times a
thread executes a kernel. If a thread has 4 tasks, it would execute the kernel
for index 0 till 4. Each thread has a "thread setup cost" to launch it. When
using one thread per element, this setup cost has to be paid more often than
the case where you have multiple tasks per thread, which is obvious as less
threads are started. Of course the optimal amount of threads is using all
the available threads in the GPU. When there are more tasks than threads
in the GPU you want the threads to have more tasks as there will be less
setup cost in that case. When there are less tasks than available threads,
you would want to give each thread less tasks, as it would cause the GPU
to only use a portion of the available threads. In this paper the amount of
tasks per thread is a static amount for each problem, so the amount of tasks
per thread is not changed based on the size of the current bag.

5 Results
To be able to see if there is a difference in performance of the CPU and the
GPU implementation of independent set and dominating set, and whether
the improvements increased the performance, tests need to be run. The fol-
lowing test of variable configurations was tested:

1. maximum independent set CPU implementation

2. maximum independent set GPU implementation, one task per thread

3. maximum independent set GPU implementation, eight tasks per thread

4. maximum independent set GPU implementation, 32 tasks per thread

5. maximum independent set GPU implementation, 128 tasks per thread

25

6. minimum dominating set CPU implementation

7. minimum dominating set GPU implementation, one task per thread

8. minimum dominating set GPU implementation, eight tasks per thread

9. minimum dominating set GPU implementation, 32 tasks per thread

10. minimum dominating set GPU implementation, 128 tasks per thread

11. minimum dominating set GPU implementation, one task per thread,
precomputing join bag

The CPU and GPU implementations of maximum independent set and
minimum dominating set are compared the by looking at the CPU implemen-
tation and the GPU implementation with one task per thread. The influence
of the amount of tasks is decided by comparing the GPU implementations
with one, eight, 32 or 128 tasks per thread respectively. Lastly the influence
of changing the dominating set join bag is found by comparing the implemen-
tation with the altered join bag to the dominating set GPU implementation
with a single task per thread.

These tests were ran on a laptop with the following characteristics:

• OS: Windows 10 Home, version 1803

• Processor: Intel Core i7-4710HQ @ 2.50GHz

• RAM: 8GB

• GPU: NVIDIA GeForce GTX 860M

• CUDA cores: 640

• GPU Memory Size: 2048 MB

Showing all the data generated by the runs in dedicated tables would take
over 150 pages. That is why this document does not contain an appendix with
tables. The complete results can be found in the following repository. The
complete codebase for this thesis can be found in the following repository.

26

https://git.science.uu.nl/g.c.w.stewart/thesis-results
https://git.science.uu.nl/g.c.w.stewart/master-thesis

5.1 Maximum independent set
5.1.1 CPU vs GPU

The average solving time of each tree decomposition on the CPU and GPU
and the speedup of the GPU compared to the CPU. Table 1 shows the data
from a few graphs the algorithm was ran on. The first time the GPU has a
better performance is at graph 127, with a minor speedup of 1.19×. With
the width of the trees increasing, the amount of times the GPU outperforms
the CPU also increases. After graph 161 the CPU is only quicker for two
graphs. The biggest performance increase is with graphs 191, 193 and 195.
of these graphs only 191 had the actual speedup, 22,70×. For graph 193 and
195, the speedup between CPU and GPU are not a fair comparison because
the CPU crashed during the execution as it ran out of memory.

The results gotten from running these experiments show a difference be-
tween solving these problems on the CPU and GPU, although which tree
decomposition the problem is solved on has a major influence. With max-
imum independent set graph 79 shows that the GPU struggles with a lot
of bags of small size, while it is faster for the tree decompositions with the
biggest widths.

graph Avg time CPU (s) Avg time GPU (s) Speedup (×)
25 0,16 4,09 0,04
79 4,89 51,22 0,10
127 0,28 0,24 1,19
161 10,23 3,61 2,83
163 0,45 0,43 1,04
165 0,35 0,38 0,93
175 0,62 1,67 0,37
189 6,92 0,58 11,91
191 279,11 12,29 22,70
193 -1,00 2,84 -0,35
195 -1,00 3,12 -0,32

Table 1: Averaged data for maximum independent set on the GPU and CPU
compared

5.1.2 Tread tasks

For the first few graphs shown in table 2 using 8 tasks per thread results
in a speedup when compared to using 1 task per thread, but this becomes
no speedup or a slight decrease in speed a few graphs later, around 0,9× -

27

1,0×. This decreases further to around a speedup of 0,8× for most of the
graphs. With 32 threads the values are close together for most of the graphs.
While 32 tasks per thread drops lower at the end to a speedup of 0,68× and
0,65× compared to 0,82× and 0,85× respectively, for most graphs with an id
higher than 100 using 32 tasks per thread is slightly faster. Using 128 tasks
per thread was only faster for the first graph. After this graph using 128
tasks per thread is always slower with a speedup of is between 0,55× and
0,65×.

Having multiple tasks per threads only lead to a tiny increase in speed
for some cases, but most of the time it lead to a decrease in speed. The
GPU that was used to run these tests on has 640 CUDA cores. You need 640
indices in a bag to give each thread its own task. If the bag has less than 640
indices a part of the GPU will be idle, while having more than 640 threads
will cause the GPU to have to wait for threads to complete before starting
the remaining threads. Nothing can be done when you have less than 640
threads, but when there are more than 640 threads, multiple tasks can be
given to threads to negate the start-up cost of threads. when a thread is
given 8 tasks, 5280 indices are needed, which is more than 212, and 84480
indices in a bag when each thread has 18 tasks per thread, more than 216.
When the amount of tasks per thread do not change dynamically to be close
to 640 a bag with 128 indices, will start one thread if it is told to have 128
tasks. This is around 128× slower than starting 128 threads. If the tree
decomposition has bags with #indices < 640× tasksPerThread solving the
problem will become slower than the version where 1 tasks per thread is used.
For the trees with large width the amount of bags that have enough indices
to have multiple tasks per thread increases, which is why a speedup can be
seen at graphs 191, 193 and 195 for independent set.

tasks per thread Speedup (×)
graph 1 task 8 tasks 32 tasks 128 tasks 1 vs 8 1 vs 32 1 vs 128
1 0,60 0,22 0,22 0,27 2,68 2,67 2,20
25 4,09 4,17 4,58 6,19 0,98 0,89 0,66
79 51,22 52,82 57,07 79,56 0,97 0,90 0,64
101 1,59 1,86 1,79 2,75 0,86 0,89 0,58
191 12,29 14,42 18,99 26,10 0,85 0,65 0,47
193 2,84 3,45 3,90 5,60 0,82 0,73 0,51
195 3,12 3,79 4,60 6,50 0,82 0,68 0,48

Table 2: Speedup of the maximum independent set GPU implementations
with varying tasks per thread

28

5.2 Minimum dominating set
5.2.1 CPU vs GPU

In table 3 after the first seven graphs, the GPU implementation of the solving
the minimum dominating set problem was faster for every other graph. For
finding the minimum dominating set it was decided to have a cutoff point if
finding the dominating set took longer than one hour. So if after one hour
the solution is not found, the graph states the solution took longer than 3600
second to find. Until graph 67 "avg time CPU (s)" shows the actual time.
This means that the speedups until graph 67 show the actual speedup, while
the speedups afterwards are the minimum speedup. Graph 79 took the GPU
776,73 seconds and because of the cutoff point it looks like the speedup was
small. But if the speedup on this graph was comparable to the other graphs
around 79, the CPU solution might have taken more than a week to compute.

The maximum actual speedup is 167,38× faster (graph 37). While the
minimum speedup was 1873,83× faster (graph 77).

The GPU implementation that solves the minimum dominating set prob-
lem becomes faster than the CPU implementation at a treewidth that is a lot
smaller than the width where the GPU implementation for the independent
set problem became consistently quicker as this was only after treewidth 20.
This has to do with the fact that solving the minimum dominating set prob-
lem is done in base 3 while the independent set is solved in base 2. When
using base 2, the amount of indices in the bag grow a lot slower than when
you use base 3. Because of this the GPU can use more compute power for
smaller bags. Where a bag with 6 nodes needs 26 = 64 indices for the in-
dependent set, for the dominating set 36 = 729 indices are needed. This
means that for smaller bags less of the GPU stays idle, resulting in a better
performance.

graph avg time CPU (s) avg time GPU (s) Speedup (×)
13 0,17 0,81 0,21
17 3,49 0,14 25,85
25 9,31 4,44 2,10
61 1305,15 7,93 164,68
65 596,13 5,69 104,83
67 >3600 14,45 249,14
77 >3600 1,92 1873,83
79 >3600 776,73 4,63
89 >3600 8,13 442,65
91 >3600 -1 -1

Table 3: Averaged data for minimum dominating set on the GPU and CPU
compared

29

5.2.2 Thread tasks

Table 4 shows the comparison between task amount per thread for the GPU
implementations of the minimum dominating set problem. For dominating
set other task sizes were compared. 8 and 32 are the same as with indepen-
dent set, but now 9 and 27 are added. For dominating set each index can
contain 3 different values. By using a value that that is not a multiple of
three, the chance of having branch divergence is higher. When adding a new
node to the front of the bag the value for colouring for the newly adding
node will be split into equal parts 0, 0̂ and 1, so this chance is smaller. But
when the node is not added to the front of the bag, the colouring will switch
between colours more rapidly. When the amount of tasks per thread are not
a multiple of three the tasks of a thread can be out of sync with each other
causing one to start at them to start with different colours and maybe have
different colours for all the tasks in the thread.

Using more than one thread gives an increase in speed for graph 13 when
using eight on nine tasks per thread. For all the other graphs using more
than one task per thread leads to a decrease in speed. Up until graph 39,
using 9 tasks per thread often results in a slight increase in performance, but
still worse than using one task per thread. Using both 27 or 32 tasks per
thread leads to a major decrease in performance, going as far as a slowdown
of 0,08× for 32 tasks and 0,10× for 27 tasks.

tasks per thread speedup (×)
graph 1 task 8 tasks 9 tasks 27 tasks 32 tasks 1 vs 8 1 vs 9 1 vs 27 1 vs 32
1 0,09 0,28 0,35 0,27 0,28 0,87 0,69 0,91 0,87
25 4,44 5,80 5,01 7,66 8,38 0,77 0,9 0,59 0,54
27 0,03 0,13 0,14 0,37 0,45 0,21 0,2 0,08 0,06
39 1,05 1,88 1,81 3,22 3,70 0,57 0,59 0,33 0,29
51 2,80 8,78 9,39 25,10 30,80 0,32 0,3 0,11 0,09
53 1,20 4,37 4,72 -1 -1 0,29 0,27 0,1 0,08
59 3,96 -1 -1 -1 -1 0,28 0,26 -1 -1
79 776,73 -1 -1 -1 -1 0,28 0,26 -1 -1
91 -1 -1 -1 -1 -1 1 1 1 1

Table 4: Speedup of the minimum dominating set GPU implementations
with varying tasks per thread

30

5.2.3 Join bag

The results for the join bag with precomputation, seen in table 5, does not
contain the time it took to precompute the zero positions and combinations.
If this was used in a practical application this step would have only been
done once, and used forever, this is why is not counted as time for the actual
computation.

The results show that for each graph that can be computed with the avail-
able memory the join bag with precomputation gives an increase in speed.
The lowest speedup is 1,05(×) while the biggest increase is 28,48(×).

When the zero positions and different consistent index combinations are
precomputed for the join bag of the minimum dominating set the compu-
tation time decreased for each graph. Although the kernel has a lot more
calls to memory, which are slow because of the latency, is still outweighs the
time it takes to compute every zero position and combination in each kernel.
Having a nested loop where branch divergence can occur takes a lot of time,
but even for the smaller graphs it is an increase in speed. The GPU might be
able to combine optimize one of the calls to memory by making a single warp
execute one call to memory instead of each thread making its own call, but
other than that saving data to memory and reading it in in a kernel seems
to be faster if the kernel otherwise has a lot of computational work.

graph avg time GPU (s) avg time GPU join (s) Speedup (×)
25 4,44 4,16 1,07
27 0,03 0,02 1,78
39 1,05 1,00 1,05
67 14,45 0,52 27,89
69 14,55 0,51 28,48
79 776,73 82,03 9,47
89 8,13 3,07 2,65
91 -1 -1 1

Table 5: Averaged data for minimum dominating set on the GPU and GPU
with precomputation for join bag compared

31

6 Conclusion
The results show a significant difference in speed for solving these problems
on the CPU or GPU, with dominating set having the biggest increase in
speed. An speed increase of 1873×. Because these results were computed
on a mobile GPU, with a more powerful GPU, with more core and memory,
the speedup of the GPU compared to the CPU could be even greater as it
has more compute power and has enough memory to have bags for larger
treewidths in memory.

Furthermore the influence of the tree on the results of the problems is
shown. While the GPU get better results at higher treewidths a graph with
many small bags, graph 79, can limit the performance of the GPU severely.
Tweaking the parameters of the GPU implementation can help it cope better
with different trees, but it is difficult to have a speedup with the GPU if the
tree does not suit solving Dynamic Programming problems in parallel.

The fact that these significant speedups were achieved on these two prob-
lems can incentivize others to create GPU implementations for their Dynamic
Programming problems.

7 Further research
While I have looked at different factors that could influence the performance
of the GPU, such as the amount of tasks a single thread is given, there
are still components that could be tweaked. Examples are: the number of
threads in a block, concatenating MemCpy’s, dynamic memory management,
traversing the tree in a different way so that bags that are independent of
each other can be solved at the same time, when they are independent, and
dynamic task amount per thread.

During the experiments the size of the blocks were kept at the maximum
amount of 1024 threads per block. I do not know whether lowering the thread
count per block could be of influence, there might be an optimal amount block
size based on the thread count, amount of computation in a thread etc.

As stated in Profiling, concatenating the MemCpy’s could lead to an
increase in performance, the speedup or slowdown of having one big MemCpy
instead of a lot of smaller ones is also useful for other GPU applications, not
just for algorithms on tree decompositions.

Reusing memory. The amount of memory allocations can be lowered by
reusing memory allocations that are big enough to be used by other bags.
This would result in less allocations and deallocations. However it would
need some logic to make the most out of the available memory as you do not

32

want to put a new bag of with 8 indices into an allocated memory space of
500MB.

The traversal of the decomposition was done using a post-order traversal,
but finding another way of traversing the tree could be beneficial for the
performance of the GPU implementation as less of the gpu could be idle
when computing the bag values. Instead of using a post-order traversal a
traversal could be constructed that takes the GPU the code is running on
into account, so it could try to fill the GPU with enough bags that all CUDA
cores are used.

As is seen with the results, the tree decomposition the independent set
or dominating set is computed for has a big influence on the performance.
This research only looked at the impact of changes to the algorithm and
parameters used by the algorithm but not at the tree decomposition itself.
Because the join bag for the dominating set is so computationally expensive,
finding a way of using less join bags or using smaller join bags could be of
influence to the execution time of finding the dominating set.

Acknowledgments
I would first like to thank my thesis supervisor prof. dr. Hans Bodlaender
of Faculty of Science, Department of information and Computing Sciences,
Algorithms and Complexity group at Universiteit Utrecht. The weekly meet-
ings helped me along in the process by having a place to ask questions and
speak about my progress. Even if I ran into trouble spots and there was not
a lot of progress, he helped me figure out how to get up and going again.

I would also like to thanks Tom van der Zanden MSc, my second thesis
supervisor. His advice during the weekly meetings was very useful and helped
me progress is my thesis multiple times. He was also so generous to provide
me with C# code that he used to generate tree decompositions. Having this
code helped me write the C++ code I used for the tree generation.

I also want to acknowledge dr. Johan van Rooij of the Faculty of Sci-
ence, Department of information and Computing Sciences, Algorithms and
Complexity group at Universiteit Utrecht as the second reader of this thesis,
I am gratefully indebted to his valuable comments on this thesis

Last but not least, I want to thank Rolf Plagmeijer for allowing me to
look at the code he wrote for his research project. He wrote code to solve
maximum independent set and minimum dominating set using path decom-
position. Some of the code he wrote could be reused for this tree decomposi-
tion implementation and a lot could be used for inspiration on how to solve
it using tree decomposition.

33

Finally, I must express my gratitude to my parents for providing me
with unfailing support and continuous encouragement throughout my years
of study and through the process of researching and writing this thesis. This
accomplishment would not have been possible without them. Thank you.

Author

Glenn Stewart

34

References
[1] Marco Cococcioni, Raffaele Grasso, and Michel Rixen. Rapid prototyp-

ing of high performance fuzzy computing applications using high level
GPU programming for maritime operations support. In Computational
Intelligence for Security and Defense Applications (CISDA), 2011 IEEE
Symposium on, pages 17–23. IEEE, 2011.

[2] Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov,
Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh.
Parameterized Algorithms, volume 4. Springer, 2015.

[3] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Jo-
ham MM van Rooij, and Jakub Onufry Wojtaszczyk. Solving connec-
tivity problems parameterized by treewidth in single exponential time.
In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual
Symposium on, pages 150–159. IEEE, 2011.

[4] Tuvi Etzion and Patric RJ Ostergard. Greedy and heuristic algorithms
for codes and colorings. IEEE Transactions on Information Theory,
44(1):382–388, 1998.

[5] Thomas A Feo, Mauricio GC Resende, and Stuart H Smith. A greedy
randomized adaptive search procedure for maximum independent set.
Operations Research, 42(5):860–878, 1994.

[6] Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast k nearest
neighbor search using GPU. In Computer Vision and Pattern Recogni-
tion Workshops, 2008. CVPRW’08. IEEE Computer Society Conference
on, pages 1–6. IEEE, 2008.

[7] K. Viswanathan Iyer. Np-completeness of independent set.

[8] Tim Kieritz, Dennis Luxen, Peter Sanders, and Christian Vetter. Dis-
tributed time-dependent contraction hierarchies. In International Sym-
posium on Experimental Algorithms, pages 83–93. Springer, 2010.

[9] Ton Kloks. Treewidth: Computations and Approximations, volume 842.
Springer Science & Business Media, 1994.

[10] Svetlin A Manavski and Giorgio Valle. Cuda compatible GPU cards as
efficient hardware accelerators for smith-waterman sequence alignment.
BMC bioinformatics, 9(2):S10, 2008.

35

[11] Jurij Mihelic and Borut Robic. Facility location and covering problems.
In Proc. of the 7th International Multiconference Information Society,
volume 500, 2004.

[12] NVIDIA. Comparison of CPU and GPU architecture. Feb 2010.

[13] Sebastian Ordyniak. Fixed-parameter algorithms, ia166.

[14] Pavel A Pevzner and Sing-Hoi Sze. Combinatorial approaches to finding
subtle signals in dna sequences. In International Society for Computa-
tional Biology, volume 8, pages 269–278, 2000.

[15] Rolf Plagmeijer. Dynamic programming algorithms for graph problems
on the GPU. this research looked at implementing maximum indepen-
dent set and minimum dominating set on path decompositions. 2017.

[16] Neil Robertson and Paul D Seymour. Graph minors. III. planar tree-
width. Journal of Combinatorial Theory, Series B, 36(1):49–64, 1984.

[17] KP Sampoornam and K Rameshwaran. Efficient scheduling scheme
using connected dominating set for sensed data aggregators in sensor
networks. Procedia Engineering, 30:152–158, 2012.

[18] Michael C Schatz, Cole Trapnell, Arthur L Delcher, and Amitabh Varsh-
ney. High-throughput sequence alignment using graphics processing
units. BMC bioinformatics, 8(1):474, 2007.

[19] TW Strijk, AM Verweij, and KI Aardal. Algorithms for maximum in-
dependent set applied to map labelling, 2000.

[20] Jie Wu. Extended dominating-set-based routing in ad hoc wireless net-
works with unidirectional links. IEEE Transactions on Parallel and
Distributed Systems, 13(9):866–881, 2002.

36

	List of Figures
	List of Tables
	Introduction
	Architectural GPU differences
	Tree Decompositions
	Nice Tree decompositions
	Algorithms
	Maximum independent set
	Minimum dominating set

	Methods
	Data
	Tree decomposition construction
	Running the algorithm
	CPU Implementation
	GPU Implementation

	Output

	Profiling
	Improvements
	joinBagKernelDS
	Thread tasks

	Results
	Maximum independent set
	CPU vs GPU
	Tread tasks

	Minimum dominating set
	CPU vs GPU
	Thread tasks
	Join bag

	Conclusion
	Further research
	References

